1	Precipitation of protodolomite facilitated by sulfate-reducing bacteria:
2	The role of capsule extracellular polymeric substances
3	
4	Deng Liu ^{1, 2, *} , Qigao Fan ² , Dominic Papineau ^{1, 3, 4, 5} , Na Yu ² , Yueying Chu ⁶ , Hongmei Wang ¹ ,
5	² , Xuan Qiu ¹ and Xingjie Wang ⁷
6	
7	¹ State Key Laboratory of Biogeology and Environmental Geology, China University of
8	Geosciences, Wuhan 430074, China
9	² School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
10	³ London Centre for nanotechnology, University College London, 17-19 Gordon Street,
11	London, UK
12	⁴ Department of Earth Sciences, University College London, London, UK
13	⁵ Center for Planetary Sciences, University College London, London, UK
14	⁶ State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan
15	Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
16	⁷ School of Resource and Environmental Engineering, Wuhan University of Science and
17	Technology, Wuhan 430081, China
18	
19	Corresponding author: Deng Liu (liud_cug@126.com)
20	Chemical Geology
21	
22	November 17, 2019

23 ABSTRACT

The origin of dolomite has long puzzled geologists. It has recently been 24 documented that sulfate-reducing bacteria (SRB) are capable of catalyzing the 25 formation of protodolomite, a previously proposed precursor of ordered sedimentary 26 dolomite. However, the catalytic mechanism of SRB remains incompletely understood. 27 This experimental study is aimed at probing the effect of capsule extracellular 28 polymeric substances (capsule EPS) from SRB on the crystallization of protodolomite 29 in vivo. The capsule EPS tested herein was isolated from a protodolomite-mediating 30 31 SRB, Desulfotomaculum ruminis, and added into a solution wherein the degree of oversaturation was close to the growth medium of *D. ruminis* at stationary phase. The 32 solid products were characterized with X-ray diffraction (XRD), Raman spectroscopy 33 34 and, scanning and transmission electron microscopy (SEM and TEM). Our results indicated that aragonite emerged in the reactors without capsule EPS, while Ca-Mg 35 carbonates (Mg-calcite and protodolomite) were produced in the systems amended with 36 capsule EPS. The incorporation amount of Mg²⁺ in Ca-Mg carbonates was enhanced 37 with the increasing concentration of capsule EPS. The predominant occurrence of 38 protodolomite was found in the reactor with 140 mg/L capsule EPS. These resulting 39 protodolomites were spherical in shape, and composed of numerous nano-particles. The 40 catalytic influence of capsule EPS on the precipitation of protodolomite might be 41 attributed to their strong Mg²⁺ binding capacity, potentially diminishing Mg-hydration, 42 which is a potent inhibitor of protodolomite crystallization. The results of Fourier 43 transformation infrared (FT-IR) spectra showed that Mg²⁺ was bonded with carboxyl 44

and hydroxyl groups on capsule EPS. This inferred adsorption capacity of capsule EPS
was also supported by new calculations of complexation chemistry between Mg-H₂O
complex and organic compounds present in capsule EPS.

48 Keywords: dolomite problem; protodolomite; capsule extracellular polymeric
49 substances; sulfate-reducing bacteria; magnesium hydration

50

51 **1. Introduction**

The origin of sedimentary dolomite [CaMg(CO₃)₂] has been a persistent problem 52 53 in the Earth sciences (Arvidson and Mackenzie, 1999; Warren, 2000; McKenzie and Vasconcelos, 2009). This so-called "dolomite problem" stems from the uneven 54 distribution of dolomite abundance in the geological record and the difficulty in 55 56 laboratory synthesis of dolomite at Earth surface temperatures (<60 °C) (Given and Wikinson, 1987; Land, 1998; Gregg et al., 2015). In general, modern seawater is 57 oversaturated with respect to dolomite, however, this mineral is rarely found in recent 58 59 marine sediments (Warren, 2000). In contrast, dolomite is a common constituent of Precambrian sedimentary rocks (Warren, 2000). It is now clear that the precipitation of 60 dolomite is a kinetic-controlled process and the formation of stoichiometric dolomite 61 proceeds stepwise through a series of metastable precursors (Rodriguez-Blanco et al., 62 2015; Kaczmarek and Thornton, 2017). Protodolomite, sometimes referred to as 63 disordered dolomite or very high-Mg calcite, is a dolomite-like carbonate that displays 64 near-dolomite stoichiometry, but with a disordered-cation arrangement, and it has been 65 identified as a possible precursor phase in laboratory experiments (e.g., Graf and 66

Goldsmith, 1956; Malone et al., 1996; Rodriguez-Blanco et al., 2015; Kaczmarek and
Thornton, 2017). According to previous experiments, the difficulty to precipitate lowtemperature protodolomite is mainly attributed to the hydration effect of Mg²⁺
(Lippmann, 1973; de Leeuw and Parker, 2001; Romanek et al., 2009; Shen et al., 2014,
2015) and an intrinsic crystallization barrier impedes the subsequent transformation
from protodolomite to a more stoichiometric and well-ordered dolomite (Xu et al.,
2013).

Although Holocene dolomite is a rare precipitate in marine sediments, it is indeed 74 75 discovered in some evaporitic environments (e.g., coastal lagoons, sabkhas and playa lakes) (e.g., Wright, 1999; van Lith et al., 2002; Bontognali et al., 2010; Deng et al., 76 2010; Meister et al., 2011; Brauchli et al., 2016; Petrash et al., 2017; McCormack et al., 77 78 2018; Liu et al., 2019a). Importantly, Holocene dolomites are normally Ca-rich and poorly ordered, and interpreted as being of primary or very early diagenetic origin 79 (Petrash et al., 2017). Various hypotheses have been proposed to explain the genesis of 80 81 Holocene dolomite. Among them, a microbial dolomite model has attracted much attention, arising from laboratory observations that some types of microorganism are 82 effective in facilitating the precipitation of dolomite at ambient temperature 83 (Vasconcelos et al., 1995; Sánchez-Román et al., 2008; McKenzie and Vasconcelos, 84 2009; Petrash et al., 2017). It is worthwhile to note that these examples of microbially-85 induced dolomite were originally thought to be ordered dolomite, but recently have 86 been alternatively interpreted as protodolomite because they lack evidence of cation 87 ordering (Gregg et al., 2015). Nevertheless, as stated earlier, protodolomite is 88

considered as a precursor for some sedimentary dolomites and in this regard, the
activity of microbes could be one possibility to account for the genesis of modern
dolomites and some dolomicritic rocks (Petrash et al., 2017; Perri and Tucker, 2007;
Fang and Xu, 2018; Huang et al., 2019).

Sulfate-reducing bacteria (SRB) are typical protodolomite-mediating microbes 93 (Vasconcelos et al., 1995; van Lith et al., 2003; Bontognali et al., 2012). It has been 94 proposed that the SRB facilitate the precipitation of protodolomite by increasing the 95 saturation state of microenvironment around cells and by providing a template for 96 protodolomite growth (van Lith et al., 2003; Bontognali et al., 2012). The soluble 97 extracellular polymeric substances (i.e., slime EPS) derived from SRB have been 98 demonstrated to be effective templating agents (e.g., Krause et al., 2012; Bontognali et 99 100 al., 2014). These polymers are a complex mixture of protein, polysaccharide, uronic acid, lipid and nucleic acid (Beech and Cheung, 1995). As such, EPS are rich in various 101 acid moieties (e.g., carboxylic, thiol, phosphate and hydroxyl functional groups) 102 (Braissant et al., 2007), thus might be effective in binding the cations of Mg^{2+} and Ca^{2+} , 103 and potentially in diminishing the Mg-hydration effect (Bontognali et al., 2014). 104

In addition to slime EPS, there exists another kind of microbially-derived polymer called capsule or bound EPS (Beech and Cheung, 1995). Unlike slime EPS that are dissolved in solution, capsule EPS have a lower solubility and are located at cell surface as peripheral capsules (Beech and Cheung, 1995). In addition to their distinct physical states, it has been reported that these two types of EPS display some different chemical properties (e.g., polysaccharide/protein ratio) (Pan et al., 2010), which might result in different influences on biomineralization. To date, however, few studies have examined
the capacity of capsule EPS from SRB in protodolomite crystallization. Therefore, CaMg carbonate nucleation experiments were performed to determine whether capsule
EPS from protodolomite-mediating SRB facilitate the precipitation of protodolomite *in vivo*. The purpose of this study is to understand better the catalytic mechanism for the
formation of low-temperature protodolomite by SRB.

