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Abstract— The design of a distributed architecture for the
detection of covert attacks in interconnected Cyber-Physical
Systems is addressed in this paper, in the presence of stochastic
uncertainties. By exploiting communication between neighbors,
the proposed scheme allows for the detection of covert attacks
that are locally stealthy. The proposed methodology adopts
a decentralized filter, jointly estimating the local state and
the aggregate effect of the physical interconnections, and
uses the communicated estimates to obtain an attack-sensitive
residual. We derive some theoretical detection properties for
the proposed architecture, and present numerical simulations.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) describe a class of large-
scale systems, where the physical components are integrated
with cyber resources, such as communication, control, and
monitoring infrastructures. They are an ever more common
class of systems, following the increased penetration of
information technology (IT) for monitoring and coordination
purposes in industrial plants and infrastructure systems.

Among the systems that can be described as CPSs, many
are safety critical, as their inadequate provision of service
may have severe consequences. This has led to a growing
interest in the literature on the subject of secure control, as
demonstrated by the recent special issue [1], as well as the
surveys [2], [3], and the works cited therein.

Several works in the literature rely on centralized archi-
tectures for monitoring CPS [4], [5], [6]. Implementation
of these architectures present some disadvantages, however,
as it may require excessive computational power and com-
munication resources. Hence, distributed methods for attack
detection have been developed, of which [7], [8], [9], [10],
[11] are notable examples. These often draw upon the work
done in the Fault Detection and Isolation (FDI) literature (see
for instance [12], [13], [14]).

It has been been shown in [4], [10], [15] that mali-
cious agents can covertly misappropriate control systems by

This work has been partially supported by European Union’s Horizon
2020 research and innovation programme under grant agreement No 739551
(KIOS CoE). This work has also been conducted thanks to the support of
the EPSRC Centre for Doctoral Training in High Performance Embedded
and Distributed Systems (HiPEDS, Grant Reference EP/L016796/1).

A. Barboni and A. J. Gallo is with the Department of Electrical
and Electronic Engineering at the Imperial College London, UK. Email:
{angelo.barboni16,alexander.gallo12}@ic.ac.uk

F. Boem is with the Department of Electronic and Electrical Engineering,
University College London, UK. Email: f.boem@ucl.ac.uk

T. Parisini is with the Department of Electrical and Electronic Engi-
neering at the Imperial College London, UK, the KIOS Research and
Innovation Centre of Excellence, University of Cyprus, and the Department
of Engineering and Architecture at University of Trieste, Italy. Email:
t.parisini@gmail.com

carefully designing the signals they inject in the available
communication channels. In [10], the authors leveraged the
physical interconnections between subsystems to the de-
fender’s advantage. Specifically, an architecture based on the
combination of two observers permits to reveal misbehavior
in neighboring subsystems that is instead concealed in the
attacked one. In this paper, the problem is formulated in a
similar way, however, here we consider:

• A discrete-time linear stochastic model for each subsys-
tem instead of a continuous-time one.

• The proposed distributed detection architecture is based
on different estimation models: a minimum-variance
unbiased estimator jointly estimates the local states and
the aggregate effect of the neighbors’ interconnection.

• A detection method based on the statistical analysis of
a properly designed residual signal is proposed, and its
detectability properties are studied.

The distributed detection of attacks in stochastic systems
is also considered in [8]. However, the authors do not focus
on covert attacks, and do not build a distributed estimation
architecture to achieve this, but rather perform hypothesis
testing on appropriately processed output measurements.

The problem of unknown-input decoupling in the esti-
mation of stochastic systems has drawn great attention in
the past, and milestone contributions in the area include
[16]. A more general problem is solved in [17], where
unknown inputs also affect the measurement channel, while
[18] improves on previous results by designing a two-step
filter that also optimally estimates the input.

In this work, we adopt the filter presented in [18] to com-
pute a distributed estimate of the local state, by decoupling
it from the effect of the subsystem’s neighbors.

