
Supplementary Information

1 Supplementary Methods

Supplementary Figure 1 | The Pavlovian-instrumental transfer (PIT) paradigm consisted of four
parts. a. Instrumental training. Subjects learned to collect good shells via repeated button presses
and to avoid bad shells by doing nothing. b. Pavlovian conditioning: CSs were followed by mon-
etary wins or losses (−2,−1, 0,+1,+2 e). Gaze position was recorded via eye-tracking. c. PIT.
Subjects performed the instrumental task in nominal extinction (i.e., without presentation of out-
comes). The background was tiled with Pavlovian CSs. d. Forced choices. Subjects were asked to
choose the higher-valued out of two CSs.

1.1 Learning from wins vs. losses

Control analyses examined differences in learning from wins and losses. The neural basis of model-
free RPE has been found to show differences between learning from wins versus losses [1], and our
fMRI analyses of RPE supported this dissociation (c.f. Supplementary Figure 7). We therefore tested

1



Schad et al., 2018 Supplementary Information

whether wins and losses also differed in the learning process itself. To this end, we implemented
computational model-free reinforcement learning models allowing for differences in the speed of
learning (i.e., the reward learning rate parameter) or in the weight of CS value (i.e., the weight
parameter) between wins and losses, to test whether assuming differences in these parameters
provided a better account of the gaze direction or the pupil dilation data. We used the standard
model-free reinforcement learning model (see equations (4) and (5)) as a baseline and compared
it to two more complex models. First we compared it to a model allowing for two different learning
rates for wins versus losses. Here, the update equation (equation 5) for Rt > 0 was:

Vt+1(s) = Vt(s) + αwin · δRPE
t , (11)

and for Rt < 0, it was:
Vt+1(s) = Vt(s) + αloss · δRPE

t , (12)

where αwin indicates a free learning rate parameter for wins, and αloss indicates a free learning
rate parameter for losses. We fitted this model to the gaze index and to the pupil dilation data, and
performed model comparison using BIC values to compare the model involving two learning rates
to the simpler RL model using the same learning rate for wins and losses.

Next, we used a model allowing for two different weight parameters for wins versus losses. For
Rt > 0 gaze direction was influenced by CS value via

GazeIndext = c+ βgaze
V,win · Vt(st) , (13)

and for Rt < 0, it was influenced via

GazeIndext = c+ βgaze
V,loss · Vt(st) , (14)

where βgaze
V,win was a free parameter indicating the CS value weight for wins, and βgaze

V,loss was a free
parameter indicating the CS value weight for losses. We also defined the corresponding model
assuming influences of CS value on pupil dilation, where for Rt > 0 pupil size was influenced by
CS value via

pupilt = c+ βpupil
V,win · Vt(st) , (15)

and for Rt < 0, it was influenced via

pupilt = c+ βpupil
V,loss · Vt(st) . (16)

Again, βpupil
V,win was a free parameter indicating the CS value weight for wins, and βpupil

V,loss was a free
parameter indicating the CS value weight for losses.

Model parameters were estimated via maximum likelihood estimation (MLE) and BIC values
were computed. Random effects analysis was used for the gaze direction data, whereas the noisy
pupil data was analyzed via fixed effects estimation.

1.2 Instructions for the PIT phase

1.2.1 Original german instructions

• Ok, jetzt kommt der wichtigste Teil. Sie sind nun wieder beim Muscheln Sammeln.
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• Sammeln Sie weiter diejenigen Muscheln ein, die gut waren und lassen Sie weitherhin die
schlechten liegen - dafür bekommen Sie weiterhin je 20 Cent.

• Wenn Sie schlechte Muscheln einsammeln, oder gute liegen lassen, verlieren Sie weiterhin 20
Cent.

• Im Hintergrund sehen Sie nun die bunten Bilder.

• Sie haben gelernt, dass jedem Bild ein bestimmter Geldbetrag zugeordnet ist. Dieser Wert
wird Ihnen jetzt zufällig in der Hälfte der Fälle gutgeschrieben oder abgezogen.

• Es geht also immer um den Betrag, der mit dem Bild verbunden ist. Wenn also im Hintergrund
das Bild ist, das mit +1 Euro verbunden ist, dann können Sie in der Hälfte der Fälle 1 Euro
gewinnen. Wenn im Hintergrund das Bild ist, dem ein Verlust von 1 Euro zugeordnet ist, dann
verlieren Sie in der Hälfte der Fälle 1 Euro.

• Das erfolgt aber ohne Ihr Zutun automatisch durch den Computer.

• Konzentrieren Sie sich also darauf, durch richtiges Muschelsammeln so viel Geld zu gewinnen
wie möglich.

• Wieviel Sie in jeder Runde gewinnen oder verlieren, sei es wegen dem Hintergrundbild, oder
wegen der Muschel, wird nicht mehr angezeigt. Ihr Gesamtguthaben am Ende des Experi-
ments wird Ihnen ausgezahlt.

• Sammeln Sie also einfach weiter gute Muscheln ein.

1.2.2 English translation

• Okay, here’s the most important part. You are now again collecting shells.

• Collect those shells that were good and leave the bad ones - you will still get 20 cents each.

• If you collect bad shells or leave good ones, you will continue to lose 20 cents.

• In the background you can now see the colorful pictures.

• You have learned that a certain amount of money is associated with each picture. This value
is now credited or deducted to you by chance in half of the cases.

• So it is always about the amount that is associated with the picture. So if in the background
there is the picture associated with +1 Euro, then you can win 1 Euro in half of the cases. If
in the background is the image with which a loss of 1 Euro is associated, then you lose 1 Euro
in half of the cases.

• However, this is done automatically by the computer without your contribution.

• So concentrate on winning as much money as possible by collecting shells properly.

• How much you win or lose in each round, whether because of the background image or
because of the shell, is no longer displayed. Your total balance at the end of the experiment
will be paid to you.

• So just keep collecting good shells.
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1.3 Reporting policies

1.3.1 Replication

Findings on eye-movements and PIT replicate previous human results [2] and neural findings repli-
cate previous animal results [3]. We triangulate results across three different experimental tasks,
across three recording techniques (eye-tracking - gaze and pupil size - , behavioural responses,
fMRI), and across different alternative group definitions.

