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Abstract

To maximize asset reliability cost-effectively, maintenance should be scheduled based on the
likely deterioration of an asset. Various statistical models have been proposed for predicting
this but they have important practical limitations. We present a Bayesian network model that
can be used for maintenance decision support to overcome these limitations. The model
extends an existing statistical model of asset deterioration, but shows how i) data on the
condition of assets available from their periodic inspection can be used ii) failure data from
related groups of asset can be combined using judgement from experts iii) expert knowledge
of the causes deterioration can be combined with statistical data to adjust predictions. A case
study of bridges on the GB rail network is presented, showing how the model could be used

for the maintenance decision problem, given typical data likely to be available in practice.
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1 Introduction

Maintenance consists of a set of activities required to ensure assets are in a reliable operating
condition. According to Dhillon,® maintenance strategies can be of three types: i) corrective
maintenance, where maintenance follows failure ii) preventive maintenance, where
inspections and maintenance follow a fixed schedule and iii) predictive maintenance, where
the schedule depends on the condition of assets. Predictive maintenance requires a way to
predict the future condition of an asset by estimating how fast it will deteriorate from its
current condition.

A range of different modelling techniques has been proposed to implement predictive

maintenance strategy. However, in many situations these do not provide practical decision

tools as the assumed data is unavailable and relevant knowledge that could be used to
distinguish between different individuals in the same asset class is unused:

e We may only have data such as a history of repairs, from which the condition of assets
has to be inferred with considerable uncertainty.

e Conventionally, separate deterioration models are created from failure data of each
different type of asset, which is a difficulty for an organisation with many different asset
types but only little failure data for each. We would therefore like to be able to pool
failure data where we have evidence that different but related asset types have related
deterioration processes.

e Decisions about maintenance can be made for specific structure, whereas deterioration
models cover all asset of the same type. It should be possible to use experience (e.g.
among maintainers) about the effect of factors such as environmental conditions, loading
and design differences on the rates of deterioration in combination with models derived

from failure data in a population where these factors vary.



This paper proposes an asset deterioration model building on an existing statistical model that
can be adapted to pool related data and incorporate expert knowledge about factors that affect
the likely deterioration rates. Section 2 describes the typical modelling techniques for
maintenance problems, and discusses the advantages of Bayesian networks (BNs) to meet the
challenges of unused data and expert knowledge. Section 3 introduces the way generic BN
models can be built to learn from available data and expert knowledge in asset maintenance
problems. We assemble the models and show how to use the model for practical decision-
making for GB rail bridges maintenance planning in Section 4. The paper ends with

conclusions in Section 5.

2 Background

Markov models, Petri nets and Bayesian networks are three commonly used modelling
techniques that have been developed to predict asset performance for maintenance purpose.
Section 2.1 reviews the work on Markov models and Petri nets, and their limitations for
reliability modelling. Section 2.2 gives a brief introduction to BNs. The application of BNs to

reliability modelling is described in Section 2.3.

2.1 Modelling using Markov models and Petri nets

In a Markov model, deterioration is modelled by a sequence of states representing the
condition of an asset system over time (e.g. condition rating from 0 to 7 in Agrawal et al.?).
Simple models have a fixed transition probability from one state to the next; typically these
probabilities have to be estimated from data. Jiang et al.® and Cesare et al.* apply Markov
models to predict future state of bridges, and Shafahi and Hakhamaneshi® used it for track

maintenance prediction.



Deterioration models that combine several repair states with non-fixed transition probabilities
have been implemented using Petri nets and Monte-Carlo simulation. Audley and Andrews®
used this approach to model the degradation of track, developing an optimum inspection and
maintenance policy. A hierarchical Petri net model for rail track maintenance is presented by
Rama and Andrews’, but the data needed to parameterise the model is not described in detail.
Though Markov models and Petri nets are popular in reliability modelling, they require
sufficient failure data, which is impractical in many maintenance problems since assets may
have little failure data. Also, an easy way to integrate expert knowledge in these models is

still uncommon.

2.2 Bayesian networks overview

A Bayesian network is a flexible modelling technique. A BN represents the joint probability
of a set of random variables; causal or influential relationships between variables are
specified by a directed graph with the variables as nodes. The joint probability distributions

are calculated using the following equation:

p(X) =] [ p(Xi|parents(X;)) (1)
i=1

Here, p(X) is the joint probability of the variables in the model, given by the product of the
conditional probability of each variable X; given its parents. The example Bayesian network
in Figure 1 models the dependencies among four random variables X=[Xi, ... , Xa]. X2 is
depends on X1 and X4 depends on variables Xz and X3 so that we say X is the parent of Xa,
while X2 and Xz are the parents of Xa,; X1 and X3 have no parents and X4 has no children. The

joint distribution of this example is p(X1, X2, X3, X4) = p(Xa | X2, X3) p(X2 | X1) p(X1) p(X3).



[insert Figure 1.]
The BN therefore has two components: the first is the graph of the chosen variables and their
dependency; the second is the conditional probability distribution of each variable, given the
states of its parents, which form the parameters of the BN. When some variables have a
known state, an inference algorithm can update the probability distribution of the remaining
variables, using Bayes’ theorem. Many early BN inference algorithms worked primarily with
discrete variables, allowing continuous variables only by discretisation. This was a barrier for
the use of BNs in reliability analysis where both discrete and continuous variables are

needed.

