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Abstract

Variance estimation is central to many questions in finance and economics. Until
now ex-post variance estimation has been based on infill asymptotic assumptions that
exploit high-frequency data. This paper offers a new exact finite sample approach to
estimating ex-post variance using Bayesian nonparametric methods. In contrast to
the classical counterpart, the proposed method exploits pooling over high-frequency
observations with similar variances. Bayesian nonparametric variance estimators under
no noise, heteroskedastic and serially correlated microstructure noise are introduced and
discussed. Monte Carlo simulation results show that the proposed approach can increase
the accuracy of variance estimation. Applications to equity data and comparison with
realized variance and realized kernel estimators are included.
Key words: Dirichlet process mixture, pooling, realized kernel, shrinkage

1 Introduction

Volatility is an indispensable quantity in finance and is a key input into asset pricing, risk
management and portfolio management. In the last two decades, researchers have taken
advantage of high-frequency data to estimate ex-post variance using intraperiod returns.
Barndorff-Nielsen & Shephard (2002) and Andersen et al. (2003) formalized the idea of using
high frequency data to measure the volatility of lower frequency returns. They show that
realized variance (RV) is a consistent estimator of quadratic variation under ideal conditions.
Unlike parametric models of volatility in which the model specification is important, RV is
a model free estimate of quadratic variation in that it is valid under a wide range of spot
volatility dynamics.1

RV provides an accurate measure of ex-post variance if there is no market microstructure
noise. However, observed prices at high-frequency are inevitably contaminated by noise in
reality and returns are no longer uncorrelated. In this case, RV is a biased and inconsistent
estimator (Hansen & Lunde 2006, Aı̈t-Sahalia et al. 2011). The impact of market microstruc-
ture noise on forecasting is explored in Aı̈t-Sahalia & Mancini (2008) and Andersen et al.
(2011).

Several different approaches have been proposed to estimating ex-post variance under
microstructure noise. Zhou (1996) first introduced the idea of using a kernel-based method
to estimate ex-post variance. Barndorff-Nielsen et al. (2008) formally discussed the realized
kernel and showed how to use it in practice in a later paper (Barndorff-Nielsen et al. (2009)).
Another approach is the subsampling method of Zhang et al. (2005). Hansen et al. (2008)
showed how a time-series model can be used to filter out market microstructure to obtain cor-
rected estimates of ex-post variance. A robust version of the predictive density of integrated
volatility is derived in Corradi et al. (2009). Although bootstrap refinements are explored
in Goncalves & Meddahi (2009) all distributional results from this literature rely on in-fill
asymptotics.

Much of the literature has focused on the asymptotic properties of adaptations of realized
variation which are robust to market microstructure noise. However, an argument can be
made against the direct use of realized variation in the no noise situation if time between
observations does not converge to zero. Realized variation is the sum of squared intraperiod
returns and each component of that sum is an unbiased estimator of the corresponding
intraperiod integrated volatility. It is well-understood that unbiased estimators based on
one observations can be sub-optimal in terms of mean squared error and risk, e.g. Brown
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& Zhao (2012). Shrinkage estimators which pool information from related estimates are
one method to construct estimators with better properties. This suggests estimators of
the integrated volatility with smaller mean squared error than realized variation can be
constructed by summing shrunken estimates of the intraperiod integrated volatility.2 When
will there be substantial differences? Intuitively, shrinkage estimates work well when the
unbiased estimators are noisy and information can be usefully pooled. If high frequency
data had no noise, we would expect the difference to decrease as the sampling frequency
increases (and the benefit of pooling will disappear asymptotically). In reality, high-frequency
financial data includes noise and it is less clear that substantial differences will disappear
asymptotically. In our simulation experiments, we find evidence that the difference in mean
squared error persists at high frequency.

We use a Bayesian hierarchical approach to achieve shrinkage by pooling the information
from related estimates. To our knowledge this idea has not been used in the estimation
of volatility using high-frequency data. We assume that the intraperiod integrated volatility
over short periods are exchangeable which implies that they can be modelled as conditionally
independent and drawn from a prior distribution. The choice of distribution will have a
strong effect on the form of pooling and so we choose to infer this distribution from the data
using Bayesian nonparametric methods rather than choosing a parametric family (such as
the generalized inverse Gaussian distribution). We model intraperiod returns according to a
Dirichlet process mixture (DPM) model. This is a countably infinite mixture of distributions
which facilitates the clustering of return observations into distinct groups sharing the same
variance parameter.

Our proposed method benefits variance estimation in at least two aspects. First, the
common values of intraperiod variance can be pooled into the same group leading to a more
precise estimate. The pooling is done endogenously along with estimation of other model
parameters. Second, the Bayesian nonparametric model delivers exact finite inference regard-
ing ex-post variance or transformations such as the logarithm. As such, uncertainty around
the estimate of ex-post volatility is readily available from the predictive density. Unlike the
existing asymptotic theory which may give confidence intervals that contain negative val-
ues for variance, density intervals are always on the positive real line and can accommodate
asymmetry. By extending key results in Hansen et al. (2008) we adapt the DPM mixture
models to deal with returns contaminated with heteroskedastic noise and serially correlated
noise.

Mykland & Zhang (2009) considered links between local parametric inference and high-
frequency financial data analysis. Their approach assumes that quantities such as volatility
are constant over blocks of returns and can lead to more efficient estimation and the definition
of new estimators. Our method can be seen as a generalization of their blocked realized
variance estimator using partitioning ideas from Bayesian nonparametrics by defining clusters
rather than blocks of returns. Our approach endogenously finds these clusters and so does
not restrict to clusters or blocks with a number of returns which are consecutive in time.

Monte Carlo simulation results show the Bayesian approach to be a very competitive
alternative. Overall, pooling can lead to more precise estimates of ex-post variance and
better coverage frequencies. These results are robust to different prior settings, irregularly
spaced prices and tick time sampling. We show that the new variance estimators can be
used with confidence and effectively recover both the average statistical features of daily ex-
post variance as well as the time-series properties. Two applications to real world data with
comparison to realized variance and kernel-based estimators are included.
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This paper is organized as follows. The Bayesian nonparametric model, daily variance
estimator and model estimation methods are discussed in Section 2. Section 3 extends
the Bayesian nonparametric model to deal with heteroskedastic and serially correlated mi-
crostructure noise. The consistency of the estimator is considered in Section 4. Section 5
provides an extensive simulation and comparison of the estimators. Applications to IBM and
S&P 500 ETF data are found in Section 6. Section 7 concludes followed by an appendix.

2 Bayesian Nonparametric Ex-post Variance Estima-

tion

In this section, we introduce a Bayesian nonparametric ex-post volatility estimator. After
defining the daily variance, conditional on the data, the discussion moves to the DPM model
which provides the model framework of the proposed estimator. The approach discussed in
this section deals with returns without microstructure noise and an estimator suitable for
returns with microstructure noise is found in Section 3.

2.1 Model of High-frequency Returns

First, we consider the case with no market microstructure noise. We are interested in es-
timating the integrated volatility over fixed periods (which for simplicity will subsequently
be called a day) using high-frequency intraday log returns. We will assume that there are
nt intraday log returns for the t-th day recorded at times τt,1, τt,2, . . . , τt,nt and which are
denoted rt,1, . . . , rt,nt . The model for each log-return is

rt,i = µt + σt,izt,i, zt,i
iid∼ N(0, 1), i = 1, . . . , nt, (1)

where µt is constant in day t and 0 < σt,i < ∞ for all i.3 We make no assumptions on
the stochastic process generating σ2

t,i. For example, volatility may have jumps, undergo
structural change or possess long memory. Given this assumed discrete data generating
process we cannot distinguish between continuous and discrete (jumps) components as is
commonly done in the literature (Barndorff-Nielsen & Shephard 2006). The daily return is

rt =
nt∑
i=1

rt,i (2)

and it follows, conditional on the unknown realized volatility path Ft ≡ {σ2
t,i}nt

i=1, the ex-post
variance is

Vt ≡ Var(rt|Ft) =
nt∑
i=1

σ2
t,i. (3)

In our Bayesian setting Vt is the target to estimate conditional on the data {rt,i}nt
i=1.

2.2 A Bayesian Model with Pooling

In this section we discuss a nonparametric prior for the model of (1) that allows for pooling
over common values of σ2

t,i. The Dirichlet process mixture model (DPM) is a Bayesian
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nonparametric mixture model that has been used in density estimation and for modeling
unknown hierarchical effects among many other applications. A key advantage of the model
is that it naturally incorporates parameter pooling.

Our nonparametric model has the following hierarchical form

rt,i
∣∣µt, σt,i iid∼ N(µt, σ

2
t,i), i = 1, . . . , nt, (4)

σ2
t,i

∣∣Gt
iid∼ Gt, (5)

Gt

∣∣G0,t, αt ∼ DP(αt, G0,t), (6)

G0,t ≡ IG(v0,t, s0,t), (7)

where the base measure is the inverse-gamma distribution denoted as IG(v, s), which has a
mean of s/(v − 1) for v > 1. The return mean µt is assumed to be a constant over i.

The Dirichlet process was formally introduced by Ferguson (1973) and is a distribution
over distributions. Note that each day assumes an independent DPM model and is indexed
by t. We do not pursue pooling over Gt. A draw from a DP(αt, G0,t) is an almost surely
discrete distribution which is centered around the base distribution G0,t, in the sense that
E[Gt(B)] = G0,t(B) for any set B. The concentration parameter αt > 0 governs how closely
a draw Gt resembles G0,t. Larger values of αt lead to Gt being closer to G0,t. Since the
realisation Gt are discrete, a sample from σ2

t,i

∣∣Gt ∼ Gt has a positive probability of repeated
values. This has lead the use of DPM’s for clustering problems. If Kn is the number of
distinct values in a sample of size n, then E[Kn] ≈ αt log(1 + n/αt). Therefore, the number
of distinct values grows logarithmically with sample size and larger values of αt will tend
to lead to more distinct values. In fact, as αt → ∞, Gt → G0,t which implies that every
rt,i has a unique σ2

t,i drawn from centering distribution. In this model, the inverse gamma
distribution is used as the centering base measure as this is the standard conjugate choice
and leads to relatively simple computational schemes for inference.

In the case of αt → ∞, there is no pooling and we have a setting very close to the
classical counterpart discussed above. However, for finite αt, pooling can take place. The
other extreme is complete pooling for αt → 0 in which there is one common variance shared
by all observations such that σ2

t,i = σ2
t,1, ∀i. Since αt plays an important role in pooling we

place a prior on it and estimate it along with the other model parameters for each day.
A stick breaking representation (Sethuraman 1994) of the DPM in (5) is given as follows.4

p(rt,i
∣∣µt,Ψt, wt) =

∞∑
j=1

wt,jN(rt,i|µt, ψ2
t,j), (8)

wt,j = vt,j

j−1∏
l=1

(1− wt,l), (9)

vt,j
iid∼ Beta(1, αt), (10)

where N(·|·, ·) denotes the density of the normal distribution, Ψt = {ψ2
t,1, ψ

2
t,2. . . . , } is the set

of unique values of σ2
t,i, wt = {wt,1, wt,2, . . . , } and wt,j is the weight associated with the jth

component. This formulation of the model facilitates posterior sampling which is discussed
in the next section.