1.3.2 Blinding of experimental group assignment

There were no experimental group allocations. Group definitions in the analyses were based on
statistical tests described in the manuscript.
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2 Supplementary Results

2.1 Eye-tracking

2.1.1 Effects of trial number

In the last second of CS presentation, gaze progressively shifted from the CS to the US location
and the background over trials. Specifically, there was a three-way interaction between trial num-
ber, location (CS, US-location, background) and time of CS presentation (seconds 1, 2, and 3),
F (2.7, 347.5) = 8.58, p < .0001, η2p = 0.004, 95% confidence intervals CI = [0.001 0.008] (Mauchly’s
test revealed a violation of the sphericity assumption, W = 0.42, p < .001, which was corrected
via the Greenhouse-Geisser estimate of sphericity, ε = 0.68). Post-hoc testing showed that the
interaction trial number x fixation location was strongest for the last second of CS presentation,
F (2, 410) = 37.93, p < .0001, η2p = 0.013, 95% CI = [0.007 0.019], and was relatively weaker, yet
still strong, in second 2, F (2, 410) = 22.55, p < .0001, η2p = 0.008, 95% CI = [0.004 0.013], and in
second 1, F (2, 410) = 9.57, p = .0001, η2p = 0.003, 95% CI = [0.0009 0.007]. For the last second of
CS presentation (see Supplementary Fig. 2b), percentage fixation times decreased across trials for
the CS, t410 = −8.62, p < .0001, b = −0.008, SE = 0.001, 95% CI = [−0.010 −0.007], but increased
for the US location, t410 = 3.21, p = .001, b = 0.003, SE = 0.001, 95% CI = [0.001 0.005], and for
the background, t410 = 5.41, p < .0001, b = 0.005, SE = 0.001, 95% CI = [0.0033 0.0072].

2.1.2 Effects of CS value

The value of the CSs influenced gaze location. There was a three-way interaction between CS value
(-2, -1, 0, +1, +2 e), fixation location (CS, US-location, background) and time of CS presentation
(seconds 1, 2, and 3), F (11, 1367) = 3.04, p = .0006, η2p = 0.004, 95% CI = [0.001 0.008] (the viola-
tion of the sphericity assumption, W = 0.013, p < .001, was corrected via ε = 0.67). Post-hoc testing
revealed the interaction CS value x fixation location was absent during the first two seconds of CS
presentation (sec 1: p = .882; sec 2: p = .059, Holm-corrected for three seconds; see Supplementary
Fig. 2a). However, the interaction was significant during the third second of CS presentation (see
Supplementary Fig. 2a+b), F (8, 2267) = 4.46, pHolm < .0001, η2p = 0.005, 95% CI = [0.002 0.009].
Planned contrasts testing a linear effect of CS value (-2, -1, 0, +1, +2 e) showed that percentage
fixation time increased with increasing CS value on the CS (t2267 = 3.48, p = .0005, b = 0.061, SE =
0.018, 95% CI = [0.027 0.096]), but marginally decreased with increasing CS value on the US-
location (t2267 = −1.78, p = .075, b = −0.031, SE = 0.018, 95% CI = [−0.066 0.003]) and on the
background (t2267 = −1.70, p = .089, b = −0.030, SE = 0.018, 95% CI = [−0.065 0.005]). Thus,
during the third second of CS presentation CSs signaling wins became attractive to the gaze, while
CSs signaling loss came to repel the gaze (see Fig. 1c and Supplementary Fig. 2a+b).

We tested how the gaze response to CS value developed across trials. There was a significant
three-way interaction CS value x trial number x location, F (5.8, 743.0) = 4.59, p = .0002, η2p =
0.004, 95% CI = [0.001 0.008] (violation of sphericity W = 0.23, p < .001 was corrected via ε =
0.73) although the four-way interaction CS value x trial number x location x time failed to reach
significance (p = .192). Tests of contrasts showed that the linear CS value effect increased across
trials on the CS (t1024 = 2.68, p = .007, b = 0.007, SE = 0.002, 95% CI = [0.002 0.011]) and on the
US location (inverse CS value effect; t1024 = −2.55, p = .011, b = −0.006, SE = 0.002, 95% CI =
[−0.011 − 0.001]), but not on the background (p = .897). Moreover, we also tested the three-way
interaction CS value x trial number x location for gaze during the third second of CS presentation
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Supplementary Figure 2 | A conditioned response in eye-gaze during Pavlovian conditioning.
a. Gaze direction index, i.e., the difference in the probabilities to fixate the CS minus the US-
location, is displayed for CSs predicting win (green points) or loss (magenta diamonds) for the
three seconds of CS presentation. b1-3. During the third second of CS presentation: Percentage
valid fixation time displayed separately for the CS (b1), the location of later US-presentation (b3),
and the background (i.e., the rest of the screen; b2) for CSs predicting wins and losses across trials.
a+b. Error bars are SEM.
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only, and found a significant interaction, F (8.0, 2674.9) = 2.94, p = .003, η2p = 0.003, 95% CI =
[0.0005 0.007]. Here, the linear CS value effect increased linearly across trials for fixations on the
CS (t2674.9 = 2.47, p = .014, b = 0.008, SE = 0.003, 95% CI = [0.002 0.015]) and marginally on the
US-location (t2674.9 = −1.77, p = .077, b = −0.006, SE = 0.003, 95% CI = [−0.013 0.0006]), but not
on the background (p = .485). We performed a test contrasting the increase in the linear CS value
effect across trials for the CS (where across trials win-predictive CSs attracted more fixation time)
with that at the US-location (where across trials win-predictive CSs attracted less fixation time), and
found the 3-way interaction linear CS value x linear trial number x fixation at CS minus US-location
to be significant ( t2674.9 = 2.45, p = .014, b = 0.014, SE = 0.006, 95% CI = [0.003 0.026]).

2.1.3 Gaze index

Based on prior research [3, 4], and to capture the above effects parametrically, we computed a gaze
index as the difference between CS minus US fixation probability during the third second of CS
presentation (Fig. 1b). Overall, gaze direction shifted from the CS towards the US and the back-
ground across trials (pbootstrap < .001, b = −0.011, SDsubjects = 0.024, SE = 0.002, 99.9% CI =
[−0.017 −0.003]), and gaze direction was biased towards the CS with higher CS value (pbootstrap <
.05, b = 0.009, SDsubjects = 0.057, SE = 0.005, 95% CI = [0.001 0.022]). This latter effect in-
creased across trials (linear CS value x linear trial number: pbootstrap < .05, b = 0.0015, SDsubjects =
0.0091, SE = 0.0008, 95% CI = [0.00001 0.0032]; Fig. 1c), suggesting a learning process.

2.2 Distinguishing sign- and goal-trackers

The histogram of CS value effects (regression coefficients) on gaze direction during the third second
of CS presentation was used to assess ST and GT (Fig. 1c). The frequency of ST vs. GT did not
significantly differ between testing sites (45.7% ST/GT in Berlin vs. 52.9% ST/GT in Dresden;
χ2(1) = 0.19, p = .7), precluding substantial experimenter effects.

During the third second of CS presentation, ST gaze approached win-predictive CSs more than
loss-predictive CSs, thus tracked the sign based on its value (pbootstrap < .001, b = 0.059, SDsubjects =
0.069, SE = 0.011, 99.9% CI = [0.039 0.129], see Fig. 1d-f). ST showed continuous [5–7] signa-
tures of learning to avoid the aversive CSs over time (pbootstrap < .001, b = −0.013, SDsubjects =
0.033, SE = 0.005, 99.9% CI = [−0.037 − 0.001]), without changing their responses to appeti-
tive CSs (p > .1; trial number x CS value: pbootstrap < .05, b = 0.003, SDsubjects = 0.012, SE =
0.002, 95% CI = [0.0003 Inf ]; Fig. 1d+f). By contrast, GT approached the US location for pre-
dicted wins more than for predicted losses, thus tracked the goal based on its value (pbootstrap <
.001, b = −0.036, SDsubjects = 0.024, SE = 0.004, 99.9% CI = [−0.053 − 0.027]; Fig. 1d-f). This
inverse CS value effect did not increase over time (trial number x CS value: p = .601).