2.2.1 Hybrid BN

A BN that contains both discrete and continuous variables is called a hybrid BN. Local exact
inference in hybrid BN can be executed only under the assumption of conditional Gaussian
distributions.2 However, it is impractical for models with mixture of discrete variables and
non-standard distributions. Static discretisation allows approximate inference in a hybrid BN
but states of a continuous variable are mapped into pre-defined finite set of discrete states,
with a trade-off between accuracy and efficiency.® Although many other approaches to
inference have been proposed, it remains challenging to support various types of distributions
in hybrid BNs.

Inspired by the work on using non-uniform discretisation in a hybrid BN from Kozlov and
Koller,’® Marquez et al.!' use dynamic discretisation in an exact inference algorithm.
Continuous variables are dynamically discretised, with narrower intervals where the
probability distributions are changing most. This algorithm is implemented in the BN tool

AgenaRisk,'? which is used in our paper for its flexibility and efficiency.



2.2.2 Hyper parameters in a hierarchical BN model

A hierarchical BN model is a standard BN model extended with additional variables; the
variables are called hyper-parameters as they represent statistical parameters (such as mean
and variance in a Normal distribution) used elsewhere in the model; the result is that we can
model the uncertainty about the parameters themselves. To construct a hierarchical BN
model, prior probability distributions of hyper-parameters, need to be assigned. When hyper-
parameters have conjugate priors, choosing a prior from that list can simplify posterior
distribution calculation, so these distributions are often used (Fink*® contains a list of
conjugate priors); however, any distribution can be used in the numerical approach we are
using. When no additional information about the hyper-parameters is available,
uninformative prior distributions can be assigned.® Another way is to elicit priors from past
information, such as past experiments or expert knowledge.}* Experts play an important role
when less data is available. An example of how to explicit knowledge from experts are

presented in Cooke.® The process of knowledge elicitation is further discussed in Section 5.2.

2.3 Applications of BN to reliability

In system reliability, a range of studies has shown the benefits of BNs over conventional
approaches for reliability modelling and analysis. In particular, modelling features of BNSs,
such as flexibility in modelling common cause!! and sequential failures and multi-state
variables,'® capability in modelling an extensive ranges of failure distributions,!” and

diagnostic reasoning®® are valuable in reliability problems.

2.3.1 Discrete BN



Early work of the applications of BN to reliability modelling mostly used discrete BN. Kang
and Golay!® estimated the state of a system after a selected maintenance action using a
discrete BN model. A discrete BN model that allows diagnosis and prognosis for
manufacturing processes is developed in Weber et al.,'® including a maintenance model.
Celeux et al.? proposed a BN for preventive maintenance using experts, with a set of rules
for choosing the most reliable of different probabilities elicited from experts. Its reliability is
secured by a feedback procedure to eliminate inconsistent probabilities of the parameters.
Factors, such as maintenance complexity, expertise of professionals, that could induce
uncertainty during the maintenance process are considered in de Melo and Sanchez.?! They
present a discrete BN model to predict delays of a software maintenance project based on
project features and experts experience. However, in system reliability, asset deterioration
should be modelled using continuous variables?? and statistical distributions, with parameters

fitted from data.

2.3.2 Hybrid BNs and models with hyper-parameters

With the development of inference algorithms for hybrid BN as discussed in Section 2.2.1,
applications of hybrid BN to reliability have been given more attention recently. Langseth
and Portinale?® discuss the properties of the modelling framework for hybrid BN and its
applicability for reliability analysis. Some applications have been proposed. For example,
failure distribution of system components are fitted by continuous-time variables in the BN
model proposed in Boudali and Dugan,!’ and an electrical power system is modelled by
Mengshoel et al.?* using a hybrid BN for its sensor validation and diagnosis.

Some applications using BN models with hyper parameters are proposed, such as Kuo and

Yang® applied a hierarchical BN in software reliability, but all the hyper-parameters are



assumed known. Coolen?® presented a Bayesian reliability analysis with informative priors
extracting from experts.

Marquez et al.!' presented a hierarchical BN to model continuous failure times of
components and overall system reliability. In its parameter learning BN model for a system
supervision component, failure data followed a Weibull distribution with parameters
governed by hyper-parameters shape and scale. Each hyper-parameter has a prior modelled
by a triangular distribution given by experts. The posterior distributions on the hyper-
parameters are updated from data on actual failures and the model can then predict reliability
using the learned parameters.

Given the situation that failure data is insufficient and expert knowledge is unused in
practical maintenance problems discussed in Section 1, BNs are attractive for reliability
modelling because they can combine expert knowledge with data and can therefore be
applied in situations when there is insufficient failure data for a purely statistical approach.
Furthermore, with more recent inference algorithms, BNs models can use both discrete and
continuous variables. The parameter learning BN model proposed in Marquez et al.'!
provides a flexible framework combining these features and is adopted as the basis of our

study. This model is introduced in more detail in Section 3.1.

3 Generic Bayesian networks models of asset condition

In this section we present several generic hybrid BN models to support maintenance decision
making, where assets deteriorate through multiple states, with each failure time (after which
it move to the next state) following a Weibull distribution. Section 3.1 presents the basic
hyper-parameter learning BN model, following Marquez et al.!1. Section 3.2 extends this with

multiple states, each representing a further state of deterioration, and Section 3.3 shows how



to pool data from different asset types with similar deterioration rate. Section 3.4
demonstrates the capability of the model to use more realistic types of failure data. Section
3.5 extends the fragment to include expert knowledge to customize the prediction for a
particular asset. Section 3.6 shows how future condition can be predicted and a summary is

presented in Section 3.7.

