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Introduction
Developing methods to study complex systems, such as simulation models or data-min-
ing techniques, often requires testbeds and benchmarks to ensure expected properties. 
The use of synthetic data, in the sense of statistical populations generated randomly 
under constraints of proximity of patterns to a studied system, is a widely used method-
ology tackling this issue. This approach is used in several disciplines related to complex 
systems such as therapeutic evaluation [1], territorial science [2, 3], machine learning [4] 
or bio-informatics [5].

Generation of synthetic datasets can consist in data disaggregation by producing a 
microscopic population with fixed macroscopic properties [6]. The creation of synthetic 
populations for microsimulation models is a typical example where empirical statistical 
distributions are reproduced [7]. In data extensive contexts, several methods have been 
developed and improved for a better reproduction of margin distributions [8].

Synthetic datasets can also be generated at the same scale than the targeted real data-
set, with a broad range of realism levels and corresponding constraints on the generated 
data [9]. For example, [10] show that some datamining techniques such as decision trees 
can be inverted to produce datasets capturing complex non-linear patterns.

The constraints of proximity to reality of synthetic datasets will depend on expected 
applications. They range for example from a strong statistical fit on given indicators, to 
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weaker assumptions of similarity on aggregated patterns. In the case of systems where 
emergence plays a central role, a microscopic property does not directly imply given 
macroscopic patterns, and synthetic datasets may have to capture some of these. This 
approach therein becomes part of the complex systems simulation toolbox. Indeed, with 
the rise of new computational paradigms  [11], data (simulated, measured or hybrid) 
shape our understanding of complex systems. Methodological tools for data-mining, 
modeling and simulation, including the generation of synthetic data, are therefore cru-
cial to be developed.

Synthetic data and dependancy structures

Reproducing data patterns at the first order, in the sense of distribution moments, is 
broadly used and understood. A targeted average will be easily reproduced. Similarly, 
marginals are fitted when generating synthetic population. However, higher orders of 
data structure are more difficult to include in synthetic data generation methods. At the 
second order, this corresponds to a control of the covariance structure between gener-
ated variables.

Some specific examples where interdependency structure is controlled can be found. 
Ye [12] investigates the sensitivity of discrete choices models to the distributions of 
inputs and to their dependance structure. Birkin and Clarke [13] develop a generic 
framework to generate synthetic micro-data from heterogenous aggregated data 
sources, which in particular can include second-order effects in the models consid-
ered. Li et al. [14] propose to reconstruct multi-dimensional synthetic data using copu-
las, which capture the dependancy structure between marginal distributions. It is also 
possible to interpret complex networks generative models [15] as the production of an 
interdependence structure for a system, contained within link topology. Most methods 
yielding a high level of accuracy on synthetic covariance structure depend on sampling 
or data reconstruction methods, and need therefore large datasets.

Synthetic data and socio‑spatial systems

Synthetic data with a spatial dimension, in the sense of spatial coordinates of generated 
data points, or more complicated spatial structures, require proper methods and para-
digms. Such approaches have been proposed in disciplines such as geostatistics or Earth 
sciences. Robin et al. [16] describe a method to generate cross-correlated random spatial 
fields using Fourier transforms. Osborn et al. [17] introduce a multilevel sampling tech-
nique to produce correlated random fields. Concrete applications of such spatial syn-
thetic data include atmospheric circulation models [18], rainfall-runoff simulations [16], 
or engineering [19].

In the case of socio-spatial systems, this kind of methods is less developed. Simula-
tion approaches to spatialized social systems are already well studied by disciplines such 
as geosimulation [20], urban analytics [21] or theoretical and quantitative geography 
[22]. The use of synthetic data in these contexts is however systematically reduced to 
the generation of synthetic populations within agent-based models or microsimulation 
models, applied for example to mobility [23], land-use transport interaction models [3], 
or demography microsimulation models [13]. Some techniques in spatial statistics, such 
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as Geographically Weighted Regression [24], can also be understood as extrapolating a 
spatial field and thus constructing spatial synthetic data.

While several examples of stylized models initialized on synthetic configurations can 
be found in the literature, such as the first Simpop model [25] to simulate the dynamics 
of settlements at a macroscopic scale, or the SimpopNet model [26] for the co-evolution 
of cities and transportation networks, these are run on a single stylized synthetic con-
figuration. There is to the best of our knowledge very few examples of works coupling a 
synthetic data generator with a model at an other scale than the microscopic scale of the 
population.

Recently, a systematic control of the effects of the initial spatial configuration on the 
behavior of simulation models was proposed by [27]. The aim is to be able to distinguish 
proper effects due to intrinsic model dynamics from particular effects due to the geo-
graphical structure of the case study. Arentze et al. [28] introduce a method to generate 
realistic social networks associated to a synthetic population in the geographical space. 
Such results are essential for the validation of conclusions obtained with modeling and 
simulation practices in quantitative geography. Being able to generate correlated syn-
thetic configurations of territorial systems is thus an important development remaining 
to be investigated. In such systems, spatio-temporal correlation structures are a proxy to 
capture complex dynamics, and controlling them in synthetic data would allow better 
understanding of models of such systems.

