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Abstract. We use superconnections to define and study some natural differential forms
on the period domain D that parametrizes polarized Hodge structures of given type on a
rational quadratic vector space V . These forms depend on a choice of vectors v1, . . . , vr ∈ V
and have a Gaussian shape that peaks on the locus where v1, . . . , vr become Hodge classes.
We show that they can be rescaled so that one can form theta series by summing over a
lattice Lr ⊂ V r. These series define differential forms on arithmetic quotients Γ\D. We
compute their cohomology class explicitly in terms of the cohomology classes of Hodge loci
in Γ\D. When the period domain is a hermitian symmetric domain of type IV, we show that
the components of our forms of appropriate degree recover the forms introduced by Kudla
and Millson. In particular, our results provide another way to establish the main properties
of these forms.
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1. Introduction

The goal of this paper is to introduce certain natural theta series that define closed dif-
ferential forms on arithmetic quotients of period domains. We show that the cohomology
classes of these theta series are Siegel modular forms, and determine their Fourier expan-
sion in terms of Hodge loci. When the period domain is a Hermitian symmetric domain,
we recover the main results of Kudla and Millson [14] concerning modularity of generating
series of special cycles in the cohomology of orthogonal Shimura varieties. Our main tool is
Quillen’s Chern form attached to a superconnection. It allows us to define differential forms
on period domains that generalize the forms introduced by Kudla and Millson.

We now describe our results in more detail.

1.1. Natural differential forms on period domains. Let D be the period domain
parametrizing Hodge structures of even weight w with given Hodge numbers on a fixed
Q-vector space VQ, polarized by a bilinear form Q. For any v ∈ VQ there is a complex
submanifold Dv ⊂ D whose points correspond to Hodge structures where v is a Hodge class.
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There is a Hodge bundle F = Fw/2+1 on D and a holomorphic section sv of F∨ such that
the Koszul complex (∧F , sv) gives a resolution of ODv for non-zero v.

Using the Hodge metric on F , we construct a superconnection ∇v on ∧F and define a
closed differential form

(1.1) ϕ(v) = e−πQ(v,v)trs(e
∇2
v) ∈ A2∗(D).

Let G = O(VR, Q). We show that, with respect to the natural action of G on D, the form ϕ(·)
isG-invariant; that is, it satisfies g∗ϕ(gv) = ϕ(v) for every g ∈ G. Let S (VR) be the Schwartz
space of smooth functions on VR all whose derivatives are rapidly decreasing. Denote by
ω = ωψ the Weil representation, with respect to the additive character ψ(x) = e2πix, of the
metaplectic double cover Mp2,R of SL2(R) on S (VR).

Theorem 1.1. For fixed z ∈ D, the form ϕ belongs to S (VR)⊗∧T ∗zD. Up to explicit exact
S (VR)-valued G-invariant forms, ϕ is a lowest weight vector of weight 1

2
dimV under the

action of Mp2,R.

More generally, we obtain a similar result for the form

(1.2) ϕ(v1, . . . , vr) := ϕ(v1) ∧ · · · ∧ ϕ(vr) ∈ S (V r
R )⊗ ∧T ∗zD

for any r ≥ 1; namely, up to exact S (V r
R )-valued G-invariant forms, this form generates the

one-dimensional representation of weight 1
2

dimV of the standard maximal compact subgroup
of the metaplectic double cover Mp2r,R of Sp2r(R). Other useful properties of ϕ(v1, . . . , vr)
are summarized in Proposition 2.3.

1.2. Theta series and arithmetic quotients of period domains. Let L ⊂ VQ be an
even integral lattice with dual lattice L∨ ⊃ L and let

(1.3) ΓL = {γ ∈ G0|γ(L) = L, γ|L∨/L = id},

where G0 denotes the connected component of the identity of G. Then ΓL is an arithmetic
subgroup of G0. Fix a connected component D+ of D and define

(1.4) XL = ΓL\D+.

The complex manifolds XL were introduced by Griffiths and Schmid [10] and have recently
been studied by many authors; see, for example, [8] for a study of their geometric and
arithmetic properties. For general Hodge numbers, they are not algebraic, and in fact not
even Kähler. There is a natural collection of analytic cycles Hdg(n, L) in XL indexed by
positive integers n: the points in the support of Hdg(n, L) correspond to ΓL-orbits of Hodge
structures on VQ containing a Hodge class v ∈ L with Q(v, v) = 2n.

Let H be the complex upper half plane. Since ϕ is rapidly decreasing, the theta series

(1.5) θ(τ ;L) =
∑
v∈L

ϕ(y1/2v)eπixQ(v,v)

converges for any τ = x+ iy ∈ H and defines a closed differential form on XL.

Theorem 1.2. Let [θ(τ ;L)] be the cohomology class of θ(τ ;L). Then [θ(τ ;L)] is a holo-
morphic modular form of weight 1

2
dimV , valued in H∗(XL). Its Fourier expansion is given
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by

(1.6)

(
i

2π

)rk(F )

[θ(τ ;L)] ∪ Td(F∨) = ctop(F∨) +
∑
n≥1

Hdg(n, L)qn, q = e2πiτ ,

where Td(·) is the Todd class and ctop(·) denotes the Chern class of top degree.

In particular, the right hand side of (1.6) is a holomorphic modular form of weight dimV/2
valued in H2rk(F )(XL). We remark that it seems very likely that this consequence of the
theorem can also be proved directly from the modularity of the generating series of special
cycles in the symmetric space attached to G proved in [16]; see Section 5.4 for a proof when
w = 2.

More generally, for any positive integer r and any symmetric positive semidefinite matrix
T with integral entries, we consider the locus Hdg(T, L) in XL consisting of ΓL-orbits of
Hodge structures on VQ containing Hodge classes v1, . . . , vr ∈ L such that Q(vi, vj) = 2T .
For τ in the Siegel half plane of genus r, we can define a theta series θ(τ ;Lr). We prove
similarly that its cohomology class [θ(τ ;Lr)] is a H∗(XL)-valued holomorphic Siegel modular
form of weight 1

2
dimV , with Fourier expansion

(1.7)

(
i

2π

)r·rk(F )

[θ(τ ;Lr)] ∪ Td(F∨)r =
∑
T≥0

Hdg(T, L) ∪ ctop(F∨)r−rk(T )qT .

1.3. Relation with Kudla-Millson forms. Suppose that the period domain D parametrizes
polarized Hodge structures of weight 2 and type (1, n, 1). In this case, D is the hermitian
symmetric domain associated with the Lie group SO(n, 2). For a positive integer r, Kudla
and Millson define forms

(1.8) ϕKM ∈ [S (V r
R )⊗ Ar,r(D)]G

and study their properties. These forms (defined in [14] for more general symmetric spaces)
have proved to be of fundamental importance in the study of special cycles; see, for exam-
ple, [12, 16] or the recent work of Bergeron, Millson and Moeglin, [1], proving the Hodge
conjecture for compact arithmetic quotients of the complex n-ball in certain cohomological
degrees. The original motivation for this paper was to understand the construction of the
forms ϕKM. In Theorem 3.2 we show that

(1.9) ϕKM(v1, . . . , vr) =

(
i

2π

)r
ϕ(v1, . . . , vr)[2r], v1, . . . , vr ∈ VR.

(The components of ϕ(v1, . . . , vr) of higher degree are obtained from ϕ(v1, . . . , vr)[2r] by
multiplying by a Todd form; see (3.20).) Other interesting properties of ϕ are proved in
Proposition 2.3 and Proposition 3.1. Thus we obtain another approach to proving (for the
group G ∼= O(n, 2)) the main properties of ϕKM and the associated theta series established
in [14, 15, 16]. Perhaps more importantly, our results show that the ϕKM are characteristic
forms.

Our approach also recovers one of the main results in [6]; see Remark 4.6. Namely,
our proofs of the main properties of ϕ(v) rely on a transgression formula for Chern forms
established by Bismut-Gillet-Soulé. Their transgression is a form ψ0(v) ∈ A2∗(D) satisying
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the equation

(1.10) − 1

t
∂∂ψ0(t1/2v) =

d

dt
trs(e

∇2√
tv)

for t > 0. We set ψ(v) = e−πQ(v,v)ψ0(v) and compute ψ[0] explicitly, showing that its value
at z ∈ D is the usual Siegel gaussian ϕSG attached to the majorant of Q defined by z. The
transgression formula above can be rewritten as

(1.11) (2πi)−1∂∂ϕSG = ω(X−)ϕKM,

where X− is the lowering operator of sl2, proving [6, Thm. 4.4].
As a final remark we would like to point out that our methods also allow to define natural

Green forms for special cycles on orthogonal Shimura varieties. This will be the subject of
a future paper but we briefly explain the idea here. Assuming v 6= 0, one integrates the
relation (1.10) to obtain a function

(1.12) ξ0(v) =

∫ ∞
1

ψ0(t1/2v)[0]
dt

t
∈ C∞(D− Dv)

satisfying ∂∂ξ0(v) = trs(e
∇2
v)[2] and having a logarithmic singularity at Dv. One can then

sum over the orbit Γv to obtain Green forms for special divisors on Γ\D. In this way we
recover the Green functions in [13, 17]. Moreover, a similar approach gives natural Green
forms for higher codimension special cycles. We refer the interested reader to our forthcoming
paper for the details.

1.4. Notation.

• Ap,q(X) : complex-valued (p, q)-forms on a complex manifold X.
• F∨ : dual bundle of a vector bundle F .
• α[k] : component in Ak(X) of a differential form α ∈ A∗(X).

1.5. Acknowledgements. The author is grateful to Stephen Kudla for many helpful con-
versations and suggestions. This paper has also benefitted from discussions with Daniel
Disegni, Daniel Le, Kartik Prasanna and Siddarth Sankaran; the author thanks all of them.

