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Abstract
In the constellations approach to probabilistic argumentation,
there is a probability distribution over the subgraphs of an
argument graph, and this can be used to represent the un-
certainty in the structure of the argument graph. In this pa-
per, we consider how we can construct this probability dis-
tribution from data. We provide a language for data based
on perspectives (opinions) on the structure of the graph, and
we introduce a framework (based on general properties and
some specific proposals) for aggregating these perspectives,
and as a result obtaining a probability distribution that best
reflects these perspectives. This can be used in applications
such as summarizing collections of online reviews and com-
bining conflicting reports.

Introduction
Uncertainty can arise in argumentation for various reasons.
For an individual argument, there can be uncertainty in the
premises of the argument, or in whether the claim follows
from the premises. For instance, many arguments are en-
thymemes, which means that an argument might not explic-
itly present all its premises and/or claim. So when an ar-
gument is heard or read by someone, that recipient has to
decode the enthymeme to recover the intended argument.
There is therefore uncertainty in this decoding process as
the decoded argument could be different to the intended ar-
gument. So using enthymemes introduces uncertainty as to
the content of individual arguments, and uncertainty as to
whether one argument attacks another argument.

In a study on dialogical argumentation, participants were
asked to categorize relationships between arguments as one
of attack, support, dependent somehow, or unrelated, and the
results showed that whilst there was a good agreement be-
tween participants on the categorization for the majority of
pairs of arguments, there was a sizeable subset for which
there was some disagreement (Polberg and Hunter 2018).

Further uncertainty arises in dialogical argumentation.
When one agent is presenting an argument to another agent,
the agent presenting the argument is unsure what related ar-
guments the intended recipient is aware of, and what beliefs
the intended recipient might have concerning those argu-
ments. For the agent presenting the argument, this might be
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important if, for example, the agent wants to persuade the
other agent to accept a specific argument. In this kind of
scenario, the persuader has to make good choices of argu-
ment based on what arguments and attacks she thinks the
persuadee is aware of (Hunter and Thimm 2016).

Probabilistic approaches for modeling uncertainty in ar-
gumentation include the constellations approach and the
epistemic approach (Hunter 2013). The first is based on
a probability distribution over the subgraphs of the argu-
ment graph ((Hunter 2012) which extends (Dung and Thang
2010) and (Li, Oren, and Norman 2011)), and this can be
used to represent the uncertainty over the topology of the
graph (i.e. whether a particular argument or attack appears
in the argument graph). The second is the epistemic ap-
proach which can be used to represent the degree to which
each argument is believed (Thimm 2012; Hunter 2013;
Hunter and Thimm 2017). A further approach is based on
labellings for arguments using in, out, and undecided, from
(Caminada and Gabbay 2009), augmented with off for de-
noting that the argument does not occur in the graph (Riveret
and Governatori 2016). A probability distribution over la-
bellings gives a form of probabilistic argumentation that
overlaps with the constellations and epistemic approaches.

In this paper, we focus on the constellations approach,
and consider how we can automatically construct a proba-
bility distribution over a constellation of argument graphs.
For this, we will use perspectives (i.e. opinions) on what
the probability distribution should be. Consider for exam-
ple a number of reviews on a product. Each review contains
some arguments that taken together indicate the overall sen-
timent that the writer has towards the product. Obviously,
an argument graph is not given by the writer, but the reader
may consider an implicit argument graph that includes the
writer’s arguments. So a question is then what is the implicit
argument graph? Since there is unlikely to be a single argu-
ment graph that would reflect all the reviews, we can harness
the constellations approach to represent the uncertainty over
the topology. Our approach is to provide a language for in-
dividual perspectives (represented by constraints on the ex-
tensions of the argument graph), and then provide methods
for taking a tuple of perspectives and obtaining a probability
distribution over a constellation of argument graphs.

To illustrate, we can consider reports on whether a par-
ticular drug treatment is good. There are websites such as



A B

C D
G1

A B

C D
G2

A B

C D
G3

A B

C D
G4

Figure 1: A constellation of argument graphs where the ar-
guments are: (A) “Drug is good”; (B) “Drug is not good”;
(C) “There are side-effects”; and (D) “There are notable
benefits”. In this simple example, there is uncertainty about
whether there are attacks by C on A and by D on B.

webmd.com and askapatient.com that allow a patient to re-
view a drug in terms of the benefits and side-effects of the
treatment. These can be regarded as arguments that taken
together provide an assessment of the treatment. So the ar-
guments extracted from a review give a perspective. We give
a very simple example of a constellation of argument graphs
for drug reviews in Figure 1. We use a very simple graph in
this paper for reasons of space. But for modelling a set of
real reviews, we can consider more arguments such as for
specific types of benefit and side-effect as well as further
counterarguments to individual benefits (e.g. benefit effect
wears off too quickly) or side-effect (e.g. nausea side-effect
can be treated with anti-emetics). So often, the graph con-
tains a more complex structure than just pros and cons.

