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Abstract

High-dimensional, streaming datasets are ubiquitous in modern appli-
cations. Examples range from finance and e-commerce to the study of
biomedical and neuroimaging data. As a result, many novel algorithms
have been proposed to address challenges posed by such datasets. In this
work, we focus on the use of `1 regularized linear models in the context of
(possibly non-stationary) streaming data. Recently, it has been noted that
the choice of the regularization parameter is fundamental in such mod-
els and several methods have been proposed which iteratively tune such
a parameter in a time-varying manner; thereby allowing the underlying
sparsity of estimated models to vary. Moreover, in many applications, in-
ference on the regularization parameter may itself be of interest, as such a
parameter is related to the underlying sparsity of the model. However, in
this work, we highlight and provide extensive empirical evidence regard-
ing how various (often unrelated) statistical properties in the data can
lead to changes in the regularization parameter. In particular, through
various synthetic experiments, we demonstrate that changes in the reg-
ularization parameter may be driven by changes in the true underlying
sparsity, signal-to-noise ratio or even model misspecification. The pur-
pose of this letter is, therefore, to highlight and catalog various statistical
properties which induce changes in the associated regularization parame-
ter. We conclude by presenting two applications: one relating to financial
data and another to neuroimaging data, where the aforementioned dis-
cussion is relevant.

1 Introduction

High-dimensional, streaming datasets pose a unique challenge to modern
statisticians. To date, the challenges associated with high-dimensional and
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streaming data have been extensively studied independently. In the case of
the former, a popular avenue of research is the use of regularization methods
such as the Lasso [Hastie et al., 2015]. Such methods effectively address issues
raised by high-dimensional data by assuming the underlying model is sparse,
thereby having only a small number of non-zero coefficients. Sparse models
are often easier to both estimate and interpret. Concurrently, many methods
have been developed to handle streaming datasets; popular examples include
sliding window methods and their generalizations to weighted moving averages
[Haykin, 2008].

Recently, the intersection of these two avenues of research has begun to
receive increasing attention as large-scale, streaming datasets become common-
place. Prominent examples include Bottou [2010] and Duchi et al. [2011] who
propose methods through which to efficiently estimate `1 penalized models in a
streaming data context. However, an important aspect, which has been largely
overlooked, corresponds to the optimal choice of the regularization parameter.
While it is possible to employ a fixed regularization parameter, it may be the
case that the statistical properties of the data vary over time, suggesting that
the optimal choice of the regularization parameter may itself also vary over
time. Examples of large-scale, non-stationary datasets, where the choice of the
regularization parameter has been reported to be time-varying, include finance
[Yu et al., 2017] and neuroscience [Monti et al., 2017b].

We note that many methods have been proposed for selecting the regular-
ization parameter in the context of non-streaming data, the standard approach
being to employ some variant of cross-validation or bootstrapping, e.g. in Hastie
et al. [2015] or Chernozhukov et al. [2018]. However, such methods are infeasi-
ble in the domain of streaming datasets due to limited computational resources.
More importantly, the statistical properties of a data stream may vary, further
complicating the use of sub-sampling methods. Recently, methods to handle
time-varying regularization parameters have been proposed. Monti et al. [2018]
propose a novel framework through which to iteratively infer a time-varying reg-
ularization parameter via the use of adaptive filtering. The proposed framework
is developed for penalized linear regression (i.e., the Lasso) and subsequently
extended to penalized generalized linear models. Zboňáková et al. [2017] study
the dynamics of the regularization parameter, focusing particularly on quantile
regression in the context of financial data. Using sliding windows method, they
demonstrate that the choice of time-varying regularization parameter based on
the adjusted Bayesian information criterion (BIC) is closely correlated with the
financial volatility. The BIC was employed, as such a choice of parameter is
optimal in terms of model consistency.

While the aforementioned methods correspond to valuable contributions, the
purpose of this paper is to highlight potential shortcomings when interpreting
time-varying regularization parameters. In particular, we enumerate several
(often unrelated) statistical properties of the underlying data which may lead
to changes in the optimal choice of the regularization parameter. This paper,
therefore, serves to highlight important issues associated with the interpreta-
tion of time-varying regularization parameters as well as the associated model
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parameters.
The remainder of this paper is organized as follows. We formally outline the

challenge of tuning time-varying regularization parameters as well as related
work in Section 2. In Section 3, we present extensive empirical results, high-
lighting how various aspects of the underlying data may result in changes in the
estimated regularization parameter. Computations included in this work were
performed with the help of R software environment [R Core Team, 2014] and
we provide code to reproduce all experiments at Quantlet platform.