117

118 **2. Materials and methods**

119 **2.1. SRB strain and culture medium**

Desulfotomaculum ruminis strain CGMCC 1.3470 has been demonstrated to be a 120 protodolomite-mediating SRB (Deng et al., 2010), and was thus selected for our 121 122 experiments. This strain was purchased from China General Microbiological Culture Collection Center (CGMCC). To avoid biomineralization which could influence 123 biomass recovery and subsequent isolation of capsule EPS, D. ruminis was cultivated 124 125 in an anaerobic Mg/Ca-free medium with salinity and sulfate concentration close to modern seawater. This medium consisted of (per liter) 4.5 g Na₂SO₄, 1 g NH₄Cl, 0.5 g 126 127 KH₂PO₄, 25 g NaCl, 2 g yeast extract, 20 mmol sodium lactate, 1 mL of trace elements solution (SL-10; Widdel et al., 1991), and 1 mL 0.1% resazurin (redox indicator). The 128 pH of medium was adjusted to 7.5 by adding 0.1 M NaOH as needed. The medium was 129 transferred to 100 mL serum bottles and further degassed by gushing ultra-pure N₂. To 130 better probe the changes in physico-chemical parameters upon microbial activity, the 131 autoclaved serum bottles were inoculated with either live or dead cells of D. ruminis to 132

133 get the initial cell number of about 5×10^5 cells/mL. The serum bottles were then 134 incubated at 30 °C without agitation.

135 2.2. Monitoring of cell growth and aqueous chemistry analysis during microbial136 growth

The cell density, solution pH and alkalinity were measured during incubation. The measurement of cell density was done by the acridine-orange direct counting (AODC) method. The pH was measured using a Denver UB-7 pH meter (Denver, USA). Alkalinity was determined by titration using 0.1 M HCl, with methyl orange as an indicator. The concentrations of HCO_3^- and CO_3^{2-} in the medium were calculated from measured pH and alkalinity using Visual MINTEQ 3.1 program (with "comp_2008.vdb" as Component database). All measurements were performed in duplicate.

144 **2.3. Biomass collection and isolation of capsule EPS**

Once cell growth reached the stationary phase (as evidenced by AODC 145 enumeration), cells of *D. ruminis* were harvested by centrifugation (7500×g, 10 min) 146 in order to remove slime EPS and organic substrate. The obtained cell pellet was rinsed 147 three times with 0.1 M NaNO₃. A portion of wet biomass was freeze dried and weighted 148 to determine the biomass. Cell surface-bound capsule EPS (both loosely- and tightly-149 associated fractions included) were extracted from washed cells by using 10 mM 150 ethylenediaminetetraacetate (EDTA) following a reported protocol (Liang et al., 2010). 151 The capsule EPS suspension was filtered through 0.22 µm filters to eliminate residual 152 cell debris. The crude EPS was recovered from the suspension by using two volumes 153 of cold ethanol (4 °C) and purified by dialysis (DCMW=3500 Da). Resulting EPS 154

155 extract was then concentrated prior to chemical quantification.

156 **2.4. Characterization of capsule EPS**

157 The surface charge of EPS (140 mg/L) was characterized by zeta potential titration at pH of 6, 7, 8, 9 and 10. These zeta potentials were quantified by a Malvern Zetasizer 158 159 (Nano ZS, Malvern Instruments, UK). As protein, polysaccharide and uronic acid are 160 the major components of EPS (Bazaka et al., 2011), their contents in our purified capsule EPS were determined by the methods described previously (François et al., 161 2012). Briefly, the protein content was analyzed using Bradford reagent (Sigma-Aldrich, 162 163 USA) and bovine serum albumin as a standard. The content of polysaccharide was measured by the phenol-sulfuric acid method using glucose as a standard. The content 164 of uronic acid was assayed using the hydroxydiphenyl method and glucuronic acid as a 165 166 standard. The amino composition and monosaccharide of EPS were quantified with a high performance liquid chromatograph (HPLC; Agilent 1200, USA) coupled with a 167 mass spectrometer (MS; Agilent 6460A, USA). Prior to the HPLC-MS analysis, EPS 168 sample was acid hydrolyzed following the method of Qiu et al. (2017). Above 169 determinations were performed in duplicate. 170

171 2.5. Capsule EPS-assisted precipitation of Ca-Mg carbonates in a saturated 172 solution and analytical procedures

173 2.5.1. Abiotic synthesis of Ca-Mg carbonates in the presence of capsule EPS

To test the templating effect of capsule EPS on Ca-Mg carbonate formation, abiotic carbonation experiments were carried out in a saturated solution, which were amended with different concentrations of capsule EPS (0, 70 and 140 mg/L). The

dosage of 140 mg/L was at the similar level to that determined at stationary phase (see 177 later Section 3.1 for details). This precipitation solution contained the ions of HCO₃-178 and CO_3^{2-} at concentrations found in the culture medium at stationary phase. 179 Furthermore, the starting concentrations of Ca²⁺ and Mg²⁺ in the precipitation solution 180 were close to those of present seawater. In brief, the precipitation solution was prepared 181 follows: EPS powder was weighed and completely dissolved in a 182 as CaCl₂/MgCl₂·6H₂O solution (100 mL, 20 mM Ca²⁺ and 100 mM Mg²⁺) with vigorous 183 stirring at 60 °C. After cooling to room temperature, this slime solution was added into 184 the 50-mL serum bottles. The serum bottles were degassed with ultra-pure N₂ and 185 sealed with rubber stopper. An equal volume of pre-degassed bicarbonate/carbonate 186 solution (117.2 mM NaHCO₃ and 10.4 mM Na₂CO₃) was immediately injected into the 187 188 serum bottles to initiate carbonation. The resulting precipitation solutions were placed in an incubator at 30 °C without agitation for 15 days and all synthetic experiments 189 reported were performed in duplicate. 190

191 **2.5.2.** Chemical analyses and crystal characterization

Solution pH during carbonate crystallization was measured at select time points. The concentrations of Ca^{2+} and Mg^{2+} were analyzed by inductively coupled plasmaoptical emission spectrometry (ICP-OES, Thermofisher ICAP6300, USA), with an analytical precision of $\pm 1\%$. Total carbon (TC) and dissolved organic carbon (DOC) in the filtrate were detected by Shimadzu SCN analyzer (TOC-V, Shimadzu, Japan). The concentration of dissolved inorganic carbon (DIC) was calculated as the difference between TC and DOC. On the basis of these data, the saturation index (SI) with respect to protodolomite was calculated by Visual MINTEQ (with "type6.vdb" for solidsdatabase).

