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Abstract 

Antibody-based therapeutics are an important class of biotherapeutics for therapeutic 

applications. With the rising demand and increase in biotherapeutic products on the market, 

there lies the need for rapid bioprocess development. Clone selection is a critical and time-

consuming step in upstream bioprocess development and it is a critical step to execute 

accurately. A Multiple Intelligent Agents for Manufacturing Intensification (MIAMI) is 

proposed to process raw data and evaluate clones of three commonly used host cells, Chinese 

Hamster Ovary (CHO), Escherichia coli (E. coli), and Pichia pastoris (P. pastoris).  

A search conducted for an IP-free protein sequence yielded the Anti-hepatitis B antibody. The 

whole antibody sequence was truncated to create a Fab’ fragment. Gene designs for three 

commonly used host cells, CHO, E. coli, and P. pastoris were created using the IP-free Anti-

hepatitis B Fab’ fragment.  

The development of MIAMI identifies and addresses the necessity of creating a sophisticated 

code that evaluates clonal ranking based upon data sets. These data sets were collected using 

the IP-free Anti-hepatitis B gene designs and an existing AV4 gene design.  

The AV4 gene design was transformed into P. pastoris and repurposed as an inverse methanol 

detector. In 50mL shake flask culture, green fluorescence protein was detected when 

cultivating the AV4 strain using glycerol and sorbitol carbon source, while protein transcription 

was inhibited when using a methanol carbon source. Data collected from cultivating the AV4 

strain in 800µL microtiter plates was used to develop the MIAMI software.  

The Anti-hepatitis B gene designs were established and characterized in 50mL shake flasks for 

E. coli and P. pastoris and a preliminary attempt to establish the gene design CHO. Using the 

data collected from automated cultivation of 8 different clones of Anti-hepatitis B E. coli and 

P. pastoris strains in 800µL microtiter plates scale using the TECAN, a manual ranking of the 
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clones was performed. Scaling the cultivation up to 200mL DASGIPs microbioreactors, clonal 

ranking for both strains remained unchanged.  

A code was written in python for the processing of raw data. This was demonstrated on the 

collected HPLC data sets for the Anti-hepatitis B E. coli and P. pastoris strains, and the flow 

cytometer data set for the AV4 strain. Multiple agents were created for the development of 

MIAMI. An assay agent was created for analysing raw HPLC and flow cytometry data to 

identify and remove unwanted clonal variations. A scanning algorithm calculated the mean and 

standard deviation of the yields at three consecutive time points to identify a period of stable 

yield. A ranking algorithm takes into consideration the maximum stable yield achieved and the 

variability in the data point, giving these two factors a 75% and 25% weighting, MIAMI 

identifies the best performing clone.  

The MIAMI ranking came to the same conclusion as manual human ranking. The effectiveness 

of MIAMI was validated on the Anti-hepatitis B E. coli strain, being able to correctly identify 

a top performing clone with an optimal induction time, with a conservative estimate of 87% 

decrease in time taken when compared to manual evaluation. 

The MIAMI software significantly improved the timeliness of bioprocess development by 

accurately screening and evaluating clones. This frees up the time of the user while removing 

potential sources of human error. With the incorporation of further bioprocesses, MIAMI will 

become a powerful and effective tool for bioprocess development.  
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Impact Statement 

A Multiple Intelligent Agents for Manufacturing Intensification (MIAMI) is developed to 

greatly accelerate timeliness of bioprocess development. It utilises a combination of high-

throughput methods to execute the screening procedure and intelligent agents to analyse and 

interpret the results. This effectively reduces the time any researcher needs to perform manual 

lab work and data analysis for clone selection by approximately 83%. 

Development of a bioprocess for any biotherapeutic product is an undertaking that requires 

considerable investment, not just in time but also in costs. The bioprocess must be optimised 

to produce the biotherapeutic of an acceptable quality and quantity, while keeping the cost of 

manufacturing low. Cell line development is the first step of bioprocess development and its 

relative success would impact efficiency of the rest of the bioprocess. Creating a cell line 

requires significant consideration as to the viability of the design. Once the design is finalised, 

clonal variation between clones of the same cell line present a substantial challenge. The 

difference in behaviour of clones cannot be easily understood and predicted. Thus, optimal 

clones require a rigorous screening process to identify. This process is laborious and generates 

a lot of data that requires interpretation.  

MIAMI be used to autonomously process through the influx of data effectively and efficiently. 

The number of clones screened can be increased dramatically without a significant investment 

in researcher time. Its ability to rapidly and accurately screen a large selection of clones makes 

it an efficient tool for use in developing commercial manufacturing bioprocesses. In addition 

to its contribution to the industry, MIAMI also pushes the advancement of software intelligence 

within the synthetic biological field.  
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Chapter 1: Introduction 

1.1 Knowledge Based Process Development in Advanced Manufacturing 

Process development is a critical step that is imperative for commercial manufacturing of any 

new product such as food, medicines, electronic devices and automobiles.  Production is 

optimised to ensure the end products are of high quality and are manufactured in a reproducible 

manner. The development of a new production process is inherently multi-disciplinary. It spans 

across different individual processes, wherein its successes are measured against different goals 

and performance requirements. Process development must address factors such as performance, 

safety, operability, and controllability (Sommerfeld & Strube, 2005).  

Prior to process development, quality criteria are set for the product based upon a physical or 

conceptual prototype and functional parameters are determined for process performance. These 

parameters are generally based on governmental regulatory requirements, for example Food 

and Drug Administration guidelines, for product quality and the company’s demand for 

profitability and timeliness. Process development aims to introduce various constraints that 

will produce the desired objective function that, at the very least, achieve the set minimal target 

at a manufacturing scale (Jain & Kumar, 2008).  

Choices made within process development must coincide with the availability of equipment 

choice and feasibility of process design. Thus, knowledge-based evaluations of these factors 

are critical for successful process development. Pisano (1994) suggested there is an empirical 

link between cumulative production experience and resultant manufacturing performance. 

Understanding of the product and process naturally lends aid to optimisation efforts towards 

the predetermined parameters. Adapting the process based upon knowledge-based changes to 

uncertain elements can reduce wasteful efforts and time delays, achieving a speedier 

development process.  
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Considering all possible factors within the process will reduce the amount of uncertainty while 

maintaining overall performance. An easily replicable process and reproducible results is 

critical for process development in terms of product profitability, product quality and timeliness 

(Tatikonka & Montoya-Weiss, 2001). Using a knowledge-based approach, experience can be 

used to make informed choices to reduce uncertainty within the process. 

 

1.2 Bioprocess Development for Biotherapeutics 

There are two main types of biological products, classified as small and large molecules. Small 

molecules have generally low molecular weight, such as aspirin at 180 Da, and are usually 

synthesized using traditional organic chemical methods. Biotherapeutics refers to larger 

molecules with generally high molecular weight, such as monoclonal antibodies at 

approximately 150 kDa, which are produced from genetically engineered cells. (Chhina, 2013) 

Since biological products are intended for human use, each newly discovered biological 

product must be placed through an additional sequence of tests to determine its safety, 

efficiency, and proper dosage strength and form. The flowchart shown in Figure 1.2A shows 

that bioprocess development must occur in parallel to clinical development. 
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Figure 1.1 Bioprocess and Clinical Development Timeline. Flowchart to depict the parallel 

nature of process development and clinical development. Bioprocess development starts with 

proof of concept toxicology process development, followed by the production of toxicology 

material, pre-phase II process development, pre-phase III process development and 

characterisation. The finalised bioprocess is then validated and submitted as part of a 

biologics license application. Clinical development starts with proof of concept and the 

application of toxicology trials, followed by phase I, phase II and phase III clinical trials. The 

information gathered in the clinical trials are reviewed and prepared for submission for 

biologics licence application.  
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1.3 The Unique Challenges of Bioprocess Development for Biotherapeutics 

1.3.1 Aligning Bioprocess Development with Clinical Development 

While the biological product can be initially produced in small quantities at a laboratory scale 

to cope with the volumes required in the early stages of clinical trials, eventually it must be 

produced in large quantities in extremely pure forms at economically feasible costs and within 

relevant regulatory constraints. Thus, bioprocess development must occur in parallel with the 

clinical trials and must scale up in concurrence with each phase. There is an added necessity 

for continuous manufacture of the biological product for use in clinical trials. This creates an 

additional challenge while keeping up with the deadlines imposed on bioprocess development. 

The additional deadlines are harder to adhere to when dealing with larger molecules such as 

biotherapeutics. Tertiary structure of larger size of the molecules is critical to their function 

(Yin, et al., 2007). However, due to the complexity of protein folding, the correct formation of 

these tertiary structures is challenging to achieve in a consistent manner. Additionally, being 

synthesized using live cells, biotherapeutics come with an inherent viral contamination risk. 

These two factors result in more critical process steps than small biological products, effecting 

the overall timeliness of bioprocess development (Chhina, 2013). 

1.3.2 Unpredictable Nature of Cultivation Using Live Cells 

A challenge unique to bioprocess development is the use of biologically engineered host cells. 

The primary aim of bioprocess development is to increase the titre. However, the responses of 

the cells are unique and cannot be accurately predicted with historical information. This 

reduces the effectiveness of a knowledge-based approach and thus presents the added challenge 

unique to bioprocess development. Additionally, changes in the environment or process are 

less reproducible, presenting a major limitation for scale-up during process development and 

optimisation. 
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When dealing with biological organisms, behaviour is heavily contextual and biological 

processes must display understanding for complex biological networks, accounting for 

phenomena such as changes in metabolic pathways and expression or repression of genes 

(Shioya, et al., 1999; Morris & Segal, 2009). While many processes are routine enough to allow 

for statistical characterisation, the individuality of each biological system makes it challenging 

to predict its performance using analysis of established similar processes (Adler, et al., 1995).  

Bioprocess development possesses a level of complexity and uncertainty that sets it apart from 

other disciplines (Shioya, et al., 1999). The multifaceted biological networks in bioprocess 

cannot easily fit into the statistical framework of a traditional knowledge-based approach. This 

results in a larger difference between processes derived from a knowledge-based approach and 

the actual optimal process. To bridge this gap, additional efforts would have to be invested to 

tailor the bioprocess uniquely to its biotherapeutic product. Moreover, operational parameters 

such as achieving a homogenous temperature and pH are more difficult to control in a 

biological system (Jain & Kumar, 2008). Consequently, greater investments are required to 

develop a more sophisticated optimal bioprocess.  

 

1.4 Upstream Processing and Downstream Processing in Bioprocess Development 

Process development for biotechnology can be divided into upstream processing (USP) and 

downstream processing (DSP). USP focuses on optimising for high titres in culture 

fermentations and efficient harvesting of the bioproduct in primary recovery. In DSP, process 

development aims to achieve high purification rates with efficient methods to remove by-

products and contaminants while guaranteeing product quality. Bioprocess development steps 

for both USP and DSP aims to decrease investment, time and development cost per antibody. 

Optimisation steps try to simplify and reduce the number of potential unit operation overall 

(Jain & Kumar, 2008).  
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1.4.1 Upstream Processing (USP) 

Process development for USP typically starts with the introduction of product encoding 

transgene, then cell clone selection, media optimisation and lastly bioprocess development and 

scale up. In recent years, with the increasing advanced options available, reactor choice and 

process control have also become a critical part of process development (Yang & Liu, 2013). 

Areas in USP are optimised individually with a focus on robust generation of a high production 

titre, high productivity and defined quality. 

The challenges faced by USP are largely depended on each strains’ biological limits rather than 

equipment capacity limits. Optimisation of USP tries to remove the biological limitations with 

a focus on achieving higher titres. This is generally achieved by creating or selecting specific 

cell line and media optimisation. Strains capable of reaching higher titres can be grown in the 

same equipment and volumes set up. Consequently, higher productivity is achieved with 

minimal to arguably no impact on the overall processing time and process cost (Gronemeyer, 

et al., 2014).  

1.4.2  Downstream Processing (DSP) 

Process development for DSP focuses on the optimisation of individual process for purifying 

the product, such as virus inactivation, chromatography, and filtrations units. Due to the 

physical principles for separation, downstream capacity always scales linearly with costs, 

manifesting itself as the “downstream bottleneck” (Gronemeyer, et al., 2014). Feed volumes in 

processes in DSP were designed for low titres, and with the significant increase in production 

titres in recent years leads to DSP equipment reaching its physical limits. This results in an 

increase in processing time, material consumption and costs. DSP development tries to improve 

the process capacities of each unit operation while maintaining the yield. The efficiency of the 

single unit can be achieved by either expanding the existing facility, or through seeking 

alternative processes (Shukla & Thömmes, 2010).  
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1.4.3 USP Factors That Influences DSP Performance 

Due to the linear nature of process development, optimisation of USP would consequently 

affect the performance of DSP. As a result, process development for USP would have to 

anticipate and address its effect on DSP. Producing higher volumes of product to purify in DSP, 

would directly cause an increase in processing time, material consumption and cost. However, 

precautionary steps can be taken in USP to lessen the additional burden. For example, 

developing cell lines with the appropriate post translational modification capabilities to 

eliminate the need for refolding processes in DSP. 

The amount of impurities produced is a significant factor that contributes to the efficiencies of 

DSP. Host cell proteins constitute a major group of impurities, especially for production of 

biological drugs. These proteins add a significant workload to DSP, since they must be closely 

monitored and adequately removed (Jin, et al., 2009). Cell lines can be specifically selected for 

lower production of host cell proteins. Additionally, changes to medium composition and 

process conditions, such as temperature and pH, influences the presence of host cell protein 

impurities. The optimisation efforts in upstream process development would greatly benefit 

downstream processing time. 
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1.5 Monoclonal Antibody as an Important Class of Biotherapeutics 

Sale of biopharmaceuticals in the United States is expected to have a compound annual growth 

rate of 11.2% (Yang & Liu, 2013). Monoclonal antibody (mAb) based therapeutics have 

become an important class of drugs and diagnostic agents due to their specificity and selectivity 

and are used for many diagnostic and therapeutic applications (Jain & Kumar, 2008; Holliger 

& Hudson, 2005). They account for a large percentage of the biotherapeutic market, rising from 

approximately 40% in 2016 to more than 50% in 2018 (Jonakin, 2016; TreDenick, 2018).  

The increase in mAbs being regularly approved for therapeutic use, along with the rising 

market demand, requires a sophisticated but commercially viable process (Jain & Kumar, 

2008). Biophysical properties are important parameters that are regulated in the bioprocesses 

(Kunert & Reinhart, 2016).  

Therapeutic mAbs takes the form of a Y-shaped, multidomain protein with the antigen-binding 

sites located at the tips of the Y, known as the variable region. The variable region binds 

monospecifically to one antigen, epitope, or cell type, thus determining the function of the mAb 

(TreDenick, 2018). The therapeutic specificity of the variable region is accountable for the 

mAb’s ability to administer highly targeted therapeutic while minimising side effects. 
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Figure 1.2: Schematic diagram of the basic structure of mAb. The orange represents the light 

chain, and the blue represents the heavy chain. The dotted red lines are the disulphide bonds. 

The variable regions of the antibody are labeled as VH and VL. The constant regions of the 

antibody are labeled as CL, CH1, CH2 and CH3. 
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1.6 Antibody Fab Fragment (Fab’) 

An antibody fragments (Fab’) contains one constant and one variable domain of each heavy 

and light chain. They are created by removing the stem region of the antibody cleaving past 

the disulphide bridge as depicted in Figure 1.6A. This effectively reduces the size of the protein 

while retaining its therapeutic potency within the variable region. 

The smaller size of Fab’ allows for the protein to be expressed in more host systems and be 

more easily secreted. By truncating the constant region of antibody, it removes many 

glycosylation sites, thus reducing the time required for refolding of proteins. These factors 

permit smaller hosts cells with less sophisticated folding pathways to be viable alternatives for 

design of the cell line. When administered, the small size allows Fab’ to be more effectively 

penetrate tissues, making it a more desirable therapeutic choice.  

The constant region of the mAb recruits cytotoxic effector, and for most therapeutic 

applications, these effects are often undesired (Holliger & Hudson, 2005). Thus, not only does 

the protein not lose any desired qualities from removal of CH2 and CH3 region, when 

administered, undesirable toxic effects are also reduced.  

Existing Fab’ products includes CDP870 for the treatment of Crohn’s disease, rheumatoid 

arthritis, psoriatic arthritis and ankylosing spondylitis, CEA-Scan for diagnostic imaging of 

colorectal cancers, and LeukoScan for the soft tissue imaging with a gamma camera (Sieper, 

et al., 2013; Ghesani, et al., 2003; Ryan, 2002) 
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Figure 1.3: Schematic diagram of the basic structure of Fab’, created by cleaving at the pepsin 

on a mAb. The orange represents the light chain, and the blue represents the heavy chain. The 

dotted red lines are the disulphide bonds. The variable regions of the antibody are labeled as 

VH and VL. The constant regions of the antibody are labeled as CL and CH1. 
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1.7 Bioprocess Development Steps in Upstream Processing for Biotherapeutics 

Optimisation for upstream processing expands multiple areas, with a focus on achieving high 

titres and productivity. Cell line engineering begins with choosing an appropriate host cell. An 

expression vector is carefully designed for the chosen host cell using synthetic biological 

techniques. Once a cell line is established, a high performing clone is selected. Culture medium 

is optimised based upon the clone by identifying the essential nutrients and determining exactly 

what composition and concentration of each component would be optimal. Process parameters 

such as temperature, pH and DO are sometimes optimised parallel to medium optimisation. 
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Figure 1.4: Flowchart of Cultivation Optimisation Process. The process begins with cell line 

development: choosing an appropriate host cell, designing an expression vector and creating 

the cell line by expressing the protein the chosen host cell. The creation of the cell line is 

followed by clone optimisation, identifying the unwanted clones and removing them, then 

choosing a high performing clone. Cultivation parameters such as media components and 

process parameters are optimised in parallel based upon the chosen clone. Lastly, choosing an 

appropriate bioreactor for the cultivation.   
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1.7.1 Major Hosts Cells for Biotherapeutic Cell Line Development  

Achievable titre in a process is largely set by the biological limits of the host cell. To address 

the challenges of removing this limitation, cell line development is a critical part of USP. 

Selecting the most compatible cell line not only increases the productivity in USP, but also 

reduces stress on DSP.  

Specific production rate can be controlled via genotype and phenotype of the host cell lines 

(Sommerfeld & Strube, 2005). Genotype is the genetic constitution of the cells whereas the 

phenotype is the behaviour of the cells as a result of interacting with the environment. The 

genotype of the cell line is manipulated through the development of DNA design system. The 

phenotype of the cell would be addressed when developing the cultivation conditions after the 

cell line is established.  

Production of heterologous proteins begins with the development of a suitable cell line. 

Capabilities of the host system have a major effect on the volumetric productivity (Birch & 

Racher, 2006). The range of host cells that can be utilised to suit the parameters of any process, 

coupled with targeted modification of cellular machinery, vastly increased the volumetric and 

specific productivity for upstream processing (Jain & Kumar, 2008). Consequently, the 

advancement in protein production has allowed for a multitude of hosts to be viable choices 

for protein proliferation. There are three commonly used host cells, Chinese Hamster Ovary 

(CHO), Escherichia coli (E. coli), and Pichia pastoris (P. pastoris). 
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Figure 1.5: Estimation of host cell usage in the European Union and United States 

biotherapeutics market. With CHO, E. coli, and P. pastoris being the most commonly used 

host cells, accounting for 43%, 34% and 13% respectively. The remainder 10% consists of 

lesser used expression systems such as, Pseudomonas fluorescens, Staphylococcus carnosus, 

Bacillus subtilis, and Caulobacter crescentus. (Meyer & Schmidhalter, 2012) 
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1.7.1.1 Chinese Hamster Ovary (CHO) Cells 

The advantages of mammalian cells as hosts is their ability to correctly perform post-

translational modification (Werner, et al., 1998). Mammalian cells have the most complex 

mechanisms with the ability to promote signal synthesis, secretion and glycosylation of 

proteins (Yin, et al., 2007). Its larger size also makes them less restricted by the protein size. 

Thus, is a predominate choice in producing recombinant proteins despite its high expenses and 

complexity. 

Chinese hamster ovary (CHO) cells are most common cells used in the production of 

biopharmaceuticals. While the proteins might be glycosylated differently due to the difference 

in species, it is mostly able to yield protein products indistinguishable from naturally occurring 

ones (Frenzel, et al., 2013). The potential risk of contamination with animal viruses can be 

eliminated by well-developed Good Manufacturing Practice (Yin, et al., 2007; Frenzel, et al., 

2013).  

CHO cells are a reliable choice when it comes to the production of heterologous proteins 

because they have advanced post-translational modification capabilities. This allows them to 

correctly fold even the most complex proteins. Running costs of CHO cultivations are high due 

to expensive media components and long doubling time. As a result, high productivity is sought 

after to reduce the expense per titre. While mammalian expression systems are arguably the 

most suitable system, a variety of other prokaryotic and eukaryotic hosts are gaining popularity 

due to their robust nature, rapid growth rate and easier and cheaper culturing conditions (Kunert, 

et al., 2008). 
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1.7.1.2 Escherichia coli  

Prokaryotic expression systems, such as Escherichia coli (E. coli), have the capacity for 

continuous cultivation and are very cost effective. As the first host to be approved for 

pharmaceutical production of recombinant DNA, E. coli hosts are preferred due to their low 

cost and rapid growth (Swartz, 2001). Introduction of foreign DNA into E. coli hosts is a 

straightforward process and require minimal amount of DNA.  

However, despite these advantages, E. coli lacks the capability to handle complex protein 

folding. Recent research has sought to characterise and improve upon the folding capability in 

E. coli. As a result, various studies have identified higher yields of correctly folded proteins 

occurring at lower temperatures and favouring the oxidizing environment of the periplasm 

(Ukkonen, et al., 2013; Li, et al., 2010; Šiurkus & Neubauer, 2011). This insight led to the 

deliberate slowing of protein synthesis, lessening host cell strain and promoting the correct 

formation of proteins (Hsu, et al., 2016). Manipulation of the localisation of the protein 

encourages secretion into the extracellular medium (Ukkonen, et al., 2013). Both result in 

higher process yield, improved protein solubility, limited plasmid loss, increased cell viability, 

and process robustness. 

1.7.1.3 Pichia pastoris 

Pichia pastoris (P. pastoris) was recently reassigned as Komagataella phaffii (Wei, et al., 

2017). However, P. pastoris is a more commonly recognised name for this strain. Thus, in this 

thesis, it will be referred to as P. pastoris. 

Demand for correctly folded proteins led to the relatively recent host cell alternative, yeast 

strains. P. pastoris is a eukaryotic cell with advanced protein folding pathways for heterologous 

proteins. As a result, it can produce heterologous proteins in its correct tertiary form, identical 
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to naturally occurring ones. They also have the advantage of not producing bacterial endotoxins 

like E. coli, and thus satisfy the biosafety regulations for human applications (Yin, et al., 2007). 

As both a eukaryotic cell and a microbial, it inherits the advantages of both and serves as an 

intermediary alternative to CHO and E. coli hosts.  Its cultivation period, media complexity, 

and transformation rate are slightly less desirable when compared to E. coli, but far more rapid 

and economical compared to CHO (Lim, et al., 2010; Frenzel, et al., 2013; Yin, et al., 2007). 

Its rapid growth rate coupled with the relatively small size of individual cells allows for it to 

achieve comparatively high cell density in bioreactors (Frenzel, et al., 2013).  

Although P. pastoris is capable of producing proteins identical to naturally occurring ones in 

terms of binding specificity and affinities, post-translational modifications are not optimal yet. 

Therefore, not all proteins can be produced successfully in P. pastoris (Kunert, et al., 2008). 

The growth rate, combined with the relatively small size of P. pastoris also allows for it to 

achieve high cell density of up to 0.5 g/L in bioreactors (Frenzel, et al., 2013).  

1.7.1.4 Basic Criteria for Host Cell Choice 

There are no restrictions on which type of host cells to use. The choice of the best suitable host 

would depend on the intended product. However, for a strain to be appropriate for commercial 

manufacturing, it must satisfy quality by design (QbD) criteria. The host cells must be able to 

achieve a consistent titre with the incorporation of the heterologous protein. Additionally, the 

host cells must possess the appropriate post-translational processing capability.  
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1.7.2 General Considerations for Clone Selection 

The enhancement of productivity is not only achieved by selecting the most appropriate host, 

but furthermore by the selection of highly productive clones. While all transformed or 

transfected host cells should produce the same heterologous protein, the achievable titre and 

product stability would vary between individual clones (Li, et al., 2010; Sommerfeld & Strube, 

2005). While there might be other specific considerations unique to individual strains or 

product, in general, high productivity and posttranslational processing are the key criteria for 

cell line selection after the transformation or transfection. The clone chosen for production 

would ideally produce high titre of correctly folded proteins with consistency.  

The general selection process for any strain, E. coli, P. pastoris or CHO, involves screening of 

multiple clones, at various scales, not only for metabolic characteristics but also for high 

stability, robustness, and viability. The bioprocess development must determine which clone 

to use for production and which would be saved and used as backup (Jain & Kumar, 2008). 

This can lead to a lengthy process, increasing proportionally with the number of clones 

screened. The substantial time investment required presents as a significant challenge. Both the 

selection of the optimum host expression system and clone determines the overall ability of the 

bioprocess to achieve high productivity and defined quality criteria (Li, et al., 2010). All 

subsequent process steps are built around the specific clone selected, therefore this is a notably 

critical decision in bioprocess development. 

1.7.3 Medium Development for Cultivation 

Generic complex media, which contains a mixture of unknown components, are commercially 

available for E. coli, P. pastoris and CHO cells (Gronemeyer, et al., 2014). These complex 

media, although readily available and easy to use, contains growth chemicals of unknown 

quantities, leading to many medium components becoming limiting factors for cell growth and 

productivity (Jordon, et al., 2013). This introduces the need for development towards an 
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optimised medium for use with a specific cell line, using the generic medium as a basis. The 

following discussion of medium optimisation significance and methods applies across all three 

host cell platforms, E. coli, P. pastoris and CHO, unless otherwise stated.  

An optimised medium is subjective, not only to the host strain, but additionally unique to each 

clone. This exclusivity is due to the high diversity in cell lines, processes, media components, 

interaction of components and metabolic pathways. For any strain, the optimisation of cell 

culture medium is an essential step normally performed after clone selection.  The 

improvement from generic medium not only increases productivity of the established 

bioprocess, but also has an impact on protein quality.  

Certain cell medium components have been shown to affect protein structure through reducing 

glycosylation formation with different strains (Gawlitzek, et al., 2009). Understanding the 

effects of each component and adjusting its presence in the optimised medium has a great 

impact on process development. This presents a challenging task as cell culture medium, 

particularly for mammalian cells, can contain up to 100 different components (Jordon, et al., 

2013).  

1.7.3.1 Medium Development’s Economic Impact 

Medium composition plays a critical role in commercialised cultivation processes due not only 

to its effects on the product, but also on the financial viability of the process (Nor, et al., 2017). 

Process development is easier in defined medium and it is inherently less expensive while 

producing fewer contaminants that need to be removed in downstream processing (Baltz, et al., 

2010). Thus, the optimisation of medium would make the overall process more economical, a 

major concern from an industrial standpoint.  
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1.7.3.2 One Factor at a Time Approach to Medium Optimisation 

The traditional approach towards medium optimisation is the simplistic systematic approach 

known as the one factor at a time (OFAT) strategy. The effects of one component of the 

medium is characterised while the others are kept constant. This approach can deliver an 

estimation of the optimum levels but is very time consuming. Since only one factor is observed 

at a given time, it limits the OFAT strategy’s ability to study the interactions between different 

factors. Interactions between medium components are ubiquitous within complex metabolic 

pathways, thus requiring additional effort to characterise during medium optimisation (Jordon, 

et al., 2013). Varying only one factor at any point overlooks these interactions which may lead 

to inaccurately drawn conclusions, and therefore cannot guarantee the identification of exact 

optimal conditions (Hu, et al., 2016).  

1.7.3.3 Design of Experiments Approach to Medium Optimisation 

The alternative method is using factorial designs and in conjunction statistical methods, known 

as design of experiments (DOE). Several components are varied simultaneously to identify and 

characterise their interactions and responses. When compared to the OFAT method, DOE can 

better assess the interrelationship effects between factors and provide a better prediction of the 

optimal medium, which results in higher growth (Nor, et al., 2017). However, this method 

requires more experiments to characterise not only the individual factors, but also their 

interactions with all other factors. The number of experiments required would increase 

exponentially as the number of monitored factors increases. Considering the workload and risk 

for human errors, 64 conditions represent an upper limit for manual experimentation (Jordon, 

et al., 2013).  
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1.7.3.4 Feeding Strategies for Optimised Medium 

While components of the medium can often be optimised at a smaller scale, when scaled up to 

a bioreactor additional optimisation is carried out regarding modes of feed. Modes of feeding 

includes batch mode, batch re-feed, fed-batch. Feeding strategy is vital as it provides the cells 

with the nutrients required for proliferation. Modification in feeding strategy can potentially 

improve specific productivity, viable cell number and culture periods several folds. Changes 

in limitations and surplus of medium components effect the type and concentration of 

impurities. Thus, any modification in medium composition and feeding strategy would also 

influence the purification process in DSP (Jain & Kumar, 2008).  

1.7.4 Bioprocess Parameters of Bioreactors 

Therapeutic protein can lose biological activity due to the formation of protein aggregation or 

the effects of other structural, environmental, and processing factors (Kunert & Reinhart, 2016). 

Efforts into understanding cell physiology and metabolism have made it possible to identify 

critical process parameters that affect the productivity of a process. The main parameters that 

affect cell growths are pH, temperature, and dissolved oxygen (DO). With improvements in 

online measurement instruments, process control of these critical parameters provides better 

reproducibility of the biological system. Operational procedures must be developed and 

controlled to minimise the variability in performance (Glassey, et al., 2000). 

Effects of pH and DO appears to be minimal for most cell lines, with trends towards lower cell 

viability at lower and higher DO (Gomez, et al., 2010; Ozturk & Palsson, 1990; Rosso, et al., 

1995). No cell growth occurs above or below specific pH limits. Cell metabolism changes 

under a certain DO threshold and the decrease in cell viability at low DO correlates with the 

increase in by-products. It is critical to determine the higher and lower critical limits of the host. 

Although the change in cell viability and growth does not vary much within the limits, there is 
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still an optimum point that encourages the highest productivity. Therefore, pH and DO are still 

important factors to consider for cell viability and growth.  

Temperature control is treated in a very similar manner as pH and DO. There is one optimum 

point operating in a specific range, where beyond the range no cell growth occurs (Rosso, et 

al., 1995). While the critical range for temperature is still important, recent studies have found 

that varying the temperature at different points in the bioprocess increases productivity 

dramatically (Siurkus & Neubauer, 2011). The optimal temperature for cell growth is different 

to the optimal temperature for protein synthesis; Generally, a traditional higher temperature of 

37oC promotes faster cell replication, whereas a lower temperature, as low as 25oC, promotes 

the production of correctly folded proteins (Ukkonen, et al., 2013; Li, et al., 2014). With the 

advancements in online process controls, temperature can be varied as required within the 

process to achieve higher process yield, improved protein solubility, limits plasmids loss, 

increase cell viability, and better process robustness (Hsu, et al., 2016).  
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1.7.5 Bioreactors Choices for Cell Culture 

With new advancements in terms of bioreactor designs, there is an increase in viable choices 

for a suitable bioreactor. The selection of a bioreactor considers its ability to provide adequate 

mass transfer and oxygen supply while imposing low sheer stress on the cells (Sommerfeld & 

Strube, 2005). Different bioreactors are accordingly suitable for different strains and 

applications.  

