
1 
 

Identification of Surrogate Anatomic 
Identifiers of Disease Progression in    Age-

Related Macular Degeneration 
 

 

 

 

Ali A. Ali Lamin 

 

 

 

UCL-Institute of Ophthalmology 

 

Thesis submitted for the degree of Doctor of Philosophy 

 

 

 

 



2 
 

Thesis Declaration 

I, Ali A. Ali Lamin confirm that the work presented in this thesis is my 

own. Where information has been derived from other sources, I confirm 

that this has been indicated in the thesis.   

Ali Lamin 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Acknowledgments  

I would like to express my deepest gratitude to Professor Sobha Sivaprasad who has 

been my primary supervisor. It was a privilege to be supervised by her academically, 

learn from her clinically and to be with her team. I want to thank her for 

understanding my limitations, for her never-ending support, and for encouraging in 

assisting me with this thesis and the research work underlying it. Also, a special 

thanks goes to my secondary supervisor Professor Susan Lightman for accepting 

me as a PhD student allowing me to fulfil this ambition of mine. She has always been 

there to support me over the past four years.  

My sincere appreciation goes to my country Libya for the scholarship. 

Nothing will be the same without my loving wife Eman who has supported me with 

help, suggestions and assistance while doing my PhD. This moment is much more 

precious with my beautiful children Lamar, Abdellha, Jore, Omar and Raghad who 

have been patient and understood my time away from them.  

My deepest gratitude goes to my parents, whom without their nurture; I might not be 

the person I am today.  

I am also grateful and thankful to the cofounders of the Voxeleron LLC, Jonathan 

Oakley and Daniel Russakoff, for developing the deep learning model we used in 

this thesis, and for their help and guidance. Also to Adam Dubis who has helped me 

to contact Voxeleron.  

Last but certainly not least, to Omar Mahroo, Zakaria Jarar, Kate Williams and 

Professor Chris Hammond who have helped with the heritability part of this thesis.  

 



4 
 

Abstract 

Age-related macular degeneration (AMD) is the leading cause of vision loss in patients over 

50 in the developed world. The visual impairment is due to either choroidal 

neovascularisation (wet AMD) or geographic atrophy (GA). Drusen is the hallmark of AMD 

but the presence of drusen does not inform progression to wet AMD. Although the disease is 

mostly bilateral, the rate of progression of disease in both eyes may not be simultaneous. If 

one eye is affected by wet AMD, the risk of progression of the fellow eye to wet AMD 

increases by 10% every year. However, there are no markers that inform the time of 

conversion to wet AMD. For this reason, there is an unmet need to identify biomarkers that 

can fully predict the progression to wet AMD in order to allow early intervention before 

permanent damage. My thesis aimed to assess whether changes in imaging characteristics 

can more precisely explain conversion. I studied various cohorts including (a) normal aging 

eyes (b) eyes with early/ intermediate AMD and (c) fellow eyes of unilateral wet AMD to 

study the conversion to wet AMD. 

Firstly, I evaluated longitudinally volume changes in inner and outer retinal layers of 71 eyes 

with early/intermediate AMD using optical coherence tomography (OCT). Our results 

showed that inner and outer retina layer volumes may differentiate AMD eyes from healthy 

eyes. When comparing those who progressed to wet AMD at year 2 to those who did not, we 

found that baseline volume of GCIPL may differentiate between the 2 groups.  

As it is an inner retinal change, I hypothesized that heritability of the retinal layers may 

influence the rate of retinal layer changes and that may in turn help understand the changes 

seen in aging and AMD. I worked with the TWIN Study database, in which OCT was done in 

eyes of twins of different age groups and OCT data were available on 364 eyes of 184 (92 

pair) twins. I evaluated whether heritability was responsible for ageing changes of the retinal 

layers. I found that total retinal volume and inner retinal layer volumes may be affected by 

genetic factors. 
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I also assessed the rate of change in macular drusen load in fellow eyes of 248 patients with 

unilateral wet AMD using OCT. I found that patients who progressed to wet AMD (n= 69) at 

year 2 had increased significantly in drusen volume and area in the preceding year 

compared to those who did not progress (n = 179).  

In addition, I explored correlations between prior drusen load and retinal layer volumes of 51 

AMD eyes and the subsequent CNV subtype to evaluate whether drusen load and/or retinal 

layer volumes are responsible for a certain type of CNV. I found that eyes that progressed to 

occult CNVs at year 2 had increased significantly in drusen volume and area, and decreased 

in ONL volume in the 2nd year compared to eyes that progressed to classic CNV type. I also 

investigated, in the same cohort, agreement between CNV type in second eyes developing 

CNV and the first eye CNV and found that there was high agreement suggesting that these 

changes in drusen volume and ONL changes may inform type of CNV. However, validation 

in a larger cohort is required. 

To evaluate these results further, I labeled OCT-based biomarkers for deep learning 

classifier to help predict which layers of the outer retina is most affected preceding the 

development of CNV. The choroid was found to be most prominent structure affected prior to 

conversion to CNV. 

In conclusion, drusen load increases and retinal layer volumes changes before conversion to 

wet AMD and automated drusen and retinal layer volumes measurement tools may be used 

to monitor eyes for conversion to wet AMD. However, further investigations of the choroid is 

necessary to evaluate the observations made using deep learning techniques.  
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Impact Statement  

This thesis has various impacts.  

1. Impact on patients: The ability to predict conversion to wet AMD more 

precisely is very useful for patients as it reduces their apprehension. At 

present we advise that there is a 10% chance per year for conversion. So out 

of 100 patients, only 10 converts and we are unable to predict who among the 

100 will convert. My thesis shows that monitoring of drusen volume using 

automated software will enable us to inform patients to be more vigilant of 

conversion when volume increases. Although this is more applicable to occult 

CNV, 80% of CNVs are occult. So, we can provide more accurate information 

on time to conversion. One may argue that there is no treatment even if a 

patient is found to have an asymptomatic CNV in the fellow eye. However, 

there are several novel agents that are being investigated in the form of eye 

drops and long acting agents that may in the future be useful to avert or 

prevent progression to symptomatic CNV 

2. Impact on design of clinical trials: Current clinical trials in the stage of 

intermediate drusen take about 5-6 years to complete as the end points are 

conversion to advanced AMD. This thesis shows that we can shorten these 

trials by better defining the inclusion criteria. Instead of including all fellow 

eyes with drusen, including only those with increasing drusen volume will 

increase the event rates at a shorter time. 

3. Clinical utility: Our approach was purely based on computational analysis of 

diagnostic retinal images such as optical coherence tomography (OCT), which 

allows fully automated, reliable, and fast detection of a wide range of several 
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features from the neurosensory layer, retinal pigment epithelium (RPE) to the 

choroid. Therefore, these findings can be easily used in clinics.  