201 At the end of experiments (day 15), the carbonate minerals were collected by centrifugation and rinsed five times with double distilled H₂O, and then freeze-dried. 202 203 The resulting solid samples were characterized by multiple approaches, including Xray diffraction (XRD), Raman spectroscopy, scanning electron microscopy/energy 204 dispersive spectroscopy (SEM-EDS), and transmission electron microscopy (TEM). 205 Specifically, the XRD measurements were conducted using a Scintag X1 X-ray 206 powder diffractometer (Scintag Inc., USA) with Cu Ka radiation (40 kV, 35 mA). The 207 XRD data were smoothed and refined by the Rietveld method using a MDI JADE 6.0 208 system. The MgCO₃ contents of Mg-calcites were calculated from the d-spacing of the 209 210 (104) peak by using the calibration curve of Bischoff et al. (1983). For Raman spectroscopy, excitation was accomplished by a 20 mW 514.5 nm Ar⁺ laser and detected 211 by a RM-1000 laser Raman spectrometer (Renishaw, UK). The spectra were calibrated 212 using the 520.5 cm⁻¹ line of silicon wafer. Samples were Pt-coated and examined under 213 a SEM (SU8010, Hitachi, Japan) at 5-15 kV accelerated voltage. In addition, EDS (EX-214 350, Horiba, Japan) attached to the SEM was used to analyze the elemental composition 215 of samples. TEM observations and selected area electron diffraction (SAED) were 216 conducted on an FEI Talos F200X TEM with an accelerating voltage of 200 kV. 217

218 **2.6. Terminology of Ca-Mg carbonates**

In natural systems, the Ca^{2+} sites in the lattice of calcite can be substituted by Mg^{2+} ions, leading to the formation of various Ca-Mg carbonates that include Mg-calcite 221 (<36 mol% Mg²⁺; space group: *R3c*), protodolomite (with 36~55 mol% Mg²⁺ and 222 disordered cations; space group: *R3c*) and dolomite (space group: *R3*) (Zhang et al., 223 2015). These criteria were employed to categorize our solid products.

224 **2.7.** Interaction of Mg²⁺ with capsule EPS and complexation simulation

As described before, the highly hydrated nature of Mg²⁺ poses a challenge to the 225 formation of Ca-Mg carbonates (e.g., protodolomite). A metal-chelation mechanism 226 has been proposed to interpret the role of slime EPS in dehydration of Mg (Bontognali 227 et al., 2014). In order to assess which functional groups of capsule EPS are responsible 228 229 for Mg complexation, a Mg-adsorption experiment was conducted. This was performed in a 50 mL centrifuge tube with 40 mL of capsule EPS-containing solution (150 mg/L), 230 which was allowed to interact with 50 mM MgCl₂. The tube was shaken at 30 °C and 231 232 160 rpm for 6 h. EPS sample was recovered by a freeze-drying process. The Fourier transformation infrared (FT-IR) spectra of capsule EPS before and after Mg²⁺ 233 adsorption were recorded on a Perkin-Elmer FT-IR spectrometer (Model 2000; Perkin-234 Elmer co., USA). 235

Lastly, complexation chemistry between Mg-H₂O complex and organic compounds from capsule EPS was further modeled using density functional theory (DFT) calculations. Instead of the high-molecular weight and heterogeneous EPS, typical monomeric organic compounds, which compose capsule EPS of *D. ruminis*, were selected as representatives for our stimulations. The geometry optimizations were carried out by the M06-2X functional. The standard 6-31G(d, p) basis sets were employed for the H, C, O and Mg atoms for the electronic structure calculations. All calculations were performed using the Gaussian 09 software package.

244

245 **3. Results**

246 **3.1.** Changes in cell density and aqueous chemistry during microbial growth

247 No growth was observed in the systems with dead cells of D. ruminis (Fig. 1A). By contrast, the cell density showed a rapid rise after inoculation with live cells. It 248 increased from ca. 5×10^5 cells/mL to 2×10^8 cells/mL for the first 5 d followed by a 249 stationary phase. The solution pH exhibited an expression pattern similar to cell density 250 251 (Fig. 1B). In brief, the pH changes in dead cell inoculum treatments were negligible, while the pH in the reactors with active cells increased to 9.02 by the end of incubation 252 (day 10). As a consequence of microbial sulfate reduction, the solution alkalinity in the 253 254 treatments with live cells was sharply elevated from near 0 (at day 0) to 63.96 mM by day 10 (Fig. 1C). Based on the measurements of solution pH and alkalinity, the 255 concentrations of CO₃²⁻ and HCO₃⁻ on day 10 were calculated as 5.2 and 58.6 mM, 256 257 respectively (Fig. 1D). At the end of incubation, the dry weight was 578.4 mg/L for biomass and 140.3 mg/L for capsule EPS, respectively (Fig. 1D). 258

259 **3.2.** The properties of capsule EPS from *D. ruminis*

As shown in Fig. 2A, capsule EPS of *D. ruminis* were negatively charged, as evidenced by the fact that the value of zeta potential was in the range from -74.5 to -105.9 mV at different pHs. The major fraction of the capsule EPS sample was composed of protein, polysaccharide and uronic acid (Fig. 2B). Specifically, the content of protein was 397.8 mg/g, higher than that of polysaccharide (227.1 mg/g) and uronic acid (24.9 mg/g). The amino acids derived from EPS-associated protein were further analyzed. The results showed that various acidic, basic and neutral amino acids were detected (Fig. 2C). Among them, acidic amino acids such as glutamic and aspartic acid were most abundant. The molar ratio of acidic to basic amino acids was 2.84. Moreover, our results also indicated that the saccharide fraction of capsule EPS mainly consisted of mannose (58.2%), glucose (20.4%), xylose (15.9%) and fructose (5.5%) (Fig. 2D).

3.3. Evolution of aqueous chemistry upon carbonation without and with capsule EPS

When the mixture solution of NaHCO₃ and Na₂CO₃ was added into the Ca/Mg solution, gel-like precipitates immediately occurred. As a result of carbonation, the aqueous chemistry was dynamically changed and showed differences in the reactors without or with capsule EPS (Fig. 3).

The pH in all reactors generally decreased over time and these decreases were 277 significantly related to the increased dosage of capsule EPS (Fig. 3A). Specifically, the 278 pH in reactors without EPS (0 mg/L) declined from 9.01 to 8.71 at the end of 279 experiments (day 15). The pH in reactors amended with 70 mg/L capsule EPS 280 decreased to 8.68, and the pH in reactors with 140 mg/L capsule EPS decreased to 8.64. 281 The concentrations of Ca^{2+} dropped sharply at a similar rate for each treatment 282 (Fig. 3B). After carbonation, most of the Ca^{2+} ions were removed from solution and the 283 remaining concentrations of Ca²⁺ were only ca. 1.04 mM. In contrast, the decrease in 284 the concentration of Mg²⁺ exhibited large differences when different dosages of capsule 285 EPS were used (Fig. 3C). The concentration of Mg^{2+} was nearly kept constant in the 286

absence of EPS, while a decline was observed in the reactors with capsule EPS, which
became more obvious under higher concentration of capsule EPS.

As shown in Fig. 3D, the changes of DIC displayed trends similar to those of pH 289 (Fig. 3A), indicating that the depletion of HCO_3^- and CO_3^{2-} primarily accounted for the 290 291 detected pH decline. The saturation index with respect to protodolomite was further calculated. In general, the solution in each reactor was oversaturated during carbonation 292 experiments (Fig. 3E). The concentration of precipitated Mg (depletion of Mg^{2+}) was 293 linearly correlated with that of precipitated Ca (Fig. 3F). It is important to note that the 294 precipitated Mg was nearly equal to the precipitated Ca in the systems with 140 mg/L 295 capsule EPS. 296

297 **3.4.** Characterization of the produced carbonates

298 The XRD results revealed that the crystals formed in the absence of EPS were exclusively aragonite (Fig. 4A). When capsule EPS were introduced into the precipitate 299 solution, the solid products were significantly changed (Figs. 4B and 5). Specifically, 300 Mg-calcite was the dominant phase in the systems with 70 mg/L capsule EPS. Its 301 highest-intensity (104) peak centered around $30.209^{\circ} 2\theta$ (Cu Ka), corresponding to a 302 d-spacing value of 2.956 Å (Fig. 4B). This value revealed that the obtained Mg-calcite 303 had an average MgCO₃ content of 28.2 mol% (Bischoff et al., 1983). SEM results 304 showed that these Mg-calcites were micron-sized crystals with a spherical morphology 305 (Fig. 4B). 306

307 Once the concentration of capsule EPS increased up to 140 mg/L (close to the 308 capsule EPS yield at stationary phase), the d(104) of newly-formed Ca-Mg carbonate