Potential applications of the proposal in this paper include
analyzing conflicting reports, e.g. online reviews (Noor,
Hunter, and Mayer 2017), sense-making in intelligence
gathering, e.g. (Cerutti et al. 2018), understanding the opin-
ions of individuals prior to a policy decision, e.g. (Krauthoff
et al. 2018). and user modeling from crowdsourced data
that can be used for strategic construction of persuasion dia-
logues (Hunter and Thimm 2016).

Preliminaries
An argument graph G is a pair (A,R) where A is a set
and R ⊆ A × A (Dung 1995). Let Nodes(G) = A and
Arcs(G) = R.

Each element α ∈ A is called an argument and (α, β) ∈
R means that α attacks β (accordingly, α is said to be an
attacker or a counterargument for β). A set of arguments
S ⊆ A attacks β ∈ A iff there is an argument α ∈ S
such that α attacks β. Also, S defends α′ ∈ A iff for each
argument β ∈ A, if β attacks α′ then S attacks β. A set S ⊆
A of arguments is conflict-free iff there are no arguments
α, α′ ∈ S such that α attacks α′. Let Γ be a conflict-free
set of arguments, and let Defended : ℘(A) → ℘(A) be a
function such that Defended(Γ) = {α | Γ defends α}.

Dialectical semantics are given to argument graphs by
extensions, i. e,. sets of arguments that are considered to
be jointly acceptable. We consider the following types of
extensions: (i) Γ is a complete extension (co) iff Γ =
Defended(Γ), (ii) Γ is a grounded extension (gr) iff it is the
(uniquely determined) minimal (w.r.t. set inclusion) com-
plete extension, (iii) Γ is a preferred extension (pr) iff it
is a maximal (w.r.t. set inclusion) complete extension, and
(iv) Γ is a stable extension (st) iff it is a preferred exten-

sion such that Γ attacks β for each argument β ∈ Γ \A. For
G = (A,R), let Extensionsσ(G) be the set of extensions of
G according to semantics σ ∈ {co, pr, gr, st}.

Given a set of arguments A, we define a language L
to represent and reason with any argument graph G where
Nodes(G) ⊆ A. This language is a sublanguage of the logic
for dialectical outcomes (Hunter and Thimm 2016) for rep-
resenting and reasoning about extensions of a graph.
Definition 1 (Syntax for language). Let A be a set of ar-
guments. Let L be the modal language defined as follows:
φ ∈ L iff it is defined via the BNF: φ ::= ψ | ¬φ | φ ∨ φ |
φ ∧ φ | ♦φ, where ψ ∈ A.

The language L is based on each atom representing an ar-
gument and Boolean combinations of arguments using nega-
tion, disjunction, and conjunction, plus an ♦ operator. The
formulae are used to describe extensions.
Definition 2 (Semantics for language). For a graph G, let
E ⊆ Nodes(G) ⊆ A, ψ, φ ∈ L. The satisfaction relation
for a dialectical semantics σ, denoted |=σ , is defined as fol-
lows.

G,E |=σ α iff α ∈ E
G,E |=σ ♦φ iff for some E′ ∈ Extensionsσ(G),

we have G,E′ |=σ φ

G,E |=σ φ ∧ ψ iff G,E |=σ φ and G,E |=σ ψ

G,E |=σ φ ∨ ψ iff G,E |=σ φ or G,E |=σ ψ

G,E |=σ ¬φ iff G,E 6|=σ φ

Furthermore define G |=σ φ iff for all E ∈ Extensionsσ(G)
we have G,E |=σ φ.
Example 1. Consider Figure 1. Some inferences include the
following: G1 |=gr ¬A∧¬B ∧C ∧D; G2 |=gr A∧C ∧D;
and G4 |=pr ♦A ∧ ♦B.

We also need to introduce some notions for subgraphs of
an argument graph. LetR⊗A′ be the subset ofR involving
just the arguments in A′ ⊆ A, i. e., R ⊗ A′ = {(α, β) ∈
R | α, β ∈ A′}. Also let G∅ denote the empty graph. For
argument graphs G = (A,R) and G′ = (A′,R′) we say
thatG′ is a subgraph ofG, denotedG′ v G, iffA′ ⊆ A and
R′ ⊆ R⊗A′. For any argument graphG, let Subgraphs(G)
denote the set of subgraphs of G (i.e. {G′ | G′ v G}).

Let G∗ be the complete graph for A (i.e. Nodes(G∗) =
A and Arcs(G∗) = {(A,B) | A,B ∈ A}). A set of graphs
is a constellation set for G∗, denoted G, if for all G ∈ G,
G v G∗. We assume that the correct subgraph is in G, and
so in Definition 3 all graphs not in G have zero probabil-
ity. If we are uncertain about all the arguments and attacks,
then G = Subgraphs(G∗), whereas if we are uncertain about
which arguments (respectively attacks) are in the correct
subgraph, then G is the set of full (respectively spanning)
subgraphs of G∗. As another example, we could assume a
set of necessary arcs Rn, and a set of possible arcs Rp, so
that G = {(A,Rn∪R′) | R′ ⊆ Rp}, and so the uncertainty
is about which of the possible arcs is in the actual graph. To,
illustrate, consider Figure 1, where G = {G1, G2, G3, G4},
the necessary arcs are {(A,B), (B,A)} and the optional
arcs are {(C,A), (D,B)}.