4. New research areas: my thesis adds valuable information to AMD literature.  

Firstly, the OCT finding of inner layer volumes thinning in early AMD stages 

suggests pathological process affecting particularly ganglion cell-inner 

plexiform layer and inner nuclear layer very early in the AMD disease process. 

I also show that heritability may account for these changes. Therefore, 

researchers can now focus their attention on complement genotype changes 

on inner retina.  

Secondly, outer nuclear layer thinning at early AMD stage may occur mainly 

in eyes that convert to CNV type. This concept better explains why dark 

adaptation is affected early in AMD. Further structure-function studies should 

be directed to this field. 

Thirdly, the deep learning predictive model shows that the predictive hallmark 

for CNV conversion is at the sub-RPE choroidal region in eyes that 

progressed to wet AMD. Although imaging of the choroid remains challenging, 

this thesis directs the focus of future research to the choroid.  

5. Although most of my studies in this thesis are exploratory, the findings have 

thrown light to novel areas of investigations to better phenotype this 

heterogeneous disease 
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1 Chapter 1: Introduction 

1.1 Age-related macular degeneration (AMD) 

Age-related macular degeneration (AMD) is the leading cause of central vision loss 

in people over 50 years in the developed world. The prevalence data predict more 

people will suffer from AMD in the future owing to longevity (Friedman et al., 2004). 

AMD is asymptomatic in its early course and the appearance of drusen is the clinical 

hallmark of the disease (Seddon et al., 2006, Abdelsalam et al., 1999). Drusen are 

whitish-yellow deposits lie beneath the retinal pigment epithelium (RPE) and within 

Bruch’s membrane, which are different in size, shape and configuration (van der 

Schaft et al., 1992b, Green and Enger, 1993b). There are different types of drusen 

and some of them are known to be associated with increase the risk for developing 

advanced AMD such as the large soft confluent one (Ferris et al., 2005, Pauleikhoff 

et al., 1990a).  

AMD has been subdivided into two major types: wet (neovascular or exudative AMD) 

and dry (non-neovascular or nonexudative AMD). Approximately 80% of vision loss 

in AMD patients is due to the wet type (Hyman and Neborsky, 2002). While visual 

loss in wet AMD develops secondary to choroidal neovascularization (CNV), visual 

loss in dry AMD develops as the result of geographic atrophy affecting the macular 

area (Bressler et al., 1988a, Green and Enger, 1993b). When one eye is affected by 

wet AMD, the risk of progression of the fellow eye to wet AMD increases by 10% 

every year. However, some second eyes progress faster than others (1997, 

Solomon et al., 2007).  
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There are several investigational agents that are being explored to delay or prevent 

progression to symptomatic wet AMD. Early detection and therapeutic intervention of 

wet AMD have demonstrated to improve visual acuity outcomes. It is vital to identify 

disease progression at the earliest stage (Wong et al., 2007). Eyes with drusen of 

125μm termed intermediate AMD are at risk of conversion to wet AMD (de Sisternes 

et al., 2014). However, not every person with soft confluent drusen converts to wet 

AMD. Similarly not every patient with CNV have soft confluent drusen. Therefore, 

refining the characteristics of drusen further may help to understand the phenotype 

that better predict conversion to AMD.  

Advances in optical coherence tomography (OCT) technology has allowed for 

unprecedented in vivo studies of the retina. Spectral domain (SD)-OCT has shown a 

reliability of 99% in detecting drusen in AMD eyes (Leuschen et al., 2013). Using SD-

OCT, it has been shown that 48% of AMD eyes revealed a dynamic increase in 

drusen volume over time (Yehoshua et al., 2011). Furthermore, drusen area and 

volume were found to be associated with the development of advanced AMD (both 

forms: wet and geographic atrophy) (Nathoo et al., 2014).  

More recently, analysis of medical images such colour fundus photographs and OCT 

using algorithms and artificial intelligence has emerged with the ability not only to 

reliably and automatically rank all relevant features and to recognize associations 

between markers, but also to provide distinct indicators of the future disease 

progression (De Fauw et al., 2016). By applying this kind of morphologic imaging 

biomarkers technology on AMD patients’ images, we might be able to better predict 

the risk of disease progression from early and intermediate stages to advanced 

stages.  
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1.2 Risk factors for AMD  

It is estimated that there will be more than seventy thousand new cases of AMD per 

year in the UK (Owen et al., 2012). Elucidating factors that play a role in developing 

AMD will help in preventing either early developing of the disease and/or progression 

to late stage AMD. Many studies have searched for factors that could be associated 

with AMD. A number of factors have been identified and these can be classified into 

the following groups: 1) sociodemographic factors including age, gender, ethnicity 

and iris colour; 2) systemic factors such as blood pressure and hypertension, blood 

lipids and hypercholesterolemia; 3) genetic factors; 4) environmental factors such as 

nutrition, smoking and sun exposure.  

1.2.1  Sociodemographic factors  

1.2.1.1  Age 

Age is one of the established risk factors associated with AMD. The prevalence and 

progression of all AMD types increase dramatically with advancing age (Klein et al., 

1992, Klein et al., 1997b, Klein et al., 2010, Mitchell et al., 1995). In the Beaver Dam 

Offspring Study, the prevalence of early AMD was reported to increase from 2.4% in 

the age group 21-34 years to 9.8% in the age group over 65 years (Klein et al., 

2010). In the Blue Mountains Eye Study, the prevalence of late AMD was reported to 

rise from 0% for those aged 55 years or younger to 18.5% for those aged 85 years 

or older (Mitchell et al., 1995). Thus, it is clear that people over 65 years of age are 

the highest risk age group among our population.   
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1.2.1.2  Gender 

There was a lack of consistency in the association between gender and AMD in 

many different studies but commonly the AMD prevalence is higher in females than 

males. Pooled data from 3 study populations (the Blue Mountains Eye Study, the 

Rotterdam study and the Beaver Dam Eye Study) revealed that prevalence of early 

AMD were higher in females than males with odds ratio of 1.15 (1.10-1.21) (Smith et 

al., 1997). The same pooled data of the 3 study populations did not find any 

difference in the prevalence of late AMD between males and females (Smith et al., 

2001). Interestingly, the Singapore Malay Eye Study revealed that prevalence of 

early and late AMD among white participants were higher in females than males but 

early AMD in Asian Malay people was more prevalent in males than in females, and 

this was explained as more men were smokers than women (Kawasaki et al., 2008). 

However, gender was not associated with either early or late AMD in other worldwide 

studies (Krishnaiah et al., 2005, Goldberg et al., 1988, Schachat et al., 1995).   

1.2.1.3  Ethnicity/Race   

The prevalence of AMD was reported to be more common in whites than blacks 

(Sommer et al., 1991, Friedman et al., 1999). The Baltimore Eye Survey revealed 

that more severe forms of AMD such as large drusen and pigmentary abnormalities, 

and late AMD were more prevalent in whites aged 70 years or older than in blacks in 

this age; 2.1% compared with 0% (Friedman et al., 1999). Similarly, AMD accounted 

for 3% of all blindness among whites aged 80 years or older; it was limited only to 

whites (Sommer et al., 1991).   