Proposed approach

This literature review on different aspects of synthetic data generation unveils at least 
two gaps: (i) a lack of attention on controlling covariance structures when generating 
synthetic data; and (ii) an absence of such methods applied to the study of socio-spatial 
systems at aggregated scales. As spatio-temporal dependencies structures are essential 
in driving the dynamics of such systems [29, 30], the combination of these two aspects 
appears as an unexplored research problem.

We propose in this paper to study the generation of correlated synthetic data, and 
more particularly in the case of socio-spatial systems. We introduce here a generic 
methodology taking into account the dependance structure for the generation of syn-
thetic datasets, more precisely by controlling the average of correlation matrices. It is 
suited to be applied on cases where microscopic data is not available and system similar-
ity is expected on aggregated indicators.

We investigate thus the question of how to generate correlated synthetic data at aggre-
gated levels, where constraints on macroscopic indicators are fulfilled and correlation 
structure is controlled. We focus on this problem in the particular case of socio-spatial 
systems, but keep in mind the genericity of the approach.

Our contribution is twofold: (i) we implement a generation of spatial synthetic data for 
socio-spatial systems, which to the best of our knowledge has never been done in that 
context; (ii) the method introduced is generic, and we illustrate it with an application to 
financial time-series.

The rest of the paper is organized as follows. The generic method to generate correlated 
synthetic data is first formally described. We then apply it to a generative model of terri-
torial configurations, composed by the sequential coupling of a reaction-diffusion model 
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for population density with a road network generation model, and study the produced cor-
relation patterns. We also illustrate in a following section the genericity of our method by 
applying it to financial time-series, which are an other example of highly complex signals 
for which correlations are crucial.

Method formalization
The domain-specific methods described above are too broad to be summarized within a 
same formalism. We therefore introduce here a generic and model-agnostic framework, 
focused on the control of correlations structures in synthetic data.

Let �XI a multidimensional stochastic process (which can be indexed e.g. with time in the 
case of time-series, but also with space, or any other indexation). We assume to have a real 
dataset X = (Xi,j) , which is interpreted as a set of realizations of the stochastic process. We 
propose to generate a statistical population X̃ = (X̃i,j) such that

1. A given criteria of proximity to data is verified, i.e. given a precision ε and some 
aggregated indicator �f  , we have 

2. The level of correlation is controlled, i.e. given a matrix R representing the correla-
tion structure (any symmetric matrix with coefficients in [−1, 1] and a unity diago-
nal), we have the estimated covariance matrix given by 

 where the standard deviation diagonal matrix � is estimated on the synthetic 
population.

The second requirement will generally be conditional to parameter values determining gen-
eration procedure, either generation models being simple or complex ( R itself is a param-
eter). Formally, we can also understand synthetic processes as parametric families X̃i[�α].

We propose to apply the methodology on very different examples, both typical of com-
plex systems: territorial systems and financial high-frequency time-series. We illustrate the 
flexibility of the method, and claim to help building interdisciplinary bridges by methodol-
ogy transposition and reasoning analogy. In the first case, morphological calibration of a 
population density distribution model allows respecting real data proximity. Correlations of 
urban form with transportation network measures are empirically obtained by exploration 
of coupling with a network morphogenesis model. The control is in this case indirect and 
the feasible space of correlations is empirically determined. In the second case, proximity to 
data is the equality of signals at a fundamental frequency, to which higher frequency syn-
thetic components with controlled correlations are superposed.

Correlated population density and road network
We now apply the method to territorial systems of human settlements, in the particular 
case here of population distribution in correlation with road network. In this applica-
tion, simulation appears as a crucial step to implement the method.

(1)��f (X)− �f (X̃)� < ε

(2)ˆCov
[

X̃

]

= �
T · R ·�
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Territorial configuration model

We propose in our case to generate territorial systems summarized in a simplified 
way as a spatial population density d(�x) and a transportation network n(�x) . Correla-
tions we aim to control are correlations between urban morphological measures and 
network measures. The question of interactions between territories and networks is 
already well-studied [31] but remains highly complex and difficult to quantify [32]. A 
dynamical modeling of implied processes should shed light on these interactions [33], 
and [34] has investigated the concept of co-evolution within such models. We develop 
here in that context a simple coupling (i.e. without any feedback loop) between a pop-
ulation density distribution model and a network morphogenesis model.