309	shifted to 2.914 Å (Fig. 5A), corresponding to 43.5 mol% MgCO ₃ in its structure
310	(Bischoff et al., 1983). This value approached that of stoichiometric dolomite (50 mol%
311	of MgCO ₃). Given the fact that no visible ordering peaks [e.g., (015) and (021)] could
312	be found in the XRD pattern, this dolomite-like mineral thus can be identified as
313	protodolomite. The Raman spectrum in the 100-1200 cm ⁻¹ region indicated that our
314	protodolomite displayed four intense bands at 172, 297, 724 and 1095 cm ⁻¹ , respectively,
315	much closer to those of dolomites reported elsewhere (e.g., Perrin et al., 2016). SEM
316	observations showed that protodolomite crystals were about 6-8 μm in size and had
317	spherical shapes (Fig. 5C). The EDS spot data confirmed that protodolomite contained
318	approximately similar contents of Mg and Ca (K α line). Interestingly, a magnified view
319	showed that micron-sized protodolomite was composed of densely packed nano-grains
320	(Fig. 5D). Elemental mapping by EDS revealed that Ca and Mg in protodolomite were
321	homogenously distributed (Fig. 5E). The microstructure of resulting protodolomite was
322	investigated by TEM. The fringe spacing was measured to be 2.91 Å, corresponding to
323	the (104) plane of protodolomite (Fig. 5F). In agreement with XRD data, the disordered
324	structure of protodolomite was also confirmed by its SAED pattern, which lacked
325	superlattice reflections [e.g., (015), and (021)] (Fig. 5F).

DFT calculations

326

FT-IR spectra of pristine and Mg-adsorbed capsule EPS are shown in Fig. 6. For pristine sample, the main IR absorption peaks were observed at 1075, 1239, 1399, 1540 and 1651 cm⁻¹, which are normally assigned to –OH group of polysaccharide,

3.5. Magnesium binding mechanism onto capsule EPS revealed by FT-IR and

331 phosphate group of nucleic acid, and three functional groups from amides of protein (i.e., -COO⁻, N-H, C=O), respectively (Omoike and Chorover, 2004). These bands of 332 functional group were also found in the Mg-adsorbed capsule EPS. However, changes 333 in the position of some peaks occurred: the peaks of hydroxyl group (-OH) and 334 carboxyl group (-COO⁻) shifted to 1069 cm⁻¹ and to 1388 cm⁻¹, respectively. Given 335 336 these results, we suggest that phosphate and saccharide-derived hydroxyl groups and carboxyl sites in amino acid might be responsible for the binding of Mg onto capsule 337 EPS. 338

The binding sites of Mg and capsule EPS (glutamic acid and mannose as 339 representatives) were further explored by the DFT calculation. The calculated 340 interaction energy between Mg²⁺ and water molecules is -62.2 kcal/mol. When Mg-341 H₂O complex [i.e., $Mg(H_2O)_6^{2+}$] interacts with organic compounds, the adsorption 342 energy was -251.2 kcal/mol for glutamic acid and -242.9 kcal/mol for mannose, 343 respectively. These data indicate that the binding of Mg-H₂O complexes to the hydroxyl 344 345 and carboxyl groups on capsule EPS and accompanying water ejection are energyfavored processes. Figure 7 provides the optimized structures of Mg²⁺ interaction with 346 water molecules, glutamic acid and mannose. The bond length of Mg-O in $Mg(H_2O)_6^{2+}$ 347 is 2.060 Å and thus longer than the Mg-O bond between Mg²⁺ and glutamic acid and 348 mannose, which are 2.003 Å and 1.959 Å, respectively (Fig.7), further revealing the 349 strong binding of Mg with the hydroxyl and carboxyl groups. 350

351

352 **4. Discussion**

4.1. Catalytic role of capsule EPS in the crystallization of Ca-Mg carbonates

Calcite is an effective host for Mg²⁺ (Loste et al., 2003; Sommerdijk and de With, 354 355 2008). However, aragonite rather than calcite is the expected kinetically-favored product when the Mg/Ca molar ratio of saturated solution exceeds 4.0 (Morse et al., 356 1997). Such phenomenon is generally thought to be caused by the Mg-hydration effect 357 (Romanek et al., 2009; Lenders et al., 2012; Zhang et al., 2012a, b; Shen et al., 2014, 358 2015). Similarly to Ca²⁺ ions, Mg²⁺ ions are primarily bound to water molecules, 359 thereby generating Mg-H₂O complexes [i.e., Mg(H₂O)₆²⁺] (Lippmann, 1973; Romanek 360 et al., 2009; Hamm et al., 2010). However, Mg²⁺ has much lower water exchange rate 361 than does Ca²⁺ (Pavlov et al., 1998). Specifically, the lifetime of water molecules 362 around Ca²⁺ is around 18 ps (Jiao et al., 2006). In contrast, the lifetime of Mg-H₂O 363 complex is as long as 600 ps (Jiao et al., 2006). Additionally, it has been reported that 364 the dehydration enthalpy (Δ H) is 351.8 kcal/mol for Mg(H₂O)₆²⁺ under standard 365 conditions (298 K, 1 atm), which is significantly larger than that for $Ca(H_2O)_6^{2+}$ (264.3 366 kcal/mol) (Katz et al., 1996). These results suggest that there is a stronger interaction 367 between Mg^{2+} and water molecules than Ca^{2+} (Romanek et al., 2009). 368

Once massive stable Mg-H₂O complexes enter into the growing calcite, the hydration spheres of Mg²⁺ could block the binding of carbonate to Ca or Mg ions, thus poisoning the calcitic structure (Loste et al., 2003). However, the denser aragonite structure incorporates far fewer Mg²⁺ ions, and therefore precipitation of aragonite is not inhibited in Mg-bearing solutions (Zhang et al., 2012a, b). For this reason, it is no surprise that aragonite dominates over Ca-Mg carbonates (e.g., Mg-calcite and

375	protodolomite) in our EPS-free reactors, in which the Mg/Ca molar ratio is around 5.0.
376	In the present study, however, the precipitation of Mg-calcite and protodolomite
377	could take place in the presence of capsule EPS from <i>D. ruminis</i> , thereby revealing that
378	SRB-derived capsule EPS might be as effective as their slime EPS in dewatering of
379	Mg-H ₂ O complexes (Krause et al., 2012; Bontognali et al., 2014). According to
380	previous studies, the dehydration capacity of Mg-H ₂ O complexes by slime EPS is
381	substantially attributed to the carboxyl moiety of their protein fraction (e.g., Kenward
382	et al., 2013; Roberts et al., 2013). It has been proposed that carboxyl groups within
383	slime EPS matrix can bind Mg-H ₂ O complexes via electrostatic attraction (Kenward et
384	al., 2013). Our DFT results calculations indicated that Mg-H ₂ O complexes binding to
385	capsule EPS are also thermodynamically favorable. Upon binding to carboxyl groups,
386	one of the water molecules in Mg-H ₂ O complexes would be replaced by a carboxyl
387	group and Mg-carboxyl clusters could be produced $[{\rm Mg}({\rm H_2O})_6{}^{2+}$ + R-COO \rightarrow
388	$Mg(H_2O)_5(R-COO)^+ + H_2O]$ (Roberts et al., 2013). Compared to Mg-H ₂ O complex,
389	Mg-carboxyl cluster requires lower energy for carbonation and the subsequent
390	attachment of Ca ²⁺ (Romanek et al., 2009; Roberts et al., 2013; Qiu et al., 2017). As
391	such, a Ca-Mg carbonate layer on EPS could be created with the aid of EPS and it
392	subsequently acts as a nucleus for crystal growth if the super-saturation is maintained
393	(Roberts et al., 2013).

Polysaccharide is also an important constituent of capsule EPS from *D. ruminis* and it is rich in hydroxyl groups. Our experiments showed that these hydroxyl groups might be an overlooked facilitator for accelerating Mg dehydration and subsequent

crystal nucleation. Similarly to carboxyl group, hydroxyl moiety is also negatively 397 charged. It can thus be presumed that EPS-bound hydroxyl groups promote Mg 398 399 dehydration in a similar fashion to carboxyl groups described above, i.e., through a metal-chelation mechanism. Interestingly, a similar observation regarding OH-induced 400 401 Mg-dehydration was made in our previous work, which demonstrated that mineral surface-bound hydroxyl attributed to the positive role of clays in triggering the 402 production of protodolomite from oversaturated solution (Liu et al., 2019b). 403 Furthermore, the possible existence of other catalytic functional groups besides 404 405 carboxyl and hydroxyl should be examined in future studies.