2. Superconnections and differential forms on period domains

In this section, we first recall some basic facts about period domains and Hodge bundles
(§2.1-§2.4). Then we construct the superconnections ∇v and the forms ϕ(·) (§2.5) and prove
some basic properties of ϕ(·) (§2.6).

Throughout this paper we fix the following:

V : a Q-vector space of finite dimension m > 0;
w : a positive even integer;
Q : V × V → Q : a non-degenerate, indefinite symmetric bilinear form on V , with
signature (s, t).

We define G = Aut(V,Q) to be the isometry group of (V,Q); thus G is an orthogonal group
isomorphic to O(s, t). We denote the connected component of the identity in G by G0.

4



2.1. Polarized Hodge structures and period domains. We consider Q-Hodge struc-
tures

(2.1) h : ResC/RGm → GL(VR)

of weight w on VQ that are polarized by Q. Writing (F p)0≤p≤w for the Hodge filtration of h,
this means that the Riemann bilinear relations

Q(F p, Fw−p+1) = 0,

Q(Cv, v) > 0 for v non-zero in VC,
(2.2)

hold, where C = h(i). We write hp,q = dimC V
p,q for the Hodge numbers of h and call

h = (hw,0, hw−1,1, . . . , h0,w) the type of h. We only consider types with hw/2,w/2 6= 0. The
polarized Hodge structures (V,Q, h) of a given type h can be identified with the points of a
complex manifold Dh. Namely, the first bilinear relation defines a closed subvariety

(2.3) D∨h := {(F p)0≤p≤w|Q(F p, Fw−p+1) = 0}

of the variety of flags in VC of type h. The second Riemannian bilinear relation defines an
open subset Dh ⊂ D∨h; thus Dh is the period domain of type h and D∨h is its compact dual.
If h is fixed, we omit it from the notation and simply write D and D∨.

2.2. Hodge bundles and Hodge loci. We write V for the trivial holomorphic vector
bundle on D∨ with fiber VC, and identify it with its sheaf of sections VC⊗OD∨ . Through the
inclusion VR ⊂ VC⊗OD∨ we can view v ∈ VR as a section of V . For every p with 0 ≤ p ≤ w,
there is a holomorphic subbundle F p ⊆ V whose fiber over a point z = (F p)0≤p≤w is
F p ⊆ VC. We denote by the same symbols F p and V the restrictions of these bundles to
D. The F p are known as Hodge bundles, and on D they carry a natural hermitian metric
(·, ·)Fp defined by

(2.4) (vz, v
′
z)Fp = 2Q(Cvz, v′z).

For any v ∈ VR, define the Hodge locus

(2.5) Dv := {z ∈ D|v ∈ Fw/2
z }.

Note that Dv is non-empty only if Q(v, v) > 0 or v = 0. When v ∈ VQ, the bilinear relations
(2.2) show that Dv agrees with the locus of z ∈ D where v is a Hodge class.

2.3. Action of G. The assignment (g, ϕ) 7→ g◦ϕ defines an action of G on D by holomorphic
transformations. This action is transitive and the stabilizer of a point in D is a compact
subgroup of G isomorphic to

(2.6) O(hw/2,w/2)×
∏
p>w/2

U(hp,w−p).

In particular, D has two connected components; we fix one and denote it by D+. The Hodge
bundles F p and their hermitian metrics (·, ·)Fp are naturally G-equivariant.
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2.4. The section sv. Set

(2.7) F = Fw/2+1.

The bilinear form Q gives an identification V ∼= V ∨. Through it, an element v ∈ VR defines
a global section sv of F∨; more concretely, sv is defined by

(2.8) sv(v
′
z) = Q(v′z, v).

There is a unique hermitian metric (·, ·)F∨ on F∨ such that the isomorphism F ∼= F∨

induced by (·, ·)F is an isometry. For a section sz of F∨, define

(2.9) hz(s) = (sz, sz)F∨ .

Writing v = vz + v′z with vz ∈ Fz and v′z ∈ (Fz)
⊥ = Fw/2

z , we have

(2.10) hz(sv) = 2Q(Cvz, vz).

By (2.2), the zero set of the section sv is Dv; this shows that each Dv is an analytic subset
of D, with analytic structure given by the exact sequence

(2.11) F
sv−→ OD → ODv → 0.

Assume that Q(v, v) > 0 and let Gv be the stabilizer of v in G. Then Gv is isomorphic to
O(s − 1, t) and Dv is a homogeneous complex manifold under Gv. The stabilizers of this
action are isomorphic to O(hw/2,w/2 − 1)×Πp>w/2U(hp,w−p). We conclude that the complex
codimension of Dv in D is

(2.12) codimD Dv = rk(F∨) = hw/2+1,w/2−1 + . . .+ hw,0.

In particular, sv is a regular section of F∨.

2.5. Superconnections and differential forms on D. Define K(v) to be the Koszul
complex associated with sv (see Appendix A); it carries a hermitian metric induced from
the metric on F , with corresponding Chern connection ∇. We regard K(v) as a super
vector bundle with even part ∧evenF and odd part ∧oddF and denote by s∗v the adjoint to
sv ∈ End(∧F )odd.

Definition 2.1. Let ∇v be the superconnection on ∧F given by

(2.13) ∇v = ∇+ i
√

2π(sv + s∗v)

and define

(2.14) ϕ0(v) = trs(e
∇2
v) ∈ ⊕p≥0A

p,p(D).

More generally, given vectors v1, . . . , vr ∈ VR, we write K(v1, . . . , vr) for the Koszul complex
associated with (sv1 , . . . , svr) : F⊕r → OD, ∇v1,...,vr for the corresponding superconnection
and

(2.15) ϕ0(v1, . . . , vr) = trs(e
∇2
v1,...,vr ) ∈ ⊕p≥0A

p,p(D).

As we will see below, for fixed v with Q(v, v) > 0 (so that Dv 6= ∅), the form ϕ0(v)
decreases very rapidly as we move away from Dv. However, as a function of v it is not
rapidly decreasing: for example, when restricted to Dv, the form ϕ0(tv) is independent of
t > 0. This makes it impossible to define interesting theta series as sums of forms ϕ0(v) where
v varies in a lattice inside VQ since the sum will be divergent over the locus of Hodge classes.
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Fortunately, one can rescale ϕ0(v) to obtain a form ϕ(v) with better growth properties as a
function of v, as follows.

Definition 2.2. For v1, . . . , vr ∈ VR, define

ϕ(v1, . . . , vr) = e−π
∑
Q(vi,vi)ϕ0(v1, . . . , vr) ∈ ⊕p≥0A

p,p(D).

We will show that ϕ(v) decreases rapidly with v in Section 4.1. Note that by (A.14) and
(A.16), we have

(2.16) ϕ(v1, . . . , vr) = ϕ(v1) ∧ . . . ∧ ϕ(vr).

2.6. Basic properties of the forms ϕ. We now list some basic properties of the forms
ϕ(v1, . . . , vr). The proofs are straightforward consequences of the properties of the Chern
form outlined in Appendix A. Given a vector bundle with connection (E,∇), we write

(2.17) ctop(E,∇) = det(∇2)

for its Chern-Weil form of top degree and

(2.18) Td(E,∇) = det

(
∇2

1− e−∇2

)
for its Todd form.

Proposition 2.3. Let r be a positive integer and v1, . . . , vr ∈ VR.

(a) ϕ(v1, . . . , vr) is closed.
(b) For every g ∈ G, we have g∗ϕ(gv1, . . . , gvr) = ϕ(v1, . . . , vr).
(c) ϕ(v1, . . . , vr)[2k] = 0 if k < r.
(d) ϕ(0) = ctop(F∨,∇) ∧ Td(F∨,∇)−1.
(e) If h ∈ SO(r), then ϕ((v1, . . . , vr) · h) = ϕ(v1, . . . , vr).

Proof. Property (a) holds for general Chern character forms. For any v ∈ VR, the G-
equivariant structure on the Hodge bundles induces an isomorphism of complexes K(v) ∼=
g∗K(gv) preserving the hermitian metric and the connection ∇; thus (b) follows from the
functoriality property (A.7).

For any v ∈ V and z ∈ D, we have

(2.19) ∇2
v[0](z) = −2πhz(sv) · id ∈ End(∧Fz),

hence ϕ0(v)[0] = e−2πh(sv)trs(id) = 0 and (c) follows from (2.16). We have

(2.20) ϕ(0) = ch(∧F ,∇) = det
(

1− e∇2
F

)
,

and hence (d) holds. To prove (e), note that h induces an isometry

(2.21) i(h) : K(v1, . . . , vr) ∼= K((v1, . . . , vr) · h)

(see (A.17)) such that

(2.22) ∇(v1,...,vr)·h = i(h)−1∇v1,...,vri(h)

and the result follows since trs is invariant under conjugation. �

Finally, we note that the form ϕ(v1, . . . , vr)
∗ is invariant under complex conjugation (see

Appendix A for the definition of the operator ∗).
7



3. An example: the Hermitian symmetric domain attached to SO(n, 2)

In this section, we focus on the special case where each connected component of D is the
hermitian symmetric domain associated with SO(n, 2). After describing the Hodge bundle
L , its Hodge metric (§3.1-§3.2) and the superconnection ∇v (§3.3), we compute explicitly
the degree 2 component of ϕ(v) in §3.4. We use this to compare ϕ(v) with the Kudla-Millson
forms ϕKM in §3.5-§3.7, where we prove Theorem 3.2.

3.1. Period domains for polarized Hodge structures of type (1, n, 1). We now con-
sider the special case where the bilinear form Q has signature (n, 2) with n ≥ 1. Define

P = {v ∈ VC|Q(v, v) = 0, Q(v, v) < 0},
D = P/C×.