The rest of the paper is structured as follows: in Section II,
we formulate the considered problem. In Section III, the
decoupled distributed filter is presented, and the properties
of the state and unknown-input estimates are analyzed in
Sections IV and V. Following this, a novel detection strategy
is proposed in Section VI, where a suitable statistical test
is defined, and some of its properties are provided. Finally,
some numerical simulations are presented in Section VII.

Notation: For a vector v ∈ Rn, v[i] denotes its i-th
component. The identity matrix of dimension n will be
defined as In, and 0n×m ∈ Rn×m is used to define a matrix
of all zeros; when clear from the context, the indices will
be omitted. We use notation colj∈J [xj ] and rowj∈J [xj ]
for the column or row concatenation of vectors xj , j be-
longing to a set of indices J ⊂ N. The same notation is
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Fig. 1: The network of interconnected subsystems and the
internal structure of subsystem Si (under attack), equipped
with a controller Ci and a diagnoser Di.

also used with matrices. Additionally, diagj∈J [Mj ] denotes
block diagonal concatenation of matrices Mj , j ∈ J . Given
a random variable x(k), E [x(k)] denotes its expected value.
Furthermore, Cov(x, y) denotes the covariance matrix of two
random variables x and y, and Var(x) = Cov(x, x) is the
covariance matrix of a random variable x.

II. PROBLEM FORMULATION

A. Model of CPS

Consider a CPS composed of N subsystems Si, which
are interconnected through both physical and communica-
tion links. We consider the topology of the graphs de-
fined by these links to be the same, i.e. a communication
link between two subsystems is present if there is also
a physical link. We define the set of neighbors of Si as
Ni

.
= {j ∈ {1 . . . N}| ∂xi

∂xj
6= 0}. The dynamics of Si is:

xi(k + 1) = Aixi(k) +Biũi(k) +
∑
j∈Ni

Aijxj(k) + wi(k)

yi(k) = Cixi(k) + vi(k) ,
(1)

where xi ∈ Rni is the state, ũi ∈ Rmi is the control
input, yi ∈ Rpi is the output measurement; wi ∼ N (0,Wi)
and vi ∼ N (0, Vi) are process and measurement i.i.d.
Gaussian noise, with known variance matrices Wi ≥ 0
and Vi > 0. Furthermore, we assume the initial condition
xi(0) ∼ N (x̄0i ,Π

0
i ), with Π0

i > 0 and x̄0i known, and
independent from wi(k) and vi(k) for all k. Matrices Ai,
Aij , Bi, and Ci are supposed to be known by the local
diagnoser. As shown in the schematic diagram in Figure 1,
each subsystem is locally equipped with a controller Ci and
a diagnoser Di, the latter of which exchanges information
with their neighbors.

B. Attack model

From time k = ka, we consider a covert attack on
subsystem Si. The attack is modeled as (see [4]):

xai (k + 1) = Aai x
a
i (k) +Bai ηi(k)

γi(k) = Cai x
a
i (k)

, (2)

where ηi is the attacker’s control input. We stress that
ηi is unknown to Di; furthermore, it is arbitrarily defined
by the attacker to steer xi away from its desired nominal
trajectory. The signals ηi and γi are injected in the control
and measurement channels, respectively, as follows:

ỹi
.
= yi − γi

ũi
.
= ui + ηi

, (3)

where ui is the input as computed by the controller Ci.
By mimicking the dynamics of Si in (2), the attacker can
compensate the effects of ηi through γi, thus making their
action undetectable from the sole measurements observation.

Assumption 1: The attacker has perfect knowledge of the
subsystem model, i.e. (Aai , B

a
i , C

a
i ) = (Ai, Bi, Ci). /

The result of this attack is that the dynamics xai is
superimposed to that of Si. In the following result – a
discretized version of Proposition 1 in [10] – the state of
Si is decomposed in a healthy and an attacked component.

Proposition 1: Consider attack strategy (2), and let As-
sumption 1 hold. If the attacker’s initial state is xai (ka) = 0,
the output received by the diagnoser unit Di is:

ỹi(k) = yhi (k) = Cix
h
i (k) + vi(k) , ∀k ≥ ka.

where yhi is the output of the subsystem as if it were not
affected by the attack.

Proof: Throughout this work, for reasons of space,
proofs will be omitted.