Compared to slime EPS, capsule EPS function as an outer envelope around cell 406 surface. Therefore, microbial cells with capsule EPS can exhibit a solid-like catalyst for 407 408 the crystallization of Ca-Mg carbonates. It has also been proposed that the interfacial free energy between two solid phases (e.g., Ca-Mg carbonates and EPS-enveloped cells) 409 is smaller than that between the solid and the solution (e.g., Ca-Mg carbonates and 410 slime EPS) (Stumm and Morgan, 1996). As such, capsule EPS may be more effective 411 in triggering the precipitation of Ca-Mg carbonates than slime EPS. Furthermore, the 412 catalytic effect of capsule EPS shown herein can interpret previous findings on the 413 precipitation of Ca-Mg carbonates from oversaturated solutions induced by inactive 414 microbial cells (Kenward et al., 2013; Zhang et al., 2015), and on the encrusted cells by 415 416 carbonate minerals in some cases (e.g., Aloisi et al., 2006).

417 **4.2. Mg-calcite** *vs.* **protodolomite**

418 In our laboratory experiments, Mg-calcite formed in the presence of lower

419	concentration of capsule EPS (70 mg/L), showing the occurrence of non-simultaneous
420	uptakes of Ca and Mg into Ca-Mg carbonate. In fact, similar findings have also been
421	previously reported using carboxylic acids (Han et al., 2013), polysaccharides (Zhang
422	et al., 2012a), peptides (Stephenson et al., 2008) and capsule EPS that were isolated
423	from an anaerobic mixed culture (Zhang et al., 2015). The above phenomenon can be
424	explained by the different tendencies of organic molecules for Mg and Ca adsorption.
425	It has been well documented that carboxyl-rich compounds (e.g., EPS) bind more Ca ²⁺
426	than Mg ²⁺ , principally due to more energy required to dissociate the hydration shell of
427	Mg ²⁺ (Wang et al., 2009; Krause et al., 2012). As such, it is reasonable to assume that
428	the Ca-Mg carbonate layer with a high content of Ca ²⁺ (i.e., Mg-calcite) preferentially
429	forms within EPS matrix. Once such Mg-calcite layer is generated, as a
430	thermodynamically-favorable process, its epitaxial growth rather than spontaneous
431	nucleation of other minerals would take place (Rodriguez-Navarro et al., 2012).
432	However, protodolomite with nearly equal molar contents of Ca and Mg was
433	produced when a higher dosage of capsule EPS (140 mg/L) was used. Actually, this
434	concentration-dependent catalytic fashion has also been observed in previous studies
435	(Zhang et al., 2012a, 2015). Undoubtedly, more binding sites can be provided in the
436	reactors with high concentration of capsule EPS. In spite of the competitive binding of
437	Ca ²⁺ and Mg ²⁺ onto capsule EPS, the existence of sufficient binding sites and high

439 complexation with Ca^{2+} leveled off. In doing so, the nucleation and growth of 440 protodolomite should be possible.

438

Mg/Ca ratio might allow further accumulation of Mg on EPS after that the

441	Our microscopy results revealed that both Mg-calcite and protodolomite had
442	spherical shapes. This notable crystal feature has been observed in microbially-induced
443	carbonates produced in laboratory (e.g., Aloisi et al., 2006; Bontognali et al., 2008;
444	Sánchez-Román et al., 2008, 2011; Sánchez-Navas et al., 2009; Krause et al., 2018) and
445	also been encountered in rock records (e.g., Perri and Tucker, 2007; You et al., 2013).
446	However, morphology should be not suitable as a single criterion differentiating
447	microbially-induced carbonates from abiotic counterparts, because similar crystal
448	shapes have also been found in abiotically-synthesized Ca-Mg carbonates (Rodriguez-
449	Blanco et al., 2015; Liu et al., 2019a, b). Actually, spherulites are relatively common
450	crystalline structure observed in polymer systems, especially at high levels of
451	supersaturation (Rodriguez-Blanco et al., 2015). High supersaturation can act as a
452	driving force for the formation of spherical polycrystalline aggregation via a growth
453	front nucleation mechanism (Gránásy et al., 2005; Rodriguez-Blanco et al., 2015).
454	Given the presence of capsule EPS and super-saturated solution (SI _{protodolomite} >4, Fig.
455	3E) used in this study, it is expected that the crystallization of Mg-calcite and
456	protodolomite proceeded via spherulitic growth, as shown in Fig. 5.

457 **4.3. Formation mechanisms of protodolomite by SRB**

458 Sulfate-reducing bacteria are thought to be a critical component of the "alkalinity 459 engine" in sedimentary settings (Gallagher et al., 2012). It has been suggested that the 460 microbial sulfate reduction is responsible for more than 50% of organic matter 461 mineralization within microbial mats (Visscher et al., 1998). During the decomposition 462 of organic matter, SRB activity normally increases both the pH and DIC concentration

in porewaters of sediments and microbial mats, thereby increasing protodolomite 463 saturation (Vasconcelos et al., 1995; Bontognali et al., 2014). Additionally, their 464 465 exudates (e.g., slime EPS) and by-product H₂S from sulfate reduction have been shown to effectively weaken the hydration shell of Mg^{2+} , which is a prerequisite for the 466 467 precipitation of protodolomite from saturated solutions (Krause et al., 2012; Zhang et al., 2012b; Bontognali et al., 2014). In this study, we also demonstrated that capsule 468 EPS of SRB could aid in the formation of protodolomite, perhaps via desolvation of the 469 hydrated Mg²⁺ ions. Our results, together with others, reveal that multiple triggers are 470 involved in SRB-mediated protodolomite formation. 471

472

4.4. Geological implications

Despite the globally cosmopolitan nature of SRB, their abundance varies with 473 474 habitat type (Rabus et al., 2013). Compared to other environments, hypersaline aquatic environments normally have higher primary productivity and higher concentration of 475 sulfate ions (Oren, 2012). As such, high sulfate-reducing rates and high numbers of 476 SRB are measured in inland lakes, coastal lagoons and other evaporitic settings (e.g., 477 Brandt et al., 2001; Wright and Wacey, 2005; Kjeldsen et al., 2007). For instance, anoxic 478 sediments of the Great Salt Lake harbor large populations of SRB in the range from 479 2.2×10^7 to 6.7×10^8 cells/mL (Brandt et al., 2001). 480

Our study demonstrated that the precipitation of protodolomite seemed only to proceed with the aid of high concentration of capsule EPS. This dosage was close to the capsule EPS yield produced by SRB with a cell number of $\sim 2 \times 10^8$ cells/mL. These results likely explain why modern dolomites are frequently discovered in evaporitic

environments, because there exist several trigger factors that include the prevalence of 485 microbial sulfate reduction and high amounts of EPS (both capsule and slime EPS 486 487 included) as well as high salinity. It has been documented that elevated solution salinity not only enhances the microbial EPS production (Qiu et al., 2012), but also increases 488 489 the density of carboxyl groups on microbial cell surface (Voegerl, 2014; Qiu et al., 490 2017). Indeed, Wacey and co-worker reported that the dolomite-forming lakes in Coorong region (Australia) had much larger numbers of SRB than other neighbouring 491 but non-dolomitic lakes (Wacey et al., 2007). 492

493 Our microscopic data indicated that the resulting protodolomites appeared to be mesocrystal, which are built up from nano-sized grains (Cölfen and Antonietti, 2005). 494 It is generally thought that mesocrystals are quite unstable because of their high lattice 495 496 energy (Cölfen and Antonietti, 2005). Therefore, as a metastable intermediate, protodolomite occurring in sediments tends to convert into more stoichiometric 497 dolomite when subjected to increasing temperatures during burial diagenesis (Malone 498 et al., 1996; Rodriguez-Blanco et al., 2015). In this regard, the microbial EPS-catalyzed 499 dolomite precipitation offers one possibility for interpreting the origin of sedimentary 500 dolomites in the Precambrian record. 501