A new trend in bioprocessing is the implementation of single-use bioreactor systems. They 

offer advantages in their lower capital investment and operational costs, alongside higher 

process replicability. Different forms of the disposable systems include wave bags, orbital 

shake and stirred tank bioreactors. Although they are limited in their working scale, they 

eliminate the need for cleaning or sterilisation which significantly reduce contamination rates 

(Langer & Rader, 2014).  

Embracing this technology, several automated scaled down bioreactor systems have been 

developed. Such as automated work station using ambrTM (Sartorius AG, Göttingen, Germany) 

systems are small scaled, single use, sterilized, stirred tank bioreactors that are designed to be 

used in conjunction with an automated workstation. Control measurements can be taken at 

frequent intervals of 90 seconds, meaning the ambrTM systems are able to hold steady 

temperature, pH and dissolved oxygen to a high degree of precision and accuracy (Nienow, et 

al., 2013; Hsu, et al., 2012). The high degree of control and the design of the ambrTM bioreactors 

have made it possible to reproduce very similar cultivation conditions to large scale bioreactors. 

Cell growth in these miniature bioreactors outperforms shake flasks by 120%, and trends very 

similarly to growth in 2 litre bioreactors (Nienow, et al., 2013; Hsu, et al., 2012). As a result, 

the scalability of the entire cultivation process is very high, while keeping cost of process 

optimisation low (Rameez, et al., 2014; Amanullah, et al., 2009). 
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1.8 High-Throughput Approaches for Bioprocess Development 

High-throughput (HT) methods became established with the rise of flexibility in process scales, 

becoming increasingly utilised due to its ability to lessen time pressure in bioprocess 

development (Bareither, et al., 2013). The very small-scale fermentation, for example using 

96-well plates combined with the use of automation equipment, such as TECAN, HPLC and 

plate readers, allow for parallel runs of multiple experiments at the cost of minimal materials 

and investment of time. This leads to a large amount of data in a very short period. This method 

is commonly paired with statistically planned experiments, notably DoE, to optimise the 

quantity of effective experimental data acquired, or with software that is capable of processing 

a large amount of data in a fast manner (Sommerfeld & Strube, 2005).  

High-throughput screening (HTS) methods are already routinely used for screening multiple 

cell lines and clones for mammalian expression (Bos, et al., 2015). Individual clones are grown 

in small volumes in microtiter plates, which allows for parallel growth of multiple clones and 

as a result, rapid screening. While it is often a time intensive process because of the amount of 

data generated, it is a necessary tool to accelerate bioprocess development. 

Generally, HT methods are used in conjunction with DoE for optimising culture medium 

components and conditions. Using it to characterize mass transfers, volumetric mass transfer 

coefficient and oxygen transfer rate to provide valuable information as to how specific 

productivity varies with different components and medium conditions (Lattermann & Buchs, 

2015).  
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1.9 Implementation of High-Throughput Methods in Quality by Design 

There is a rising demand for biotherapeutics for therapeutic applications. To meet this 

challenge, more efficient process development is required for both upstream cultivation and 

downstream purification. A critical objective of bioprocess development involves optimising 

the performance of product manufacturing and implementing a protocol that ensures 

reproducible product titre and quality.  

QbD has gained acceptance within the industry as an approach to developing and 

commercializing biotechnology (Bhambure, et al., 2011). This involves a well-defined process, 

established after extensive research, that delivers products with consistent specified quality 

attributes. Therefore, it is important to deliver a streamlined cell culture platform with 

standardised process conditions and procedures. Using HT, cell line selection and media 

composition can be optimised rapidly. This method not only improve outcomes for bioprocess 

development, but also reduce the risk of failure in the developed bioprocess through means of 

QbD (Carrier, et al., 2010).  

Knowledge-based methods were originally favoured for developing QbD protocols because it 

reduced the amount of experimentation required to establish an optimum. Working with live 

cells is less predictable and therefore bioprocess knowledge does not lend itself well to 

generalisations. With the introduction of HT methods, the number of experiments that can be 

performed is greatly increased. The increase in the amount of data acquired from screening 

multiple conditions can be applied effectively and directly to the optimisation of a bioprocess. 

This brute-forced approach makes the bioprocess development less reliant on contextual 

bioprocess understanding and shifts bioprocess development away from a purely knowledge-

based optimisation.  
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1.10 Intelligence in Software 

Intelligent agents, also known as deliberative agents, have a broad definition that encompasses 

the simplest to the most complex systems (Meystel & Messina, 2000; Russell & Peter, 2003). 

The most rudimentary model of an intelligent agent is shown in Figure 1.10A. The information 

the agent perceives through its sensors and communication from other agents is inputted into 

the deliberative agent’s interface. Within the interface of the agent, there is an imbedded 

representation of the outer world and a hierarchy of its goals. Using these as basis for its 

decisions, it is then translated into an action and its output communicated to other agents. 

 

 

 

 

 

 

 

Figure 1.6: Scheme of the architecture of an intelligent agent. The interface contains a stored 

representation on the state of the outer world and the intended goals of the agent. The agent 

would process information perceived by its sensors and/or communications from other agents, 

make a decision based on the state and goals, and materialise these decisions using its effector 

and/or through communications outputs to other agents.  
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An example of a simplistic deliberative agent is a temperature control system. In this system, 

the goal of the agent is to maintain a constant temperature in an area. The representation of the 

outer world is straightforward, starting and stopping the heater would raise and lower the 

temperature respectively. If the sensors perceive a decrease in temperature, the agent would 

decide to start the heating to return the temperature to its set goal. This decision is then actioned 

by physically starting the heater. The intelligent agent is inherently autonomous. Thus, when 

the sensor detects that the temperature has returned to the set goal, it would decide to stop the 

heater.  

If there is no temperature sensor built into the temperature control agent, it can still receive 

input as communication from other agents. A different agent, such as a thermostat, can inform 

the temperature control agent of temperature changes. The same is true for the output of the 

decision. If an effector is not imbedded into the deliberative action, it can communicate its 

decision to another agent, such as an air conditioner. These redundancies might be unnecessary 

with this simplistic temperature control agent. The flexibility in how the input and output can 

be received and actioned is crucial when building more complex intelligent agents. 
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1.11 Current Use of Intelligent Agents to Accelerate Bioprocesses Development 

Biological processes have the unique challenge of working with live cells where a high level 

of variability in the production performance is common and difficult to accurately predict. This 

is due to the nuanced interaction between the technical choices, cell line selection, operating 

conditions and capability of the equipment. The success of intelligent agents is determined by 

the appropriateness of its actions in different situations. Therefore, the bioprocess requires the 

development of more intelligent methods for practical industrial application. 

Bioprocess development requires a deep scientific knowledge and a thorough understanding of 

process engineering and as a result is prominently driven by experienced personnel creating 

and evaluating experimental data (Neubauer, et al., 2017). Due to the complexity of biological 

systems, experimental data generated in the bioprocessing field requires a higher degree of 

interpretation (Videau, et al., 2010; Skupin & Metzger, 2012). Any resulting adjustments based 

upon the interpretation would be unique to the biological system used in the bioprocess, thereby, 

creating a “human in the loop” development process (Glassey, et al., 2000). The interpretation 

of results will not only be time consuming but would also vary from personnel to personnel, 

creating a source of variability in the resulting process performance.  

An intelligent agent can be developed for more consistent interpretations. However, an 

elaborate architecture, with communications between multiple agents, is required to 

compensate for the complex and dynamic nature of a bioprocess system. The redundancies of 

an intelligent agent, as depicted in Figure 1.10A, are vital in developing an effective software 

with elaborate architecture comprising of multiple agents. Various agent-based architecture has 

been developed and validated for different systems would be discussed in more detail in 

Section 1.12. Multi-agent intelligent architecture allows for different intelligent agents to 

communicate and works as a collective to collaboratively perform tasks in order to solve a 

presented complex problem. The modular nature of a multi-agent architecture allows for 
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complex problems to be divided into more manageable tasks; and since each agent is in theory 

independent in its design it allows for easier modifications without requiring an overhaul of the 

architectural software (Gao, et al., 2009; Genesereth & Ketchpel, 1994). 

Intelligence within an agent is derived from the translation of the operator’s knowledge into 

codes. Dividing the critical decision points in the bioprocess logically between multiple 

interacting agents will allow for a more straightforward implementation of codes and 

algorithms. The agents will represent separate but interacting functions that works to achieve 

a singular resource target, time target, and bioproduct parameters.  
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1.12 Intelligent Agents 

Advances in automation and HT methods places a bias on raising the experiment throughput 

rather than addressing the intelligent operations required to interpret the generated data. 

Systems for bioprocess development must be adaptive and able to make appropriate situational 

decisions. When discussing intelligent software, the initial thought might be drawn to expecting 

sensationalised artificial intelligence software with learning capacity. Such as, the robot 

scientist ADAM with its capacity to develop and test genomic hypotheses, run automated 

experiments using laboratory robotics, interpret the results to amend the hypothesis and learn 

from conclusions (King, et al., 2004). While intelligent software like this exist, it is not what 

intelligent agents refers to.  

Intelligent agents, like discussed in Section 1.10, is also known as a deliberative agent. Its core 

function, as its name would suggest, is to make appropriate deliberations based upon the 

situation. Its intelligent aspect is reflected through the reasoning and appropriateness of their 

decisions. This is an improvement in adaptability on traditional software, where decisions are 

pre-programmed, and the software lacks autonomy over its own reasoning. While intelligent 

agents can be developed to possess learning capabilities, it is not inherent in its definition.  

This section discusses literature that explores the use of intelligent agents in bioprocesses. 

Creation and implementation of intelligent agents is a novel developing field, as such many of 

the intelligent agents described are prototypes.  
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1.12.1 Intelligent Agents for Bioprocess Control 

Bioprocess control faces many of the same difficulties as bioprocess development when 

creating a multi-agent intelligent system. The predominate challenge is creating a model of a 

bioprocess due to the lack of comprehensive knowledge to fully describe a microorganism and 

its behaviour (Videau, et al., 2010). Complex interactions between multiple elements and the 

inherent quasi-optimal environment for cell growth requires an adaptive and dynamic 

intelligent approach to regulating controls within the bioprocess.  

Videau, et al. (2010) described a prototype self-adaptive multi-agent system for bioprocess 

control. This system comprised of multiple generic cooperative agents. When the agents 

perceive a change, they receive the information useful to their reasoning, and upon processing 

their reasoning acts in a useful way towards other agents. This cooperative output reflects the 

interactions between agents, as such makes the global function of the system adaptive.  

Skupin & Metzger (2012) addresses the issues surrounding nonlinear dynamics such as self-

sustained oscillation of biomass concentration. The traditional linear approach of detecting the 

oscillation, determining its source and processing the data before taking an appropriate action 

to maximise biomass productivity creates a lag period wherein the action taken would not be 

optimised for the situation by the time it is implemented. An intelligent approach is proposed 

as a hybrid of three agents and mathematical modelling. Two monitoring agents would detect 

the oscillation and calculate the average values separately. Using an appropriate mathematical 

model would pre-emptively determine the action required to reduce the oscillation. The control 

agent would implement the predictive action that addresses the oscillation in real time, thus 

providing the bioprocess with more accurate control.    
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1.12.2 Intelligent Agents for Bioprocess Development 

Feng & Song (2002) describes a working intelligent agent prototype for designing a 

manufacturing process. Although not exclusive to bioproducts, its collective agents use a 

knowledge base to design a manufacturing process that best satisfy the significant product 

parameters such as production volume.  

Gao, et al. (2009) proposed a theoretical systematic framework for the generation of an agent-

based bioprocess development. Using intelligent agents to provide flexibility to overcome the 

challenges of modelling bioprocess. The intelligent agents have access to the move relevant 

information and multiple objectives which allows for a rapid bioprocess. A modular set up of 

this theoretical framework makes it potentially extendable to compass more processes. 

Wu & Zhou (2014) described an Intelligent Automation Platform for Bioprocess Development 

(IAPBD) automated platform consists of four independent but interacting agents: Coordinate 

Agent, Execution Agent, Experimental Design Agent, and Assay Agent and shown in Figure 

1.12.2A. These four agents are bound by the same set of goals and carry out activities to 

accomplish them. 

 

Figure 1.7: Multiagent architecture for the existing intelligent automation platform. The 

execution agent, experiment design agent and assay agent communicate to each other via the 

coordinately agent. The coordinate agent will decide tasks based upon the experimental setting 

information and previous experimental results and assign tasks to the other agents. 
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IAPBD is a multi-agent based system where the agents have specialised functionalities and 

work together as a team to deliver a defined bioprocess development task. The communication 

among the agents was facilitated via Blackboard. The Coordinate Agent is responsible for the 

publication of information onto a blackboard, which is a hypothetical space where the other 

agents could withdraw information from and is essential to ensuring the other three agents are 

working interactively. Before any experimentation begins the experimental parameters would 

be defined and presented on the blackboard by the Coordinate Agent. Additionally, this agent 

will search and retrieve historical experimental knowledge from a database based on the 

predetermined settings and publish the information on the blackboard. This information is 

subsequently used to direct the other agents. All the agents can publish information on this 

blackboard, which allows for the other agents to draw upon that information if relevant. 

The Execution Agent and Assay Agent are responsible for carrying out the procedures required. 

The Execution Agent carries out the experimental procedures, for example, create the TECAN 

scripts to perform pipetting, mixing, moving plates, delivering the plates to plate reader or 

HPLC etc. The Assay Agent is then responsible for the analytical procedures performed on the 

samples provided by the Execution Agent. Using devices such as plate reader or HPLC, the 

Assay Agent would carry out protocols to determine the yield and analysis of raw data. This 

information would be communicated to the other agents via the blackboard. 

The Experimental Design Agent uses the experimental results published on the Blackboard to 

evaluate the design criteria and decide what to do next. If the objective function is not satisfied, 

the Experimental Design Agent will design new experiments and publish the new experimental 

procedures onto the blackboard for the Execution Agent and Assay Agent to execute. If the 

design criteria are satisfied, the Experimental Design Agent will provide the final solution to 

the Blackboard. Coordinate Agent will save the data into the database and stop the system.   
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1.13 Commercial Approaches to Rapid Mapping of Cell and Process Design Space 

Various biotechnology companies have incorporated intelligent software into their processes 

and products with relative success. Most of the software discussed in this section are 

proprietary. 

1.13.1 Ginkgo Bioworks 

Ginkgo Bioworks works to translate DNA design into code and store it in a large data base. 

The data base would contain codes representing DNA components, for example promoters, 

terminators and secretion signals, and their appropriate order. Using their in-house software, it 

can draw upon this information to design DNA with different components and combinations, 

such as varying promotors, secretion signals, terminators, etc. Ginkgo Bioworks is currently 

utilising this software and TECAN robotics to automate work on organism design across 

several industries, reporting that they are able to achieve high experimental repeatability with 

minimal human intervention. They integrated their in-house software to Transcriptic, a 

software that coordinate scientific processes, instruments and robotics to achieve full lab 

automation. Using this software, they are able to achieve automated high-throughput strain 

construction at a small scale. 

1.13.2 Silicolife 

Silicolife have a focus on developing bioinformatics, which was used to create an artificial 

intelligence with integrated knowledge of metabolic engineering. Its developed artificial 

intelligence, with their internally developed automated platform, was able to help generate a 

novel and proprietary metabolic pathway that is a new cost-competitive alternative for 

biological production of n-butanol (Lane, 2018). Their work is built upon a multi-objective 

framework for the optimisation process. Its optimisation algorithms rely on phenotype 

prediction methods based upon biological assumptions. Their artificial intelligence is able to 
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select more suitable hosts for specific production targets, leading to high quality products with 

the added depth of being able to seek trade off solutions for difficult challenges.  

1.13.3 Synthace 

Synthace have developed the software “Antha”, a biological operating system that can be 

implemented for multi-factorial DoE optimisation. By controlling existing automated 

laboratory equipment, such as TECAN, it executes complex workflows that can be 

reproducible. This software is most notably used within Synthace for DNA assembly. By 

combining multiple DNA parts directly from clonal input vectors in a one-pot, room 

temperature reaction, Antha is capable of generating diverse number of clones performed using 

an automated workflow.  

1.13.4 Lab Genius 

Lab Genius engineer proteins with enhanced and novel functionality using gene synthesis 

coupled with machine learning and robotic automation. While new biological designs are 

created through evolution, there is no guarantee that the mutation will be biologically 

favourable. Applying intelligence to evolution through machine learning, the EVA software is 

able to predict which mutations will perform well. The predictive efficiency of EVA improves 

using novel machine learning algorithms to extract design rules from proprietary and open-

access data. Applying this technology, Lab Genius is able to accurately manufacture countless 

unique DNA sequences without suffering from diversity loss or low fidelity.  
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1.14 Addressing the Bottlenecks of Clone Selection and Bioprocess Development with 

MIAMI 

Choosing an optimal clone is the initial step of the bioprocess development process and 

therefore crucial to the overall development timeliness. Changes made to the selected clone 

would impact product expression and hinder overall process development (Costa, et al., 2010). 

Thus, selecting the appropriate clone is vital to accelerating bioprocess development. Due to 

the unpredictable nature of biological screening, high-throughput approach is justified and 

appropriate for the screening and identification of clones capable of producing high titres 

(Hubbuch, 2012). Since biological data requires appropriate human interpretation to arrive at 

a suitable conclusion, HT is a tedious screening method creates significant burden by 

inundating the researcher with overwhelming information regarding each clone.  

A unique challenge for process development in the molecular biology field is the handling of 

biological products and large quantities of data simultaneously. Overcoming this challenge 

would lift the rate limiting step in clone evaluation and process development. Multiple 

Intelligent Agents for Manufacturing Intensification (MIAMI) is a software that use a 

combination of HT methods and intelligent agent created to address this critical challenge.  

MIAMI is intended to be a generic clone selection software for three commonly used host cells 

in the biotherapeutic industry, as shown in Figure 1.14A. It has the ability to screen multiple 

clones in parallel using the HT automated equipment. This would provide the information 

required to evaluate and select for an optimal clone.  
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Figure 1.8: Schematic representation of a Multiple Intelligent Agents for Manufacturing 

Intensification (MIAMI), the bioprocess software intended for this project. This software can 

receive strains data with CHO, E. coli, and P. pastoris host cells. It is then able to select for an 

optimal clone for each host cell.  
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Clone selection would occur in two stages. In the first instance, a larger number of clones are 

passed through a rudimentary screening process. In this process, unintended clone variations 

are identified and removed from selection. The intended clone variations are then ranked by 

their performance. A reduced sample size of higher performing clones is passed through a more 

rigorous validation process to generate the data for the evaluation and selection of one optimal 

clone.  

 

 

 

 

 

Figure 1.9: Schematic diagram to represent clone ranking process in MIAMI. Data sets from 

CHO, E. coli or P. pastoris are passed through Stage I and Stage II screening to generate the 

selection of an optimal clone.  
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This project takes an alternative approach to address a different challenge in upstream 

bioprocess development. Previously discussed in Section 1.3, the challenges faced in upstream 

bioprocess development is inherently different from those in downstream bioprocess 

development. The brute-force screening methods allows MIAMI to perceive and identify 

intended and unintended clonal variations. In doing so, it can select for a clone with the optimal 

characteristics. Approaching clone selection is such a manner eliminates the need to make 

assumptions and generalisation of clonal variability, resulting in a truer optimal clone selection 

process.  

The intelligence of the agent would be reflected in its deliberation process for clonal ranking 

and measured through the appropriateness of its decision. The aim is to achieve an intelligent 

agent that would interpret the information generated from the brute-force screening in a 

consistently similar manner to scientific personnel. Data analysis using MIAMI is faster and 

more accurate than conventional manual screening methods, thus is a great asset to accelerating 

bioprocess development. 
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1.15 This Investigation 

In this project MIAMI is a software that will be developed as a tool to accelerate bioprocess 

development in USP. The focus will be placed on accelerating the clone evaluation process in 

the manufacturing process. The potential to integrate media optimisation and downstream 

feedback would be considered throughout the project and achievability discussed at the end.  

This software would work in tandem with the available automated TECAN platform for 

cultivate and sample clones, and HT analytical equipment such as HPLC and flow cytometer. 

The resulting data would be used to make an intelligent assessment of the clones’ performance. 

To support the creation of MIAMI, a typical heterologous protein expression system was 

constructed for three different hosts: E. coli, P. pastoris, and CHO. They were used to establish 

a guideline for the ranking algorithms. A blind comparison would be conducted to establish 

the appropriateness of MIAMI’s ranking output.  
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1.16 Aims and Objectives of This Thesis 

The aim of this thesis is to create the MIAMI software that comprises of multiple intelligent 

agents that work to select for a high performing clone in three different strain platforms. Each 

intelligent agent would be created based upon manually collected data. Once the first version 

of MIAMI is complete, its functionally would be validated using a blind run.  

The synthetic gene network AV4 will be repurposed as an inverse methanol sensor, with 

varying levels of GFP as output. The resulting flow cytometry data is used, in part, to develop 

MIAMI. 

• Validating that the AV4 strain performs appropriately as an inverse methanol detector. 

Re-engineering an IP-free whole antibody sequence as a fab’ fragment free of glycosylation 

sites. Genes encoding this fab’ are written for expression in CHO cells and will be transfected 

into suspension CHO cells for characterisation at different scales. Data collected from these 

cultivations will be used to develop the clonal ranking algorithm in MIAMI. 

• Identify an appropriate intellectual property free antibody-based protein sequence. 

• Reverse engineering the mAb sequence to create an optimised Fab’. 

• Design a Fab’ expression system for CHO cells. 

• Transfect and cultivate new stable CHO cells expressing the Fab’. 

• Evaluate the scalability from 96-well plates to bioreactors for the CHO strain. 
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Genes encoding the Fab’ were written for expression in bacterial cells for transformation into 

E. coli cells for characterisation at different scales. Data collected from these cultivations will 

be used to develop the clonal ranking algorithm in MIAMI. 

• Design a Fab’ expression system for E. coli cells. 

• Transform and cultivate E. coli expressing the Fab’. 

• Evaluate the scalability from 96-well plates to bioreactors for the E. coli strain. 

Genes encoding the Fab’ were written for expression in yeast cells for transformation into 

P. pastoris cells for characterisation at different scales. Data collected from these 

cultivations will be used to develop the clonal ranking algorithm in MIAMI. 

• Design a Fab’ expression system for P. pastoris cells. 

• Transfect and cultivate P. pastoris expressing the Fab’. 

• Evaluate the scalability from 96-well plates to bioreactors for the P. pastoris strain. 

Using the data gathered manually, a new software, MIAMI, wascreated for the ranking of 

clones. 

• Develop code that is capable of processing raw data generated from 96-well plates in 

multiple formats, such as fluorescence flow cytometry data, High Pressure Liquid 

Column (HPLC) data and plate reader OD data. 

• Develop an intelligent agent that can appropriately assess the performance of different 

clones and processes. 

• Validate the software ranking against human ranking.  
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Chapter 2: Materials and Methods 

2.1 DNA 

2.1.1 Microgram Scale DNA Purification Using Miniprep 

Miniprep was performed using GeneJET plasmid purification kit provided by Thermo 

Scientific (Thermo Fisher Scientific, Waltham, Massachusetts, United States). 10mL of culture 

was prepared for each column used. The culture was incubated in an incubator shaker for 20 

hours before it was pelleted at 3300g. The supernatant was decanted carefully, and the 

remaining pellet was resuspended in 250µL of the provided cell resuspension buffer. The 

solution was vortexed to ensure a homogeneous mixture then transferred to 1.5mL Eppendorf 

tubes. 

250µL of cell lysis solution was then added and mixed by inverting the tubes slowly but 

continuously for duration of 2 minutes. Then 350µL of neutralization solution was added and 

mixed by inverting the solution in a similar fashion for 1 minute. The mixture was then 

centrifuged at 12500g for 5 minutes. The resulting supernatant was then transferred carefully 

into the provided spin columns placed in a collection tube. 

The supernatant was passed through the columns by centrifuging for duration of 2 minutes at 

12500g. The flow through of the column was subsequently decanted, and the columns were 

placed back into the collection tubes. The spin columns were washed by passing 500µL of 

wash buffer twice, decanting the flow through from the collection tube each time. After the 

columns were washed, they were placed in sterile 1.5mL Eppendorf tubes. 
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50µL of elution buffer, pre-warmed to 50°C, were added to the columns, and left to incubate 

for 2 minutes at room temperature. The columns were centrifuged at 12500g. The flow through 

was placed back into the column and was used to elute the column again in the same manner. 

2.1.2 Milligram Scale DNA Purification Using Maxiprep 

Maxiprep was performed using the plasmid extraction kit provided by Qiagen (Qiagen, Venlo, 

Netherlands), which contained all the necessary equipment and buffers. A 10mL starter culture 

prepared in a 50mL falcon tube was left to incubate for 8 hours. This was used to inoculate 

250mL of media in a 1L shake flask. The 1L shake flask was left in an incubator shaker 

overnight.  

The overnight culture was then transferred into five 50mL falcon tubes, and spun in a tabletop 

centrifuge at 6000g for 15 minutes at 4°C. The supernatant was checked visually to be clear 

and decanted carefully. The remaining pellet was resuspended homogenously in 10mL of the 

provided Buffer P1. To avoid damaging the plasmid the solution was mixed by pipetting up 

and down carefully rather than by use of vortex. 10mL of Buffer P2 was added and mixed by 

inverting slowly but continuously for 2 minutes, then left to incubate at room temperature for 

3 minutes. The solution was checked to be of a homogenous blue color. 

During this incubation period, the QIAfilter Cartridge was prepared by attaching a cap onto the 

outlet nozzle and placing upright. After the incubation period, 10mL of chilled Buffer P3 was 

added and mixed by inverting slowly but continuously for 2 minutes. Once the solution was 

completely colorless, it was poured into the barrel of the prepared QIAfilter Cartridge. While 

the solution was left to incubate at room temperature, the HiSpeed Tip was equilibrated by 

adding 10mL of Buffer QBT to the column and leaving the buffer to allow it to slowly enter 

the resin. 
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After the solution had been incubating for 10 minutes, a plunger was inserted to filter the cell 

lysate into the equilibrated HiSpeed Tip. After the entire volume of lysate had entered the resin, 

the resin was washed with 60mL of Buffer QC. Lastly, the plasmid was eluted using 15mL of 

Buffer QF. The eluted solution was precipitated with 10.5mL of isopropanol, this was mixed 

by inverting the two a couple of times and left to incubate for 5 minutes at room temperature.  

The plunger from a 30mL syringe was removed and a provided QIAprecipitator Module was 

attached onto the outlet nozzle. After incubation, the solution was transferred into the prepared 

syringe and the mixture was filtered through the QIAprecipitator using the plunger at a constant 

pressure. The filter was washed by pressing through 2mL of 70% ethanol, and then dried by 

pressing air through the QIAprecipitator forcefully 5 times. It was vital to ensure that the 

QIAprecipitator was removed before extracting the plunger each time.  

 

The QIAprecipitator was removed, dried and then attached onto a 5mL syringe. 1mL of Buffer 

TE, pre-warmed to 50°C, was added and passed through the QIAprecipitator at a slow but 

constant pressure to elute the DNA into a clean collection tube. The same solution was then 

passed through the QIAprecipitator another time into the same collection tube, remembering 

again to remove the QIAprecipitator before extracting the plunger. 

2.1.3 Restriction Digest and Electrophoresis of DNA 

10X TAE buffer provided by Life Technologies (Life Technologies, Carlsbad, United States) 

was diluted to 10-fold to create 1X TAE buffer. Ultrapure Agarose, DNA ladder, and DNA 

loading buffer were all provided by Invitrogen (Invitrogen, Carlsbad, California, United States). 

All restriction enzymes and associated enzyme buffers were acquired from New England 

Biolabs (New England Biolabs, Ipswich, Massachusetts, United States).  
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10μl of purified DNA, 7μl of milliQ water, 2μl of enzyme buffer and 1μl of restriction enzyme 

were combined in an eppendorf to a total volume of 20μl. The eppendorf tubes were incubated 

at 37°C for a minimum of 6 hours and maximum of 24 hours.  

Prior to removing the DNA mixture from incubation, 0.7g of agarose was dissolved in 70mL 

of 1X TAE buffer. This solution was cooled and 14μl of 500μg/mL ethidium bromide stock 

solution was added. The solution was mixed thoroughly and then poured into a cast containing 

a comb for well formation gently to avoid air bubbles. The gel was left to set for 20 minutes. 

After the gel solidified, the comb was removed, and an excess of 1X TAE buffer was added to 

fill the wells and cover the gel. 

10μl of DNA ladder was added to the first and last wells. Incubated DNA was combined with 

loading buffer at a ratio of 4:1 and mixed thoroughly. The resulting solution was loaded into 

empty wells between the DNA ladder. The gel was set to run for 30 minutes at 150V. Once 

finished, the gel was transferred to a UV illuminator system to visualize the bands using the 

ladder as reference. 

2.2 E. coli  

2.2.1 Antibiotics Stock Solutions for E. coli Strains 

Antibiotic stock solution was prepared in 1000X the recommended concentration and was 

added to culture media in a 1:1000 dilution. All chemicals products were provided by Sigma-

Aldrich (Sigma-Aldrich, St. Louis, Missouri, United States). Stock solutions of 50mg/mL 

tetracycline, 50mg/mL chloramphenicol, 100mg/mL ampicillin, were prepared, sterilised by 

passing through a 0.22µm filter and stored in aliquots of 150 mL in -20 °C.  
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2.2.2 Shake Flasks Cultures for E. coli Strains 

250mL shake flasks were sterilised in an autoclave. 50mL of sterilised culture and the 

appropriated antibiotic were added to the flasks. The media was inoculated with the intended 

strain and placed in incubator shakers for cultivation for approximately 1-2 days. Any handling 

of the flasks and media during sampling was handled in a sterilised environment inside a 

biological safety cabinet. 

2.2.3 E. coli Growth Media 

The chemical components of all media were provided by Sigma-Aldrich. Luria-Bertani (LB) 

broth was composed of 10mg/L tryptone, 5mg/L yeast extract and 10mg/L sodium chloride. 

Low salt LB was made by reducing the concentration of sodium chloride to 5mg.  

2XPY medium was composed of 16g/L phytone, 10g/L yeast extract and 5 g/L sodium chloride. 

100X SM6E Trace Elements was composed of 104g/L citric acid, 5.22g/L calcium chloride 

dihydrate, 2.06g/L zinc sulfate heptahydrate, 2.72g/L manganese(II) sulfate tetrahydrate, 

0.81g/L copper(II) sulfate pentahydrate, 0.42g/L cobalt(II) sulfate heptahydrate, 10.06g/L 

iron(III) chloride hexahydrate, 0.03g/L boric acid, and 0.02g/L sodium molybdate dihydrate. 