(3.1)

A Hodge structure of weight 2 and type (1, n, 1) on V polarized by Q is determined by the
line F 2 ⊂ VC (since, by the Riemann bilinear relations, F 1 is the annihilator of F 2 under the
pairing defined by Q), and hence the complex manifold D is the period domain for polarized
Hodge structures on (V,Q) of this type.

The group SO(V ) acts transitively on D leaving the complex structure invariant, and the
quotient map P → D realizes P as a SO(V )-equivariant holomorphic principal bundle with
fiber C×. We write L → D for the associated complex line bundle (so that L −{0} ∼= P),
known as the tautological bundle. The natural map D → P(V (C)) embeds D as an open
subset of the quadric

(3.2) {v ∈ P(V (C))|Q(v, v) = 0} ⊂ P(V (C))

and identifies L with the pullback of OP(V (C))(−1). The linear functional Q(·, v) on V (C)
attached to v ∈ VR defines a global section of OP(V (C))(1) and hence by restriction a global
section of L ∨ that we denote by sv. Note that L ∼= F 2 as SO(V )-equivariant line bundles
and sv is as defined in Section 2.4.

3.2. Hodge metric and Chern connection on L . The bilinear form on V (C) induces
a hermitian metric hL on L : for z = [v] ∈ D, we set

(3.3) hLz(v) = −2Q(v, v).

There is a unique hermitian metric on L ∨ making the isomorphism L ∼= L ∨ induced by
hL an isometry; we denote this metric by h. Writing vz for the orthogonal projection of v
to (Lz ⊕Lz) ∩ VR, we have

(3.4) hz(sv) = −Q(vz, vz).

We endow OD with the metric | · | and denote by s∗v : OD → L the adjoint of sv : L → OD
with respect to these metrics, so that

(3.5) s∗vsv(z) = svs
∗
v(z) = hz(sv).

We denote by ∇L the Chern connection on (L , hL ). On D − Dv, the section s−1
v gives a

trivialization of L . We have

(3.6) ∇L (fs−1
v ) = df ⊗ s−1

v − f
∂h(sv)

h(sv)
⊗ s−1

v
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and hence the curvature of L is given by

(3.7) ∇2
L = d(−∂h(sv)

h(sv)
) =

∂h(sv) ∧ ∂h(sv)

h(sv)2
− ∂∂h(sv)

h(sv)
.

3.3. The superconnection ∇v and the form ϕ(v). We regard ∧L = OD ⊕ L as a
super line bundle, with even part OD and odd part L . To a vector v ∈ VR we attach the
superconnection

(3.8) ∇v = ∇OD +∇L + i
√

2π

(
0 sv
s∗v 0

)
,

where ∇OD := d. Define

(3.9) ϕ(v) = e−πQ(v,v)trs(e
∇2
v) ∈ ⊕p≥0A

p,p(D).

More generally, given vectors v1, . . . , vr ∈ VR, we consider the total complex of

(3.10) ⊗1≤i≤r (svi : L → OD)

as a super vector bundle, and denote by ∇v1,...,vr the superconnection induced by the ∇vi .
We define

(3.11) ϕ(v1, . . . , vr) = e−π
∑
iQ(vi,vi)trs(e

∇2
v1,...,vr ).

By (A.1), we have ϕ(v1, . . . , vr) = ϕ(v1) ∧ · · · ∧ ϕ(vr).

3.4. Computation of ϕ(v)[2]. In order to compare the form ϕ with the forms ϕKM defined
by Kudla and Millson, we will now compute ϕ(v) explicitly. The result is a special case of the
formula of Mathai-Quillen [18, Thm. 8.5]; we reprove it here since the proof is elementary
in this case.

Recall that we regard ∇2
v as an even element of the superalgebra

(3.12) A(D,End(OD ⊕L )) = A∗(D)⊗̂C∞(X)Γ(End(OD ⊕L )).

Let us write ∇2
v = r2 + r1 + r0 with ri ∈ Ai(D,End(OD ⊕ L )) even. By (3.5) we have

r0 = −2πh(sv) · id; in particular, r0 is a scalar and so it commutes with r1 and r2. Thus we
can write

trs(e
∇2
v)[2] = trs(e

r0er1+r2)[2]

= er0trs

(∑
n≥0

(r1 + r2)n

n!

)
[2]

= er0
(

trs(r2) +
1

2
trs(r

2
1)

)
.

(3.13)

It remains to compute trs(r2) and trs(r
2
1). By (3.7), we have

(3.14) trs(r2) = trs(∇2
L ) = −

(
∂h(sv) ∧ ∂h(sv)

h(sv)2
− ∂∂h(sv)

h(sv)

)
.
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Consider now r2
1. We have

(∇ODsv + sv∇L )(s−1
v ) = sv∇L s

−1
v =

∂h(sv)

h(sv)
⊗ svs−1

v =
∂h(sv)

h(sv)
⊗ 1

(∇L s
∗
v + s∗v∇OD)(1) = ∇L (h(sv)s

−1
v )

= (dh(sv)−
∂h(sv)

h(sv)
h(sv))⊗ s−1

v = ∂h(sv)⊗ s−1
v

(3.15)

and hence

(3.16)
1

2
trs(r

2
1) = 2π

∂h(sv) ∧ ∂h(sv)

h(sv)
.

This gives the explicit formula

(3.17) ϕ(v)[2] = e−π(Q(v,v)+2h(sv))

(
−∂h(sv) ∧ ∂h(sv)

h(sv)2
+
∂∂h(sv)

h(sv)
+ 2π

∂h(sv) ∧ ∂h(sv)

h(sv)

)
.

Although we will not use it in this paper, let us give an explicit formula for ϕ(v) in all
degrees. Namely, a direct computation using (3.14) and (3.15) shows that r3

1 = 0 and that
any product of the form r1r

k
2r1 (k ≥ 1) is annihilated by r1 and by r2 (acting by multiplication

on the left or on the right). This shows that the only noncommutative monomials in the
expansion of (r1 + r2)k that survive after taking trs are those of the form rk2 , r1r

k−2
2 r1 and

ra2r
2
1r
k−a−2
2 (with 0 ≤ a ≤ k − 2). Moreover for those monomials we compute

(3.18) trs(r1r
k−2
2 r1) = trs(r

a
2r

2
1r
k−a−2
2 ) =

1

2
trs(r

2
1) ∧ (∇2

L )k−2, k > 2.

This gives

ϕ(v)[2k] = e−πQ(v,v)er0trs

(∑
n≥0

(r1 + r2)n

n!

)
[2k]

= e−πQ(v,v)er0
(

1

k!
(−∇2k

L ) +
1

(k + 1)!
(k + 1)

1

2
trs(r

2
1) ∧ (∇2k−2

L )

)
=
∇2k−2

L

k!
ϕ(v)[2]

(3.19)

for k ≥ 1, or equivalently

(3.20) ϕ(v) = Td(L ∨,∇)−1 ∧ ϕ(v)[2].

3.5. The case n = 1. Consider the case n = 1, where D can be identified with P1(C)−P1(R).
In [13, p. 603], a form

(3.21) ϕKM(v) ∈ A1,1(D)

is defined for every v ∈ VR. With the notation of that paper, for z ∈ D we have R(v, z) =
hz(sv) (ibid., (11.14)) and comparing (3.17) with ibid., (11.27), (11.37)-(11.40) shows that

(3.22) ϕ(v)∗[2] = ϕKM(v), v ∈ VR.
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3.6. Restriction of ϕ(v) to a hermitian subdomain of type SO(n−1, 2). Assume that
n ≥ 2. Suppose that w ∈ VR satisfies Q(w,w) > 0; then Dw := div(sw) is non-empty. The
stabilizer Gw of w in SO(V ) is isomorphic to SO(n− 1, 2) and each connected component of
Dw can be identified with the hermitian symmetric domain attached to G0

w; denote by Lw

the corresponding tautological bundle. The restriction of L to Dw is then isometric to Lw,
and for any v ∈ VR we have an isometry

(3.23) (L
sv→ OD)

∣∣∣
Dw
∼= Lw

sv′→ ODw

with v′ the orthogonal projection of v to w⊥; this isometry identifies ∇v|Dw with ∇v′ . This
proves the following result concerning the restriction of ϕ(v) to special divisors.

Proposition 3.1. Let v, w ∈ VR with Q(w,w) > 0 and let Dw ⊂ D be the special divisor
corresponding to w. Writing v′ for the orthogonal projection of v to w⊥, we have

ϕ(v)|Dw = e−πQ(v′′,v′′)ϕ(v′), v′′ := v − v′.

3.7. Comparison with the Kudla-Millson forms. Using Proposition 3.1 for the restric-
tion and the comparison with ϕKM in Section 3.5, we can now show how to recover the forms
ϕKM(v1, . . . , vr) in [12, Thm. 7.1] (denoted there by ϕ(r)) from the forms ϕ(v1, . . . , vr). We
note that

(3.24) ϕKM(v1, . . . , vr) = ϕKM(v1) ∧ . . . ∧ ϕKM(vr).

Theorem 3.2. For any v1, . . . , vr ∈ VR (r ≥ 1), we have

(3.25) ϕ(v1, . . . , vr)
∗[2r] = ϕKM(v1, . . . , vr).