2 Preliminaries and related work

In this work, we focus on streaming linear regression problems. Formally, it is
assumed that we observe a sequence of pairs (Xt, yt), whereXt ∈ Rp corresponds
to a p-dimensional vector of predictor variables and yt ∈ R is a univariate re-
sponse. The objective of penalized streaming linear regression problems consists
in accurately predicting future responses, yt+1, from predictors Xt+1 via a linear
model. Following the work of Tibshirani [1996], an `1 penalty, parameterized by
λ ∈ R+, is subsequently introduced in order to encourage sparse solutions as well
as ensure the associated optimization problem is well-posed. For a pre-specified
choice of fixed regularization parameter, λ, time-varying regression coefficients
can be estimated by minimizing the following convex objective:

Lt(β, λ) =

t∑
i=1

wi

(
yi −X>i β

)2
+ λ||β||1, (1)

where wi > 0 are weights indicating the importance given to past observations
[Aggarwal, 2007]. For example, it is natural to allow wi to decay monotonically
in a manner which is proportional to the chronological proximity of the ith
observation. While the weights wi may be tuned using a fixed forgetting factor,
throughout this work we opt for the use of a sliding window due to the simplicity
of the latter method.

In the context of non-stationary data the optimal estimates of regression
coefficients, β̂t, may vary over time and several methods have been proposed
in order to address this issue [Bottou, 2010, Duchi et al., 2011]. However, the
same argument can be posed in terms of the associated regularization param-
eter, λ. The choice of such a parameter dictates the severity of the associated
`1 penalty, implying that different choices of λ will result in vastly different
estimated models. While there exists a large range of methodologies through
which to iteratively update the regression coefficients, the choice of the regu-
larization parameter has, until recently, been largely overlooked. Lately, Monti
et al. [2018] proposed a framework through which to learn time-varying regu-
larization parameter in a streaming scenario. The proposed framework is moti-
vated by adaptive filtering theory [Haykin, 2008] and seeks to iteratively update
the regularization parameter via stochastic gradient descent. In related work,
Zboňáková et al. [2017] focus on the choice of the regularization parameter in
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the context of a quantile regression model. They propose the use of sliding win-
dows and information theoretic quantities to select the associated regularization
parameter.

Formally, Osborne et al. [2000] clearly outline the relationship between the
Lasso parameter, λ, and the data. They note that the regularization parame-
ter may be interpreted as the Lagrange multiplier associated with a constraint
on the `1 norm of the regression coefficients. As such, considering the dual
formulation yields:

λ =
{Y−Xβ̂(λ)}>Xβ̂(λ)

||β̂(λ)||1
, (2)

where we have ignored the weights, wi, and use bold notation to denote vectors
and matrices respectively. Note that in equation (2) we clearly denote the
dependence of the estimated regression coefficients on λ. As a result, we observe
three main effects driving the optimal choice of the regularization parameter:

1. Variance or magnitude of the residuals: Y −Xβ̂(λ). As the variance of
residuals increases so does the associated regularization parameter, leading
to an increase in sparsity of β̂(λ). This is natural as an increase of the
variance of residuals is indicative of a drop in the signal-to-noise ratio of
the data.

2. The `1 norm of the model coefficients: ||β̂(λ)||1. As this term appears
in the denominator of equation (2), it is inversely correlated with the
regularization parameter. This is to be expected as we require a small
regularization parameter in order to accurately recover regression coeffi-
cients with large `1 norm. We further note that the `1 norm will often
be closely associated with the `0, indeed the `1 is often employed as the
convex approximation to the `0 norm. As such, we further expect there
to be an inverse correlation between the `0 norm and the regularization
parameter.

3. Covariance structure of the design matrix: X. The term related to the
covariance structure of the design matrix, X>X, can be extracted from
the elements in the numerator of equation (2). This suggests that the
covariance matrix of the predictors will have a significant impact on the
value of the regularization parameter, λ. We note that this effect will
also affect the `1 and `0 norms of the model coefficients, resulting in a
complicated relationship with the regularization parameter. In Section
3.1.3 we demonstrate the non-linear nature of this relationship.

As such, it follows that multiple aspects of the data may influence the choice
of the associated regularization parameter. Crucially, whilst such a parameter
is often interpreted as being indicative of the sparsity of the underlying model,
equation (2) together with the aforementioned discussion demonstrates that this
is not necessarily the case. In the remainder of this work, we provide extensive
empirical evidence to validate these claims.