Definition 3. Let G be a constellation set. A probability
distribution for G is a function P : G → [0, 1] such that∑
G∈G P (G) = 1. Let P denote the set of probability distri-

butions for G.

The acceptability probability of a formula is the sum of
the probability of the graphs in G that imply it.

Definition 4. Let G be a constellation set and let σ ∈
{co, pr, gr, st} be a semantics. Also let P be a probability
distribution for G. For a φ ∈ L, the probability of accept-
ability of φ w.r.t. σ is Pσ(φ) =

∑
G∈G s.t. G′|=σφ P (G).

Example 2. Consider Figure 1, with P (G1) = 0.5,
P (G2) = 0.2, P (G3) = 0.2, and P (G4) = 0.1. Some infer-
ences that we can consider include the following: Pgr(C ∧
D) = P (G1) + P (G2) + P (G3) + P (G4) = 1; Pgr(B ∧
C ∧ D) = P (G3) + P (G4) = 0.3; and Ppr(♦A ∧ ♦B) =
P (G4) = 0.1.

The notion of probability of acceptability subsumes the
definition of the probability that a set of arguments is an ex-
tension, as well as the definition for the probability that an
argument is an inference, cf. (Li, Oren, and Norman 2011;
Hunter 2012; 2013). For every argument graph G and se-
mantics σ ∈ {co, pr, gr, st}, (Hunter and Thimm 2016)
show that: If for all graphs G, G |=σ φ, implies G |=σ ψ,
then Pσ(φ) ≤ Pσ(ψ); And if φ ∧ ψ is unsatisfiable, then
Pσ(φ ∨ ψ) = Pσ(φ) + Pσ(ψ).

For certain applications a restricted set of probability dis-
tributions can be used where the probability values come
from a finite set of values (Hunter, Polberg, and Thimm
2018). This may be appropriate if we want to represent prob-
ability values as in a Likert scale (Likert 1931). It also has
the benefit of always producing a finite set of answers. How-
ever, for the approach to be coherent, this set should meet
certain basic requirements. We thus use the notion of a rea-
sonable restricted value set, which has to be closed under
addition and subtraction (assuming the resulting value is in
the [0, 1] interval) and contains 1.

Definition 5. A finite set of rational numbers from the unit
interval Π is a reasonable restricted value set iff 1 ∈ Π and
for any x, y ∈ Π it holds that if x+ y ≤ 1, then x+ y ∈ Π,
and if x− y ≥ 0, then x− y ∈ Π.

Since, we will only consider reasonable restricted value
sets, we will refer to them as restricted value sets. Examples
include {0, 1}, {0, 0.5, 1}, and {0, 0.25, 0.5, 0.75, 1}.

Perspectives
In the functions we define in the rest of this paper, we assume
that they are with respect to a restricted value set Π, a set
of arguments A, a constellation set G, and a semantics σ.
Whilst these should be given as indices on the functions, we
will omit them to ease the notation.

Next, we consider how agents can give their views on a
probability distribution over G.

Definition 6. A profile element is a pair (φ, v) where φ is
a formula in L, and v is in a restricted value set Π. Let X
denote the set of all profile elements that can be formed from
L and Π. A profile is a tuple [x1, . . . , xn] where each xi is

Graph G1 G2 G3 G4

Structure A↔ B A→ B A← B A B
P1 1 0 0 0
P2 0 1 0 0
P3 0 0 1 0
P4 0 0 0 1
P5 0.5 0.5 0 0
P6 0.5 0 0.5 0
P7 0.5 0 0 0.5
P8 0 0.5 0.5 0
P9 0 0.5 0 0.5
P0 0 0 0.5 0.5

Table 1: If Π = {0, 1}, (resp. Π = {0, 0.5, 1}), then
{P1, . . . , P4} (resp. {P1, . . . , P0}) are the distributions.

a profile element. Let T = {[x1, . . . , xn] | x1, . . . , xm ∈ X}
be the set of profiles.

Each profile element comes from an agent (e.g. via a re-
view by the agent). We may choose to restrict each agent to
only giving one profile element, but this is not necessary. A
profile therefore collects the different views on the probabil-
ity distribution.

Definition 7. A probability distribution P satisfies a pro-
file element x = (φ, v) wrt a semantics σ iff Pσ(φ) = v.
Let Sat(x) be the set of probability distributions that satisfy
(φ, v) wrt a semantics σ. For the empty profile T = [ ],
Sat(T ) = Sat(>), and for a profile T = [x1, . . . , xn],
Sat(T ) = Sat(x1) ∩ . . . ∩ Sat(xn).