Proof. By Proposition 2.3.(c) and (3.24) we may assume that r = 1. Argue by induction
on n, where the case n = 1 is Section 3.5. So let n ≥ 2 and assume that the statement
holds for n − 1. Consider an analytic divisor Dw = div(sw) in D. The restriction to Dw of
the form ϕKM is described in [12, Lemma 7.3]. Comparing with Proposition 3.1, we see that
the restrictions of ϕ(v)∗[2] and ϕKM(v) to any such divisor agree. This is enough since the
forms ϕ(v)∗[2] and ϕKM(v) are real and the global sections of OP(V (C))(1) separate points and
tangent vectors. �

4. Properties of ϕ

We now go back to the general case and study the forms ϕ(·) on an arbitrary period
domain D. After showing that ϕ(v) is smooth and rapidly decreasing in v in §4.1, we recall
the formulas defining the Weil representation ω of the metaplectic double cover Mp2r,R on
S (V r

R ) in §4.2. Then (§4.3-§4.4) we determine the behaviour of ϕ(·) under certain operators
defined using ω, and we prove Theorem 1.1. We conclude by showing (§4.5) that the forms
ϕ(v1, . . . , vr) have a Thom form property on certain arithmetic quotients of D+. The proof
uses a result of Bismut [4] that, in turn, relies on the Mathai-Quillen formula computing the
Chern form of Koszul complexes.
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4.1. Rapid decay of ϕ(·). Let us give an upper bound on the growth of ϕ(v) as a func-
tion of v. Following [20, p. 144], we use Duhamel’s formula: this states that for any two
endomorphisms A, B of a finite-dimensional complex vector space, we have

(4.1) eB − eA =

∫ 1

0

esA(B − A)e(1−s)Bds.

(Proof: the integrand is the derivative of −esAe(1−s)B.) Applying this to the elements ∇2
v(z)

and ∇2
v[0](z) of End(∧T ∗zD⊗ ∧Fz) and iterating, we can rewrite ϕ as follows. Let

(4.2) qz(v) :=
1

2
Q(v, v) + hz(sv)

and note that, by (2.2), the quadratic form qz : VR → R is positive definite for any z ∈ D.
Let

(4.3) ∆k = {(t1, . . . , tk) ∈ Rk|0 ≤ t1 ≤ . . . ≤ tk ≤ 1}

be the k-simplex. Writing ∇2
v(z) = ∇2

v[0](z) + S(v, z), we have

(4.4) ∇2
v[0](z) = −2π(svs

∗
v + s∗vsv)(z) = −2πhz(sv) · id,

and hence

e−πQ(v,v)e∇
2
v(z) = e−2πqz(v)+∑

k≥1

∫
∆k

e−(1−tk)2πqz(v)S(v, z)e−(tk−tk−1)2πqz(v) · · ·S(v, z)e−t12πqz(v)dt1 · · · dtk,
(4.5)

where the sum has at most dimR D terms since S(v, z) has positive degree.
Let ‖ · ‖K,k be an algebra seminorm on the algebra of endomorphisms of the vector bundle
∧T ∗D ⊗ ∧F measuring uniform convergence on a compact subset K of partial derivatives
up to order k. Let qK : VR → R be a positive definite quadratic form such that qK ≤ qz for
every z ∈ K. Arguing as in [19, §4] one shows that there is a constant M = MK,k such that

(4.6) ‖e−2πqz(v)‖K,k ≤Me−2πqK(v), v ∈ VR.

Since S(v, z) = ∇2 + [∇, i
√

2π(sv + s∗v)] grows linearly with v, we can find an affine function
on VR giving an upper bound for ‖S(v, z)‖K,k. Using (4.5), we conclude that there are
constants C = CK,k and a such that

(4.7) ‖e−πQ(v,v)e∇
2
v(z)‖K,k ≤ C(1 + qK(v))ae−2πqK(v), v ∈ VR.

The same argument shows that a similar bound holds after taking any number of derivatives
with respect to v.

We denote by S (V r
R ) the Schwartz space of smooth functions on V r

R all whose derivatives
are rapidly decreasing. The estimate above implies the following result.

Proposition 4.1. For every z ∈ D, we have ϕ(v1, . . . , vr, z) ∈ S (V r
R )⊗ ∧T ∗zD.

Example 4.2. An explicit expression for ϕ can be obtained by using the Mathai-Quillen
formula [18, Thm. 8.5], which shows that

(4.8) ϕ(v) = e−2πqz(v)p(v, z),
12



with p(v, z) an explicit differential form on D that is a polynomial in v. Note also that for
weights w > 2 the form qz is not simply the Siegel majorant of Q determined by z. For
example, suppose w = 4. Writing vp,q ∈ V p,q

z for the components of v ∈ VR, we have

(4.9) qz(v) = 1
2
Q(v2,2)−Q(v3,1, v1,3) + 3Q(v4,0, v0,4),

while the Siegel majorant corresponding to the orthogonal decomposition V = V −z ⊕ V +
z

with V −z = VR ∩ (V 3,1
z ⊕ V 1,3

z ) is given by

(4.10) 1
2
Q(v2,2)−Q(v3,1, v1,3) +Q(v4,0, v0,4).

In particular, this shows that ϕ(·, z) does not lie in the subspace of S (VR) known as the
polynomial Fock subspace.

4.2. Weil representation. As shown in Proposition 4.1, the form ϕ(v1, . . . , vr) can be
regarded as a differential form on D valued in the Schwartz space S (V r

R ). Let

(4.11) Sp2r(R) =

{
g ∈ GL2r(R)

∣∣∣∣g( 0 1r
−1r 0

)
tg =

(
0 1r
−1r 0

)}
be the symplectic group of rank r and let Mp2r,R be its metaplectic double cover. The group
Mp2r,R acts on S (V r

R ) via the Weil representation ω = ωψ attached to the additive character

ψ(x) := e2πix. Let us recall the formulas that define this representation.
Let (·, ·)R be the Hilbert symbol on R and hR(V ) be the Hasse invariant of VR. Define a

quadratic character χVR of R× by

(4.12) χVR(a) = ((−1)m(m−1)/2 det(VR), a)R.

Let γR(aψ) = e
2πi
8
sgn(a) and γR(a, ψ) = γR(aψ)

γR(ψ)
. Define an 8-th root of unity γVR by

(4.13) γVR = γR(det(V ), 1
2
ψ)γR(1

2
ψ)mhR(V ).

We identify Mp2r,R with Sp2r(R)× µ2 as in [11] and consider the subgroups

M = {(m(a),±1)} ,
N = {(n(b), 1)} ,

(4.14)

where we write

m(a) =

(
a

ta−1

)
, a ∈ GLr(R),

n(b) =

(
1r b

1r

)
, b ∈ Symr(R).

(4.15)

The group P = MN is then a maximal parabolic of Mp2r,R, and we have the formulas

ω(m(a), ε)ϕ(v) = εχVR(det(a)) |det(a)|m/2 ϕ(v · a),

×
{

1, if m is even,
γR(det(a), 1

2
ψ)−1, if m is odd,

ω(n(b), 1)ϕ(v) = ψ(tr(bQ(v, v)/2))ϕ(v),

ω

((
−1r

1r

)
, 1

)
ϕ(v) = γ−rVR

∫
V rR

ϕ(w)ψ(−tr(Q(v, w)))dw,

(4.16)
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where ϕ ∈ S (V r
R ) and dw is the self-dual Haar measure on V r

R with respect to the pairing
given by ψ(tr(Q(v, w))).

4.3. Behaviour of ϕ under the action of the maximal compact subgroup of Mp2r,R.
Consider the maximal compact subgroup

(4.17)

{(
a −b
b a

)∣∣∣∣ a+ ib ∈ U(r)

}
∼= U(r)

of Sp2r(R) and denote by Ũ(r) its inverse image in Mp2r,R. It admits a character

(4.18) det1/2 : Ũ(r)→ S1 ⊂ C×

whose square factors through U(r) and defines the usual determinant character det : U(r)→
C×. Our next goal is to study the behaviour of the forms ϕ(v1, . . . , vr) under the action of
u(r) = Lie(U(r)). For this purpose, it is convenient to fix an orthogonal basis v1, . . . , vs+t of
VR with

(4.19) Q(vj, vj) =

{
1, if 1 ≤ j ≤ s,
−1, if s+ 1 ≤ j ≤ t.

We denote the corresponding dual basis of V ∨R by x1, . . . , xs+t. We write χ : u(r) → iR
for the character obtained by differentiating det : U(r) → S1. When r = 1, the element
χ−1(i) ∈ u(1) acts on S (VR) by the operator

(4.20) πi
∑

1≤j≤s+t

Q(vj, vj) ·
(
x2
j −

1

(2π)2

d2

dx2
j

)
.

Lemma 4.3. Let X ∈ u(r). There exists a form ν(X, ·) of odd degree on D, valued in
S (V r

R ), such that

(4.21) ω(X)ϕ(v) =
m

2
χ(X)ϕ(v) + dν(X, v), v ∈ V r

R ,

and satisfying g∗ν(X, gv) = ν(X, v) for g ∈ G.

Proof. We first show that it suffices to prove the statement when r = 1. We identify u(r)
with the space of skew-hermitian complex r × r matrices. For x1, . . . , xr ∈ R, let

(4.22) d(x) =

 x1

. . .
xr


and consider the Cartan subalgebra h ∼= u(1)r of u(r) defined by

(4.23) h =

{(
0 id(x)

−id(x) 0

)}
.

Let X = a+ib ∈ u(r); then a ∈ so(r) and hence ω(a)ϕ = 0 by Proposition 2.3.(e). Moreover,
b is symmetric and hence we can find k ∈ SO(r) and h ∈ h such that ib = khtk. Thus it
suffices to prove (4.21) for X ∈ h, and this reduces to the case r = 1 by (2.16).

Now assume that r = 1 and let X = χ−1(i). A direct computation shows that

(4.24) ω(X)e−πQ(v,v) =
im

2
e−πQ(v,v).
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Hence we find that

(4.25) ω(X)ϕ(v) =
im

2
ϕ(v)− i

4π
e−πQ(v,v)

∑
1≤j≤s+t

ξj(v),

where

(4.26) ξj(v) = 4πxj(v)
d

dxj
ϕ0(v) +Q(vj, vj)

d2

dx2
j

ϕ0(v).