Remark 1: Proposition 1 provides a sufficient condition
for stealthiness of the covert attack, and implies that, what-
ever the local estimate of the state, the residual error based
on local measurements is not affected by the attack, as has
been shown in the literature [4], [10]. /

In this paper, we address the following:

Problem 1: Given a subsystem Si with dynamics as in (1)
and an attack as in (2) from time ka, and let Assumption 1
hold. Design a diagnoser Di to detect the attack. /

III. DISTRIBUTED DETECTION FILTERS

Each local diagnosis unit Di is equipped with a decen-
tralized estimator, based on the filter proposed in [18] in
the context of centralized estimation. Each diagnosis unit
Di then exchanges information with Dj , j ∈ Ni, in order
to compute the detection residual introduced in Section V.
The state estimator is unbiased and guarantees minimum
variance of the estimation error regardless of the presence
of an unknown input [18].

We design the diagnostic unit Di such that the computed
local estimates are decoupled from the neighbors of Si. To
achieve this, the interconnection terms can be treated as
unknown inputs, and rewritten as:∑

j∈Ni

Aijxj = row
j∈Ni

[Aij ] col
j∈Ni

[xi]

= Eiζi = GiĒiζi = Giξi

(4)



where Gi has full column rank, Ēi is a matrix of weights
and defines a vector of unknown inputs ξi ∈ Rgi , which
can be interpreted as the aggregate effect of all neighbors’
physical interconnection on dynamics (1). The following
further assumptions are needed for all subsystems Si:

Assumption 2: Matrices Ci are such that rank(CiGi) =
rank(Gi) = gi. /

Assumption 3: The pair (Ai, Ci) is observable. /

Given the structure of (1), the filter design in [18] can be
exploited to obtain unbiased minimum-variance local state
and disturbance estimates x̂i and ξ̂i, respectively. We obtain
the following estimates of the local state and of the aggregate
interconnections (note the presence of ỹi, and the use of ui):

x̂i(k) = Āi(k) [Aix̂i(k − 1) +Biui(k − 1)] +

+ L̄iỹi(k)
(5a)

ξ̂i(k − 1|k) = Mi(k) [ỹi(k)+

−Ci (Aix̂i(k − 1) +Biui(k − 1))]
(5b)

where

Āi(k)
.
= (I−Ki(k)Ci) (I−GiMi(k)Ci)

L̄i(k)
.
= (Ki(k) + (I−Ki(k)Ci)GiMi(k)) .

Note that these two matrices are related to each other as:

Āi(k) = I− L̄i(k)Ci.

Remark 2: Note that (5b) depends on delayed informa-
tion, as the estimate ξ̂i(k − 1|k) is only available at time k,
once measurement ỹi(k) is available. This is to be expected,
since the ξi dynamically affects the state, i.e. the effects of
ξi(k − 1) can only be seen from ỹ(k). /

We now repeat Theorem 12 in [18], which gives the
theoretical properties of the estimates (5b) and (5a):

Lemma 1 ([18, Thm.12]): Consider the joint input and
state estimator in (5), where Mi(k) satisfies:

Mi(k)CiGi = Igi , ∀k ≥ 0.

If Mi(k) and Ki(k) are designed as in [18], (5b) and (5a)
are unbiased estimates of ξi(k − 1) and xi(k), minimizing
the mean square error over the class of all linear unbiased
estimates based on x̄0i and yi(κ), 0 ≤ κ ≤ k.

Remark 3: Assumption 2 is a sufficient condition for
the existence of an estimate which is decoupled from an
unknown input ξi, both in the stochastic [16] and in the
deterministic case [19]. On the other hand, the decomposition
GiĒi is needed for the input estimation, as at most rank(Ei)
components can be estimated. By means of the decomposi-
tion in (4), ξi aggregates the independent components of the
interconnection that influence xi. /

In the following, we analyze the specific properties of both
the state and unknown-input estimates x̂i and ξ̂i.