The least (respectively most) constraining profile element
is (>, v) (respectively (⊥, v)) for any v ∈ Π since any (re-
spectively no) probability distribution will satisfy it.

Example 3. For σ = gr, and Π = {0, 1} (i.e. P1, . . . , P4 in
Table 1), Sat((A∧¬B, 1)) = {P2}, and Sat((¬A∧B, 1)) =
{P3}. But, Sat([(A ∧ ¬B, 1), (¬A ∧B, 1)]) = ∅.

Returning to our motivating example in Figure 1, we can
use a profile element to represent how a reviewer might view
the argument graph. For instance, the element (A ∧ ¬B, 1)
denotes that it is certain thatA and notB is in the extension,
the element (A ∨ B, 1) denotes that it is certain that either
A or B is in the extension (and so it is completely vague as
to the extension), and the element (♦A, 0) denotes that it is
certain that A is not in a preferred extension.

We now provide some subsidiary definitions. For profile
elements x = (φ, v) and x′ = (φ′, v′), x is equivalent to
x′ iff ` φ ↔ φ′ and v = v′. For profiles T and T ′, T is
equivalent to T ′ (denoted T ≡ T ′) iff there is a permutation
of T = [x1, . . . , xn] and T ′ = [x′1, . . . , x

′
n] such that for

each i, xi is equivalent to x′i. Finally, T + T ′ denotes the
concatenation of profiles T and T ′.

Next, we define the Form function which takes a probabil-
ity distribution and returns a profile that represents it. Since,
for each profile, there are potentially many equivalent pro-
files, we assume a representative for each set of equivalent
profiles though how this is done is not important for this pa-
per.
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Definition 8. Let T be a set of profiles and let P be a set of
probability distributions. The function Form : P → T is de-
fined as follows: Form(P ) = [(φ1, v1), . . . , (φn, vn)] where
the following three conditions hold for i, j ∈ {1, . . . , n}: (1)
φi 6` φj , (2) vi 6= 0; and (3) for each v ∈ (0, 1], P (ψ) = v
iff

∑
i∈{1,...,n} s.t. φi`ψ vi = v.

We explain the conditions as follows: (1) there is no re-
dundancy of elements; (2) all elements are non-zero; and (3)
the probability of a formula is the sum of the probability of
the elements that entail it.
Example 4. Consider Table 1. For P8, and σ = gr,
Form(P8) = [(A ∧ ¬B, 0.5), (¬A ∧ B, 0.5)]. And for P1,
and σ = pr, Form(P1) = [(♦A ∧ ♦B, 1)].
Definition 9. A profile T is maximal iff there is a probability
distribution P such that Form(P ) = T .
Proposition 1. If T is maximal, and P ∈ Sat(T ), then
Form(P ) ≡ T .
Example 5. Consider Table 1 and σ = gr. T = [(A, 1)]
is not maximal since Sat(T ) = {P2, P4, P9}, and for all
Pi ∈ {P2, P4, P9}, Form(Pi) 6= T .

Essentially, a maximal profile encodes the probability of
extensions of the subgraphs for a probability distribution.
Example 6. For Table 1, if P is P2, and σ = gr, then
Pσ(A ∧ ¬B) = 1, and so the maximal profile is T =
[(A ∧ ¬B, 1)].
Proposition 2. Let P be a probability distribution, and let
T be a maximal profile such that Form(P ) = T . There is an
element (φ, v) in T iff there are subgraphs G1, . . . , Gk ∈ G
s.t. for each i ∈ {1, . . . , k}, E ∈ Extensionsσ(Gi) and `∧
E ∧

∧
α∈A\E ¬α↔ φ and

∑
i∈{1,...,n} P (Gi) = v.

Because more than one graph in a constellation set can
have the same extension, we can have a profile being satis-
fied by multiple probability distributions.
Proposition 3. For a probability distribution P , P ∈
Sat(Form(P )).

Example 7. Consider Figure 2 where G is {G1, G2} and
Π = {0, 1} and P = {P1 P2} s.t. P1(G1) = 1 and
P2(G2) = 1. For each graph, the extension is {A} and so
Form(P1) = Form(P2) = (A ∧ ¬B ∧ ¬C, 1). Also Sat(A ∧
¬B∧¬C, 1) = {P1 P2}, and Form(Sat(A∧¬B∧¬C, 1)) =
(A ∧ ¬B ∧ ¬C, 1). Therefore, P1 ∈ Sat(Form(P1) and
P2 ∈ Sat(Form(P2).

As we use profiles to represent different perspectives
(opinions) on a probability distribution, we need principled
ways to identify that distribution, and in particular when the
profile T is such that the cardinality of Sat(T ) is greater than
1, or the profile is inconsistent (i.e. when Sat(T ) = ∅). We

address this need using an induction function that takes a
profile and returns a probability distribution that is the best
compromise for the views in the profile. We define this in
terms of aggregation and combination as follows.