Supplementary Figure 3 displays gaze fixation location in representative trials during the first
three seconds per trial after learning for sign- and for goal-trackers.

2.2.1 Robustness to outliers

The results were stable when excluding four formal outliers in the effect of CS value on the gaze
index (deviating more than two standard deviations from the mean). After outlier-removal, for
gaze direction the interaction CS value x second of CS presentation remained significant (p = .007),
the CS value effect during second three was marginal (under one-tailed testing [4, 8, 9]: p = .092),
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Supplementary Figure 3 | Examples of gaze fixation locations for sign- and goal-trackers in
aversive and appetitive Pavlovian trials. The colourful pictures are Pavlovian CSs, presented
during the first three seconds per trial. Fixation crosses are shown at the location of later US
presentation. Gaze fixation location during these first three seconds of CS presentation is displayed
in red. Upper panels show representative trials after learning from sign-trackers, and lower panels
show representative trials after learning from goal-trackers. Left panels show loss-predictive CSs,
right panels show win-predictive CSs.
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and was stronger compared to seconds one or two (p = .057/.002). Moreover, the CS value effects
in ST and in GT were reliable (pbootstrap < .001).

2.2.2 Computational models of uncertainty and CS value

We tested whether model-based and model-free learning differentially explained gaze patterns in
sign- and goal-trackers. We found that goal-trackers’ gaze was best explained by the model assum-
ing uncertainty-based gaze control (t84 = −3.28, p = .002,∆ BIC = −3.73, SE = 1.14, 95% CI =
[−6.00 − 1.47]; see Fig. 1g; after outlier exclusion: p < .001), supporting uncertainty-based at-
tention in these individuals. In sign-trackers, to the contrary, the difference in BIC values between
models was significantly shifted towards value-based gaze control; F (1, 84) = 6.87, p = .010, η2p =
0.038, 95% CI = [0.002 0.110]; after outlier removal: p = .015). While none of the models sig-
nificantly outperformed the other (p = .672), numerical differences showed a slight advantage for
gaze control by CS value, i.e., Pavlovian value-based attention.

Across all subjects, model parameters (fixed-effects for more stable estimates) showed relatively
slow model-free reward learning with a learning rate of α = 0.173 (a = −1.563), with large pos-
terior uncertainty of σa = 1.616 [10]. The learning rate estimate for model-based state learning
was of similar size with η = 0.186 (n = −1.477), but with much smaller posterior uncertainty of
σn = 0.219.

We next fitted a dual-control model in which model-free value and model-based uncertainty
were combined via a weighting parameter ω to determine attention: values of ω = 1 indicated at-
tention was guided purely by model-based uncertainty, whereas values of ω = 0 indicated attention
was guided purely by model-free value. The results on the weighting parameter (Fig. 1h) showed
that goal-trackers strongly relied on model-based uncertainty (M = 0.84, SD = 0.18), whereas con-
tributions from both systems were combined to guide gaze in sign-trackers (M = 0.48, SD = 0.24),
reflecting a significant shift towards more model-free control (pbootstrap < .001, b = 0.36, SE =
0.05, 99.9% CI = [0.20 0.50]).

2.3 Pupil size

2.3.1 Statistical analysis

For pupil size, we first analyzed all data from CS onset to US onset, and then focussed analysis on
the region of interest in the last second before US presentation, where we expect the signal to be
least influenced by luminance-related confounds. In the overall analyses, we found a significant
three-way interaction trials (3-8 vs. 9-16) x time (linear effect of seconds 1-6 of CS presentation)
x group (sign- vs. goal-trackers): t410 = 2.97, p = .003, b = 0.12, SE = 0.04, 95% CI = [0.04 0.19].
This was due to a significant interaction trials x time in goal-trackers (t410 = −5.01, p < .0001, b =
−0.270, SE = 0.054, 95%/;CI = [−0.376 − 0.164]), which was absent in sign-trackers (p = .461).
In goal-trackers, pupil size significantly decreased across trials (3-8 vs. 9-16) for the last second
before US presentation (i.e., second 6 after CS onset: t140 = −2.29, p = .023, b = −0.055, SE =
0.024, 95% CI = [−0.102 − 0.008]; Fig. 2a) and for the second last second (i.e., second 5: t140 =
−2.56, p = .012, b = −0.061, SE = 0.024, 95% CI = [−0.108 − 0.014]), but did not change as a
function of trials for seconds 1 to 4 (p−values ≥ .103). Sign-trackers, to the contrary, did not show
a change in average pupil size across trials, neither for the last second before US presentation (sec
6: p = .405, trials x group: t140 = 2.20, p = .030, b = 0.04, SE = 0.02, 95% CI = [0.004 0.071]; sec
5: p = .524), nor averaged across all six seconds within a trial (p = .207).
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Concerning influences from CS value on pupil size (see Fig. 2b), we found a significant four-way
interaction CS value (linear effect: −2,−1, 0,+1,+2 e) x trials (3-8 vs. 9-16) x time (linear effect
of seconds 1-6 of CS presentation) x group (sign- vs. goal-trackers): t1640 = 2.69, p = .007, b =
0.542, SE = 0.201, 95% CI = [0.147 0.937]. Post-hoc contrasts showed the three-way interaction
CS value x trials x group was significant in the last two seconds before US presentation (second 6:
t638 = 3.52, p = .0005, b = 0.285, SE = 0.081, 95% CI = [0.126 0.444]; second 5: t638 = 2.78, p =
.006, b = 0.225, SE = 0.081, 95% CI = [0.066 0.384]), but was not significant in the first four
seconds after CS presentation (p − values ≥ .060; second 1: p = .133). In the last second before
US presentation, sign-trackers showed a significant interaction CS value x trials (t638 = 2.93, p =
.004, b = 0.339, SE = 0.116, 95% CI = [0.112 0.566]), which reflected an increase of the CS value
effect across trials. Specifically, in sign-trackers pupil size increased with increasing CS value (linear
effect) at the end of learning (trials 9-16; t1314 = 2.89, p = .004, b = 0.521, SE = 0.180, 95% CI =
[0.167 0.874]), but not at the beginning of learning (trials 3-8: p = .383). Moreover, in sign-trackers
in trials 9-16, pupil size increased with increasing CS value (linear effect) in the last second before
US presentation, but not in the previous seconds (p − values ≥ .288; second 5: p = .091). In
goal-trackers, to the contrary, CS value did not significantly increase or decrease pupil size, neither
in trials 9-16 (second 6: p = .112, seconds 1 to 5: p− values ≥ .133; averaged across seconds 1-6:
p = .258) nor in trials 3-8 (for seconds 1-6: p ≥ .268; averaged: p = .495).