SM6Gc Medium was composed of 5.2g/L ammonium sulfate, 4.4g/L sodium phosphate 

monobasic, 4.03g/L potassium chloride, 1.04g/L magnesium sulfate heptahydrate, 10mL/L 

SM6 elements, 4.16 g/L citric acid, 112 g/L glycerol, 0.25 g/L calcium chloride dihydrate, and 

3.35 g/L sodium phosphate. pH of the media was adjusted to 6.95 using ammonia.  
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2.2.4 Generating Competent E. coli Cells by CaCl2 Method 

5x M9 salts was composed of 64g/L of disodium phosphate (Na2HPO4), 15g/L of 

monopotassium phosphate (KH2PO4), 2.5g/L of sodium chloride (NaCl) and 5g/L of 

ammonium chloride (NH4Cl). The final volume was sterilised through a 0.22µm filter. 

Minimal agar plates were prepared using 39mL of LB agar heated up to melt completely then 

left to cool to lower than 50°C. This was combined with 10mL of 5x M9 salts, 1mL of 20% D-

glucose, 50μl of 2mg/mL thiamine, 5μl of 1 M CaCl2, and 100μl of MgSO4. The 50mL mixture 

was subsequently poured equally into 4 separate plates and left to cool in a laminar flow. 

5.55g and 6.02g of calcium chloride and magnesium sulfate were weighed and dissolved in 

50mL of distilled water to make 1M CaCl2 and 1M MgSO4 respectively. Both solutions were 

passed through a 0.22μm filter and store in 50mL falcon tubes. 

5mL of 1M CaCl2 and 7.5mL of 100% sterilized glycerol were combined, and then topped up 

to 50mL in a falcon tube to make 0.1M CaCl2 / 15% glycerol. This solution was stored at -

20°C, and thaw on ice before use. 

Cells were streaked onto minimal agar plates and placed in a static incubator at 37°C overnight. 

The next day, a colony from this plate was used to inoculate a falcon tube containing 5mL of 

LB with 100µL of 1M MgSO4. The falcon tube was left to incubate overnight in an incubator 

shaker. 

1mL of the overnight culture was used to inoculate 100mL of pre-warmed LB in a shake flask. 

The flask was left in an incubator shaker for 2 hours, until the cells were at an optical density 

of approximately 0.3, the early log phases of the growth curve. At this point, the broth was 

transferred to chilled, sterile falcon tubes and placed on ice to incubate for 10 minutes. Then 
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they were subsequently spun at 3300g for 5 minutes in a bench top centrifuge at room 

temperature. The supernatant was decanted, and any residual liquid was removed carefully 

using a pipette.  

The remaining pellet was resuspended in 10mL of ice cold CaCl2 / 15% glycerol and left to 

incubate on ice. After a 30 minutes incubation period, the falcon tubes were centrifuged at 

3300g for 5 minutes on a bench top centrifuge at room temperature. The supernatant was 

decanted thoroughly. The pellet in each falcon tube was resuspended in 1mL of ice cold 0.1M 

CaCl2 / 15% glycerol. The 1mL of competent cells was transferred in 100μl aliquots into pre-

chilled Eppendorf, and stored at -80°C. 

2.2.5 Transformation into CaCl2 Competent E. coli Cells Via Heat Shock 

CaCl2 competent cells aliquot were removed from storage and placed onto ice. While on ice, 

10µL of plasmid DNA was added. The tube was then left to thaw on ice for 45 minutes. During 

this incubation period, a water bath was set up at 37°C. After 45 minutes, the eppendorf was 

transferred into a float in a water bath for 10 minutes, for the process of heat shocking.  

The eppendorf tubes were then transferred back onto ice for 2 minutes. After which 1.3mL of 

LB media with no antibiotic was added into to the competent cells and plasmid mix. The entire 

volume was then transferred into a 15mL falcon tube and placed into an incubator shaker for 1 

hour at 37°C.  

The entire volume of the falcon tube was transferred into a new 1.5mL Eppendorf tube and 

spun at maximum speed in a bench top centrifuge. All the supernatant was carefully removed 

using a pipette and the remaining pellet was resuspended with 100μl of LB media and spread, 

in varying volumes, onto agar plate with selection antibiotics: 100µg/mL ampicillin, 50µg/mL 
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tetracycline and 50µg/mL chloramphenicol. These plates were subsequently left in 37°C static 

incubator overnight.  

2.2.6 Osmotic Shock to Release Periplasm Contents by Disrupting the Outer Membrane 

Extraction buffer was composed of 200mM tris hydrochloride (Tris HCl), 1mM disodium 

ethylenediaminetetraacetate dihydrate (Na2EDTA), 20w/v sucrose, and 0.5g/L lysozyme.  

Overnight cultures were centrifuged at 3300g and the supernatant decanted carefully. The pellet 

was resuspended in 250µL of extraction buffer and incubated at room temperature. After 15 

minutes, 250µL of water was added to induce osmotic shock. The solution was centrifuged at 

3300g for 10 minutes and the supernatant was retained for analysis by HPLC. 

The volume of extraction buffer and water added to induce osmotic shock was reduced to 

100µL at smaller scale cultivation in the TECAN. 

2.2.7 Sonication to Release Contents of Cytoplasm and Periplasm 

Samples collected in 1.5mL eppendorf tubes were placed in an ice bucket and sonicated using 

a small probe, with 4 cycles of 10 seconds of sonication followed by 10 seconds of cooling. 

After sonication, the cells were centrifuged at 3300g for 10 minutes and the supernatant was 

retained for analysis by HPLC. 
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2.3 P. pastoris 

2.3.1 Antibiotics Stock Solutions 

Antibiotic stock solution was prepared in 1000X the recommended concentration and was 

added to culture media in a 1:1000 dilution. Chemicals products were provided by Sigma-

Aldrich. Stock solutions of 50mg/mL zeocin were prepared, sterilised by passing through a 

0.22µm filter and stored in aliquots of 150 mL in -20 °C. Zeocin is light sensitive, therefore its 

aliquots were wrap in foil and stored in the dark. 

2.3.2 Shake Flasks Cultures for P. pastoris 

250mL shake flasks were sterilised in an autoclave. 50mL of sterilised culture and the 

appropriated antibiotic were added to the flasks if required. The media was inoculated with the 

intended strain and placed in incubator shakers for cultivation for up to 5 days. Any handling 

of the flasks and media during sampling was handled in a sterilised environment inside a 

biological safety cabinet. 

2.3.3 P. pastoris Growth Media 

The chemical components of all media were provided by Sigma-Aldrich. Yeast Extract Peptone 

Dextrose Medium (YPD) was composed of 1% yeast extract, 2% peptone, and 2% dextrose.  

Buffered Minimal Glycerol (BMG) was composed of 100mM potassium phosphate, 1.34% 

YNB, 4 x 10-5% biotin, and 1% glycerol. The media was stored at 4oC. Buffered Minimal 

Methanol (BMY) and Buffered Minimal Sorbitol (BMS) was made by replacing the glycerol 

with 0.5% methanol and 1% sorbitol respectively.   
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Buffered Glycerol-complex Medium (BMGY) was composed of 10g/L yeast extract, 20 g/L 

peptone, 100mM potassium phosphate, 1.34% YNB, 4 x 10-5% biotin, and 1% glycerol. The 

media was stored at 4oC. Buffered Methanol-complex Medium (BMMY) and Buffered 

Sorbitol-complex Medium (BMSY) was made by replacing the glycerol with 0.5% methanol 

and 1% sorbitol respectively.  

2.3.4 Generating P. pastoris Competent Cells 

Cells were grown in 5mL of YPD in a 50mL falcon tube at 30oC overnight. 0.2mL of the 

overnight culture was used to inoculate 500mL of fresh YPD and grow overnight again. The 

culture was aliquoted into 50mL falcons and centrifuged at 1500g for 5 minutes at 4oC. The 

pellet was resuspended with 500mL of ice cold, sterile water. Cells were centrifuged at the 

same conditions and resuspended in 250mL of ice cold, sterile water. Cells were centrifuged a 

third time and resuspended in 20mL of ice-cold 1M sorbitol. The final volume was divided into 

80µL aliquots.  

2.3.5 Electroporation of P. pastoris Cells for Plasmid DNA Uptake 

Each aliquot of electrocompetent cells was mixed with 10µg of linearised DNA and transferred 

to an ice-cold 0.2cm electroporation cuvette from Bio-Rad (Bio-Rad Laboratories, Hercules, 

California, United States). The cuvette was incubated on ice for 5 minutes. The cells were 

pulsed using a gene pulser. and 1mL of ice-cold 1M sorbitol was added immediately. The 

volume was transferred to an eppendorf tube and spread in varying aliquots on YPD plates with 

selection antibiotics: 50µg/mL zeocin. Plates were incubated at 30oC for two days.  
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2.4 CHO Cells 

2.4.1 Antibiotics Stock Solutions 

Antibiotic stock solution was prepared in 1000X the recommended concentration and was 

added to culture media in a 1:1000 dilution. Chemicals products were provided by Sigma-

Aldrich. Stock solutions of 25mg/mL puromycin were prepared, sterilised by passing through 

a 0.22µm filter and stored in aliquots of 150mL in -20 °C.  

2.4.2 Static Cultures for CHO Cells 

Disposable sterile Nunc Flasks from Thermo Scientific were used for CHO cell cultures. Cells 

were seeded in CD CHO defined medium and incubated at 37oC and 5% CO2. Cells were 

passaged when they were of 70% - 80% confluency, approximately 2-3 days, to ensure cell 

health.  

2.4.3 Media for CHO Cell Culture 

CD CHO chemically defined medium from Gibco, Thermofisher Scientific, product number 

10743029, was used for all CHO cell cultures.  

2.4.4 Transfection of DNA via Electroporation 

The Amaxa Cell Line Nucleofector Kit V used was procured from Lonza (Lonza Group, Basel, 

Switzerland). CHO cells were seeded and grown 2-3 days before electroporation. The culture 

was divided into 1 x 106 cells aliquots. Cells were harvested by centrifuging at 100g for 8 

minutes at room temperature, and the supernatant was removed completely. The cell pellet was 

resuspended in 100µL nucleofector solution.  
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2.5µg of linearised DNA was added to each aliquot. The suspension was transferred into a 

cuvette and pulsed in the Amaxa. Immediately after, 500µL of culture medium was added to 

the cuvette. The volume was carefully transferred into a 24-well plate and topped up with 

culture medium to make a final volume of 1.5mL.  

To select for stable transfection, cells were grown for 48 hours in nonselective medium and 

then transferred to medium containing 25µg/mL puromycin. Cells were placed in humidified 

incubators at 30oC and 5% CO2. 

2.4.5 Transfection of DNA Using Superfect 

The Superfect kit was procured from Qiagen. Cells were split the day before transfection. On 

the day of transfection, cells were harvested and washed once with PBS. 5 x 106 cells were 

seeded in 60mm dish in 4mL of cell growth medium containing serum and antibiotics.  

5ug of DNA was topped up with cell growth medium without serum, proteins, and antibiotics 

to make a final volume for 150µL. The solution was mixed and spun down to remove drops 

form the top of the tube. 20µL of superfect reagent was added to the DNA solution, and was 

mixed by pipetting up and down 5 times.  

Cells were incubated at room temperature for 10 minutes. Then 1mL of cell growth medium 

containing serum and antibiotics was added and mixed. The cells were then immediately 

transferred to the 60mm dishes. Each dish was gently swirled to distribute the cells.  

The cells were then incubated for 48 hours, after which they were washed 4 times with 4mL 

PBS and passed into medium containing 25µg/mL puromycin.  
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2.5 Analytical Methods 

2.5.1 Gel Protein Electrophoresis 

15µL of cell culture sample was combined with 7.5µL of 0.2M 

dichlorodiphenyltrichloroethane (DDT) and 7.5µl loading buffer and mixed in an eppendorf 

tube. The tube was placed on a heat block at 95oC for 10 minutes. Pre-casted protein gels from 

Bio-Rad were placed onto a gel rank inside the gel tank. Running buffered was added to fill 

the tank to cover the gel. 5µl of marker was loaded alongside the sample cultures in the wells 

of the protein gel. The gel was run at 200V for 30 minutes.  

The gel was removed from the rack and placed in staining reagent for 60 minutes with swing. 

After which, the staining regent was removed and replaced with water to destain overnight. 

Gels were placed on a white board and visualized using an illuminator system. 

2.5.2 Poros High Pressure Liquid Column Using Agilent Systems 

1.38g and 1.42g of sodium phosphate monobasic monohydrate and sodium phosphate dibasic 

respectively were weighted and dissolved in 1L of distilled water to make 20mM sodium 

phosphate. The pH of the buffer was adjusted to 7.5 using sodium hydroxide, and the solution 

was then passed through a 0.22µm filter. This would be referred to as Buffer A.  

Another aliquot of 20mM of sodium phosphate was adjusted to the pH of 2.5 using hydrogen 

chloride. This solution was passed through a 0.22µm filter, and would be referred to as Buffer 

B. 

A HiTrap Protein G was attached to the Agilent (Agilent Technologies, Santa Clara, California, 

United States) High Pressure Liquid Column (HPLC) system and the column and system were 

flushed with 20% EtOH and then deionized H2O for 20 minutes each. The respective lines and 
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the column were subsequently flushed with Buffer A and Buffer B. During this period, the 

pumps and lines were checked for air bubbles, and ensured there was no air present before 

starting analysis. The analytical method for IgG protein was performed as shown in the table 

below. 

 

Table 2.1: Method design to conduct HPLC analysis using IgG column. In the first four 

minutes, the sample was introduced to the column and washed with Buffer A. The column was 

then eluted with Buffer B for 7.5 minutes. After the column was eluted, it was then washed for 

2.5 minutes using Buffer A. 

Time / Minutes Component of Buffer B / % Flow 

0.00 0 1 

4.00 0 2 

4.01 100 2 

11.50 100 2 

11.51 0 2 

14.00 0 2 
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300µL of each sample was allocated into individual wells and the sample names are entered 

corresponding to the well location within the Agilent system sequence table. The sequence was 

the left to run for its duration. 

After analysis, the HPLC and column was flushed with deionized H2O for 20 minutes and 20% 

EtOH for another 20 minutes. The column was subsequently removed and stored in -4°C. 

2.5.3 Detection of Green Fluorescent Protein using a Spectroflurometer 

The spectroflurometer was from Horiba Scientific (Horiba, Kyoto, Japan). 

Samples were pelleted and resuspended in phosphate buffered saline (PBS). 1mL of the 

resuspended cells were pipetted into a clean glass cuvette and placed in the spectroflurometer 

with excitation wavelength of 395nm and detecting and the emission wavelength from 500nm 

to 620nm.  

2.5.4 Detection of Green Fluorescent Proteins using Flow Cytometer 

The Attune NxT Flow Cytometer was from Thermo Fisher Scientific. 

Samples were pelleted and resuspended in phosphate buffered saline (PBS). 1mL of the 

resuspended cells were pipetted into a clean eppendorf and placed in a holder on the cytometer. 

When using the HT options of the flow cytometer, 300µL of the resuspended cells were 

pipetted into each well of a 96-well plate. The cytometer was set to analyse 10,000 events with 

medium flow rate for each sample.  

Using a plot of side scatter against front scatter of a negative control, approximately 75% of 

the events detected were gated. These events were then plotted in a histogram with a marker at 

approximately 0.5% of the population to account for background fluorescence. These baselines 

were then used to indicate GFP intensity. 
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2.5.5 Measurements of Optical Density Using A Plate Reader 

The Magellan plate reader was from TECAN (TECAN, Männedorf, Switzerland). 

50µL of samples were pipetted into individual wells in a 96-well flat bottom plate. A minimum 

of 3 columns (24 wells) were pipetted with water as blanks. The Magellan plate reader was set 

to take multiple readings per well, one in the middle and 4 around the sides as depicted in 

Figure 2.5.5A. Each reading was taken 5 times at a wavelength of 600nm.  

 

 

Figure 2.1: Magellan setting for taking measurements at multiple points within a microwell. 

A reading was taken in the middle of the well, and four were taken around the sides evenly 

distributed around the border.  
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2.6 Software Used for Gene Design 

2.6.1 A Plasmid Editor for Sequence Editing 

A plasmid editor (ApE) maintained by M. Wyane Davis of the University of Utah Biology 

Department was used for as a sequence editor for gene design. Plasmid maps generated for this 

project were done using the ApE software.  

2.6.2 Codon Optimisation Calculator 

The codon optimisation calculator was developed by EnCor Biotechnology Inc. (EnCor 

Biotechnology Inc., Gainesville, Florida, United States).  

2.7 TECAN Worktable Configuration 

The TECAN is a laboratory automation work station that is equipped with a liquid handling 

arm to provide 8 pipetting channels and a robotic arm to transport labware within the worktable. 

It is used to automate cultivation and sampling at the 800µL scale and preparing samples for 

the HPLC. The TECAN worktable was set up in the manner depicted in Figure 2.7A for all 

scripts used in this project. 
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Figure 2.2: Worktable setup of the TECAN. With the liquid handing system wash station at grid 1, 220µL disposable tips carrier and tips waste 

station at grid 2, 1.2mL disposable tips carrier at grid 8, microplate carrier at grid 14, thermomixer at grid 20, microplate centrifuge at grid 30, 

and trough carriers at grid 39 and 40. The Magellan plate reader, not depicted in this figure, was placed off the worktable at grid 25.  
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Chapter 3: A P. pastoris Gene Network Designed for Inverse Detection 

of Methanol 

3.1 Concept and Construction of the Inverse Methanol Detector 

3.1.1 Repurposing AV4 for Inverse Methanol Detection 

Construction of synthetic plasmids is a routine technique employed in molecular biology, yet 

it is often a time-consuming process (Petit & Petit, 2016). Manipulation of DNA for integration 

to produce a heterologous protein requires comprehensive understanding of components of 

gene construction. Therefore, before constructing a completely new plasmid for protein 

expression, the already synthesized AV4 Syngenta (Syngenta, Basel, Switzerland) plasmid is 

used to become acquainted with plasmid design considerations, P. pastoris handling and 

transformation techniques. This DNA sequence encodes a vitellogenin protein and is attached 

to a green fluorescent protein. Fluorescent proteins are effective selective markers, making this 

construct an ideal starting plasmid. 

The fluorescence data gathered from the analysis of this strain was used to develop the software. 

Allowing the MIAMI software to be able to process fluorescence data from a flow cytometer 

as well as Fab’ data from a HPLC. 

3.1.2 Inversed Methanol Induction  

The existing plasmid was designed in the manner depicted in Figure 3.1.2A, with the 

vitellogenin and GFP construct positioned between the gap and AOXI promoter. Once 

transformed into P. pastoris, this sequence will be expressed constituently by the gap promoter 

independent of carbon source. However, when the AOXI promoter is induced by methanol, it 

will promote the reserve complimentary RNA of the sequence expressing the proteins. In 

theory, the RNA encoding the proteins, and its reverse compliment strand will bind to each 

other, and thereby block protein translation. 
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Figure 3.1: Design cassette of the AV4 plasmid, synthesized to express the vitellogenin and 

GFP protein in P. pastoris. GFP is was attached to the end of the vitellogenin sequence, this is 

promoted by a GAP promoter. On the reverse complimentary strand, an AOXI promoter and 

terminator was placed at the ends of the GFP vitellogenin sequence, promoting the reverse 

complimentary of the GFP vitellogenin.  

 

 

 

Evaluating the efficiency of a promoter is important, especially when it is used in plasmid 

designs. When they are used in different express systems, it is challenging to determine the 

potency of one promoter in relation to another.  

 

 

 

pAO815 Backbone 

AV4 

S N P E 

GFP 

PAOXI 

Vitellogenin 

HIS4 

AOXI Terminator 

PGAP 

3’ AOXI 

E N X 

NaeI 



95 
 

3.2 Creation of the AV4 P. pastoris Strain 

3.2.1 Isolation of the AV4 Plasmid and Transformation  

The plasmid was transformed into Top10 bacterial host cells. The pAO815 plasmid possesses 

bacterial ampicillin resistance. The strain was grown in LB and plasmid was purified from the 

resulting overnight media.  

Potential linearisation sites for integration into the GS115 yeast genome were BglII, SalI, StuI, 

and BspEI. A review of the AV4 sequence showed that all these restriction sites were present 

within the protein sequence and thus were not viable. A unique restriction site, NaeI, was 

selected for linearization. This site did not cleave through any of the synthesized protein DNA 

sequence and was situated between the HIS4 and 3’AOXI features. The linearised plasmid was 

transformed in electrocompetent GS115 via electroporation.  

3.2.2 Confirming GFP in P. pastoris Cells 

Ten colonies were picked from the petri dishes and grown in YPD, along with wild type GS115 

for control. The cells from the overnight cultures were analysed using a spectroflurometer. Out 

of the ten colonies screened, only one indicated GFP presence. The results from the 

spectroflurometer are shown in Figure 3.2.3A. For clarity of the graph, the results from only 

one unsuccessful transformation is included. Its excitation profile behaved identically to the 

control. Whereas, the successful transformation displayed higher excitation at 500-520nm. 

This wavelength of light is observed as green, which corresponds to the expected colour 

exhibited by the GFP.  
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Figure 3.2: Results from the spectroflurometer, showing the presence of GFP when excited by 

light of different wavelength. The unsuccessfully transformed GFP behaved in a similar profile 

to the negative control, decreasing in intensity as the wavelength increased. The transformed 

GFP expressed higher intensity between the shorter wavelengths of 500nm to 520nm when 

compared to the negative control. There appeared to be a peak in intensity at approximately 

510nm for the transformed GFP, with its intensity decreasing as the wavelength increased.  

 

 

The same control and overnight cells were passed through the flow cytometer. Once the control 

was gated as shown in Figure 3.2.3B (Top), the same colony transformation displayed GFP 

presence, whereas the remaining nine did not. The consistent results confirm that this colony 

had been successfully transformed with the AV4 insert. The GS115 strain transformed with the 

AV4 insert would be referred to as GS-AV4 for the purpose of this thesis.  
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Figure 3.3: GFP measurements in P. pastoris cells. Negative Control (A, B & C), Successful 

Transformation (D, E & F), and Unsuccessful Transformation (G, H & I). The graph in A, the 

negative control, is gated for population analysis. The gated population is displayed as a density 

graph in C, a marker at 0.4% to set to account for background fluorescence. Using the same 

maker, 17.3% of the population in F exhibits GFP, indicating a successful transformation. 

Whereas in in I, 0.6% of the population exhibits GFP, suggesting this was an unsuccessful 

transformation.  
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3.3 Characterisation of the Inverse Methanol Sensor with Different Carbon Sources 

The use of methanol carbon source would inhibit the production of the integrated protein, hence 

switching-off the green fluorescence in the cells. In the interest of validating this, GS-AV4 was 

grown in 250mL shake flasks over a period of 96 hours using different media with different 

carbon sources. After 24 hours of initial fermentation, the carbon sources would be changed by 

pelleting the culture using centrifugation and then resuspending in fresh media comprised of a 

different carbon source. In doing so, it not only mapped the growth and behaviour of the strain 

in different media, but also displayed how quickly the switch mechanism reacts when the new 

carbon source is introduced. 

3.3.1 Shake Flask Cultures Using Glycerol and Methanol Complex Media 

As shown in Figure 3.3.1A, GS-AV4 grown in glycerol complex media reached a maximum 

GFP expression at approximately 24 hours and maintained that maximum throughout the 

remainder of the growth period. The same strain in methanol complex media maintained a 

constant minimal GFP production throughout the growth period. Similarly, wild type GS115 

grown in the same methanol media did not produce any GFP as well. 

A medium switch from glycerol to methanol resulted in an immediate cessation of GFP 

production. The medium switch from methanol to glycerol did not instantaneously increase the 

GFP production. After a period of approximately 24 hours, GFP was produced and rapidly 

reached a steady maximum. The 24 hours delay appeared to coincide with the 24 hours lag 

period when the strain was grown in glycerol. Consequently, once the medium switch was 

changed to glycerol, the productivity profiles both followed a similar trend.  
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Figure 3.4: Compilation of graphs showing the percentage of culture population expressing 

GFP and their associate error bars over a period of 96 hours shake flask culture. (A) is the 

negative control, with GS115 grown using glycerol carbon source. While percentage of cells 

expressing GFP increased as time passed, it was very marginal, remaining comfortably under 

1.0 even with the increasing error margins throughout the entire cultivation period. (B) shows 

GS-AV4 grown using glycerol carbon source. Percentage of cells expressing GFP remained 

low at the initial hours of fermentation. After approximately 24 hours, this increased 

dramatically from under 1.0 to over 6.0 and maintained this level of expression throughout the 

remainder of the 96-hour cultivation period. (C) shows GS-AV4 grown initially with glycerol 

carbon source for 24 hours. The carbon source was then swapped to methanol. The red dotted 

line represents the point at which the carbon source was switched. Percentage of cells 

expressing GFP remained low at the initial hours of fermentation. After approximately 24 

hours, this increased dramatically and reached a peak of almost 6.0. After the peak, percentage 

of cells expressing GFP decreased rapidly and remained low at around 1.0 for the remainder 

of the 96-hour cultivation period. (D) shows GS-AV4 grown initially with a methanol carbon 

source for 24 hours. The carbon source was then swapped to glycerol. The red dotted line 

represents the point at which the carbon source was switched. Percentage of cells expressing 

GFP remained low for approximately 50 hours at under 1.0. After which this increased to 3.0 

and maintained it, with GFP expression steadily rising to 5.5 at the end for the 96-hour 

cultivation period. (E) shows GS-AV4 grown using methanol carbon source. Percentage of 

cells expressing GFP remained low throughout the 96-hour cultivation period, with a mild peak 

at approximately hour 50. However, this perceived peak was still of low at 1.2.  

  



102 
 

3.3.2 Sorbitol’s Effect on the Inverse Methanol Sensor in Shake Flask Cultures  

Sorbitol is an alternative carbon source to glycerol that can be used in conjunction with 

methanol for regulating the AOXI promotor. Glycerol yields higher volumetric productivity 

with lower aeration requirement (Berrios, et al., 2017); while sorbitol induced lower osmotic 

stress, resulting in less host cell protein leakage (Shen, et al., 1999). Both are commonly used 

carbon source for P. pastoris fermentation, hence it is important to determine how the novel 

AV4 system performs in sorbitol medium.  

As observed from the results plotted in Figures 3.3.1A-E, the effects of the carbon source 

switch can be perceived by the end of a 2-day, 48-hour, period. Keeping the time of media 

swap consistent with the pervious shake flask cultures, the observation period for GFP intensity 

was shortened to 48 hours.  

  



103 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page is intentionally left blank.   



104 
 

 

  

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

%
 G

F
P

TIME (HOUR)

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

%
 G

F
P

TIME (HOUR)

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

%
 G

F
P

TIME (HOUR)

A B 

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

%
 G

F
P

TIME (HOUR)

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

%
 G

F
P

TIME (HOUR)

C D 

E 

Carbon Source 

Switch 

 

Carbon Source 

Switch 

 

Carbon Source 

Switch 

 

GS115 

Sorbitol 

AV4 

Sorbitol 

AV4 

Sorbitol                                         Glycerol 

AV4 

Sorbitol                                         Methanol 

AV4 

Methanol                                         Sorbitol 



105 
 

Figure 3.5A: Compilation of graphs showing the percentage of culture population expressing 

GFP and their associated error bars over a period of 48 hour shake flask culture. (A) is the 

negative control, with GS115 grown using sorbitol carbon source. Percentage of cells 

expressing GFP remained low throughout the entire 48-hour cultivation period. (B) shows GS-

AV4 grown using sorbitol carbon source. Percentage of cells expressing GFP increased 

exponentially and reached a peak of over 30.0 after 24 hours. After the peak, this decreased 

slowly for the remainder of the 48-hour cultivation period. (C) shows GS-AV4 grown using 

sorbitol carbon source for 24 hours before the carbon source was swapped to glycerol. The red 

dotted line represents the point at which the carbon source was switched. Percentage of cells 

expressing GFP increased logarithmically but experienced a temporary drop immediately after 

the carbon source swap. However, this increased logarithmically for the remainder of the 48-

hour cultivation period. (D) shows GS-AV4 grown using sorbitol carbon source for 24 hours, 

at which point the carbon source was switched to methanol. The red dotted line represents the 

point at which the carbon source was switched. Percentage of cells expressing GFP increased 

logarithmically. There is an immediate drop after the carbon source swap and remained low 

for the remainder of the 48-hour cultivation period. (E) shows GS-AV4 grown using methanol 

carbon source for 24 hours, at which point the carbon source was swapped to sorbitol. The red 

dotted line represents the point at which the carbon source was switched. Percentage of cells 

expressing GFP remained low but experienced a dramatic increase immediately after the 

carbon source swap and maintained a relatively high percentage GFP expression for the 

remainder of the 48-hour cultivation period. 
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As depicted in Figure 3.5, GS-AV4 behaved similarly in sorbitol and glycerol up to 

approximately 20 hours. However, GS-AV4 maintained a steady GFP production for longer in 

glycerol. Both sorbitol and glycerol should not inhibit the production of GFP. Therefore, when 

the medium was switched from sorbitol to glycerol at 24 hours, the cells maintained GFP 

production despite a mild dip immediately following medium change. The temporary 

depression was likely a lag period in cell growth when the cells were recovering from the shock 

of the medium change.  

The medium change from sorbitol to methanol resulted in the immediate disappearance of GFP, 

behaving in the exact manner as in the medium change from glycerol to methanol. As expected, 

GFP was detected when the medium was switched from methanol to sorbitol. Unlike glycerol, 

sorbitol seemed to start producing GFP more rapidly, with no lag period observed in the results.  

It must be noted that there was a change in flow cytometry used to analyse the results between 

the data presented in section 3.2 and 3.3. This was due to an unforeseen fault with the BD 

AccuriTM C6 Plus Flow Cytometer. The equipment could not be repaired in a timely manner, 

therefore Attune NxT Flow Cytometer was used for the remainder of the project. Although this 

might limit the comparison that can be drawn between the two separate data sets, it does not 

invalidate the conclusions of the strains’ characteristics within the data sets individually.  
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3.3.3 Characterisation of the Inverse Methanol Sensor in Minimal Media 

Complex media is designed for general use that promotes rapid growth, however, the 

components of each batch of media are unknown and can vary. To demonstrate that the 

behaviour of the switch mechanism is dependent solely on the carbon source, rather than 

interaction between the undefined components, minimal medium is used for the same media 

switch productivity profiling.  

Since the production of GFP in sorbitol appeared without a lag period, unlike in glycerol, the 

growth in minimal media was monitored for a shorted period of 48 hours, with a sample taken 

every 12 hours. The results are plotted and shown in Figure 3.3.3A.  
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Figure 3.6: Compilation of graphs showing the percentage of culture population expressing 

GFP and their associated error bars over a period of 48 hour shake flask culture using minimal 

media. (A) show the GS-AV4 grown using minimal sorbitol media. The percentage of cells 

expressing GFP held a constantly high value but decreased after 36 hours. (B) shows GS-AV4 

grown initially using minimal sorbitol media, then switched to minimal methanol media after 

24 hours. The red dotted line represents the point at which the carbon source was switched. 

Percentage GFP expression held a consistently high value for the first 24 hours. After the media 

switch, it decreased gradually for the remainder of the 48-hour cultivation period. (C) shows 

GS-AV4 grown initially using minimal methanol media. This was switched to minimal sorbitol 

media after 24 hours. The red dotted line represents the point at which the carbon source was 

switched. Percentage expression of GFP held a consistently low value for the first 24 hours. 