The transgression formula (A.9) shows that

(4.27)
d

dxj
ϕ0(v) = d trs(

d∇v

dxj
e∇

2
v)

and hence

(4.28)
d2

dx2
j

ϕ0(v) = d trs(
d∇v

dxj

d

dxj
e∇

2
v)

and this implies that each ξj is exact. Since d∇v
dxj

= i
√

2π(svj + s∗vj), we find that (4.21) holds

with ν(X, v) = α(v) + β(v), where

α(v) =
√

2πe−πQ(v,v)trs((sv + s∗v)e
∇2
v),

β(v) = − i

4π
e−πQ(v,v)

∑
1≤j≤s+t

Q(vj, vj)trs(
d∇v

dxj

d

dxj
e∇

2
v).

(4.29)

The form α(v) satisfies g∗α(gv) = α(v) for every g ∈ G. Regarding β(v), we have d∇2
v

dxj
=

[∇v,
d∇v
dxj

] (supercommutator) and hence

(4.30) β(v) =
i

2
e−πQ(v,v)

∑
k,l≥0

1
(k+l)!

β(v)k,l,

where β(v)0,0 = 0 and

(4.31) β(v)k,l =
∑

1≤j≤s+t

Q(vj, vj) trs((svj + s∗vj)∇
2k
v [∇v, svj + s∗vj ]∇

2l
v ).

For g ∈ G, we have g∗svj = sg−1vj and Q(g−1vj, g
−1vj) = Q(vj, vj) and hence

g∗β(gv)k,l =
∑

1≤j≤s+t

Q(vj, vj) trs((g
∗svj + g∗s∗vj)∇

2k
v [∇v, g

∗svj + g∗s∗vj ]∇
2l
v )

=
∑

1≤j≤s+t

Q(g−1vj, g
−1vj) trs((sg−1vj + s∗g−1vj

)∇2k
v [∇v, sg−1vj + s∗g−1vj

]∇2l
v )

= β(v)k,l,

(4.32)

and this shows that g∗β(gv) = β(v).
Finally, the fact that the form ν(X, v) takes values in S (VR) follows from the estimate

(4.7), which is valid for derivatives. �
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We remark that it is possible to prove a stronger lemma: indeed, for any X ∈ u(r), we
have

(4.33) ω(X)ϕ(v) =
m

2
χ(X)ϕ(v) + ∂∂ν̃(X, v),

where ν̃(X, ·) is a sum of (p, p)-forms (p ≥ 0) valued in S (V r
R ) and satisfying g∗ν̃(X, gv) =

ν̃(X, v). The proof is similar, but replaces (A.9) with a double transgression formula such
as the one discussed by Faltings [7, pp. 62-63].

Remark 4.4. When D is the hermitian symmetric space associated to O(n, 2), the form
ν(X, ·) in Lemma 4.3 can be taken to be zero since ϕ(v)[2r] = (−2πi)rϕKM(v) affords a
one-dimensional representation of u(r), as proved in [14]. Note that for other weights w > 2,
the form ϕ(·, z) does not belong (see 4.2) to the space of u(r)-finite vectors in S (V r

R ) and
this makes it necessary to introduce the form ν.

4.4. Behaviour of ϕ(v) under the lowering operator of sl2,C. Recall that every g ∈
Mp2,R admits a unique expression g = n(x)m(y)k̃θ, where we write n(x) = ( 1 x

0 1 ) for x ∈ R;

m(y) =
(
y1/2

y−1/2

)
for y ∈ R>0; and k̃θ ∈ Ũ(1) ∼= R/4πZ for θ ∈ [0, 4π[. We think of

(x, y, θ) as coordinates on Mp2,R. Let

(4.34) X− = 1
2

(
1 −i
−i −1

)
∈ sl2,C.

Thus X− is the usual lowering operator of sl2,C, whose action on f ∈ C∞(Mp2,R) under the
right regular representation is given by

(4.35) X− · f = −ie−2iθ

(
2y

d

dτ
− 1

2

∂

∂θ

)
f,

where d
dτ

= 1
2
( d
dx

+ i d
dy

). To determine the behaviour of the form ϕ(·) under X−, we will use

the following double transgression formula. Let N ∈ End(∧F ) be the operator that acts on
∧kF by multiplication by −k. For v ∈ VR, define

(4.36) ψ0(v) = trs(Ne
∇2
v) ∈ ⊕p≥0A

p,p(D).

Then, by a result of Bismut-Gillet-Soulé ([3, Thm. 1.15]), we have

(4.37) − 1

t
∂∂ψ0(t1/2v) =

d

dt
ϕ0(t1/2v), t > 0.

Let

(4.38) ψ(v) = e−πQ(v,v)ψ0(v).

Using the estimate (4.7), we find that ψ(·) takes values in S (VR). Note also that we have
g∗ψ(gv) = ψ(v) for every g ∈ G.

Lemma 4.5. Let τ = x+ iy ∈ H and write gτ =
((

y1/2 xy−1/2

y−1/2

)
, 1
)
∈ Mp2,R. Then

(4.39) − 2iy2 d

dτ
(y−m/4ω(gτ )ϕ(v)) = −∂∂(y−(m/4−1)ω(gτ )ψ(v)).
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Proof. Writing Q(v) = 1
2
Q(v, v), we have

(4.40) y−m/4ω(gτ )ϕ(v) = e2πiQ(v)τϕ0(y1/2v)

and hence, by (4.37),

−2iy2 d

dτ
(y−m/4ω(gτ )ϕ(v)) = −2iy2e2πiQ(v)τ d

dτ
ϕ0(y1/2v)

= y2e2πiQ(v)τ d

dy
ϕ0(y1/2v)

= −ye2πiQ(v)τ∂∂ψ0(y1/2v)

= −∂∂(y−(m/4−1)ω(gτ )ψ(v)).

(4.41)

�

Together with Proposition 4.1 and Lemma 4.3, this proves Theorem 1.1.

Remark 4.6. In the setting of Section 3, one computes that

(4.42) ψ(v)[0] = e−πQ(v,v)trs(Ne
∇2
v)[0] = e−2πhz(sv)

and hence, writing v = vz + v′z with vz ∈ F 2
z and v′z ∈ F 1

z , we find that

(4.43) ω(gτ )ψ(v)[0](z) = ym/4eπiQ(v′z ,v
′
z)τ+πiQ(vz ,vz)τ

is the usual Siegel Gaussian ω(gτ )ϕSG(v). Thus Theorem 3.2 and Lemma 4.5 imply that

(4.44) (2πi)−1∂∂ϕSG = ω(X−)ϕKM, X− = 1
2

(
1 −i
−i −1

)
.

This gives another proof of [6, Thm. 4.4].

4.5. The currents defined by the forms ϕ(v1, . . . , vr). We will now study the properties
of currents obtained by integration against ϕ. For a subspace U of VR, define GU ⊂ G to be
the pointwise stabilizer of U and

(4.45) DU = {z ∈ D|U ⊂ Fw/2
z }.

When U ⊂ VQ, this is the locus of z ∈ D where all classes in U are Hodge classes. It is
non-empty only if U = 0 or Q|U×U is positive definite.

Proposition 4.7. Let (v1, . . . , vr) ∈ V r
R and U = 〈v1, . . . , vr〉. Assume that U has dimension

r and that the restriction of Q to U is positive definite. Let η be a compactly supported form
on D. Then

(4.46) lim
t→∞

∫
D
ϕ0(tv1, . . . , tvr) ∧ η = (−2πi)r·rk(F )

∫
DU

Td(F∨,∇)−r ∧ η.

Proof. Note that the hypothesis on U implies that sv := (sv1 , . . . , svr) is a regular section of
(F⊕r)∨; in particular, the Koszul complex K(v1, . . . , vr) is a resolution of ODU . We would
like to apply the main result of Bismut [4] concerning the limit as t→∞ of Chern character
forms, but this result is for superconnections on a compact complex manifold. We argue
using the compact dual D∨. Recall that the Hodge bundle F and section sv are naturally
defined on D∨. Using a partition of unity, we construct a hermitian metric h̃ on F over
D∨ whose restriction to the support of η equals the Hodge metric. Let ∇̃ be the Chern
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connection on (∧(F⊕r), h̃) and consider the superconnection ∇̃v = ∇̃ + i
√

2π(sv + s∗v). By
[4, Thm 3.2], we have

(4.47) lim
t→∞

trs(e
∇̃2
tv) = (−2πi)r·rk(F )Td(F∨, ∇̃)−rδDU

as currents on D∨, and this implies the result since the restriction of trs(e
∇̃2
tv) to the support

of η equals ϕ0(tv1, . . . , tvr). �

The next proposition is the main ingredient in the proof of Theorem 5.4. It shows that
ϕ0(v1, . . . , vr) has a Thom form property in certain quotients of D.

Proposition 4.8. Let L ⊂ VQ be a lattice and Γ be a torsion-free subgroup contained in
StabG0(L). Let U = 〈v1, . . . , vr〉 be a positive definite subspace of V of dimension 0 ≤ r′ ≤ r
and write ΓU = Γ∩G0

U and D+
U = DU ∩D+. Let η be a closed and compactly supported form

on Γ\D+. Then

(4.48)

∫
ΓU\D+

ϕ0(v1, . . . , vr)∧ η = (−2πi)r
′·rk(F )

∫
ΓU\D+

U

ch(∧F ,∇)r−r
′ ∧Td(F∨,∇)−r

′ ∧ η.