4



3 Experimental results

In this section, we provide an extensive simulation study to demonstrate the
effects of the three aforementioned model properties on the choice of the optimal
regularization parameter. Based on the observations from Section 2, we designed
a series of experiments where one property of the data was allowed to vary
whilst the remaining two were left unchanged. A further concern is to show
that if two or more of the properties of the data should simultaneously change
it can result in cancelling out their effects on the regularization parameter.
Further experiments were designed to study those scenarios. The purpose of
the experimental results presented in this section is two-fold. First, we identify
the various statistical properties which cause the optimal choice of regularization
parameter to vary. Second, we also highlight how changes of such properties
interact with each other and catalog their joint effects on the choice of the
regularization parameter.

3.1 Synthetic data generation

We focus exclusively on a linear model of the form:

yt = Xtβt + εt.

We define the number of observations as n, the number of non-zero parameters
as q = ||β||0 ≤ p and an iid error term ε = (ε1, . . . , εn)>, such that εt ∼
(0, σ2

t ). The p-dimensional vector of predictor variables Xt was generated from
the normal distribution Np(0,Σ), where the elements of (p×p) covariance matrix
Σ = (σij)

p
i,j=1 were set to be σij = ρ|i−j|, for i, j = 1, . . . , p, with a correlation

parameter ρ. We generate synthetic data where one of the following properties
varies over time (thereby resulting in non-stationarity):

1. Time-varying variance of residuals: σ2
t varies over time.

2. Time-varying `1 or `0 norm of regression coefficients: q varies over time.

3. Time-varying correlation within design matrix: ρ varies over time.

For each experiment, the total number of observations was set to n = 400
with a dimensionality of p = 20. The optimal choice of the regularization pa-
rameter (together with associated regression coefficients) was estimated using
three distinct methods. We consider the use of the sliding window method in
combination with both Bayesian information criterion (BIC) and generalized
cross-validation (GCV) to select the associated regularization parameter. Fi-
nally, the gradient method proposed by Monti et al. [2018], named Real-time
Adaptive Penalization (RAP), is also applied. A burn-in period of 50 observa-
tions was employed to obtain an initial estimate for regression coefficients as
well as λ. Each experiment was repeated 100 times and the mean value of the
regularization parameter was studied.
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3.1.1 Change of the variance of residuals

We begin by studying the effect of residual variance on the choice of the regular-
ization parameter, λ. The regression coefficients were set to βt = (1, 1, 1, 1, 1, 0, . . . , 0)>,
yielding q = 5 and the covariance parameter was set to be ρ = 0.5. The vector
of residuals was simulated according to a piece-wise stationary distribution as
follows:

εt ∼

{
N(0, σ2

1), for t < 200;

N(0, σ2
2), t ≥ 200,

(3)

resulting in a significant change in the variance of residuals at the 200th obser-
vation. Throughout these experiments, we set σ1 = 1 and allowed σ2 to vary
from σ2 ∈ {1.1, . . . , 2}. In order to study the effects of changes in the variance
of residuals, we consider the change in the estimated regularization parameter
defined by the ratio of the values of λ after (λ2) and before (λ1) the change
point as a function of the ratio σ2/σ1. Following the discussion from Section 2,
we would expect larger values of the ratio to yield larger changes in the choice
of the regularization parameter.

1.0 1.2 1.4 1.6 1.8 2.0

1.
0

1.
4

1.
8

2.
2

σ2 σ1

λ 2
λ 1

BIC GCV RAP

Figure 1: Relative changes of λ in dependence on relative changes of the stan-
dard deviation σ.

TVRPchangeSQR

Figure 1 plots the effect of the changes in the standard deviation of residuals
on the Lasso parameter λ. As expected when looking at the formula (2), there is
a linear dependency visible. In case of the BIC and GCV as selection criteria for
the values of λ, the line is almost identical. For the RAP algorithm, λ changes
slower, but the effect can be clearly seen.

In order to illustrate how the series of values of the Lasso parameter changes
over time and how long it takes to adjust for the new settings of the model,
we depict the average λ over the 100 scenarios in Figure 2, where σ1 = 1 and
σ2 = 1.5. Since the BIC and GCV yield very similar results, we omit the GCV
in this case and normalize the BIC and RAP values of λ to fit into the interval
[0, 1].

From Figure 2 it is clear that the values of λ adjust for the new model
settings for the whole length of the moving window (50 in this case) if the BIC
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Figure 2: Standardized series of average λ over 100 scenarios with a change
point at t = 200 and σ1 = 1 and σ2 = 1.5.