Aggregation
Given a profile, an aggregation function finds the set of prob-
ability distributions that best reflect the profile.

Definition 10. Let T be the set of profiles and P be the set
of probability distributions. An aggregation function is a
function F : T → ℘(P).

We will focus on aggregation functions that satisfy the
following general properties.

• Viability: F (T ) 6= ∅
• Consistency: If Sat(T ) 6= ∅, then F (T ) = Sat(T ).

• Equivalence: If T1 ≡ T2, then F (T1) = F (T2).

• Fairness: If Sat([x1])∩Sat([x2]) = ∅, then F ([x1, x2]) 6⊆
Sat(x2).

• Concordance: F ([x1]) ∩ F ([x2]) ⊆ F ([x1, x2])

We explain these general properties as ensuring that: (Vi-
ability) there is always a set of distributions as the aggre-
gation of a profile; (Consistency) the set of distributions for
the aggregations are those of the profile when the profile is
consistent; (Equivalence) the set of distributions for two pro-
files are the same when the profiles are equivalent; (Fairness)
when two elements are contradictory, then neither element
has its satisfying distributions in the aggregation; and (Con-
cordance) if the aggregation for each of two profiles agree on
a distribution, then that distribution is in the aggregation of
the two profiles. These properties are inspired by postulates
for belief merging operators that take a tuple of knowledge
bases and return a single knowledge base (Konieczny and
Pérez 2002), whereas our properties take a tuple of profile
elements (formula and belief in that formula) and return a
probability distribution.

The following result shows commutativity (i.e. the order
of elements in the profiles does not affect the aggregation,
and it is direct consequence of equivalence).

Proposition 4. For T1, T2 ∈ T , if T1 is a permutation of T2,
then F (T1) = F (T2).

The following property of monotonicity states that adding
profile elements to the profile will result in a subset of prob-
ability distributions being returned.

• Monotonicity: For T1, T2 ∈ T , if T1 ⊆ T2, thenF (T2) ⊆
F (T1).

Monotonicity may appear to be a natural property for ag-
gregation but it cannot hold with the properties that we will
assume for an aggregation function.

Proposition 5. If F satisfies consistency and fairness, then
it cannot satisfy monotonicity.

Though if we restrict consideration to consistent profiles,
then we do get monotonicity as a direct consequence of the
consistency property.



Proposition 6. Let F satisfy consistency. For T1, T2 ∈ T , if
T1 ⊆ T2, and Sat(T2) 6= ∅, then F (T2) ⊆ F (T1).

We discriminate between two types of aggregation func-
tion (again inspired by (Konieczny and Pérez 2002)) using
the following properties where N is the set of natural num-
bers, k ∈ N, and [x]k denotes a profile [x1, . . . , xk] s.t.
x = x1 = . . . = xk.

• Majority: For each profile T , and probability distribution
P , there is a profile element x and a k ∈ N s.t. F (T +
[x]k) = {P}.

• Arbitration: For each profile T , profile element x, and
k ∈ N, F (T + [x]k) = F (T + [x]).

An aggregation function that satisfies majority aims to
minimize dissatisfaction of the profile as a whole, whereas
an aggregation function that satisfies arbitration aims to min-
imize dissatisfaction of any individual profile element.
Proposition 7. If an aggregation function satisfies fairness,
then it cannot satisfy both majority and arbitration.

We now consider some specific aggregation functions that
we define in terms of a ranking over probability distributions
using the following measure, where R is the set of reals.
Definition 11. A difference measure is a function D : R×
R→ R which is defined as D(v1, v2) = |v1 − v2|.

Obviously, the difference measure is a distance function
since it satisfies non-negativity, symmetry, identity of indis-
cernibles, and subadditivity. We can use it to define a ranking
over probability distributions, and then pick the minimally
ranked probability distributions as the aggregation.
Definition 12. Let � be a pre-order relation over P . A
ranking-based aggregation function, denoted F�(T ), is
defined as follows.

F�(T ) = {P ∈ P | for all P ′ ∈ P, P � P ′}

The following definition provides some examples of pre-
order relations. For this, ≤lex is the lexicographic ordering
over a pair of tuples of numbers N and N ′ for which there
is a permutation of the numbers in rank order from largest to
smallest (e.g. [0.75, 0.5, 0] ≤lex [1, 0.25, 0.25]).
Definition 13. Let P and P ′ be probability distributions
and let T = [(φ1, v1), . . . , (φn, vn)] be a profile, and let
[(φ′1, v

′
1), . . . , (φ′n, v

′
n)] and [(φ′′1 , v

′′
1 ), . . . , (φ′′n, v

′′
n)] be per-

mutations of T .