The multi-ethnic study of atherosclerosis reported the AMD prevalence in 4 

racial/ethnic groups (white, Chinese, Hispanic, and black) (Klein et al., 2006). The 
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study found the disease prevalence for whites, Chinese, Hispanic, and blacks were 

5.4%, 4.6%, 4.2% and 2.4%, respectively. Estimated prevalences of late AMD for 

whites, Chinese, Hispanic, and blacks were 0.6%, 1.0%, 0.2%, and 0.3%, 

respectively. The highest frequency of neovascualr AMD was in Chinese with odds 

ratio of 4.30 (1.30-14.27) compared with whites (Klein et al., 2006).  

1.2.1.4  Eye colour  

The relationship between iris colour and AMD has been controversial. A number of 

studies reported that those with lightly pigmented irides had a higher risk of 

developing AMD at an earlier age than those with dark irides (Mitchell et al., 1998, 

Weiter et al., 1985). Therefore, increased ocular pigmentation tends to decrease the 

risk of developing AMD. This increased pigmentation may function theoretically as 

protective to the retina from sunlight exposure. However, other large population 

studies did not find any association between iris colour and AMD (Klein et al., 1998, 

Vinding, 1990).  

1.2.1.5  Refractive error  

An association has been found between refractive error and AMD (Pan et al., 2013).  

In one study, hyperopia was associated with increased risk of early and late AMD, 

each diopter increase in spherical equivalent was associated with 16% (OR, 1.16; 

95% CI, 1.08-1.25) and 18 % (OR, 1.18; 95% CI, 1.10-1.27) increased risk of any 

(early + late) and early AMD, respectively (Lin et al., 2016). In contrast, myopia was 

associated with decreased risk of any and early AMD (Lin et al., 2016). Other studies 

showed a weak association between hyperopia and early AMD and no association 

with late AMD (Wang et al., 1998, Li et al., 2014).  
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1.2.2  Systemic factors  

1.2.2.1  Blood pressure and hypertension 

There exist conflicting data regarding the effect of blood pressure on AMD. A strong 

association has been found between high blood pressure and AMD (Bhuachalla et 

al., 2018, Kahn et al., 1977, Sperduto and Hiller, 1986). Prevalence of AMD 

progressively increased with increasing duration of systemic hypertension. The risk 

ratio for any AMD for people diagnosed with hypertension 25 years before the eye 

examination and concurrently with the eye examination were 1.18 (1.01-1.37) and 

1.04 (0.96-1.23), respectively, when compared with those without hypertension 

(Sperduto and Hiller, 1986). This association, however, was not noted in the Andrha 

Pradesh Eye Disease Study (Krishnaiah et al., 2005), Blue Mountains Eye Study 

(Smith et al., 1998), the Eye Disease Case-Control Study (1992), or the 

Atherosclerosis Risk in Communities Study (Klein et al., 1999). The reasons of these 

conflicting results are not clear.  

1.2.2.2  Blood lipids and hypercholesterolemia  

A strong association has been noted between high intake of saturated fat and 

cholesterol, and AMD (Mares-Perlman et al., 1995, 1992).  Persons with high serum 

total cholesterol had increased odds for neovacular AMD by 400%, when compared 

with those with low serum total cholesterol and after controlling for other factors 

(1992). A positive relationship has also been found between high HDL and AMD 

(Klein et al., 1997a). However, the cardiovascular health study found that the total 

serum cholesterol had a protective effect against AMD; it has been shown to be 

inversely associated with early AMD (Klein et al., 2003). Alternatively, other studies 
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find no association between serum lipids and AMD (Smith et al., 1998, Klein et al., 

1999).    

No relations were found between the use of lipid-lowering agents and developing of 

AMD (Klein et al., 2001, McGwin et al., 2006). However, it was noted a modest trend 

for statin users to have an increased risk of AMD and thus its use might increase the 

risk of developing AMD (McGwin et al., 2006). 

1.2.2.3  Blood glucose and diabetes  

Several studies have evaluated the relationship between high blood sugars and/or 

diabetes and developing of AMD. There were no associations found between blood 

glucose and AMD (Klein et al., 1999). One study suggested that diabetes was found 

to be associated with developing GA but not with either early or neovascular AMD 

(Mitchell and Wang, 1999).  GA was significantly associated with diabetes with odds 

ratio of 4.0 (95% CI, 1.6-10.3).  

1.2.3  Genetic factors 

Several studies have evaluated the importance of genetic factors in developing 

AMD. Twin concordance and first-degree relative studies were the first to explore a 

familial component of the disease (Gottfredsdottir et al., 1999, Klaver et al., 1998a).  

Investigators investigated the concordance of AMD in 50 twin pairs and 47 spouses 

and found the disease concordance were 90% and 70%  for monozygotic twins and 

their spouse, respectively (p=0.0279) (Gottfredsdottir et al., 1999).  Visual 

impairment and fundus appearance were similar in the nine twin pairs that were 

concordant. The concordance for early AMD in monozygotic twins was 37% 

compared with 19% in dizygotic twins, suggesting a role for genes (Hammond et al., 

2002). The most heritable components were soft large drusen hard drusen. The 
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prevalence of AMD in first degree relatives was greater than among those first 

degree relatives without the disease, suggesting a role for a familial component 

(Seddon et al., 1997). 

A number of genes might be related to AMD. Several studies have suggested a 

relationship between AMD and the encode genes for metallopeptidase inhibitor 

(Chen et al., 2010), apolipoprotein E (Zareparsi et al., 2004) and Toll-like receptor 

(Zareparsi et al., 2005b).  One important gene was identified within the regulation of 

complement activation locus, encoding complement factor H (CFH), and was 

associated with developing of AMD (Edwards et al., 2005). CFH (Y402H) variant has 

a risk for AMD 2-3 times for heterozygote carriers and 3-7 times for homozygote 

carriers (Zareparsi et al., 2005a).  It important to note, however, that Y402H variant 

is not a major factor for AMD in some ethnic groups. Grassi et al. 2006, (Grassi et 

al., 2006) found wide variations in frequencies of the Y402H allele in some different 

ethnic groups: Hispanics (0.17+/-0.03), Somalis (0.34+/-0.03), Japanese (0.07+/-

0.02), Caucasians (0.34+/-0.03), and African-Americans (0.35+/-0.04). A case-

control study reported that the (Y402H) variant is associated with an increased risk 

of developing GA (grade 4) as well as neovascular AMD (grade 5) (Postel et al., 

2006). Thus, the importance of CFH in AMD is in part committed by both the 

particular ethnic population and the AMD exhibited severity in the population.  