3.1 Asimple hyper-parameter BN model of asset deterioration

The expected lifetime of an asset is derived from its likely time to failure. The time to failure
follows a statistical model, with parameters determined by gathering a set of failure time data
and fitting it to the chosen distribution. In a hierarchical model, the parameters (or hyper-
parameters) become part of the model; data on known failure times is entered, updating the
distribution over the parameters. We introduce these features of a hyper-parameter model in

the following sections.

3.1.1 Selecting a time-to-failure distribution

Any distribution can be used in a hyper-parameter model — which is best? He et al.?” use
exponential distributions to estimate degradation of railway track while the gamma
distribution, in the form of gamma processes, is used by Edirisinghe et al.?® to study the
deterioration of building components. Studies of bridges? and railways*® provide two
examples showing the use of Weibull distributions to model a range of asset deterioration
behaviours.

In Le, lifetime data of bridge components from the same type and material are grouped
together to fit with a series of distributions. The closeness of fit of Normal, Exponential,
Lognormal and Weibull distributions is compared using their probability plots and Anderson-

Darling tests. Weibull distributions have the closets fit in most cases. Given this results and
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its versatility in describing a range of deterioration behaviours, we selected the Weibull
distribution, with probability density over time t shown in Equation (2), for our study. The
two parameters of the distribution are shape $ and scale 7.

f (1) =§(%)/"1e(")ﬂ, f(t)>0,8>0,7>0 @)

3.1.2 Prior probabilities for the Weibull’s shape and scale

To construct the hierarchical failure model, prior probability distributions of hyper-
parameters, such as the Weibull’s shape and scale, need to be assigned. It is difficult for non-
statisticians to evaluate the values of shape and scale but can be made easier by
understanding the characteristics of the distribution. In Weibull distribution, the effect of the
shape parameter on the failure rate is shown in Figure 2, with shape < 1 describing early
degradation leading to decreasing failure rate and shape > 1 describing wear-out failure,
giving an increasing failure rate. Also, for a given shape, increasing the scale increases the

mean failure time.

[insert Figure 2.]
By observing the plots of the hyper-parameters, experts can justify whether a type of asset
has a decreasing, constant or increasing failure rate, leading to a range of possible values for
the shape parameter. Similarly, it is also possible to evaluate the range of the scale parameter
from the typical age of asset failure. Different distributions, such as normal distribution or
uniform distribution, could be used to express uncertainty over the range of each parameter.
Some experts find it easier not to specify their opinion with absolute precision but providing

value intervals.®! Following Marquez et al.,!! triangular distributions (Equation (3)) are used
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in our model for its advantage in extracting value ranges from experts based on past

experience:
%,asxso
_ —a)(c—a
P00 _2b-X) o _x<b ®
(b-a)(c-a)’ -

where P(x) is the probability function of triangular distribution, a is its lower limit, b is its
median and c is its upper limit. Experts assign values of a, b and c for each parameter, based

on their pass experience.

3.1.3 The hyper-parameter BN

Figure 3 presents a BN model constructed on these principles, and Table 1 lists its NPTs. The
time each asset transits from a normal to a failed state follows a Weibull distribution, which
can be inferred when data on the past transition of the assets of the same class are entered as
evidence. Take Asset 1 as an example, the entered data 15 representing it takes 15 months for
Asset 1 to transit from a normal state to a failed state. Because we consider assets 1 to 6 to be
of the same type, we assume that they deteriorate following the same Weibull distribution,
meaning that they share the same shape and scale. The posterior distribution of transition
time from one state to another state, which predicts future failure for the asset in the same
class, is shown for the variable Transition Distribution, derived from the hyper-parameters
learnt from data.
[insert Figure 3.]

[insert Table 1.]

12



We only show failure data for six assets in this example. However, increasing the size of the
dataset causes the parameters of the Weibull distribution to start to converge and with

sufficient failure data, it is possible to overcome the prior probabilities estimated by experts.

3.2 Assets with multiple states

Statistical models can model the different aging processes of assets but directly distinguish
only working from (hard) failure; this is not sufficient for using inspection data and making
decisions about a variety of maintenance actions, for which models with multiple states of
repair are more suited. One way to combine statistical models with this requirement is using a
Markov model based condition rating system (see Section 2.1).

To model the deterioration of assets through several states of repair, we can extend the model

in Section 3.1 with multiple states (Figure 4).

[insert Figure 4.]
To illustrate the idea, three states are modelled., with transition time from State 1 to State 2
(Transition 1), State 2 to State 3 (Transition 2). Each transition is modelled by a separate
parameters learning model. In this example, Transition 1 follows a Weibull distribution with
parameters shape 1 and scale 1, while Transition 2 with parameters shape 2 and scale 2.
When decision makers enter the operating time (time interval between a specified time and
the time of its last repair), the asset condition will be calculated using the following Boolean

logic expression (this expression is supported in AgenaRisk):

if (Operating time < Transition 1, "State 1",

4
if (Operating time < Transition 2, "State 2", "State 3")) )

In Figure 4, a 15-months operating time was entered as an example data, representing that it

has been 15 months since the last repair of an asset. Learnt from the past data of assets in the
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same class, we can capture the condition distribution of the asset for this operating time: the
probability that the asset stays in its original state (State 1) is around 48%, transits to State 2
is around 39% and State 3 is 13%. A maintenance planner can use this prediction to evaluate

if an inspection needs to be carried out.

3.3 Assets with similar deterioration rate

In practice, we may have several groups of assets of different types, which we believe
deteriorate with similar behaviour. We propose to extend the model in Section 3.2 for the
situation where there is a lot of failure data for some types of assets in the group, but much
less for others. In this case, since the failure times are determined by hyper-parameters shapes
and scales, we assume the distribution hyper-parameters learnt for one type of asset

approximate those of the other similar type, with uncertainty.