TVRPchangeSQR

is implemented and for the RAP algorithm the adjustment is dependent on the
size of the fixed forgetting factor. r. We note there is a clear change in the
regularization parameter following t = 200, indicating the need to adaptively
estimate the regularization parameter and demonstrating the drawback of using
a fixed and pre-specified value of λ.

3.1.2 Change of the `1 and `0 norm of β

It follows that the choice of the regularization parameter is closely related to
the true underlying `1 and `0 norm of the regression coefficients; the relation to
the latter is because the Lasso constraint is introduced as a convex relaxation
of the `0 norm.

In this set of simulations, we therefore quantify the effects of changes in both
the `0 and `1 norms on the optimal choice of the regularization parameter. In
particular, we set σ1 = σ2 = 1 and ρ = 0.5. As a first example, we consider the
following changes in the `1 norm:

βt =

{
(1, 1, 1, 1, 1, 0, . . . , 0)>, for t < 200;

(1, 0.8, 0.6, 0.4, 0.2, 0, . . . , 0)>, t ≥ 200.
(4)

The time series of estimated λ values is presented in Figure 3.
We note that the change in the `1 norm of the model coefficients β results in

an upward trend in λ for the BIC parameter choice which is visible in the long
run. For a short period after the change, exactly the period of 50 observations
from the moving window, the misspecification of the model drives the size of
residuals and with them, the values of λ higher and lower again in a “bump”-
shaped line. The same holds for the RAP algorithm, however, because of the
fixed forgetting factor, the values of λ are adjusting to the new model settings
more slowly.

In order to study the effect of changes in the `0 norm (i.e., the size of the
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active set) we generated synthetic data whereby:

||βt||0 =

{
q1, for t < 200;

q2, t ≥ 200,
(5)

with q1 = 5 and q2 ∈ {6, . . . , 10, 15}.
Figure 4 visualizes the relative changes of λ as a function of the relative

changes in the size of the active set, defined as q2/q1. We note there is a clear
decay of values of λ as q2/q1 increases. This is to be expected, as an increase in
the specified ratio implies a larger active set in the latter part of the time series.
This figure provides empirical validation of the inverse correlation between the
magnitude of the active set and the estimated regularization parameter.

3.1.3 Change of covariance parameter ρ

Finally, we study the effect of changes in the covariance structure of features,
Xt, on the regularization parameter. We note that whilst it is possible to vary
the covariance structure in many ways, we consider a simple model whereby Σ =
(σij)

p
i,j=1 and set σij = ρ|i−j|. The benefit of such a model is that it only depends

on a single parameter, ρ, simplifying the interpretation and visualization of
results. As such, we investigate changes in the covariance parameter ρ, while
fixing σ = 1 and q = 5. Formally, piece-wise stationary data was generated such
that:

ρt =

{
ρ1, for t < 200;

ρ2, t ≥ 200,
(6)

where ρ1 = 0.1 and ρ2 ∈ {0.2, 0.3, . . . , 0.9}.
As in the previous experiments, we visualize the relative changes of λ with

respect to the relative changes of ρ in Figure 5. The time series of the estimated
values of λ over the whole sample size are depicted in Figure 6.

From Figure 5 it is important to note that the changes of λ no longer
demonstrate a linear dependency with the statistical property of interest. For
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Figure 3: Standardized series of average λ over 100 scenarios with a change
point at t = 200 and regression coefficients βt defined by (4).

TVRPchangeB
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Figure 4: Relative changes of λ in dependence on relative changes of the size of
the active set q.

TVRPchangeSQR

2 3 4 5 6 7 8 9

0.
9

1.
0

1.
1

1.
2

ρ2 ρ1

λ 2
λ 1

BIC GCV RAP

Figure 5: Relative changes of λ in dependence on relative changes of the corre-
lation parameter ρ.

TVRPchangeSQR

ρ2 = 0.2, . . . , 0.8 the values of λ tend to rise with a rising covariance of the
predictors and the biggest change occurs for ρ2 = 0.5 in the case of the BIC
and GCV. In the RAP method example, the values of λ decrease for ρ2 = 0.2
and 0.9 and the biggest change is visible in the case that ρ changes to the value
ρ2 = 0.6.