Another genes were identified on chromosome 10q26 and found to have a highly 

significant association with AMD (Jakobsdottir et al., 2005). Furthermore, with 

linkage mapping and multi-candidate gene screening, multiple genetic loci in almost 

every chromosome have been found to be associated with AMD. Despite of all these 

discoveries, the pathophysiology of AMD is not well understood. Current evidence 
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still suggests that the etiology of AMD is multifactorial, requiring multiple genes as 

well as environmental factors.     

1.2.4  Environmental factors  

1.2.4.1  Nutrition 

Several studies examined the protective effect of antioxidant vitamin and mineral 

supplements for preventing the disease or delaying the AMD progression. High-dose 

of vitamins C (500 IU) and E (400 IU), beta carotene (15 mg), and zinc (20 mg) 

supplements is associated with decreased risk of progression to advanced AMD as 

shown in the AREDS trail (2001). There were a reduction in severe visual loss by 

19% and a reduction in 5-year progression to late AMD by 25% in high risk 

individuals. AREDS 2 (phase III, randomized clinical trial) was designed to evaluate 

the efficacy of adding lutein + zeaxanthin, omega-3 long-chain polyunsaturated fatty 

acids, or both to the AREDS formulation to reduce the risk of developing advanced 

AMD (2013). No further reduction in the risk of progression to advanced AMD was 

found. However, lutein + zeaxanthin could be an appropriate carotenoid substitute in 

the AREDS formulation because beta carotene was associated with increased risk of 

lung cancer in former smokers (2013).  

Two recent systematic review studies showed that multivitamin antioxidant vitamin 

and mineral supplementations may slow the progression AMD but will not prevent or 

delay the onset of AMD (Evans and Lawrenson, 2017b, Evans and Lawrenson, 

2017a).   

1.2.4.2  Smoking  

Smoking is the strongest avoidable risk factor that associated with most types of 

AMD (Klein et al., 1993, Smith et al., 1996, Christen et al., 1996, Seddon et al., 
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1996).  These studies described the relative odds were range from 1.1 to nearly 5 for 

those who are current smokers. The odds ratio for early and late AMD were 1.75 and 

3.92, respectively, when compared with non-smokers (Smith et al., 1996). It has also 

been shown that the mean age for current smokers at the time of AMD diagnosis 

was lower than in those who never smoked (Smith et al., 2001).  

A recent longitudinal population-based study has examined the association of 

current cigarette smoking and pack-years smoked with the incidence of AMD and 

found the incidence over 20-year period were 24.4% and 4.5% for early and late 

AMD, respectively (Myers et al., 2014). The number of pack years and current 

smoking were associated with an increased risk of transitioning from no AMD to 

minimal early AMD, from minimal to moderate early AMD and from severe early 

AMD to late (Myers et al., 2014).  

Having ever smoked was associated with an increased the risk of late AMD with 

odds ratio of 1.83 (Smith et al., 1996). In one study, a minimal reduction in risk of 

AMD was found in persons who stopped smoking for 15 years (Seddon et al., 1996). 

Generally speaking, quitting smoking benefit is seen after ten years but do return to 

that of persons who have never smoked until twenty years after quitting smoking 

(Khan et al., 2006). Moreover, passive smokers had an odds ratio of AMD of 1.87 

(95% CI, 1.03-3.40) (Khan et al., 2006).  

1.2.4.3  Light exposure 

There was an association found between ultraviolet and/or visible light, and retinal 

damage in an animal experiment (Ham et al., 1982).  Luckily, the human cornea and 

lens absorb short wavelength light below 295 nm and 400 nm, respectively. 

Therefore, almost all radiations less than 400 nm are absorbed by lens and this 
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might explain why there was no association between ultraviolet or visible light and 

AMD was found (Taylor et al., 1990). In contrast, the beaver dam eye study revealed 

a positive association between extended sun exposure and AMD and  concluded 

that lifetime exposure was significantly associated with the risk of early AMD with 

odds ratio of 2.09 (95% CI, 1.19-3.65) (Cruickshanks et al., 2001). Thus, it has been 

suggested that individuals can reduce this risk by wearing sunglasses and hats to 

reduce ultraviolet light exposure to their retinas (Tomany et al., 2004). 

1.3 AMD classification 

A number of AMD classification schemes have been developed, detecting change in 

AMD status, particularly conversion to late AMD. The purpose of these schemes is to 

to provide a common nomenclature as well as  performing natural history trials, 

evaluating new therapies, improving communication between eye care providers, 

and counseling patients regarding prognosis. As a result, AMD prevalence and 

development over time in widely differing geographical locations can be compared 

between different studies. Most of these classification schemes share many similar 

features and their grading systems are relied on the presence and severity of the 

characteristic features of AMD including drusen, pigmentary abnormalities, CNV and 

GA.  

In 1995, based on morphological abnormalities in the macular area on color fundus 

images, the International ARM Epidemiological Study Group proposed an 

international classification (IC) and grading system for Age-related Maculopathy 

(ARM) and AMD. This study defined ARM as a macular degenerative disorder in 

patients over 50 years, which is characterized by the presence of drusen and 

pigmentary abnormalities. Pigmentary abnormalities were defined as areas of 



33 
 

increased pigment (hyperpigmentation) associated with drusen and/or areas of 

depigmentation (hypopigmentation) of the RPE. This can be explained by the 

accumulation of drusen that results in RPE hyperplasia but later leads to atrophy. 

Interestingly, visual acuity was not used as criterion to define the presence or 

absence of any forms of ARM. In this scheme, ARM was classified into two stages, 

early and late. Early ARM is characterized by the presence of soft drusen (≥ 63 µm) 

and RPE hypo- or hyperpigmentation (≤175 µm in diameter). Late ARM is similar to 

AMD and includes geographic atrophy and neovascular AMD. Geographic atrophy 

was defined as any sharply delineated area (≥175 µm in diameter) of RPE atrophy 

with visible choroidal vessels. Neovascular AMD is characterized by the presence of 

RPE detachment associated with subretinal or sub-RPE neovascular membranes, 

subretinal hemorrhages, scar or hard exudates that not related to other retinal 

disease (Bird et al., 1995).  

In 2001, another classification system was created by the Age-Related Eye Disease 

Study Group (AREDS), ignoring using the term ARM. They described a system for 

grading AMD from fundus photographs. They also evaluated the effect of high-dose 

vitamin and mineral supplements on development of late AMD. In this system, 

drusen were classified as small (<63 μm), intermediate (63-125 μm), or large (>125 

μm), and AMD was classified into four stages based on the size of drusen as well as 

the presence of CNV and GA. AREDS category 1 (no AMD)  was characterised by 

no or few small drusen, representing the control group. AREDS category 2 was 

characterised by a combination of multiple small drusen, few intermediate drusen, or 

mild RPE abnormalities. AREDS category 3 (intermediate AMD) was characterised 

by at least one large druse, numerous medium drusen, or GA that does not extend to 

the centre of the macula. AREDS category 4 qualified as advanced AMD that can be 
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either wet (CNV) or dry (central GA). Interestingly, intake high doses of antioxidants 

and zinc (80 mg) showed a beneficial effect  in reducing patient’s relative risk of 

progression to late AMD by 25 % in patients with late AMD in the fellow eye (The 

Age-Related Eye Disease Study Research, 2001).  