Since our focus is on intraday returns and the number of observations in a day can be
small, especially for lower frequencies such as 5-minute. Therefore, the prior should be chosen
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carefully. It is straightforward to show that the prior predictive distribution of σ2
t,i is G0,t.

For σ2
t,i ∼ IG(v0,t, s0,t), the mean and variance of σ2

t,i are

E(σ2
t,i) =

s0,t

v0,t − 1
and var(σ2

t,i) =
s2

0,t

(v0,t − 1)2(v0,t − 2)
. (11)

Solving the two equations, the values of v0,t and s0,t are given by

v0,t =

[
E(σ2

t,i)
]2

var(σ2
t,i)

+ 2 and s0,t = E(σ2
t,i)(v0,t − 1). (12)

We use sample statistics v̂ar(rt,i) and v̂ar(r2
t,i) calculated with three days intraday returns

(day t− 1, day t, and day t + 1) to set the values of E(σ2
t,i) and var(σ2

t,i), then use equation
(12) to find v0,t and s0,t. A shrinkage prior N(0, v2) is used for µt since µt is expected to be
close to zero. The prior variance of µt is adjusted according to data frequency: v2 = ζ2/nt
where nt is the number of intraday returns. Finally, αt ∼ Gamma(a, b).

For a finite dataset i = 1, . . . , nt our target is the following posterior moment

E[Vt|{rt,i}nt
i=1] = E

[
nt∑
i=1

σ2
t,i

∣∣∣∣{rt,i}nt
i=1

]
. (13)

Note that the posterior mean of Vt can also be considered as the posterior mean of realized
variance, RVt =

∑nt

i=1 r
2
t,i assuming µt is small. As such, RVt treats each σ2

t,i as separate and
corresponds to no pooling.

Mykland & Zhang (2009) discuss the use of blocks of high frequency data in volatility
estimation. Our method can be seen as a generalization of Mykland & Zhang (2009). We
allow returns with the same variance to form groups flexibly and do not impose the restric-
tion that the returns in one group are consecutive in time. Another distinction is that our
approach allows the group size to vary over clusters and be determined endogenously, while
Mykland & Zhang (2009) has one fixed block size for all clusters preset by the econometri-
cian. Furthermore, unlike standard blocking, the proposed method is invariance to return
permutations since the DPM model assumes exchangeable data.

2.3 Model Estimation

Estimation relies on Markov chain Monte Carlo (MCMC) techniques. We apply the slice
sampler of Kalli et al. (2011), along with Gibbs sampling to estimate the DPM model. The
slice sampler provides an elegant way to deal with the infinite states in (8). It introduces an
auxiliary variable ut,1:nt = {ut,1, . . . , ut,nt} that randomly truncates the state space to a finite
set at each MCMC iteration but marginally delivers draws from the desired posterior.

The joint distribution of rt,i and the auxiliary variable ut,i is given by

f (rt,i, ut,i|wt, µt,Ψt) =
∞∑
j=1

1 (ut,i < wt,j) N
(
rt,i|µt, ψ2

t,j

)
, (14)

and integrating out ut,i recovers (8).
It is convenient to rewrite the model in terms of a latent state variable st,i ∈ {1, 2, . . . } that

maps each observation to an associated component and parameter σ2
t,i = ψ2

t,st,i
. Observations
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with a common state share the same variance parameter. For finite dataset the number of
states (clusters) is finite and ordered from 1, . . . , K. Note that the number of clusters K, is
not a fixed value over the MCMC iterations. A new cluster with variance ψ2

t,K+1 ∼ G0,t can
be created if existing clusters do not fit that observation well and clusters sharing a similar
variance can be merged into one.

The joint posterior is

p(µt)
K∏
j=1

[
p(ψ2

t,j)
]
p(αt)

nt∏
i=1

1(ut,i < wt,st,i)N(rt,i|µt, ψ2
t,st,i

). (15)

Each MCMC iteration contains the following sampling steps.

1. π
(
µt|rt,1:nt , {ψ2

t,j}Kj=1, st,1:nt

)
∝ p (µt)

∏nt

i=1 p
(
rt,i
∣∣µt, ψ2

t,st,i

)
.

2. π
(
ψ2
t,j|rt,1:nt , st,1:nt , µt

)
∝ p

(
ψ2
t,j

)∏
t:st,i=j

p
(
rt,i
∣∣µt, ψ2

t,j

)
for j = 1, . . . , K.

3. π (vt,j|st,1:nt) ∝ Beta (vt,j|at,j, bt,j) with at,j = 1 +
∑nt

i=1 1 (st,i = j) and bt,j = αt +∑nt

i=1 1 (st,i > j) and update wt,j = vt,j
∏

l<j (1− vt,l) for j = 1, . . . , K.

4. π (ut,i|wt,i, st,1:nt) ∝ 1
(
0 < ut,i < wt,st,i

)
.

5. Find the smallest K such that
∑K

j=1wt,j > 1−min (ut,1:nt).

6. π
(
st,i|r1:nt , st,1:nt , µt, {ψ2

t,j}Kj=1, ut,1:nt , K
)
∝
∑K

j=1 1 (ut,i < wt,j) p
(
rt,i, |µt, ψ2

t,j

)
for i =

1, . . . , nt.

7. π (αt|K) ∝ p (αt) p (K|αt).

In the first step µt is common to all returns and this is a standard Gibbs step given the
conjugate prior. Step 2 is a standard Gibbs step for each variance parameter ψ2

t,j based on
the data assigned to cluster j. The remaining steps are standard for slice sampling of DPM
models. In 7, αt is sampled based on Escobar & West (1994).

Steps 1-7 give one iteration of the posterior sampler. After dropping a suitable burn-in
amount, M additional samples are collected, {θ(m)}Mm=1, where θ = {µt, ψ2

t,1, . . . , ψ
2
t,K , st,1:nt , αt}.

Posterior moments of interest can be estimated from sample averages of the MCMC output.

2.4 Ex-post Variance Estimator

Conditional on the parameter vector θ the estimate of Vt is

E[Vt|θ] =
nt∑
i=1

σ2
t,si
. (16)

The posterior mean of Vt is obtained by integrating out all parameter and distributional
uncertainty. E [Vt|{rt,i}nt

i=1] is estimated as

V̂t =
1

M

M∑
m=1

nt∑
i=1

σ
2(m)
t,i , (17)
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where σ
2(m)
t,i = ψ

2(m)

t,s
(m)
t,i

. Similarly other features of the posterior distribution of Vt can be

obtained. For instance, a (1-α) probability density interval for Vt is the quantiles of
∑nt

i=1 σ
2
t,st,i

associated with probabilities α/2 and (1 − α/2). Conditional on the model and prior these
are exact finite sample estimates, in contrast to the classical estimator which relies on infill
asymptotics to derived confidence intervals.

If log(Vt) is the quantity of interest, the estimator of E [log(Vt)|{rt,i}nt
i=1] is given as

̂log(Vt) =
1

M

M∑
m=1

log

(
nt∑
i=1

σ
2(m)
t,i

)
. (18)

As before, quantile estimates of the posterior of log(Vt) can be estimated from the MCMC
output.

3 Bayesian Estimator Under Microstructure Error

An early approach to deal with market microstructure noise was to prefilter with a time-series
model (Andersen, Bollerslev, Diebold & Ebens 2001, Bollen & Inder 2002, Maheu & McCurdy
2002). Hansen et al. (2008) shows that prefiltering results in a bias to realized variance
that can be easily corrected. We employ these insights into moving average specifications
to account for noisy high-frequency returns. A significant difference is that we allow for
heteroskedasticity in the noise process.

3.1 DPM-MA(1) Model

The existence of microstructure noise turns the intraday return process into an autocorrelated
process. First consider the case in which the error is white noise:

p̃t,i = pt,i + εt,i, εt,i ∼ N(0, ω2
t,i), (19)

where p̃t,i denotes the observed log-price with error, pt,i is the unobserved fundamental log-
price and ω2

t,i is the heteroskedastic noise variance.
Given this structure it can be shown that the returns series r̃t,i = p̃t+1,i− p̃t,i has non-zero

first order autocorrelation but zero higher order autocorrelation. That is cov(r̃t,i+1, r̃t,i) =
−ω2

t,i and cov(r̃t,i+j, r̃t,i) = 0 for j ≥ 2. This suggests a moving average model of order one.5

Combining MA(1) parameterization with our Bayesian nonparametric framework yields
the DPM-MA(1) models.

r̃t,i|µt, θt, δ2
t,i = µt + θtηt,i−1 + ηt,i, ηt,i ∼ N(0, δ2

t,i) (20)

δ2
t,i|Gt ∼ Gt, (21)

Gt|G0,t, αt ∼ DP(αt, G0,t), (22)

G0,t ≡ IG(v0,t, s0,t). (23)

The noise terms are heteroskedastic. Note that the mean of rt,i is not a constant term but
a moving average term. The MA parameter θt is constant for i but will change with the
day t. The prior is θt ∼ N(mθ, v

2
θ)1{|θt|<1} in order to make the MA model invertible. The

error term ηt,0 is assumed to be zero. Other model settings remain the same as the DPM
illustrated in Section 2. Later we show how estimates from this specification can be be used
to recover an estimate of the ex-post variance Vt of the true return process.
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3.2 DPM-MA(q) Model

For lower sampling frequencies, such as 1 minute or more, first order autocorrelation is the
main effect from market microstructure. As such, the MA(1) model will be sufficient for many
applications. However, at higher sampling frequencies, the dependence may be stronger. To
allow for a more complex effect on returns from the noise process consider the MA(q-1) noise
affecting returns,

p̃t,i = pt,i + εt,i − ρ1εt,i−1 − · · · − ρq−1εt,i−q+1, εt,i ∼ N(0, ω2
t,i). (24)

For returns, this leads to the following DPM-MA(q) model,

r̃t,i|µt, {θt,j}qj=1, δ
2
t,i = µt +

q∑
j=1

θt,jηt,i−j + ηt,i, ηt,i ∼ N(0, δ2
t,i) (25)

δ2
t,i|Gt ∼ Gt, (26)

Gt|G0,t, αt ∼ DP(αt, G0,t), (27)

G0,t ≡ IG(v0,t, s0,t). (28)

The joint prior of (θt,1, . . . , θt,q) is N(MΘ, VΘ)1{Θ}6 and (ηt,0, . . . , ηt,−(q−1)) = (0, . . . , 0).

3.3 Model Estimation

We discuss the estimation of DPM-MA(1) model and the approach can be easily extended to
the DPM-MA(q). The main difference in this model is that the conditional mean parameters
µt and θt require a Metropolis-Hasting (MH) step to sample their conditional posteriors. The
remaining MCMC steps are essentially the same. As before, let ψ2

t,i denote the unique values
of δ2

t,j then each MCMC iteration samples from the following conditional distributions.

1. π
(
µt|r̃t,1:nt , {ψ2

t,j}Kj=1, θt, st,1:nt

)
∝ p (µt)

∏nt

i=1 N
(
r̃t,i|µt + θtηt,i−1, ψ

2
t,st,i

)
.

2. π
(
θt|r̃t,1:nt , µt, {ψ2

t,j}Kj=1, s
t
1:nt

)
∝ p (θt)

∏nt

i=1 p
(
r̃t,i|µt + θtηt,i−1, ψ

2
t,st,i

)
.