Density model

We use a model D similar to aggregation-diffusion models [35] to generate a discrete 
spatial distribution of population density. A generalization of the basic model is pro-
posed in  [36], providing a calibration on morphological objectives (entropy, hierar-
chy, spatial auto-correlation, mean distance) against real values computed on the set 
of 50 km sized grid extracted from European density grid  [37]. We recall here rap-
idly the processes included in the model. A square grid of width W, initially empty, is 
represented by population (Pi(t))1≤i≤W 2 . At each time step, until the total population 
reaches a fixed parameter Pm,

• total population is increased of a fixed number NG (growth rate), following a pref-
erential attachment such that 

• a fraction β of population is diffused to four closest neighbors, what is operated nd 
times

The two opposite processes of urban concentration and urban sprawl are captured by 
the model, what allows reproducing with a good precision a large number of existing 
morphologies regarding macroscopic urban form indicators.

Network model

On top of the population density model, we generate a planar transportation network 
with a model N at a similar scale. Several processes can be taken into account to simu-
late network growth [38]. Other model types could be used as well, such as biological 
self-generated networks [39], local network growth based on geometrical constraints 
optimization  [40], or a more complex model based on multi-dimensional network 
percolation [41] which would allow the creation of loops for example. Raimbault [38] 
generates networks in the frame of a modular architecture, in which the choice of the 
network generation heuristic can be adapted to a specific need (as e.g. proximity to 
real data, constraints on output indicators, variety of generated forms, etc.).

(3)P[Pi(t + 1) = Pi(t)+ 1|P(t + 1) = P(t)+ 1] = (Pi(t)/P(t))
α

∑

(Pi(t)/P(t))α
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We choose here an heuristic based on spatial interaction potential breakdown, 
which corresponds in practice to a network answering to the strongest demand pat-
terns. The algorithm assumes realistic thematic assumptions: a connected initial net-
work and the creation of links based on spatial interactions.

The heuristic network generation procedure is the following:

1. A fixed number Nc of centers that will be first nodes of the network are distributed 
given density distribution. Their spatial distribution follows a similar law than the 
aggregation process, i.e. the probability to be distributed in a given patch is (Pi/P)

α
∑

(Pi/P)α
 . 

Population is then attributed according to Voronoi areas of centers, such that a 
center cumulates population of patches within its triangulation extent.

2. Centers are connected deterministically through a percolation between closest clus-
ters: as long as the network is not fully connected, the two closest connected com-
ponents, in the sense of the minimal euclidian distance between their vertices, are 
connected with the link realizing this distance. It yields a tree-shaped network at this 
stage.

3. The network is modified by adding links following a spatial interaction potential 
breaking. More precisely, a generalized gravity potential between two centers i and j 
is defined by 

 where d can be euclidian distance dij = d(i, j) or network distance dN (i, j) , kh ∈ [0, 1] 
is a weight to determine the role of populations, γ gives the shape of the hierarchy 
across population values, rg is a characteristic interaction distance and d0 is a dis-
tance shape parameter.

4. A fixed number K · NL of potential new links is taken among the couples having 
greatest euclidian distance potential ( K = 5 is fixed).

5. Among potential links, NL are effectively realized, that are the one with smallest rate 
Ṽij = Vij(dN )/Vij(dij) . At this stage only the gap between euclidian and network 
distance is taken into account: Ṽij does indeed not depend on populations and is 
increasing with dN at constant dij.

6. Planarity of the network is imposed by creating nodes at possible intersections 
formed by new links.

The nature and range of correlations produced by this model coupling, as a function of 
model parameters, are to be determined by simulation experiments.

Parameter space

The parameter space for the coupled model is constituted first by density generation 
parameters �αD = (Pm/NG ,α,β , nd) . We study for the sake of simplicity the rate between 
population and growth rate Pm/NG instead of both varying, i.e. the number of steps 
needed to generate the distribution. These are completed by network generation param-
eters �αN = (NC , kh, γ , rg , d0) . We write �α = (�αD, �αN ).

(4)Vij(d) =
[

(1− kh)+ kh ·
(

PiPj

P2

)γ ]

· exp
(

− d

rg (1+ d/d0)

)
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Indicators

Urban form and network structure are quantified by numerical indicators in order to 
modulate correlations between these. Morphology is defined as a vector �M = (r, d, ε, a) 
giving spatial auto-correlation (Moran index), mean distance, entropy and hierarchy 
(see [42] for a precise definition of these indicators). Network measures �G = (c, l, s, δ) are 
with network denoted (V, E)

• Average centrality c defined as average betweenness-centrality (normalized in [0, 1]) 
on all links.

• Average path length l given by 1
dm

2
|V |·(|V |−1)

∑

i<j dN (i, j) with dm normalization dis-
tance taken here as world diagonal dm =

√
2N .

• Average network speed [43] which corresponds to network performance compared 
to direct travel, defined as s = 2

|V |·(|V |−1)

∑

i<j
dij

dN (i,j).
• Network diameter δ = maxij dN (i, j).

We study the cross-correlation matrix Cov
[

�M, �G
]

 between morphology and network. 

We estimate it on a set of n realizations at fixed parameter values 
( �M[D(�α)], �G[N (�α)])1≤i≤n with the standard unbiased estimator, given by Eq. 5 below.

The covariance is estimated by Eq. 6, where variables are indexed by t over T realizations.