In 2013, Ferris et al (Ferris et al., 2013) proposed a new classification system that 

combines the scientific literature with expert opinion, attempting to establish 

consensus regarding nomenclature and classification systems. Using a modified 

Delphi process, this system developed a 5-stage classification scale for AMD (Table 

1). Eyes with no visible drusen or pigmentary abnormalities were considered to have 

no signs of AMD. Small drusen was termed as drupelets and considered as normal 

ageing changes with no clinical significant for developing late AMD. While eyes with 

medium drusen but without pigmentary abnormalities were considered to have early 

AMD, eyes with large drusen or with pigmentary abnormalities associated with at 

least medium drusen were considered to have intermediate AMD. Finally, eyes with 

CNV or GA were considered to have late AMD. Furthermore, 5-year risk of 

developing late AMD was estimated to increase approximately 100 fold, ranging from 

0.5% to 50% in normal ageing changes and intermediate AMD respectively.   

Table 1. AMD Clinical Classification (adapted from (Ferris et al., 2013))  
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While the IC system distinguishes only early AMD from the late stage, both AREDS 

and the clinical classification provide criteria of an intermediate stage. Distinguishing 

a normal macula from so-called normal aging process and the latter from early AMD 

is also provided in the clinical classification system, Table 2 summarises the three 

classifications’ stages. These classifications based on colour fundus photographs 

that evaluated by graders. However, the agreement between those graders 

examining some parameters such as drusen count, area and size was moderate in 

the AREDS study. In addition, it is clear that it is a time-consuming process to 

manual analysis, identifying and counting drusen on photographs. Thus, this make 

the applicability of the above mentioned classification systems in the clinical setting 

is restricted.  

Table 2. Summary of different AMD classification systems  

 No aging 
changes 

Normal 
aging 

changes 

Early AMD Intermediate 
AMD 

Late AMD 

International 
classification 

- - + - + 

AREDS 
classification 

+ (used as one stage) 
 

+ + + 

Clinical 
classification 

+ + + + + 

 

1.4 Ageing versus AMD 

Distinguishing between age-related and pathological changes occurs in retina is very 

crucial to understand why some people are susceptible to develop AMD while others 

did not. A few steps further in the ageing process may result in the pathological form 

that can be viewed as a disease. With ageing, extracellular debris as hard drusen 

may form in the periphery, Bruch’s membrane thickens and cells are lost. In AMD, 
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most of these changes are aggravated with other factors, like formation of soft 

drusen, to develop the disease. In this section, physiological, anatomical and 

immunological changes seen in AMD as well as in the normal retinal ageing will be 

discussed to differentiate between them.  

1.4.1  Drusen formation  

Drusen are typically found with age in old people aged over 55 years and can be 

classified into different types based on their appearance. Hard drusen, which are 

considered a part of normal ageing as well as AMD, are small (≤ 63 µm) yellow dots 

with sharp borders. Soft drusen, which are considered to be associated with AMD 

only and not ageing, are large (≥ 125 µm) with either sharp or fuzzy borders. While 

hard drusen were found in both the macula and periphery, soft drusen were found 

only in the macula (Rudolf et al., 2008).  

These is a difference in composition of hard drusen and soft drusen. Also, peripheral 

hard drusen and macular hard drusen have different chemical composition (Rudolf et 

al., 2008). The regional difference in drusen composition may contribute to macular 

susceptibility for developing AMD. Hard drusen do not increase the risk of 

developing AMD based on the Copenhagen eyes study, 2.9% of participants 

developed AMD over 14 years of follow-up (Buch et al., 2005). The study also 

showed that 26.7% of participants with soft drusen had higher progression rate of 

AMD. 

Reticular pseudodrusen are a variant of soft drsuen found subretinally and described 

as subretinal drusenoid deposits (Spaide and Curcio, 2010). Using OCT, they are 

apparent internal to the RPE (Zweifel et al., 2010b). Several studies have shown that 
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reticular pseudodrusen are significantly associated with AMD (Zweifel et al., 2010a, 

Klein et al., 2008).  

1.4.2  Bruch’s membrane thickening 

Bruch’s membrane is a sheet of extracellular matrix located between retina and 

choroid. It consists of five layers as the following: the RPE basement membrane, the 

inner collagenous layer, the elastic layer, the outer collagenous layer, and the 

choriocapillaris endothelium basement membrane. Nutrients diffuse across these 

five layers into retina to sustain its high metabolic activity. Thus, a stable and regular 

flow of nutrients and waste materials is required in order to maintain retinal heath. 

A number of age-related changes can affect the structure and function of Bruch’s 

membrane including lipid accumulation, increased thickness, decreased elasticity 

and decreased diffusional capacity of different size molecules (Pauleikhoff et al., 

1990b, Ugarte et al., 2006). The diffusional capacity decreases in the macula more 

than in the periphery (Hussain et al., 2010). These changes could be related to 

reduced matrix degradation and turnover of the membrane.  

The matrix metalloproteinase (MMP) system of Bruch’s membrane is responsible for 

matrix degradation has been found to be affected in ageing and AMD eyes (Hussain 

et al., 2011).  A reduction in the activity of MMP2 and MMP9 may responsible for 

impaired gelatin degradation of Bruch's membrane, resulting in pathology associated 

with ageing and AMD.  

One of the key enzymes that play role in regulation of Bruch’s membrane turnover is 

TIMP3 protein, which is a matrix metalloproteinase (MMP) inhibitor (Brew and 

Nagase, 2010). Over expression of the enzyme might prevent Bruch’s membrane 

turnover and contribute to the membrane thickening. TIMP3 is increasingly 
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expressed in Bruch’s membrane of both ageing and AMD eyes (Spraul et al., 1996). 

There is an association has been found between TIMP3 variant (rs9625132) and 

AMD development (Chen et al., 2010). It has been suggested that low levels of 

active MMP2 and 9 with high levels of TIMP3 contribute to diminished capacity for 

Bruch’s membrane turnover, thickening of Bruch’s membrane and disease insult 

(Kamei and Hollyfield, 1999).     

Accumulation of lipid in Bruch’s membrane has been observed in ageing retina but 

there are differences between the macular and peripheral regions in their lipid 

composition (Gulcan et al., 1993). For example, esterified cholesterol was found to 

be higher in the macular Bruch’s membrane than in the peripheral Bruch’s 

membrane (Curcio et al., 2001). This may explain why AMD affects the macular 

region and not the peripheral region. Accumulation of an oxidized cholesterol 

derivative known as 7-ketocholesterol has been identified in Bruch’s membrane, 

contributing to AMD development (Rodriguez and Larrayoz, 2010). Introducing of a 

7-ketocholesterol inhibitor in rat model was effective at inhibiting the formation of 

laser induced CNV (Huang et al., 2012). 