[insert Figure 5.]

Assume assets in Group A (assets 1 to 6 in this example) and Group B (asset 7 and 8) have
similar deterioration rates resulting from some shared characteristics (such as similar designs
with different materials). Group A has more failure data than Group B. Figure 5 shows a
parameters learning model for these two groups of assets. Shapes (node Group A: shape and
Group B: shape) and scales (node Group A: scale and Group B: scale) of these assets were
governed by the typical shape (node Typical shape) and scale (node Typical scale) variables,
whose prior probability distributions are using triangular distributions as in Section 3.1.

Experienced experts are possible to have knowledge about how similar two groups of assets
are. For example, experts know about the deterioration of a stone-based structure is more
similar to a concrete-based structure compares to a timber-based structure, which leads to a
higher similarity degree (lower variance) between stone-based and concrete-based structure.

Hence, a truncated normal (TNormal) distribution (its expression can be found in Fenton and

14



Neil®), a normal distribution bounded by lower and upper limits, is used to model the
relationship between the related shape and scale of each asset type and the typical ones. The
mean u of this distribution is the typical shape or scale, and variance ¢ representing the
degree of similarity of the two assets, which is given by experts. The lower bound L and
upper bound U of the distributions are also evaluated by experts about their knowledge of
extreme values. In the TNormal distribution, the normal distribution is used to group singular
parameters to approximate the overall parameters, while the bounds are used to prevent
extreme values. Also, since their hyper-parameters shape and scale are bounded by triangular
distributions, if we use an unbounded distribution, like normal distribution, on a node with a
bounded range, the model may throw away values that outside the range.®

Take node Group A: shape as an example: it may have a conditional probability distribution
given by TNormal (typical shape, 0.5, 1, 3). Its mean is given by the distribution of node
typical shape, which inherits the typical behaviour of the shape between these two groups of
assets. Its variance is 0.5 — a smaller variance means a higher similarity, representing a high
degree of similarity between these two groups. The distribution is restricted to the region
between 1 and 3, indicating it has an increasing failure rate (because the shape value is higher
than 1 as discussed in Section 3.1) with values between 1 and 3. By extracting information
from experienced experts about the degree of similarity of different assets and possible
trending of the plots, the model can reason the transition time of an asset for which there is
only a little data (group B) using data from other group of assets (group A) that are judged to

share a similar deterioration rate.

3.4 Modelling of available data types

Often, the ideal data on the failure times of assets is not available. This section explores

various limitations on the data likely to be available, showing how it can be used.
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The transition time is the time, since the previous transition, when an asset transitions from

one state to another state. However, it is often hard to obtain this data: in practice, we are

more likely to have data from periodic examinations (and perhaps repairs) rather than data on

the exact transition time. To exploit the examination history data, four types of transition time

data can be inferred with uncertainty as follows (for convenience, we assume inspection

interval is 12 months, and the transition are between State 1 to State 2, that is Transition 1):

Left-censored data: the asset failed at some point before we started to inspect. For
example, an asset failed in its first inspection after it was built, that means the transition
time is less than 12 months: Transition 1 < 12,

Interval-censored data: failures happened sometime between two inspection times. For
example, in the first inspection, the asset didn't show any signs of deterioration, but we
found out it failed in the second inspection. Therefore, we can conclude that the asset
transitioned between 12 and 24 months: 12 < Transition 1 < 24.

Right-censored data: for those cases where the asset survived longer than the time
available for observation. Suppose an asset has been inspected twice and has survived for
more than 24 months, hence Transition 1 > 24.

Exact-time data: this type of data may be available when an issue is reported. For
example, at 8 months, the asset failed suddenly and inspection confirms this transition:

Transition 1= 8.

To use these data, we introduce a Boolean variable to express a constraint on an asset’s

transition time. To represent left censored data, the variable is true when Transition < tinspection,

and the true state is observed. Similar constraints are used for interval and right censored data.

Furthermore, there is a possibility that a component deteriorates faster than our inspection
intervals. For example, suppose that at the 12-month inspection, a component remained at
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State 1, while in the 24-month inspection, the component was found in the State 3. To use
this type of information, we can enter observations for right censored data that its first
transition time is greater than 12 months, and left censored data that its second is smaller than
24 months, as well as an additional constraint that the first transition time is smaller than the

second one, as following:

(Transition1>12) A (Transition 2 < 24) A (Transition1 < Transition 2) (5)

3.5 Introducing experts to distinguish individual asset deterioration

In practice, the deterioration rate may be affected by heavy use and aggressive environment
conditions (see for example Yianni et al.*?). Ideally, the maintainers’ knowledge of these
effects could be combined with statistical failure data gathered from a population where use
and environment vary. From a decision support perspective, this will allow specific assets to
be distinguished. For example, Marsh et al.®® outline a BN architecture to integrate multiple
factors, such as loading and environmental stress, to support maintenance decision but do not
show failure data could be included.

To distinguish individual members of a group of assets, we model the effect of environmental
conditions and loading on deterioration by adjusting the scale parameter of the BN developed
in previous sections. A known shape parameter is often assumed due to its relatively stable

value.®*

[insert Figure 6.]
As shown in Figure 6, we use two ranked nodes to express the degree of influence of factors
(here, for example, loading and environment). Each factor has three states: low, medium and
high. An example of how to estimate their states can be adopted from Yianni et al.>*> Take

loading of railways bridges as an example, track data of Equivalent Million Gross Tonnes Per
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Annum (EMGTPA) passes over the bridge can be used to estimate the level of loadings. For
loadings less than 3.5 EMGTPA, they are grouped as low, between 3.5 and 12 EMGTPA are
classified as medium, and over 12 EMGTPA are defined as high. In Figure 6, a medium
loading is observed because the EMGTPA of the line passes over asset 1 is between 3.5
EMGTPA and 12 EMGTPA.