The variance is estimated by Eq. 7.

Null model

In order to provide a minimal benchmark of our correlated data generation method, we 
also introduce a null model to control if the produced correlation are not intrinsic to the 
specification of indicators for example. The procedure to generate null configuration is 
the following: (i) generate a random population density, by randomly selecting a propor-
tion r(0)o  of occupied cell and attributing them a random density between 0 and 1; (ii) add 
a fixed number of network nodes N (0)

N  , either randomly in space, or following the popu-
lation density with a probability of each cell proportional to its density; (iii) add a fixed 
number of links N (0)

L  between random pairs of nodes; (iv) planarize the resulting net-
work by adding nodes at link intersections. In this model, population density and net-
work are either totally independent, or linked through network node density only. We 
thus expect the corresponding correlation to behave as a baseline of how correlations 

(5)ρ̂[X1,X2] = Ĉ[X1,X2]
√

ˆVar [X1] · ˆVar [X2]

(6)Ĉ[X1,X2] = 1

(T − 1)

∑

t

X1(t)X2(t)−
1

T · (T − 1)

∑

t

X1(t)
∑

t

X2(t)

(7)ˆVar [X] = 1

T

∑

t

X2(t)−
(

1

T

∑

t

X(t)

)2
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between indicators behave when no particular care is given to including interaction 
processes.

Generating correlated synthetic data

The coupling of generative models is done both in a formal and operational way. We 
indeed loosely couple independent implementations. The OpenMOLE software [44] for 
model exploration offers a proper framework for this. Its modular workflow language 
allows to compose model tasks and integrate these into diverse numerical experiments. 
For the population density generation, we use the scala implementation provided 
by [36]. The network generation model is implemented in NetLogo  [45], which offers 
a good compromise between performance and interactive model validation and explo-
ration. The two models are coupled with a specific OpenMOLE script. Source code is 
available at https ://githu b.com/Juste Raimb ault/CityN etwor k/tree/maste r/Model s/Synth 
etic.

Results

The study of the density model alone is developed in [36]. It is in particular calibrated on 
European density grid data, on 50km width square areas with 500 m resolution for which 
real indicator values have been computed on the whole Europe. Furthermore, a grid explo-
ration of model behavior yields feasible output space in reasonable parameters bounds 
(roughly α ∈ [0.5, 2],NG ∈ [500, 3000],Pm ∈ [104, 105],β ∈ [0, 0.2], nd ∈ {1, . . . , 4} ). The 
reduction of indicators space to a two dimensional plan through a Principal Component 
Analysis (variance explained with two components ≃ 80% ) allows to isolate a set of out-
put points that covers reasonably precisely real point cloud. It confirms the ability of the 
model to reproduce morphologically the set of real configurations.

With a fixed population density, the conditional exploration of network generation 
model parameter space suggest a good flexibility on global indicators �G , together with 
good convergence properties. In order to apply the synthetic data generation method in 
relation with the thematical question of interactions between networks and territories, 
the exploration has been oriented towards the study of cross-correlations.

Given the large relative dimension of the parameter space, an exhaus-
tive grid exploration is not possible. We use a Latin Hypercube sam-
pling procedure with bounds given above for �αD and for �αN , we take 
NC ∈ [50, 120], rg ∈ [1, 100], d0 ∈ [0.1, 10], kh ∈ [0, 1], γ ∈ [0.1, 4],NL ∈ [4, 20] . For the 
number of model replications for each parameter point, less than 50 are enough to obtain 
confidence intervals at 95% on indicators of width less than standard deviations. For 
correlations a hundred give confidence intervals (obtained with Fisher method) of size 
around 0.4, we take thus n = 80 for experiments. The null model is simulated also with 
n = 80 , for random and density-based node distributions, and r(0)o ∈ {0.25, 0.5, 0.75} , 
N

(0)
N ∈ {10, 15, 20} and N (0)

L ∈ {20, 30, 40} . Simulation results are available on the data-
verse at http://dx.doi.org/10.7910/DVN/UIHBC 7.

We show in Fig. 1 examples of generated territorial configurations. This visualization 
and some values of associated correlations already suggest that the method application 
yields a broad spectrum of generated correlation patterns. We obtain for example low 
density configurations, in aggregated or dispersed settings (top left, resp. bottom left 

https://github.com/JusteRaimbault/CityNetwork/tree/master/Models/Synthetic
https://github.com/JusteRaimbault/CityNetwork/tree/master/Models/Synthetic
http://dx.doi.org/10.7910/DVN/UIHBC7
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panel), inducing very different types of networks. Similarly, areas with population cent-
ers which are closer to urban areas (top right and bottom right panel), can also produce 
different network shapes. In the latest case, increasing the role of hierarchy through γ 
and kh leads from a negative correlation between average distance d and centrality c to a 
positive correlation. This corresponds to a transition from processes where population 
dispersal decreases centrality (redundant networks) to inverse processes (centralized 
networks).