1.4.3  Cell loss  

1.4.3.1  Neural retina 

Rod photoreceptors seem to be more affected by ageing than cone photoreceptors 

(Curcio et al., 1993, Gao and Hollyfield, 1992).  In the macular area, the cones 

density remains nearly constant, whereas the rods density decreases by 30% 

between the fourth and ninth decades (Curcio et al., 1993). It has also been found 

that the peripheral photoreceptors and RPE loss rate are equal (Gao and Hollyfield, 

1992). An ageing-associated change of gene expression of rods has been found, rod 
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photoreceptors tend to change in their functional profiles with age (Parapuram et al., 

2010). Rods were found to be absent in AMD disciform scars, whereas cones tend to 

surround these locations, suggesting that rods are preferentially lost in AMD and 

cones are able to survive after age-related damage (Shelley et al., 2009a, Curcio et 

al., 1996). The cone survival depends on rods as described in a recent study that 

showed rods transplant can limit secondary cone loss secreting cone survival factors 

(Mohand-Said et al., 2001).     

Another characteristic of ageing human retina is changes in dendritic fibers of rod 

and On-cone bipolar cells. Eliasieh et al., (Eliasieh et al., 2007) found that these 

fibers length and density are most pronounced in the periphery than the macula and 

in aged than in young retinas. The authors suggested that despite cell death with 

age, our systems attempt to maintain visual capability by forming new synapses. In 

the AMD retina, a large number of photoreceptor dendrites retract into the outer 

nuclear layer across the entire retina (Sullivan et al., 2007).  As a consequence, 

dendritic outgrowth from postsynaptic bipolar cells is evoked results in synaptic 

contacts between bipolar cells and photoreceptors across the entire retina. These 

findings suggested that human retinal neurons have the capacity to form new 

synapses in both ageing and AMD.  

1.4.3.2  RPE 

In aged retina, equatorial RPE density was significantly lower than foveal RPE 

density (Gao and Hollyfield, 1992). Equatorial RPE density decreases at rate of 14 

cells/mm2/year from the second to the ninth decade of life, whereas foveal RPE 

density remains stable over the same period. However, in eyes with AMD, RPE 

density in the macula decreases over time, resulting in RPE mottling (Green, 1999).   
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1.4.4  Intracellular debris  

1.4.4.1  Oxidative stress 

Damage of tissue due to oxidative stress results from imbalance of oxidants and 

antioxidants. Specific proteins involved in the oxidative pathways were identified only 

in old rat RPE but not in young rat RPE (Gu et al., 2012). The antioxidant potential of 

vitreous specimens obtained postmortem from free AMD donors was correlated 

inversely with age (Berra et al., 2002). Recent studies have assessed oxidative 

stress markers such as protein carbonyl, 8-hydroxy-29-deoxyguanosine, 

malondialdehyde and total oxidation status, and concluded that these markers are 

hugely higher in AMD patient than in age-matched health control (Totan et al., 2009, 

Venza et al., 2012). These data suggest an aggravated response happens in AMD 

versus normal ageing.   

1.4.4.2  Advanced glycation end products (AGEs) 

AGEs are oxidative chemical modifications that accumulate in long-lived proteins 

with age and contribute to tissue and organ loss of function in ageing and age-

related disease (Baynes, 2001). It has been associated with a number of disease 

such as osteoporosis, osteoarthritis and rheumatoid arthritis (DeGroot et al., 2001, 

Hein et al., 2003). Accumulation of AGEs within the eye has been detected in ageing 

vitreous specimens and in AMD tissues (van Deemter et al., 2009, Hammes et al., 

1999). It has been shown that accumulation of AGEs in Bruch’s membrane could 

play a crucial role in the RPE age-related dysfunction (Glenn et al., 2012). This may 

occur via activation of AGE receptors in RPE cells which influence the formation of 

basal deposits during aging and AMD (Yamada et al., 2006).  
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1.4.4.3  Lipofuscin 

Lipofuscin is an autofluorescent material that accumulate progressively throughout 

life in RPE and is one of the important markers of retinal ageing (Bonnel et al., 

2003). It enters RPE through phagocytosis of photoreceptor outer segment. This 

phagocytosed material is not completely degraded within lysosome of the RPE and 

thus accumulate within RPE over time throughout life (Bonnel et al., 2003, Ardeljan 

and Chan, 2013). A linear increase of lipofuscin accumulation was found until age 70 

in a study of 145normal subjects aged 15–80 years (Delori et al., 2001). The 

fluorescence then decreases above age 70 years due age related atrophy of RPE 

cells. Lipofuscin distribution matches and reflects the pattern of age-related loss of 

photoreceptors but does not predict it (Delori et al., 2001). Lipofuscin produces 

superoxide ions after exposure to light particularly blue light, which may compromise 

retinal cell function and may provide a link to light induced retinal damage such in 

AMD (Wassell et al., 1999).  

1.4.5  Para-inflammation and Immunity 

Para-inflammation is an adaptive response to malfunction or tissue stress, aiming to 

restore tissue homeostasis and functionality (Medzhitov, 2008, Xu et al., 2009). This 

response is intermediate between basal homeostatic and inflammatory states. Para-

inflammation might play a significant role in initiating and progressing of various 

chronic inflammatory conditions such as AMD if it is sustained for a period and 

turned into inflammation. There are same inflammatory responses were observed in 

normal ageing eyes and in eyes with AMD but with greater severity in AMD, 

suggesting that triggers may exist in both ageing and AMD but with greater 

magnitude in the latter. This may explain why some people, who live in different 
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environmental conditions and/or have gene alterations, develop AMD with age, while 

others do not(Xu et al., 2009).  

Several inflammatory responses were observed in AMD including microglial 

activation, complement activation, and macrophage infiltration (Patel and Chan, 

2008, Jha et al., 2007). Recent studies have suggested that retinal microglial 

activation and choroidal macrophage infiltration involve the pathogenesis of dry and 

wet AMD respectively (Penfold et al., 2001, Skeie and Mullins, 2009). Complement 

activation is believed to be also involved in the pathogenesis of both dry and wet 

AMD (Anderson et al., 2002, Bora et al., 2005). Therefore, it is important to 

differentiate between the protective age-related inflammatory response and the 

detrimental inflammation in AMD in order to develop specific immune therapy for 

AMD patients.  

1.4.6  Epigenetics  

Epigenetics is a term used to describe a change in gene expression without a 

change in gene DNA sequence. Modification in gene expression is one of the main 

mechanisms by which changes in germ layers and tissue may develop with various 

phenotypes over the development course. This occurs without change in DNA 

sequence but via genome modifications that affect function or structure (Ardeljan and 

Chan, 2013). Thus, a new way to examine the non-inheritable risk factors of 

developing AMD has been offered. Recent study examined monozygotic twins with 

discordant AMD to monitor risk factors for AMD stage and severity, and found that 

the twin with the more severe or advanced form of AMD was heavy smoker and/or 

had lower dietary vitamin D (Seddon et al., 2011). The authors concluded that 

epigenetic modifications such as environmental and nutritional are involved in 
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developing of AMD. There is limited data in this field and, therefore, further studies to 

better understand the role of epigenetic in AMD are required. 