After the media switch, GFP intensity increased dramatically and held a consistently high value 

for the remainder of the 48-hour cultivation period. (D) shows GS-AV4 grown initially using 

minimal sorbitol media, then switched to minimal glycerol media after 24 hours. The red dotted 

line represents the point at which the carbon source was switched. Percentage expression of 

GFP held a consistently high value for the entire of the 48-hour cultivation period.  
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In comparison to complex medium, minimal medium was shown to be able to achieve double 

the percentage of cells expressing GFP. Reaching approximately 70.0 instead of 32.0. The error 

bars are smaller and more consistent in minimal medium. This can be attributed to the defined 

components of the medium used. This highlights the importance of defined medium 

components in reducing variability. By comparing these results to those in the previous section, 

it can be concluded that the switch mechanism in the AV4 strains performed in the same 

manner in minimal and complex medium. This suggests with relative certainty that the use of 

an AOXI promotor as an inverse methanol sensor is working as intended.  

3.4 Chapter Conclusion 

The AV4 strain functions as intended. GFP signals are detected when cultivating using glycerol 

and sorbitol as a carbon source. However, GFP signals are always inhibited by the presence of 

methanol.  
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Chapter 4: Design of Plasmid Insert and Transfection into CHO Cells 

4.1 Creating Data Sets for Use in the Development of MIAMI 

A protein expression system was designed spanning three commonly used host cells in the 

production of biotherapeutics: E. coli, P. pastoris, and CHO. A typical protein expression 

system was created by bearing in mind the considerations a conventional researcher would 

contemplate, such as whether the Fab’ is secreted or whether the Fab’ is produced constituently. 

This provided a typical strain for each host cell type. They were used to demonstrate the cell 

line selection capabilities of the MIAMI software. 

These three typical strains will be used to create a data set for use in developing the MIAMI 

software. The ranking algorithm of the cell lines would be developed using the knowledge-

based evaluation of the same data set. With this approach, the data sets highlighted the 

important factors that needed to be prioritised in the development of MIAMI. Basing the 

algorithms on real information significantly aided the MIAMI development process. 
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4.2 Identifying an IP-Free Sequence for MIAMI Development Data Sets 

The design of the expression systems was adapted to coincide with recommendations of 

relevant literature. Therefore, a genomic sequence without intellectual property claims was 

used to create the expression systems for this research, ensuring the freedom to modify the 

genomic sequence as required without repercussions. For this reason, great effort was invested 

in determining viable intellectual property free sequences for use. 

Although there were other protein sequences easily available, and a search showed that there 

were no intellectual property claims on them currently. However, there is no guarantee that 

their intellectual property free status will remain for the duration of this project. Thus, a 

sequence with an expired patent would be more suited for the intended purposes. Taking into 

consideration that patents are usually granted for a period of 10-15 years from the date of 

application, a systematic search was conducted for patents involving protein sequences that 

were filed 20 years prior. The additional 5 years was a grace period to ensure that the patent 

was not extended, thus allowing for the freedom to use and modify the sequence.  

A systematic search through an online registry (www.expiredpatents.com) of expired patents 

filed before 1994 yielded a patent for the expression of Anti-Hepatitis B antibody. The online 

registry used is no longer running. This is one of the three antibodies that binds to hepatitis B 

virus, was filed in 1992 and expired by 2004 (Kurihara, et al., 1992). It includes the full 

sequence, heavy and light chains of the antibody. The research conducted as part of the 

application revealed that the antibody had been successfully expressed in both prokaryotic and 

eukaryotic host cells. Similar patents for this sequence were published under different 

applications, however all of them had expired a decade ago. Assuming the expiration of the 

patent symbolises the expiry of intellectual property claims of the anti-hepatitis B sequence, 

this was used for the development of a typical protein expression system. 

http://www.expiredpatents.com/


113 
 

4.3 Designing the Truncation of the Anti-Hepatis B Sequence to Create a Fab’ 

Fragment 

An intended secondary purpose of this project was to draw a more direct comparison between 

the three different host strains. Comparing advantages and limitations between host strains is 

often based on the expression of completely different products. By expressing the exact same 

protein in E. coli, P. pastoris, and CHO cells, there should be a clearer indication of which 

hosts excel in which aspect. 

While CHO cells are less restricted by the expressed protein size and have complex 

mechanisms with the ability to synthesis, process, secrete, and glycosylate proteins, E. coli is 

less capable of expressing larger proteins (Yin, et al., 2007). Since the typical heterologous 

protein needs to be expressed by E. coli, the antibody sequence was altered to instead produce 

an anti-hepatitis B Fab’ fragment. The locations of the disulphide bonds were identified using 

cysteine sites present in the sequence and the antibody was truncated 3 basepairs after the 

disulphide bonds present at the hinge of the antibody. 

The locations of the disulphide bonds were identified using the cysteines sites. The pattern of 

the disulphide bonds suggested the antibody is of IgG1 subtype (Liu & May, 2012). The IgG 

subtype is further confirmed through identifying the location of glycosylation sites by 

searching for their known motifs (Valliere-Douglass, et al., 2010; Spiro, 2002).  The 

glycosylation motifs were only in the CH2, and CH3 regions of the antibody, which is a trait 

unique to IgG subtypes.   
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Figure 4.1: Diagram of the anti-hepatitis B antibody (Top) and the anti-hepatitis B Fab’ 

fragment (Bottom). The disulphide bonds are located and depicted at 22, 96, 147, 203, 229,232, 

264, 324, 370 and 428 basepairs on the heavy chain, and at 23, 88, 134, 194 and 214 basepairs 

on the light chain. The heavy chain of was truncated three base pairs after the hinge region of 

the antibody, at 235 basepairs to create the anti-hepatitis B Fab’ fragment. 
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4.4 Design of the Fab’ Expression Cassette for Mammalian Cells 

The components used in the design for the insert into CHO cells were from two different 

plasmids, pSecTag2A and pIRESpuro. Homologous recombination occurs when there are 

similar or identical DNA sequences. Repeated DNA would increase the likelihood of double 

strand breaks. To avoid this, two different promoters and terminators were used in the insert as 

shown in Figure 4.3A. The designed sequence was inserted into pUC57 through the flanking 

unique restriction sites, XbaI and BamHI. This high copy number plasmid was used to produce 

multiple copies of this sequence which can be subsequently used to transfect into CHO cells. 

 

 

 

Figure 4.2: Expression cassette for the anti-hepatitis B Fab’ fragment for mammalian cells. 

The heavy chain of the Fab’ fragments is preceded by an IgK leader, and followed by synthetic 

intron (IVS), internal ribosome entry site (IRES), puromycin resistance (PuroR). The sequence 

containing the heavy chain is placed between a CMV promoter and BGH polyadenylation 

terminator. The light chain of the Fab’ fragment is preceded by an IgK leader and placed 

between a SV40 promoter and SV40 terminator. This entire insert is placed between the unique 

restriction sites XbaI and BamHI of a pUC57 backbone. The pUC57 backbone contains an 

ampicillin resistance gene and a ColE1 origin of replication.  
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4.5 Transfection into Adherent and Suspension CHO Cells 

There are two types of transfection: transient and stable. In transient transfection, the nucleic 

acids introduced to the CHO cell are not permanently incorporated into the cellular genome, 

therefore the protein will only be expressed for a short period of time (Yin, et al., 2007).  

To permanently establish foreign DNA, it must be integrated into the chromosomes of the CHO 

host cells. Once it has been integrated into the cell’s genome, it can constitutively and 

permanently express the protein (Kunert, et al., 2008).  

4.5.1 CHO Cell Transfection Attempt Using Electroporation 

2.5µg of circular mammalian anti-hepatitis B plasmid was used to transfect GS-CHO. A 

plasmid expressing a green fluorescent protein, pGTIP and water were also transfected into the 

CHO cells as a positive and negative control respectively. After a two-day incubation period, 

the CHO cells for the positive control appeared green, which suggested a successful 

transfection. The anti-hepatitis B plasmid transfected CHO cells were resuspended into media 

containing puromycin. After an incubation period of 8 weeks, all the transfected CHO cells 

died at the same rate as the negative control, indicating the plasmid did not incorporate into the 

CHO cells genome. The unsuccessful transfection of the anti-hepatitis B plasmid is likely due 

to quality or quantity of the plasmid used in the transfection. Since the CHO cells in the positive 

control expressed GFP, CHO cell quality or the electroporation protocol is unlikely to be the 

cause of failed transfection.  

4.5.2 CHO Cell Transfection of CHO Cells Using SuperFect 

GS-CHO null cells were transfected with 2.5µg of circular mammalian anti-hepatitis B plasmid 

using SuperFect. The same cells were also transfected with water as a negative control. All 

transfected cells were left to incubated for 2 days at normal growth conditions. Subsequently, 
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puromycin was added to the media as a selective medium. After a period of 6 weeks, there 

appeared to be a population of healthy cells growing in the selective medium.  

Although the foreign DNA was established, there was an unforeseen equipment failure causing 

the loss of the transfected cells. The time lost as a result meant the development of this cell line 

was halted in favour of developing the E. coli and P. pastoris cell lines. 

4.6 Chapter Conclusion 

The IP-free mAb sequence was truncated to create the anti-hepatitis B Fab’. The mammalian 

insert was cloned into a pUC backbone. The plasmid was purified and transfected into 

suspension CHO cells using SuperFect.   
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Chapter 5: Designing and Expressing Fab’ Expression in E. coli 

5.1  Fab’ Expression in E. coli 

The original anti-hepatitis B sequence from the patent was optimised for mammalian cell 

expression. The sequence was truncated to create a Fab’ fragment. The smaller size allowed 

for expression in E. coli. However, other adaptations were implemented to optimise the 

expression in E. coli host cells and account for its limitations. 

5.1.1 Locating Possible Glycosylation Sites in the Anti-Hepatitis B Sequence 

E. coli hosts lack the cellular machinery to perform post-translational modifications such as 

glycosylation, leading to unfolded proteins that are incapable of performing their intended 

functions. While renaturation can provide the protein its appropriate three-dimensional shape, 

it leads to issues in downstream processing such as reduced yields or formation of aggregates. 

Taking into consideration the additional workload these processes would place on downstream 

processing, it would be advantageous to reduce or remove glycosylation sites within the 

sequence.  

Disulphide bonds in the original full antibody were identified by the location of the cysteine 

sites present in the sequence. The pattern of the disulphide bonds suggested that the antibody 

was of the IgG1 subtype (Liu & May, 2012). Glycosylation sites are usually only present in the 

CH2 and CH3 region of IgG antibodies (Verma, et al., 1998). Further search of the sequence 

revealed no known motifs of glycosylation sites in the VH1, CH1, VL and CL regions (Valliere-

Douglass, et al., 2010; Spiro, 2002). As a result, it can be assumed with high certainty that the 

truncation of the sequence to create an antibody Fab’ fragment removed all glycosylation sites.  
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5.1.2  Optimisation of Codon Usage for E. coli Expression 

Redundancies exist within the translation of mRNA; Different triples of codons translate as the 

same protein. Codon usage biases are present in all eukaryotic and prokaryotic genomes, where 

the use of preferred codons correlates with higher expression (Zhou, et al., 2016). For 

expression of the Anti-Hepatitis B Fab’ in E. coli hosts, the codons for both the light and heavy 

chains were optimised for bacterial hosts with a codon optimising calculator constructed by 

Encor Biotechnology Inc.  

5.1.3 Designing Biobrick Insert Sites and Silent Mutations 

Four biobrick sites were introduced to the sequence: EcoRI-HF and XbaI preceding the 

sequence and SpeI and PstI at the end. These sites were included to offer the sequence to a 

library of standardized components for open source usage. For these sites to be utilized as 

intended, they must be unique. A search of the full sequence was performed to identify the 

aforementioned biobrick sites. Any duplicates were removed from the sequence using silent 

mutations, preserving the translated sequence while removing the restriction site.  

Table 5.1: Table showing the location of the biobrick restriction sites present in the original 

Fab’ sequence. The original and alter sequences both translate to the same protein.  

Restriction 

Site 
Location 

Original 

Sequence  

(5’ -3’) 

Original 

Protein 

Altered 

Sequence 

(5’-3’) 

Altered 

Protein 

Heavy Chain 

EcoRI 4-9 GAA TTC Glu GAG TTC Glu 

PstI 325-330 CTG CAG Leu CTC CAG Leu 

PstI 598-603 CTG CAG Leu CTC CAG Leu 

Light Chain 

PstI 160-165 CTG CAG Leu CTC CAG Leu 

PstI 232-237 CTG CAG Leu CTC CAG Leu 

PstI 460-465 CTG CAG Leu CTC CAG Leu 

PstI 625-630 CTG CAG Leu CTG CAG Leu 
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5.2 Design Fab’ Expression Cassette for E. coli 

5.2.1 Low Copy Number Plasmid Choice 

With protein propagation as a priority, a low copy number plasmid was more desirable since it 

would not place unwarranted stress on the host cell to replicate multiple copies of the plasmid. 

An intellectual property free plasmid was used in conjunction with the intellectual property 

free Fab’. pACYC184 is a plasmid with a copy number of approximately 15 with two antibiotic 

resistance genes which were useful for antibiotic selection. The plasmid map is shown in Figure 

5.1. 

 

 

Figure 5.1: Plasmid map of pACYC184. This 4245 basepair plasmid has chloramphenicol 

resistance, tetracycline resistance and p15A origin of replication. Also depicted on the 

plasmid map are the unique restriction sites ClaI and HindIII. They are located between the 

origin of replication and tetracycline resistance. The anti-hepatitis B Fab’ sequence would be 

inserted between these two sites. 

  

pACYC184 

4245 



122 
 

5.2.2  Promoter and Secretion Signal Choice 

An OmpA secretion signal was attached before both the sequence of the heavy and light chain. 

Secretion of the Fab’ into the periplasm had two tangible benefits. It allowed for the correct 

disulphide bonds to form in the oxidizing environment and accounted for easier purification 

steps as there were less contaminating host cell proteins in the periplasm. Less stress is required 

to lyse only the outer membrane of the host cells, resulting in less fractionated cell membrane 

particulates that causes fouling of filtration units in downstream processing.  

A tacI promotor was added upstream of both the OmpA secretion signal. This hybrid promoter 

can be repressed by the lac repressor, which can be subsequently unrepressed using isopropyl 

beta-D-thiogalactoside (IPTG) (de Boer, et al., 1983). This function would prove to be useful 

for controlling expression of this foreign gene in its E. coli host.  

5.2.3  Transcription Terminators Choice and Location 

Terminators were placed immediately after both the heavy chain and light chain. This ensured 

the termination of protein translation and avoided excess amino acid sequences attached to the 

resulting Fab’. Two different terminators were used in the design of this plasmid insert to avoid 

lengths of repeated DNA. The two available terminators were: BBA_B001, a double terminator, 

and BBa_B1002, a single terminator.  

The required spacing between the stop codon, TAA, and the terminator itself depends on the 

terminator and strain. A review of past literature suggests that transcription terminators are 

generally found 133 base pairs downstream of the stop codon (de Hoon, et al., 2005). For 

bidirectional promotors, the distance between promotors facing opposite direction is 

approximately 240-300 base pairs apart (Shu, et al., 2006; Takai & Jones, 2004). Spacers 

created from randomly generated DNA were placed strategically within the sequence in 



123 
 

accordance to the literature. Different sequences for spacers were used within each design to 

avoid repetition of DNA. 

5.2.4 Plasmid Insert Design Options  

Three different designs were created for consideration as shown in Figure 5.2, Figure 5.3 and 

Figure 5.4. Promoters, secretion signals, spacers and terminators were placed using the 

rationale discussed in the previous sections. These designs were placed between two unique 

restriction sites in the plasmid, ClaI and HindIII.  

 

 

 

Figure 5.2: Design cassette α showing the orientation and spacing of each component, lab code 

name AHFEC-H2T. A pTacI promoter and OmpA secretion signal were placed upstream of 

both the heavy and the light chain of the Fab’ fragment. Downstream of both sequences were 

150 bp spacers and the terminators BBa_B0015 and BBa_B1002 respectively. The sequences 

were orientated head to tail, promoting in the same direction. A 150 bp spacer was placed 

between the BBa_B0015 terminator for the heavy chain and the pTacI promotor for the light 

chain. The insert was placed between the unique restriction sites ClaI and HindIII on the 

pACYC184 plasmid backbone.   
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Figure 5.3: Design cassette β showing the orientation and spacing of each component, lab code 

name AHFEC-H2H. A pTacI promoter and OmpA secretion signal were placed upstream of 

both the heavy and the light chain of the Fab’ fragment. Downstream of both sequences were 

150 bp spacers and the terminators BBa_B0015 and BBa_B1002 respectively. The sequences 

were orientated head to head, promoting in opposite directions, away from each other. A 300 

bp spacer was placed between the two pTacI promoter. The insert was placed between the 

unique restriction sites ClaI and HindIII on the pACYC184 plasmid backbone.  

Figure 5.4: Design cassette γ showing the orientation and spacing of each component, lab code 

name AHFEC-T2T. A pTacI promoter and OmpA secretion signal were placed upstream of 

both the heavy and the light chain of the Fab’ fragment. Downstream of both sequences were 

150 bp spacers and the terminators BBa_B1002 and BBa_B0015 respectively. The sequences 

were orientated tail to tail, promoting in opposite directions towards each other. A 150 bp 

spacer was placed between the two terminators separating them. The insert was placed between 

the unique restriction sites ClaI and HindIII on the pACYC184 plasmid backbone.  
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Design cassette α as, shown in Figure 5.2.4A, was best suited as both chains were orientated in 

the same direction, both the heavy and light chains would be produced in equal amounts, 

making it an efficient choice. If the chains were orientated in opposite directions, as in design 

cassette β and γ, the chain encoded in one direction might be produced in favour of the chain 

encoded in the opposing orientation. 

One concern regarding the design of in Figure 5.2.4A was the possibility that transcription of 

the heavy chain would not be fully terminated and may have included parts of the light chain 

sequence. This would have unknown effects on the translation of the sequence. However, the 

use of spacers between each chain, in conjunction with the double terminator, should ensure 

the effective termination of the heavy chain.  
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5.3  Generating the AHFEC-H2T E. coli Strain for Fab’ Expression 

The insert depicted in Figure 5.2 was synthesized in collaboration with Eurogentec. The insert 

was then cloned into pACYC184, between the tetracycline resistance gene and the origin of 

replication, via the ClaI and HindIII unique restriction sites. The synthesised plasmid was 

transformed into Top10 E. coli strain. 

5.3.1 Cloning Strategy of Expression Cassette α (AHFEC-H2T) 

The original design intended for the constant production of Fab’. The tacI promotor, without 

the presence of a lac repressor, will be continuously producing Fab’. As the first synthesized 

plasmid for a foreign host, it was important to verify thoroughly that it performed as intended. 

An existing strain created by UCB is IPTG inducible, therefore a Lac repressor was introduced 

to the AHFEC-H2T strain. In making it inducible by the same mechanic, it would allow for 

direct comparison to be drawn between the two strains and allow for a better verification of its 

validity.  

The LacI sequence was present in the pMMB66EH plasmid. This produces the Lac repressor, 

which binds to the tacI promotor in the AHFEC-H2T plasmid and inhibits the transcription 

until it is relieved by lactose or IPTG. Both the pMMB66EH and AHFEC-H2T plasmid was 

transformed into the same host cell to create an IPTG inducible strain that produced the anti-

HBS Fab’ fragment.  
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The E. coli strains available were, W3110 and Top10. CaCl2 competent cells of both strains 

were created through heat shock, ready for transformation. Both plasmids were isolated and 

purified from their respective strains. 10µg of AHFEC-H2T and pMMB66EH were used for 

transformation into the prepared competent cells. Both plasmids must be present in the 

transformed strain, therefore the transformation was selected for antibiotic resistance to 

ampicillin, tetracycline and chloramphenicol. This generated colonies of W3110 and Top10 

cells with both pMMB66EH and AHFEC-H2T plasmids, named QT-WAHT66 and QT-

TAHT66 respectively. 

 

Table 5.2: Table summarising the names of the E. coli strains used, their host cells and the 

plasmids they contain. The name listed here would be used to refer to each strain throughout 

the remainder of this thesis. 

Name Host Cell 

Plasmids 

AHFEC-H2T pMMB66EH 

QT-TAHT Top10 ✓ ☓ 

W-MMB W3110 ☓ ✓ 

QT-WAHT66 W3100 ✓ ✓ 

QT-TAHT66 Top10 ✓ ✓ 
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5.3.2 Creating a Standard Curve to Analyse HPLC Data 

Running a known concentration of pure Fab’, 0.02g/L, 0.1g/L, 0.2g/L, 0.3g/L, and 0.4g/L, in 

the HPLC allows for the creation of a standard curve. Plotting the concentration against the 

elution peak area provides an equation that can be used to process raw HPLC data into Fab’ 

concentration. Figure 5.5 shows the plot where the standard curve was derived from. Equation 

(1) shows how to convert elution peak area to Fab’ concentration.  

𝐹𝑎𝑏′𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐸𝑙𝑢𝑡𝑖𝑜𝑛 𝑃𝑒𝑎𝑘 𝐴𝑟𝑒𝑎 × 0.00003 + 0.0144   (1) 

Since the y-intercept of the equation is not at zero, the minimum Fab’ concentration would be 

0.0144g/L. This would pose a problem when dealing with low elution peak areas because the 

0.0144g/L increment might affect the shape of the productivity profile. Thus, when processing 

raw HPLC data, if no peak was detected, the Fab’ concentration will default to 0g/L, rather 

than derived using Equation (1).  

Figure 5.5: Plot of known Fab’ concentration against the area of their respective elution 

peaks. A linear equation is fitting to the data sets and shown as a red dotted line. 
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5.3.3  Confirming Successful Transformation into E. coli Cells 

When QT-WAHT66 and QT-TAHT66 were grown alongside the UCB strain, they all 

performed in a similar manner. Initially, cells were grown using shake flasks in 50mL of LB. 

While HPLC results indicated the successful production of Fab’, Fab’ was produced even in 

uninduced samples for all three strains. After some investigation, it appeared that lactose was 

present in variable quantity in tryptone, a primary component of LB media. The lactose 

prevented the lac repressor from inhibiting transcription of the sequence encoding the product. 

Resulting in the production of Fab’ whether the cells were induced or not. Since this irregularity 

was present in both newly synthesized strains and the well-established UCB strain, it was likely 

a symptom of media composition rather than error in the synthetic plasmid design.  

To overcome this issue, the cells were grown in SM6G defined media following a predefined 

protocol for the optimised growth of the UCB Fab’. It did not use tryptone as an ingredient and 

therefore eliminated the issue of lactose presence causing premature induction of the Fab’ 

product. The strains were initially grown in 50mL of 2XPY complex media, which used 

peptone instead of tryptone in its composition. After 3-4 hours of growth, when OD was around 

1, 1mL of the 2XPY media was used to inoculate 50mL of SM6G media in 250mL shake flasks. 

The flasks were then grown in normal conditions for 12 hours and subsequently monitored on 

a bihourly basis.  
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Using this new protocol, the UCB strain behaved as intended, however, the QT-WAHT66 and 

QT-TAHT66 strains still produced Fab’ when uninduced. Upon further reflection, this might 

have been a result of the tacI promotor and the lac repressor being present on separated 

plasmids. The difference in copy numbers of the host plasmids suggested that there might have 

been a lack of lac repressor produced for the number of AHFEC-H2T plasmids containing the 

tacI promotor. Full profiles of all the HPLC results are available in Appendix I. 

 

 

Table 5.3: Amount of Fab’ produced per litre in uninduced and IPTG-induced samples for 

the three E. coli strains: TAHT66, WAHT66, and UCB. 

Strain Name Host Strain 
Uninduced Sample 

(mg/L) 

Induced Sample 

(mg/L) 

QT-TAHT66 Top10 34.34 35.68 

QT-WAHT66 W3110 27.69 31.75 

UCB W3110 0.00 46.37 
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Figure 5.6: Excerpts of HPLC results for uninduced (Top) and induced (Bottom) samples of QT-TAHT66. There were elution peaks for 

uninduced and induced QT-TAHT66 samples, with corresponding Fab’ concentration of 34.34mg/L and 35.68mg/L respectively. Full profiles of 

both HPLC results are available in Appendix I. 
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Figure 5.7: Excerpts of HPLC results for uninduced (Top) and induced (Bottom) samples of QT-WAHT66. There were elution peaks for 

uninduced and induced QT-TAHT66 samples, with corresponding Fab’ concentration of 27.69mg/L and 31.75mg/L respectively. Full profiles of 

both HPLC results are available in Appendix I. 
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Figure 5.8: Excerpts of HPLC results for uninduced (Top) and induced (Bottom) samples of UCB. There was no elution peak for the uninduced 

UCB sample. When induced by IPTG, the UCB strain had an elution peak with a corresponding Fab’ concentration of 46.37mg/L. Full profiles 

of both HPLC results are available in Appendix I.
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The other theory that explains the presence of Fab’ fragments in both uninduced and induced 

samples is that there was an issue with the plasmid design or transformation procedure. 

However, multiple other results strongly support the idea that it is not the latter. Firstly, it was 

unlikely to be a result of an error in the plasmid, since the resulting strain has resistance to three 

different antibiotics. It would have been highly coincidental for the wrong plasmid to be 

inserted and to possess the same three antibiotic resistances.  

Secondly, while both uninduced and induced samples displayed peaks in the HPLC that 

indicate the production of Fab’, the peaks for the uninduced samples were consistently lower 

than the induced samples. This behaviour reinforces the concept that the strain did behave as 

intended, with the problem being purely a deficiency in lac repressors in comparison to tacI 

promotors. Additionally, when comparing the transformed strains to wild type W3110 as 

depicted in Figure 4.3.2.B, observing the entire HPLC profile, the wild type did not produce 

any peaks in the HPLC even when induced by IPTG. 
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Figure 5.9: HPLC for wild type W3110 induced with IPTG. No peak could be observed after elution begins at minute 4, which indicated the 

lack of Fab’ fragment presence.



136 
 

5.4  Cultivation of E. coli Strain at Different Scales 

The host strain W3110 has no intellectual property claims, thus the E. coli strain QT-WAHT66 

was used moving forward in this project. A clone from a petri dish was selected at random and 

grown in comparison to the UCB strain for characterisation. This clone is named QT-EC.4.8.16. 

5.4.1  50 mL Shake Flasks 

QT-EC.4.8.16 and the UCB strain were both grown in 2XPY media, for 2 hours. After which, 

1mL of the 2XPY broth was used to inoculate 50mL of SM6G media in 250mL shake flasks 

in triplicates and left to incubate overnight. After 10 hours, the growth was induced by IPTG, 

and 2mL samples were taken on a bihourly basis. 0.5mL was used for OD measurements, and 

Fab’ was extracted from the remaining 1.5mL through sonication. The sample at 12 hours was 

taken immediately after the addition of IPTG. 

As shown in Figure 5.10, QT-EC.4.8.16 reached a much lower OD when compared to the UCB 

strain. This was in part due to having both tetracycline and chloramphenicol antibiotics present 

in the medium, rather than tetracycline alone, inhibiting rapid growth. Additionally, it can also 

be a direct result of having two plasmids in the host strain, creating additional stress for the 

system, resulting in a lower achievable OD.   
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Figure 5.10: Growth profile of QT-EC.4.8.16 and UCB with error bars in 50mL of culture 

grown in shake flasks. Both strains reached a steady stationary phase after a period of 10 hours, 

with UCB reaching an OD between 7.0-8.0 and QT-EC.4.8.16 reaching a lower OD between 

2.0-3.0.  

Figure 5.11: Fab’ titre achieved in 50mL of culture grown in shake flasks for QT-EC.4.8.16 

and UCB with their error bars. The errors values are very small and therefore not observable 

in the plot. QT-EC.4.8.16 achieved a slightly higher titre than the UCB strain.  

0

1

2

3

4

5

6

7

8

9

0 5 1 0 1 5 2 0 2 5 3 0

O
D

TIME (HOUR)

UCB

QT-EC.4.8.16

10.35

10.4

10.45

10.5

10.55

10.6

10.65

10.7

10.75

10.8

10.85

10.9

0 5 1 0 1 5 2 0 2 5 3 0

F
A

B
' T

IT
R

E
 (

M
G

/M
L

)

TIME (HOUR)

UCB

QT-EC.4.8.16



138 
 

Figure 5.12: Fab’ produced per OD for QT-EC.4.8.16 and UCB with error bars in 50mL of 

culture grown in shake flasks. The WAHT66 strain achieved a higher total Fab’ mass than the 

UCB strain, however the UCB strain appeared to be more stable with lower errors during the 

stationary phase.  
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Although the OD achieved for QT-EC.4.8.16 was half of UCB, in the period both strains were 

monitored, QT-EC.4.8.16 produced a higher total Fab’ weight than UCB as indicated in Figure 

4.4.1B. While both strains achieved similar respectable Fab’ weights, when considering the 

amount of Fab’ produced per OD, shown in Figure 4.4.1C, QT-EC.4.8.16 appeared to have 

better yield. 

It is interesting to note that the UCB strain produced a stable amount of Fab’ per cell throughout 

the induction period. Whereas for QT-EC.4.8.16, the Fab’ per cell increases to a maximum 

before taking a drop. The consistency of the UCB Fab’ productivity could be attributed to the 

well-established nature of its host strain and optimised protocol and media composition. It is 

also likely that the variability in the performance of the QT-EC.4.8.16 was a relic of the 

interaction between the two plasmids transformed within the host. 
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5.4.2 800µL Cultivation in 96-Well Plate Using TECAN 

On a small scale, high-throughput methods are used to analyse the performance of different 

clones of the same strain to select the optimal clone. The use of 96-well plates in the automated 

liquid handling system TECAN, allows for the automated monitoring of cell growth and 

productivity. Eight clones of QT-WAHT66 were monitored over a period of 34 hours to 

establish an understanding of how this strain performs in a small-scale environment. 

1mL of glycerol stock was used to inoculate 10mL of LB media and left to incubate overnight. 

The OD was measured the following day, and a variable volume was used to inoculate fresh 

LB media to achieve a final OD of 0.2. The newly inoculated media was then distributed 

amongst the wells in 800µL portions. For ease of comparison, IPTG was introduced at the 

beginning of the incubation period. This should allow the tac promoter to act completely 

uninhibitedly, producing Fab’ constantly. 

The EVOWare script for the TECAN took 50µL OD samples and 500µL Fab’ samples from a 

sacrificial well for each clone over the 36 hours period. OD samples were placed in a 96-well 

flat bottom plate, which was transferred to the plate reader for OD measurements. Four-fold 

and, if required, tenfold dilutions were made if the OD measurement exceeds 1. Fab’ samples 

were placed in a 1.2mL 96-well plate. This plate was transferred to the attached centrifuge and 

Fab’ was extracted from the periplasm of the resulting pellet using osmotic shock. Sonication 

could not be used in this configuration, as the equipment required was not available. After the 

Fab’ was extracted, the samples were transferred to a HPLC for analysis. 
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Figure 5.13: Individual plots of total Fab’ mass produced in 800µL wells for eight different 

QT-WAHT66 E. coli clones grown at a small-scale cultivation in the TECAN. 
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Selecting three of the best performers, Clone 5, Clone 7 and Clone 8, a more comprehensive 

run was undertaken in which multiple samples were taken per time point. This provided a clear 

depiction of how these three clones performed. Using the same method, the 96 wells were 

shared equally between the three clones, and 4 sets of samples were taken over a period of 28 

hours.  
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Figure 5.14: Individual plots of Fab’ mass per OD in 800µL wells for QT-WAHT66 E. coli Clone 5, Clone 7 and Clone 8 grown at a small-scale 

cultivation in the TECAN.
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Figure 5.15: Ratio of Fab’ Mass for all three clones normalised to the lower of the three, 

Clone 5, in this instance. 