2.3.2 Computational modeling

In sign-trackers, the model assuming the pupil is dilated by high model-free value explained the
data better (BIC = 7457.1) than the model assuming model-based uncertainty dilates the pupil
(BIC = 7460.1), suggesting that pupil dilation in sign-trackers is influenced by Pavlovian value
predictions [11]. In goal-trackers, to the contrary, the model assuming pupil dilation relates to
model-based uncertainty (BIC = 8023.6) outperformed the model-free CS value model (BIC =
8032.4), suggesting pupil dilation in goal-trackers is driven by aspects of model-based learning
[12]. Comparison of model predictions with observed pupil sizes (see Fig. 2e+f) shows the model
assuming value-based pupil dilation captures the continuous increase in the CS value effect on pupil
size across trials in sign-trackers, whereas the model assuming uncertainty-based pupil dilation
captures the decrease in pupil size across trials in goal-trackers.

Learning rate estimates in the value model yielded α = 0.056 (logit transform: a = −2.83),
though there was large posterior uncertainty (95% posterior credible interval for the learning rate
scale: α = [0.0002 0.94]; on the logit-transformed scale: σpost

a = 2.76). Estimates of the learning
rate for model-based state learning were better constrained η = 0.20 (n = −1.40; posterior stan-
dard deviation: σn = 0.82). While we note that the data was noisy, did not support a random
effects analysis, and as such these estimates should be taken with caution, we also note a similarity
between these estimates and those emerging from the fMRI and gaze analyses.

2.4 Behavioral results

2.4.1 Forced choice between Pavlovian CSs

Performance in forced choices between Pavlovian CSs based on their value (see Supplementary
Fig. 4a) was close to ceiling for GT (97.8% correct answers, SDsubjects = 9.2, SE = 1.5, better than
chance: pbootstrap < .001, 99.9% CI = [86 99.6]) and for ST (95.2% correct, SDsubjects = 14.0, SE =
2.2, better than chance: pbootstrap < .001, 99.9% CI = [80 98.8]), and did not significantly differ
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Supplementary Figure 4 | Pavlovian and instrumental learning in sign-trackers (ST, orange)
and goal-trackers (GT, blue). a. Percent correct forced choices between Pavlovian CSs assesses
Pavlovian learning success. b+c. Performance during instrumental non-/approach training as as-
sessed via the number of button presses. b. Instrumental performance during the first 20 trials
(left) versus the last 20 trials (right) of instrumental training is displayed for instrumental condi-
tions nogo (left bars) and go (right bars) for goal-trackers (left bars) and sign-trackers (right bars).
c. Instrumental performance across six blocks, each containing one sixth of all individual training
trials, is displayed for instrumental conditions go (solid lines) and nogo (dashed lines). a-c. Error
bars are SEM.

between ST versus GT (pbootstrap > .1, b = 2.6%, SE = 2.6, 95% CI = [−1.8 8.6]), suggesting that
both groups successfully learned Pavlovian values.

2.4.2 Instrumental conditioning

ST and GT needed a similar number of trials to achieve the instrumental learning criterion (ST vs.
GT: Mean [SD] = 75.8 [21.4] vs. 77.9 [23.0] trials; group difference: pbootstrap > .1, b = 2.1, SE =
4.8, 95% CI = [−7.2 11.3]). In both groups, approach and non-approach conditions differed in
the number of button presses already in the first twenty trials (Supplementary Fig. 4b; ST: t42 =
3.49, p = .001, b = 0.99, SDsubjects = 1.87, SE = 0.28, 99% CI = [0.23 1.76]; GT: t42 = 6.46, p <
.001, b = 1.83, SDsubjects = 1.85, SE = 0.28, 99.9% CI = [0.83 2.83]). This effect was stronger in
GT compared to ST (t84 = 2.08, p = .041, b = 0.83, SE = 0.40, 95% CI = [0.03 1.63]). In the last
20 trials the go/nogo effect was strong in GT (pbootstrap < .001, b = 5.14, SDsubjects = 2.88, SE =
0.44, 99.9% CI = [3.43 6.35]) and in ST (t42 = 14.16, p < .001, b = 4.49, SDsubjects = 2.08, SE =
0.32, 99.9% CI = [3.37 5.61]), with no significant difference between ST and GT (pbootstrap > .1, b =
0.64, SE = 0.54, 95% CI = [−0.47 1.63]), indicating similar learning in both groups.

2.4.3 PIT

We found that during PIT instrumental response rate increased with appetitive and decreased
with aversive Pavlovian value (see Fig. 3a,b; [13, 14]), reflecting a significant PIT effect in ST
(pbootstrap < .001, b = 0.83, SDsubjects = 1.38, SE = 0.21, 99.9% CI = [0.30 1.72]), which was
stronger (pbootstrap < .05, b = 0.49, SE = 0.26, 95% CI = [0.09 Inf ]) than in GT (pbootstrap <
.001, b = 0.34, SDsubjects = 0.89, SE = 0.14, 99.9% CI = [0.09 1.2]). The PIT effect was in-

11



Schad et al., 2018 Supplementary Information

dividually significant in a higher percentage of ST (25.6%) compared to GT (9.8%; difference:
pbootstrap < .05, b = 15.8, SE = 8.3, 95% CI = [1.6 Inf ]; see Fig. 3a, inset).

Moreover, we examined whether instrumental training affected instrumental performance dur-
ing the PIT phase. Individuals who required less training trials had higher correct responses during
the PIT phase (t = −3.9, p < .001, b = −0.003, SE = 0.0008, 95% CI = [−0.005 − 0.001]). How-
ever, this did not affect the strength of the PIT effect per subject, i.e., it did not interact with the
differential effect of Pavlovian value (p = .16). In addition, the difference in PIT between sign-
and goal-trackers remained significant (p < .05) when we controlled for the number of training
trials. Hence, although instrumental training does (as expected; c.f. [13]) affect instrumental per-
formance during PIT, it does not relate to the actual PIT effect itself. This is in keeping with the
notion that Pavlovian influences reflect contribution of a Pavlovian control system separate from
the instrumental one.

Next, we tested whether subjects sometimes responded in a deterministic manner, which may
indicate explicit response strategies rather than implicit effects of Pavlovian cues. As a first approach
to assess deterministic responses, we considered subjects who performed all responses correctly,
i.e., who collected all go-shells and left behind all no-go shells. There were a total 9 such perfect
subjects: 6 out of 41 GT and 3 out of 43 ST, reflecting no significant group-difference (p = .43). In
an additional analysis, we removed these 9 perfect subjects from the data and repeated the analysis
of PIT effects. The results showed that the group-difference between sign- and goal-trackers in the
PIT effect was still significant (p < .05) as before.