A potential explanation for the non-linear nature of the relationship demon-
strated in Figure 5 is due to the selection properties of the Lasso. It is widely
acknowledged that in the presence of strongly correlated variables (correspond-
ing to large ρ values) the Lasso tends to choose only a single variable form the
group of strongly correlated covariates (indeed this phenomenon is the inspira-
tion for the elastic net [Zou and Hastie, 2005]). As such, as ρ increases, the
term X>X from the numerator of λ drives its values higher. If the ρ value is
too high, we speak of multicollinearity, where the denominator of λ is affected
and becomes larger, which consequently causes the λ values to drop.

In Figure 6 the change from ρ1 = 0.1 to ρ2 = 0.5 is depicted. We note there
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is a change in λ despite the fact that the `1 and `0 norms remain unchanged.

3.1.4 Simultaneous changes of model specifications

While the previous experiments have examined the effects of changing a sin-
gle property of the data, we now consider combinations of specific changes. In
particular, the purpose of the remaining experiments is to highlight how simul-
taneous changes to two properties of the data result in a canceling out the effects
on the regularization parameter. The purpose of this section is, therefore, to
highlight the fact that it is possible to have a non-stationary data where the
three properties discussed in Section 2 vary, and yet the optimal choice of the
sparsity parameter is itself constant.

We begin by studying simultaneous changes in the `0 or `1 norm of regression
parameters, βt, together with changes in the variance of residuals, σ2. Recall
that the optimal choice of regularization parameter was positively correlated
with the magnitude of residuals (see Figure 1) whilst being negative correlated
with q (see Figure 4). Figure 7 shows the relative change of λ as a function
of both q2/q1 and σ2/σ1. It is important to note the diagonal trend, which
indicates that for any increase in q, a proportional increase in σ directly cancels
out the change in the estimated regularization parameter. This is a natural
result, as the changes in σ influence the numerator, whilst changes in the `0 or
`1 norm affect the denominator in (2).

Next, we consider the combination of varying the covariance parameter, ρ,
and the variance of the residuals, parameterized by σ. Recall from the previous
discussion that the covariance parameter, ρ, did not have a linear relationship
with the regularization parameter, λ. Such a non-linear relationship can be
clearly seen again in Figure 8. Furthermore, we note that changes in σ tend
to dominate the changes in ρ with the largest changes in λ occurring for large
changes in σ.

Finally, we also studied the combination of changes in the `0 norm, denoted
by q, together with changes in the covariance parameter, ρ. Note that changes
in these parameters are strongly coupled due to the effect of multicollinearity
induced by simultaneously increasing the number of non-zero regression coef-
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Figure 6: Standardized series of average λ over 100 scenarios with a change
point at t = 200 and ρ1 = 0.1 and ρ2 = 0.5.
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ficients together with their correlations. The results, provided in Figure 9,
highlight these dependencies. For the values of ρ near ρ = 0.5, there are some
combinations which cancel each other. For the extreme parts of the heatmap,
e.g. ρ2 = 0.2 or ρ2 = 0.9, the pattern is clearly driven by the change in the
active set only.

3.2 Application to financial and neuroimaging data

Until now we have provided extensive empirical evidence based on a variety of
simulations, each varying one or more of the statistical properties of the data.
In this section, we conclude by presenting two distinct real-world datasets where
we observe significant variability in the time-varying regularization parameter.
The two examples presented in this section provide a clear illustration that
non-stationary data are present in a wide range of applications.

We study two high-dimensional real-world datasets from distinct applica-
tions: the first consists of stock returns and the second corresponds to func-
tional MRI (fMRI) dataset taken from an emotion task. The stock return data
consists of daily stock returns of 100 largest financial companies over a period
of 11 years from 2007 to 2018. The companies listed on NASDAQ are ordered
by the market capitalization and downloaded from Yahoo Finance. This data
is particularly interesting as it covers the financial crisis of 2008-2009. By ana-
lyzing this data, it is hoped that we may be able to understand the statistical
properties which directly precede similar financial crises, thereby potentially
providing some form of advanced warning.