502

503 **5.** Conclusions

We demonstrated that capsule EPS from *D. ruminis* acted in a concentration dependent manner to facilitate the loading of Mg^{2+} during Ca-Mg carbonate growth. In the absence of capsule EPS, aragonite was precipitated from a solution at a similar

saturation level to the growth medium for D. ruminis at stationary phase. However, Mg-507 calcite and dolomite-like material occurred in the reactors with 70 mg/L and 140 mg/L 508 509 capsule EPS, respectively. The cation arrangement in dolomite-like material was disordered as confirmed by the results of XRD and TEM, indicating the formation of 510 511 protodolomite. The protodolomite crystals displayed spherical shapes and were a few micrometers in size. The positive role of capsule EPS in dewatering Mg-H₂O 512 complexes might account for their catalytic influence on the crystallization of 513 protodolomite. The capacity of capsule EPS for diminishing Mg hydration was mainly 514 attributed to the binding of Mg^{2+} by carboxyl and hydroxyl groups on EPS. 515

516

517 Acknowledgments

This research is financially supported by grants from the National Natural Science Foundation of China (Nos. 41772362, 41572323 and 41502317), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB26000000), the 111 Project (No. B08030), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGCJ1703). The authors are grateful to Prof. Rolf S. Arvidson and an anonymous reviewer for thoughtful comments on the manuscript.

525

```
526 References
```

Aloisi, G., Gloter, A., Krüger, M., Wallmann, K., Guyot, F., Zuddas, P., 2006.
Nucleation of calcium carbonate on bacterial nanoglobules. Geology 34(12),

1017-1020.

530	Arvidson, R.S., Mackenzie, F.T., 1999. The dolomite problem: control of precipitation
531	kinetics by temperature and saturation state. Am. J. Sci. 299, 257-288.
532	Bazaka, K., Crawford, R.J., Nazarenko, E.L., Ivanova, E.P., 2011. Bacterial
533	extracellular polysaccharides. Adv. Exp. Med. Biol. 715, 213-226.
534	Beech, I.B., Cheung, C.W.S., 1995. Interactions of exopolymers produced by sulfate-
535	reducing bacteria with metal ions. Int. Biodeterior. Biodegrad. 35, 59-72.
536	Bischoff, W.D., Bishop, F.C., Mackenzie, F.T., 1983. Biogenically produced magnesian
537	calcite: inhomogeneities in chemical and physical properties; comparison with
538	synthetic phases. Am. Mineral. 68, 1183-1188.
539	Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., Dupraz, C., Bernasconi, S.M.,
540	McKenzie, J.A., 2008. Microbes produce nanobacteria-like structures, avoiding
541	cell entombment. Geology 36, 663-666.
542	Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., Bernasconi, S.M., Dupraz, C.,
543	Stohmenger, C.J., McKenzie, J.A., 2010. Dolomite formation within microbial
544	mats in the coastal sabkha of Abu Dhabi (United Arab Emirates).
545	Sedimentology 57, 824-844.
546	Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., Lundberg, R., McKenzie, J.A.,
547	2012. Dolomite-mediating bacterium isolated from the sabkha of Abu Dhabi
548	(UAE). Terra Nova 24, 248-254.
549	Bontognali, T.R.R., McKenzie, J.A., Warthmann, R.J., Vasconcelos, C., 2014.
550	Microbially influenced formation of Mg-calcite and Ca-dolomite in the

551	presence of exopolymeric substances produced by sulphate-reducing bacteria.
552	Terra Nova 26, 72-77.
553	Braissant, O., Decho, A.W., Dupraz, C., Glunk, C., Przekop, K.M., Visscher, P.T., 2007.
554	Exopolymeric substances of sulfate-reduicng bacteria: Interactions with
555	calcium at alkaline pH and implication for formation of carbonate minerals.
556	Geobiology 5, 401-411.
557	Brandt, K.K., Vester, F., Jensen, A.N., Ingvorsen, K., 2001. Sulfate reduction dynamics
558	and enumeration of sulfate-reducing bacteria in hypersaline sediments of the
559	Great Salt Lake (Utah, USA). Microb. Ecol. 41, 1-11.
560	Brauchli, M., McKezie, J.A., Strohmenger, C.J., Sadooni, F., Vasconcelos, C.,
561	Bontognali, T.R.R., 2016. The importance of microbial mats for dolomite
562	formation in the Dohat Faishakh sabkha, Qatar. Carbonate. Evaporite. 31, 339-
563	345.
564	Cölfern, H., Antonietti, M., 2005. Mesocrystals: Inorganic superstructures made by
565	highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed.
566	44, 5576-5591.
567	de Leeuw, N.H., Parker, S.C., 2001. Surface-water interactions in the dolomite problem.
568	Phys. Chem. Chem. Phys. 3(15), 3217-3221.
569	Deng, S., Dong, H., Lv, G., Jiang, H., Yu, B., Bishop, M.E., 2010. Microbial dolomite
570	precipitation using sulfate reducing and halophilic bacteria: Results from
571	Qinghai Lake, Tibetan Plateau, NW China. Chem. Geol. 278, 151-159.
572	Fang, Y., Xu, H., 2018. Study of an Ordovician carbonate with alternating dolomite-

573	calcite laminatons and its implication for catalytic effects of microbes on the
574	formation of sedimentary dolomite. J. Sed. Res. 88, 679-695.
575	François, F., Lombard, C., Guigner, J., Soreau, P., Brian-Jaisson, F., Martino, G.,
576	Vandervennet, M., Garcia, D., Molinier, A., Pignol, D., Peduzzi, J., Zirah, S.,
577	Rebuffat, S., 2012. Isolation and characterization of environmental bacteria
578	capable of extracellulat biosorption of mercury. Appl. Environ. Microbiol. 78(4),
579	1097-1106.
580	Gallagher, K.L., Kading, T.J., Braissant, O., Duparaz, C., Visscher, P.T., 2012. Inside
581	the alkalinity engine: the role of electron donors in the organomineralization
582	potential of sulfate-reduing bacteria. Geobiology 10, 518-530.
583	Given, R.K., Wilkinson, B.H, 1987. Dolomite abundance and stratigraphic age:
584	constraints on rates and mechanisms of Phanerozoic dolostone formation:
585	Perspectives. J. Sediment. Petrol. 57(6), 1068-1078.
586	Graf, D.L., Goldsmith, J.R., 1956. Some hydrothermal syntheses of dolomite and
587	protodolomite. J. Geol. 64, 173-186.
588	Gránásy, L., Pusztai, T., Tegze, G., Warren, J.A., Douglas, J.F., 2005. Growth and form
589	of spherulites. Phys. Rev. E 72, 011605.
590	Gregg, J.M., Bish, D.L., Kaczmarek, S.E., Machel, H.G., 2015. Mineralogy, nucleation
591	and growth of dolomite in the laboratory and sedimentary environment: a review.
592	Sedimentology 62, 1749-1769.
593	Hamm, L.M., Wallace, A.F., Dove, P.M., 2010. Molecular dynamics of ion hydration in
594	the presence of small carboxylated molecules and implications for calcification.