However, the behaviour of these participants may still not be fully deterministic, as participants
could collect or leave shells using different number of button presses. We therefore considered an
alternative definition of deterministic behaviour: We looked at responses to each instrumental shell
per subject separately, and tested whether all responses to this shell in a given subject involved
exactly the same number of button presses (e.g., all zero). This indicates a stricter definition of
deterministic responses. Across all subjects this occurred in 79 instances, 45 times in GT and 34
times in ST, reflecting no significant group difference (p > .1). Next, we removed all instances
with such deterministic behaviour from the data and re-computed the PIT effects. In this analysis,
the PIT effect was still significantly stronger in sign- than in goal-trackers as before (p < .05),
supporting a more implicit effect of Pavlovian value on instrumental behaviour.

2.5 fMRI results

2.5.1 Difference in RPE response between sign- and goal-trackers

There was a significant difference in the RPE response between sign-trackers and goal-trackers,
F (1, 75) = 10.88, SV CpFWE = .026, [12 6 −14], η2p = .122, 95% CI = [0.020 0.266] (Fig. 4a+b). We
also studied the RPE separately for wins versus losses, and found a significant appetitive RPE signal
in sign-trackers (average signal in NAc VOI: t38 = 2.15, p = .019, b = 0.087, SE = 0.040, 95% CI =
[0.005 0.169]), but not in goal-trackers (t38 = −0.04, p = .516; difference: t75.9 = 1.53, p = .065, b =
0.089, SE = 0.058, 95% CI = [0.008 ∞]; also see Supplementary Fig. 5). The aversive RPE
response, however, was neither significant in goal-trackers nor in sign-trackers (p > .1).

One potential confound in the present analyses of group differences are visual effects. This
could bias results because the group definitions were based on differences in fixation locations.
We consider it unlikely that our highly specific computational measures of prediction errors are
confounded by simple visual effects. Moreover, we test effects in brain regions known to encode
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Supplementary Table 1 | Appetitive RPE signals for sign- and goal-trackers

VOI Sign-trackers > 0 Goal-trackers > 0 ST > GT
t(38) p lower CI t(38) p lower CI df t p lower CI

NAc 2.15 0.019 0.019 -0.04 0.516 -0.072 75.9 -1.53 0.065 -0.008
VTA 1.90 0.033 0.006 -0.94 0.825 -0.122 63.2 -1.80 0.038 0.007
vmPFC 2.49 0.009 0.041 -0.10 0.541 -0.087 75.8 -1.88 0.032 0.015
Putamen 1.94 0.030 0.008 0.05 0.479 -0.059 72.8 -1.18 0.121 -0.023
Caudate 1.16 0.126 -0.016 -1.11 0.862 -0.113 71.5 -1.59 0.058 -0.004
Amygdala 2.86 0.003 0.052 -1.18 0.876 -0.146 74.3 -2.76 0.004 0.074
Note. Average appetitive RPE per VOI. ”Lower CI” is the lower 95% confidence interval of a one-
sided statistical test that the signal is larger than zero or that the signal is larger in sign- than in
goal-trackers.

prediction errors rather than visual processing. However, we performed a control analysis to further
test this potential confound. To this end, we coded two additional fMRI control regressors. The first
coded as onsets each time a subject fixated on the CS stimulus, with the duration of the onset
regressor given by the amount of time the subject was fixating on the CS. We expected that this
regressor should capture visual processing of the CS. Indeed, maximal activation of this regressor
was present in occipital regions. The second control regressor coded the same for fixations on
the US. Importantly, both regressors did not show any group-difference in our a priori NAc VOI
(puncorrected > .05). Next, we tested whether the group difference between sign- and goal-trackers
in the reward prediction error signal in the a priori NAc VOI was still significant after controlling for
the two visual regressors. Indeed, sign-trackers still showed a stronger RPE signal in the NAc than
goal-trackers (t(75) = 3.04, SV C pFWE = .026). This result supports our assumption that group-
differences in RPE signals reflect differences in prediction error signaling rather than differences in
visual perceptual processing.

2.5.2 Response in other brain regions

A key question was whether the difference in RPE signals between sign- and goal-trackers observed
in the NAc was on average present also across other VOIs of the brain reward system. To test
whether the difference in RPE signal was present on average, we extracted the average RPE signal
for each of 5 additional VOIs from the brain reward system, including the ventral tegmental area
(VTA), ventromedial prefrontal cortex (vmPFC), Putamen, Caudate, and Amygdala. Our hypothesis
was that across these VOIs there should be a stronger RPE signal in sign-trackers than in goal-
trackers, and we used an ANOVA with factors group (ST/GT) and VOI to test this. We found that
across VOIs the RPE signal was stronger in sign-trackers than in goal-trackers ( F (1, 76) = 4.18, p =
.044, η2p = .01, 95% CI = [0.00 0.04]; see Supplementary Figure 6). However, the group-difference
did not interact with VOI, suggesting the effect was stable across VOIs (p = .363). Moreover,
across VOIs, the RPE signal was present in sign-trackers (t76 = 1.893, p = .031, b = 0.035, SE =
0.019, 95% CI = [0.004 ∞]) but not in goal-trackers (p = .322). These results support the stability
of the RPE signal in sign-trackers and show that it is present across different regions of the brain
reward system.

We further followed up on these results in exploratory analyses by studying appetitive RPE
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Supplementary Figure 5 | Appetitive RPE response in sign-trackers (ST) versus goal-trackers
(GT). a+b. Contrast showing stronger RPE signal in ST than in GT. Thresholds: p < .01, k = 90
(red) and p < .005, k = 90 (orange). Results are displayed for the peak group difference (y = 4; a)
and for the peak signal in sign-trackers (y = 12; b).

signals. First, we again used an ANOVA to test the average group-difference across VOIs, and again
found a significant effect (F (1, 76) = 5.40, p = .023, η2p = 0.014, 95% CI = [.00008 0.045]), but
no significant interaction (p = .145), indicating a stable group-difference across VOIs. Moreover,
we followed up on this overall effect by exploring effects in individual brain regions. We found
(Fig. 5) a wide-spread appetitive RPE signal in sign-trackers (all p ≤ .033 except for caudate:
p = .126), but not in goal-trackers (all p ≥ .479), that was significantly stronger in sign- than in
goal-trackers (all p ≤ .065 except for putamen: p = .121). This result was observed across regions
(see Supplementary Table 1). We also performed Holm correction for multiple comparisons, and
found that Amygdala survived correction for the 6 tests: NAc: p = .174; VTA: p = .160; vmPFC:
p = .160; Putamen: p = .174; Caudate: p = .174; Amygdala: p = .024. The aversive RPE signal,
however, was neither present in sign-trackers, nor in goal-trackers, and there was no significant
group difference in any of the VOIs (p− values ≥ .124).

An analysis including data from all VOIs and from appetitive and aversive RPE simultane-
ously showed an appetitive RPE signal across VOIs in sign-trackers (t145.8 = 2.54, p = .012, b =
0.071, SE = 0.028, 95% CI = [0.016 0.126]), but not in goal-trackers (p = .471), and not for aversive
RPE (ST: p = .591; GT: p = .436). In sign-trackers, the appetitive RPE signal was stronger than the
aversive RPE across VOIs (t76 = 1.99, p = .051, b = 0.086, SE = 0.043, 95% CI = [−0.0003 0.173]).
Moreover, sign-trackers showed a stronger appetitive RPE signal than goal-trackers across VOIs
(t146 = 2.31, p = .022, b = 0.091, SE = 0.040, 95% CI = [0.013 0.169]).