 

The results indicated that Clone 8 had the highest productivity per cell, with Clone 7 being the 

viable second choice. The larger error bars at the early data points for Clone 5 and Clone 8 

correlated with the more erratic behaviour of its productivity profile.  
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5.4.3 200mL DASBox Cultivation 

While the TECAN is a useful tool for high-throughput analysis, industrial fermentations are 

rarely conducted at such a small scale. For the conclusions drawn from the small-scale studies 

to hold validity, the results must hold true when scaled-up. Therefore, the same three clones 

were grown in DASGIPs fermenters and their OD and productivity monitored. If the clones’ 

performance in the TECAN was reflected in the DASGIPs, it is an indication that the 

conclusions drawn from high-throughput small-scale studies can be extrapolated to larger scale 

cultivation vessels. 

25mL of LB media was inoculated and grown until the OD was between 3-4. 20mL of this 

broth was used to seed 180mL of LB media in each DASGIPs, giving a total volume of 200mL. 

To use the same conditions as in the TECAN, IPTG was added at inoculation. The temperature, 

dissolved oxygen level and pH of the media was regulated by the DASBOX, and the cultivation 

growth was monitored over a two-day period. Samples were taken for OD and Fab’ 

measurements.  
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Figure 5.16: Total Fab’ mass for Clone 5, Clone 7 and Clone 8 of the QT-WAHT66 E. coli 

strain cultured in 200mL DASGIP vessels. Each data point is the mean of 3 technical repeats. 

Error bars were included but were too small to be seen.  

Figure 5.17: Ratio of Fab’ Mass for all three clones normalised to the lower of the three, 

Clone 5, in this instance. 
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Production at large-scale prioritises the titre achieved, therefore, the evaluation of the clones 

should be based solely on the total Fab’ weight yield. When comparing Figure 5.15 to Figure 

5.14 in the previous section, it can be noted that the three clones performed the same in both 

large and small scale relative to each other; With Clone 8 reaching the highest total Fab’ weight 

and Clone 5 severely underperforming relative to the other two.  

This reflection suggests that the optimisation work performed using the TECAN can be 

extrapolated and applied to larger cultivation vessels. The different clones’ relative 

performances remain the same when scaled-up.  

5.5 Chapter Conclusion 

The Anti-hepatitis B Fab’ sequence was optimised for expression in bacterial cells. The genetic 

sequence expressing the Fab’ was written and cloned into the low copy number plasmid, 

pACYC184. The AHFEC-H2T and pMMB66EH were both successfully transformed into 

W3110 E. coli cells creating the QT-WAHT66 strain, inducible by IPTG. This strain is capable 

of producing the intended Fab’ at 800µL, 50mL and 200mL scale. It was shown using three 

clones that the relative ranking of the clones remains the same from 800µL to 200mL.  
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Chapter 6: Designing and Establishing Fab’ Expression P. Pastoris 

6.1  Modifying the Anti-HBS mAb Sequence for Expression as Fab’ in P. pastoris 

Yeast cells are an effective host system and the intermediary between E. coli and CHO cells. 

Since it is both microbial and eukaryotic, it retains the benefits of both systems. They are robust 

with relatively short doubling time and possess the ability to produce proteins in its correct 

tertiary form. Unlike E. coli, where a refolding process might be necessary, yeast cells have 

evolved protein folding pathways that are more suitable for heterologous proteins and, overall, 

can produce proteins identical to naturally occurring ones (Frenzel, et al., 2013). As a result, 

little to no modifications would be required to adapt the sequence for yeast host cells. The DNA 

sequence was optimised for expression in P. pastoris by using the same codon optimisation 

software as mentioned in the previous chapter. 
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6.1.1 Considerations Regarding Glycosylation in P. pastoris Gene Design 

A consideration is that yeast forms both N- and O-glycosylation sites slightly differently from 

mammalians cells, and therefore the target protein might function differently (Verma, et al., 

1998). While this might pose as a problem for other heterologous protein expression, the lack 

of glycosylation sites in the Anti-HBS Fab’ rendered this issue insignificant. 

Human post-translation modifications are not fully optimal in yeast cells, and therefore not all 

proteins can be produced successfully in P. pastoris (Kunert, et al., 2008). The tendency for 

hyperglycosylation of heterologous proteins is a common issue.  This causes glycosylation to 

occur at unintended points, affecting the structure of the protein.   

Post-translational performance is largely dependent on the complexity and structure of the 

intended protein product, with less complex proteins being expressed with greater success. P. 

pastoris also glycosylates more similarly to mammalian cells and exhibits less 

hyperglycosylation than other yeast hosts (Kunert, et al., 2008). Since the Fab’ was produced 

in the far more fastidious prokaryotic hosts, the more sophisticated folding pathway of the P. 

pastoris host should not struggle with folding the tertiary structure of the same Fab’.  

  



151 
 

6.2 Construction of the Expression Cassette for P. pastoris 

6.2.1 Intellectual Property Free pJ90x-15 Plasmid for Strain Construction 

The plasmid used for yeast expression of the Anti-HBS Fab’ is pJ902-15. This plasmid has a 

pUC, high copy number, bacterial origin. This feature will prove to be useful when trying to 

produce and purify enough DNA for a transfection into P. pastoris. It has a zeocin resistance 

gene and has a stuffer protein, Rudolph Red Fluorescent Protein. The fluorescent protein is 

flanked by varies unique restriction sites, using these the sequence for stuffer protein will be 

removed and replaced with the Fab’. The plasmid map is shown in Figure 6.2.1A. 

Figure 6.1: The plasmid map of pJ902-15, showing the restriction sites and the location of the 

origin of replications and resistance markers. 
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6.2.2  Promoter and Secretion Signal 

The backbone plasmid already possesses a AOXI promoter and AOX terminator. Since the 

promoter and terminator correspond with each other, the insert must use the same promoter 

and terminator for both the heavy and the light chain. 

P. pastoris is known for high yields, and the resulting stress from proteins accumulated within 

the host cells would prompt cell apoptosis (Yu, et al., 2015). Thus, secretion of the product is 

paramount to preserving healthy cells and thereby maintaining a stable product yield. An α-

factor secretion signal is therefore upstream of both heavy and light chain. 

6.2.3 Fab’ Expression Cassette for P. pastoris 

As mentioned previously, the backbone plasmid already has a set of AOXI promotor and 

terminator. Therefore, the insert design does not need to include the AOXI promotor for the 

heavy chain, and the AOXI terminator for the light chain. The insert is flanked by two unique 

restriction sites NheI and SpeI.  

 

 

Figure 6.2: Design cassette for the expression of the anti-hepatitis B Fab’ fragment in P. 

pastoris. An α-factor secretion signal is placed upstream of both the heavy and light chains. 

Both sequences are promoted and terminated using an AOXI promoter and terminator. The 

insert is placed on a pJ902-15 backbone.  
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6.3  Generating the P. pastoris Strain for Fab’ Expression 

The insert depicted in Figure 6.2.4A is synthesized in collaboration with Eurogentec. The insert 

is then cloned into pJ902-15, replacing the Rudolph Red Fluorescent Protein, via the NheI and 

SpeI unique restriction sites. The synthesised plasmid is transformed into Top10 E. coli strain. 

6.3.1 Transformation Strategy A 

The Top10 strain containing the plasmid is grown in low salt LB and plasmid is purified from 

the resulting overnight media. The plasmid is linearized using SacI restriction site as suggested 

by the Invitrogen Manual. Linearization with this restriction site favours the isolation of His+ 

Mut+ recombinants in GS115. 15µg of linearized DNA is used to transform into 

electrocompetent GS115 using electroporation and selected for successful transformation using 

zeocin antibiotics resistance.  

The seeming successfully transformed colonies were picked and grown in 10mL of media then 

induced with methanol. The resulting HPLC analysis revealed that no Fab’ product was 

produced for the wildtype, uninduced and induced samples. The transformed samples are able 

to grow in the presence of zeocin, and therefore the lack of Fab’ being produced is unlikely a 

result of a failed transformation attempt. 

Investigating the cause of this revealed that the SacI restriction site is present within the AOXI 

promotor. Unfortunately, because this promotor is used twice within the insert, when 

linearizing with SacI the plasmid was cleaved into two sections. As a result, the heavy chain 

was isolated and only the light chain of the Fab’ was transformed into GS115 with the rest of 

the pJ902-15 plasmid. This caused the resulting colonies to possess the zeocin resistance yet is 

unable to produce a complete Fab’.  
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6.3.2  Transformation Strategy B 

An alternate linearization site had to be used for the transformation to include both chains in 

the insert. All the suggested linearization sites are present within the insert and therefore not 

unique. The insert and plasmid sequences are searched for a unique restriction site. However, 

it cannot be within any of the AOXI promoters, terminators, Anti-HBS insert, and the zeocin 

resistance gene. SwaI is a unique restriction site located between the AOXI promotor and the 

pUC origin of replication. This site was used to linearize the plasmid for transformation via 

electroporation. As this is not a standard linearization site, the transformation cannot guarantee 

any dominate phenotypes.  

6.3.3 Measuring Fab’ in Induced Transformed P. pastoris Cells 

The second transformation attempt was successful, generating colonies that were resistant to 

zeocin. Three colonies were picked and grown in 10 mL of media. Due to the α factor secretion 

signal, the produced Fab’ would be secreted into the media. After an overnight incubation at 

30 oC and 200 RPM, the broth was centrifuged, and a sample of the supernatant was placed in 

the HPLC for analysis. Three different colonies grown in BMMY produced 16-18 mg/L, 

whereas the same colonies produced no Fab’ when grown in BMGY. Additionally, wild type 

GS115 also produced no peaks in the HPLC. The GS115 strain successfully transformed with 

the designed plasmid is named QT-GAHT.
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Figure 6.3: HPLC results for P. pastoris cells. Wild type GS115 (Top) produces no peak when induced with methanol. QT-GAHT (Bottom) 

produced an elution peaks when induced with methanol, with a corresponding Fab’ concentrations of 17.9 mg/L.  Full profiles of the HPLC 

results can be seen in Appendix II. 
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6.4  Cultivation of P. pastoris Strain at Different Scales 

6.4.1  50 mL Shake Flasks P. pastoris Culture 

Growth and Fab’ production of a Mut+ P. pastoris strain in complex glycerol media and 

complex methanol media is monitored. This clone was selected randomly from a petri dish and 

will be referred to as QT-PP.28.9.17. As a negative control, wild type GS115 is grown in 

complex glycerol media.  
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Figure 6.4: Growth profile of the QT-PP.28.9.17 strain in methanol and glycerol, and wild 

type GS115 in glycerol in 50mL shake flask culture. Error bars were plotted but unperceivable.  

Figure 6.5: Total Fab’ mass produced for QT-PP.28.9.17 strain in methanol and glycerol, and 

wild type GS115 in glycerol as negative control in 50mL shake flask culture. QT-PP.28.9.17 

grown in glycerol does not produce any Fab’ fragments. 
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The wild type GS115 strain grew more rapidly and to a higher OD compared to the QT-

PP.28.9.17 clone. With glycerol as a carbon source, QT-PP.28.9.17 achieves a higher cell 

density, however, as can be seen in Figure 6.4.1B, it does not generate any Fab’ fragments. The 

AOXI is working to its full effect, effectively inhibiting the Fab’ production until induced by 

changing the carbon source to methanol.  

6.4.2 800µL P. pastoris Cultivation in 98-Well Plate Using TECAN 

Observing from the shake flask growth and Fab’ production, productivity reaches a plateau 

around 24 hours after inoculation, and holds steady until it slowly decreases starting at 80 hours. 

Evaporation of the growth media is a concern when growing P. pastoris cells at the small scale 

of 800µL over a 4-day period. From experience with growing E. coli in the TECAN platform, 

media does evaporate at considerably even after 24 hours. Additionally, since methanol would 

be used as a carbon source for the media, its evaporation rate is higher than other alternatives. 

Hence, an evaporation study was conducted to determine the rate of evaporation of the 

methanol media in 800µL wells. 

To replicate the same growth conditions, the TECAN was scripted to perform the exact same 

tasks and the 96-deep well plate was inoculated exactly as it would be for normal small-scale 

cell growth. After a 24-hour period, the plate was removed, and the remaining media volume 

is measured. Selecting 20 randomly distributed wells, the remaining media averaged to 550µL. 

Approximately 31% of the methanol media has evaporated over 1 day. This would significantly 

affect the results of cell growth, especially if conducted over 96 hours.  

A media top-up was added into the TECAN script for P. pastoris. 250µL of methanol media is 

added to each well every 24 hours before sampling. The added volume returns the total volume 

of each well back to a working 800µL. While this keeps the working volume relatively constant 
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throughout the 4-day incubation period, it does introduce other considerations. Most 

importantly, the addition of fresh media provides additional nutrients which would help the 

cells maintain its cell density. Hence when compared to growth of E. coli in TECAN, the P. 

pastoris cells would appear to have a longer stationary growth phase. However, this would 

translate better into large scale fermentation, as fed batch are more common in larger vessels. 

Glycerol stock was prepared for 8 random clones of QT-GAHT picked from a petri dish. 1mL 

of glycerol stock was used to inoculate 10mL of YPD media and left to incubate overnight. 

The OD was measured the following day, and a calculated volume was used to inoculate 

BMMY media to achieve a final OD of 0.2. The newly inoculated media was then distributed 

amongst the wells in 800 µL portions. To imitate the same effect as in E. coli, methanol media 

was used from the beginning of cultivation to allow for the continual production of Fab’. 

The EVOWare script for the TECAN takes 50µL OD samples and 500µL Fab’ samples from 

a sacrificial well for each clone over a 48 hours period. OD samples were placed in a 96-well 

flat bottom plate, which were transferred to the plate reader for OD measurements. tenfold and, 

if required, 100-fold dilutions were made if the OD measurement exceeds 1. Fab’ samples were 

placed in a 1.2mL 96-well plate. This plate was transferred to the attached centrifuge and Fab’ 

was isolated from the P. pastoris cells. The supernatant was then transferred to the HPLC for 

analysis.  
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Figure 6.6: Individual plots of total Fab’ mass produced in 800µL wells for eight different QT-

GAHT P. pastoris clones grown at a small-scale cultivation in the TECAN.  
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Figure 6.6 shows Clone 2, Clone 3, and Clone 5 are selected for their high productivity. Clone 

1 was discounted because the total Fab’ weight decreased over the cultivation period. Although 

Clone 6 reached a higher total Fab’ weight than the others at 55 hours, its behaviour thereafter 

is too erratic. The three selected clones are then grown in quadruplicates in the same manner. 

8 sets of quadruplicate samples will be taken over the course of 90 hours. 
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Figure 6.7: Individual plots of specific yield for QT-GAHT P. pastoris Clone 2, Clone 3 and Clone 5 in 800µL well, grown at a small-scale 

cultivation in a TECAN. 
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Figure 6.8: Ratio of Fab’ Mass for all three clones normalised to the lower of the three, 

Clone 5, in this instance. 
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6.4.3 200mL DASBox Cultivation for P. pastoris  

25mL of YPD media is inoculated and grown until the OD is between 3-4. 20mL of this broth 

is used to seed 180mL of BMMY media in each DASGIPs, giving a total volume of 200 mL. 

The temperature, dissolved oxygen level and pH of the media is regulated by the DASBOX, 

and the cultivation growth is monitored over a four-day period. Samples are taken for OD and 

Fab’ measurements. Throughout the cultivation period, the volume of the vessels was observed. 

Possibly due to being in an enclosed vessel, the media volume did not have the same significant 

evaporation as experienced in the smaller scale.  

Figure 6.9: Total Fab’ mass for Clone 2, Clone 3 and Clone 5 of the QT-GAHT strain cultured 

in 200mL DASGIP vessels. Error bars were included but were too small to be seen.  
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Figure 6.10: Ratio of Fab’ Mass for all three clones normalised to the lower of the three, 

Clone 3, in this instance 
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6.5  Chapter Conclusion 

The Anti-hepatitis B Fab’ sequence was optimised for expression in yeast cells. The genetic 

sequence expressing the Fab’ was written and cloned into pJ902-15 backbone. This plasmid 

was linearised and successfully transformed into GS115 P. pastoris cells creating the QT-

GAHT strain, inducible by methanol. This strain is capable of producing the intended Fab’ at 

800µL, 50mL and 200mL scale. It was shown using three clones that the relative ranking of 

the clones remains the same from 800µL to 200mL.  
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Chapter 7: Optimisation of Scale up 

The scale up results collected previously in Chapter 5 and Chapter 6 for E. coli and P. pastoris 

are summarised in this chapter. The graphs generated from the scale up from 96-well plates to 

200mL DASGIP bioreactors are compared side to side. By evaluating the specific yield and 

total yield at bothscales, it will help ascertain which metric at the 800µL scale would generate 

a more accurate clonal ranking prediction for the 200mL scale. This chapter will also provide 

a collective insight into the percentage error associated with the different fermentation scale. 

7.1 Use of Specific Yield to Better Predict Clones’ Behaviour in a Bioreactor 

In bioprocess development, the goal is the optimise for the highest achievable titres. This 

equates to the total Fab’ mass produced in the DASGIP bioreactor. Although final titre is used 

to evaluate the efficiency of the bioreactor, the same evaluation when imposed on the 

microscale does not accurately represent clone productivity. 
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Figure 7.1: The specific yield (Left) and total yield (Right) for E. coli clones cultivated in 800µL wells. 

 

 

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30

S
p

ec
if

ic
 Y

ie
ld

 (
n

g
/O

D
)

Time (Hour)

Clone 5 Clone 7 Clone 8

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30

T
o
ta

l 
Y

ie
ld

 (
n

g
)

Time (Hour)

Clone 5 Clone 7 Clone 8



169 
 

  

Figure 7.2: The specific yield (Left) and total yield (Right) for E. coli clones cultivated in 200mL bioreactors.  
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In the 800µL microscale cultivation the total yield achieved by Clone 7 is higher than Clone 8. 

However, in the 200mL bioreactor cultivation, the total yield achieved by Clone 8 is 

significantly higher than Clone 7. Thus, this is not an accurate representation of the behaviour 

of clones for commercial scale. Observing the graph for specific yield, which is calculated by 

dividing the total yield by the OD, the productivity profile much closely resembles the 

productivity profile at the 200mL bioreactor scale.  
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Figure 7.3: The specific yield (Left) and total yield (Right) for P. pastoris clones cultivated in 800µL wells. 
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Figure 7.4: The specific yield (Left) and total yield (Right) for P. pastoris clones cultivated in 200mL bioreactors.  
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The scale-up results do for P. pastoris is more straightforward. Clone 3 clearly achieves the 

highest total yield in all four graphs. However, the total yield produced by Clone 2 and Clone 

5 in 800µL scale appears to achieve the same amount. When scaled up to 200mL bioreactors, 

Clone 2 performs better than Clone 5. The stationary phase of the productivity profile at 200mL 

is better represented by relative Fab’ mass at 800µL than by the total Fab’ mass at 800µL. 
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7.2 Standard Deviations of Measurements at 800µL Wells and 200mL Bioreactors 

For both E. coli and P. pastoris the error bars at 800µL scale is much more significant than at 

200mL. The errors at 200mL DASGIP bioreactors cannot be perceived. The average 

percentage error for all the data points for P. pastoris at 800µL is 1.5% whereas the average 

percentage error at 200mL is 0.4%. This is most likely resultant of the lower working volume. 

Any mild disparity between each well would have a greater effect on the productivity, resulting 

in larger error bars.  

7.3  Chapter Conclusion 

Specific yield at the small scale of 800µL is a better predictor of clone performance at the larger 

scale of 200mL. At the small scale, oxygen saturation, and thereby cell growth reflected as OD, 

is the limiting factor in Fab’ production. With diffusion from a small surface area in the well 

as the sole source of oxygen, at this scale the OD struggles to reach the magnitude of what is 

achievable of at an industrial scale. When oxygen limitation removed at a larger scale, clone 

performance might vary. By ranking the clones using Fab’ produced per cell, it gives a more 

objective view as to how each individual clone performs overall. This is variable that would 

remain constant regardless of the scale. While, error bars are larger at the smaller scale, they 

are still within a reasonable percentage range. 
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Chapter 8: MIAMI for Clone Selection in Bioprocess Development 

8.1 Introduction to the MIAMI Concept 

Individual cells can express different genes and resulting in phenotypic variations (Čepl, et al., 

2016). As a result, different clones of the same strain act differently during cultivation. 

Although these phenotypes could be hereditary and can be identified, it is potentially a long 

and extensive process. This process is intensive and costly for optimisation intended for rapid 

manufacturing.  

The creation of MIAMI circumvents the need to identify and classify each clone’s inherited 

phenotypes. Rather, it provides a HT method for evaluating a selection of different clones 

against specified design criteria. MIAMI targets clone ranking as an objective, with choosing 

the best performing clone as its primary function. Additionally, it allows for clone selection to 

be scaled up to screen for multitude of clones in parallel, resulting in a streamlined process to 

identify the best performing clone.  

Clone selection in MIAMI is based on two objective functions. The first objective function is 

identifying undesired behaviour of the clone and removing the unwanted clonal variation. The 

second objective function is to then rank the clones from the remaining pool of desired clonal 

variation based upon their cultivation performance. The intelligence of MIAMI would manifest 

itself by the appropriateness of its clonal ranking. 
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8.2 Architecture of MIAMI 

MIAMI is the collection of multiple intelligent agents that acts cooperatively to achieve its 

objective function of clone ranking. MIAMI comprises of two types of agents, assay agents 

and ranking agents. The assay agents process raw data and analyse the resulting data to identify 

and remove unwanted clonal variations. The remaining data is then processed by the ranking 

agents. The ranking agents scans processed growth data to identify periods of stable yields and 

select for the top performing clones with respect to the maximum yield achieved and minimal 

standard deviation.  

Currently, there are two assay agents and five ranking agents developed for MIAMI as shown 

in Figure 8.2A. The two assay agents are for handling raw HPLC and flow cytometry data. The 

ranking agents consists of three stages for E. coli and two stages for P. pastoris. Each of these 

stages is represented by its own intelligent agent because the ranking methods differ. The 

ranking agent of Stage III is a concept explored in this chapter. While it is included in the 

architecture, it is not fully developed. 

Based upon the user input of data type, HPLC or flow cytometry, strain, E. coli or P. pastoris, 

and stage, I, II, or III, MIAMI acts as a coordinator, directing the raw data input to the 

appropriate assay agent and ranking agent. MIAMI will retrieve relevant defined functions 

from the defined functions database and provide them to the assay and ranking agents.  If the 

data input is insufficient, MIAMI will communicate with the user, prompting for additional 

data.
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Figure 8.1: Architecture of MIAMI software. Data input consist of the growth and productivity profile of the clones. The user input identifies the 

data type, strain and stage of the data. MIAMI would identify the appropriate combination of assay agent and ranking agent and direct the data 

accordingly. The agent would use relevant defined functions from the database to process the raw data and give a ranking output identifying the 

optimal clone or clones.  
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8.3 Key Features of MIAMI 

8.3.1 User Input of Data Using Excel Spreadsheets 

Since OD data can be exported from the plate reader in excel spreadsheet format, all external 

data is imported into MIAMI using excel spreadsheets. The following code excerpt illustrates 

how data is imported into MIAMI. In Lines [1] MIAMI will guide to user to an existing excel 

file for the data to be entered. Line [2] reads the data entered into the excel file and extract the 

data entered. In this example, the growth profile (OD) of each E. coli clones are extracted 

from the excel file and stored as individual lists in Lines [4] to [11]. 

[1] print('Please enter values into DATA INPUT ECOLI STAGEI.xlsx.') 

 

[2] df = pandas.read_excel('DATA INPUT ECOLI STAGE 

I.xlsx',sheet_name=0,index_col=None) 

[3] ODX = df['Time'].tolist() 

[4] OD1A = df['Clone 1'].tolist() 

[5] OD2A = df['Clone 2'].tolist() 

[6] OD3A = df['Clone 3'].tolist() 

[7] OD4A = df['Clone 4'].tolist() 

[8] OD5A = df['Clone 5'].tolist() 

[9] OD6A = df['Clone 6'].tolist() 

[10] OD7A = df['Clone 7'].tolist() 

[11] OD8A = df['Clone 8'].tolist() 
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8.3.2 Handing of OD Data 

Samples prepared for OD reading using the plate reader has a unique challenge of having to 

deal with dilutions. The linear absorbance range of most plate readers is between 0.1 and 1, 

thus OD readings larger than 1 would require further dilutions. The samples for each stage are 

measured at 1X, 4X and 10X dilution factor for E. coli and 1X, 10X and 100X dilution factor 

for P. pastoris. The OD reading for all three dilutions would be entered in MIAMI. An excerpt 

of the code illustrates how MIAMI handles OD data for E. coli clones. The full code is available 

in the database of defined functions in Appendix VII 

In Lines [1] to [12] the intelligent agent scans the 10X dilution OD readings and identify if any 

values are higher than 1. If so, MIAMI would inform the user to perform further dilutions and 

exit the software in Lines [13] to [14]. 

[1] if (z_1[0] >= 1 or  

[2] z_1[1] >= 1 or  

[3] z_1[2] >= 1 or  

[4] z_1[3] >= 1 or  

[5] z_1[4] >= 1 or 

[6] z_1[5] >= 1 or 

[7] z_1[6] >= 1 or 

[8] z_1[7] >= 1 or 

[9] z_1[8] >= 1 or 

[10] z_1[9] >= 1 or 

[11] z_1[10] >= 1 or 

[12] z_1[11] >= 1): 

[13] print(z_1, "For OD values larger than 1, please perform further dilution") 

[14] return exit 
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If no 10X dilution values are larger than 1, the agent proceeds to scan the values of 4X dilutions. 

If any value is larger than 1, a condition set in Line [1], the intelligent agent will remove the 

value in Line [2] and insert the factored OD reading at 10X dilution for the sample data point 

in Line [3]. This process repeats itself for all data points.  

[1] if y_1[0] > 1: 

[2] del y[0] 

[3] y.insert(0,z[0]) 

Subsequently, the intelligent agent scans the values of 1X dilutions and replace any values 

larger than 1 with the OD reading of a higher dilution. As shown in Lines [1] to [3] below. This 

process also repeats itself for all data points. 

[1] if x[0] > 1: 

[2] del x[0] 

[3] x.insert(0,y[0]) 

At the end of the process, all OD values with its appropriate dilutions will be complied within 

the singular list ‘x’.  
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8.3.3 Communication from MIAMI 

Communication with MIAMI is designed so that the user can double check their data input and 

critical decisions made by the intelligent agent. Many of the communications from MIAMI 

asks if the user wants to see the OD, total Fab’ yield or relative Fab’ yield graphs. An example 

is depicted below. This generates graphs in the console for the user to inspect. 

[1] GraphFB = input("Would you like to see the Fab Graph?") 

[2] if GraphFB == 'yes' or GraphFB == 'Yes': 

[3] print("Great") 

[4] x = np.arange(10) 

[5] pp = plt.plot(FBX,FAB1,color="red",label=CloneA) 

[6] pp = plt.plot(FBX,FAB2,color="green",label=CloneB) 

[7] pp = plt.plot(FBX,FAB3,color="blue",label=CloneC) 

[8] plt.title('Ecoli Stage II Total Fab Produced per Well') 

[9] plt.ylabel('Fab Weight (ug)') 

[10] plt.xlabel('Time (Hour)') 

[11] plt.legend() 

[12] plt.savefig("Ecoli Stage II Fab Graph.png")     

[13] plt.show() 

By showing the graph the user can cross reference the visual depiction of the data sets with 

MIAMI’s ranking.  
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8.4 Applying MIAMI to Flow Cytometer Data and Mathematical Modelling 

Recalling from Chapter 3, the GSAV4 P. pastoris strain produced GFP when grown using 

sorbitol or glycerol as a carbon source. The results, as outlined in the previous chapters, are 

used to develop the software to handle GFP data. Despite not having a GFP standard to 

definitively quantify the results, the data can be used to show the trend. If a GFP standard is 

provided, it can be easily integrated into the existing software. 

Working with 96 well plates, the Attune NxT flow cytometer can process plates with the same 

configuration used in the TECAN. As a result, a streamlined small-scale process was 

established. The TECAN can be used for cultivation and sample preparations. Then the samples 

can be transferred to a flow-cytometer for analysis. The data generated from the flow cytometer 

can processed and plotted to show the productivity profile of the fermentation.  

8.4.1 Mathematical Decay Modelling Function for Decay Data Sets 

The gene network in the GSAV4 strain creates a biological switch that inhibits protein 

synthesis when methanol is introduced as a carbon source. The effectiveness of this biological 

switch was evaluated by monitoring how quickly GFP presences decay. Therefore, a decay 

modelling function was developed.   
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The least squares fitting method is used to fit an equation to the decay of GFP data for the 

GSAV4 strain. The decay function is denoted as Equation (2) 

𝑦 = 𝐴 × 𝑒  𝐵×𝑡   (2) 

Equations (3) and (4) are used to determine the exponential constants of the decay function in 

Equation (2). The coordinates of each data point are represented as xi and yi. 

𝑎 =  
∑ (𝑥𝑖

2𝑦𝑖) ∑ (𝑦𝑖 ln 𝑦𝑖)𝑛
𝑖=1 −∑ (𝑥𝑖𝑦𝑖)𝑛

𝑖=1 ∑ (𝑥𝑖𝑦𝑖 ln 𝑦𝑖)𝑛
𝑖=1

𝑛
𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1 ∑ (𝑥𝑖

2𝑦𝑖)𝑛
𝑖=1 −(∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 )

2    (3) 

𝑏 =  
∑ 𝑦𝑖

𝑛
𝑖=1 ∑ (𝑥𝑖𝑦𝑖 ln 𝑦𝑖)−∑ (𝑥𝑖𝑦𝑖)𝑛

𝑖=1 ∑ (𝑦𝑖 ln 𝑦𝑖)𝑛
𝑖=1

𝑛
𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1 ∑ (𝑥𝑖

2𝑦𝑖)𝑛
𝑖=1 −(∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 )

2    (4) 

Where 

𝐴 = 𝑒𝑎  (5) 

𝐵 = 𝑏   (6) 

These equations are coded into the MIAMI software, and is used to fit decay equation to the 

GFP results. An excerpt of the code for calculating the constant A is shown below. The code 

for constant B is written in a similar manner. The code in its entirety is shown in Appendix III.     
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A loop is created to calculate each individual summation operations as denoted in Equation (3) 

in [1] to [7]. After reaching the upper limits of the operation, the code exits the loop and 

calculates the values ‘a’ and ‘A’ in [8] and [9] respectively.  