Regarding the generation of correlated synthetic data in itself, several results pre-
sented in Fig. 2 are worth noting. First of all, the statistical distributions of correlation 
coefficients (histograms, top left panel of Fig.  2) between morphology and network 
indicators are not systematically simple and some are bimodal. For example, the cor-
relation ρ[a, l] between hierarchy of the population distribution a and mean path 
length in the network l has a mode around 0 and an other around 0.6. This means that 

Fig. 1 Configurations obtained for parameters giving the four emphasized points in Fig. 2, in order from left 
to right and top to bottom. We recognize polycentric city configurations (2 and 4), diffuse rural settlements 
(3) and aggregated weak density area (1). See dataset for exhaustive parameter values, indicators and 
corresponding correlations. For example d is highly correlated with l and s ( ≃ 0.8) in (1) but not for (3) 
although both correspond to rural environments; in the urban case we observe also a broad variability : 
ρ[d, c] ≃ 0.34 for (4) but ≃ − 0.41 for (2), what is explained by a stronger role of gravitation hierarchy in (2) 
γ = 3.9, kh = 0.7 (for (4), γ = 1.07, kh = 0.25 ), whereas density parameters are similar



Page 10 of 19Raimbault  Complex Adapt Syst Model             (2019) 7:4 

in a certain regime, these tend to decorrelate in average, while in an other regime they 
are strongly correlated. The latest correspond to configurations with a high Moran 
index and a high hierarchy, which means that more centralized urban configurations 
constrain the network path length through this correlation.

Fig. 2 Exploration of feasible space for correlations between urban morphology and network structure. (Top 
left) Statistical distribution of crossed-correlations between vectors �M of morphological indicators (in 
numbering order Moran index, mean distance, entropy, hierarchy) and �N of network measures (centrality, 
mean path length, speed, diameter). (Top right) Heatmaps for amplitude of correlations, defined as 
aij = maxk ρ

(k)
ij −mink ρ

(k)
ij  and maximal absolute correlation, defined as cij = maxk

∣

∣

∣
ρk
ij

∣

∣

∣
 . (Bottom left) 

Projection of correlation matrices in a principal plan obtained by Principal Component Analysis on matrix 
population (cumulated variances: PC1 = 38%, PC2 = 68%). Error bars are initially computed as 95% 
confidence intervals on each matrix element (by standard Fisher asymptotic method), and boundaries of 
confidence intervals are transformed into the component space. Scale color gives mean absolute correlation 
on full matrices. Black dots and error bars correspond to the realizations of the null model. (Bottom right) 
Representation in the principal plan, scale color giving proximity to real data defined as 1−minr � �M− �Mr� 
where �Mr is the set of real morphological measures, point size giving mean absolute correlation. The points 
highlighted in blue correspond to the configurations shown in Fig. 1. Black dots correspond to the 
realizations of the null model
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Second, still based on distributions in Fig. 2, but also on heatmaps for amplitude and 
maximal correlation (top right panel), we observe that it is possible to modulate up to a 
relatively high level of correlation for all indicators, since the maximal absolute correla-
tion varies between 0.6 and 0.9. The amplitude of correlations ranges between 0.9 and 
1.6, allowing thus a broad spectrum of values.

As the cross-correlation matrix is of dimension 16, we proceed to a principal com-
ponent analysis on all generated correlation matrices (one matrix per row) to visualize 
the covered space in two dimensions. This PCA yields 38% of variance for the first com-
ponent and 68% of cumulated variance for the second. We visualize the corresponding 
point cloud in the principal plan, with transformed confidence intervals (bottom left 
panel of Fig. 2) and with particular points (bottom right panel). The point cloud in the 
principal plan has a large extent but is not uniform: it is not possible to modulate in 
any direction any coefficient as they stay themselves correlated because of underlying 
generation processes. A more refined study at higher orders (correlation of correlations) 
would be necessary to precisely understand degrees of freedom in the generation of cor-
relations. However, the covered area remains broad and confirms a rather flexible output 
space for generated correlations. When comparing to the null model runs (black dots 
and error bars), we find as expected that null model correlations are around 0 (all confi-
dence intervals covering the origin), and that a part of the generated point cloud falls in 
the same area. An other important part of points fall outside the range of the null model 
in a statistically significant way. These are the interesting points for a possible applica-
tion of the synthetic dataset, and we show thus that the method produces non-trivial 
and significant correlation patterns.

When evaluating the proximity of indicator values to real points (Eq. 1 in the abstract 
description of the method), which is given by the color level in the bottom right panel 
of Fig. 2, we note that the points with the highest level of correlation are also the ones 
which are closest to real data (red points). The points which are the farthest from real 
configurations are the uncorrelated ones, which also coincide with the null model. This 
suggests that in the frame of model hypotheses, real configurations exhibit high correla-
tions between network properties and urban form. Raimbault [46] confirms this fact by 
studying real effective correlations.