P �sumT P ′iff
∑

(φ,v)∈T

D(P (φ), v) ≤
∑

(φ,v)∈T

D(P ′(φ), v)

P �maxT P ′iff max
(φ,v)∈T

D(P (φ), v) ≤ max
(φ,v)∈T

D(P ′(φ), v)

P �lexT P ′iff [D(P (φ′1), v′1), . . . ,D(P (φ′n), v′n)]

≤lex [D(P ′(φ′′1), v′′1 ), . . . ,D(P ′(φ′′n), v′′n)]

P �moreT P ′iff |{i ∈ {1, . . . , n} | D(P (φi), vi) = 0}|
≥ |{i ∈ {1, . . . , n} | D(P ′(φi), vi) = 0}|

P �closeT P ′iff |{i ∈ {1, . . . , n} | D(P (φi), vi) ≤ 0.5}|
≥ |{i ∈ {1, . . . , n} | D(P ′(φi), vi) ≤ 0.5}|

We explain these rankings as follows. Sum prefers distri-
butions that have the smallest sum difference with the pro-
files; Max prefers distributions that have the smallest maxi-
mum difference with the profiles; Lex prefers distributions
that when considering the differences in value for the el-
ements, prefers those that are lexicographically minimal;
More prefers distributions that have the most profile ele-
ments that are satisfied; and Close is the same as More but
allows a margin of error. The Sum, Max, and Lex rankings
are inspired by similar rankings for propositional logic by
(Konieczny and Pérez 2002). We use these rankings in the
ranking-based aggregation function as illustrated next.
Example 8. Consider Table 1, with Π = {0, 1}, σ = pr,
and profile T = [(♦A, 1), (♦B, 1)] So Sat((♦A, 1)) =
{P1, P2, P4} and Sat((♦B, 1)) = {P1, P3, P4}. For � ∈
{�maxT ,�sumT ,�lexT ,�moreT ,�closeT }, F�(T ) = {P1, P4}.
Example 9. Consider Table 1, with Π = {0, 0.5, 1}, σ =
gr, and profile [(A∧¬B, 1), (A∧¬B, 1), (A∧¬B, 1), (A∧
¬B, 0.5), (¬A ∧ B, 1)]. For � ∈ {�maxT ,�lexT ,�closeT },
F�(T ) = {P8}, and for � ∈ {�sumT ,�moreT }, F�(T ) =
{P2}.

The choice of restricted value set can affect the aggrega-
tion as illustrated next.
Example 10. Consider Table 1 with σ = gr and the pro-
file T = [(A ∧ ¬B, 1), (¬A ∧ B, 1)]. If Π = {0, 1},
then F�(T ) = {P2, P3}, whereas if Π = {0, 0.5, 1}, then
F�(T ) = {P9, P0}.

Our ranking-based aggregation function satisfies the gen-
eral properties, and we can partition them using the major-
ity/arbitration properties.
Proposition 8. For � ∈ {�sumT ,�maxT ,�lexT ,�moreT

,�closeT }, the aggregation function F�(T ) satisfies viability,
consistency, equivalence, fairness, and concordance.
Proposition 9. For � ∈ {�sumT ,�lexT ,�moreT ,�closeT }, if
G = Subgraphs(G∗) where G∗ is a complete graph, then
the aggregation function F�(T ) satisfies majority.
Proposition 10. For� ∈ {�maxT }, the aggregation function
F�(T ) satisfies arbitration.

The set of probability distributions returned by an aggre-
gation function provide alternatives for what the probability
distribution should be. One way of using this set is to com-
bine the distributions into a single distribution. For this we
consider the combination function in the next section.

Combination
A combination function simply takes a set of probability dis-
tributions, and returns a probability distribution.
Definition 14. A combination function is a function C :
℘(P)→ P such that C({P}) = P .

There are various options for the definition of a combina-
tion function such as the next definition.
Definition 15. Let {P1, . . . , Pn} ⊆ P be a set of probabil-
ity distributions. A uniform combination is a combination
function C such that for each Gi ∈ G.

P (Gi) =
1

n
×

∑
k∈{1,...,n}

Pk(Gi)



Example 11. Consider Example 10. When Π = {0, 1},
then F�(T ) = {P2, P3}. So using the uniform combination,
C({P2, P3}) = P8

Implicit in the definition of uniform combination is the
idea that there is a more refined Π that is prescribed by the
input set of probability distributions. For this we introduce
the notion of refinement. First, we require a subsidiary func-
tion: For a constellation set G, and a probability distribution
P ∈ P , let Codomain(P ) = {v | G ∈ G and P (G) = v}.
Definition 16. Let Π be a restricted value set and let
{P1, . . . , Pn} ⊆ P be a set of probability distributions
where for each Pi ∈ {P1, . . . , Pn}, Codomain(Pi) ⊆ Π.
The refined value set for Π and {P1, . . . , Pn} is defined as
follows where 1/k is smallest non-zero value in Π.