3. π
(
ψ2
t,j|r̃t,1:nt , µt, θt, st,1:nt

)
∝ p

(
ψ2
t,j

)∏
t:st=j

p
(
r̃t,i|µt + θtεt,i−1, ψ

2
t,j

)
for j = 1, . . . , K.

4. π (vt,j|st,1:nt) ∝ Beta (vt,j|at,j, bt,j) with at,j = 1 +
∑nt

i=1 1(st,i = j) and bt,j = αt +∑nt

i=1 1(st,i > j) and update wt,j = vt,j
∏

l<j(1− vt,l) for j = 1, . . . , K.

5. π (ut,i|wt,i, st,1:nt) ∝ 1(0 < ut,i < wt,st,i) for i = 1, . . . , nt.

6. Find the smallest K such that
∑K

j=1wt,j > 1−min(ut,1:nt).

7. π
(
st,i|r̃1:nt , st,1:nt , µt, θt, {ψ2

t,j}Kj=1, ut,1:nt , K
)
∝
∑K

j=1 1(ut,i < wt,j)N(r̃t,i|µt+θtηt,i−1, ψ
2
t,j)

for i = 1, . . . , nt.

8. π(αt|K) ∝ p(αt)p(K|αt).

In steps 1 and 2 the likelihood requires the sequential calculation of the lagged error as
ηt,i−1 = r̃t,i−1− µt− θtηt,i−2 which precludes a Gibbs sampling step. Therefore, µt and θt are
sampled using a MH with a random walk proposal. The proposal is calibrated to achieve an
acceptance rate between 0.3 and 0.5.
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3.4 Ex-post Variance Estimator under Microstructure Error

Hansen et al. (2008) showed that prefiltering with an MA model results in a bias in the RV
estimator.7 In the Appendix it is shown that the Hansen et al. (2008) bias correction provides
an accurate adjustment to our Bayesian estimator in the context of heteroskedastic noise.
From the DPM-MA(1) model the posterior mean of Vt under independent microstructure
error is

V̂t,MA(1) =
1

M

M∑
m=1

(1 + θ
(m)
t )2

nt∑
i=1

δ
2(m)
t,i , (29)

where δ
2(m)
t,i = ψ

2(m)

t,s
(m)
t,i

The log of Vt, square-root of Vt and density intervals can be estimated

as the Bayesian nonparametric ex-post variance estimator without microstructure error.
In the case of higher autocorrelation the DPM-MA(q) model adjusted posterior estimate

of Vt is

V̂t,MA(q) =
1

M

M∑
m=1

(
1 +

q∑
j=1

θ
(m)
t,j

)2 nt∑
i=1

δ
2(m)
t,i . (30)

Next we consider simulation evidence on these estimators.

4 Consistency

Each of the previous discussed estimators (posterior means) for integrated volatility (3) can
be fairly easily shown to be consistent estimators as the sampling frequency increases. The
posterior mean of Vt can be shown to be equal to a consistent estimator plus a bias term
that goes to zero in probability as nt → 0. We provide the proof for the case with no market
microstructure noise.

Theorem 1. Suppose that p is an arbitrage-free price process with zero mean, that sup(τt,j+1−
τt,j) → 0 for nt → ∞ and that s0,nt = O(n−αt ) for α > 0 then E[Vt|{rt,i}nt

i=1] is a consistent
estimator of the integrated volatility.

See the Appendix for the proof.
A similar argument can be used for the MA processes with the residuals from the MA

process replacing the returns. (Hansen et al. 2008) argue that scaling RVt avoids the incon-
sistency of realized volatility under market microstructure noise.

5 Simulation Results

5.1 Data Generating Process

We consider four commonly used data generating processes (DGPs) in the literature. The
first one is the GARCH(1,1) diffusion, introduced by Andersen & Bollerslev (1998). The
log-price follows

dp(t) = µdt+ σ(t)dWp(t), (31)

dσ2(t) = α(β − σ2(t))dt+ γσ2(t)dWσ(t). (32)
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where Wp(t) and Wσ(t) are two independent Wiener processes. The values of parameters
follow Andersen & Bollerslev (1998) and are µ = 0.03, α = 0.035, β = 0.636 and γ = 0.144,
which were estimated using foreign exchange data.

Following Huang & Tauchen (2005), the second and third DGP are a one factor stochastic
volatility diffusion (SV1F) and one factor stochastic volatility diffusion with jumps (SV1FJ).
SV1F is given by

dp(t) = µdt+ exp (β0 + β1v(t)) dWp(t), (33)

dv(t) = αv(t)dt+ dWv(t) (34)

and the price process for SV1FJ is

dp(t) = µdt+ exp (β0 + β1v(t)) dWp(t) + dJ(t) , (35)

where corr(dWp(t), dWv(t)) = ρ, and J(t) is a Poisson process with jump intensity λ and
jump size δ ∼ N(0, σ2

J). We adopt the parameter settings from Huang & Tauchen (2005) and
set µ = 0.03, β0 = 0.0, β1 = 0.125, α = −0.1, ρ = −0.62, λ = 0.014 and σ2

J = 0.5.
The final DGP is the two factor stochastic volatility diffusion (SV2F) from Chernov et al.

(2003) and Huang & Tauchen (2005).8

dp(t) = µdt+ s- exp (β0 + β1v1(t) + β2v2(t)) dWp(t), (36)

dv1(t) = α1v1(t)dt+ dWv1(t), (37)

dv2(t) = α2v2(t)dt+ (1 + ψv2(t)) dWv2(t), (38)

where corr(dWp(t), dWv1(t)) = ρ1 and corr(dWp(t), dWv2(t)) = ρ2. The parameter values in
SV2F are µ = 0.03, β0 = −1.2, β1 = 0.04, β2 = 1.5, α1 = −0.00137, α2 = −1.386, ψ = 0.25
and ρ1 = ρ2 = −0.3, which are from Huang & Tauchen (2005).

Data is simulated using a basic Euler discretization at 1-second frequency for the four
DGPs. Assuming the length of daily trading time is 6.5 hours (23400 seconds), we first
simulate the log price level every second. After this we compute the 5-minute, 1-minute,
30-second and 10-second intraday returns by taking the difference every 300, 60, 30, 10 steps,
respectively. The initial volatility level, such as v1t and v2t in SV2F, at day t is set equal to
the last volatility value at previous day, t−1. T = 5000 days of intraday returns are simulated
using the four DGPs and used to report sampling properties of the volatility estimators. In
each case, to remove dependence on the startup conditions 500 initial days are dropped from
the simulation.

5.1.1 Independent Noise

Following Barndorff-Nielsen et al. (2008), log-prices with independent noise are simulated as
follows

p̃t,i = pt,i + εt,i,

εt,i ∼ N(0, σ2
ω),

σ2
ω = ξ2var(rt).

(39)

The error term is added to the log-prices simulated from the 4 DGPs every second. The
variance of microstructure error is proportional to the daily variance calculated using the
pure daily returns. We set the noise-to-signal ratio ξ2 = 0.001, which is the same value used
in Barndorff-Nielsen et al. (2008) and close to the value in Bandi & Russell (2008).
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5.1.2 Dependent Noise

Following Hansen et al. (2008), we consider the simulation of log-prices with dependent noise
as follows,

p̃t,i = pt,i + εt,i,

εt,i ∼ N
(
µεt,i , σ

2
ω

)
,

µεt,i =

φ∑
l=1

(
1− l

φ

)
(pt,i−l − pt,i−1−l) ,

σ2
ω = ξ2var(rt),

(40)

where φ = 20, which makes the error term correlated with returns in the past 20 seconds
(steps). If past returns are positive (negative) the noise term tends to be positive (negative).
All other settings, such as σ2

ω and ξ2, are the same as in the independent error case.

5.2 True Volatility and Comparison Criteria

The realized variance (RV ) by Andersen et al. (2003) and Barndorff-Nielsen & Shephard
(2002), the flat-top realized kernel (RKF ) by Barndorff-Nielsen et al. (2008) and the non-
negative realized kernel (RKN) by Barndorff-Nielsen et al. (2011) serve as the benchmarks
for comparison. Section 8.1 in the appendix provides a brief review of those estimators.

We assess the ability of several ex-post variance estimators to estimate the daily quadratic
variation (QVt) from the four data generating processes. QVt is estimated as the summation
of the squared intraday pure returns at the highest frequency (1 second)

σ2
t ≡

23400∑
i=1

r2
t,i. (41)

The competing ex-post daily variance estimators, generically labelled σ̂2
t , are compared

based on the root mean squared errors (RMSE), and bias defined as

RMSE(σ̂2
t ) =

√√√√ 1

T

T∑
t=1

(
σ̂2
t − σ2

t

)2

, (42)

Bias(σ̂2
t ) =

1

T

T∑
t=1

(
σ̂2
t − σ2

t

)
. (43)

The coverage probability estimates report the frequency that the confidence intervals
or density intervals from the Bayesian nonparametric estimators contain the true ex-post
variance, σ2

t . The 95% confidence intervals of RVt, RK
F
t and RKN

t reply on the asymptotic
distribution, which are provided in equation (49), (52) and (56). We take the bias into
account to compute the 95% confidence interval using RKN

t .
The estimation of integrated quarticity is crucial in determining the confidence interval for

the realized kernels. We consider two versions of quarticity, one is to use the true (infeasible)
IQt which is calculated as

IQtrue
t = 23400

23400∑
i=1

σ4
t,i, (44)
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where σ2
t,i refers to spot variance simulated at the highest frequency. The other method is

to estimate IQt using the tri-power quarticity estimator, see formula (54). The confidence
interval based on IQtrue

t is the infeasible case and the confidence interval calculated using
TPQt is the feasible case.

For each day 5000 MCMC draws are collected after 1000 burn-in to compute the Bayesian
posterior quantities. A 0.95 density interval is the 0.025 and 0.975 sample quantiles of MCMC
draws of

∑nt

i=1 σ
2
t,i, respectively.

5.3 No Microstructure Noise

In Table 2, V̂t has slightly smaller RMSE in 12 out of the 16 categories. A paired t-test shows
most of these differences in MSE are significant as well. For example, for the 5-minute data
V̂t reduces the RMSE by over 5% for the SV2F data. This is remarkable given that RVt is
the gold standard in the no noise setting. Bias and coverage probabilities (not displayed)
for 95% confidence intervals of RVt and 0.95 density intervals of V̂t show both estimators
to perform well. Under no microstructure noise, the Bayesian nonparametric estimator is
competitive with the classical counterpart RVt. V̂t offers smaller estimation error and better
finite sample results than RVt when the data frequency is low. Performance of RVt and V̂t
both improve as the sampling frequency increases.

The comparison between the Bayes nonparamatric estimator and the blocked RV9 of
Mykland & Zhang (2009) is also considered. Table 2 reports RMSE of blocked RV with

block size being n
3/4
t . The RMSE of V̂t remains the lowest in 12 out of the 16 cases.

A robustness analysis is conducted to check how sensitive the results are to the selection
of priors. Different sets of hyperparameters of µt and α are considered and calibration of the
prior of σ2

t,i based on only one day of data (Equation (12)). Table 3 summarizes RMSE of V̂t
under alternative priors for SV2F data (see entries of v1d

0,t, s
1d
0,t for one day of prior calibration).