Finally, some examples of configurations taken on particular points in the principal 
plan, highlighted in blue in Fig. 2 and described above (Fig. 1), show that similar popula-
tion density profiles can yield very different correlation profiles. This confirms the flex-
ibility of the method and the possibility to control on correlation structure.

Correlated financial time‑series
We also apply the method to a totally different type of system, namely financial complex 
systems. Financial time-series are heterogeneous, multi-scalar and non-stationary [47]. 
Correlations are broadly explored in that field. For example, Random Matrix Theory 
allows distinguishing signal from noise for a correlation matrix computed for a large 
number of asset with low-frequency signals, typically with a time scale of a day [48]. 
Similarly, Complex Network Analysis on networks constructed from correlations intro-
duced methods such as Minimal Spanning Tree [49] or more refined topologically con-
strained network generation methods [50]. These provide reconstructions of economic 
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sectors structure. At high frequencies, the precise estimation of interdependence param-
eters assuming models for asset dynamics has been extensively studied from a theoreti-
cal point of view aimed at refinement of models and estimators [51]. Theoretical results 
must be tested on synthetic datasets as they ensure a control of most parameters in 
order to check that a predicted effect is indeed observable all things being otherwise 
equal. Empirical confirmation of the improvement of estimators is obtained on a syn-
thetic dataset at a fixed correlation level.

We consider a network of assets (Xi(t))1≤i≤N sampled at high-frequency (typically 
1 s). We use a multi-scalar framework (used e.g. in wavelet analysis approaches [52] or 
in multi-fractal signal processing  [53]) to interpret observed signals as the superposi-
tion of components at different time scales. We thus write Xi =

∑

ω Xω
i  . We denote 

by Tω
i = ∑

ω′≤ω Xω
i  the filtered signal at a given frequency ω . A typical problem in the 

study of complex systems is the prediction of a trend at a given scale. It can be viewed 
as the identification of regularities and their distinction from components considered 
as random. For the sake of simplicity, we represent such a process as a trend prediction 
model at a given temporal scale ω1 , formally an estimator Mω1 : (Tω1

i (t ′))t ′<t �→ T̂i
ω1
(t) 

which aims at minimizing error on the real trend �Tω1
i − T̂

ω1
i � . In the case of autoregres-

sive multivariate estimators, the performance will depend among other parameters on 
respective correlations between assets. It is thus interesting to apply the method to the 
evaluation of performance as a function of correlation at different scales. We assume a 
Black–Scholes dynamic for assets [54], i.e. dX = σ · dW  , with W Wiener process. Such a 
dynamic model allows an easy modulation of correlation levels.

Data generation

We can straightforward generate X̃i such that Var
[

X̃
ω1
i

]

=t
� · R ·� (with � are esti-

mated standard deviations and R is a fixed correlation matrix) and verifying 
X
ω≤ω0
i = X̃

ω≤ω0
i  . This means in practice that the data proximity indicator is the identity 

of components at a lower frequency than a fundamental frequency ω0 < ω1 . We use 
therefore the simulation of Wiener processes with fixed correlation. Indeed, if 

 (and σ1 < σ2 indicatively, assets being interchangeable), then

is such that ρ(dW1, dW2) = ρ12 . Signals for other components can be constructed 
the same way by Gram orthonormalization. We isolate the component at the desired 
frequency ω1 by filtering the signal, i.e. using signals constructed with Eq. 8 such that 
X̃
ω1
i = Wi − Fω0 [Wi] , where Fω0 is a low-pass filter with cut-off frequency ω0 . We 

reconstruct then the hybrid synthetic signals by taking

(8)

(9)X̃i = T
ω0
i + X̃

ω1
i



Page 13 of 19Raimbault  Complex Adapt Syst Model             (2019) 7:4 

The method is tested on an example with two assets from foreign exchange market 
(EUR/USD and EUR/GBP), on a 6  month period from June 2015 to November 2015. 
Data was obtained from http://www.histd ata.com/. The data cleaning procedure, start-
ing from original series sampled at a frequency around 1  s, consists in a first step to 
the determination of the minimal common temporal range (missing sequences being 
ignored, by vertical translation of series, i.e. S(t) := S(t) · S(tn)

S(tn−1)
 when tn−1, tn are 

extremities of the “hole” and S(t) value of the asset, what is equivalent to keep the con-
straint to have returns at similar temporal steps between assets). We study then log-
prices and log-returns [47], defined by X(t) := log S(t)

S0
 and �X(t) = X(t)− X(t − 1) . 

Raw data are filtered at a maximal frequency ωm = 10min (which will be the maximal 
frequency for following treatments) for concerns of computational efficiency. As time-
series are then sampled at 3 · ωm to avoid aliasing, a day of size 86,400 for 1 s sampling is 
reduced to a much smaller size of 432. We use a non-causal gaussian filter of total width 
ω . We fix the fundamental frequency ω0 = 24 h and we propose to construct synthetic 
data at frequencies ω1 = 30min, 1 h, 2 h . We show in Fig. 3 an example of signal struc-
ture at the scales ωm and ω1 = 30min , compared with the non-filtered raw signal.