Different factors may have different degrees in influencing the deterioration of assets, such as
a well-designed metal bridge may deteriorate faster affected by its environmental stress than
its loading. Experts could have knowledge about the weights of these influence factors. The
degree of influence factors (node Asset 1: Influence degree) is modelled by a TNormal
distribution combined using a weighted mean (wmean, equivalent to a linear model) of the
influence factors (node Loading and node Environmental stress), and variances are given by
experts regarding to their certainty of the weights: Influence degree ~ TNormal (wmean, o2, 0,
1).

In Figure 6 shows an example, assuming the weight of loading is 0.3 and environmental
stress is 0.7, so that the combined influence of these factors is slightly closer to the high
environmental stress than the medium loading.

While the parameter scale (variable Typical scale) is modelled by three TNormal
distributions (since there are three states in this example: Low, Medium, High, each state is
modelled by a TNormal distribution), with mean adjusted from the typical scale hyper-
parameter (see Section 3.3), and the bounds are given by experts (same as Section 3.3). The
only differences are the variances based on the states of Influence degree: a low influence
degree has a lower variance, while a high influence degree has a higher variance. The
evaluation of variances is given by experts regarding to how easy the assets can be influenced

by external factors.
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3.6 Condition prediction

The BN models of the previous sections cover the distributions of transition time between
different conditions and can therefore evaluate the current condition of an asset based on its
operating time, allowing decisions about, for example, the interval to the next inspection. We
now extend the model further to predict its future condition, supporting a wider range of

decisions. The extended model shown in Figure 7, provides the following predictions:

[insert Figure 7.]

e Current condition: the asset’s condition based on its operating time (see section 3.2);
e Future condition: the future condition of the asset, taking into account both current

condition and further deterioration.

The prediction of future condition works with the following logic:

if (Operating time-+ Next scheduled inspection time< Transitionl, "State1",
if (Operating time-+ Next scheduled inspection time< Transition 2, "State 2", "State 3"))

(6)

Consequently, this node predicts an asset’s condition distribution within different periods. In
the example in Figure 7, since the last effective repair, the operating time is 5 months,
therefore, the current condition has a probability of around 86% in state 1. While the next
scheduled inspection time is 7 months later, and the predicted result is quite optimistic with a
probability of 62% in state 1. We might therefore suggest that a longer inspection interval

could be used for this asset to reduce costs.

3.7 Summary

This section has presented generic BN models to learn assets deterioration behaviour and

then use this to predict the future condition of a particular asset. Each model represents a
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situation that may exist in real-life maintenance problems. The models combine the use of the

available data with expert knowledge; we summarise this below:

1. Available data:

e Section 3.3: some assets (e.g. new asset types) may have only a little failure data.
Therefore, we pool failure data with related asset types that are different but have
related aging processes (e.g. an older version of the new components).

e Section 3.4: the exact time an asset transitions from one state to another state is not
always available. We introduce censored data in our models so that data from periodic

examinations can be used in place of exact transition times.

2. Expert knowledge:

e Section 3.1 and Section 3.3: it is possible for experts to propose priors for the
parameters of the Weibull distribution by understanding the characteristics of each
parameter. Triangular and TNormal distributions are used in our models to estimate
ranges for the Weibull’s shapes and scales.

e Section 3.3: knowledge that, for example, a concrete structure deteriorates more
slowly than a timber structure is well-known by experts. An experienced engineer can
estimate the degree to which two groups of assets will have similar deterioration.

e Section 3.5: experts may know that assets deteriorate faster when near the coast or
more heavily loaded. This type of knowledge can be used to distinguish individual

assets by modelling the influence of these factors in the deterioration rate.

4 Case study: strength assessment of GB railway bridges
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In this section, we present a case study based on the processes used to maintain overbridges
(a bridge crossing over the railway) on the GB rail network. Section 4.1 introduces the
activities to plan maintenance work for GB railway bridges, and Section 4.2 summaries its
challenges. Section 4.3 applies models from Section 3 to estimate the strength of bridges

from their condition. Section 4.4 shows two examples of the use of the model.

4.1 Maintenance in the GB railway bridges

There are 23981 bridges owned by Network Rail, brick and masonry bridge takes up around
47% of the number, while stone bridge only takes up 0.15%.° Given the number and variety
of bridges, the burden of maintenance on railway bridges is high.

Bridges can be decomposed into major elements, such as deck, superstructure, substructure,
and be further subdivided the major elements into minor elements, such as abutment, wing
walls. Table 2 shows an example of elements of a masonry arch bridge presented in Rafiq et
al.,®® which is later used in our case study. Different types of bridges have different major and
minor elements, and even when two bridges are of the same type the number of elements may
vary.

[insert Table 2.]

Two types of activity are carried out to understand the state of GB rail bridges and prioritise
maintenance works. Bridge examination is used to evaluate the condition of bridges. Bridge

assessment is used to evaluate the bridge strength.