None of the result changes more than 1% under new priors and V̂t consistently outperform
RVt in 5-minute, 1-minute and 30-second categories.

We also include an analysis to check if the benefits of pooling persists given irregularly
spaced returns. Following Barndorff-Nielsen et al. (2011), arrival times of observed prices are
simulated from a Poisson process. Table 4 shows the Bayes nonparametric estimator V̂t has
a lower RMSE compared with RVt for this irregular-spaced data generating process.

5.4 Independent and Dependent Microstructure Noise

In this section we compare RVt, RK
F
t , V̂t and V̂t,MA(1) with independent microstructure

noise. Table 5 shows the RMSE of the various estimators for different sampling frequencies
and DGPs. RVt and V̂t produce smaller errors in estimating σ2

t than RKF
t and V̂t,MA(1) for

5-minute data. However, increasing the sampling frequency results in a larger bias from the
microstructure noise. As such, RKF

t and V̂t,MA(1) are more accurate as the data frequency

increases. Compared to RKF
t , V̂t,MA(1) has a smaller RMSE in all cases, except for 30-second

and 10-second SV2F return.
As can be seen in Table 6, V̂t,MA(1) has the best finite sample coverage among all the

alternatives except for the SV2F data. For example, the coverage probabilities of 0.95 density
intervals are always within 0.5% from the truth. Note that the density intervals are trivial
to obtain from the MCMC output and do not require the calculation IQt. The coverage
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probabilities of either infeasible and feasible confidence intervals of realized kernels are not
as good as those of V̂t,MA(1). Moreover, RKF

t requires larger samples for good coverage, while

density intervals of V̂t,MA(1) perform well for either low or high frequency returns.
The last experiment considers the performances of the estimators under dependent noise.

RKN
t , RVt, V̂t, V̂t,MA(1) and V̂t,MA(2) are compared. The RMSE of estimators can be found in

Table 7. Again, RVt and V̂t provide poor results if high frequency data is used. Except for
one entry in the table, a version of the Bayesian estimator has the smallest RMSE in each
case. The V̂t,MA(1) estimator is ranked the best if return frequency is 30 seconds, followed by

V̂t,MA(2) and RKN
t . For 10 seconds returns, V̂MA(2) provides the smallest error. Compared

to RKN
t the V̂t,MA(1) and V̂t,MA(2) can provide significant improvements for 30 and 10 second

returns. For instance, at 30 seconds, reductions in the RMSE of 10% or more are common
while at the 10 second frequency reductions in the RMSE are 25% or more.

Table 8 shows V̂t,MA(1) and V̂t,MA(2) have smaller bias if return frequency is one minute or
higher. Table 9 shows the coverage probabilities of all the five estimators. The finite sample
results of V̂t,MA(2) are all very close to the optimal level, no matter the data frequency.

Figure 1-3 display the histograms of the posterior mean of the number of clusters in three
different settings. There are: the DPM for 5-minute SV1F returns (no noise), the DPM-
MA(1) for 1-minute SV1FJ returns (independent noise) and the DPM-MA(2) for 30-second
SV2F returns (dependent noise). The figures show significant pooling. For example, in the
1-minute SV1FJ return case, most of the daily variance estimates of Vt are formed by using
1 to 5 pooled groups of data, instead of 390 observations (separate groups) which is what
the realized kernel uses. This level of pooling can lead to significant improvements for the
Bayesian estimator.

5.5 Tick Time Sampling

Following Griffin & Oomen (2008), the prices simulated from DGPs illustrated in Section 5.1
are discretized to tick prices. Let pht,i denote the observed prices and ω represent the prob-
ability of price change. pht,i = pt,i with probability ω, otherwise, pht,i = pht,i−1. ω is set to be
0.2. Tick time returns are formed based on prices sampled every kth price change. The data
frequencies selected are k = 60, k = 12 and k = 6, which roughly match the frequency of
5-minute, 1-minute and 30-second data considered in previous examples.

The RMSE of estimators based on tick time sampled returns is provided in Table 10.
Panel A of Table 10 compares RVt and Vt in a no noise setting and Panel B shows the
result of RKF

t and V̂t,MA(1) when independent microstructure noise is present. In 10 out
12 no-noise cases and all 12 cases with microstructure noise, the Bayesian nonparametric
estimators dominate the classical counterparts in terms of RMSEs. The improvements on
RMSE switching from RKF

t to V̂t,MA(1) range from 6.75% to 36.70% in the cases of tick prices
contaminated with noise.

Table 11 shows the RMSE of the Bayesian nonparametric estimators based on the two
sampling schemes. As shown in Panel B of Table 11, the tick-time V̂t,MA(1) has lower RMSE in
8 out of 12 cases. However, in panel A, with no microstructure noise, calendar time sampling
is uniformly better.

In summary, these simulations show the Bayesian estimate of ex-post variance to be very
competitive with existing classical alternatives and under different sampling schemes.
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6 Bayesian Nonparametric Estimates of Stock Market

Variance

For each day, 5000 MCMC draws are taken after 10000 burn-in draws are discarded, to
estimate posterior moments. All prior setting are the same as in the simulations.

6.1 IBM

We first consider estimating and forecasting volatility using a long calendar span of IBM
equity returns. The 1-minute IBM price records from 1998/01/03 to 2016/02/16 were down-
loaded from the Kibot website10. We choose the sample starting from 2001/01/03 as the
relatively small number of transactions before year 2000 yields many zero intraday returns.
The days with less than 5 hours of trading are removed, which leaves 3764 days in the sample.

Log-prices are placed on a 1-minute grid using the price associated with closest time
stamp that is less than or equal to the grid time. The 5-minute and 1-minute percentage log
returns from 9:30 to 16:00(EST) are constructed by taking the log price difference between
two close prices in time grid and scaling by 100. The overnight returns are ignored so the first
intraday return is formed using the daily opening price instead of the close price in previous
day. The procedure generates 293,520 5-minute returns and 1,467,848 1-minute returns.

We use a filter to remove errors and outliers caused by abnormal price records. We would
like to filter out the situation in which the price jumps up or down but quickly moves back
to original price range. This suggest an error in the record. If |rt,i| + |rt,i+1| > 8

√
vart(rt,i)

and |rt,i + rt,i+1| < 0.05%, we replace rt,i and rt,i+1 by r′t,i = r′t,i+1 = 0.5× (rt,i + rt,i+1). The
filter adjusts 0 and 70 (70/1,467,848 = 0.00477%) returns for 5-minute and 1-minute case,
respectively.

From these data several version of daily V̂t, RVt and RKt are computed. Daily returns
are the open-to-close return and match the time interval for the variance estimates. For each
of the estimators we follow exactly the methods used in the simulation section.

6.1.1 Ex-post Variance Estimation

Figure 4 displays a volatility signature plot, which shows the relationship of the average
volatility estimators and sampling frequency. The realized variance based on 10-minute
returns serves as the unbiased benchmark because low frequency returns are less influenced
by market microstructure noise. The average of the Bayes nonparametric estimator is closer
to 1.0 compared with realized variance no matter the sampling frequency. The plot becomes
stable after 3.9 minutes sampling frequency.

Table 12 reports summary statistics for several estimators. Overall the Bayesian and
classical estimators are very close. Both the realized kernel and the moving average DPM
estimators reduce the average level of daily variance and indicate the presence of significant
market microstructure noise. Based on this and an analysis of the ACF of the high-frequency
returns we suggest the V̂t,MA(1) for the 5-minute data and the V̂t,MA(4) for the 1-minute data
in the remainder of the analysis. Comparison with the kernel estimators is found in Figures 5
and 6. Except for the extreme values they are very similar.

Interval estimates for two sub-periods are shown in Figures 7 and 8. A clear disadvantage
of the kernel based confidence interval in that it includes negative values for ex-post variance.
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The Bayesian version by construction does not and tends to be significantly shorter in volatile
days. The results of log variance11 are also provided with some differences remaining.

The degree of pooling from the Bayesian estimators is found in Figure 9 and 10. As
expected, we see more groups in the higher 1-minute frequency. In this case, on average,
there are about 3 to 7 distinct groups of intraday variance parameters.

6.1.2 Ex-post Variance Modeling and Forecasting

Does the Bayesian estimator correctly recover the time-series dynamics of volatility? To
investigate this we estimate several versions of the Heterogeneous Auto-Regressive (HAR)
model introduced by Corsi (2009). This is a popular model that captures the strong depen-
dence in ex-post daily variance. For V̂t the HAR model is

V̂t = β0 + β1V̂t−1 + β2V̂t−1|t−5 + β3V̂t−1|t−22 + εt, (45)

where V̂t−1|t−h = 1
h

∑h
l=1 V̂t−l and εt is the error term. V̂t−1, V̂t−1|t−5 and V̂t−1|t−22 correspond

to the daily, weekly and monthly variance measures up to time t− 1. Similar specifications
are obtained by replacing V̂t with RVt or RKt.

Bollerslev et al. (2016) extend the HAR model to the HARQ model by taking the asymp-
totic theory of RVt into account. The HARQ model for RVt is given by

RVt = β0 +
(
β1 + β1QRQ

1/2
t−1

)
RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + εt (46)

The loading on RVt−1 is no longer a constant, but varying with measurement error, which is
captured by RQt−1. The model responds more to RVt−1 if measurement error is low and has
a lower response if error is high. Bollerslev et al. (2016) provide evidence that the HARQ
model outperforms the HAR model in forecasting.12

An advantage of our Bayesian approach is that we have the full finite sample posterior
distribution for Vt. In the Bayesian nonparametric framework, there is no need to estimate
IQt with RQt, instead the variance, standard deviation or other features of Vt can be easily
estimated using the MCMC output. Replacing RQt−1 with v̂ar(Vt−1), the modified HARQ
model for V̂t is defined as

V̂t = β0 +
(
β1 + β1Qv̂ar(Vt−1)1/2

)
V̂t−1 + β2V̂t−1|t−5 + β3V̂t−1|t−22 + εt, (47)

where v̂ar(Vt−1)1/2 is an MCMC estimate of the posterior standard deviation of Vt.
Table 13 displays the OLS estimates and the R2 for several model specifications. Coef-

ficient estimates are comparable across each class of model. Clearly the Bayesian variance
estimates display the same type of time-series dynamics found in the realized kernel estimates.

Finally, out-of-sample root-mean squared forecast errors (RMSFE) of HAR and HARQ
models using both classical estimators and Bayesian estimators are found in Table 14. The
out-of-sample period is from 2005/01/03 to 2016/02/16 (2773 observations) and model pa-
rameters are re-estimated as new data arrives. Note, that to mimic a real-time forecast
setting the prior hyperparameters ν0,t and s0,t are set based on intraday data from day t and
t− 1.13

The first column of Table 14 reports the data frequency and the dependent variable used
in the HAR/HARQ model. The second column records the data used to construct the right-
hand side regressors. In this manner we consider all the possible combinations of how RKN

t is
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forecast by lags of RKN
t or V̂t,MA and similarly for forecasting V̂t,MA. All of the specifications

produce similar RMSFE. In 7 out of 8 cases the Bayesian variance measure forecasts itself
and the realized kernel better.