Refinement(k, n) =
{m
kn
| m ∈ {1, . . . , kn}

}
So for n probability distributions, the refinement of Π will

have a cardinality of n times the cardinality of Π. Further-
more, a refinement is a restricted value set.
Proposition 11. If 1/k is the smallest non-zero value in re-
stricted value set Π, and n ∈ N, then Refinement(k, n) is a
restricted value set.

Next we show that if a set of probability distributions take
values from a restricted value set, then they can take the
same values from its refinement.
Proposition 12. For a set of probability distributions
{P1, . . . , Pn} ⊆ P , and restricted value set Π′, such that
for all i, Codomain(Pi) ⊆ Π′, and 1/k is the smallest non-
zero value in Π′, if Refinement(k, n) = Π, then for all i,
Codomain(Pi) ⊆ Π.

The following desirable property states that starting with
probability distributions that use a finite restricted value set,
the resulting distribution uses a finite restricted value set.
Whilst this obviously holds for the uniform combination
function, it might not hold for interesting alternatives.
Definition 17. A combination function C is finite iff for
all sets {P1, . . . , Pn}, if C({P1, . . . , Pn}) = P , then there
is a finite restricted value set Π such that for all i,
Codomain(Pi) ⊆ Π and Codomain(P ) ⊆ Π.
Proposition 13. If C is a uniform combination function,
then C is finite.

In the next section, we will consider how we can use ag-
gregation and combination to give a form of induction.

Induction
In general, induction provides a summary of a profile in the
form of a probability distribution over a constellations set.
Definition 18. Let T be a set of profiles and P be a set of
probability distributions. An induction function is a func-
tion I : T → P s.t. I([]) is the uniform distribution, denoted
PUniform, which assigns the same value to every graph in G.

So an induction function is like aggregation but returns a
unique probability distribution. We could take a direct ap-
proach by returning the distribution based directly on the

satisfying distributions of each profile element. Essentially,
for each subgraph, it is the weighted sum of the belief in
that subgraph. However, in this paper, we will take an indi-
rect approach by defining induction in terms of aggregation
and combination.

Definition 19. Let T = [x1, . . . , xn] be a profile and let
�∈ {�maxT ,�sumT ,�moreT ,�lexT ,�closeT }. An indirect in-
duction function is an induction function I : ℘(T ) → P
such that I�(T ) = P where for each Gi ∈ G

P (Gi) =
1

|F�(T )|
×

∑
Pk∈F�(T )

Pk(Gi)

Proposition 14. If I�(T ) is an indirect induction function,
then I� = C(F�(T )), where C is the uniform combination
function.

Example 12. Consider Table 1. Suppose we have the profile
T = [(A ∧ ¬B, 1), (A ∧ ¬B, 1), (¬A ∧ B, 1)] where Π =
{0, 1}, So Sat(A ∧ ¬B, 1) = {P2}, and Sat(¬A ∧ B, 1) =
{P3}. Hence, for � = �maxT , F�(T ) = {P2, P3}. There-
fore, I(T ) = P where P (G2) = 1/2 and P (G3) = 1/2.

Example 13. We now return to the motivating example in
Figure 1. Suppose we have the following profile.

T = [(¬A, 1), (A, 1), (A, 1), (A, 0.5)(A ∨B, 1)]

For the probability distributions in Table 1, with Π =
{0, 0.5, 1}, we get the following by induction.

� F� I�
�maxT ,�closeT {P5, P7, P8, P0} P11

�sumT ,�lexT {P8, P0} P12

�moreT {P2, P3, P4, P8, P0} P11

For this, the refined distributions are defined as follows, with
each giving a reasonable summary of the profile.

G1 G2 G3 G4

P11 0.25 0.25 0.25 0.25
P12 0 0.25 0.5 0.25
P13 0 0.3 0.4 0.3

For comparison, we give the inferences from each refined
distribution to indicate the compromises.

P11 (¬A, 0.5) (A, 0.5) (A ∨B, 0.75)
P12 (¬A, 0.5) (A, 0.5) (A ∨B, 1)
P13 (¬A, 0.4) (A, 0.6) (A ∨B, 1)

Next, we propose some general properties for an in-
duction function (some inspired by (Konieczny and Pérez
2002)). These are the counterparts to those for our aggrega-
tion functions, though we do not have counterparts to viabil-
ity or concordance because induction is a function.

• itautology: If Sat(T ) = Sat(>), then I(T ) = PUniform.

• iconsistency: If Sat(T ) 6= ∅, then I(T ) ∈ Sat(T ).

• iequivalence: If T1 ≡ T2, then I(T1) = I(T2).

• ifairness: If Sat([x1])∩Sat([x2]) = ∅, then I([x1, x2]) 6∈
Sat(x2).



We explain these properties as follows: itautology cap-
tures that when the profile is satisfied by any probability
distribution, then it is offering no constraint on the proba-
bility distribution and so the uniform distribution will be the
least committing; iconsistency ensures that when the profile
is consistent, then the result of induction is one of the satis-
fying distributions; iequivalence ensures that when two pro-
files are equivalent, then the result of induction is the same;
and ifairness ensures when two elements are contradictory,
then neither element has one of its satisfying distributions
as the result of induction. We consider these properties for
ranking-based induction in the next result.