4.1.1 Bridge examination
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The condition of bridges is periodically examined: the focus of examination is to determine

the maintenance work needed to maintain the condition of the bridges. Two examination

regimes are applied in the GB:

1)

2)

Visual examination is carried out every year to look for changes in the condition of the
structure as a whole since the last examination. The condition of the structure is rated as
Good, Fair or Poor. The examination also makes recommendations for maintenance work.
Detailed examination is carried out every 6 years and looks at all parts of the structure to
determine their conditions and the extent of deterioration. This examination recommends
remedial works and also the need for any additional examination of the structure.
Additional examination is normally performed for hidden critical element (HCE, a
structural member that cannot be observed during the examination), using a range of
intrusive and non-intrusive examination methods. The condition of each part is recorded
using a marking index called Structures Condition Marking Index (SCMI)®" (recently
named as Bridge Condition Marking Index (BCMI)). A BCMI score ranges from 0 to
100, where ‘0’ represents an element in extremely poor condition and ‘100’ shows the

element in perfect condition.

The uncertainty of the examination — caused by the difference between actual condition and
the condition reported by an examination — varies for different types of structures and
different examination regimes. Visual examination is conducted from a position of safety to
report any major defects or to verify that defects already seen have been repaired. Though
there is more available data from visual examination compared to detailed examination, as
the former are more frequent, a visual examination determines the true condition with less

certainty:
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1) Defects may not be visible as it may take some time for a defect to reach a size that is
observable. Another situation is some elements, such as HCE, which may have developed
defects, but the visual examination did not reveal it because these elements are
unobservable. The uncertainty depends on the defect types and examination quality for
defects (e.g. examination procedures and engineers training).®

2) Bridge elements may have a shorter life than the overall bridge. For example, a concrete
bridge may have a life of 120 years while its bearing may only have a life of 20 years as
discussed in Arshad and Cook.>® Therefore, in a visual examination, it is possible that the
bridge is marked as good condition even though some elements of the bridge are in poor
condition when these elements do not make a visible contribution to the condition of the

bridge as a whole.

4.1.2 Bridge assessment

Every 18 years, following a structural inspection, an assessment of the safe load capacity
(strength) of bridges is required. Three levels of structural assessment exist with increasing

complexity and accuracy:

1) Level O reviews historical drawings of the structure and examination reports to produce
an estimate of the load capability. Level 0 assessments are required to have a higher
safety threshold than other levels as the assessment is the least accurate.

2) Level 1 uses static analysis to identify the load capacity of a structure, which can be used

to prioritise the next assessment.
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3) Level 2, as the most complex and accurate assessment, is an advanced structural analysis,
uses finite element analysis based on design information and onsite inspections,

estimating both static and dynamic load capacity.

4.1.3 Connecting bridge condition to strength

The condition of a bridge is an indication of its strength, but with uncertainty that varies for
different types of structure. Since there is data about the condition of bridges, it could be
attractive to be able to use condition data to estimate strength, for example, to know when a
full strength assessment was needed.

Previous studies have been proposed to estimated strength from condition. AASHTO* used a
reliability-based, load and resistance factor rating method for evaluating the strength limit
states and service limit states of bridges based on condition of the bridges, bridge types and
other factors. Tapan and Aboutaha*! proposed a bridge condition-rating method, which
provides a good estimate of the bridge pier column strength that cannot be obtained by
normal visual examination. Additionally, Wang et al.*? analysed the load-carrying capacity of
a girder based on the deterioration levels of its cracks depending on the structure type and
their effects on the structural integrity.

Rafiq et al.,*® show that a bridge level strength can also be inferred from information about its
major elements and minor elements. Experts give each minor element a factor using the
BCMI system to indicate its contribution to the strength of the related major element. Then
the condition of major element can be generated based on its corresponding weighted minor
elements’ condition. Factors are assigned in the same way to major elements for their

contribution to the overall bridge strength.

4.2 Challenges of GB railway bridges maintenance

24



We have summarised the data available to plan maintenance: every year there is a visual
inspection; every 6 years a detailed examination and every 18 years an assessment. How can
the different types of data be combined?

1) The number of bridges of each type varies widely: as a result, some groups of assets may
have lots of data, while the other have much less. The first challenge is therefore to pool
data between bridges of different types.

2) The visual examination is more frequent but less accurate: the visual examination looks
only at the bridge as a whole while the less frequent detailed examination looks at
individual elements. The second challenge is therefore how to combine the element-level
condition data with the whole structure condition data.

Condition does not inform the strength assessment: when a detailed structural assessment is

available, it is clear that this provides the most accurate assessment of the structure's strength

but an estimate of deterioration in strength from the condition data might allow assessment
work to be prioritised. The third challenge is therefore to estimate the strength of the structure

from the condition of its elements.

4.3 Applying BN models to estimate bridge strength from condition

Facing these challenges, we propose a BN model framework as showed in Figure 8,
assembled from the generic models from Section 3, to estimate the loss of strength of a
bridge from its condition seen at examination. In the figure, the oval-shaped nodes represent
variables in the BN models, the square-shaped nodes are labels: solid square labels show
what type of data the nodes are using, dashed square labels indicate which section is referring

to. The framework is developed with the following steps:

[insert Figure 8.]
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1)

2)

3)

4)

Section 4.3.1: The future condition of each element of the bridge is predicted by
modelling element deterioration rates, as transitions between from Good condition to Fair
condition and from Fair to Poor. The data is inferred from the detail examination,
grouping data for bridges of the same class. The transition probabilities are assumed to
follows a Weibull distribution. Models from Section 3.1, 3.2, 3.4 and 3.6 are used.
Section 4.3.2: This section examines how smaller groups of bridge, for which less data
will be available, could be handled by using detailed examination data from related
situations. Models from Section 3.3 and 3.5 are used.

Section 4.3.3: Visual examination data is added in this section: the overall condition is
assumed to be indicative of the condition the elements but with varying uncertainty.
Models developed from Section 3.3 and 3.6 are used.