IV. LOCAL STATE ESTIMATION

Let us start by considering the system in healthy condi-
tions, by analyzing the estimation and residual errors under
healthy mode of behavior:

εhi (k|k)
.
= xhi (k)− x̂i(k|k) (6a)

ri(k|k)
.
= ỹi(k)− Cix̂i(k|k), (6b)

where the superscript h has been added to highlight that the
estimation error is considered in nominal conditions. We then
analyze the estimation error under attack.

Remark 4: Note that, since ỹi = yhi , from Proposition 1,
the estimates in (5) only use information from the state which
is not affected by the attack. As such, it is unnecessary
to include the superscript h when analyzing x̂i, as well as
dealing with ri. Conversely, distinguishing between healthy
and attacked information is crucial for error analysis. /

Hence, the estimation error dynamics can be derived as:

εhi (k) = Āi(k)
[
Aiε

h
i (k − 1) +Giξi(k − 1) + wi(k − 1)

]
− L̄i(k)vi(k)

=Āi(k)
[
Aiε

h
i (k − 1) + wi(k − 1)

]
− L̄i(k)vi(k)

(7)

where the interconnection term Giξi(k − 1) is removed
thanks to definition of Mi(k) satisfying Lemma 1, as

Āi(k)Gi = (I−Ki(k)Ci) (I−GiMi(k)Ci)Gi = 0.

The influence of the physical interconnections of Si is
therefore decoupled from the estimation error εhi (k).

As the state xi is not directly available, the residual error
ri must be used to analyze detection properties. By exploiting
the decomposition of εi in healthy and attacked parts, and
using the definition of the residual (6b) and the estimation
error under nominal conditions as given in (7), we obtain:

ri(k) = ỹi(k)− Cix̂i(k) = Ciε
h
i (k) + vi(k)

= CiĀi(k)
[
Aiε

h
i (k − 1) + wi(k − 1)

]
+ (I− CiL̄i(k))vi(k).

(8)

Proposition 2: Let an attacker carry out a covert attack as
defined in (2) for time k ≥ ka, with xai (ka) = 0, and let
Assumption 1 hold. The residual ri(k) is not affected by the
covert attack and hence cannot be used to detect it.

Let the estimation error be defined as εi
.
= xi − x̂i.

Although a covert attack (2) on Si does not influence the
local residual ri, the same cannot be said about the estimation
error. This will be exploited further in Sections V and VI to
define a residual and a suitable statistical test that enables
the detection of covert attacks.

A. State estimation error statistics

We analyze the mean and variance of the residual
terms, in order to define a suitable detection strategy.
We initialize x̂i(0) = x̄0i ,∀i ∈ N , and we note that
εi(k) = εhi (k),∀k ≤ ka holds in healthy conditions. Given



the estimates’ unbiasedness property defined in Lemma 1,
the mean of the estimation error before the attack occurs is:

E [εi(k)] = 0,∀k ≤ ka,

while E
[
εhi (k)

]
= 0, for all k ≥ 0. Similarly, the expected

value of the residual is E [ri(k)] = 0,∀k ≥ 0.
We derive the variance matrix Πi(k)

.
= Var(εi(k)) for the

estimation error, initializing it as Πi(0) = Π0
i :

Πi(k) = Āi(k)AiΠi(k − 1)A>i Āi(k)>

+ Āi(k)WiĀi(k)> + L̄i(k)ViL̄i(k)>
(9)

where the covariance terms Cov(εi(k − 1), wi(k − 1)) and
Cov(εi(k − 1), vi(k)) have been omitted, as εhi (k − 1) is
uncorrelated to wi(k − 1) and vi(k).

For k > ka, i.e. after the occurrence of the attack, the
estimation error is εi = xai +xhi − x̂i = xai + εhi , and as such
its mean is given by:

E [εi(k)] = E [xai (k)] + E
[
εhi (k)

]
= xai (k),∀k > ka. (10)

As the attack strategy in (2) is considered to be deter-
ministic, it will not affect the variance Πi(k). Furthermore,
although the estimation error mean is affected by the attack,
the expected value of ri does not change, in line with
Proposition 2.