[1] while n >= i_1: 

[2] sum_xxy = sum_xxy + x[int(i_1)] * x[int(i_1)] * y[int(i_1)]  

[3] sum_ylny = sum_ylny + y[int(i_1)] * np.log(y[int(i_1)])  

[4] sum_xy = sum_xy + x[int(i_1)]* y[int(i_1)]  

[5] sum_xylny = sum_xylny + x[int(i_1)]* y[int(i_1)] * np.log(y[int(i_1)])  

[6] sum_y = sum_y + y[int(i_1)]  

[7] i_1 = i_1 + 1 

[8] a = (sum_xxy*sum_ylny - sum_xy*sum_xylny) / (sum_y * sum_xxy - sum_xy * 

sum_xy)  

[9] true_A = np.exp(a)  
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8.4.2 Applying MIAMI’s Decay Modelling to a GSAV4 Cultivation Run  

GSAV4 was grown in a 96 deep well plate initially in glycerol. After an uninterrupted 20 hours 

incubation period at 30oC, samples are taken in duplicates of four every half an hour. At the 

22-hour mark, the media is changed from glycerol to methanol. For the subsequent 12 hours, 

samples are taken in quadruplicates every half an hour. The samples were pelleted and 

resuspended in PBS using the TECAN, and then transferred to the flow cytometer for analysis. 

The resulting data shows the disappearance of GFP, resembling what was observed in shake 

flasks in Chapter 3.  

MIAMI was able to use its decay modelling to generate a decay equation to the data set as 

displayed in Figure 8.4.2A. The decay model generated by MIAMI is befitting of the decay 

data, with majority of the equation falling within the range of the error bars. This result is not 

an evaluation on the mathematical methods used for decay modelling, but rather a validation 

of MIAMI’s capability of handing flow cytometer data and its potential to integrate 

mathematical modelling. This modelling function is stored within the defined function database. 

In future development, multiple mathematical modelling functions could be utilised to predict 

clonal behaviour.  
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Figure 8.2: Console display of the output of MIAMI, a plot of the decaying flow cytometer 

data and its decay equation generated. The blue line indicates the GFP decay of GSAV4 when 

its carbon source is switched to methanol. The decay equation displayed at the bottom is 

calculated in MIAMI using least square method, and plotted in the same graph in red.  
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8.5 Developing MIAMI for HPLC Data Sets for Clone Ranking 

8.5.1 Overview of MIAMI’s Operations 

There are three primary operations for cultivation clone optimisation designed in MIAMI as 

shown in Figure 8.5.1A. Stage I, where three top performing clones are selected from a pool 

of eight. Stage II, where the three previously selected clones are grown in quadruplicates. 

Sampling measurements are taken to select for one optimal clone. Lastly, in Stage III, which 

has only been developed for E. coli, the top performing strain will be induced at different points 

in time and an optimal induction time would be calculated. 

Table 8.1: Summary of the intended operations in stage of MIAMI for the three different 

strains. The stages highlighted in green are accomplished, and those highlighted in red are not 

completed.  

Strain Stage Operation Description 

E
. 
co

li
 

I 
Grow 8 different clones for 34 hours and choosing the top 3 

performing clones based on titre. 

II 
Grow the top 3 performing clones for 28 hours and selecting the 

top performing clone based on titre and stability. 

III 

Grow the top performing clone and inducing with IPTG at 

different time points for 20 hours. Identifying the optimal 

induction time-point and induction OD. 

P
. 
p
a
st

o
ri

s 

I 
Grow 8 different clones for 96 hours and choosing the top 3 

performing clones based on titre. 

II 
Grow the top 3 performing clones for 28 hours and selecting the 

top performing clone based on titre and stability. 

III 

Grow the top performing clone and inducing with methanol at 

different time points. Identifying the optimal induction time-

point and induction OD. 

C
H

O
 

I 
Grow 8 different clones and choosing the top 3 performing 

clones based on titre. 

II 
Grow the top 3 performing clones and selecting the top 

performing clone based on titre and stability. 

X X 
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Figure 8.3: Basic flow chart of the interface of MIAMI for strain selection. The over-arching 

script passes the raw data and relevant defined functions to the correct branch, either E. coli or 

P. pastoris, and the clones are evaluated throughout the stages.  

 

  

CHO 
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MIAMI code quantifies the considerations made as a human user to simulate the same decision-

making process. The intricacies of the code in each stage draws information from the data and 

reflect upon the performance of each clone to make an informed decision pertaining to the best 

yield from fermentation. To support data analysis within the software, various defined 

functions are designed and stored in a database. The overarching script acts as a coordinator by 

providing the appropriate functions to the data set to aid analysis.  

Moving forward, to correctly quantify different aspects of evaluating cultivation growth and 

productivity, data previously collected using the TECAN is used to develop the MIAMI 

software. The goal is to design MIAMI to evaluate the clones to reflect the assessment made 

in the previous chapter. The simulated data would be used as a standard to fine tune the 

particulars of the ranking process within each stage. Once the MIAMI software is completed, 

a run would be conducted to verify the accuracy of the intelligent agents.  
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8.5.2 E. coli Stage I Intelligent Agent 

The first stage of clone selection involves a preliminary assessment of a larger sample size of 

different cell clones. The initial plan was to utilize a deep 96 well plate, with one clone per 

well. However, there were quirks and limitations of the liquid handling systems that needs to 

be considered. A significant point to consider is a lack of unique equipment required to run 96 

different clones, due to only having one thermomixer unit. Another consideration is the 

contamination risk of repeated sampling and media top up. This would also increase the 

likelihood of cross contamination, thus vastly reducing the accuracy of the results collected. 

Reflecting on all discussed issues, Stage I of the MIAMI process for E. coli would involve a 

rudimentary map of the growth profile of 8 different clones over a period of 48 hours. The 

monitoring time gives a better view of the cells’ growth, taking into deliberation the time 

required for a low copy number plasmid generate Fab’.  

The MIAMI software is fed the simulated data of both the optical density (OD) and Fab’ weight 

produced. In Stage I, the data is processed to express the total amount of Fab’ produced per 

800µL well. The resulting productivity profile for each clone is stored as a list within the code. 

The profile is sorted to identify three of the highest consecutive data points. The average of the 

highest three data points would then be used to rank the clones. 
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Figure 8.4: Output image generated by MIAMI that depicts the total Fab’ produced per 800 

µL well for E. coli clones. 
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In Figure 8.5.2A, the clones tend to maintain a stationary period of Fab’ amount for 

approximately 6-8 hours, 3-4 data points, before a significant drop. Thus, finding the mean of 

the highest three consecutive data points would yield the average amount of Fab’ during the 

stationary period. The use of the mean of three different points would also safeguard against 

selecting an outlier in error. An excerpt of the code is shown to illustrate how the performance 

a clone is ranked at Stage I. The code in its entirety is shown in Appendix IV.  

8.5.2.1 E. coli Stage I Sorting Algorithm 

Line [1] uses a sorting algorithm to scan the growth profile and calculate the average yield in 

a period of three data points, such that it returns the average of data points 1, 2, and 3, data 

points 2, 3, and 4, data points 3, 4, and 5, etc. The average consecutive yields of Clone 1 are 

calculated and stored as a list named FBM1. Line [2] sorts the list FBM1 from lowest variable 

to highest. Line [3] selects the highest consecutive yields of Clone 1 and stores that value as 

FABM1. This code is repeated for all clones to find their highest consecutive yield. 

[1] FBM1 = dfc.List_Conseq_Sort_3X12(FAB1) 

[2] FBM1.sort() 

[3] FABM1 = FBM1[-1] 

  



195 
 

8.5.2.2 E. coli Stage I Ranking Algorithm 

After identifying the highest consecutive yields for all clones, a ranking algorithm enters their 

yield values and their clone number are entered as an array as shown in Line [1] to [10]. In 

Line [11] the array is sorted from lowest value to highest, and in Line [12] the three highest 

values are selected and stored in a separate array. The three top performing clones are displayed 

in the console output as shown in Figure 8.5.2B. 

[1] ecstrainsort = [ 

[2] (FABM1, 'Clone 1'), 

[3] (FABM2, 'Clone 2'), 

[4] (FABM3, 'Clone 3'), 

[5] (FABM4, 'Clone 4'), 

[6] (FABM5, 'Clone 5'), 

[7] (FABM6, 'Clone 6'), 

[8] (FABM7, 'Clone 7'), 

[9] (FABM8, 'Clone 8'), 

[10] ] 

[11] ecstrainsort.sort() 

[12] ecTOP3 = (ecstrainsort[-1],ecstrainsort[-2], ecstrainsort[-3]) 
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Figure 8.5: Console output of the MIAMI software. The ranking of the E. coli clones in Stage 

I, evaluated using MIAMI. 
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8.5.2.3 Discussion of E. coli Stage I Intelligent Agent 

The top performing clones in this stage is more straightforward to ascertain because there is 

only one measurement per data point. A less sophisticated evaluation protocol is adopted at 

this stage where the ranking looks purely at the total amount of Fab’ produced per well. With 

only one reading per data point, inclusion of more variables would lead to additional sources 

of error. Hence, by plotting purely the Fab’ data, it means the graph generated a more precise 

reflection of the productivity, with any associated error can be attributed to sample extracted 

for the HPLC. While the OD is not used directly in this stage in the evaluation process, the raw 

data is still processed. A graph can be generated for the user to inspect.  

As seen in Figure 8.5.2.2B, the intelligent agent selects three of the top performing clones to 

do more comprehensive growth profiling in Stage II. Selecting three clones rather than one 

reduces the chance of overlooking a good strain due to any errors.  
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8.5.3 P. pastoris Stage I Intelligent Agent 

P. pastoris cells have a longer doubling time, thus the growth of these cells is initially 

monitored over 96 hours. P. pastoris cells secret the Fab’ directly into the media, thus, no 

extraction method is needed to harvest the Fab’. The total amount of Fab’ produced should 

therefore have a positive trajectory. The existing data shows that the Fab’ produced for certain 

clones, such as Clone 1, decreases over time, which is not how the growth profile is expected 

to behave. Thus, during manual selection, these clones are discounted. This selection criterion 

is unique for this P. pastoris strain and would be crucial to address it as part of the P. pastoris 

intelligent agent. A scanning algorithm is therefore created for the analysis of P. pastoris clones. 

8.5.3.1 P. pastoris Stage I Scanning Algorithm 

The scanning algorithm scans the first three quarters of the yield profile and tries to remove the 

clones that do not display an upwards trend. The last quarter of the yield profile is discounted 

at this stage because after three days of cultivation and sampling there was a higher chance of 

cross contamination and error. The more erratic behaviour of the yield can be seen in Figure 

8.5.3.1A, with more dramatic increases and decreases after 72 hours. 

Theoretically, the amount of Fab’ produced should always be increasing, and slowly reaching 

an asymptotic maximum as the cells die and Fab’ stops being produced all together. Thus, the 

average of the middle section of the Fab’ profile should always be higher than the average of 

the first quarter. Using the average ensures that any outlier due to error would not significantly 

affect during the evaluation process.  
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Figure 8.6: Graph produced by MIAMI that depicts the total Fab’ produced per 800µL well 

for P. pastoris clones. 
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An excerpt of the code is shown below to illustrate how the scanning algorithm discounts 

unwanted behaviour for P. pastoris clones. The full code is shown in Appendix V. The full 

profile of each clone and their clone numbers are initially all stored as one array named 

‘all_values’.  

[1] all_values = [(a,"Clone 1"), 

[2] (b,"Clone 2"), 

[3] (c,"Clone 3"), 

[4] (d,"Clone 4"), 

[5] (e,"Clone 5"), 

[6] (f,"Clone 6"), 

[7] (g,"Clone 7"), 

[8] (h,"Clone 8")] 

Line [1] calculates the average Fab’ yield for Clone 1 from hours 0-24. Line [2] calculates the 

average Fab’ yield for Clone 1 from hours 24-72. This process is repeated for all P. pastoris 

clones.  

[1] a_3 = np.mean([a[0], a[1], a[2]]) 

[2] a_6 = np.mean([a[3], a[4], a[5],a[6], a[7], a[8]]) 

If the average yield at hours 24-72 is lower than the average at 0-24, the intelligent agent will 

remove the data set from the initial array. If the condition in Line [1] is met, then the growth 

profiles will be removed from the array ‘all_values’ in Line [2].  

[1] if a_3 > a_6: 

[2] del all_values[0] 
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8.5.3.2  Discussion of P. pastoris Stage I Intelligent Agent 

The clones that were not removed by the intelligent agent will then be ranked using the same 

sorting and ranking algorithm for E. coli Stage I as described in Section 8.5.2.1 and 8.5.2.2. As 

a result of the intelligent agent removing unwanted clonal behaviour, Clone 1 was not 

considered for the top three performing clones. Although it clearly had the highest yield at the 

beginning, as shown in Figure 8.5.3.2B, the yield decreased over the course of cultivation. The 

intelligent agent was able to select clones with an overall positive trend in yield.  

 

 

Figure 8.7: Console output of the MIAMI software. The ranking of the P. pastoris clones in 

Stage I, evaluated using MIAMI. 
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8.5.4 E. coli and P. pastoris Stage II Intelligent Agent 

This stage performs the assessment of the yield of the top three performing clones identified 

previously in quadruplicates. The Stage II intelligent agent for E. coli and P. pastoris share the 

same algorithms and thus would be discussed jointly in this section. Unlike in Stage I, each 

data point in their OD and productivity profile is the mean of four readings. The standard 

deviation of each point is used as an indication of variance in cultivation performance. 

Therefore, ranking of the clones in this stage takes into consideration of both the maximum 

amount of Fab’ achieved, and the variances of the data set. Excerpts of the code is shown below 

to illustrate the ranking process.  

The scale-up discussions in Chapter 7 explained ranking specific yield at 800µL scale for each 

clone is a more accurate representation of how the clone would perform at a larger scale. Thus, 

when processing raw data, the assay agent would have to calculate the specific yield of each 

clone by dividing the total yield by OD for each data point. Line [1] to [3] shows this operation 

for all three clones screened at Stage II. 

[1] FBOD1 = dfc.List_Divide_8(FAB1,OD1) 

[2] FBOD2 = dfc.List_Divide_8(FAB2,OD2) 

[3] FBOD3 = dfc.List_Divide_8(FAB3,OD3) 

8.5.4.1 E. coli and P. pastoris Stage II Sorting Algorithm 

The sorting algorithm scans the growth profile and calculates the average yield in a period of 

three data points and their associated variability. These are the two variables that would be used 

to determine the clone’s ranking.  
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8.5.4.2 E. coli and P. pastoris Stage II Ranking Algorithm 

The ranking algorithm in Stage I is very straightforward, since it only takes into consideration 

for one variable. However, in Stage II a more sophisticated method is utilised. The raw values 

for stable yield would generally be at least an order of magnitude larger than its variance. To 

be able to evaluate the clones based on two vastly different factors, highest stable yield and 

variance, the data must be standardised in a way where the variables can be directly comparable.  

MIAMI determines an average maximum yield based upon the growth profile. Each maximum 

yield is compared to the remaining data set and is assigned a value indicating its relative 

performance. This value is represented by the ratio of the individual yield and the average yield 

of all runs. Using the same method, an inverse value is derived to signify the variance of the 

yield. The code used to standardise the highest stable yield is shown below. Lines [1] to [3] 

sorts the average values of the three clones and identifies the highest value and stores it as the 

variable ‘avg_m’. Lines [4] to [6] calculates the highest stable yield of each clone as a 

percentage of the highest value. Variance of each clone is standardised in the same manner. 

Using this operation, both factors will be standardised and represented as a percentage of the 

maximum highest stable yield and minimum variance achieved. 

[1] all_avg = [a_avg,b_avg,c_avg] 

[2] all_avg.sort() 

[3] avg_m = all_avg[-1] 

 

[4] a_avgp = a_avg / avg_m 

[5] b_avgp = b_avg / avg_m 

[6] c_avgp = c_avg / avg_m 
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The default weight on the variables, productivity and variance, by the ranking algorithm in 

Stage II is 75% and 25% respectively. An excerpt of the code that demonstrates this is shown 

below. The entirety of the code is shown in Appendix V. Lines [1] to [3] adds the default 75% 

and 25% weighting to the standardised values of highest stable yield and variance.  

[1] Val1 = 0.75*ValM1 + 0.25*Err1 

[2] Val2 = 0.75*ValM2 + 0.25*Err2 

[3] Val3 = 0.75*ValM3 + 0.25*Err3 

Table 8.5.4.2A and Table 8.5.4.2B presents the ranking values of using average values directly 

and using relative values as discuss. Directly using the average values, the variance of the data 

set has little to no impact on the resulting ranking value. However, when using relative values, 

the low variance of Clone C allowed for it to be ranked higher than Clone B.  

Table 8.2: Fictitious example data to illustrate E. coli and P. pastoris Stage II ranking 

algorithm results when using average values. 

 

Average Stable 

Yield 

Average 

Variance 

Inverse 

Variance 

Ranking Value 

Clone A 10 1.0 1.0 7.75 

Clone B 14 1.5 0.67 10.67 

Clone C 13 0.8 1.25 10.06 

Table 8.3: Fictitious example data to illustrate E. coli and P. pastoris Stage II ranking 

algorithm results when using relative values. 

 

Relative Stable 

Yield 

Relative 

Variance 

Inverse 

Variance 

Ranking Value 

Clone A 0.714 0.667 1.500 0.9105 

Clone B 1.000 1.000 1.000 1.0000 

Clone C 0.928 0.533 1.875 1.1648 
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The lesser weight put on the variance is because of the scale at which the cultivation is 

conducted. At the scale of 800µL, a small difference would have a significant effect on the 

productivity. From scaling up the cultivation to 250mL DASGIP bioreactors, the margin of 

error, derived from standard deviation, was reduced. Under the assumption that standard 

deviations would be less at a large-scale fermentation, MIAMI places less significance in low 

variances.  This allows for the software to not discount a potentially high performing strain 

because of high error bars. The productivity of the clones is ranked considering the amount of 

Fab’ produced per cell and the associated error. This generates one optimal clone with the best 

productivity. 

 

8.5.5 E. coli Stage III Intelligent Agent 

Stage III was developed for E. coli clone analysis. It focused on one top performing clone that 

is determined and verified in the previous stages. The clone is induced at different times to 

determine which is more optimal. Wells are induced after 0, 2, 4 and 6 hours of cultivation and 

four samples are taken on a four-hourly basis. Raw data is processed by the assay agent into 

specific yield in the same manner as Stage II. Evaluating the processed data using the same 

scanning and ranking agent as described in Stage II, MIAMI identify the optimal time for 

induction and OD at the time of induction. 
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Figure 8.8: Console output of the MIAMI software at stage III. The optimal time for induction 

as evaluated by MIAMI. 
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8.6 Intelligent Flexible Features Incorporated into MIAMI  

8.6.1 Flexibility in the Processing of Raw Data 

Another type of communication from MIAMI gives the user the option to use non-default 

settings. An example being using the default standard curve derived in Section 5.3.2. Line [1] 

asks the user if they would like to proceed with default values. If the user does not correctly 

express no, the intelligent agent will proceed with default values, as shown in Lines [10] to 

[14]. However, if appropriate values were entered for Lines [4] and [5], the intelligent agent 

will use the entered values to calculate total Fab’ yield, as shown in Lines [7] to [9]. Allowing 

the user to use MIAMI for different products. 

[1] Default = input('Would you like to proceed with default? (Yes/No)') 

[2] if Default == "no" or Default == "No": 

[3] print("Please enter values for A and B for standard y=Ax+B") 

[4] A = input("Value for A") 

[5] B = input("Value for B") 

[6] print("Thank You") 

[7] FAB1 = [(i * int(A) + int(B)) * (8/5) for i in FB1] 

[8] FAB2 = [(i * int(A) + int(B)) * (8/5) for i in FB2] 

[9] FAB3 = [(i * int(A) + int(B)) * (8/5) for i in FB3] 

[10] else: 

[11] print ("Proceeding with default.") 

[12] FAB1 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB1] 

[13] FAB2 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB2] 

[14] FAB3 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB3] 
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8.6.2 Flexibility in the Weighting of Variables 

Both Stage II and Stage III includes a feature where different ranking variables, productivity 

and variance, are weighted by importance. The default setting attributes 75% and 25% to the 

two variables respectively.  

This default weighting can be changed by the user. When a user input for weighting is prompted 

in Line [1], the user can enter how much weight they want to give the highest stable yield. Line 

[2] will express this weighting as a percentage for highest stable yield, and Line [3] calculates 

the weighting for variance. Lines [4] to [6] then applies the user weighting to the standardise 

values of highest stable yield and variance.  

[1] Weighting = input("Productivity Weighting?") 

[2] W1 = int(Weighting)/100 

[3] W2 = 1-W1 

[4] Val1 = W1*ValM1 + W2*Err1 

[5] Val2 = W1*ValM2 + W2*Err2 

[6] Val3 = W1*ValM3 + W2*Err3 

The following graphs are generated using fictitious data to illustrate the variability in results 

when putting different weighting on the two factors.  
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Figure 8.9: Three sets of fictitious data to illustrate how the weighted variable feature, at 

default settings, works in the MIAMI software. MIAMI does not always choose the clone that 

achieves the highest titer if the variance is high.  
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As seen in Figure 8.6.2A (Top), even though Example B reached a higher stable Fab’ yield 

than Example A, the MIAMI software ranked Example A as the top performing example. This 

is the manifestation of the software considering both the productivity and variance of the 

dataset. However, the weighting of the variables favours higher productivity rather than lower 

standard deviation. In the second set of examples in Figure 8.6.2A (Middle), the software 

prioritises Example B despite the highly variable Fab’ data values. In the last set of examples, 

at similar variances, the software would obviously select the data set with higher productivity. 

Prior to ranking, the MIAMI software asks if the user is happy to proceed with the default 

settings. This feature is added to allow the user to have the flexibility the change the priority 

of the ranking. As depicted in Figure 8.6.2B, the same sample data is provided to the software, 

and by changing the weight on productivity and variances yields different results. 
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Figure 8.10: The same set of fictitious data is provided to the MIAMI software. By altering 

the weight placed on productivity and variances, the software will select a different optimal 

example. 75% Productivity and 25% Variance (Top Right) and 50% Productivity and 50% 

Variance (Top Left) favours Example A. Whereas 25% Productivity and 75% Variance 

(Bottom Right) and 0% Productivity and 100% Variance (Bottom Left) favours Example B. 
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8.6.3 Intelligent Assessment of Viable Data 

To add an intelligent aspect to the MIAMI software, a significant amount of effort has been put 

into developing layers of complexity when it comes to data analysis. As discussed in the 

previous sections, the software has inbuilt ways that deals with different types of cells in a 

suiting manner. For example, treating strains that are susceptible to product loss with a 

prioritisation on harvesting before cell rupture like the E. coli strain that secretes into the 

periplasm.  

8.6.4 Modular Setup 

A challenge for the software of IAPBD developed by Wu & Zhou, 2014, as described in section 

1.12.2, was the update of the TECAN software from Gemini to EVOware. This was a 

significant consideration to take onboard going forward. To avoid similar issues when it comes 

to further software development, a modular approach will be taken and individual agent with 

specialised functionalities will be developed separately and then subsequently integrated.  

MIAMI is designed to handle data processing and evaluation, but not the remote control of 

automated equipment and automated data retrieval. While a fully integrated and automated link 

between the MIAMI software and the TECAN, HPLC and flow cytometer is not addressed in 

this project, it is a possible development. Since software that is capable of this feature had 

already been developed and used in companies as discussed in section 1.10. Attempting to 

achieve a similar level of integration would be an effort in labour rather than innovation, which 

is not conducive to the scope of this project. 

Majority of the analytical calculations are written as pre-defined functions stored in a database, 

shown in Appendix VII. This allows MIAMI the use of standardised functions that are retrieved 

from the database when necessary. As a result of a more streamlined script, individual sections 

of the software to be modified with limited effect on the intended function. An over-arching 
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script exists to hold all the independent functions together and connect each stage within 

MIAMI. However, individual functions can be removed from MIAMI and run independently 

if desired.  

8.6.5 Rationale Behind Choosing the Python Language 

While there are many choices for a programming language, python is the most straightforward. 

Although C based languages are better for more complex programming with faster running 

speed, python has all the necessary complexity for data processing. 
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8.7 Full E. coli Run 

The MIAMI software is developed using simulated data from a previous manual run. The 

intricacies of replicating the decisions of a human user is rigorously fine-tuned. In this section, 

MIAMI is tested with processing a fresh set of data in a blind comparison test. For each stage, 

the data would be inspected, and optimal clones selected manually. After which, the raw data 

would be fed to the software. It is hoped that MIAMI would pick the same results as the manual 

selection. In turn, this would prove that the software does have the capabilities to intelligently 

evaluate strain performance.  

8.7.1 Full E. coli Run Stage I  

Figure 8.11: Graph produced by MIAMI showing total Fab’ produced per 800 µL well for 

eight different E. coli clones in a full run.  
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Clone 7 and Clone 8 are noticeably not in contention for best yield, and arguably Clone 1 and 

Clone 2 both are underperforming in comparison to the remaining clones. Since the Fab’ weight 

decreases over time as cell ruptures, more focus would be placed on the first 10 hours of the 

graph. Within this parameter, Clone 5 is the most stable and appears to have the highest yield 

and therefore is crowned the best performer. Unfortunately Clone 3, Clone 4, and Clone 6 

appear to perform similarly, and is difficult to judge their rankings by eye.  

 

Figure 8.12: Console output showing the top three performing clones as evaluated by MIAMI 

(Left) and the arbitrary values of the clones used by MIAMI to perform the ranking (Right). 

The software ranks Clone 5, Clone 4 and Clone 6 as the highest performing clones in this run.  
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By looking at the ranking values, as expected, Clone 1, Clone 2, Clone 7 and Clone 8 were 

never in contention for best performance. Clone 5 out performs the rest by a significant margin. 

Clone 3, Clone 4 and Clone 6 holds very similar ranking values. However, since the MIAMI 

software can process the data with more precision, it appears Clone 4 and Clone 6 out ranked 

Clone 3 by a slight margin.  
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8.7.2 Full E. coli Run Stage II 

Figure 8.13: Total Fab’ produced per 800 µL well (Top) and total Fab’ produced per cell 

(Bottom) for the top three performing E. coli clones in this full run as chosen in Stage I. 
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Looking at the top graph in Figure 8.7.2A, judging solely from total Fab’ produced, Clone 5 

appears to be the choice for the top performer. It has the highest productivity per well. However, 

taking into consideration the OD and observing the two bottom graph in Figure 8.7.2A, Clone 

6 produced more Fab’ per cell than the others by a significant margin. As a result, Clone 6 is 

the top performing clone. As can be seen in Figure 8.7.2B, the MIAMI software came to the 

same conclusion. This data set in conjunction with the data from Stage I illustrates why a 

secondary ranking stage is required. Even though Clone 6 was the lowest ranked of the top 

three resulting from Stage I. After more comprehensive cultivation sampling, it was in fact the 

best performing clone.  

Figure 8.14: Console output showing the top performing E. coli clone in a full run as evaluated 

by MIAMI. 
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8.7.3 Full E. coli Run Stage III 

 

Figure 8.15: Console output showing the optimal induction time for Clone 6 as evaluated by 

MIAMI. The optimal induction time is at the 2-hour mark, at an OD of approximately 0.218.  
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Examining the graph in Figure 8.7.3A, it appears induction after 2 hours of cultivation generate 

the highest yield. Although induction at inoculation had an initial spike of Fab’ weight, the 

subsequent immediate loss of product indicates that it is not an optimal choice. The same 

evaluation is made by the MIAMI software.  

In all three stages, the MIAMI software made decisions comparable to those that was made by 

a human user. This verifies that the code is able to make an intelligent assessment of the raw 

data provided to it.  
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8.8 Chapter Conclusion 

MIAMI has been successfully developed for the appropriate ranking of multiple clones for E. 

coli and P. pastoris. It consists of two assay agents, one that processes raw HPLC data and 

one that processes raw flow cytometry data, and five intelligent ranking agents, three for E. 

coli and two for P. pastoris.  

 

 

Figure 8.16: Diagram of the intelligent ranking agent in MIAMI. The ranking agent possesses 

knowledge of growth and productivity profiles and has the goal of selecting a top performing 

clone or clones. Data is communicated to the ranking agent and using its knowledge and set 

goal the ranking agent would make an appropriate selection of the optimal clone of clones. 

This decision output is then communicated to the user.  

 

The diagram of a ranking agent is shown in Figure 8.8B. Raw data is communicated to MIAMI 

manually via an excel spreadsheet. The ranking agent is embedded with the knowledge of 

productivity profiles and has the ability to identify a stationary period of consistent product 

titre. The agent then calculates the average production titre during this period. Based upon the 

goal, the ranking agent would identify the clones with the highest achieved titre. This output is 

communicated to the user and can be used in next stage of clone selection.  

MIAMI 

 

 

 

 

 

 

Ranking Agent 

 

 

 

State: 

Knowledge of 

Growth and 

Productivity 

Profiles  

Goal: 

Select 1 or 

3 Clone(s) 

of High 

Titre 

Sensor 

 

Data Input 

Via Excel 

 

Effector 

 

Output: 

Top 1 or 3 

Clone(s)  

Perception 

 

Communication 

Action 

 

Communication 



222 
 

At this point of MIAMI’s development, it is unable to perceive data and actuate its decisions 

directly using the TECAN, HPLC or flow cytometer. As a result, the communication between 

the MIAMI software and the HT platforms are achieved manually through the aid of an 

operator. Through the manual input of raw data, MIAMI can process the data and rank the 

clones based upon two factors: highest stable yield and variability. Using a different set of E. 

coli clones, a blind comparison between human ranking and MIAMI ranking showed that both 

came to the same conclusion. This validates the success of MIAMI as a tool for bioprocess 

development
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Chapter 9: Conclusion 

The MIAMI software created for this project is a proof-of-concept of an automated intelligent 

upstream process development for heterologous protein production. In Chapter 3, an inverse 

methanol sensing gene network was transformed into P. pastoris cells and characterised in 

glycerol, methanol and sorbitol complex and minimal media cultures. In Chapter 5and Chapter 

6, E. coli and P. pastoris strains expressing the same IP-free Fab’ were created and 

characterised in complex media cultures. These two strains behaved as expected and the data 

from their characterisation were used to develop MIAMI in Chapter 8. This prototype software 

sets up a series of high-throughput experimentation that screens clones and rank them, with 

subsequent runs to further reaffirm individual clones’ performance. The success of MIAMI is 

evaluated by the following criteria. 

9.1 MIAMI’s Ability to Collect the Necessary Data at a Small-Scale  

Prior to the development of the intelligent agents and algorithms of MIAMI, it was important 

to ascertain if the three strains created can be cultivated in a HT small-scale environment. 

MIAMI would be redundant if the necessary data cannot be collected using the desired 

automated equipment. Thus, it was crucial that these strains can generate the intended Fab’ and 

GFP signals at high enough quantities to be detected by the analytical equipment. For the 

development of a clone ranking agents, the difference between the performance of each clone 

must also be detectable at the intended small scale.  

This was validated for the Fab’ strains in Chapter 5 and Chapter 6, where a manual ranking of 

8 clones was conducted where Fab’ was detected for all clones. The best and worst clones of 

both strains had significantly different yields. The GFP strain was validated in Chapter 8, where 

the decay of GFP was evident when methanol was introduced to the small-scale cultivation. 
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9.2 Validation of MIAMI’s Ranking at Large-Scale  

As a predictor of each clone’s performance, the entire automated platform and the ranking 

algorithm of MIAMI must translatable to a large-scale bioreactor. This was discussed in 

Chapter 7 when 3 clones for E. coli and P. pastoris achieved relative specific yield in both the 

small 800µL scale and 250mL bioreactor. Thus, demonstrating that using the automated small 

scale TECAN platform is a viable predictor of clones’ performance. Although more validation 

work is required, and the algorithm might need some modification to account for factors that 

might only be present in larger-scale. The preliminary research in this project suggests that 

MIAMI is capable of screening clones for production in bioreactors.  