1.5 Optical coherence tomography (OCT) 

Optical coherence tomography (OCT) is a contactless non-invasive imaging device 

that enables clinicians to get ocular/retinal sectional scans that resemble to their 

histological correspondents. Its concept is similar to the B-scan ultrasonography but 

using light instead of sound, which allows it to measure a smaller structure equal to 

5-10µm compared to 100-150 µm for ultrasound. This makes OCT image resolution 

nearly 20 times better (Drexler et al., 2003). An OCT B-scan (2-dimensional image) 

is consistent of several A-scans, with each A-scan representing a one dimensional 

data. The OCT images are obtained by emitting light and detecting the reflected light 

echoes using low-coherence interferometry. As our eyes have transparent media 

that allows light to pass through pupil to reach retina, an in vivo cross-sectional view 

of the retina can be obtained as a result. This makes OCT as the most important 

ancillary investigation for diagnosis, evaluation and management of retinal diseases 

such as AMD and diabetic retinopathy. Recently, OCT has also been introduced in 

other medical specialties such as cardiology, gastroenterology, and dermatology.   

1.5.1  The development of OCT in ophthalmology  

The OCT was first introduced in 1991 as an non-invasive imaging device that can 

produce a two-dimensional image of optical scattering from human internal tissue 

microstructures (Huang et al., 1991). This was recognised as akin to pulse-echo 

ultrasound imaging with ability to demonstrate in vitro tomographic imaging in both 

transparent and turbid media by imaging retina and coronary artery respectively.   
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In 1996, the first ophthalmic OCT was released by Zeiss. It relied on patented time-

domain (TD) technology. In the same year, the first OCT atlas ‘‘Imaging of Macular 

Diseases with Optical Coherence Tomography’’ was published. This atlas provided 

essentials for understanding of retinal OCT (Puliafito et al., 1995). However, there 

was slow clinical adaption due to limited information about OCT and by 1999  only 

approximately 180 instruments were only sold (Fujimoto and Swanson, 2016). In 

2000, a second generation ophthalmic OCT instrument was developed with 

ergonomics improvement but only 400 unit were sold. The main issue regarding that 

was the device took long time to obtain image with acceptable resolution. This was 

because a reference mirror need to move during the process of measuring light 

echoes.   

In 2002, the first spectral-domain OCT (SD-OCT) was introduced by Wojtkowski et 

al. (Wojtkowski et al., 2002). This system was initially failed to work probably 

because of motion artefact due to sensitivity to eye movement. A year later, a 

powerful sensitivity advantage of SD-OCT was demonstrated which enabled the 

reference mirror to remain in a fixed position (Choma et al., 2003, de Boer et al., 

2003). This led to corresponding increase in axial scanning speed. As a result, a 

reduction in motion artefact and improvement in signal to noise were achieved. In 

addition, by improving acquisition speed, there was an increase in the amount of 

data that can reproducibly and reliably be measured, allowing the entire macula to 

be scanned. This made 3D imaging and volumetric analysis possible, and allowed 

for more reliable comparisons of inert-visit measurement. Since 2005, SD technology 

has brought a resonance in OCT development and research. Consequently, it 

entered the ophthalmic market and become a standard of care (Fujimoto and 

Swanson, 2016). Although this technology has progressed significantly during the 
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last years, there is still potential need to improve speed (swept-source OCT (SS-

OCT)), tissue contrast (polarisation sensitive OCT) and flow measurements (OCT 

Angiography). Figure 1 summarises the OCT development in ophthalmology.   

 

Figure 1. Timeline showing the development of OCT in ophthalmology. (Ref. 
(Bhende et al., 2018)) 

1.5.2  Comparison between TD-OCT, SD-OCT and SS-OCT   

Of the three OCT technologies that are commercially available, TD-OCT, SD-OCT 

and SS-OCT. SD-OCT is the current commonly used OCT technology. It is able to 

scan up to 70.000 A-scans per second with better resolution, visualisation and 

penetration than TD-OCT. This is because SD-OCT uses a high speed line scan 

camera and spectrometer, acquiring volumetric data without motion artifacts that 

acquired in TD due to moving of reference mirror (Potsaid et al., 2008). One 

disadvantage of using camera-based SD-OCT is a noticeable signal drop-off with 

scanning depth.  SS-OCT does not require a camera and uses a light source with a 

narrow band (Gabriele et al., 2011). As a result, minimal signal drop-off with depth 

occurs and this makes SS-OCT superior to SD-OCT. Table 3 shows the difference 

between the 3 technologies.  
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Table 3. Table 1. Comparison between the three commercially available OCT 
technologies. (Adapted from (Gabriele et al., 2011, Bhende et al., 2018))  

OCT 

Type 

Light Source  Scanning 

Speed 

Axial 

Resolution 

Primary  

Advantages 

Primary 

Disadvantages 

TD Broadband 

width, Diode 

laser (810 

nm) 

400 A-

scans/second 

10 um Intensity information 

acquired in time 

domain; no complex 

conjugate image 

Moving reference 

mirror required 

limiting acquisition 

rate 

SD Broadband 

width, Diode 

laser (840 

nm) 

27,000-70,000 

A-scans/second 

5-7 um No moving reference 

mirror required; higher 

sensitivity than TD-OCT; 

high scanning speed and 

axial resolution 

have been attained 

Noticeable signal 

drop-off with depth 

SS Narrow band, 

swept 

through 

broad range, 

Tunable laser 

(1050 nm) 

100,000-

400,000 A-

scans/second 

5 um No moving reference 

mirror required; higher 

sensitivity than TD-OCT; 

very high scanning 

speeds can be attained; 

minimal signal drop-off 

with depth 

Most ophthalmic 

systems operating 

at longer wave 

lengths, with lower 

axial resolution 

 

1.5.3  OCT image interpretation 

Generally, retinal layers appear either bright (hyper-reflective) or dark (hypo-

reflective).  While the retinal nerve fiber layer (RNFL), ganglion cell layer (GCL) and 

the plexiform layers appear all hyper-reflective layers, the nuclear layers appear 

hypo-reflective as shown in figure 2 (Toth et al., 1997).  
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Figure 2. SD-OCT image of a normal right eye. Adapted from Optical Coherence 
Tomography Scans Website, (http://www.octscans.com).  