Last, we conducted exploratory whole-brain analyses, but found no evidence for group-differences
in RPE signals.

2.5.3 Varying model-free learning rates

We next tested whether the RPE signal - assessed across all VOIs combined - was stable for different
values of the free learning rate parameter. We first looked at the a priori analysis involving wins and
losses, and performed an ANOVA involving factors group (ST/GT) and VOI (all 6 VOIs) for each of
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Supplementary Figure 6 | Distributions of average appetitive and aversive RPE responses in
sign-trackers (ST) versus goal-trackers (GT) in different VOIs.
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a number of different values of the learning rate (0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6). We found that
the difference in the RPE signal between sign- and goal-trackers was highly stable across learning
rates: we found a significant group difference for the following values of the learning rate: 0.1:
p = .034, 0.2: p = .039, 0.3: p = .046, 0.4: p = .048, 0.5: p = .0495, 0.6: p = .04998. For a learning
rate of 0.001, the difference was not significant (p = .175). Moreover, the interaction between
group (ST/GT) and VOI was not significant for any of the learning rates (p > .4), indicating the
difference in RPE signals between groups was stable across the different tested VOIs. These results
strongly support the reliability and generalizability of our main finding that model-free reward
prediction error signals were stronger in sign-trackers than in goal-trackers.

We also performed the same analysis for gains only, and again found that the group-difference
in the RPE signal between sign- and goal-trackers was significant for most of the tested learning
rates: 0.05 (p = .029), 0.1 (p = .025), 0.2 (p = .039), 0.3 (p = .048), and 0.4 (p = .048); and the
effect was marginal (p < .06) for learning rates 0.5 (p = .052) and 0.6 (p = .056).

We next tested whether the observations about different learning rates to compute the RPE re-
mained apparent when analyzing appetitive versus aversive RPE signals. To this end, we estimated
the average appetitive versus aversive RPE signals per VOI for each of a set of different learning
rates: α = [0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]. The results, displayed in Supplementary Fig.
7, showed that the key result of a stronger appetitive RPE response in sign-trackers compared to
goal-trackers (cf. [3]) was numerically stable for individual VOIs for at least some different values
of the learning rate parameter. The appetitive RPE signal was most pronounced for small learn-
ing rates of (α = 0.05 or α = 0.10) in NAc, VTA, vmPFC and Amygdala, while for other regions
(Putamen and Caudate) the effect was rather stable across different learning rates. The large BOLD
effects at small learning rates are in keeping with the learning rate estimated from the pupil size
(αpup = 0.06) [10]. However, for the smallest learning rate (e.g., α = 0.001), the appetitive RPE
signal was not significant in VTA, Putamen, and Caudate.

Of note, aversive RPE signals were neither present in sign- nor in goal-trackers with the excep-
tion of one single significant effect that did not survive correction for the 96 tests. Moreover, in
goal-trackers we found some unexpected evidence for inverse RPE signals, mainly in Caudate. We
currently do not understand this inverse signal, which may potentially be related to salience signals
in goal-trackers.

2.5.4 State prediction error signals

State prediction errors (SPE) have been reported in intraparietal sulcus (IPS) and lateral pre-
frontal cortex (latPFC), and SPE were linked to model-based behavioural control specifically for
the IPS [16]. Based on previous theorizing that goal-trackers rely more on model-based Pavlo-
vian conditioning [5, 6] we here tested SPE signals in both groups. For sign- and goal-trackers
combined, we found strong state prediction error signals in the a-priori VOIs of IPS (average re-
sponse: t(111) = 8.4, p < .0001, b = 1.20, SE = 0.14, 95% CI = [0.92 1.48]; peak-voxel: t(75) =
8.6, SV C pFWE < .001, [−30 − 60 40]) and the lateral PFC (average response: t(111) = 6.0, p <
.0001, b = 0.858, SE = 0.143, 95% CI = [0.575 1.14]; peak-voxel: t(75) = 6.0, SV C pFWE <
.001, [−50 16 40]). Peak activations in both VOIs were also significant at a whole-brain corrected
level (pFWE < .05, see Supplementary Fig. 8). We found an interaction of group (ST/GT) with VOI
(F (1, 76) = 5.34, p = .024, η2p = 0.033, 95% CI = [0.0001 0.106]). Following up on this interaction
using post-hoc tests, we found that in the IPS as expected the SPE signal was significantly stronger
in goal-trackers than in sign-trackers (average response: t(67) = 2.12, p = .019, b = 0.564, SE =
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Supplementary Figure 7 | Appetitive and aversive neural RPE signals for a range of learning
rates α = [0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]. We extracted the average RPE response per VOI and
learning rate. Red marks (located at the top of each panel) show results from two-sample t-tests
(see legend for p-values) testing our a priori hypothesis [3, 15] that the RPE signal is larger in sign-
than in goal-trackers (one-tailed). Grey marks (located on displayed data points) indicate results
from one-sample t-tests (see legend for p-values) testing whether the RPE signal for wins (upper
panels) or losses (lower panels) is larger than zero (one-tailed) in each group of sign- or goal-
trackers and for each learning rate and VOI separately. Moreover, we show results from exploratory
one-tailed t-tests testing for inverse RPE signals, i.e., stronger BOLD response for negative TD PE
(green marks; located on displayed data points).
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Supplementary Figure 8 | State prediction error signals in the intraparietal sulcus (IPS, a) and
the lateral PFC (latPFC, b) for sign- and goal-trackers combined.

0.266, 95% CI = [0.121∞]; peak-voxel: t(75) = 3.3, punc. < .001, [−46 − 36 44], see Fig. 6a+b and
Supplementary Fig. 9), but the signal in the lateral PFC did not differ between groups (p > .1).
These results support a stronger neural signature of model-based learning in goal-trackers, and thus
provide support for computational models of sign- and goal-tracking [5, 6].

We note that the state prediction error regressor was perfectly orthogonal to the reward predic-
tion error regressor in our experimental design (r = 0). We also tested whether reward prediction
error signals would be observed in the IPS or lateral PFC in sign-trackers or in goal-trackers, and
whether the groups differed in their reward prediction error signals in these VOIs. However, we
found that neither sign- nor goal-trackers showed a reward prediction error signal in IPS (p > .7)
nor in lateral PFC (p > .7) and that there was no evidence for a group-difference in either VOI
(p > .7). These results underline the double dissociation of learning signals between sign- and
goal-trackers.

Again, we performed additional analyses to control for visual perceptual effects when testing
for the state prediction error signal in the IPS, using the same analysis approach described for the
reward prediction error. We again found that maximal visual responses were located in occipital
regions, and that sign- and goal-trackers did not differ in their visual responses in the IPS (pFWE >
.2). Crucially, the group difference in SPE signaling in the IPS was still significant after controlling
for visual responses as goal-trackers still had stronger SPE signals in IPS than sign-trackers (t(76) =
2.03, p = .046), supporting our conclusion that state prediction error signals in IPS were stronger in
goal-trackers than in sign-trackers, and that this was not confounded by group differences in visual
perceptual processing.