6.2 SPDR S&P 500 ETF

Transaction and NBBO (National Best Bid and Offer) data for SPDR S&P 500 ETF was
supplied by Tickdata. We follow the same method of Barndorff-Nielsen et al. (2011) to clean
both transaction and quote datasets and form grid returns at 5-minute, 1-minute, 30-second
and 10-second frequencies using transaction prices. The sample period is from July 1, 2014
to June 29, 2016 and does not include days with less than 6 trading hours. The final dataset
has 498 days of intraday observations.

Table 15 displays the summary statistics of daily variance estimators of SPY returns. As
the sampling frequency increases, the sample average of different variance estimators become
closer to the sample variance of daily returns. Figure 11 and 12 display box plots of the
daily variance estimates for the classical and Bayesian estimators for the 5-minute and 30-
second data. There are several important points to make. First, both estimators recover
the same general pattern of volatility in this period. Second, the Bayesian density interval
is often shorter and asymmetric compare to the classical counterpart. Although there is
general agreement, the high variance day of June 24 indicate some differences particularly
in Figure 12. Finally, both estimates become more accurate with the higher frequency 30-
second data and also make a significant downward revision to the variance estimates on June
24.

7 Conclusion

This paper offers a new exact finite sample approach to estimate ex-post variance using
Bayesian nonparametric methods. The proposed approach benefits ex-post variance estima-
tion in two aspects. First, the observations with similar variance levels can be pooled together
to increase accuracy. Second, exact finite sample inference is available directly without re-
plying on additional assumptions about a higher frequency DGP. Bayesian nonparametric
variance estimators under no noise, heteroskedastic and serially correlated microstructure
noise cases are introduced. Monte Carlo simulation results show that the proposed approach
can increase the accuracy of ex-post variance estimation and provide reliable finite sample
inference. Applications to real equity returns show the new estimators conform closely to the
realized variance and kernel estimators in terms of average statistical properties as well as
time-series characteristics. The Bayesian estimators can be used with confidence and have
several benefits relative to existing methods. The Bayesian estimator can capture asymmetric
density intervals, always remains positive and does not rely on the estimation of integrated
quarticity.

Notes
1For a good survey of the key concepts see Andersen & Benzoni (2008), for an in-depth treatment see

Aı̈t-Sahalia & Jacod (2014).
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2Many estimators of integrated volatility calculated using high-frequency data such as realized kernels use
pooling to reduce microstructure noise but are not explicitly seen as shrinkage estimators.

3Polson & Roberts (1994) is an early work that used realized variance concepts and Bayesian methods to
estimate diffusion processes for stock returns.

4This infinite mixture is related to finite mixtures which have been used to approximate distributions.
For example, see Kim et al. (1998).

5A MA(q) model of stationary and ergodic microstructure noise would not allow for staleness (Bandi
et al. 2017) or flat trading (Phillips & Yu 2007).

6Restrictions on MA coefficients: all the roots of 1 + θ1B + θ2B
2 + · · ·+ θqB

q = 0 are outside of the unit
circle.

7If r̃t = θ1ηt−1 + · · ·+ θqηt−q+1 + ηt, then under their assumptions the bias corrected estimate of ex-post

variance is RVMAq = (1 + θ1 + · · ·+ θq)
2
nt∑
i=1

η̂2
i , where η̂i denotes a fitted residual.

8The function s- exp is defined as s- exp(x) = exp(x) if x ≤ x0 and s- exp(x) = exp(x0)√
x0

√
x0 − x2

0 + x2 if

x > x0, with x0 = log(1.5).

9The blocked realized variance is calculated as follows. RV blockt = M∆t
∑
i

M

2

Γ(M−1
2 )

Γ(M+1
2 )

σ2
τi where σ2

τi =

1

∆t(M − 1)

∑
tj∈(τi,τi+1)

(
rtj − rτi

)2
, rτi =

1

M

∑
tj∈(τi,τi+1)

rtj and M is the block size.

10http://www.kibot.com
1195% confidence intervals using log(RVt), log(RKF

t ) and log(RKN
t ) are based on the asymptotic distri-

butions in Barndorff-Nielsen & Shephard (2002), Barndorff-Nielsen et al. (2008) and Barndorff-Nielsen et al.
(2011).

12A drawback of this specification is that it is possible for the coefficient on RVt−1 to be negative and

produce a negative forecast for next period’s variance. To avoid this when β1 + β1QRQ
1/2
t−1 < 0 it is set to 0.

13Data from day t + 1 would not be available in a real-time scenario. Using only data from day t to set
ν0,t and s0,t gives very similar results.
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8 Appendix

8.1 Existing Ex-post Volatility Estimation

8.1.1 Realized Variance

Let rt,i denotes the ith intraday return on day t, i = 1, . . . , nt, where nt is the number of
intraday returns on day t. Realized variance is defined as

RVt =
nt∑
i=1

r2
t,i, (48)

and RVt
p−→ IVt, as nt →∞ (Andersen, Bollerslev, Diebold & Labys 2001).

Barndorff-Nielsen & Shephard (2002) derive the asymptotic distribution of RVt as

√
nt

1√
2IQt

(RVt − IVt)
d−→ N(0, 1), as nt →∞, (49)

where IQt stands for the integrated quarticity, which can be estimated by realized quarticity
(RQt) defined as

RQt =
nt
3

nt∑
i=1

r4
t,i

p−→ IQt, as nt →∞. (50)

8.1.2 Flat-top Realized Kernel

Barndorff-Nielsen et al. (2008) introduced the flat-top realized kernel (RKF
t ), which is the

optimal estimator if the microstructure error is a white noise process14.

RKF
t =

nt∑
i=1

r̃2
t,i +

H∑
h=1

k

(
h− 1

H

)
(γ−h + γh), γh =

nt∑
i=1

r̃t,ir̃t,i−h, (51)

where H is the bandwidth, k(x) is a kernel weight function.
The preferred kernel function is the second order Tukey-Hanning kernel15 and the pre-

ferred bandwidth is H∗ = cξ
√
nt, where ξ2 = ω2/

√
IQt denotes the noise-to-signal ratio. ω2

stands for the variance of microstructure noise and can be estimated by RVt/(2nt) by Bandi
& Russell (2008). RVt based on 10-minute returns is less sensitive to microstructure noise
and can be used as a proxy of

√
IQt. c = 5.74 given Tukey-Hanning kernel of order 2.

Given the Tukey-Hanning kernel and H∗ = cξ
√
nt, Barndorff-Nielsen et al. (2008) show

that the asymptotic distribution of RKF
t is

n
1/4
t

(
RKF

t − IVt
) d−→ MN

{
0, 4IQ

3/4
t ω

(
ck0,0
• + 2c−1k1,1

•
IVt√
IQt

+ c−3k2,2
•

)}
, (52)

where MN is mixture of normal distribution, k0,0
• = 0.219, k1,1

• = 1.71 and k2,2
• = 41.7 for

second order Tukey-Hanning kernel.
Even though ω2 can be estimated using RVt/(2nt), a better and less biased estimator

suggested by Barndorff-Nielsen et al. (2008) is

ω̌2 = exp
[
log(ω̂2)−RKt/RVt

]
. (53)
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The estimation of IQt is more sensitive to the microstructure noise. The tri-power quar-
ticity (TPQt) developed by Barndorff-Nielsen & Shephard (2006) can be used to estimate
IQt,

TPQt = ntµ
−3
4/3

nt−2∑
i=1

|r̃t,i|4/3|r̃t,i+1|4/3|r̃t,i+2|4/3, (54)

where µ4/3 = 22/3Γ(7/6)/Γ(1/2). Replacing IVt, ω
2 and IQt with RKF

t , ω̌2 and TPQt in
equation (52), the asymptotic variance of RKF

t can be calculated.

8.1.3 Non-negative Realized Kernel

The flat-top realized kernel discussed in previous subsection is based on the assumption that
the error term is white noise. However, the white noise assumption is restrictive and the
error term can be serial dependent or dependent on returns in reality. Another drawback of
the RKF

t is that it may provide negative volatility estimates, albeit very rarely. Barndorff-
Nielsen et al. (2011) further introduced the non-negative realized kernel (RKN

t ) which is
more robust to these assumptions of error term and is calculated as

RKN
t =

H∑
h=−H

k

(
h

H + 1

)
γh, γh =

nt∑
i=|h|+1

r̃t,ir̃t,i−|h|. (55)

The optimal choice of H is H∗ = cξ4/5n
3/5
t and the preferred kernel weight function is the

Parzen kernel16, which implies c = 3.5134. ξ2 can be estimated using the same method as in
the calculation of RKF

t .
Barndorff-Nielsen et al. (2011) show the asymptotic distribution of RKN

t based on H∗ =

cξ4/5n
3/5
t is given by

n
1/5
t

(
RKN

t − IVt
) d−→ MN(κ, 4κ2), (56)

where κ = κ0(IQtω)2/5, κ0 = 0.97 for Parzen kernel function, ω and IQt can be estimated
using equation (53) and (54).

8.2 Adjustment to DPM-MA(1) Estimator

Let pt,i denotes the latent intraday price and εt,i is the microstructure noise which is inde-
pendently distributed and heteroskedastic. The observed intraday price p̃t,i is

p̃t,i = pt,i + εt,i, E(εt,i) = 0 and var(εt,i) = ω2
t,i. (57)

The log return process is constructed as follows,

r̃t,i = p̃t,i − p̃t,i−1 = pt,i − pt,i−1 + εt,i − εt,i−1 = rt,i + εt,i − εt,i−1, (58)

where r̃t,i and rt,i are the observed return and pure return. The variance and first autoco-
variance of {rt,i}nt

i=1 are

var(r̃t,i) = σ2
t,i + ω2

t,i + ω2
t,i−1, (59)

cov(r̃t,i, r̃t,i−1) = −ω2
t,i−1. (60)
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Consider the following heteroskedastic MA(1) model for the observed r̃t,i,

r̃t,i = µt + θtηt,i−1 + ηt,i, ηt,i ∼ N(0, δ2
t,i), (61)

which will be used to recover an estimate of ex-post variance for the pure return process,
Vt =

∑nt

i=1 σ
2
t,i. The corresponding moments of this process are

var(r̃t,i) = θ2
t δ

2
t,i−1 + δ2

t,i, (62)

cov(r̃t,i, r̃t,i−1) = θtδ
2
t,i−1. (63)

Equating (59) and (62), we have

σ2
t,i + ω2

t,i + ω2
t,i−1 = θ2

t δ
2
t,i−1 + δ2

t,i (64)

Equating (60) and (63), we have

−ω2
t,i−1 = θtδ

2
t,i−1 and − ω2

t,i = θtδ
2
t,i. (65)

Based on the result in (65), the summation of δ2
t,i, over i = 1, . . . , nt, equals

nt∑
i=1

δ2
t,i = − 1

θt

nt∑
i=1

w2
t,i. (66)

Plugging both terms in (65) into (64), yields

σ2
t,i + ω2

t,i + ω2
t,i−1 = −θtω2

t,i−1 −
ω2
t,i

θt
(67)

σ2
t,i +

(
1 +

1

θt

)
ω2
t,i + (1 + θt)ω

2
t,i−1 = 0. (68)

Using the results in (68), the summation of σ2
t,i, over i = 1, . . . , nt, equals

nt∑
i=1

σ2
t,i +

(
1 +

1

θt

) nt∑
i=1

ω2
t,i + (1 + θt)

nt∑
i=1

ω2
t,i−1 = 0 (69)