V. ESTIMATION OF COUPLING EFFECTS

As covert attacks cannot be detected using only local
estimates, we exploit the communication between Di and
its neighbors to detect them in Sj , j ∈ Ni. Specifically, we
analyze the error between the unknown input estimate (5b)
and that computed from the received estimates x̂j(k) com-
puted by Dj ξ̂i(k − 1|k). The corresponding error is:

ρi(k − 1|k)
.
= ξi(k − 1)− ξ̂i(k − 1|k)

= −Mi(k)Ci(Aiεi(k − 1)− wi(k − 1))

−Mi(k)vi(k),

(11)

which holds by virtue of Lemma 1. This estimation error
therefore depends only on local noise and uncertainties, as
εi(k) is decoupled from the neighboring subsystems.

Given Lemma 1, the estimate x̂i(k) is unbiased by con-
struction. Thus it is easy to see that

E [ρi(k − 1|k)] = 0. (12)

As far as the variance is concerned, from the definitions
of the variance matrix (9), it follows that it is possible to
evaluate Var(ρi(k − 1|k)) as:

∆i(k − 1|k)
.
= Var(ρi(k − 1|k))

= Mi(k)CiAiΠi(k − 1)A>i C
>
i M

>
i (k)+

+Mi(k)CiWiC
>
i M

>
i (k) +Mi(k)ViM

>
i (k).

(13)

As ρi(k − 1|k) is unavailable to Di, it cannot be used to
detect an attack in Sj , j ∈ Ni. Instead, supposing that Di
receives the estimates x̂j(k) from the neighbors’ diagnosis
units Dj ,∀j ∈ Ni, it is possible to locally define

ρ̂i(k − 1|k)
.
= ξ̂i(k − 1)− Ēi col

j∈Ni

[x̂j(k − 1)] (14)

that can be regarded as a distributed estimate of the unknown-
input estimation error, which may be used for detection.
From (14) and (11), we obtain:

ρ̂i(k − 1|k) = Ēi col
j∈Ni

[εj(k − 1)]− ρi(k − 1|k). (15)

Proposition 3: Let Lemma 1 hold. When there are no
attacked subsystems Sj , j ∈ Ni, the residual ρ̂i(k − 1|k)
follows a Gaussian distribution with mean and variance µi(k)
and Σi(k), respectively, where

µi(k) = 0, (16a)

Σi(k) = Ēidiag
j∈Ni

[Πj(k − 1)] Ē>i + ∆i(k − 1|k). (16b)

Proof: Let us examine the expected value of
ρ̂i(k − 1|k). Let Subsystem Sl, l ∈ Ni be under attack
starting from k = ka > 0; then, it follows from (10), (12),
and (15) that the mean µi(k)

.
= E [ρ̂i(k − 1|k)] is given by:

µi(k) =

{
0, k ≤ ka,
ζai,l(k − 1) k > ka.

(17)

where
ζai,l(k − 1)

.
= Ei,[l]x

a
l (k − 1).

Here, with some abuse of notation, Ēi,[l] ∈ Rgi×nl defines
the block of row matrix Ēi corresponding to Sl.

For what concerns the variance Σi(k)
.
= Var(ρ̂i(k−1|k)),

from the definition of Var (ρ̂i) and (15) it follows that:

Σi(k) = Ēidiag
j∈Ni

[Πj(k − 1)] Ē>i + ∆i(k − 1|k),

where the covariance terms satisfy Cov(εj , ρ̂i) = 0, since
the estimator error εi is independent of neighboring states
by construction, for all subsystems Si, i ∈ N .

It is important to recall that since xai (k) is deterministic,
it will not influence the variance of either the estimation
error or the residual. Hence, we focus on the estimation
error mean. Also note that the residual variance Σi(k) can
be computed locally at subsystem Si, provided that the
neighbors’ process and measurement covariance matrices Wj

and Vj , and models (Aj , Cj , Gj) are known to Di.

VI. DETECTION STRATEGY

In this section we exploit the known statistical properties
of the residual ρ̂i, to design a statistical test apt at raising an
alarm when suitable conditions are satisfied.

We consider a residual sequence of finite length ωi,
containing samples of ρ̂i(k − 1|k) from k − ωi + 1 to k:

{ρ̂i(κ− 1|κ)}kκ=k−ωi+1 .