18



Schad et al., 2018 Supplementary Information

Supplementary Figure 9 | State prediction error signals in the intraparietal sulcus (IPS) in goal-
trackers (a) and in sign-trackers (b). pFWE = .01, k = 0

2.6 Intermediate group between sign- and goal-trackers

Throughout this work, we have compared the groups of sign-trackers and goal-trackers. However,
in our group definition based on gaze there was also a third group of ”intermediates”, who showed
near-zero effects of CS value on the gaze index (see Fig. 1b). We here tested whether this group
of intermediates also showed intermediate results on a range of tested experimental measures. In-
deed, as is displayed in Supplementary Figure 10, we found that intermediates had intermediate
values in measures of computational models of gaze, in statistical and computational pupil analy-
ses, in Pavlovian-instrumental transfer, in the NAc reward prediction error signal, and in the state
prediction error signals in IPS.

2.7 Alternative definitions of sign- and goal-tracking

2.7.1 Distinguishing STs and GTs based on CS fixations

Our approach to defining sign- and goal-trackers was based on the CS value effect on the gaze
index. We here implemented an additional analysis approach and defined sign- and goal-trackers
not based on the linear CS value effect on the gaze index, but instead on the probability to fixate
the CS, i.e., treating fixations on the background and on the US as the same. In this alternative
definition, 36 out of the original 43 sign-trackers, and 37 out of the 43 original goal-trackers were
again classified as sign-/goal-trackers, respectively, while the others switched to being defined as
intermediates.

With this alternative definition of sign- and goal-trackers, we repeated our key analyses on
Pavlovian-instrumental transfer (PIT), neural reward prediction error signals (RPE), and on state
prediction errors (SPE) and again found the same group differences (see Supplementary Fig. 11a-
c). Sign-trackers defined based on CS-related fixations again had a stronger PIT effect compared
to goal-trackers (pbootstrap < .05, b = 0.35, SE = 0.23, 95% CI = [0.02 Inf ]). Moreover, CS-
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Supplementary Figure 10 | Analysis results for the intermediate group. a+b, Computational
modelling results for the gaze index, including relative BIC (a), and the mixing weight between
model-free and model-based control (b). c, Pupil analyses including the effect of trials (left) and
of CS value at the end of learning (right). d, Computational modelling results for pupil dilation,
showing relative BIC. e, Average PIT effect for each group. f, Average reward prediction error
response (BOLD signal) in the NAc per group. g, Average state prediction error response (BOLD
signal) in the IPS per group.
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defined sign-trackers had stronger RPE signals in the NAc compared to goal-trackers (voxel-wise
difference: F (1, 75) = 14.11, SV CpFWE = .007, [12 6 − 14], η2p = 0.152, 95% CI = [0.036 0.301]).
Sign-trackers also showed an appetitive RPE signal in NAc (average signal: t38 = 2.76, p = .004),
and in the other VOIs (p − values < .05, Caudate: p = .123), which was absent in goal-trackers
(p− values > .1). In an analysis testing all VOIs simultaneously, sign-trackers showed an appetitive
RPE signal (t76 = 2.33, p = .011, b = 0.07, SE = 0.03, 95% CI = [0.01 0.13]), which was stronger
compared to goal-trackers (t76 = 1.79, p = .039, b = 0.08, SE = 0.04, 95% CI = [0.0003 0.16]),
who themselves showed no evidence for an appetitive RPE signal (p = .844). Last, we found that
goal-trackers defined based on CS-related fixations had marginally stronger SPE signals compared
to sign-trackers in IPS (t63 = 1.40, p = .083, b = 0.408, SE = 0.291, 95% CI = [0.078 ∞]), but
not in lPFC (p = .678, interaction VOI x group: F (1, 76) = 4.63, p = .03, η2p = 0.029, 95% CI =
[0.000 0.099]).

2.7.2 Distinguishing STs and GS based on computational model fits

We next fitted a computational model to the gaze data assuming dual control by uncertainty and
by a model-free Pavlovian conditioned response bias from CS value (section ”Using computational
modeling to define sign- and goal-trackers”). We assumed that the weight of CS value and specifi-
cally its size and direction defines sign- versus goal-trackers: we defined sign- vs. goal-trackers as
the tertiles of subjects with the most positive vs. most negative parameter estimate for the weight
of CS value on gaze direction (i.e., bgazeV ). The estimated weight parameter was highly correlated
with the linear CS value effect on gaze direction that we had used in the original definition of sign-
and goal-trackers (across subjects: Spearman’s ρ = .84, S = 56388, p < .001). Moreover, a substan-
tial number of participants were assigned to the same groups: 32 out of the 43 sign-trackers, 35
out of the 43 goal-trackers were again classified as ST/GT, while the remaining subjects became
intermediates, and only one goal-tracking subject switched to being defined as sign-tracker in the
computational analysis.

We tested whether the key behavioural and imaging results were stable when using this compu-
tational definition of sign- and goal-trackers. The main results from these analyses are displayed in
Supplementary Figure 11d-f. First, we tested the hypothesis that the weight of uncertainty on gaze
direction, i.e., βgaze

U , was larger in computationally-defined goal-trackers (M = 0.76, SE = 0.09)
than in computationally-defined sign-trackers (M = 0.51, SE = 0.09), and found this to be the case
(significant difference: t84 = 1.76, p = .041, b = 0.24, SE = 0.13, 95% CI = [0.01∞]), supporting a
stronger reliance on uncertainty-based attention in goal-trackers.

Second, we found the PIT effect was stronger in the computationally defined STs than GTs
(pbootstrap < .05, b = 0.42, SE = 0.22, 95% CI = [0.10∞]) and more frequently individually present
(z = 2.08, p = .038, b = 1.30, SE = 0.63, 95% CI = [0.14 2.65]; see Supplementary Fig. 11d).
Third, neural signatures of value and state learning replicated. The neural RPE signal (computed
across wins and losses) was stronger in computationally-defined sign- than goal-trackers in the NAc
(voxel-wise difference: F (1, 74) = 9.38, SV CpFWE = .003, [14 4 − 14], η2p = 0.107, 95% CI =
[0.013 0.248]), and across all tested VOIs (mean signal: t75 = −2.11, p = .019, b = −0.05, SE =
0.02, 95% CI = [−0.09 − 0.01]). Third, there were again strong SPE signals in IPS and lPFC for
both groups (p − values < .001), with a (now marginal) interaction between group (sign-/goal-
trackers) x VOI (F (1, 75) = 3.01, p = .09, η2p = 0.019, 95% CI = [0.000 0.082]) indicating that the
SPE signal was stronger in sign-trackers than in goal-trackers in IPS (t66 = 1.60, p = .057, b =
0.41, SE = 0.26, 95% CI = [−0.02 ∞]), but not in lateral PFC (p = .523). The results replicate our

21



Schad et al., 2018 Supplementary Information

Supplementary Figure 11 | Alternative definitions of sign- and goal-tracking. a-c. Sign- and
goal-trackers are defined based on the linear CS value effect on the probability to fixate the CS.
d-f. Sign- and goal-trackers are defined based on a computational model of gaze direction. a
+ d. Number of instrumental button presses during the PIT task as a function of Pavlovian CS
background value for alternatively defined sign- versus goal-trackers. a + d insets. Percentage of
subjects with an individually significant PIT effect. b + e. Reward prediction error BOLD signal in
different VOIs. c + f. State prediction error BOLD signal in different VOIs. a-f. Error bars are SEM.
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Supplementary Figure 12 | State prediction errors from Bayesian model-based learning.

main findings on differences between sign- and goal-trackers using a computational definition of
their gaze control.