Vt = −
(

1 +
1

θt

) nt∑
i=1

ω2
t,i − (1 + θt)

nt∑
i=1

ω2
t,i−1. (70)

The ratio between (66) and (70) is

Vt
nt∑
i=1

δ2
t,i

=

−
(

1 +
1

θt

)
nt∑
i=1

ω2
t,i − (1 + θt)

nt∑
i=1

ω2
t,i−1

− 1

θt

nt∑
i=1

ω2
t,i

(71)

=

(1 + θt)
2
nt−1∑
i=1

ω2
t,i + (1 + θt)ω

2
t,nt

+ (θt + θ2
t )ω

2
t,0

nt−1∑
i=1

ω2
t,i + ω2

t,nt

(72)

= (1 + θt)
2 , if ωt,nt = ωt,0. (73)

Finally, we have

(1 + θt)
2

nt∑
i=1

δ2
t,i = Vt, if ωt,nt = ωt,0. (74)
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8.3 Adjustment to DPM-MA(2) Estimator

If the observed intraday price p̃t,i is

p̃t,i = pt,i + εt,i − ρεt,i−1, E(εt,i) = 0 and var(εt,i) = ω2
t,i. (75)

Then log return process is constructed as follows.

r̃t,i = p̃t,i − p̃t,i−1

= rt,i + εt,i − (1 + ρ)εt,i−1 + ρεt,i−2.
(76)

Using the following heteroskedastic MA(2) model for r̃t,i,

r̃t,i = µt + θ1tηt,i−1 + θ2tηt,i−2 + ηt,i, ηt,i ∼ N(0, δ2
t,i) (77)

it can be shown the adjustment term is

(1 + θ1t + θ2t)
2

nt∑
i=1

δ2
t,i = Vt, if ωt,nt−1 = ωt,0 and ωt,nt = ωt,−1. (78)

Similar results hold for higher order MA models.

8.4 Proof of Theorem 1

We will show that E[Vt|{rt,i}nt
i=1] can be expressed as realized volatility, RVt, plus a bias term

and that this bias converges to zero. It is useful to introduce the allocation variables used in
MCMC sampler in Section 2.3 to derive a suitable expression for E[Vt|{rt,i}nt

i=1] by using

E[Vt|{rt,i}nt
i=1] = E

[
nt∑
i=1

σ2
t,i

∣∣∣∣{rt,i}nt
i=1

]
= E{st,i}nt

i=1|{rt,i}
nt
i=1
E

[
nt∑
i=1

σ2
t,i

∣∣∣∣{rt,i}nt
i=1, {st,i}

nt
i=1

]
.

Conditional on the allocation variables {st,i}nt
i=1, we can write

σ2
t =

nt∑
i=1

σ2
t,i =

Kt∑
k=1

mt,kψt,k,

where Kt is the number of distinct values of {st,i}nt
i=1, mt,k =

∑nt

i=1 1(st,i = k) and ψt,k ∼
IG(ν0,t +mt,k/2, s0,t +

∑
st,i=k

r2
t,i/2). It follows that

E

[
nt∑
i=1

σ2
t,i

∣∣∣∣{rt,i}nt
i=1, {st,i}

nt
i=1

]
=

Kt∑
k=1

mt,k

s0,t +
∑

st,i=k
r2
t,i/2

ν0,t +mt,k/2− 1

= s0,t

Kt∑
k=1

mt,k

ν0,t +mt,k/2− 1
+

Kt∑
k=1

(
1− ν0,t − 1

ν0,t +mt,k/2− 1

) ∑
st,i=k

r2
t,i

=
nt∑
i=1

r2
t,i + s0,t

Kt∑
k=1

mt,k

ν0,t +mt,k/2− 1
−

Kt∑
k=1

ν0,t − 1

ν0,t +mt,k/2− 1

∑
st,i=k

r2
t,i

= RVt +B(st,1:nt)

24



where

B ({st,i}nt
i=1) =

Kt∑
k=1

[
s0,tmt,k − (ν0,t − 1)

∑
st,i=k

r2
t,i

]
ν0,t +mt,k/2− 1

=
Kt∑
k=1

mt,k

ν0,t +mt,k/2− 1

s0,t − (ν0,t − 1)
1

mt,k

∑
st,i=k

r2
t,i

 .
The posterior mean can be expressed as

E[Vt|{rt,i}nt
i=1] = RVt + E{st,i}nt

i=1|{rt,i}
nt
i=1

[B ({st,i}nt
i=1)] . (79)

To show consistency, we use the result that RVt is a consistent estimator of quadra-
tive variation under our conditions (Andersen et al. 2003). To see that the bias term
E{st,i}nt

i=1|{rt,i}
nt
i=1

[B ({st,i}nt
i=1)] converges in probability to zero, notice that

E{st,i}nt
i=1|{rt,i}

nt
i=1

[B ({st,i}nt
i=1)] =

Kt∑
k=1

mt,k

ν0,t +mt,k/2− 1

s0,t − (ν0,t − 1)
1

mt,k

∑
st,i=k

σ2
t,i


< 2

Kts0,t − (ν0,t − 1)
Kt∑
k=1

1

mt,k

∑
st,i=k

σ2
t,i

 .
Clearly, this to converges in probability to zero if Kt s0,t → 0 as 1

mt,k

∑
st,i=k

σ2
t,i → 0 in

probability for all st,1:nt (since sup(τt,j+1 − τt,j)→ 0). We know that E[Kt] ≈ M log(1 + n
M

)
and the results follows from the assumption that s0,nt = O(n−αt ) for α > 0.
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Table 1: Prior Specifications of Models

Model µt σ2
t,i Θt αt

DPM N(0, v2) IG(v0,t, s0,t) - Gamma(2, 8)

DPM-MA(q) N(0, v2) IG(v0,t, s0,t) N(0, I)1{|Θt|} Gamma(2, 8)

1. v0,t and s0,t are calculated using equation (12).
2. 1{|Θt|} denotes the invertibility condition for the MA(q) model.
3. v2 = ζ2/nt where ζ2 = 0.01 and nt is the number of intraday returns.

Table 2: RMSE of RVt, blocked RVt and V̂t (No Microstructure Noise Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute

RVt 0.12352 0.21226 0.21471 0.45601

RV block
t,M=26 0.12485 0.21588 0.21680 0.44368

V̂t 0.11866*** 0.20116*** 0.20659*** 0.43095**

1-minute

RVt 0.05368 0.09283 0.09771 0.23296

RV block
t,M=78 0.05397 0.09335 0.09875 0.23120

V̂t 0.05323*** 0.09190*** 0.10051 0.22802*

30-second

RVt 0.03886 0.06530 0.06741* 0.14178

RV block
t,M=130 0.03906 0.06539 0.06771 0.14184

V̂t 0.03867*** 0.06495*** 0.07276 0.13970

10-second

RVt 0.02177 0.03601 0.03662* 0.09535

RV block
t,M=260 0.02176 0.03601 0.03677 0.09587

V̂t 0.02171** 0.03589*** 0.04722 0.09596

1. This table reports the root mean squared error (RMSE) of estimating 5000 daily ex-
post variances using RVt, blocked RVt and Bayesian nonparametric estimator V̂t under
different frequencies and DGPs. Microstructure noise is not considered.

2. A paired t-test is used to test whether the difference in the mean of (RVt − Vt)2 and
(V̂t − Vt)2 is equal to zero. The symbol * indicates the levels of significance. *: p-value
< 0.05, **: p-value < 0.01, ***: p-value < 0.001.

26



Table 3: Prior Robustness Check

Estimator Prior of µt Prior of αt Prior of σ2
t,i RMSE

Panel A: 5-minute return

RVt - - - 0.45601

N(0, 0.01
nt

) Gamma(4, 8) IG(v3d
0,t, s

3d
0,t) 0.43095

N(0, 0.05
nt

) Gamma(4, 8) IG(v3d
0,t, s

3d
0,t) 0.42919

V̂t N(0, 0.002
nt

) Gamma(4, 8) IG(v3d
0,t, s

3d
0,t) 0.42953

N(0, 0.01
nt

) Gamma(2, 8) IG(v3d
0,t, s

3d
0,t) 0.42975

N(0, 0.01
nt

) Gamma(8, 8) IG(v3d
0,t, s

3d
0,t) 0.42782

N(0, 0.01
nt

) Gamma(4, 8) IG(v1d
0,t, s

1d
0,t) 0.43199

Panel B: 1-minute return

RVt - - - 0.23296

N(0, 0.01
nt

) Gamma(4, 8) IG(v3d
0,t, s

3d
0,t) 0.22802

N(0, 0.05
nt

) Gamma(4, 8) IG(v3d
0,t, s

3d
0,t) 0.22739

V̂t N(0, 0.002
nt

) Gamma(4, 8) IG(v3d
0,t, s

3d
0,t) 0.22686

N(0, 0.01
nt

) Gamma(2, 8) IG(v3d
0,t, s

3d
0,t) 0.22691

N(0, 0.01
nt

) Gamma(8, 8) IG(v3d
0,t, s

3d
0,t) 0.22613

N(0, 0.01
nt

) Gamma(4, 8) IG(v1d
0,t, s

1d
0,t) 0.22695

Panel C: 30-second return

RVt - - - 0.14178

N(0, 0.01
nt

) Gamma(4, 8) IG(v3d
0,t, s

3d
0,t) 0.13970

N(0, 0.05
nt

) Gamma(4, 8) IG(v3d
0,t, s

3d
0,t) 0.14059

V̂t N(0, 0.002
nt

) Gamma(4, 8) IG(v3d
0,t, s

3d
0,t) 0.14012

N(0, 0.01
nt

) Gamma(2, 8) IG(v3d
0,t, s

3d
0,t) 0.14096

N(0, 0.01
nt

) Gamma(8, 8) IG(v3d
0,t, s

3d
0,t) 0.14003

N(0, 0.01
nt

) Gamma(4, 8) IG(v1d
0,t, s

1d
0,t) 0.14029

Panel D: 10-second return

RVt - - - 0.09535

N(0, 0.01
nt

) Gamma(4, 8) IG(v3d
0,t, s

3d
0,t) 0.09596

N(0, 0.05
nt

) Gamma(4, 8) IG(v3d
0,t, s

3d
0,t) 0.09631

V̂t N(0, 0.002
nt

) Gamma(4, 8) IG(v3d
0,t, s

3d
0,t) 0.09546

N(0, 0.01
nt

) Gamma(2, 8) IG(v3d
0,t, s

3d
0,t) 0.09610

N(0, 0.01
nt

) Gamma(8, 8) IG(v3d
0,t, s

3d
0,t) 0.09644

N(0, 0.01
nt

) Gamma(4, 8) IG(v1d
0,t, s

1d
0,t) 0.09528

This table reports the root mean squared error (RMSE) of estimating 5000 daily ex-
post variances using RVt and Bayes nonparametric estimator V̂t under different priors.
v3d

0,t denotes 3 days used to calibrate the prior parameter while v1d
0,t denotes one day of

data used. The data are generated from SV2F. Microstructure noise is not considered.
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Table 4: RMSE of RVt and V̂t (Irregular-spaced Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

λ = 300
RVt 0.15890 0.34273 0.32518 0.70050

V̂t 0.14724 0.31481 0.30301 0.67717

λ = 60
RVt 0.14903 0.15044 0.14741 0.63304

V̂t 0.14297 0.14611 0.14524 0.57660

λ = 30
RVt 0.06989 0.09738 0.10187 0.27621

V̂t 0.06827 0.09604 0.10355 0.26985

λ = 10
RVt 0.03399 0.06432 0.06575 0.23201

V̂t 0.03380 0.06392 0.06851 0.23070

We follow Barndorff-Nielsen et al. (2011) to simulate irregular-spaced
prices. The arrival times of observations are simulated from a Poisson
process. The parameter λ in Poisson process governs the trading fre-
quency of simulated data. For example, λ = 30 means the transactions
arrive every 30 seconds on average.