The following composite hypothesis test can be formu-
lated. The null hypothesis H0

i represents the healthy case
when no subsystem Sj , j ∈ Ni is under attack, whereas the
alternative hypothesis H1

i holds otherwise.
Problem 2 (Covert Attack Detection): The detection log-

ic in Di accepts one of the following hypotheses:

H0
i : ρ̂i(k − 1|k) = ρ̂hi (k − 1|k),

H1
i : ρ̂i(k − 1|k) = ρ̂hi (k − 1|k) + ζai,l(k − 1),

(18)



given the estimation residual ρ̂i(k − 1|k) defined in (14).
Again, the superscript h denotes the component not affected
by the attack, ζai,l(k) is considered to be unknown, and ρ̂hi
follows the statistic properties in (16). /

Proposition 4: If Mi(k) is defined according to Lemma 1,
and Vi > 0, then matrix Σi(k) is invertible for all k ≥ 0.

Problem 2 is equivalent to detecting an unknown signal
embedded in white Gaussian noise, and as such a solution
can be found by means of a Generalized Likelihood Ratio
test (see for instance [20]). Hypothesis H1

i is accepted when

p
(
ρ̂i(k − 1|k)

∣∣∣ζ̂ai,l(k − ωi), . . . , ζ̂ai,l(k − 1),H1
i

)
p (ρ̂(k − 1|k) |H0

i )
(19)

is greater than a threshold to be defined, where ζ̂ai,l is a
maximum likelihood estimate of ζai,l. Because of whiteness
of ρ̂hi , ζ̂ai,l(k − 1) = ρ̂i(k − 1|k) is such an estimate.

Let us define the statistic T (ρ̂i, k) as the logarithm of (19)
and θi(k) as a detection threshold; then we obtain the
following detection test:

k∑
κ=k−w+1

ρ̂i(κ− 1|κ)>Σi(κ)−1ρ̂i(κ− 1|κ)︸ ︷︷ ︸
T (ρ̂i,k)

> θi(k), (20)

where it is sufficient for any component of (20) to satisfy the
inequality for detection to occur. The probabilities of false
alarm and detection are defined as the following:

Pfi (k)
.
= Pr{T (ρ̂i, k) > θi(k);H0

i },
Pdi (k)

.
= Pr{T (ρ̂i, k) > θi(k);H1

i }.
(21)

Since Σi(k) is symmetric positive definite it is possible to
find Ui(k) orthogonal such that Σi(k) = Ui(k)Λi(k)U>i (k),
with Λi(k) diagonal. Thus, a transformation

ẑi(k)
.
= Ui(k)ρ̂i(k)

can be defined, where the components of ẑi are mutually
uncorrelated and each q-th component has variance λi[q](k).
Therefore, for q ∈ [1, gi], we have that, for threshold θ̄i[q](k):

T ′(ẑi[q], k) =

k∑
κ=k−ωi+1

ẑ2i[q](κ− 1|κ) > θ̄i[q](k). (22)

Since ẑi is linearly related to ρ̂i, and in light of (17),
T ′(ẑi[q], k) follows the distribution:

T ′(ẑi[q], k) ∼

{
χ2
ωi

(0) if H0,

χ2
ωi

(νq) if H1,
(23)

where χ2
k(νq) is a chi-squared distribution with degree of

freedom ωi and non-centrality parameter

νq =

k−1∑
κ=k−ωi

1

λi[q](κ)

(
Ui[q](κ)ζai,l[q](κ)

)2
, (24)

where Ui[q](k) denotes the q-th row of matrix Ui(k). Let us
define the tail probability of the normalized χ2 distribution

as Φ(u)
.
= 1 − Pr{T ′(ẑi[q], k) < u}. Then, it is possible to

compute the probabilities in (21) for each component q as:

Pfi[q](k) = Φ

(
1√
2ωi

(
θ̄i[q]

λi[q]
− ωi

))
(25a)

Pdi[q](k) = Φ

(√
2kΦ−1(Pfi[q](k))− νq√

4νq + 2ωi

)
. (25b)

Remark 5: Note that T ′(ẑi[q], k) represents the energy
of the attack received by Si. From (25b) it can be seen
that the probability of detection decreases as the attack
energy decreases. Furthermore, as νq → 0, the probability
of detection approaches that of false alarm. More precisely,
νq depends on the energy of the attacked state xal as scaled
by the corresponding interconnection weight.