Proposition 15. For profile T and �∈ {�sumT ,�maxT

,�moreT ,�lexT ,�closeT }, the induction function I�(T ) satis-
fies itautology, iequivalence, and ifairness. but does not sat-
isfy iconsistency.

We also introduce two properties that discriminate be-
tween two types of induction function. The first aims to min-
imize the dissatisfaction of the profile as a whole, while the
second aims to minimize the dissatisfaction of any individ-
ual profile element.

• imajority: For any profile T , and probability distribution
P , there is a profile element x and k ∈ N such that I(T +
[x]k) = P .

• iarbitration: For any profile T , profile element x, and k ∈
N, I(T + [x]k) = I(T + [x]).

We can partition our ranking-based induction functions
using the majority/arbitration properties.

Proposition 16. An induction function cannot satisfy both
imajority and iarbitration.

Proposition 17. For profile T and �∈ {�sumT ,�lexT ,�moreT

,�closeT }, if G = Subgraphs(G∗) where G∗ is a complete
graph, the induction function I�(T ) satisfies imajority.

Proposition 18. For profile T and �∈{�maxT }, the induc-
tion function I�(T ) satisfies iarbitration.

So the difference in the induction functions reflects the
difference in the underlying aggregation functions.

Comparison with the Literature
In a sense, our proposal offers a form of learning from data.
Each profile element is an item of data, and by generating
the probability distribution, we are learning from this data.
The probability distribution provides a generalization of the
perspectives. For some time, there has been interest in us-
ing argumentation for improving machine learning and us-
ing machine learning for generating arguments (for a review,
see (Cocarascu and Toni 2016)). Out of this literature, there
are two recent proposals for learning argument graphs that
are based on probabilistic techniques, though as we discuss
next, they are different to our proposal.

The first proposal based on probabilistic techniques, by
(Riveret and Governatori 2016), is based on labellings for
arguments using the usual in, out and undecided, augmented
with off for denoting that the argument does not occur in the
graph. A probability distribution over labellings gives a form

of probabilistic argumentation. For the learning, the proba-
bility distribution is used to generate labellings that are used
as data, and then the argument graph that best describes this
data is identified. So probabilistic argumentation is used to
generate the data, but the uncertainty in the argument graph
that is learned is not quantified, and so the output is not in
the form of a probability distribution over a constellation set.

The second proposal based on probabilistic techniques,
by (Kido and Okamoto 2017), takes as input a profile
〈X1, . . . , Xn〉 where each Xi is a set of acceptable argu-
ments, and the output is a posterior probability for a set
of arguments being the extension. This is calculated using
a Bayesian network that incorporates various assumptions
about the relationships between choice of semantics and
choice of attacks, and how these influence extensions. So the
output and underlying mechanisms are completely different
to our approach.

There is also another proposal for an argument-based ag-
gregation of reviews (Cocarascu, Rago, and Toni 2019).
The reviews are obtained from argumentation dialogues with
agents. The aggregation can be used to make predictions us-
ing specialized models for aggregating scores for film re-
views. However, the aggregation uses the approach of quan-
titative bipolar framework with gradual semantics, as op-
posed to a probabilistic approach to argumentation. So, in
contrast to our work, the input and output, and underlying
mechanisms, do not benefit from a probabilistic approach.

There are some proposals for combining views on the
social web, such as (Leite and Martins 2011) which incor-
porates a form of voting for the structure of the argument
graph, and there are a number of proposals in collective
argumentation, i.e. how multiple agents combine their ar-
gumentation (for a review, see (Bodanza, Tohm, and Au-
day 2017)), including aggregating multiple argument graphs
(Coste-Marquis et al. 2007; Delobelle et al. 2016), attack
aggregation (Tohmé, Bodanza, and Simari 2008), and judg-
ment aggregation for argumentation (Caminada and Pigozzi
2011; Awad et al. 2017), but none of these proposals quan-
tify the uncertainty in the input or output. In contrast, we
have uncertainty in the input, and more importantly, we have
a probability distribution over the possible argument graphs,
instead of a single argument graph as output.

Discussion
In this paper, we have provided a framework for using a pro-
file to generate a probability distribution over a constella-
tion set. Since, there are a number of choices in the frame-
work, we have provided some general properties to guide
the choices. Central to our proposal is the need to reason
with constellations to determine the probability of dialec-
tical outcomes. Whilst using the constellations approach
is computationally expensive (Fazzinga, Flesca, and Parisi
2015), developments in approximation (Fazzinga, Flesca,
and Parisi 2013) and automated reasoning could be har-
nessed (Bistarelli et al. 2018). So in future work we will
investigate how we can harness automated reasoning tech-
niques. We will also undertake empirical evaluations includ-
ing using datasets of online reviews.
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