Proof. By Proposition 2.3.(e), the identity (4.48) does not change if we replace (v1, . . . , vr)
by (v1, . . . , vr) · h with h ∈ SO(r). Hence we can assume that T (v1, . . . , vr) is diagonal and,
since ϕ0(0) = ch(∧F ,∇), this reduces the proof to the case r = r′. Note first that the
integral on the left hand side converges: by the estimate (4.7), the sum

(4.49) f 0(v1, . . . , vr) :=
∑

γ∈ΓU\Γ

γ∗ϕ0(v1, . . . , vr)

converges and defines a smooth form on Γ\D+, and the integrability follows from Fubini’s
theorem. Next we claim that the integral

(4.50) I(t, η) :=

∫
ΓU\D+

ϕ0(tv1, . . . , tvr) ∧ η, t > 0,

is independent of t. Namely, given t2 > t1 > 0, the transgression formula (A.9) shows that
ϕ0(t2v1, . . . , t2vr)− ϕ0(t1v1, . . . , t1vr) = dψ(v1, . . . , vr), with

(4.51) ψ(v1, . . . , vr) =

∫ t2

t1

trs(
∑

1≤i≤r

(svi + s∗vi)e
∇2
tv1,...,tvr )dt.

Applying (4.7) again, we find that∫
ΓU\D+

dψ(v1, . . . , vr) ∧ η =

∫
Γ\D+

∑
γ∈ΓU\Γ

γ∗dψ(v1, . . . , vr) ∧ η

=

∫
Γ\D+

d

 ∑
γ∈ΓU\Γ

γ∗ψ(v1, . . . , vr) ∧ η

 = 0.

(4.52)

Hence it suffices to show that

(4.53) lim
t→∞

I(t, η) = (−2πi)r·rk(F )

∫
ΓU\D+

U

Td(F∨,∇)−r ∧ η.
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Let (Uα)α∈I be a finite open cover of Supp(η) with Uα contractible and, for each α ∈ I, pick
Vα ⊂ D+ such that the quotient map π : D+ → Γ\D+ induces an isomorphism Uα ∼= Vα.
Choose a partition of unity {ρUα|α ∈ I} ∪ {ρ∞} subordinate to the open cover (Uα)α∈I ∪
(Γ\D+ − Supp(η)) and write η = Σα∈IρUαη. Setting ρVα = π∗(ρUα) · 1Vα ∈ A0

c(D+), we find
that

I(t, η) =

∫
Γ\D+

f 0(tv1, . . . , tvr) ∧ η

=
∑
α∈I

∫
Uα

f 0(tv1, . . . , tvr) ∧ ρUαη

=
∑
α∈I

∫
D+

f 0(tv1, . . . , tvr) ∧ ρVαπ∗η.

(4.54)

For fixed α ∈ I, write ΓU\Γ = S1 t S2 (disjoint union), with

(4.55) S1 = {γ ∈ ΓU\Γ|hz(γ−1v1, . . . , γ
−1vr) ≤ 1, for some z ∈ Vα};

then S1 is a finite set since the form qz(v) in (4.2) is positive definite. The estimate (4.7)
shows that

(4.56) lim
t→∞

∫
D+

∑
γ∈S2

γ∗ϕ0(tv1, . . . , tvr) ∧ ρVαπ∗η = 0

by dominated convergence. For the sum over S1, Proposition 4.7 gives

(−2πi)−r·rk(F ) lim
t→∞

∑
γ∈S1

∫
D+

ϕ0(tγ−1v1, . . . , tγ
−1vr) ∧ ρVαπ∗η

=
∑
γ∈S1

∫
D+

γ−1U

Td(F∨,∇)−r ∧ ρVαπ∗η

=
∑

γ∈ΓU\Γ

∫
D+

γ−1U

Td(F∨,∇)−r ∧ ρVαπ∗η

=
∑

γ∈ΓU\Γ

∫
D+
U

Td(F∨,∇)−r ∧ (γ−1)∗ρVαπ
∗η

=
∑

γ∈ΓU\Γ

∫
ΓU\D+

U

Td(F∨,∇)−r ∧

(∑
γ′∈ΓU

(γ′)∗(γ−1)∗ρVα

)
η

=

∫
ΓU\D+

U

Td(F∨,∇)−r ∧

(∑
γ∈Γ

γ∗ρVα

)
η

=

∫
ΓU\D+

U

Td(F∨,∇)−r ∧ ρUαη

(4.57)

and (4.53) follows by summing over α ∈ I. �
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5. Hodge loci in arithmetic quotients of period domains and Siegel
modular forms

We now consider quotients Γ\D+ of period domains by arithmetic groups Γ ⊂ G0. After
defining special cycles in §5.1, we introduce theta series valued in the space of differential
forms A∗(Γ\D+) by summing the forms ϕ(v) for v varying in an appropriate lattice (§5.2).
Using the results of Section 4, we show that the resulting differential forms are closed,
and that their cohomology classes define Siegel modular forms (Theorem 5.2). In §5.3,
we compute the Fourier expansion of these modular forms in terms of the special cycles
mentioned above (Theorem 5.4).

5.1. Special cycles in arithmetic quotients of period domains. Let L be an even
integral lattice in VQ and denote by L∨ ⊃ L its dual lattice. The arithmetic group

(5.1) ΓL := {γ ∈ G0 | γ(L) = L, γ|L∨/L = id}
acts properly discontinuously on D by holomorphic transformations, and we write XL :=
ΓL\D+ for the quotient. We assume that ΓL is neat. Given a subspace 〈v1, . . . , vr〉 of VQ,
we write ΓL,〈v1,...,vr〉 for the pointwise stabilizer of 〈v1, . . . , vr〉 in ΓL. The group ΓL,〈v1,...,vr〉
stabilizes D+

〈v1,...,vr〉 = D〈v1,...,vr〉 ∩ D+. This yields a commutative diagram

(5.2) D+
〈v1,...,vr〉

//

��

D+

��

ΓL,〈v1,...,vr〉\D+
〈v1,...,vr〉

// XL

where all the maps are holomorphic and the horizontal ones are proper. Define

(5.3) Hdg(v1, . . . , vr)L := [ΓL,〈v1,...,vr〉\D+
〈v1,...,vr〉] ∈ H2∗(XL)

to be the cycle class of ΓL,〈v1,...,vr〉\D+
〈v1,...,vr〉 in the singular cohomology of XL.

The cycle Hdg(v1, . . . , vr)L only depends on the orbit of 〈v1, . . . , vr〉 under ΓL. Following
Kudla [12], we now define certain sums of the classes Hdg(v1, . . . , vr)L as follows. Fix a
symmetric matrix T ∈ Symr(Q) and a class µ+ Lr ∈ (L∨/L)r and consider the set

(5.4) L(T, µ) = {(v1, . . . , vr) ∈ µ+ Lr | Q(vi, vj) = 2T}.
The group ΓL acts on L(T, µ) with finitely many orbits. We define

(5.5) Hdg(T, µ) =
∑

(v1,...,vr)∈ΓL\L(T,µ)

Hdg(v1, . . . , vr)L ∈ H2∗(XL).

The points in the support of Hdg(T, µ) correspond to ΓL-orbits of Hodge structures on VQ
containing Hodge classes v1, . . . , vr such that (v1, . . . , vr) ∈ µ + Lr and Q(vi, vj) = 2T . In
particular, we have Hdg(T, µ) = 0 unless the quadratic form T is represented by (VQ, Q) and
(by the second Riemann bilinear relation) the matrix T is positive semidefinite.

5.2. Theta series and differential forms on XL. Let g = (n(x)m(a), 1) ∈ P . By Propo-
sition 2.3.(e), the form ω(g)ϕ(v1, . . . , vr) depends only on the image

(5.6) τ = g · (i1r) = x+ iata

in the Siegel space Hr of genus r. We denote this value by ω(gτ )ϕ(v1, . . . , vr).
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Definition 5.1. Let r be a positive integer and µ ∈ (L∨/L)r. For τ = x+ iy ∈ Hr, define

(5.7) θ(τ ;µ+ Lr) = det(y)−m/4
∑

(v1,...,vr)∈µ+Lr

ω(gτ )ϕ(v1, . . . , vr).

Note that the sum and all its partial derivatives converge normally by Proposition 4.1 and
the estimates before it. Hence it defines a smooth form

(5.8) θ(τ ;µ+ Lr) ∈ ⊕p≥0A
p,p(XL)

that is closed by Proposition 2.3. We denote by

(5.9) [θ(τ ;µ+ Lr)] ∈ H2∗(XL)

its cohomology class.
Let Mp2r,Z be the inverse image of Sp2r(Z) under the double cover Mp2r,R → Sp2r(R). We

will prove shortly that [θ(·;µ + Lr)] is a holomorphic Siegel modular form of weight m/2
and some level Γ ⊂ Mp2r,Z. A more precise result may be proved by combining all the series
θ(·;µ+ Lr) for varying µ in a theta series

(5.10) θLr : Hr → A∗(XL)⊗ C[(L∨/L)r]∨

valued in the dual of the group algebra C[(L∨/L)r], defined by θLr(µ) = θ(·;µ+ Lr).
Let us recall the action of the group Mp2r,Z on the group algebra C[(L∨/L)r] via the finite

Weil representation ρL. For this and for the proof of Theorem 5.2, it is convenient to work
with adeles.

We write Mp2r,A for the metaplectic double cover of Sp2r(A) and K ′ for the inverse image

in Mp2r,A of Sp2r(Ẑ). There is a canonical splitting Sp2r(Q) → Mp2r,A of the double cover
Mp2r,A → Sp2r(A); identifying Sp2r(Q) with its image in Mp2r,A, we have

(5.11) Sp2r(Q) ∩ (K ′Mp2r,R) = Sp2r(Z).