9.3 Time Efficiency for Clone Screening Using MIAMI 

From a process development viewpoint, for the MIAMI software to have industrial application, 

it must perceptibly reduce the amount of time required to process the data from clone screening. 

In the context of this project, only 8 clones were ever simultaneously evaluated. While it might 

have taken a human researcher approximately thirty minutes to an hour to amass the data and 

process the results for evaluation, it would only take the software a few seconds.  

While the time reduction to screen for 8 clones does not immediately appear to have a 

significant impact, once the number of clones screened is scaled up the time saved will increase 

exponentially. The software accelerates not just purely in terms of time required for data 

processing, but also the time spent evaluating the performance of each clone. It is easy to 

distinguish the performance of just 8 clones, however, as the number of clones increases, the 

small difference in performance would be harder to evaluate by the human eye.  
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Table 9.1: Estimation of the time required to evaluate different number of clones manually and 

using MIAMI. Linearly scaling of time saved using MIAMI shows an 87% decrease in clone 

analysis. 

NUMBER OF 

CLONES 

MANUAL 

EVALUATION 

(MINUTE) 

MIAMI 

EVALUATION 

(MINUTE) 

TIME SAVED 

(MINUTE) 

8 30 5 25 

50 187.5 31.25 156.25 

100 375 62.5 312.5 

200 750 125 625 

500 1875 312.5 1562.5 

 

Using Stage I of the MIAMI software was example. The data set took about half an hour to 

evaluate manually. This estimated is based upon the time taken to evaluate the Stage I E. coli 

and P. pastoris data sets in Chapter 5 and Chapter 6 respectively. This time includes, processing 

raw data, generating the graph, and assessing the resulting graph to select for three optimal 

clones. When using the MIAMI software in Chapter 8, this entire process took less than 5 

minutes. Assuming a linear increase in time taken, the amount for both manual and MIAMI 

screening in Stage I the time saved increases dramatically. When screening up 100 clones, the 

amount of time saved in just one stage would be approximately 5 hours. This is a modest 

estimation operating under the assumption that no human errors would be made when 

processing this large amount of data manually, and not taking into account the amount of time 

saved using automated equipment.  
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9.4 Validation of Intelligent Ranking in MIAMI  

The intelligent aspect of MIAMI would be reflected in the appropriateness of its clone ranking. 

While it would be impossible to completely capture the entire processes with the personal 

preference of each individual user, the algorithm in MIAMI is set up to look at the clone’s data 

set objectively. Considering two significant product criteria, yield and stability, MIAMI tries 

to reflect the priorities of a researcher when performing clone selection. When conducting a 

blind trial to validate the intelligent ranking algorithm, MIAMI selected the same top 

performing clones that a researcher had.  

To facilitate a wider range of users, flexibility has been incorporated into the MIAMI software 

itself. A variable weighting can be placed on the two factors. Each user can apply their own 

standards to the ranking process, therefore is able to customise the results to suit their product. 
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Chapter 10: Future Work 

10.1 Incorporating a Clone Screening Process for CHO in MIAMI 

The obvious immediate step is to expand the MIAMI software to include a ranking system for 

CHO strains. Clonal selection is arguably a more significant aspect for mammalian cells. Not 

only would there likely be more variability between each clone depending on how the plasmid 

DNA is incorporated into the cell genome, the screening would also have to be able to 

differentiate between stable and transient transfected cell lines. Establishing the MIAMI 

software for CHO cells would have more significant impact than compared to E. coli and P. 

pastoris. Since not only would the software save the researcher time when screening multiple 

clones, it would also lessen media consumption. A concern that affects mammalian cells 

considerably more due to the high cost of its media.  

Attempts at high-throughput systems for mammalian cells have been reported to be successful 

in small-scale microtiter plates, working for volumes as low as 800µL (Bareither, et al., 2013). 

Thus, developing and integrating a screening process for CHO hosts would be straightforward. 

The same set up in the automated TECAN platform should not require many major changes. 

The overall process would just be over a longer duration of time, to account for the slower 

growth rate of mammalian cells.  

Establishing the same Fab’ across E. coli, P. pastoris and CHO will provide data for enhanced 

learning for host cell comparison.  

  



228 
 

10.2 Upstream Process Development: Media Composition and Culture Conditions 

Continuing from clone selection, the subsequent steps in optimising an upstream process would 

involve media components and culture conditions optimisation. Defined media can be tailored 

to each specific strain to not only increase specific yield but also ensure a consistent titre, 

making it far more beneficial than the generic complex media. Characterising media 

components and adjusting for the appropriate amount would require a large amount of time if 

done using the antiquated one factor at a time technique. Media optimisation using 

mathematical and statistical techniques has become wildly used as a more effective and 

economical technique (Singh, et al., 2017).  

Media optimisation and culture conditions optimisation using DOE technique is common in 

recent developments. DOE is a series of experimentation what are strategically planned and 

executed to cover a large design space while using a limited number of experiments. Effects of 

multiple factors are compared simultaneously, and interactive between effects observed. By 

applying this existing method to in a small-scale allows for more parameters to be explored 

and high-throughput methodology supporting parallel experimentations.  

Culture conditions such as temperature and pH, would be easy to scale up once optimised. 

However, agitation, and by extension dissolved oxygen level, would be harder to scale-up 

correctly. More research and scale-up studies would have to be conducted to be fully able to 

optimise using scaled-down methods.  
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10.3 Integrating MIAMI with TECAN and Analytical Equipment  

MIAMI currently does not have the ability to communicate directly with HT platforms such as 

TECAN, HPLC or flow cytometer. Thus, it is unable to retrieve data automatically and is 

currently receiving data input manually. Integrating MIAMI with these equipment creates a 

more streamlined process, reducing required contact time and further increase the time 

efficiency. With a fully integrated system, MIAMI would be able to perform all three stages of 

clone selection with little interaction with an operator.  

10.4 Integration of a Data Bank to Facilitate Machine Learning Capacity 

Improvements in data storage capacity facilities the use of large data banks to determine trends 

in performance for similar strains. This is a feature that would greatly benefit the media 

optimisation steps. Because media optimisation was not coded in the prototype MIAMI 

software, there are currently no learning capability. As an additional feature, MIAMI can be 

easily integrated with a code to store the results from all experimental runs in a historic data 

bank. When a large enough bank of data is established, the data can be used to predict how 

similar strains might be affected by varying media components and culture conditions. 

10.5 Feedback from Downstream 

Optimising an upstream process would naturally prioritise high titres. It is logical to assume 

that more cells generated would translate to more specific yield. While this might be true for 

upstream processing, higher titres would often correlate with more purification burden during 

downstream processing due to impurities. A feedback loop from downstream processing can 

help guild the upstream process development, to create conditions that are ideal for the entire 

process. Selecting a clone with fewer impurities at the cost of a lower titre could be 

advantageous. By alleviating the common rate limiting purification step in downstream 

processing, the overall process can be managed in a much more efficient manner.  



230 
 

 

  



231 
 

References 

Adler, P. S., Mandelbaum, A., Nguyen, V. & Schewerer, E., 1995. From Project to Process 

Management: An Empirically-based Framework for Analyzing Product Development Time. 

Management Science, 41(3), pp. 458-484. 

Amanullah, A. et al., 2009. Novel Micro-Bioreactor High Throughput Technology for Cell 

Culture Process Development: Reproducibility and Scalability Assessment of Fed-Batch CHO 

Cultures. Biotechnology and Bioengineering, pp. 57-67. 

Baltz, R. H., Demain, A. L. & Davies, J. E., 2010. Manual of Industrial Microbiology and 

Biotechnology. 3rd ed. Washington: American Society for Microbiology Press. 

Bareither, R. et al., 2013. Automated Disposable Small scale reactor for High Throughput 

Bioprocess Development: A Proof of Concept Study. Biotechnology and Bioengineering, 

110(12), pp. 3126-3138. 

Berrios, J. et al., 2017. A comparative study of glycerol and sorbitol as co-substrates in 

methanol-induced cultures of Pichia pastoris: temperature effect and scale-up simulation. 

Journal of Industrial Microbiology and Biotechnology, 44(3), pp. 407-411. 

Bessette, P. H. et al., 2001. Effect of Sequences of the Active-Site Dipeptides of DsbA and 

DsbC on In Vivo Folding of Multidisulfide Proteins in Escherichia coli. Journal of 

Bacteriology, pp. 980-988. 

Bhambure, R., Kumar, K. & Rathore, A. S., 2011. High-throughput process development for 

biopharmaceutical drug substances. Trends in Biotechnology, 29(3), pp. 127-135. 

Birch, J. R. & Racher, A. J., 2006. Antibody production. Advance Drug Delivery Reviews, 

58(5-6), pp. 671-685. 



232 
 

Bos, A. B. et al., 2015. Optimization and Automation of an End-to-End High Throughput 

Microscale Transient Protein Production Process. Biotechnology and Bioengineering, pp. 112: 

1832-1842. 

Carrier, T. et al., 2010. High-Throughput Technologies in Bioprocess Development. In: M. C. 

Flickinger, ed. Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell 

Technology. s.l.:John wiley & Son, pp. 1-31. 

Čepl, J., Blahůšková, A., Neubauer, Z. & Markoš, A., 2016. Variations and heredity in bacterial 

colonies. Communicative & Integrative Biology, 9(6), pp. 1-11. 

Chhina, M., 2013. Overview of Biological Products, U.S: FDA. 

Costa, A. R. et al., 2010. Guidelines to cell engineering for monoclonal antibody production. 

European Journal of Pharmaceutics and Biopharmaceutics, 74(2), pp. 127-138. 

de Boer, H. A., Comstock, L. J. & Vasser, M., 1983. The tac promoter: a functional hybrid 

derived from the trp and lac promoters. Proceedings of the National Academy of Sciences of 

the United States of America, 80(1), pp. 21-25. 

de Hoon, M. J., Makita, Y., Nakai, K. & Miyano, S., 2005. Prediction of transcriptional 

terminators in Bacillus subtilis and related species. PLoS Computational Biology, 1(3), pp. 

0212-0221. 

Feng , S. C. & Song, E. Y., 2002. Preliminary Design and Manufacturing Planning Integration 

Using Intelligent Agents. Rio de Janeiro, IEEE. 

Frenzel, A., Hust, M. & Schirrmann, T., 2013. Expression of recombinant antibodies. Frontiers 

in Immunology, Volume 4, pp. 1-20. 

Frenzel, A., Hust, M. & Schirrmann, T., 2013. Expression of Recombinant Antibodies. 

Frontiers in Immulogy, pp. 217: 1-12. 



233 
 

Gao, Y. et al., 2009. Application of Agent-Based System for Bioprocess Description and 

Process Improvement. Biotechnology Progress, pp. 706-716. 

Gawlitzek, M., Estacio, M., Fürch, T. & Kiss, R., 2009. Identification of Cell Culture 

Conditions to Control N-Glycoproteins Expressed in CHO Cells. Biotechnology and 

Bioengineering, 103(6), pp. 1164-1175. 

Genesereth, M. R. & Ketchpel, S. P., 1994. Software Agents. Communications, pp. 48-53. 

Glassey, J., Montague, G. & Willis, M., 2000. Bioprocesses: A Challenge for the Application 

of Artificial Intelligence. Newcastle upon Tyne, IASTED Applied Informatics AI'2000. 

Gomez, N. et al., 2010. Effect of temperature, pH, dissolved oxygen, and hydrolysate on the 

formation of triple light chain antibodies in cell culture. Cell Culture and Tissue Engineering, 

26(5), pp. 1438-1445. 

Gronemeyer, P., Ditz, R. & Strube, J., 2014. Trends in Upstream and Downstream Process 

Development for Antibody Manufacturing. Bioengineering, pp. 188-212. 

Heads, J. T. et al., 2012. Relative Stabilities of IgG1 and IgG4 Fab Domains: Influence of the 

Light-Heavy Interchain Disulfide Bond Architecture. Protein Science, pp. 1315-1322. 

Holliger, P. & Hudson, P. J., 2005. Engineered antibody fragments and the rise of single 

domains. Nature Biotechnology, Volume 23, pp. 1126-1136. 

Holliger, P. & Hudson, P. J., 2005. Engineered antibody fragments and the rise of single 

domains. Nature Biotechnology, 23(9), pp. 1126-1136. 

Hsu, C. C., Thomas, O. R. T. & Overton, T. W., 2015. Periplasmic Expression in and Release 

of Fab Fragments from Escherichia coli Using Stress Minimization. Journal of Chemical 

Technology and Biotechnology. 



234 
 

Hsu, C.-C., Thomas, O. & Overton, T., 2016. Periplasmic expression in and release of Fab 

fragments from Escherichia coli using stress minimisation. Journal of Chemical Technology 

and Biotechnology, 91(3), pp. 815-822. 

Hsu, W. T., Aulakh, R. P. S., Traul, D. L. & Yuk, I. H., 2012. Advance Microscale Bioreactor 

System: A Representative Scale-Down Model for Bench-Top Bioreactors. Cytotechnology, pp. 

667-678. 

Hubbuch, J., 2012. Editorial: High-throughput process development. Biotechnology Journal, 

7(10), p. 1185. 

Hu, Y. et al., 2016. Optimization of Saccharomyces boulardii production in solid-state 

fermentation. Biotechnology & Biotechnological Equipment, 30(1), pp. 173-179. 

Ishii, Y. et al., 2014. Efficient Folding/Assembly in Chinese Hamster Ovary Cells is Critical 

for High Quality (Low Aggregate Content) of Secreted Transtuzumab as well as for High 

Production: Stepwise Multivariate Regression Analysis. Journal of Bioscience and 

Bioengineering, pp. 118: 223-230. 

Jain, E. & Kumar, A., 2008. Upstream processes in antibody production: Evaluation of critical 

parameters. Biotechnology Advances, pp. 46-72. 

Jin, M. et al., 2009. Profiling of Host Cell Proteins by Two-Dimensional Difference Gel 

Electrophoresis (2D-DIGE): Implications for Downstream Process Development. 

Biotechnology and Bioengineering, 105(2), pp. 306-316. 

Jonakin, K., 2016. The Future of Biologics Drug Development is Today. Sciex, 18 March.  

Jordon, M. et al., 2013. Cell culture medium improvement by rigorous shuffling of components 

using media blending. Cytotechnology, Volume 65, pp. 31-40. 



235 
 

Kunert, R., Gach, J. & Katinger, H., 2008. Expression of a Fab Fragment in CHO and Pichia 

pastoris. BioProcess International, Volume June 2008, pp. 34-40. 

Kunert, R., Gach, J. & Katinger, H., 2008. Expression of a Fab Frament in CHO and Pichia 

pastoris. Bioprocess International , pp. 34-40. 

Kunert, R. & Reinhart, D., 2016. Advances in recombinant antibody manufacturing. Applied 

Microbiology and Biotechnology, Volume 100, pp. 3451-3461. 

Kurihara, T. et al., 1992. ANTI-HBs ANTIBODY GENE AND EXPRESSION PLASMID 

THEREOF. Japan, Patent No. WO 1993020205 A1. 

Lane, J., 2018. The Top 10 advances in renewable butanol: what's speeding up, where are the 

slow-downs?. Biofuels Digest, 2 8.  

Langer, E. S. & Rader, R. A., 2014. Single-use technologies in biopharmaceutical 

manufacturing: A 10-year review of trends and the future. Engineering in Life Sciences, 14(3), 

pp. 238-243. 

Lattermann, C. & Buchs, J., 2015. Microscale and Miniscale Cultivationand Screening. 

Current Opinion in Biotechnology, pp. 35: 1-6. 

Li, F. et al., 2010. Cell culture processes for monoclonal antibody production. Pharmaceutical 

Sciences Encyclopaedia: Drugs, Discover, Development, and Manufacturing, 2(5), pp. 466-

479. 

Lim, J. A. C. et al., 2010. Modeling Bioprocess Cost. BioProcess International, Volume 2010, 

pp. 62-69. 

Lim, J. A. C. et al., 2010. Modeling Bioprocess Cost: Process Economic Benefits of Expression 

Technology Based on Pseudomonas fluorescens. BioProcess International, pp. 62-70. 



236 
 

Liu, H. & May, K., 2012. Disulfide Bond Structures of IgG Molecules. Landes Bioscience, pp. 

17-23. 

Li, Z. et al., 2014. Novel Insight into the Secretory Expression of Recombinant Enzymes in 

Escherichia Coli. Process Biochemistry, pp. 49: 599-603. 

Looser, V. et al., 2015. Cultivation strategies to enhance productivity of Pichia pastoris: A 

review. Biotechnology Advances, 33(6), pp. 1177-1193. 

Meyer, H.-P. & Schmidhalter, D. R., 2012. Microbial Expressioin Systems and Manufacturing 

from a Market and Economic Perspective. In: E. C. Agbo, ed. Innovations in Biotechnology. 

London: InTech, pp. 211-250. 

Meystel, A. M. & Messina, E. R., 2000. Measure the Performance and Intelligence of Systems: 

Proceedings of the 2000 PerMIS Workshop. Gaithersburg, NIST Special Publication 970. 

Morris, C. & Segal, J., 2009. Some challenges facing scientific software developers: The case 

of molecular biology. Oxford, IEEE e-Science. 

Nienow, A. W. et al., 2013. THe Physical Characterisation of a Microscale Parallel Bioreactor 

Platform with an Industrial CHO Cell Line Expressing an IgG4. Biochemical Engineering 

Journal, pp. 25-36. 

Nor, N. M. et al., 2017. Comparative analyses on medium optimization using one-factor-at-a-

time, response surface methodology, and artificial neural network for lysine-methionine 

biosynthesis by Pediococcus pentosaceus RF-1. Biotechnology & Biotechnological Equipment, 

31(5), pp. 935-947. 

Ozturk, S. S. & Palsson, B. O., 1990. Effects of dissolved oxygen on hybridoma cell growth, 

metabolism, and antibody production kinetics in continuous culture. Biotechnology Progress, 

6(6), pp. 437-446. 



237 
 

Petit, T. & Petit, L., 2016. Optimizing Molecular Cloning of Multiple Plasmids. Buenos Aires, 

IJCAI/AAAI. 

Pisano, G., 1994. Knowledge, Intergration, and the Locus of Learning: An Empirical Analysis 

of Process Development. Strategic Management Journal, Volume 15, pp. 85-100. 

Rameez, S., Mostafa, S. S., Miller, C. & Shukla, A. A., 2014. High-Throughput Miniaturized 

Bioreactors for Cell Culture Process Development: Reproducibility, Scalability, and Control. 

Biotechnology Process, pp. 718-727. 

Rosso, L., Lobry, J. R., Bajard, S. & Flandrois, J. P., 1995. Convenient Model To Describe the 

Combined Effects of Temperature and pH on Microbial Growth. Applied and Environmental 

Microbiology, 61(2), pp. 610-616. 

Russell, S. J. & Peter, N., 2003. Artificial Intelligence: A Modern Approach. 2nd ed. Upper 

Saddle River: New Jersey: Prentice Hall. 

Shen, B., Hohmann, S., Jensen, R. G. & Bohnert, A. H., 1999. Roles of sugar alcohols in 

osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast.. Plant 

Physiology, 121(1), pp. 45-52. 

Shioya, S., Shimizu, K. & Yoshida, T., 1999. Knowledge-Based Design and Operation of 

Bioprocess Systems. Journal of Bioscience and Bioengineering, 87(3), pp. 261-266. 

Shu, J. et al., 2006. Siliencing of bidirectional promoters by DNA methylation in tumorigenesis. 

Cancer Research, 66(10), pp. 5077-5084. 

Shukla, A. & Thömmes, J., 2010. Recent advances in large-scale production of monoclonal 

antibodies and related proteins. Trends in Biotechnology, 28(5), pp. 253-261. 

Singh, V. et al., 2017. Strategies for CultivationMedium Optimization: An In-Depth Review. 

Frontiers in Microbiology, 7(2087), pp. 1-16. 



238 
 

Siurkus, J. & Neubauer, P., 2011. Heterologous Production of Active Ribonuclease Inhibitor 

in Escherichia coli by Redox State Control and Chaperonin Coexpression. Microbial Cell 

Factories, pp. 10: 65-76. 

Šiurkus, J. & Neubauer, P., 2011. Reducing conditions are the key for efficient production of 

active ribonuclease inhibitor in Escherichia coli. Microbial Cell Factories, 10(31), pp. 1-15. 

Sommerfeld, S. & Strube, J., 2005. Challenges in biotechnology production-generic processes 

and process optimization for monoclonal antibodies. Chemical Engineering and Processing: 

Process Intensification, 44(10), pp. 1123-1137. 

Spiro, R. G., 2002. Protein Glycosylation: Nature, Distribution, Enzymatic Formation, and 

Disease Implications of Glycopeptide Bonds. Glycobiology, pp. 43R-56R. 

Swartz, J. R., 2001. Advances in Escherichia coli production of therapeutic proteins. Current 

Opinion in Biotechnology, 12(2), pp. 195-201. 

Takai, D. & Jones, P. A., 2004. Analyses of Intergenic Distance in the Human Genome. 

Molecular Biology and Evolution, 21(3), pp. 463-467. 

Tatikonka, M. & Montoya-Weiss, M. M., 2001. Integrating Operations and Marketing 

Perspectives of Product Innovation: The Influence of Organizational Process Factors and 

capabilities on Development Performance. Management Science, 47(1), pp. 151-172. 

TreDenick, T., 2018. The Evolution of Therapeutic Monoclonal Antibodies. Pharmaceutical, 

14 August.  

Ukkonen, K., Veijola, J., Vasala, A. & Neubauer, P., 2013. Effect of culture medium, host 

strain and oxygen transfer on recombinant Fab antibody fragment yield and leakage to medium 

in shaken E. coli cultures. Microbial Cell Factories, 12(73), pp. 1-14. 



239 
 

Ukkonen, K., Veijola, J., Vasala, A. & Neubauer, P., 2013. Effect of Culture Medium, Host 

Strain and Oxygen Transfer on Recombinant Fab Antibody Fragment Yield and Leakage to 

Medium in Shaken E. coli Cultures. Microbial Cell Factories, pp. 12: 73-87. 

Valliere-Douglass, J. F. et al., 2010. Gluamine-linked and Non-consensus Asparagine-linked 

Oligosaccharides Present in Human Recombinant Antibodies Define Novel Protein 

Glycosylation Motif. The Journal of Biological Chemistry, pp. 16012-16022. 

Verma, R., Boleti, E. & George, A. J. T., 1998. Antibody Engineering: Comparison of Bacterial, 

Yeast, Insect and mammalian Expression Systems. Journal of Immunological Methods, pp. 

165-181. 

Vermeer, A. W. P. & Norde, W., 2000. The Thermal Stability of Immunoglobulin: Unfolding 

and Aggregation of a Multi-Domain Protein. Biophysical Journal, pp. 394-404. 

Wei, Y.-C.et al., 2017. Biotransformation of β‐hydroxypyruvate and glycolaldehyde to l‐

erythrulose by Pichia pastoris strain GS115 overexpressing native transketolase. Biotechnology 

Progress, 34(1), pp. 99-106. 

Werner, R. G., Noe, W., Kopp, K. & Schluter, M., 1998. Appropriate mammalian expression 

systems for biopharmaceuticals. Drug Research, 48(8), pp. 870-880. 

Wu, T. & Zhou, Y., 2014. An Intelligent Automation Platform for Rapid Bioprocess Design. 

Journal of Laboratory Automation, pp. 19: 381-393. 

Yang, S.-T. & Liu, X., 2013. Cell culture processes for biologics manufacturing: recent 

developments and trends. Pharmaceutical Bioprocessing, 1(2), pp. 133-136. 

Yin, J. C., Li, G. X., Ren, X. F. & Herrler, G., 2007. Select What You Need: A Comparative 

Evaluation of the Advantages and Limitations of Frequently Used Expression Systems for 

Foreign Genes. Journal of Biotechnology, pp. 335-347. 



240 
 

Yin, J., Li, G., Ren, X. & Herrler, G., 2007. Select what you need: A comparative evaluation 

of the advantages and limitations of frequently used expression systems for foreign genes. 

Journal of Biotechnology, 127(3), pp. 335-347. 

Yu, P., Zhu, Q., Chen, K. & Lv, X., 2015. Improving the secretory production of the 

heterologous protein in Pichia pastoris by focusing on protein folding. Applied Biochemical 

Biotechnology, 175(1), pp. 535-548. 

Zhou, Z. et al., 2016. Codon Usage in an Important Determinant of Gene Expression Levels 

Largely Through Its Effects on Transcription. Proceedings of the National Academy of 

Sciences of the United States of America, 113(41), pp. E6117-E6125. 

 

  



241 
 

Appendix 

Appendix I: Full Profiles of E. coli HPLC Results 

Uninduced TAHT66 

 

Induced QT-TAHT66 

 

Uninduced QT-WAHT66 
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Induced QT-WAHT66 

 

Uninduced UCB 

 

Induced UCB 

 

Induced W3110 
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Appendix II: Full Profiles of P. pasotris HPLC Results 

 

Induced GS115 

 

Induced QT-GAHT 
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Appendix III: Code for Calculating the Constants for Least Square Fit Decay Equation 

def Least_Square_Fit_A(x,y,up_lim,low_lim):  

    i= low_lim - 1 

    n= up_lim -1 

    sum_xxy = x[int(i)] * x[int(i)] * y[int(i)] 

    sum_ylny = y[int(i)] * np.log(y[int(i)]) 

    sum_xy = x[int(i)]* y[int(i)] 

    sum_xylny = x[int(i)]* y[int(i)] * np.log(y[int(i)]) 

    sum_y = y[int(i)] 

    i_1 = int(i) + 1  

    while n >= i_1: 

        sum_xxy = sum_xxy + x[int(i_1)] * x[int(i_1)] * y[int(i_1)] 

        sum_ylny = sum_ylny + y[int(i_1)] * np.log(y[int(i_1)])  

        sum_xy = sum_xy + x[int(i_1)]* y[int(i_1)]  

        sum_xylny = sum_xylny + x[int(i_1)]* y[int(i_1)] * np.log(y[int(i_1)])  

        sum_y = sum_y + y[int(i_1)]  

        i_1 = i_1 + 1 

    a = (sum_xxy*sum_ylny - sum_xy*sum_xylny) / (sum_y * sum_xxy - sum_xy * sum_xy) 

    true_A = np.exp(a)  

    return true_A 
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def Least_Square_Fit_B(x,y,up_lim,low_lim): 

    i= low_lim - 1 

    n= up_lim -1 

    sum_xxy = x[int(i)] * x[int(i)] * y[int(i)] 

    sum_ylny = y[int(i)] * np.log(y[int(i)]) 

    sum_xy = x[int(i)]* y[int(i)] 

    sum_xylny = x[int(i)]* y[int(i)] * np.log(y[int(i)]) 

    sum_y = y[int(i)]  

    i_1 = int(i) + 1  

    while n >= i_1: 

        sum_xxy = sum_xxy + x[int(i_1)] * x[int(i_1)] * y[int(i_1)]  

        sum_ylny = sum_ylny + y[int(i_1)] * np.log(y[int(i_1)])  

        sum_xy = sum_xy + x[int(i_1)]* y[int(i_1)]  

        sum_xylny = sum_xylny + x[int(i_1)]* y[int(i_1)] * np.log(y[int(i_1)])  

        sum_y = sum_y + y[int(i_1)]  

        i_1 = i_1 + 1  

    b = (sum_y*sum_xylny - sum_xy*sum_ylny) / (sum_y*sum_xxy - sum_xy*sum_xy)  

    return b 
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Appendix IV: Code for Stage I E. coli Clones Ranking 

import pandas 

import numpy as np 

import matplotlib.pyplot as plt 

import Defun as dfc 

from sys import exit 

 

print('Please enter values into DATA INPUT ECOLI STAGEI.xlsx.') 

Values_Entered = input("Enter Yes when done") 

if Values_Entered == "Yes": 

    print("Thank You!") 

else: 

    exit() 

 

df = pandas.read_excel('DATA INPUT ECOLI STAGE 

I.xlsx',sheet_name=0,index_col=None) 

ODX = df['Time'].tolist() 

OD1A = df['Clone 1'].tolist() 

OD2A = df['Clone 2'].tolist() 

OD3A = df['Clone 3'].tolist() 
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OD4A = df['Clone 4'].tolist() 

OD5A = df['Clone 5'].tolist() 

OD6A = df['Clone 6'].tolist() 

OD7A = df['Clone 7'].tolist() 

OD8A = df['Clone 8'].tolist() 

 

df = pandas.read_excel('DATA INPUT ECOLI STAGE 

I.xlsx',sheet_name=1,index_col=None) 

OD1B = df['Clone 1'].tolist() 

OD2B = df['Clone 2'].tolist() 

OD3B = df['Clone 3'].tolist() 

OD4B = df['Clone 4'].tolist() 

OD5B = df['Clone 5'].tolist() 

OD6B = df['Clone 6'].tolist() 

OD7B = df['Clone 7'].tolist() 

OD8B = df['Clone 8'].tolist() 

 

OD1B_1 = dfc.List_X(OD1B,4) 

OD2B_1 = dfc.List_X(OD2B,4) 

OD3B_1 = dfc.List_X(OD3B,4) 
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OD4B_1 = dfc.List_X(OD4B,4) 

OD5B_1 = dfc.List_X(OD5B,4) 

OD6B_1 = dfc.List_X(OD6B,4) 

OD7B_1 = dfc.List_X(OD7B,4) 

OD8B_1 = dfc.List_X(OD8B,4) 

 

df = pandas.read_excel('DATA INPUT ECOLI STAGE 

I.xlsx',sheet_name=2,index_col=None) 

OD1C = df['Clone 1'].tolist() 

OD2C = df['Clone 2'].tolist() 

OD3C = df['Clone 3'].tolist() 

OD4C = df['Clone 4'].tolist() 

OD5C = df['Clone 5'].tolist() 

OD6C = df['Clone 6'].tolist() 

OD7C = df['Clone 7'].tolist() 

OD8C = df['Clone 8'].tolist() 

 

OD1C_1 = dfc.List_X(OD1C,10) 

OD2C_1 = dfc.List_X(OD2C,10) 

OD3C_1 = dfc.List_X(OD3C,10) 
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OD4C_1 = dfc.List_X(OD4C,10) 

OD5C_1 = dfc.List_X(OD5C,10) 

OD6C_1 = dfc.List_X(OD6C,10) 

OD7C_1 = dfc.List_X(OD7C,10) 

OD8C_1 = dfc.List_X(OD8C,10) 

 

OD1 = dfc.OD_Sort8(OD1A,OD1B_1,OD1B,OD1C_1,OD1C) 

OD2 = dfc.OD_Sort8(OD2A,OD2B_1,OD2B,OD2C_1,OD2C) 

OD3 = dfc.OD_Sort8(OD3A,OD3B_1,OD3B,OD3C_1,OD3C) 

OD4 = dfc.OD_Sort8(OD4A,OD4B_1,OD4B,OD4C_1,OD4C) 

OD5 = dfc.OD_Sort8(OD5A,OD5B_1,OD5B,OD5C_1,OD5C) 

OD6 = dfc.OD_Sort8(OD6A,OD6B_1,OD6B,OD6C_1,OD6C) 

OD7 = dfc.OD_Sort8(OD7A,OD7B_1,OD7B,OD7C_1,OD7C) 

OD8 = dfc.OD_Sort8(OD8A,OD8B_1,OD8B,OD8C_1,OD8C) 

 

GraphOD = input("Would you like to see the OD Graph?") 

if GraphOD == 'yes' or GraphOD == 'Yes': 

    print("Great") 

    x = np.arange(10) 

    pp = plt.plot(ODX,OD1,color="red",label="Clone 1") 
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    pp = plt.plot(ODX,OD2,color="orange",label="Clone 2") 

    pp = plt.plot(ODX,OD3,color="yellow",label="Clone 3") 

    pp = plt.plot(ODX,OD4,color="green",label="Clone 4") 

    pp = plt.plot(ODX,OD5,color="cyan",label="Clone 5") 

    pp = plt.plot(ODX,OD6,color="blue",label="Clone 6") 

    pp = plt.plot(ODX,OD7,color="purple",label="Clone 7") 

    pp = plt.plot(ODX,OD8,color="pink",label="Clone 8")     

    plt.title('Ecoli Stage I OD') 

    plt.ylabel('OD') 

    plt.xlabel('Time (Hour)') 

    plt.legend() 

    plt.show() 

     

    Save = input("Would you like to save the OD Graph?") 

    if Save == "Yes" or Save == "yes": 

        plt.savefig("Ecoli Stage I OD Graph.png") 

    else: print ("Sorry for asking...") 