J. Phys. Chem. B 114, 10488-10495.

- Huang, Y., Yao, Q., Li, H., Wang, F., Zhou, G., Fu, S., 2019. Aerobically incubated
 bacterial biomass-promoted formation of disordered dolomite and implication
 for dolomite formation. Chem. Geol. 523, 19-30.
- Jiao, D., King, C., Grossfield, A., Darden, T.A., Ren, P., 2006. Simulation of Ca²⁺ and
- Mg²⁺ solvation using polarizable atomic multipole potential. J. Phys. Chem. B
 110, 18553-18559.
- Kaczmarek, S.E., Thornton, B.P., 2017. The effect of temperature on stoichiomety,
 cation ordering, and reaction rate in high-temperature dolomitization
 experiments. Chem. Geol. 468, 32-41.
- Katz, A.K., Glusker, J.P., Beebe, S.A., Bock, C.W., 1996. Calcium ion coordination: a
 comparison with that of beryllium, magnesium, and zinc. J. Am. Chem. Soc.
 118, 5752-5763.
- 608 Kenward, P.A., Fowle, D.A., Goldstein, R.H., Ueshima, M., González, L.A., Roberts,
- J.A., 2013. Ordered low-temperature dolomite mediated by carboxyl-group
 density of microbial cell walls. AAPG Bull. 97, 2113-2125.
- 611 Kjeldsen, K.U., Loy, A., Jakobsen, T.F., Thomsen, T.R., Wagner, M., Ingvorsen, K.,
- 612 2007. Diversity f sulfate-reducing bacteria from an extreme hypersaline
 613 sediment, Great Salt Lake (Utah). FEMS Microbiol. Ecol. 60, 287-298.
- 614 Krause, S., Liebetrau, V., Gorb, S., Sánchez-Román, M., McKenzie, J.A., Treude, T.,
- 615 2012. Microbial nucleation of Mg-rich dolomite in exopolymeric substances
 616 under anoxic modern seawater salinity: new insight into an old enigma. Geology

617 40, 587-590.

618	Krause, S., Liebetrau, V., Löscher, C.R., Böhm, F., Gorb, S., Eisenhauser, A., Treude,
619	T., 2018. Marine ammonification and carbonic anhydrase activity induce rapid
620	calcium carbonate precipitation. Geochim. Cosmochim. Acta 243, 116-132.
621	Land, L.S., 1998. Failure to precipitate dolomite at 25°C from dilute solution despite
622	1000-fold oversaturation after 32 years. Aquat. Geochem. 4, 361-368.
623	Lenders, J.J.M., Dey, A., Bomans, P.H.H., Spielmann, J., Hendrix, M.M.R.M., de With,
624	G., Meldrum, F.C., Harder, S., Sommerdijk, N.A.J.M., 2012. High-magnesian
625	calcite mesocrystals: A coordination chemistry approch. J. Am. Chem. Soc. 134,
626	1367-1373.
627	Liang, Z., Li, W., Yang, S., Du, P., 2010. Extraction and strucrural characteristics of
628	extracellular polymeric substances (EPS), pellets in autotrophic nitrifying
629	biofilm and acticated sludge. Chemosphere 81(5), 626-632.
630	Lippmann, F., 1973. Crystal chemistry of sedimentary carbonate minerals, Sedimentary
631	Carbonate Minerals. Springer, pp. 5-96.
632	Liu, D., Yu, N., Papineau, D., Fan, Q., Wang, H., Qiu, X., She, Z., Luo, G., 2019a. The
633	catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite
634	formation: Results from Lake Jibuhulangtu Nuur, Inner Mongolica, China.
635	Geochim. Cosmochim. Acta 263, 31-49.
636	Liu, D., Xu, Y., Papineau, D., Yu, N., Fan, Q., Qiu, X., Wang, H., 2019b. Experimental
637	evidence for abiotic formation of low-temperature protodolomite facilitated by
638	clay minerals. Geochim. Cosmochim. Acta 247, 83-95.Loste, E., Wilson, R.M.,

639	Seshadri, R., Meldrum, F.C., 2003. The role of magnesium in stabilising
640	amorphous calcium carbonate and controlling calcite morphologies. J. Cryt.
641	Growth 254, 206-218.
642	Malone, M.J., Baker P.A., Burns S.J., 1996. Recrystallization of dolomite: An
643	experimental study from 50-200°C. Geochim. Cosmochim. Acta 60(12), 2189-
644	2207.
645	McCormack, J.B., Bontognali, T.R.R., Immenhauser, A., Kwiecien, O., 2018. Controls
646	on cyclic formation of Quaternary early diagenetic dolomite. Geophy. Res. Lett.
647	45, 3625-3634.
648	McKenzie, J.A., Vasconcelos, C., 2009. Dolomite Mountains and the origin of the
649	dolomite rock of which they mainly consist: historical developments and new
650	perspectives. Sedimentology 56, 205-219.
651	Meister, P., Reyes, C., Beaumont, W., Rincon, M., Collins, L., Berelson, W., Stott, L.,
652	Corsetti, F., Nealson, K.H., 2011. Calcium and magnesium-limited dolomite
653	precipitation at Deep Springs Lake, California. Sedimentology 58, 1810-1830.
654	Morse, J.W., Wang, Q., Tsio, M.Y., 1997. Influences of temperature and Mg:Ca ratio
655	on CaCO ₃ precipitates from seawater. Geology 25(1), 85-87.
656	Omoike, A., Chorover, J., 2004. Spectroscopic study of extracellular polymeric
657	substances from Bacillus subtilis: Aqueous chemistry and adsorption effects.
658	Biomacromolecules 5(4), 1219-1230.
659	Oren, A., 2002. Diversity of halophilic microorganisms: Environments, phylogeny,
660	physiology, and applications. J. Indus. Microbiol. Biotechol. 28, 56-63.
	30

- Pan, X., Liu, J., Zhang, D., Chen, X., Song, W., Wu, F., 2010. Binding of dicamba to
 soluble and bound extrcellular polymeric substances (EPS) from aerobic
 activated sludge: A fluorescence quenching study. J. Colloid. Interf. Sci. 345,
 442-447.
- Pavlov, M., Siegbahn, P.E.M., Sandström, M., 1998. Hydration of beryllium,
 magnesium, calcium, and zinc ions using density functional theory. J. Phys.
 Chem. A 102, 219-228.
- Perri, E., Tucker, M., 2007. Bacterial fossils and microbial dolomite in Triassic
 stromatolites. Geology 35(3), 207-210.
- 670 Petrash, D.A., Bialik, O.M., Bontognali, T.R.R., Vasconcelos, C., Roberts, J.A.,
- McKenzie, J.A., Konhauser, K.O., 2017. Microbially catalyzed dolomite
 formation: From near-surface to burial. Earth-Sci. Rev. 171, 558-582.
- Qiu, X., Wang, H., Liu, D., Gong, L., Wu, X., Xiang, X., 2012. The physiological
 response of *Synechococcus elongatus* to salinity: A potantial biomarker for
 ancient salinity in evaporative environments. Geomicrobiol. J. 29, 477-483.
- Qiu, X., Wang, H., Yao, Y., Duan, Y., 2017. High salinity facilitates dolomite
 precipitation mediated by *Haloferax volcanii* DS52. Earth Planet. Sci. Lett., 472,
 197-205.
- Robus, R., Hansen, T.A., Widdel, F., 2006. Dissimilatory sulfate- and sulfur-reducing
 prokaryotes. In The Prokaryotes (Dworkin, M., Falkow, S., Rosenberg, E.,
 Schleifer, K.H., Stackebrandt, E., eds.), Springer, New York, 659-768.
- 682 Roberts, J.A., Kenward, P.A., Fowle, D.A., Goldstein, R.H., González, L.A., Moore,