The second dataset we consider corresponds to fMRI data collected as a part
of the Human Connectome Project (HCP). This dataset consists of measure-
ments of 15 distinct brain regions taken during an Emotion task, as described
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Figure 7: Relative changes of λ corresponding to the combination of relative
changes of q and σ.
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Figure 8: Relative changes of λ corresponding to the combination of relative
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in Barch et al. [2013]. Data was analyzed over a subset of 50 subjects. While
traditional neuroimaging studies were premised on the assumption of stationar-
ity, an exciting avenue of neuroscientific research corresponds to understanding
the non-stationary properties of the data and how these may potentially cor-
respond to changes induced by distinct tasks [Monti et al., 2017b] or changes
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Figure 9: Relative changes of λ corresponding to the combination of relative
changes of q and ρ.
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Figure 10: Standardized series of average λ in the US stock returns data, daily
observations from January 3, 2007 to August 10, 2018.
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across subjects [Monti et al., 2017a].
The modelling procedure employed for both of the datasets consisted in

regressing each of the components of the multivariate time series on the rest.
This way we got either 100 or 15 sequences of the Lasso parameter values, for
financial and neuroimaging data respectively, which were then averaged and
normalized to the [0, 1] interval as before. The resulting time series for the US
stock market data are depicted in Figure 10 and for the fMRI data the graphical
output can be seen in Figure 11.

From Figure 10 it is visible that the values of λ react to the situation on the
market in both of the algorithms, the standard one with the BIC as a selecting
rule and the RAP. Especially pronounced is the change of the values during
the financial crisis of 2008-2009 where the volatility observable on the market
was elevated and thus results in increased values of the Lasso parameter, too.
Interestingly, both of the considered methods react instantly if some change oc-
curs, but take a different amount of observations to adjust back to the standard
situation.

Figure 11 shows the time series of the average regularization parameter over
eight distinct subjects performing an emotion related task. The task required
participants to perform a series of trails presented in blocks. The trails either
required them to decide which of the two faces presented on the bottom of
the screen match the face at the top of the screen, or which of the two shapes
presented at the bottom of the screen match the shape at the top of the screen.
The former was considered the emotion task (and denoted in blue in Figure
11) and the latter the neutral task (denoted in red in Figure 11). From Figure
11 we see clear changes in the estimated regularization parameter induced by
changes in the underlying cognitive task, and thus, changes in the connectedness
of the brain regions. This finding is in line with the current trend in the study
of the fMRI data, which is interested in quantifying and understanding the
non-stationarity properties of such a data and how these relate to changes in
cognitive state [Calhoun et al., 2014].
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4 Discussion

In this work, we have highlighted and provided extensive empirical evidence for
the various statistical properties which affect the optimal choice of a regular-
ization parameter in a penalized linear regression model. Based on the theory
of the Lasso, we specifically consider three distinct properties: the variance of
residuals, the `0 and `1 norms of the regression coefficients and the covariance
structure of the design matrix. Throughout a series of experiments, we con-
firm the manner in which each of these properties affects the optimal choice of
the regularization parameter. We relate the dependencies between each of the
aforementioned statistical properties and estimated regularization parameter to
the theoretical properties presented in Osborne et al. [2000]. In particular, we
conclude that:

• There is a (positive) linear relationship between changes in the variance
of residuals, σ2, and the estimated regularization parameter, as clearly
demonstrated in Figure 1.

• There is a (negative) linear relationship between changes in the size of
the active set (either `0 or `1 norm) and the estimated regularization
parameter, as shown in Figure 4.

• There is a non-linear relationship between changes in the correlation struc-
ture in the design matrix and the estimated regularization parameter, as
visualized in Figure 5.

We further provide a series of experiments where two of the statistical prop-
erties jointly varied in order to demonstrate the possibility of having non-
stationary time-series data where the optimal regularization parameter does
not alter. This is most clearly seen in the case of changes in the active set, q,
together with changes in the residual variance, σ2, shown in Figure 7.
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Finally, we conclude by two case studies involving high-dimensional time-
series data in the context of finance and neuroimaging. Both datasets demon-
strate significant temporal variability in the estimated regularization parameter,
thereby validating the need for the methods through which to iteratively tune
such a parameter.

In conclusion, the purpose of this letter is to highlight and rigorously catalog
the various statistical properties which may lead to changes in the choice of the
regularization parameters in `1 penalized models. Such models are widely em-
ployed, indicating that an appreciation of the relationships between the various
statistical properties of the data and the choice of the regularization parameter
is important.
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Lenka Zboňáková, Wolfgang K Härdle, and Weining Wang. Time Varying Quan-
tile Lasso. In Applied Quantitative Finance, 3rd ed., pages 331–353, 2017. doi:
10.1007/978-3-662-54486-0.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society: Series B, 67(2):301–320, 2005.

16


	Introduction
	Preliminaries and related work
	Experimental results
	Synthetic data generation
	Change of the variance of residuals
	Change of the 1 and 0 norm of 
	Change of covariance parameter 
	Simultaneous changes of model specifications

	Application to financial and neuroimaging data

	Discussion