We obtain a homomorphism Mp2r,Z → K ′ sending γ to γ̂, where γ̂ is the unique element of
K ′ such that γγ̂ is in the image of Sp2r(Q).

Denote by ω = ωψ the Weil representation of Mp2r,A on S (V (A)r) attached to the standard

additive character ψ : A→ C× with ψ∞(x) = e2πix. We realize the group algebra C[(L∨/L)r]

as the subspace SLr of Schwartz functions in S (V (Af )
r) that are supported on (L∨)r ⊗ Ẑ

and are constant on cosets of Lr ⊗ Ẑ. Then SLr is stable under the action of K ′, and
restriction to Mp2r,Z via the above splitting defines the representation ρL.

We can now consider Siegel modular forms valued in the dual representation ρ∨L. Given
γ = [( a bc d ) ,±1] ∈ Mp2r,Z and τ ∈ Hr, choose gτ , gγτ ∈ P such that gτ · i = τ and gγτ · i = γτ ;
then we have

(5.12) γgτ = gγτk(γ, τ),

where k(γ, τ) ∈ Ũ(r) and the value of det(k(γ, τ))1/2 is independent of the choices of gτ , gγτ .
For m a positive integer, define an automorphy factor

(5.13) jm/2 : Mp2r,Z × Hr → C×, jm/2(γ, τ) = det(k(γ, τ))m/2 · |cτ + d|m/2.
We say that a holomorphic function f : Hr → C[(L∨/L)r]∨ is a Siegel modular form of weight
m/2 and level 1 if

(5.14) f(γτ) = jm/2(γ, τ) · ρ∨L(γ)f(τ), γ = [( a bc d ) ,±1] ∈ Mp2r,Z, τ ∈ Hr.
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(When r = 1 we also require that f be holomorphic at the cusp i∞.) We denote the space

of such modular forms by M
(r)
m/2,ρL

.

Theorem 5.2. The cohomology class [θLr ] belongs to M
(r)
m/2,ρL

⊗ H2∗(XL).

Proof. For ϕf ∈ S (V (Af )
r) and gA = (gf , g∞) ∈ Mp2r,A, consider the theta function

(5.15) θ(gA;ϕf ) =
∑

v∈V (Q)r

ω(gf , ·)ϕf (v) · ω(g∞)ϕ(v) ∈ ⊕p≥0A
p,p(G(Q)\(G(Af )× D))

and denote by [θ(gA;ϕf )] its cohomology class. By Poisson summation we have

(5.16) θ(γgA;ϕf ) = θ(gA;ϕf ), γ ∈ Sp2r(Q)

(see e.g. Tate’s thesis, Lemma 4.2.4.). Moreover, by Lemma 4.3 we have

(5.17) r(X)θ(gA;ϕf ) =
m

2
χ(X)θ(gA;ϕf ) + dθν(X)(gA;ϕf )

for any X ∈ u(r), where

(5.18) θν(X)(gA;ϕf ) :=
∑

v∈V (Q)r

ω(gf , ·)ϕf (v) · ω(g∞)ν(X, v) ∈ A∗(G(Q)\(G(Af )× D)).

Taking cohomology classes, we conclude that

(5.19) [θ(gAk;ϕf )] = det(k)m/2 · [θ(gA;ϕf )], k ∈ Ũ(r).

Next we check that [θ(·;ϕf )] is holomorphic. Let

(5.20) p± =

{
p±(X) =

1

2

(
X ±iX
±iX −X

)∣∣∣∣X = tX ∈Mr(R)

}
.

Then we have the Harish-Chandra decomposition

(5.21) sp(2r)C = u(r)⊕ p+ ⊕ p−

and an identification

(5.22) T 0,1Hr
∼= Sp2r(R)×U(r) p−

of Sp2r(R)-equivariant bundles on Hr. We need to show that the Cauchy-Riemann equations

(5.23) X−[θ((1, gτ );ϕf )] = 0 for every X− = p−(X) ∈ p−

hold. Assume first that r = 1. Writing θ(τ, ϕf ) = y−m/4θ((1, gτ ), ϕf ), the operator X− :=
p−(1) is given by

(5.24) y−
1
2

(m
2
−2)X−[θ((1, gτ ), ϕf )] = −2iy2 d

dτ
[θ(τ, ϕf )].

Setting

(5.25) θψ(τ ;ϕf ) = y−(m/4−1)
∑

v∈V (Q)

ω(·)ϕf (v) · ω(gτ )ψ(v) ∈ ⊕p≥0A
p,p(G(Q)\(G(Af )× D)),

we find that 2iy2 d
dτ
θ(τ, ϕf ) = ∂∂θψ(τ ;ϕf ) by Lemma 4.5. Thus d

dτ
θ(τ, ϕf ) is exact and

X−[θ(gτ ;ϕf )] = 0.
For general r, since X is symmetric, we can find k ∈ SO(r) such that Ad(k)p−(X) = p−(Y )

with Y diagonal. By Proposition 2.3.(e) and (2.16), this reduces to the case r = 1.
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Finally, the holomorphicity at i∞ when r = 1 follows from the estimates (4.7) that show
that each θ(τ, µ+ L) is of moderate growth with respect to τ . �

Remarks 5.3. (1) Let Γ′ be the inverse image of the congruence subgroup Γ(4|L∨/L|)
of Sp2r(Z) in Mp2r,Z. The restriction of ρL to Γ′ is trivial, and in particular we obtain
that

(5.26) [θ(·, µ+ Lr)] ∈M (r)
m/2(Γ′)⊗ H2∗(XL).

(2) For general Hodge weights, it is known that the complex manifold XL is not algebraic;
see [9, Thm 1.1]. One can define the Bott-Chern cohomology groups of a complex
manifold X as follows:

(5.27) Hp,q
BC(X) =

{ω ∈ Ap,q(X)|dω = 0}
∂∂Ap−1,q−1(X)

.

For a general (non-Kähler) complex manifold, these groups give a strictly finer in-
variant than the de Rham cohomology groups H2∗(X); the author does not know if
this is the case for (some of) the complex manifolds XL. In any case, as explained
e.g. in [5, §4.1], Chern classes of holomorphic vector bundles lie naturally in H∗BC(X).
Replacing the use of Lemma 4.3 by (4.33) in the proof of the theorem, we find that
the Bott-Chern cohomology class [θLr ]BC of θLr satisfies

(5.28) [θLr ]BC ∈M (r)
m/2,ρL

⊗⊕p≥0Hp,p
BC(XL).

(3) One can try to use the theta functions [θLr ] to define theta lifts of cusp forms on Mp2r

to classes in the coherent cohomology of XL. It would be interesting to understand
when such lifts are non-vanishing and study their properties, particularly with respect
to cup products.

5.3. The Fourier expansion of [θLr(τ)]. Recall that holomorphic Siegel modular forms
f : Hr → C of level Γ ⊂ Sp2r(Z) have a Fourier expansion

(5.29) f(τ) =
∑

T∈Symr(Q)≥0

aT q
T , qT := e2πitr(Tτ),

where the sum runs over positive semidefinite matrices T with rational entries. We have

(5.30) aT e
−2πtr(Ty) =

∫
(Symr(R)∩Γ)\Symr(R)

f(x+ iy)e−2πitr(Tx)dx, y ∈ Symr(R)>0,

where dx is the Haar measure on Symr(R) giving (Symr(R)∩Γ)\Symr(R) unit volume. Here
is the result computing the Fourier expansion of [θLr(τ)]; it implies Theorem 1.2 and (1.7).

Theorem 5.4.

(5.31) [θLr(τ)∗] = Td(F∨)−r ∪
∑

µ∈(L∨/L)r

∑
T∈Symr(Q)≥0

Hdg(T, µ) ∪ ctop(F∨)r−rk(T ) · qT .
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Proof. For T ∈ Symr(Q)≥0 and y = ata, we have

θ(y, µ+ Lr)T := e2πtr(Ty)

∫
(Symr(R)∩Γ)\Symr(R)

θ(x+ iy, µ+ Lr)e−2πitr(Tx)dx

= e2πtr(Ty) det(y)−m/4
∑

(v1,...,vr)∈L(T,µ)

ω(m(a))ϕ(v1, . . . , vr)

=
∑

(v1,...,vr)∈L(T,µ)

ϕ0((v1, . . . , vr) · a)

=
∑

(v1,...,vr)∈ΓL\L(T,µ)

∑
γ∈ΓL,〈v1,...,vr〉\ΓL

ϕ0((γ−1v1, . . . , γ
−1vr) · a),

(5.32)

where the sum over (v1, . . . , vr) ∈ ΓL\L(T, µ) is finite. Let η be a closed and compactly
supported form on XL. We find that

(5.33)

∫
XL

θ(y, µ+ Lr)∗T ∧ η =
∑

(v1,...,vr)∈ΓL\L(T,µ)

I((v1, . . . , vr) · a),

with

(5.34) I(v1, . . . , vr) =

∫
ΓL,〈v1,...,vr〉\D

+

ϕ0(v1, . . . , vr)
∗ ∧ η.

Note that for (v1, . . . , vr) ∈ ΓL\L(T, µ), we have dim〈v1, . . . , vr〉 = rk(T ). By Proposition 4.8,
we have

(5.35) I(v1, . . . , vr) =

∫
ΓL,〈v1,...,vr〉\D

+
〈v1,...,vr〉

(ctop(F∨,∇)∗)r−rk(T ) ∧ (Td(F∨,∇)∗)−r ∧ η.

We obtain that

(5.36) [θ(y, µ+ Lr)∗T ] = Hdg(T, µ) ∪ ctop(F∨)r−rk(T ) ∪ Td(F∨)−r ∈ H2∗(XL),

and the theorem follows. �

Remark 5.5. When D is a hermitian symmetric domain of type IV, the cycles Hdg(T, µ)
agree with the special cycles considered in [16], and the above theorem implies Theorem 2
in that paper.