Section 4.3.4: A bridge condition can be estimated by combining by the conditions of its
elements, with weights representing each element’s contribution on the bridge strength.

Strength changes of a bridge can be inferred from its condition.

Since we are describing a model framework, the actual model will depend on the type of

bridges and their elements. As an example, we consider a masonry arch bridges, for which

little failure data is available.

4.3.1 Condition of bridge elements

Generally, a BCMI score above 80 is considered to be in good state, below 45 is in a poor
condition. Hence, we can model each element condition as a three-state variable, namely:
Poor (BCMI range from 0 to 45), Fair (BCMI range from 46 to 80), and Good (BCMI range

from 81 to 100).%¢
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Two failure transitions, from Good to Fair, Fair to Poor, are modelled with an assumption
that the time to failure of each transition follows a Weibull distribution. The parameters of the
distribution are learnt from data, using the modelling approaches described in Section 3.1 and
3.2.

An example of the condition of one element — a wing wall — is shown in Figure 9, based the
model in Section 3.6. Here wing walls asset 1, 2, 3 and the target wing walls are from
different bridges that have similar designs and are constructed from the same materials, they
are grouped in the same class that share the same deterioration rate. In this example, it took
62, 48 and 72 months for asset 1, 2 and 3 respectively to transit from Good to Fair and 110,
130 and 70 months more from Fair to Poor. The last examination shows this wing wall was in
Good condition. Here, the variable Examination type is similar to the variable Next scheduled
inspection time in Figure 7, and variable Condition of Wing Wall corresponds to the Future
condition variable. In our example, the predicted probability that this wing wall stays in Good

condition in its next detailed examination will be 31%.

[insert Figure 9.]
4.3.2 Learning from different groups of assets

Element of the same type but of different materials may share similar deterioration rate.
Another situation is where the same element exposed to different environmental condition
may deteriorate differently. Hence, we propose to use our models to learn deterioration rates

from different groups of assets that are judged to share similar deterioration.

[insert Figure 10.]
By combining the models proposed in Section 3.3 and 3.5, for illustration purpose, two
groups of assets with two types of learning for transition time from Good to Fair are

presented in Figure 10. In practice, the number of group pooled may be more than 2. The
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model contains typical shape and scale parameters shared between the groups and separate
parameters for each group. The parameters for a group are related to the shared parameters
using a TNormal distribution, allowing both changes in means and variances to be modelled.
Group A and Group B, represent the same element built with different materials under the
same external environment. Group A (built with masonry) has a more stable deterioration rate,
while Group B (e.g. built with timber) has a more variable deterioration rate. We model this
with a TNormal distribution with different variances — Group A has a smaller variance than
Group B. We can also apply the same principle for their environment condition: if the bridge

located in a more critical environment, it has a faster deterioration rate.

4.3.3 Updating from visual examination failure data

In this section, we propose to use visual examination data as an additional data source to
update the condition of each minor element that was learnt from detailed examination. As
discussed in Section 4.1.2 and 4.1.3, failure data from visual examination contain more
uncertainty than detailed examination, but there is more data available. To use this, we must
elicit information on how accurately the visual examination result reflects the condition of
each minor element using expert knowledge.

Figure 11 shows the model we use to update the condition of each element from the visual
examination data. The variable Condition of bridge from visual examination is modelled
using the same method we used in Section 4.2 for bridge element condition. It is learnt from
visual examination data, and used to update the condition of the elements of the bridge using
probability tables given by experts considering the uncertainty of visual examination and the
relationship between the condition of bridge as a whole and each element. Examples of minor

elements abutment and parapets are also showed in the figure, with a fragment of the
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probability table in Table 3, showing how the element condition is adjusted when it is

originally good.

[insert Figure 11.]
Since during the visual examination, examiners pay more attention to abutments than to
parapets, so the condition of the bridge from visual examination has more influence on the
abutment condition than the parapets condition. For example, when the condition of bridge
from visual examination is Poor condition, the probability of abutment in Good condition will
be updated from 100% to 70%, while Parapets will be updated from 100% to 90% only.
These are example values, which we plan to refine by interviewing examiners and reviewing
the examination guideline to assess the confidence they have that the visual examination
reflects the condition of each element.

[insert Table 3.]

4.3.4 Strength of a bridge

A typical masonry arch bridge based on Table 2 is presented in Figure 12. Element factors
(see Section 4.1.3) and their relative weighting are gathered from Rafiq et al.*® One of the
major elements is ‘condition of support’, with minor elements abutment and wing walls.
Their element factors are 10 and 5 respectively, giving relative weighting of 0.67 and 0.33.
They are combined using a weighted mean as discussed in Section 3.5, and the ‘condition of
support’ is modelled by a truncated normal distribution with the weighted mean of abutment
and wing walls, and a variance given by the experts regarding to the certainty about the

element factors.

[insert Figure 12.]
The bridge strength is then calculated based on a weighted combination of its major elements

and its bridge type. The conditional probability table reflects the experts’ understanding of
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the contribution of each element to the overall strength. By using this model, we can provide

a preliminary evaluation of the bridge strength to prioritise assessment.

4.3.5 Assembling the models

For our case study, a complete BN model is assembled from six minor elements, learnt from
two groups of assets; the resulting model has 126 variables in total. To build such a model in
general, we first need to determine the elements of the bridge type (e.g. information from
Table 2) and model each as described in Section 4.3.1. Then, if the target group lacks
sufficient failure data, we can look for similar groups and pool the failure data using the
model of Section 4.3.2. Visual examination data is used using model from Section 4.3.3 if the
detailed examination is not sufficient on its own. Finally, the model from Section 4.3.5 is

applied to assemble the element condition models to assess the strength of the target bridge.