Table 5: RMSE of RVt, RK
F
t , V̂t and V̂t,MA(1) (Independent Microstructure Error Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute

RVt 0.16003 0.29182 0.30651 0.47783

RKF
t 0.22988 0.42318 0.43993 0.84100

V̂t 0.15640 0.28464 0.29858 0.46117

V̂t,MA(1) 0.21636 0.38776 0.40729 0.74828

1-minute

RVt 0.48607 0.85374 0.94598 0.63983

RKF
t 0.11157 0.20184 0.20822 0.46655

V̂t 0.48735 0.85547 0.94689 0.63808

V̂t,MA(1) 0.10592 0.18787 0.19539 0.41176

30-second

RVt 0.95855 1.69544 1.87445 1.20299

RKF
t 0.08483 0.15200 0.15743 0.27201

V̂t 0.96016 1.69798 1.87569 1.20332

V̂t,MA(1) 0.07906 0.14017 0.15232 0.27595

10-second

RVt 2.86639 5.06382 5.60527 3.57263

RKF
t 0.05575 0.10097 0.10683 0.16989

V̂t 2.86858 5.06745 5.60757 3.57263

V̂t,MA(1) 0.05387 0.09621 0.10555 0.20857

This table reports the root mean squared error (RMSE) of estimating
5000 daily ex-post variances using RVt, RK

F
t and Bayesian nonparametric

estimators V̂t and V̂t,MA(1) based on returns at different frequencies and
simulated from 4 DGPs. The price is contaminated with white noise.
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Table 6: Coverage Probability (Independent Microstructure Error Case)

Data Freq. Interval Estimator GARCH SV1F SV1FJ SV2F

5-minute

RVt 87.60% 85.00% 84.42% 21.56%

RKF
t - Infeasible 87.84% 87.66% 87.94% 93.48%

RKF
t - Feasible 84.28% 96.20% 83.68% 97.72%

V̂t 81.84% 78.50% 77.10% 18.12%

V̂t,MA(1) 94.02% 94.40% 94.14% 89.74%

1-minute

RVt 0.46% 0.82% 0.78% 5.24%

RKF
t - Infeasible 88.50% 89.78% 89.02% 93.32%

RKF
t - Feasible 99.30% 97.76% 95.26% 97.86%

V̂t 0.42% 0.72% 0.56% 4.48%

V̂t,MA(1) 95.06% 95.18% 94.66% 86.60%

30-second

RVt 0.00% 0.00% 0.02% 1.72%

RKF
t - Infeasible 89.80% 90.46% 90.74% 92.80%

RKF
t - Feasible 77.44% 99.48% 99.52% 97.94%

V̂t 0.00% 0.00% 0.00% 1.54%

V̂t,MA(1) 95.00% 95.18% 94.84% 85.94%

10-second

RVt 0.00% 0.00% 0.00% 0.04%

RKF
t - Infeasible 92.08% 92.68% 92.90% 92.10%

RKF
t - Feasible 99.98% 99.98% 99.98% 98.62%

V̂t 0.00% 0.00% 0.00% 0.04%

V̂t,MA(1) 94.92% 95.34% 95.32% 82.24%

This table reports the coverage probabilities of 95% confidence intervals using
RVt, RK

F
t and 0.95 density intervals using V̂t and V̂MA(1) based on 5000 days

results for different data generating processes. The price is contaminated with
white noise.
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Table 7: RMSE of RVt, RK
N
t , V̂t, V̂t,MA(1) and V̂t,MA(2) (Dependent Microstructure Error

Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute

RVt 0.21825 0.39266 0.41585 0.58520

RKN
t 0.23575 0.44343 0.45080 0.89975

V̂t 0.21505 0.38582 0.40767 0.54581

V̂t,MA(1) 0.22493 0.40316 0.42100 0.83691

V̂t,MA(2) 0.29260 0.54051 0.57714 1.18875

1-minute

RVt 0.84121 1.48399 1.60189 1.6954

RKN
t 0.14158 0.25780 0.26987 0.52030

V̂t 0.84318 1.48663 1.60261 1.67740

V̂t,MA(1) 0.11558 0.20443 0.21297 0.50769

V̂t,MA(2) 0.13732 0.24891 0.26161 0.62325

30-second

RVt 1.66229 2.95397 3.19560 3.37090

RKN
t 0.11918 0.21559 0.22306 0.42729

V̂t 1.66480 2.95765 3.19689 3.36058

V̂t,MA(1) 0.08889 0.15848 0.16931 0.34572

V̂t,MA(2) 0.10531 0.18916 0.19313 0.39269

10-second

RVt 4.40694 7.81961 8.49852 7.85934

RKN
t 0.09850 0.18004 0.18376 0.34594

V̂t 4.41003 7.82481 8.49935 7.85507

V̂t,MA(1) 0.16456 0.30833 0.30465 0.89045

V̂t,MA(2) 0.06940 0.12804 0.13592 0.25182

This table reports the root mean squared error (RMSE) of estimating 5000
daily ex-post variances using RVt, RK

N
t and Bayesian nonparametric esti-

mators V̂t, V̂t,MA(1) and V̂t,MA(2) based on returns at different frequencies
and simulated from 4 DGPs. The observed prices contains microstructure
noise that is dependent with returns.
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Table 8: Bias of RVt, RK
N
t , V̂t, V̂t,MA(1) and V̂t,MA(2) (Dependent Microstructure Error Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute

RVt 0.16032 0.28455 0.30733 0.17262

RKN
t 0.01349 0.02985 0.03232 0.00733

V̂t 0.16005 0.28359 0.30534 0.16275

V̂t,MA(1) 0.01471 0.02665 0.02819 -0.00104

V̂t,MA(2) 0.05581 0.10305 0.11604 0.03956

1-minute

RVt 0.81057 1.42504 1.54563 0.87166

RKN
t 0.02421 0.04351 0.04360 0.01839

V̂t 0.81269 1.42805 1.54689 0.86954

V̂t,MA(1) 0.00822 0.01401 0.01359 -0.01044

V̂t,MA(2) 0.01694 0.03179 0.02977 -0.00588

30-second

RVt 1.61481 2.85837 3.10192 1.72912

RKN
t 0.02791 0.04940 0.05114 0.02369

V̂t 1.61731 2.86219 3.10359 1.72853

V̂t,MA(1) 0.00721 0.01253 0.00856 -0.01302

V̂t,MA(2) 0.01074 0.01972 0.01796 -0.01155

10-second

RVt 4.32800 7.65381 8.34221 4.67328

RKN
t 0.04034 0.07209 0.07321 0.04327

V̂t 4.33106 7.65902 8.34351 4.67462

V̂t,MA(1) 0.11026 0.20188 0.20173 0.13648

V̂t,MA(2) 0.00634 0.01300 0.00850 -0.01896

This table reports the bias estimates from 5000 daily ex-post variances
using RV , RKN and Bayesian nonparametric estimators V̂ , V̂MA(1) and

V̂MA(2) based on returns at different frequencies and simulated from 4
DGPs. The observed prices contains microstructure noise that is dependent
with returns.
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Table 9: Coverage Probability (Dependent Microstructure Error Case)

Data Freq. Interval Estimator GARCH SV1F SV1FJ SV2F

5-minute

RVt 76.22% 74.00% 73.12% 21.14%

RKN
t - Infeasible 87.26% 87.62% 87.64% 76.72%

RKN
t - Feasible 91.16% 91.34% 92.02% 96.42%

V̂t 66.00% 63.62% 62.44% 16.74%

V̂t,MA(1) 93.96% 94.26% 94.28% 89.84%

V̂t,MA(2) 94.36% 94.60% 94.22% 90.06%

1-minute

RVt 0.00% 0.00% 0.10% 0.06%

RKN
t - Infeasible 90.02% 90.40% 89.98% 71.70%

RKN
t - Feasible 99.80% 99.80% 99.70% 99.46%

V̂t 0.00% 0.00% 0.04% 0.04%

V̂t,MA(1) 94.64% 94.92% 94.72% 87.08%

V̂t,MA(2) 94.58% 94.92% 94.30% 86.92%

30-second

RVt 0.00% 0.00% 0.00% 0.00%

RKN
t - Infeasible 91.50% 91.72% 91.26% 70.94%

RKN - Feasible 100.00% 100.00% 100.00% 99.96%

V̂ 0.00% 0.00% 0.00% 0.00%

V̂MA(1) 95.00% 95.24% 94.76% 85.18%

V̂MA(2) 94.96% 94.66% 94.78% 85.80%

10-second

RVt 0.00% 0.00% 0.00% 0.00%

RKN
t - Infeasible 91.90% 92.44% 92.30% 69.72%

RKN
t - Feasible 100.00% 100.00% 100.00% 100.00%

V̂t 0.00% 0.00% 0.00% 0.00%

V̂t,MA(1) 64.70% 65.00% 68.00% 78.74%

V̂t,MA(2) 94.48% 95.20% 95.14% 82.06%

This table reports the coverage probabilities of 95% confidence intervals of RV ,
RKN and 0.95 density intervals of Bayesian nonparametric estimators V̂ , V̂MA(1)

and V̂MA(2) based on 5000 days results. The observed prices contains microstruc-
ture noise that is dependent with returns.
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Table 10: RMSE of RVt, RK
F
t , V̂t and V̂t,MA(1) in Tick Time

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

Panel A: No Microstructure Noise

60-tick
RVt 0.11566 0.21887 0.21663 0.49652

V̂t 0.11175 0.21175 0.21081 0.47565

12-tick
RVt 0.05237 0.09744 0.10194 0.27255

V̂t 0.05184 0.09661 0.10474 0.26895

6-tick
RVt 0.03866 0.07047 0.07393 0.17821

V̂t 0.03842 0.07013 0.07787 0.17642

Panel B: Independent Microstructure Noise

60-tick
RKF

t 0.23958 0.43907 0.44927 0.87832

V̂t,MA(1) 0.20988 0.39083 0.39199 0.69395

12-tick
RKF

t 0.11549 0.20695 0.20794 0.64542

V̂t,MA(1) 0.10545 0.18643 0.18875 0.40857

6-tick
RKF

t 0.08666 0.15397 0.15639 0.31230

V̂t,MA(1) 0.08080 0.13965 0.14555 0.25059

This table reports the RMSE from 5000 daily ex-post variances using RV
and V̂ in no microstructure noise case, RKF and V̂MA(1) in independent
noise case, based on tick-time sampled returns.
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Table 11: RMSE of V̂t and V̂t,MA(1) in Calendar Time and Tick Time