683	D.S., 2013. Surface chemistry allows for abiotic precipitation of dolomite at low
684	temperature. Proc. Natl. Acad. Sci. U. S. A. 110, 14540-14545.
685	Rodriguez-Blanco, J.D., Shaw, S., Benning, L.G., 2015. A route for the direct
686	crystallization of dolomite. Am. Mineral. 100, 1172-1181.
687	Rodriguez-Navarro, C., Jimenez-Lopez, C., Rodriguez-Navarro, A., Gonzalez-Munoz,
688	M.T., Rodriguze-Gallego, M., 2007. Bacterially mediated mineralization of
689	vaterite. Geochim. Cosmochim. Acta 71, 1197-1213.
690	Romanek, C.S., Jiménez-López, C., Navarro, A.R., Sánchez-Román, M., Sahai, N.,
691	Coleman, M., 2009. Inorganic synthesis of Fe-Ca-Mg carbonates at low
692	temperature. Geochim. Cosmochim. Acta 73, 5361-5376.
693	Sánchez-Navas, A., Martín-Algarra, A., Rivadeneyra, M.A., Melchor, S., Martín-
694	Ramos, J.D., 2009. Crystal-growth behavior in Ca-Mg carbonate bacterial
695	sperulites. Cryst. Growth Des. 9, 2690-2699.
696	Sánchez-Román, M., Vasconcelos, C., Schmid, T., Dittrich, M., McKenzie, J.A., Zenobi,
697	R., Rivadeneyra, M.A., 2008. Aerobic microbial dolomite at the nanometer
698	scale: Implications for the geologic record. Geology 36, 879-882.
699	Sánchez-Román, M., Romanek, C.S., Fernández-Remolar, D.C., Sánchez-Navas, A.,
700	McKenzie, J.A., Pibernat, R.M., Vasconcelos, C., 2011. Aerobic
701	biomineralization of Mg-rich carbonates: Implications for natural environments.
702	Chem. Geol. 281, 143-150.
703	Shen, Z., Liu, Y., Brown, P.E., Szlufarska, I., Xu, H., 2014. Modeling the effect of
704	dissolved hydrogen sulfide on Mg^{2+} -water complex on dolomite {104} surfaces.

J. Phys. Chem. C 118, 15716-15722.

- Shen, Z., Brown, P.E., Szlufarska, I., Xu, H., 2015. Investigation of the role of
 polysaccharide in the dolomite growth at low temperature by using atomistic
 simulations. Langmuir 31, 10435-10442.
- Sommerdijk, N.A.J.M., de With, G., 2008. Biomimetic CaCO₃ mineralization using
 designer molecules and interfaces. Chem. Rev. 108(11), 4499-4550.
- 711 Stephenson, A.E., DeYoreo, J.J., Wu, L., Wu, K.J., Hoyer, J., Dove, P.M., 2008.
- Peptides enhance magnesium signature in calcite: Insights into origins of vital
 effects. Science 322(5902), 724-727.
- 714 Stumm, W., Morgan, J.J., 1996. Aquatic Chemistry. Wiley, New York, 1022 pp.
- van Lith, Y., Vasconcelos, C., Warthmann, R., Martins, J., McKenzie, J., 2002. Bacterial
- sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa
 Vermelha and Brejo do Espinho (Brazil). Hydrobiologia 485, 35-49.
- van Lith, Y., Warthmann, R., Vasconcelos, C., McKenzie, J., 2003. Sulfte-reducing
- bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation.Geobiology 1, 71-79.
- Vasconcelos, C., McKenzie, J.A., Bernasconi, S., Grujic, D., Tiens, A.J., 1995.
 Microbial mediation as a possible mechanism for natural dolomite formation at
 low temperatures. Nature 377, 220-222.
- Visscher, P.T., Reid, R.P., Bebout, B.M., Hoeft, S.E., Macintyre, I.G., Thompson, J.A,
- 725 1998. Formation of lithified micritic laminae in modern marine stromatolites
 726 (Bahamas): the role of sulfur cycling. Am. Mineral. 83, 1482-1493.

727	Voegerl, R.S., 2014. Quantifying the carboxyl group density of microbial cell surfaces
728	as a funtion of salinity: insights into microbial precipitation of low-temperature
729	dolomite. 50p. Master's thesis. University of Kansas, Lawrence, Kansas.
730	Wacey, D., Wright, D.T., Boyce, A.J., 2007. A stable isotope study of microbial
731	dolomite formation in the Coorong Region, South Australia. Chem. Geol. 24,
732	155-174.
733	Wang, D., Wallace, A.F., De Yoreo, J.J., Dove, P.M., 2009. Carboxylated molecules
734	regulate magnesium content of amorphous calcium carbonates during
735	calcification. Proc. Natl. Acad. Sci. 106(51), 21511-21516.
736	Warren, J., 2000. Dolomite: occurrence, evolution and economically important
737	associations. Earth-Sci. Rev. 52, 1-81.
738	Widdel, F., Bak, F., 1991. Gram-negative mesophilic sulfate-reducing bacteria. In The
739	prokaryotes (eds Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH).
740	Springer Verlag, New York, pp. 3352-3378.
741	Wright, D.T., 1999. The role of sulphate-reducing bacteria and cyanobacteria in
742	dolomite formation in distal ephemeral lakes of the Coorong region, South
743	Australia. Sediment. Geol. 126, 147-157.
744	Wright, D.T., Wacey, D., 2005. Precipitation of dolomite using sulphate-reducing
745	bacteria from the Coorong Region, South Australia: significance and
746	implications. Sedimentology 52, 987-1008.
747	Xu, J., Yan, C., Zhang, F., Konishi, H., Xu, H., Teng, H.H., 2013. Testing the cation-
748	hydration effect on the crystallization of Ca-Mg-CO3 systems. Proc. Natl. Acad.

Sci. 110(44), 17750-17755.

750	You, X., Sun, S., Zhu, J., Li, Q., Hu, W., Dong, H., 2013. Microbially mediated dolomite
751	in Cambrian stromatolites from the Tarim Basin, north-west China: implications
752	for the role of organic substrate on dolomite precipitation. Terra Nova 25, 387-
753	395.
754	Zhang, F., Xu, H., Konishi, H., Shelobolina, E.S., Roden, E., 2012a. Polysaccharide-
755	catalyzed nucleation and growth of disordered dolomite: A potential precursor
756	of sedimentary dolomite. Am. Mineral. 97, 556-567.
757	Zhang, F., Xu, H., Konishi, H., Kemp, J.M., Roden, E.E., Shen, Z., 2012b. Dissolved
758	sulfide-catalyzed precipitation of disordered dolomite: Implications for the
759	formtion mechanism of sedimentary dolomite. Geochim. Cosmochim. Acta 97,
760	148-165.Zhang, F., Xu, H., Shelobolina, E.S., Konishi, H., Converse, B., Shen,
761	Z., Roden, E.E., 2015. The catalytic effect of bound extracellular polymeric
762	substances excreted by anaerobic microorganisms on Ca-Mg carbonate
763	precipitation: Implications for the "dolomite problem". Am. Mineral. 100, 483-
764	494.
765	

767	Figure caption:
768	Figure 1. Cell density (A), solution pH (B) and alkalinity (C) versus time for the
769	reactors inoculated with dead or live cells. (D) The concentrations of HCO_3^- and CO_3^{2-}
770	and, the yields of biomass and capsule EPS at the end of by the end of incubation.
771	
772	Figure 2. The properties of capsule EPS: (A) zeta potential at different pHs; (B) organic
773	contents; (C-D) composition of amino acids and monosaccharides.
774	
775	Figure 3. Aqueous chemistry data versus time for all experimental reactors without or
776	with capsule EPS: (A) pH; (B) soluble Ca; (C) soluble Mg; (D) DIC value; (E)
777	calculated saturation index of protodolomite; (F) precipitated Mg vs. precipitated Ca.
778	
779	Figure 4. Rietveld refined XRD patterns of solid products without (A) or with 70 mg/L
780	capsule EPS (B). The inset SEM image shows the morphology of Mg-calcites.
781	
782	Figure 5. Characterization of protodolomites produced with 140 mg/L capsule EPS: (A)
783	Rietveld refined XRD pattern; (B) Raman spectrum; (C-D) SEM images and EDS
784	composition; (E) STEM-EDS element maps; (F) high resolution TEM image. The inset
785	marked in panel D shows the high magnification of crystal surface and the inset in panel
786	F is a SAED pattern.
787	

788 Figure 6. FT-IR spectra showing the changes of capsule EPS before and after Mg^{2+}

789	adsorption.
790	
791	Figure 7. Optimized geometries of Mg-H ₂ O complex $(Mg(H_2O)_6]^{2+})$ (A) and its
792	interaction with glutamic acid (B) and mannose (C).
793	
794	
795	
796	
797	
798	
799	
800	
801	
802	
803	
804	
805	
806	
807	
808	
809	

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7