4.4 Examples of scenario analyses

We have shown how models built using BNs allow a variety of data to be combined. Here,
we have combined BCMI data from detailed examination with overall condition data from
visual examination. We can use this to estimate the future strength of the bridge and so
provide practical decision support for decision makers to evaluate the effect of different
examination intervals.

For example, suppose that from the latest detailed examination, the BCMI data indicates that
all the elements of a masonry arch bridge are in good condition, except the parapet which is
in fair condition. The model predicts with probability of 84% that the bridge will have no loss
of strength in one year, at the time of the next visual examination. However, a prediction for
the next detailed examination, after a further 6 years, gives a probability of 22% for good

strength, and 66% for fair strength.
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[insert Figure 13.]

We can use these predictions to evaluate the effects of different examination regime and to
modify examination intervals. We can also use the model to estimate if an intervention is
needed in order to ensure the strength of a bridge is maintained above a certain level. Figure
13 shows an example of strength limit (black line), representing a probability of at least 40%
that this bridge is in good strength; below this intervention is needed. In this example, we
would suggest that detailed examination after a 5-year interval is safer than the full 6-year
interval in order to avoid falling below the threshold probability of good strength.

Another advantage of using BN models is that we can reason backwards to evaluate
intervention plans given a target. For example, we can set the bridge’s strength to the limit
and analyse the element conditions that result. When an element is already close to this

condition, we can prioritise it for maintenance.

5 Conclusions

We have proposed generic BN models that can be combined to reason about the deterioration
of assets from data likely to be available and from and expert knowledge in practical
maintenance planning. These models can be selected and assembled according to what kind
of data is available, guided by expert knowledge in a particular case. An example tailored for

GB railway bridges maintenance is presented to estimate bridge strength from condition.

5.1 Summary

This paper presents an asset deterioration model for maintenance planning using BN models.

The core of the model uses a Weibull distribution to model asset deterioration in a
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hierarchical BN. The transition times between a small number of conditions are assumed to
be drawn from Weibull distributions, whose parameters are learned using historical data. To
complete the hierarchical model, prior probabilities need to be assigned to the hyper-
parameters. The shape parameter can model an increasing, constant or decreasing failure rate,
while the scale parameter stretches out the probability density function. By understanding the
characteristics of these two parameters, we argue that reasonable priors could be determined
in discussion with experts.

We may have a group of related asset types that deteriorate with similar behaviour, with a lot
of data for some types, while others have little. We extend the model to learn from related
assets. Further expert judgement of the degree of similarity between the groups is needed at
this stage. We also extend the model to make the most use of available data, which do not
necessary include the exact times that each asset transitioned from one state to another. Then,
to distinguish individual assets within a broad class of similar assets, we allow experts to
quantify the effect of factors such as loadings and environmental conditions to adjust the
predicted deterioration of a specific asset. This expert knowledge could be replaced by
parameters learned from data if it were available.

Finally, we show how the different generic BN models can be combined and used for GB rail
bridges maintenance planning. A case study is presented using realistic types of data and
knowledge that can be exploited from experts. Examples of how to use the proposed models

for maintenance planning were discussed.

5.2 Future Work

Further work is needed to validate the approach using real datasets and for real maintenance

scenarios. We wish to extend the model further to incorporate costs, including disruption, of
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different maintenance actions, so that we can schedule an optimum hierarchy of maintenance
actions.

Though our models provide the feasibility and structures of how to include expert knowledge
to improve the models, the procedure for knowledge elicitation needs further investigation.
Process of how to acquire knowledge from experts for decision analysis have been proposed
by many researchers, such as Cooke’s classical method.!®> Another challenge is how to
incorporate opinions when multiple experts are involved, which could be handled in two
ways: combine the assessment of each expert into a single one, or hold a workshop for
experts to come to a consensus.*®

We also plan to study the computational performance of the model, especially for significant
quantities of data. Experience to date shows that it is adequate and some optimisations to the
model structure are likely to yield improvements. Fortunately, maintenance decision making
does not require instant answers and there are a great variety of BN inference algorithms
offering different trade-offs between speed and accuracy.

As we have shown in Section 4, the way that the different modelling stages are combined
reflects the needs of a particular scenario. To make this practical, we plan to develop a
higher-level interface in which the maintenance-related information (such as the number of
conditions, the maintenance actions etc.) could be described and from which the necessary

BN could be generated automatically.
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Figure 1. A simple Bayesian network.
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Figure 2. Failure rate function with different shape values.
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Section 4.4
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Figure 8. Bridge BN model framework.
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Table 1. NPTs for the nodes of BN model in Figure 3.

Node Name NPT

Asset 1 ~ Asset 6 Weibull (shape, scale)
shape Triangular (a, by, c1)
scale Triangular (a2, b2, ¢2)
Transition Distribution Weibull (shape, scale)
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Table 2. Elements of a masonry arch bridge.

Bridge Type Major Element

Minor Element

Support

Wing Wall

Abutment

Masonry Arch

Bridge
Deck

Spandrel Wall

Face Rings

Parapets

Barrel Arch
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Table 3. Updated condition of Abutment and parapets in Good condition.

Abutment Parapets
Condition of bridge from visual exam Good Fair Poor Good Fair Poor
Good 1.00 0.90 0.70 1.00 1.00 0.90
Updated condition Fair 000 010 020 0.00 000 007
Poor 0.00 0.00 0.10 0.00 0.00 0.03
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