 

else: 

    print ("Sorry for asking...") 
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df = pandas.read_excel('DATA INPUT ECOLI STAGE 

I.xlsx',sheet_name=3,index_col=None) 

FBX = df['Time'].tolist() 

FB1 = df['Clone 1'].tolist() 

FB2 = df['Clone 2'].tolist() 

FB3 = df['Clone 3'].tolist() 

FB4 = df['Clone 4'].tolist() 

FB5 = df['Clone 5'].tolist() 

FB6 = df['Clone 6'].tolist() 

FB7 = df['Clone 7'].tolist() 

FB8 = df['Clone 8'].tolist() 

 

#Area under the curve into fab' concerntration  

Default = input('Would you like to proceed with default? (Yes/No)') 

if Default == "yes" or Default == "Yes": 

    print("Great") 

    FAB1 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB1] 

    FAB2 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB2] 

    FAB3 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB3] 
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    FAB4 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB4] 

    FAB5 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB5] 

    FAB6 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB6] 

    FAB7 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB7] 

    FAB8 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB8] 

if Default == "no" or Default == "No": 

    print("Please enter values for A and B for standard y=Ax+B") 

    A = input("Value for A") 

    B = input("Value for B") 

    print("Thank You") 

    FAB1 = [(i * int(A) + int(B)) * (8/5) for i in FB1] 

    FAB2 = [(i * int(A) + int(B)) * (8/5) for i in FB2] 

    FAB3 = [(i * int(A) + int(B)) * (8/5) for i in FB3] 

    FAB4 = [(i * int(A) + int(B)) * (8/5) for i in FB4] 

    FAB5 = [(i * int(A) + int(B)) * (8/5) for i in FB5] 

    FAB6 = [(i * int(A) + int(B)) * (8/5) for i in FB6] 

    FAB7 = [(i * int(A) + int(B)) * (8/5) for i in FB7] 

    FAB8 = [(i * int(A) + int(B)) * (8/5) for i in FB8] 

else: 

    print ("Answer not recognised, proceeding with default.") 
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    FAB1 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB1] 

    FAB2 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB2] 

    FAB3 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB3] 

    FAB4 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB4] 

    FAB5 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB5] 

    FAB6 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB6] 

    FAB7 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB7] 

    FAB8 = [(i * 0.00003 + 0.0144) * (8/5) for i in FB8] 

 

#Show Fab' Graph? 

GraphFB = input('Would you like to see the Fab Graph?') 

if GraphFB == 'yes' or GraphFB == 'Yes': 

    print("Great") 

    x = np.arange(10) 

    pp = plt.plot(FBX,FAB1,color="red",label="Clone 1") 

    pp = plt.plot(FBX,FAB2,color="orange",label="Clone 2") 

    pp = plt.plot(FBX,FAB3,color="yellow",label="Clone 3") 

    pp = plt.plot(FBX,FAB4,color="green",label="Clone 4") 

    pp = plt.plot(FBX,FAB5,color="cyan",label="Clone 5") 

    pp = plt.plot(FBX,FAB6,color="blue",label="Clone 6") 
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    pp = plt.plot(FBX,FAB7,color="purple",label="Clone 7") 

    pp = plt.plot(FBX,FAB8,color="pink",label="Clone 8") 

     

    plt.title('Ecoli Stage I Total Fab Produced per Well') 

    plt.ylabel('Total Fab Weight (ug)') 

    plt.xlabel('Time (Hour)') 

    plt.legend() 

    plt.show() 

     

    Save = input("Would you like to save the Fab Graph?") 

    if Save == "Yes" or Save == "yes": 

        plt.savefig("Ecoli Stage I Fab Graph.png") 

else: 

    print ("Sorry for asking...") 

  

     

#Max Values in Fab Lists     

 

FBM1 = dfc.List_Conseq_Sort_3X12(FAB1) 

FBM2 = dfc.List_Conseq_Sort_3X12(FAB2) 
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FBM3 = dfc.List_Conseq_Sort_3X12(FAB3) 

FBM4 = dfc.List_Conseq_Sort_3X12(FAB4) 

FBM5 = dfc.List_Conseq_Sort_3X12(FAB5) 

FBM6 = dfc.List_Conseq_Sort_3X12(FAB6) 

FBM7 = dfc.List_Conseq_Sort_3X12(FAB7) 

FBM8 = dfc.List_Conseq_Sort_3X12(FAB8) 

 

FBM1.sort() 

FBM2.sort() 

FBM3.sort() 

FBM4.sort() 

FBM5.sort() 

FBM6.sort() 

FBM7.sort() 

FBM8.sort() 

 

FABM1 = FBM1[-1] 

FABM2 = FBM2[-1] 

FABM3 = FBM3[-1] 

FABM4 = FBM4[-1] 
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FABM5 = FBM5[-1] 

FABM6 = FBM6[-1] 

FABM7 = FBM7[-1] 

FABM8 = FBM8[-1] 

 

ecstrainsort = [ 

      (FABM1, 'Clone 1'), 

      (FABM2, 'Clone 2'), 

      (FABM3, 'Clone 3'), 

      (FABM4, 'Clone 4'), 

      (FABM5, 'Clone 5'), 

      (FABM6, 'Clone 6'), 

      (FABM7, 'Clone 7'), 

      (FABM8, 'Clone 8'), 

] 

ecstrainsort.sort() 

 

ecTOP3 = (ecstrainsort[-1],ecstrainsort[-2], ecstrainsort[-3]) 

print("The top three clones are:")  

print("1st:",ecTOP3[0][1]) 
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print("2nd:",ecTOP3[1][1]) 

print("3rd:",ecTOP3[2][1]) 
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Appendix V: Code for Removing Unwanted P. pastoris Clones from Evaluation 

def Rank_StageI_Remove(a,b,c,d,e,f,g,h): 

    a_3 = np.mean([a[0], a[1], a[2]]) 

    a_6 = np.mean([a[3], a[4], a[5],a[6], a[7], a[8]]) 

    b_3 = np.mean([b[0], b[1], b[2]]) 

    b_6 = np.mean([b[3], b[4], b[5],b[6], b[7], b[8]]) 

    c_3 = np.mean([c[0], c[1], c[2]]) 

    c_6 = np.mean([c[3], c[4], c[5],c[6], c[7], c[8]]) 

    d_3 = np.mean([d[0], d[1], d[2]]) 

    d_6 = np.mean([d[3], d[4], d[5],d[6], d[7], d[8]]) 

    e_3 = np.mean([e[0], e[1], e[2]]) 

    e_6 = np.mean([e[3], e[4], e[5],e[6], e[7], e[8]]) 

    f_3 = np.mean([f[0], f[1], f[2]]) 

    f_6 = np.mean([f[3], f[4], f[5],f[6], f[7], f[8]]) 

    g_3 = np.mean([g[0], g[1], g[2]]) 

    g_6 = np.mean([g[3], g[4], g[5],g[6], g[7], g[8]]) 

    h_3 = np.mean([h[0], h[1], h[2]]) 

    h_6 = np.mean([h[3], h[4], h[5],h[6], h[7], h[8]]) 

     

    all_values = [(a,"Clone 1"), 
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                  (b,"Clone 2"), 

                  (c,"Clone 3"), 

                  (d,"Clone 4"), 

                  (e,"Clone 5"), 

                  (f,"Clone 6"), 

                  (g,"Clone 7"), 

                  (h,"Clone 8")] 

     

    if h_3 > h_6: 

        del all_values[7] 

    if g_3 > g_6: 

        del all_values[6] 

    if f_3 > f_6: 

        del all_values[5] 

    if e_3 > e_6: 

        del all_values[4]     

    if d_3 > d_6: 

        del all_values[3] 

    if c_3 > c_6: 

        del all_values[2] 
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    if b_3 > b_6: 

        del all_values[1] 

    if a_3 > a_6: 

        del all_values[0] 

     

    return all_values 
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Appendix VI: Code for Applying Weighting to Highest Fab’ Yield and Variance 

Weight = input('Would you like to proceed with default weighting? (Yes/No)') 

if Weight == "no" or Weight == "No": 

    print("Please enter weighting for productivity (%)") 

    Weighting = input("Productivity Weighting?") 

    print("Thank You") 

    W1 = int(Weighting)/100 

    W2 = 1-W1 

    Val1 = W1*ValM1 + W2*Err1 

    Val2 = W1*ValM2 + W2*Err2 

    Val3 = W1*ValM3 + W2*Err3 

else: 

    print ("Proceeding with default.") 

    Val1 = 0.75*ValM1 + 0.25*Err1 

    Val2 = 0.75*ValM2 + 0.25*Err2 

    Val3 = 0.75*ValM3 + 0.25*Err3 

     

ecstrainsort = [ 

      (Val1, CloneA), 

      (Val2, CloneB), 
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      (Val3, CloneC)] 

ecstrainsort.sort() 

 

ecTOP = (ecstrainsort[-1],ecstrainsort[-2], ecstrainsort[-3]) 

print("The top performing strain is:",ecTOP[0][1]) 
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Appendix VII: Database of Defined Functions for MIAMI 

def Derivative(x,y): 

    dx = np.diff(x) 

    dy = np.diff(y) 

    return dx/dy 

 

def List_AV_3(x,y,z): 

    AV1 = np.average([x[0],y[0],z[0]]) 

    AV2 = np.average([x[1],y[1],z[1]]) 

    AV3 = np.average([x[2],y[2],z[2]]) 

    AV4 = np.average([x[3],y[3],z[3]]) 

    AV5 = np.average([x[4],y[4],z[4]]) 

    AV6 = np.average([x[5],y[5],z[5]]) 

    AV7 = np.average([x[6],y[6],z[6]]) 

    AV8 = np.average([x[7],y[7],z[7]]) 

    return [AV1,AV2,AV3,AV4,AV5,AV6,AV7,AV8] 

 

def List_AV_3X12(x,y,z): 

    AV1 = np.average([x[0],y[0],z[0]]) 

    AV2 = np.average([x[1],y[1],z[1]]) 
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    AV3 = np.average([x[2],y[2],z[2]]) 

    AV4 = np.average([x[3],y[3],z[3]]) 

    AV5 = np.average([x[4],y[4],z[4]]) 

    AV6 = np.average([x[5],y[5],z[5]]) 

    AV7 = np.average([x[6],y[6],z[6]]) 

    AV8 = np.average([x[7],y[7],z[7]]) 

    AV9 = np.average([x[8],y[8],z[8]]) 

    AV10 = np.average([x[9],y[9],z[9]]) 

    AV11 = np.average([x[10],y[10],z[10]]) 

    AV12 = np.average([x[11],y[11],z[11]]) 

    return [AV1,AV2,AV3,AV4,AV5,AV6,AV7,AV8,AV9,AV10,AV11,AV12] 

 

def List_AV_4X6(w,x,y,z): 

    AV1 = np.average([w[0],x[0],y[0],z[0]]) 

    AV2 = np.average([w[1],x[1],y[1],z[1]]) 

    AV3 = np.average([w[2],x[2],y[2],z[2]]) 

    AV4 = np.average([w[3],x[3],y[3],z[3]]) 

    AV5 = np.average([w[4],x[4],y[4],z[4]]) 

    AV6 = np.average([w[5],x[5],y[5],z[5]]) 

    return [AV1,AV2,AV3,AV4,AV5,AV6] 
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def List_AV_4X8(w,x,y,z): 

    AV1 = np.average([w[0],x[0],y[0],z[0]]) 

    AV2 = np.average([w[1],x[1],y[1],z[1]]) 

    AV3 = np.average([w[2],x[2],y[2],z[2]]) 

    AV4 = np.average([w[3],x[3],y[3],z[3]]) 

    AV5 = np.average([w[4],x[4],y[4],z[4]]) 

    AV6 = np.average([w[5],x[5],y[5],z[5]]) 

    AV7 = np.average([w[6],x[6],y[6],z[6]]) 

    AV8 = np.average([w[7],x[7],y[7],z[7]]) 

    return [AV1,AV2,AV3,AV4,AV5,AV6,AV7,AV8] 

 

def List_AVER_4X8(w,x,y,z): 

    AV1 = np.std([w[0],x[0],y[0],z[0]]) 

    AV2 = np.std([w[1],x[1],y[1],z[1]]) 

    AV3 = np.std([w[2],x[2],y[2],z[2]]) 

    AV4 = np.std([w[3],x[3],y[3],z[3]]) 

    AV5 = np.std([w[4],x[4],y[4],z[4]]) 

    AV6 = np.std([w[5],x[5],y[5],z[5]]) 

    AV7 = np.std([w[6],x[6],y[6],z[6]]) 
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    AV8 = np.std([w[7],x[7],y[7],z[7]]) 

return [AV1,AV2,AV3,AV4,AV5,AV6,AV7,AV8] 

 

def List_Conseq_Sort_3X8(x): 

    L123 = np.average([x[0],x[1],x[2]]) 

    L234 = np.average([x[1],x[2],x[3]]) 

    L345 = np.average([x[2],x[3],x[4]]) 

    L456 = np.average([x[3],x[4],x[5]]) 

    L567 = np.average([x[4],x[5],x[6]]) 

    L678 = np.average([x[5],x[6],x[7]]) 

    return [L123,L234,L345,L456,L567,L678] 

 

def List_Conseq_Sort_3X12(x): 

    L123 = np.average([x[0],x[1],x[2]]) 

    L234 = np.average([x[1],x[2],x[3]]) 

    L345 = np.average([x[2],x[3],x[4]]) 

    L456 = np.average([x[3],x[4],x[5]]) 

    L567 = np.average([x[4],x[5],x[6]]) 

    L678 = np.average([x[5],x[6],x[7]]) 

    L789 = np.average([x[6],x[7],x[8]]) 
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    L8910 = np.average([x[7],x[8],x[9]]) 

    L91011 = np.average([x[8],x[9],x[10]]) 

    L101112 = np.average([x[9],x[10],x[11]]) 

    return [L123,L234,L345,L456,L567,L678,L789,L8910,L91011,L101112] 

 

def List_Conseq_Sort_Err_3X8(x): 

    L123 = np.std([x[0],x[1],x[2]]) 

    L234 = np.std([x[1],x[2],x[3]]) 

    L345 = np.std([x[2],x[3],x[4]]) 

    L456 = np.std([x[3],x[4],x[5]]) 

    L567 = np.std([x[4],x[5],x[6]]) 

    L678 = np.std([x[5],x[6],x[7]]) 

    return [L123,L234,L345,L456,L567,L678] 

 

def List_Conseq_Sort_WithErr_3X6(x): 

    L123 = np.average([x[0],x[1],x[2]]) 

    L234 = np.average([x[1],x[2],x[3]]) 

    L345 = np.average([x[2],x[3],x[4]]) 

    L456 = np.average([x[3],x[4],x[5]]) 
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    E123 = np.std([x[0],x[1],x[2]]) 

    E234 = np.std([x[1],x[2],x[3]]) 

    E345 = np.std([x[2],x[3],x[4]]) 

    E456 = np.std([x[3],x[4],x[5]]) 

     

    all_values = [ 

            (L123,E123), 

            (L234,E234), 

            (L345,E345), 

            (L456,E456)] 

 

    return all_values 

 

def List_Conseq_Sort_WithErr_3X8(x): 

    L123 = np.average([x[0],x[1],x[2]]) 

    L234 = np.average([x[1],x[2],x[3]]) 

    L345 = np.average([x[2],x[3],x[4]]) 

    L456 = np.average([x[3],x[4],x[5]]) 

    L567 = np.average([x[4],x[5],x[6]]) 

    L678 = np.average([x[5],x[6],x[7]]) 
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    E123 = np.std([x[0],x[1],x[2]]) 

    E234 = np.std([x[1],x[2],x[3]]) 

    E345 = np.std([x[2],x[3],x[4]]) 

    E456 = np.std([x[3],x[4],x[5]]) 

    E567 = np.std([x[4],x[5],x[6]]) 

    E678 = np.std([x[5],x[6],x[7]]) 

     

    all_values = [ 

            (L123,E123), 

            (L234,E234), 

            (L345,E345), 

            (L456,E456), 

            (L567,E567), 

            (L678,E678)] 

 

    return all_values 

 

def List_Divide_6(x,y): 

    Result = [x[0]/y[0],x[1]/y[1],x[2]/y[2],x[3]/y[3],x[4]/y[4],x[5]/y[5]] 
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    return Result 

 

def List_Divide_8(x,y): 

    Result = [x[0]/y[0],x[1]/y[1],x[2]/y[2],x[3]/y[3],x[4]/y[4],x[5]/y[5],x[6]/y[6],x[7]/y[7]] 

    return Result 

 

def List_Divide_12(x,y): 

    Result = 

[x[0]/y[0],x[1]/y[1],x[2]/y[2],x[3]/y[3],x[4]/y[4],x[5]/y[5],x[6]/y[6],x[7]/y[7],x[8]/y[8],x[9]/y

[9],x[10]/y[10],x[11]/y[11]] 

    return Result 

 

def List_STD_3X8(x,y,z): 

    STD1 = np.std([x[0],y[0],z[0]]) 

    STD2 = np.std([x[1],y[1],z[1]]) 

    STD3 = np.std([x[2],y[2],z[2]]) 

    STD4 = np.std([x[3],y[3],z[3]]) 

    STD5 = np.std([x[4],y[4],z[4]]) 

    STD6 = np.std([x[5],y[5],z[5]]) 

    STD7 = np.std([x[6],y[6],z[6]]) 
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    STD8 = np.std([x[7],y[7],z[7]]) 

    return [STD1,STD2,STD3,STD4,STD5,STD6,STD7,STD8] 

 

def List_STD_3X12(x,y,z): 

    STD1 = np.std([x[0],y[0],z[0]]) 

    STD2 = np.std([x[1],y[1],z[1]]) 

    STD3 = np.std([x[2],y[2],z[2]]) 

    STD4 = np.std([x[3],y[3],z[3]]) 

    STD5 = np.std([x[4],y[4],z[4]]) 

    STD6 = np.std([x[5],y[5],z[5]]) 

    STD7 = np.std([x[6],y[6],z[6]]) 

    STD8 = np.std([x[7],y[7],z[7]]) 

    STD9 = np.std([x[8],y[8],z[8]]) 

    STD10 = np.std([x[9],y[9],z[9]]) 

    STD11 = np.std([x[10],y[10],z[10]]) 

    STD12 = np.std([x[11],y[11],z[11]]) 

    return [STD1,STD2,STD3,STD4,STD5,STD6,STD7,STD8,STD9,STD10,STD11,STD12] 

 

def List_STD_4X8(w,x,y,z): 

    STD1 = np.std([w[0],x[0],y[0],z[0]]) 
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    STD2 = np.std([w[1],x[1],y[1],z[1]]) 

    STD3 = np.std([w[2],x[2],y[2],z[2]]) 

    STD4 = np.std([w[3],x[3],y[3],z[3]]) 

    STD5 = np.std([w[4],x[4],y[4],z[4]]) 

    STD6 = np.std([w[5],x[5],y[5],z[5]]) 

    STD7 = np.std([w[6],x[6],y[6],z[6]]) 

    STD8 = np.std([w[7],x[7],y[7],z[7]]) 

    return [STD1,STD2,STD3,STD4,STD5,STD6,STD7,STD8] 

 

def List_X(x,V): 

    newx = [i * V for i in x] 

    return newx 

 

def OD_Sort6(x,y,y_1,z,z_1): 

    if (z_1[0] >= 1 or  

        z_1[1] >= 1 or  

        z_1[2] >= 1 or  

        z_1[3] >= 1 or  

        z_1[4] >= 1 or 

        z_1[5] >= 1): 
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        print(z_1, "For OD values larger than 1, please perform further dilution") 

        return exit 

     

    if y_1[0] > 1: 

        del y[0] 

        y.insert(0,z[0]) 

    if y_1[1] > 1: 

        del y[1] 

        y.insert(1,z[1]) 

    if y_1[2] > 1: 

        del y[2] 

        y.insert(2,z[2]) 

    if y_1[3] > 1: 

        del y[3] 

        y.insert(3,z[3]) 

    if y_1[4] > 1: 

        del y[4] 

        y.insert(4,z[4]) 

    if y_1[5] > 1: 

        del y[5] 
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        y.insert(5,z[5]) 

 

    if x[0] > 1: 

        del x[0] 

        x.insert(0,y[0]) 

    if x[1] > 1: 

        del x[1] 

        x.insert(1,y[1]) 

    if x[2] > 1: 

        del x[2] 

        x.insert(2,y[2]) 

    if x[3] > 1: 

        del x[3] 

        x.insert(3,y[3]) 

    if x[4] > 1: 

        del x[4] 

        x.insert(4,y[4]) 

    if x[5] > 1: 

        del x[5] 

        x.insert(5,y[5]) 
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    return x 

 

def OD_Sort8(x,y,y_1,z,z_1): 

    if (z_1[0] >= 1 or  

        z_1[1] >= 1 or  

        z_1[2] >= 1 or  

        z_1[3] >= 1 or  

        z_1[4] >= 1 or 

        z_1[5] >= 1 or 

        z_1[6] >= 1 or 

        z_1[7] >= 1): 

        print(z_1, "For OD values larger than 1, please perform further dilution") 

        return exit 

     

    if y_1[0] > 1: 

        del y[0] 

        y.insert(0,z[0]) 

    if y_1[1] > 1: 

        del y[1] 
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        y.insert(1,z[1]) 

    if y_1[2] > 1: 

        del y[2] 

        y.insert(2,z[2]) 

    if y_1[3] > 1: 

        del y[3] 

        y.insert(3,z[3]) 

    if y_1[4] > 1: 

        del y[4] 

        y.insert(4,z[4]) 

    if y_1[5] > 1: 

        del y[5] 

        y.insert(5,z[5]) 

    if y_1[6] > 1: 

        del y[6] 

        y.insert(6,z[6]) 

    if y_1[7] > 1: 

        del y[7] 

        y.insert(7,z[7]) 
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    if x[0] > 1: 

        del x[0] 

        x.insert(0,y[0]) 

    if x[1] > 1: 

        del x[1] 

        x.insert(1,y[1]) 

    if x[2] > 1: 

        del x[2] 

        x.insert(2,y[2]) 

    if x[3] > 1: 

        del x[3] 

        x.insert(3,y[3]) 

    if x[4] > 1: 

        del x[4] 

        x.insert(4,y[4]) 

    if x[5] > 1: 

        del x[5] 

        x.insert(5,y[5]) 

    if x[6] > 1: 

        del x[6] 
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        x.insert(6,y[6]) 

    if x[7] > 1: 

        del x[7] 

        x.insert(7,y[7]) 

     

    return x 

 

def OD_Sort12(x,y,y_1,z,z_1): 

    if (z_1[0] >= 1 or  

        z_1[1] >= 1 or  

        z_1[2] >= 1 or  

        z_1[3] >= 1 or  

        z_1[4] >= 1 or 

        z_1[5] >= 1 or 

        z_1[6] >= 1 or 

        z_1[7] >= 1 or 

        z_1[8] >= 1 or 

        z_1[9] >= 1 or 

        z_1[10] >= 1 or 

        z_1[11] >= 1): 
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        print(z_1, "For OD values larger than 1, please perform further dilution") 

        return exit 

     

    if y_1[0] > 1: 

        del y[0] 

        y.insert(0,z[0]) 

    if y_1[1] > 1: 

        del y[1] 

        y.insert(1,z[1]) 

    if y_1[2] > 1: 

        del y[2] 

        y.insert(2,z[2]) 

    if y_1[3] > 1: 

        del y[3] 

        y.insert(3,z[3]) 

    if y_1[4] > 1: 

        del y[4] 

        y.insert(4,z[4]) 

    if y_1[5] > 1: 

        del y[5] 
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        y.insert(5,z[5]) 

    if y_1[6] > 1: 

        del y[6] 

        y.insert(6,z[6]) 

    if y_1[7] > 1: 

        del y[7] 

        y.insert(7,z[7]) 

    if y_1[8] > 1: 

        del y[8] 

        y.insert(8,z[8]) 

    if y_1[9] > 1: 

        del y[9] 

        y.insert(9,z[9]) 

    if y_1[10] > 1: 

        del y[10] 

        y.insert(10,z[10]) 

    if y_1[11] > 1: 

        del y[11] 

        y.insert(11,z[11]) 
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    if x[0] > 1: 

        del x[0] 

        x.insert(0,y[0]) 

    if x[1] > 1: 

        del x[1] 

        x.insert(1,y[1]) 

    if x[2] > 1: 

        del x[2] 

        x.insert(2,y[2]) 

    if x[3] > 1: 

        del x[3] 

        x.insert(3,y[3]) 

    if x[4] > 1: 

        del x[4] 

        x.insert(4,y[4]) 

    if x[5] > 1: 

        del x[5] 

        x.insert(5,y[5]) 

    if x[6] > 1: 

        del x[6] 
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        x.insert(6,y[6]) 

    if x[7] > 1: 

        del x[7] 

        x.insert(7,y[7]) 

    if x[8] > 1: 

        del x[8] 

        x.insert(8,y[8]) 

    if x[9] > 1: 

        del x[9] 

        x.insert(9,y[9]) 

    if x[10] > 1: 

        del x[10] 

        x.insert(10,y[10]) 

    if x[11] > 1: 

        del x[11] 

        x.insert(11,y[11]) 

     

    return x 

 

def Rank_StageI_Remove(a,b,c,d,e,f,g,h): 
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    a_3 = np.mean([a[0], a[1], a[2]]) 

    a_6 = np.mean([a[3], a[4], a[5],a[6], a[7], a[8]]) 

    b_3 = np.mean([b[0], b[1], b[2]]) 

    b_6 = np.mean([b[3], b[4], b[5],b[6], b[7], b[8]]) 

    c_3 = np.mean([c[0], c[1], c[2]]) 

    c_6 = np.mean([c[3], c[4], c[5],c[6], c[7], c[8]]) 

    d_3 = np.mean([d[0], d[1], d[2]]) 

    d_6 = np.mean([d[3], d[4], d[5],d[6], d[7], d[8]]) 

    e_3 = np.mean([e[0], e[1], e[2]]) 

    e_6 = np.mean([e[3], e[4], e[5],e[6], e[7], e[8]]) 

    f_3 = np.mean([f[0], f[1], f[2]]) 

    f_6 = np.mean([f[3], f[4], f[5],f[6], f[7], f[8]]) 

    g_3 = np.mean([g[0], g[1], g[2]]) 

    g_6 = np.mean([g[3], g[4], g[5],g[6], g[7], g[8]]) 

    h_3 = np.mean([h[0], h[1], h[2]]) 

    h_6 = np.mean([h[3], h[4], h[5],h[6], h[7], h[8]]) 

     

    all_values = [(a,"Clone 1"), 

                  (b,"Clone 2"), 
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                  (c,"Clone 3"), 

                  (d,"Clone 4"), 

                  (e,"Clone 5"), 

                  (f,"Clone 6"), 

                  (g,"Clone 7"), 

                  (h,"Clone 8")] 

     

    if h_3 > h_6: 

        del all_values[7] 

    if g_3 > g_6: 

        del all_values[6] 

    if f_3 > f_6: 

        del all_values[5] 

    if e_3 > e_6: 

        del all_values[4]     

    if d_3 > d_6: 

        del all_values[3] 

    if c_3 > c_6: 

        del all_values[2] 

    if b_3 > b_6: 
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        del all_values[1] 

    if a_3 > a_6: 

        del all_values[0] 

    return all_values 

 

def Least_Square_Fit_A(x,y,up_lim,low_lim):     

    i= low_lim - 1 

    n= up_lim -1 

 

    sum_xxy = x[int(i)] * x[int(i)] * y[int(i)] 

    sum_ylny = y[int(i)] * np.log(y[int(i)]) 

    sum_xy = x[int(i)]* y[int(i)] 

    sum_xylny = x[int(i)]* y[int(i)] * np.log(y[int(i)]) 

    sum_y = y[int(i)] 

     

     

    i_1 = int(i) + 1 

    

    while n >= i_1: 

        sum_xxy = sum_xxy + x[int(i_1)] * x[int(i_1)] * y[int(i_1)]  
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        sum_ylny = sum_ylny + y[int(i_1)] * np.log(y[int(i_1)])  

        sum_xy = sum_xy + x[int(i_1)]* y[int(i_1)]  

        sum_xylny = sum_xylny + x[int(i_1)]* y[int(i_1)] * np.log(y[int(i_1)])  

        sum_y = sum_y + y[int(i_1)]  

        i_1 = i_1 + 1 

         

    a = (sum_xxy*sum_ylny - sum_xy*sum_xylny) / (sum_y * sum_xxy - sum_xy * sum_xy) 

    true_A = np.exp(a) 

    return true_A 

         

def Least_Square_Fit_B(x,y,up_lim,low_lim): 

    i= low_lim - 1 

    n= up_lim -1 

 

    sum_xxy = x[int(i)] * x[int(i)] * y[int(i)] 

    sum_ylny = y[int(i)] * np.log(y[int(i)]) 

    sum_xy = x[int(i)]* y[int(i)] 

    sum_xylny = x[int(i)]* y[int(i)] * np.log(y[int(i)]) 

    sum_y = y[int(i)] 

    i_1 = int(i) + 1 
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    while n >= i_1: 

        sum_xxy = sum_xxy + x[int(i_1)] * x[int(i_1)] * y[int(i_1)]  

        sum_ylny = sum_ylny + y[int(i_1)] * np.log(y[int(i_1)])  

        sum_xy = sum_xy + x[int(i_1)]* y[int(i_1)]  

        sum_xylny = sum_xylny + x[int(i_1)]* y[int(i_1)] * np.log(y[int(i_1)]) 

        sum_y = sum_y + y[int(i_1)] 

        i_1 = i_1 + 1 

    b = (sum_y*sum_xylny - sum_xy*sum_ylny) / (sum_y*sum_xxy - sum_xy*sum_xy) 

    return b 

   