Also, note that the presence of the input estimate variance
λi[q](k) reduces the effect of the attack on νq . /

Eqs. (25a) and (25b) hold component-wise. It is possible
to find an expression for the probability of false alarm Pfi (k)
of detector Di by observing that the probability of at least
one false alarm is the complementary to the probability of
no false alarms. Thus, recalling that the components of ẑi
are independent by construction, we have that:

Pfi (k) = 1−
gi∏
q=1

(
1− Pfi[q](k)

)
. (26)

If we assume the same probability Pfi[q](k) for each compo-
nent q, it is possible to invert (26) and (25a). This allows to
compute individual thresholds θ̄i[q], given a desired cumula-
tive probability Pfi (k). The overall probability of detection
can be found in the same way, although it depends on νq .

VII. NUMERICAL SIMULATIONS

A. Simulation setup

We consider a CPS composed of N = 4 subsystems, inter-
connected as in Figure 1. We consider the linearized model
of multiple pendula coupled through a spring, as presented
in [21, Ex. 1.36], where each subsystem is described by:

mil
2
i δ̈i = migliδi + ui +

∑
j∈Ni

kija
2
i (δj − δi), (27)

where δi, mi, li are respectively the displacement angle,
mass, and length of the pendulum; g is the gravitational
constant; kij is the spring coefficient, with kij = kji, and ai
is the height at which the spring is attached to pendulum i.
The parameter values used in the numerical simulation can
be found in Table I.

Choosing xi
.
= [δi, δ̇i]

>, and defining a decentralized state
feedback control law ui

.
= Kixi, we discretize the pendu-

lum’s dynamics subsystem-by-subsystem with Euler’s ap-
proximation with sampling time Ts = 0.01 s, preserving
the topology and the interconnection structure of the CPS.
For all subsystems, we assume that all states are measurable,
i.e. Ci = I2. The process and measurement noise variance
matrices are Wi = 10−3I and Vi = 10−3I. We run the
simulation for 100 s.



Fig. 2: Comparison of the statistic T ′(ẑi, k), in blue, against the detection threshold θ̄i(k), in dashed-black.

TABLE I: Subsystem and interconnection parameters

mi li ai k12 k23 k24 k34

0.5 kg 0.1 m 0.06 m 27 40 35 53

From (27), and considering the Euler approximation for
the discretization of each subsystem, it is possible to choose
Gi = [0, 1]>. Note that ξi ∈ R, for all subsystems.

B. Attack scenario and detection

Starting from time ka = 35 s, an attacker is able to inject

η3(k)
.
= 0.5

(
1− e−0.3(k·Ts−ka)

)
sin

(
2

30
πk · Ts

)
,

where the attenuation term
(
1− e−0.3(k·Ts−ka)

)
is added

to reduce the transient behavior of the attack. In Figure 2,
we show the effectiveness of our detection technique, by
comparing the statistic T ′(ẑi, k), computed by using a
window of size ωi = 20, to the threshold θ̄i(k), defined
for all subsystems such that the probability of false alarm
P fi = 0.05.

At time k = 36.78 s, detector D2 detects the presence of
an attack in N2, while D4 detects the attack in N4 at time
k = 37.16 s. As expected, the diagnosers for subsystems S1
and S3 do not detect an attack.

VIII. CONCLUDING REMARKS

We have proposed a distributed method capable of de-
tecting local covert attacks in interconnected CPSs with
stochastic uncertainties. The proposed method is based on the
joint estimation of local states and the neighbors’ cumulative
effect; communication among subsystems enables definition
of a suitable residual signal and a related statistical test.

Future work will include studying additional detectability
properties of the proposed approach and comparison to other
techniques for solving Problem 2, as well as investigation
into the architecture’s robustness to other types of attacks.
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