2.8 Bayesian model of model-based learning and uncertainty

We additionally used a Bayesian model of model-based learning about state transitions. This
Bayesian model allowed to directly compute trial-by-trial uncertainty, and to use this to predict
gaze (cf. equation 3). The model has a parameter for a priori observations about transitions, which
we estimated from the gaze index data. Based on this model, we again found that goal-trackers
relied more strongly on the model-based system than on the model-free system (t84 = 3.77, p =
.0003, b = 4.49, SE = 1.19, 95% CI = [2.12 6.85]). Likewise, evidence in sign-trackers was again
significantly shifted towards the model-free Pavlovian response bias (interaction group x model:
F (1, 84) = 5.52, p = .021, η2p = 0.031, 95% CI = [0.0004 0.098]), and showed similar support for
model-free and model-based control (p = .660, b = −0.53, SE = 1.19). Next, we also looked at
state prediction errors computed in the Bayesian model-based system, and how they are coded in
IPS and in lPFC. We again found (see Supplementary Fig. 12) a significant interaction of VOI x
group (F (1, 76) = 4.43, p = .039, η2p = 0.027, 95% CI = [0.000 0.097]): goal-trackers showed a
stronger SPE signal than sign-trackers in IPS (t65 = 2.04, p = .023, b = 8.49, SE = 4.17, 95% CI =
[0.17 16.81]) but not in lPFC (p = .410).

2.9 Learning from wins versus losses

While studies on sign- and goal-trackers usually focus on appetitive conditioning (e.g., [2, 3]), CSs
predicting aversive USs are also known to elicit sign-tracking responses [17]. Based on theoretical
considerations that learning should manifest in differences between appetitive and aversive predic-
tions we had designed the task to test differences in learning between wins and losses. Accordingly,
the design was not optimized to test differences to neutral trials. For instance, we did not equalize
the number of neutral and reward trials. However, the fact that the fMRI analyses showed specific
coding only of appetitive RPEs (see section 2.5) prompted us to test whether effective learning as
measured in gaze direction and pupil dilation also differed between wins and losses. We investi-
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gated this question using computational modeling. We compared computational models assuming
control by CS value from a single learning rule and a single weight of CS value with alternative
models assuming a difference between wins and losses in (i) the learning rate or (ii) the weight of
CS value on the dependent variable. Neither gaze nor pupil dilation data suggest a distinction in
the learning from wins and losses:

2.9.1 Gaze index

We first estimated (regression) weights of gaze direction on CS value for wins and losses sep-
arately, i.e., allowing two separate weights instead of one, but keeping the same learning rule
across wins versus losses. The analysis showed that allowing different weights for wins ver-
sus losses (i.e., bgazeV,wins and bgazeV,Loss) did not improve the overall fit of the model compared to
the baseline model, which included only a single identical weight parameter for wins and losses
(i.e., bgazeV ). This was the case across all subjects (baseline model value: Mean Log Likelihood
(LL)= −42.5, Mean BIC = 112.7; dual weights model: Mean LL = −41.2, Mean BIC = 119.2;
t128 = 20.06, p < .001,∆LL = 1.3, ∆BIC = 6.6, SDsubjects = 3.7, SE = 0.3, 99.9% CI = [5.5 7.7]),
and also for the group of sign-trackers, for whom the value model prevailed (baseline value model:
Mean LL = −50.6, Mean BIC = 125.3; dual-weight model: Mean LL = −49.6, Mean BIC =
131.5; t42 = 18.26, p < .001,∆LL = 1.0, ∆BIC = 6.1, SDsubjects = 2.2, SE = 0.3, 99.9% CI =
[4.9 7.3]).

Second, we tested a model where the (regression) weight bgazeV was identical across wins and
losses, but where different learning rates where assumed for the wins versus losses (i.e., αgaze

Win and
αgaze
Loss). We found that the baseline model explained the data better compared to this dual learning

rate model, both for all subjects (baseline value model: Mean LL = −42.5, Mean BIC = 112.7;
dual learning rates model: Mean LL = −42.3, Mean BIC = 121.3; t128 = 95.16, p < .001,∆LL =
0.3, ∆BIC = 8.7, SDsubjects = 1.0, SE = 0.1, 99.9% CI = [8.4 9.0]) and for the group of sign-
trackers specifically (baseline value model: Mean LL = −50.6, Mean BIC = 125.3; dual learning
rates model: Mean LL = −50.2, Mean BIC = 132.7; t42 = 36.02, p < .001,∆LL = 0.4, ∆BIC =
7.4, SDsubjects = 1.3, SE = 0.2, 99.9% CI = [6.7 8.1]). These results suggest a single learning rate
and a single weight of CS value across wins and losses best explains the patterns of gaze.

2.9.2 Pupil dilation

We moreover used the same computational modeling approach conducted for gaze direction to
analyze models of pupil dilation during Pavlovian conditioning. Again, we used our original rein-
forcement learning value model and fitted two alternative models to the pupil size data. The first
model estimated weights of pupil size on CS value for wins and losses separately, while assuming
the same learning rate for wins and losses. Allowing the value weights to differ between wins versus
losses (bpupilV,Wins and bpupilV,Loss) did not explain the pupil dilation better than the baseline model as-
suming a single weight (bpupilV ) across all subjects (baseline model value: LL = −11516.88, BIC =
23061; dual weights model: LL = −11513.75, BIC = 23064; ∆LL = 3.13, ∆ BIC = 3),
and also for sign-trackers, where the value model was the winning model (baseline value model:
LL = −3716.69, BIC = 7457; dual-weight model: LL = −3716.69, BIC = 7465; ∆LL =
0.00, ∆ BIC = 8).

We tested a second model with identical weight parameter bpupilV , but with separate learning
rates for the wins versus losses (αpupil

Win and αpupil
Loss ). The baseline model received more support
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from the data than this dual learning rate model, when studying all subjects (baseline value
model: LL = −11516.88, BIC = 23061; dual learning rates model: LL = −11516.84, BIC =
23070; ∆LL = 0.04, ∆ BIC = 9) and when looking at sign-trackers only (baseline value model:
LL = −3716.69, BIC = 7457; dual learning rates model: LL = −3716.65, BIC = 7465; ∆LL =
0.04, ∆ BIC = 8).
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