It is crucial to consider the interference between ω0 and ω1 frequencies in the recon-
structed signal: the correlation which is indeed estimated is

Assuming to be in the reasonable limit σ1 ≫ σ0 (fundamental frequency small enough), 
that Cov

[

�X̃
ω1
i ,�Xω

j

]

= 0 for all i, j,ω1 > ω and that returns are centered at any scale, 

we can develop the previous expression to compute the correction on effective 

(10)ρe = ρ

[

�X̃1,�X̃2

]

= ρ

[

�T
ω0
1 +�X̃ω

1 ,�T
ω0
2 +�X̃ω

2

]

Fig. 3 Example of the multi-scalar structure of the signal, basis of the construction of synthetic signals. 
Log-prices are represented on a time window of around 3 h for November 1st 2015 for asset EUR/USD, with 
10 min (purple) and 30 min trends. The low-frequency components are the basis to build synthetic data, on 
which noises with a controlled correlation are superposed

http://www.histdata.com/
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correlation due to interferences. We obtain at the first order the expression of effective 
correlation given by

what corresponds to the correlation that we can effectively simulate in synthetic data.
Correlations are in practice estimated with a Pearson estimator, the covariances being 

corrected for bias, i.e. following Eqs. 5–7.
The generated synthetic data are then used to test a toy model. We propose in particu-

lar to investigate the predictive power of a very simple linear model. The tested predic-
tive model Mω1 is a simple ARMA for which parameters p = 2, q = 0 are fixed (as we do 
not create lagged correlation, we do not expect large orders of auto-regression as these 
kind of processes have short memory for real data; furthermore smoothing is not neces-
sary as data are already filtered). It is however applied in an adaptive way, in the sense 
that given a time window TW  , we estimate for any t the model on [t − TW + 1, t] in order 
to predict signals at t + 1.

Experiments are implemented in the R language, using in particular the MTS  [55] 
library for time-series models. Cleaned data and source code are available on an open 
git repository at https ://githu b.com/Juste Raimb ault/Synth eticA sset.

Figure  4 shows the effective correlations computed on synthetic data. For standard 
parameter values (for example ω0 = 24 h , ω1 = 2 h and ρ = − 0.5 ), we find ρ0 ≃ 0.71 et 
εi ≃ 0.3 what yields |ρe − ρ| ≃ 0.05 . We observe a good agreement between observed ρe 
and values predicted by Eq. 11 in the interval ρ ∈ [− 0.5, 0.5] . On the contrary, for larger 
absolute values, a deviation increases with |ρ| and as ω1 decreases: it confirms the intui-
tion that when frequency decreases and becomes closer to ω0 , interferences between the 
two components are not negligible anymore and invalidate independence assumptions 
for example.

Application to the study of a predictive model performance

The predictive model described above is then applied to synthetic data, in order to 
study its average performance as a function of correlation between signals. Results for 
ω1 = 1 h, 1 h 30min, 2 h are shown in Fig.  5. The a priori counter-intuitive result of a 
maximal performance at vanishing correlation for one of the assets confirms the role 
of synthetic data to better understand system mechanisms: the study of lagged correla-
tions shows an asymmetry in the real data that we can understand at a daily scale as an 
increased influence of EUR/GBP on EUR/USD with a rough two hours lag. The exist-
ence of this lag allows a “good” prediction of EUR/USD thanks to fundamental compo-
nent. This predictive power is perturbed by added noises in a way that increases with 
their correlation. The more noises correlated are, the more the model will take them into 
account and will make false predictions because of the Markovian character of simulated 
brownian (note that the model used has theoretically no predictive power at all on pure 
brownians).

This case study on a toy-model illustrates the relevance of using simulated synthetic 
data. Further developments can be directed towards the simulation of more realistic 

(11)ρe = [ε1ε2ρ0 + ρ] ·
[

1− 1

2

(

ε21 + ε22

)

]

https://github.com/JusteRaimbault/SyntheticAsset
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data (presence of consistent lagged correlation patterns, more realistic models than 
Black–Scholes) and apply it on more operational predictive models.

Discussion
Contributions

We investigated in this paper the possibility of generating synthetic data at a macro-
scopic level with a controlled correlation structure. The generic method we introduce 
can be applied to any complex system, where the proximity to real data is measured on 
aggregated indicators. The method was designed more particularly for socio-spatial sys-
tems. We show in the case of transportation network and territories, by exploring a weak 
coupled model for population density and road network generation, that varying model 
parameters yield a broad output space of effective correlations. Two configurations with 
the same first order indicator values can capture very different underlying correlations. 
This means that future applications to the study of upstream models to the sensitivity of 
spatial initial configuration, such as the one done by [27] but in which correlation struc-
ture is controlled, should be made possible by our approach.