Estimator GARCH SV1F SV1FJ SV2F

Panel A: No Microstructure Noise

5-minute V̂t 0.11125 0.20625 0.20928 0.45238

60-tick V̂t 0.11175 0.21175 0.21081 0.47565

1-minute V̂t 0.05069 0.09195 0.10075 0.18466

12-tick V̂t 0.05184 0.09661 0.10474 0.26895

30-second V̂t 0.03667 0.06597 0.07485 0.14292

6-tick V̂t 0.03842 0.07013 0.07787 0.17642

Panel B: Independent Microstructure Noise

5-minute V̂t,MA(1) 0.21020 0.38103 0.40211 0.73568

60-tick V̂t,MA(1) 0.20988 0.39083 0.39199 0.69395

1-minute V̂t,MA(1) 0.10304 0.19050 0.19861 0.40527

12-tick V̂t,MA(1) 0.10545 0.18643 0.18875 0.40857

30-second V̂t,MA(1) 0.07847 0.14306 0.15133 0.28697

6-tick V̂t,MA(1) 0.08080 0.13965 0.14555 0.25059

This table reports the root mean squared error (RMSE) of estimating
5000 daily ex-post variances using Bayesian nonparametric volatility
estimator V̂ and V̂MA(1) in calendar time and tick time.
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Table 12: Summary Statistics: IBM

Frequency Data Mean Median Var Skew. Kurt. Min Max

Daily
rt 0.0673 0.0656 1.6046 0.2069 8.3059 -6.4095 12.2777

r2
t 1.6091 0.4352 18.9654 13.9087 387.4812 0.0000 150.7429

5-minute

RVt 1.8353 0.9458 11.9867 9.5887 148.2622 0.1032 76.2901

RV block
t,M=26 1.8403 0.9506 12.1820 9.7116 151.8262 0.1003 77.2906

RKF
t 1.6613 0.8447 9.3647 8.5539 124.8480 0.0375 71.9626

RKN
t 1.6670 0.8476 8.8872 8.0467 109.1098 0.0556 66.3995

V̂t 1.7805 0.9286 10.3994 8.3839 116.7700 0.1068 70.2477

V̂t,MA(1) 1.6656 0.8424 9.2105 7.2318 77.7981 0.0275 52.3102

V̂t,MA(2) 1.6969 0.8467 10.0917 8.4800 118.7351 0.0137 72.2059

1-minute

RVt 2.0004 1.0468 13.5019 10.5704 202.6835 0.1535 103.8773

RV block
t,M=78 2.0045 1.0478 13.6307 10.6737 206.9232 0.1551 105.0582

RKF
t 1.7952 0.9163 10.8043 8.3092 113.5727 0.1006 73.8576

RKN
t 1.7425 0.8973 9.6499 7.7187 94.7830 0.0897 60.2024

V̂t 1.9649 1.0322 12.9922 10.6422 206.7584 0.1517 102.6389

V̂t,MA(1) 1.8417 0.9211 11.3720 7.6213 87.5668 0.1156 64.1797

V̂t,MA(2) 1.7894 0.8979 10.9147 8.5039 121.6750 0.1040 74.7890

V̂t,MA(3) 1.7393 0.8824 9.6571 7.8283 101.5650 0.0986 61.4764

V̂t,MA(4) 1.7105 0.8704 9.1269 7.3825 84.7413 0.0964 57.2552

This table reports the summary statistics of ex-post variance estimators based on 5-minute and 1-
minute returns, along with the summary statistics of daily return and daily squared return. The
number of daily observation is 3764.
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Table 13: HAR and HARQ Model Regression Result Based on IBM Ex-post Variance Esti-
mators

Data Freq. Parameter
HAR HARQ

RKF
t V̂t,MA(1) RKF

t V̂t,MA(1)

5-minute

β0 0.1322 0.1224 0.1015 -0.0142

(0.0374) (0.0375) (0.0382) (0.0393)

β1 0.1926 0.2506 0.2341 0.4629

(0.0196) (0.0196) (0.0224) (0.0283)

β2 0.5649 0.4802 0.5664 0.4298

(0.0332) (0.0329) (0.0331) (0.0328)

β3 0.1598 0.1927 0.1422 0.1482

(0.0281) (0.0282) (0.0289) (0.0281)

β1Q - - -0.0012 -0.0202

(0.0003) (0.0020)

R-squared 57.74% 59.55% 57.90% 60.66%

Data Freq. Parameter
HAR HARQ

RKN
t V̂t,MA(4) RKN

t V̂t,MA(4)

1-minute

β0 0.1246 0.1308 0.0065 -0.0402

(0.0365) (0.0376) (0.0367) (0.0388)

β1 0.2493 0.2455 0.4464 0.5294

(0.0195) (0.0196) (0.0242) (0.0284)

β2 0.5435 0.5198 0.5033 0.4521

(0.0318) (0.0321) (0.0312) (0.0317)

β3 0.1331 0.1558 0.0708 0.0821

(0.0265) (0.0271) (0.0263) (0.0270)

β1Q - - -0.0031 -0.0334

(0.0002) (0.0025)

R-squared 62.71% 60.34% 64.39% 62.19%

1 This table reports OLS regression results for the HAR and HARQ
model. The results in top panel are based on RKF

t and V̂t,MA(1)

calculated using 5-minute returns and the bottom panel shows the
results of 1-minute RKN

t and V̂t,MA(4). The values in brackets are
standard error of coefficients.

2 Sample period: 2001/01/03 - 2016/02/16, 3764 observations.
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Table 14: Out-of-Sample Forecasts of IBM Volatility

Panel A: 5-minute Return

Dependent Variable Regressors HAR HARQ

5-minute RKF
t

RKF
t 1.84113 1.84444

V̂t,MA(1) 1.84042 1.81152

5-minute V̂t,MA(1)

RKF
t 1.86130 1.86642

V̂t,MA(1) 1.85546 1.83054

Panel B: 1-minute Return

Dependent Variable Regressors HAR HARQ

1-minute RKN
t

RKN
t 1.87539 1.82881

V̂t,MA(4) 1.87215 1.82548

1-minute V̂t,MA(4)

RKN
t 1.94106 1.88974

V̂t,MA(4) 1.93202 1.87276

1 This table reports the root mean squared forecast error
(RMSFE) of forecasting next period ex-post variance us-
ing both classical and Bayesian nonparametric variance es-
timator. Both HAR and HARQ model are considered. The
forecasting target is the dependent variable one period out-
of-sample.

2 On each day, the model parameters are re-estimated using
all the data up to that day.

3 Out of sample period: 2005/01/03 - 2016/02/16, 2773 days.
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Table 15: Summary Statistics: SPY

Frequency Data Mean Median Var Skew. Kurt. Min Max

Daily
rt 0.0188 0.0452 0.4980 -0.6969 6.5418 -4.2837 2.7084

r2
t 0.4984 0.1634 1.3633 8.8640 118.4977 0.0000 18.3506

5-minute

RVt 0.5287 0.2959 1.5263 16.2802 320.3198 0.0358 25.2066

RV block
t,M=26 0.5297 0.2920 1.5736 16.4718 325.8798 0.0356 25.6964

RKF
t 0.4900 0.2754 0.5812 7.8004 97.4299 0.0094 11.5382

RKN
t 0.4917 0.2792 0.6305 8.7319 119.7854 0.0168 12.7330

V̂t 0.5212 0.2901 1.3682 15.7278 304.5983 0.0367 23.5902

V̂t,MA(1) 0.5245 0.2756 1.3761 15.3403 294.2938 0.0160 23.4621

V̂t,MA(2) 0.5162 0.2900 0.8368 10.9368 175.3430 0.0145 16.1662

1-minute

RVt 0.5209 0.3154 0.5902 9.3401 138.3005 0.0521 12.8912

RV block
t,M=78 0.5214 0.3174 0.5910 9.3483 138.5217 0.0520 12.9052

RKF
t 0.5126 0.3036 0.8742 12.6004 219.7084 0.0344 17.4842

RKN
t 0.5062 0.2999 0.8818 13.0819 232.7427 0.0281 17.8050

V̂t 0.5170 0.3153 0.5766 9.2625 136.6305 0.0522 12.7063

V̂t,MA(1) 0.5095 0.2984 0.9136 13.1729 235.1810 0.0383 18.1655

V̂t,MA(2) 0.5025 0.2940 0.9899 13.5608 244.4456 0.0344 19.0570

30-second

RVt 0.5034 0.3099 0.4525 7.2251 89.5632 0.0563 10.1295

RV block
t,M=130 0.5297 0.2920 1.5736 16.471 325.8798 0.0356 25.6964

RKF
t 0.5092 0.3109 0.6869 10.9490 177.4869 0.0411 14.7520

RKN
t 0.5066 0.3094 0.7906 12.2661 211.2367 0.0356 16.4858

V̂t 0.5008 0.3087 0.4466 7.1778 88.5730 0.0566 10.0356

V̂t,MA(1) 0.5007 0.3017 0.6056 9.9364 152.7216 0.0436 13.3641

V̂t,MA(2) 0.4997 0.2917 0.6780 10.6858 170.9371 0.0394 14.5134

10-second

RVt 0.4984 0.3103 0.4172 7.0322 85.1760 0.0741 9.6097

RV block
t,M=260 0.4984 0.3106 0.4170 7.0330 85.2038 0.0741 9.6077

RKF
t 0.5021 0.3165 0.5179 8.7480 124.3016 0.0533 11.7691

RKN
t 0.5051 0.3128 0.5845 9.6693 145.9337 0.0447 12.9900

V̂t 0.4962 0.3099 0.4109 6.9512 83.4540 0.0741 9.4866

V̂t,MA(1) 0.4921 0.3067 0.4220 6.9830 83.8263 0.0470 9.6152

V̂t,MA(2) 0.4943 0.3066 0.4271 6.9312 83.1514 0.0441 9.6627

This table reports the summary statistics of ex-post variance estimators based on 5-minute, 1-
minute, 30-second and 10-second SPY returns, along with the summary statistics of daily return
and daily squared return. Sample period: 07/02/2014 - 06/28/2016.
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Figure 1: Posterior Mean of the Number of Clusters. Model: DPM. Data: 5-minute return
without microstructure noise from SV1F.
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Figure 2: Posterior Mean of the Number of Clusters. Model: DPM-MA(1). Data: 1-minute
return with independent noise from SV1FJ
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Figure 3: Posterior Mean of the Number of Clusters. Model: DPM-MA(2). Data: 30-second
return with dependent noise from SV2F.
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Figure 4: Signature Plot of RVt and V̂t (IBM data)
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Figure 5: RKF
t and V̂t,MA(1) based on 5-minute IBM returns
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Figure 6: RKN
t and V̂t,MA(4) based on 1-minute IBM returns
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t and V̂t,MA(1) calculated using 5 minute IBM returns.

Top: variance, below: log-variance
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Figure 8: Low volatility period: RKF
t and V̂t,MA(1) calculated using 5 minute IBM returns.

Top: variance, below: log-variance
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Figure 9: Posterior Mean of the Number of Clusters (Based on 3764 days results from DPM-
MA(1) using 5-minute IBM returns).
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Figure 10: Posterior Mean of the Number of Clusters (Based on 3764 days results from
DPM-MA(4) using 1-minute IBM returns).
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Figure 11: RVt and V̂t based on 5-minute SPY returns in June 2016. Top: variance, below:
log-variance
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Figure 12: RKF
t and V̂t,MA(1) based on 30-second SPY returns in June 2016. Top: variance,

below: log-variance
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