5.4. Weight two and special cycles on the symmetric space. Assume that w = 2 and
consider the period domain parametrizing Hodge structures with h1,1 = s, h2,0 = t (s, t ≥ 1).
We describe briefly the relation between the cycles Hdg(n) and the special cycles Z(n) on
the symmetric space X attached to O(s, 2t) in [16].

Namely, a point x ∈ X corresponds uniquely to a choice of an orthogonal decomposition
VR = V +

x ⊕ V −x , where V +
x and V −x are positive and negative definite subspaces of V respec-

tively. There is a G-equivariant map p : D → X sending a point z ∈ D corresponding to a
Hodge decomposition VC = ⊕p+q=2V

p,q to the point x = p(z) ∈ X determined by

V +
x = VR ∩ V 1,1, V −x = VR ∩ (V 2,0 ⊕ V 0,2).(5.37)

Pick a point z0 ∈ D and let U and K be the stabilizers in G of z0 and p(z0) respectively; note
that U ⊆ K and K is a maximal compact subgroup of G. The map p realizes D as a fiber
bundle over X with fiber the compact homogeneous space K/U ' SO(2t)/U(t). For any
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torsion-free discrete subgroup Γ ⊂ G0, we obtain a fiber bundle pΓ : Γ\D→ Γ\X with fiber
K/U . For n > 0, the cycle Hdg(n) has support contained in the preimage of Z(n) under pΓ;
since both have (real) codimension 2t in their ambient space, we conclude that

(5.38) p∗Γ(Z(n)) = Hdg(n).

Moreover, the Hodge bundle F 2, regarded as a real vector bundle, is the pullback under pΓ of
the tautological bundle E2t of rank 2t on X, hence ctop(F∨) = p∗Γ(e(E2t)), where e denotes
the Euler class. This shows that Theorem 1.2 follows from the modularity of generating
series proved in [16].

Appendix A. Superconnections

In this appendix we have gathered relevant facts on Quillen’s formalism of superconnec-
tions and related subjects. For more details and proofs, see [2, 19].

A.1. Superconnections and Chern forms. A super vector space is a complex Z/2Z-
graded vector space; a super algebra is a complex Z/2Z-graded algebra. The graded tensor
product of two super vector spaces (denoted by ⊗̂) is again a super vector space; in particular,
if V = V0⊕V1 is a super vector space, then End(V ) is also a super vector space. We write τ for
the endomorphism of V determined by τ(v) = (−1)deg(v)v. The supertrace trs : End(V )→ C
is the linear form defined by

(A.1) trs(u) = tr(τu),

where tr denotes the usual trace. If u = ( a bc d ) with a ∈ End(V0), d ∈ End(V1), b ∈
Hom(V1, V0) and c ∈ Hom(V0, V1), then trs(u) = tr(a)− tr(d); in particular, trs vanishes on
(super)commutators and on odd endomorphisms.

Given a super vector bundle E = E0 ⊕ E1 over a differentiable manifold X, define a
superalgebra A by

(A.2) A = A(X,End(E)) = A∗(X)⊗̂C∞(X)Γ(End(E)),

where the tensor product is taken in the sense of superalgebras, that is, we use the Koszul
rule of signs to define the product:

(A.3) (ω ⊗ u) · (η ⊗ v) = (−1)deg(η)deg(u)(ω ∧ η)⊗ uv, ω, η ∈ A∗(X), u, v ∈ Γ(End(E)).

The supertrace trs : Γ(End(E))→ C∞(X) admits a unique extension

(A.4) trs : A → A∗(X)

satisfying trs(ω ⊗ u) = ωtrs(u). Clearly A is a left A∗(X)-module and trs is a map of left
A∗(X)-modules. Since trs : End(E)→ C vanishes on odd endomorphisms, we conclude that
in fact trs : A → A2∗(X).

For a super vector bundle E over X, write A(E) = A∗(X)⊗̂C∞(X)Γ(E). A superconnection
∇ on E is an odd element of End(A(E)) satisfying the Leibniz rule

(A.5) ∇(ω ⊗ u) = dω ⊗ u+ (−1)deg(ω)ω ∧∇u.

Note that A(E) is naturally a left A∗(X)-module. A direct computation shows that ∇2 ∈
End(A(E)) is A∗(X)-linear. [19] shows that the natural action of A on A(E) identifies A
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with the A∗(X)-linear endomorphisms of A(E); thus we can regard ∇2 as an element of A
and define the Chern character form

(A.6) ch(E,∇) = trs(e
∇2

) ∈ A2∗(X).

It is clear that this is class is functorial: if f : X ′ → X is a map of differentiable manifolds,
then

(A.7) ch(f ∗E, f ∗∇) = f ∗(ch(E,∇)).

Denote by ch(E0), ch(E1) ∈ H2∗(X) the Chern character of the vector bundles E0 and E1.
Let ∗ be the operator on ⊕p≥0A

p,p(X) acting by (−2πi)−p on Ap,p(X). Quillen shows that
the form ch(E,∇) has the following properties:

• ch(E,∇) is closed.
• [ch(E,∇)∗] = ch(E0)− ch(E1) (in particular, [ch(E,∇)] is independent of ∇).
• ch(E ⊕ E ′,∇⊕∇′) = ch(E,∇) + ch(E ′,∇′).
• ch(E ⊗ E ′,∇⊗ 1 + 1⊗∇′) = ch(E,∇) ∧ ch(E ′,∇′).

If ∇i is a connection on Ei (i = 0, 1) and u is an odd element of End(E), then ∇0 +∇1 +u
is a superconnection on E; we will only deal with superconnections of this form. Note that
if u = 0, then

(A.8) ch(E,∇)∗ = ch(E0,∇0)− ch(E1,∇1),

where ch(Ej,∇j) = tr(e
i
2π
∇2
j ), j = 1, 2, are the Chern-Weil forms.

For a smooth family of superconnections ∇t on E depending on a real parameter t, we
have the transgression formula

(A.9)
d

dt
trs(e

∇2
t ) = d trs(

d∇t

dt
e∇

2
t )

([2, Prop. 1.41]).

A.2. Hermitian holomorphic complexes over complex manifolds. Some additional
properties hold for ch(E,∇) when X is a complex manifold and ∇ arises from a complex of
holomorphic vector bundles. Namely, consider such a complex

(A.10) 0→ E0
v→ · · · v→ Em → 0

with v holomorphic. Suppose that each Ei carries a hermitian metric hi, and denote by
v∗ : Ei+1 → Ei the maps adjoint to v : Ei → Ei+1. Then E := ⊕0≤i≤mEi is a super vector
bundle, with even part ⊕i evenEi and odd part ⊕i oddEi. We endow E with the metric given
by the orthogonal sum of the hi and denote by ∇ = ∇even + ∇odd the associated Chern
connection. Then

(A.11) ∇v := ∇+ i(v + v∗)

is a superconnection on E. Writing ∇1,0 (resp. ∇0,1) for the decomposition of ∇ into holo-
morphic (resp. antiholomorphic) parts, we find that (∇0,1 + iv)2 = 0 since v is holomorphic,
and similarly that (∇1,0 + iv∗)2 = 0 since ∇ is unitary. This shows that

(A.12) ch(E,∇v) = trs(e
∇2
v) ∈ ⊕p≥0A

p,p(X) ⊂ A2∗(X).
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Given another complex 0 → E ′0
v′→ · · · v

′
→ E ′m → 0 of hermitian holomorphic vector bundles

with corresponding superconnection ∇v′ , consider the total tensor product

(A.13) E ′′0
v′′→ · · · v

′′
→ E ′′2m = (E0

v→ · · · v→ Em)⊗ (E ′0
v′→ · · · v

′
→ E ′m).

Then the super vector bundle E ′′ = ⊕0≤i≤2mE
′′
i is the tensor product E⊗̂E ′. We have

∇v′′ = ∇v ⊗ 1 + 1⊗∇v′ and hence an identity of Chern forms

(A.14) ch(E⊗̂E ′,∇v′′) = ch(E,∇v) ∧ ch(E ′,∇v′).

A.3. Koszul complexes. Let E be a holomorphic vector bundle on a complex manifold X
and let s : E → OX be a holomorphic map. The Koszul complex K(s) associated with s is
the complex with underlying vector bundle ∧E and differential ∧kE → ∧k−1E defined by

(A.15) s(e1 ∧ · · · ∧ ek) =
∑

1≤i≤k

(−1)i+1s(ei) · e1 ∧ · · · êi · · · ∧ ek.

Given maps si : E → OX (1 ≤ i ≤ r), we denote by K(s1, . . . , sr) the Koszul complex
associated with the map (s1, . . . , sr) : Er → OX ; there is an isomorphism

(A.16) K(s1, . . . , sr) ∼= ⊗1≤i≤rK(si),

where the right hand side denotes the total tensor product. Given another complex s′ : E ′ →
OX , a map α : E → E ′ such that s = s′ ◦α induces a morphism K(α) : K(s)→ K(s′). This
morphism is functorial in α; in particular, a matrix (hij) ∈ GLr(C) induces an isomorphism

(A.17) K(
∑
j

h1jsj, . . . ,
∑
j

hrjsj) ∼= K(s1, . . . , sr).

A hermitian metric on E induces a metric on K(s): different ∧kE are orthogonal and an
orthonormal basis of ∧kE is given by all elements ei1 ∧ . . . ∧ eik , where {e1, . . . , erk(E)} is an
orthonormal basis of E. If E is hermitian, then the above isomorphism is an isometry if
(hij) ∈ SU(r).
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