Fig. 4 Effective correlations obtained on synthetic data. Dots represent estimated correlations on a 
synthetic dataset corresponding to 6 months between June and November 2015 (error-bars give 95% 
confidence intervals obtained with standard Fisher method); scale color gives the filtering frequency 
ω1 = 10min, 30min, 1 h, 2 h, 4 h ; solid lines give the theoretical values for ρe obtained by 11 with estimated 
volatilities (dotted-line diagonal for reference); vertical red line position is the theoretical value such that 
ρ = ρe with mean values for εi on all points. We observe for high absolute correlations values a deviation 
from corrected values, what should be caused by non-verified independence and centered returns 
assumptions. Asymmetry is caused by the high value of ρ0 ≃ 0.71
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We postulate that the method can be also applied in other fields where similar con-
straints can be of interest. Indeed, in the context of financial data, considering data 
proximity indicators based on low-frequency components of signals, we showed how 
correlation can be controlled and even analytically predicted to a certain extent. Our 
work recalls thus the interest in generating hybrid data, and is differentiated from most 
work where only the microscopic level is taken into account.

As already mentioned, most of simulation models need an initial state generated 
artificially as soon as model parametrization is not done completely on real data. An 
advanced model sensitivity analysis implies a control on parameters for synthetic dataset 
generation, seen as model meta-parameters  [27]. In the case of a statistical analysis of 
model outputs it provides a way to operate a second order statistical control.

Future work

Regarding the application to geographical data, the calibration of the network generation 
component at given density, on real data for transportation network, is a potential devel-
opment. It would be relevant typically on road networks given the shape of generated 

Fig. 5 Performance of a predictive model as a function of simulated correlations. From left to right and top 
to bottom, the plots show for each asset the normalized performance of an ARMA model ( p = 2, q = 0 ), 

defined as π =
(

1
T

∑

t

(

X̃i(t)−Mω1

[

X̃i

]

(t)
)2

)

/σ

[

X̃i

]2

 (95% confidence intervals computed by 

π = π̄ ± (1.96 · σ [π ])/
√
T  , local polynomial smoothing to ease reading). It is interesting to note the 

U-shape for EUR/USD, due to interference between components at different scales. Correlation between 
simulated noises deteriorates predictive power. The study of lagged correlations (here 
ρ[�XEURUSD(t),�XEURGBP(t − τ)] ) on real data clarifies this phenomenon: the fourth graph shows an 
asymmetry in curves at any scale compared to zero lag (τ = 0) what leads fundamental components to 
increase predictive power for the dollar, amelioration then perturbed by correlations between simulated 
components. Dashed lines show time steps (in equivalent τ units) used by the ARMA at each scale, what 
allows to read the corresponding lagged correlation on fundamental component
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networks, what should be possible using OpenStreetMap open data which have a rea-
sonable quality for Europe [56]. This should theoretically allow unveiling parameter sets 
reproducing accurately existing configurations both for urban morphology and network 
shape. By attributing a synthetic dataset similar to a given real configuration, we would 
be able to compute a sort of intrinsic correlation proper to this configuration.

We studied in the second example stochastic processes in the sense of random time-
series, whereas time did not have a role in the first case. We can suggest a strong cou-
pling between the two model components (or the construction of an integrated model) 
and to observe indicators and correlations at different time steps during the genera-
tion. In dynamical spatial models the existence of lagged interdependences in space 
and time [29] is an important feature of complex dynamics. This would provide a better 
understanding of the link between static and dynamic correlations.

We were limited to the control of first and second moments of generated data, but 
we could imagine a theoretical generalization allowing the control of moments at any 
order. However, as shown by the geographical example, the difficulty of generation in a 
concrete complex case questions the possibility of higher orders control when keeping a 
consistent structure model and a reasonable number of parameters. The study of non-
linear dependence structures as proposed in [57] is in an other perspective an interest-
ing possible development.

We could also apply specific exploration algorithms to explore more exhaustively the 
feasible correlation space. Such an algorithm based on Novelty Search has been intro-
duced by  [58]. Coupling it with our method would allow establishing the full range of 
feasible correlations for a given generation model.

Conclusion
We proposed an abstract method to generate synthetic datasets in which correla-
tion structure is controlled, but the empirical data required can be sparse or targeting 
macroscopic aggregated criteria. Its implementation in two very different fields shows 
its flexibility and the broad range of possible applications. More generally, it is crucial 
to favorise such practices of systematic validation of computational models by statisti-
cal analysis, in particular for agent-based models for which the question of validation 
remains an open issue.

Furthermore, our overall approach enters a particular epistemological frame. On the 
one hand it has a strong multidisciplinary aspect, and on the other hand the importance 
of empirical component through computational exploration methods make this approach 
typical of Complex Systems science [59]. The combination of empirical knowledge 
obtained from data mining, with knowledge obtained by modeling and simulation is gen-
erally central to the conception and exploration of multi-scalar heterogeneous models. 
The method and results presented here are an illustration of such an hybrid paradigm.
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