Inner retinal structures in OCT appear to correspond well to their histological 

counterparts. In contrast, the interpretation of outer retina correlation between OCT 

and its histological analogues remain controversial. With SD-OCT, four clear bands 

can be seen. Band 1 has been referred to the external limiting membrane (ELM) 

(Drexler et al., 2003). Band 2 is felt to represent the boundary between the inner and 

outer photoreceptor segments  (Srinivasan et al., 2006a). This band bends anteriorly 

in the foveal area which is known as foveal bulge, reflecting cones elongation 

(Srinivasan et al., 2008). Band 3 has been attributed to as the cone outer segment 

tip line (COST). Band 4 has been ascribed to the retinal pigment epithelium (RPE) 

(Puliafito et al., 1995). However, Bands 2 and 3 were not consistent to what was 

proposed by the IN_OCT Panel in 2014 (Staurenghi et al., 2014). They proposed 

that bands 2 and 3 represented the photoreceptors ellipsoid zone and cone 

interdigitation with RPE respectively. In addition, a recent cellular study explored the 

correlation between the four hyper-reflective bands and their histological 

correspondences at the fovea (Figure 3) (Cuenca et al., 2018). The first, second, 

third and fourth hyper-reflective bands corresponded to ELM, ellipsoid zone, cone 

phagosome zone (located in the top of the RPE) and RPE mitochondria zone (at the 

RPE basal portion) respectively. These hyper-reflective zone were separated by 
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three hypo-reflective bands as the following: the most inner hypo-reflective band was 

the cone myoid zone, the middle band was the cone outer segment and the RPE 

interdigitation, and the most outer hypo-reflective band was the RPE melanosomes 

(Figure 3).  

 

Figure 3. An illustration of hyper-reflective and hypo-reflective bands at the outer 
retina. (Adapted from (Cuenca et al., 2018)) 

Abnormal reflectivity on OCT can be seen and divided into hyper-reflective and 

hypo-reflective lesions. Hyper-reflective lesions might be hard exudates, calcification, 

blood, scars (e.g. choroidal rupture, healed choroiditis), Choroidal neovascularisation 

(CNV) and epiretinal membrane. Hypo-reflective lesions can be fluid (retinal 

oedema, subretinal fluid, sub-RPE fluid) and RPE hypopigmented lesions. 

Furthermore, some situations such as refractive error and opaque media might be 

interpreted falsely as hypo-reflective but an overall attenuation of the scan due 

diffused hyporeflectivity can be recognised.   
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1.5.4  Automated image analysis  

Manual labelling or visual identification of OCT images becomes no longer possible 

due to the huge amount of data require to be analysed. There are now different 

quantitative analytic software that enable to perform several automated retinal 

measurements.  For instance, thickness and volume of central retina in nine 

subfields can be measured by inbuilt software in almost all commercial OCT 

machines. This is essential for management of specific retinal diseases like diabetic 

maculopathy where central macular thickness plays a significant role in decision 

making to give or stop anti-VEGF injections.  Furthermore, automated analysis of 

multiple AMD biomarkers on OCT using algorithms would be of considerable value 

(Wintergerst et al., 2017). For example, drusen, one of the earliest AMD signs, can 

be detected and measured accurately (count, area, and volume) by automated 

algorithm (Nittala et al., 2012). This has enhanced our ability to assess AMD patients 

more reliably based on drusen volume (Nittala et al., 2012).  

1.5.5  Retinal segmentation 

The retina is a multi-layered structure and it is important to segment it to its various 

layers in order to study the retinal structure in more detail. Recent advancements in 

OCT imaging technology has enabled to evolve automated segmentation algorithms 

that are able to segment the retinal structure on OCT. There are currently several 

research-oriented automated segmentation software such as OrionTM (Voxeleron, 

Pleasanton, CA), IOWA Reference Algorithm and the built-in software of Spectralis. 

In this essay, we will focus only on Orion software as we used it in our study.  

Orion is a fully automated software for segmentation of retinal layers in volumetric 

OCT images and produces repeatable retinal thickness and volume values (Figure 
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4). It is device-independent, processing data from all widely-available commercial 

OCT devices. The software has been validated in previous studies and 

comprehensively beta tested worldwide, but is still for research applications only. 

(Voxeleron website, [1])  

Figure 4. A screenshot of display options of the Orion segmentation software.  

Orion automatically segments OCT volumes into seven retinal layers as illustrated in 

Figure 5 including Macular Retinal Nerve Layer (RNFL), Ganglion Cell Layer and 

Inner Plexiform Layer (GCIPL), Inner Nuclear Layer (INL), Outer Plexiform layer 

(OPL), Outer Nuclear Layer (ONL), Photoreceptor  complex (PR), Retinal Pigment 

Epithelium-Bruch’s membrane complex (RPE-BM) and total retina, allowing analysis 

of various metrics such as average thicknesses and volumes of the different layers 

within the ETDRS zone based on an automatic foveal centration.  (Voxeleron 

website, [1]) 
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Figure 5. Retinal layer segmentation with detectable layer boundaries in a normal 
healthy eye as analysed automatically by the Orion software. Layers 1-2 = Retinal 

Nerve Fiber Layer (RNFL); Layers 2-3 = Ganglion Cell Ganglion Cell and Inner 
Plexiform Layer (GCIPL); Layers 3-4 = Inner Nuclear Layer (INL); Layers 4-5 = Outer 

Plexiform Layer (OPL); Layers 5-6 = Outer Nuclear Layer (ONL); Layers 6-7 = 
Photoreceptor complex (PR); Layers 7-8 = Retinal Pigment Epithelium-Bruch’s 

Membrane complex (RPE-BM); Layers 1-8 = Total Retinal Layers. 

 

1.5.6  Topcon 3D OCT 

The 3D OCT (Topcon Corporation, Tokyo, Japan) is a fast SD-OCT with 50,000 A-

scans per second, providing high resolution images. The 3D macular scan 

comprised 128 horizontal scan lines over a 6×6 mm2 area and each line comprised 

512 A-scans. The device is able to auto focus with auto-fovea centre detection 

system and auto shot. It offers simultaneous dynamic viewing of 2D, 3D and fundus 

images as well as allows users to monitor serial OCT images of the same patient 

simultaneously. The latter is supported by the ability of the user to scan the same 

location based on the baseline scan. This eliminates subjective alignment error and 

minimizes follow-up scans variability, resulting in accurate observation of changes 

over time. (Topcon website, [2])     

This device is also powered with macula drusen analysis software that enables to 

count drusen and measure their area and volume (Figure 6). This built-in software 

was assessed by Iwama et al., 2012 (Iwama et al., 2012) by comparing manual 

grading of drusen parameters on colour fundus photography with automated 

assessment using the 3D OCT. The study found that there was good agreement 

between the manual and automated way of drusen assessment. This encouraged us 
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to perform a study to explore the effect of drusen as predicators of AMD conversion 

to late stage (Lamin et al., 2019a).  

 

Figure 6. Topcon OCT scan of right eye with AMD showing drusen count, area and 
volume as illustrated on the top right.   

 

The clinical data of macular normative database incorporated into the Topcon 3D 

OCT was derived from 173 subjects of several ethnicities origin in the United States. 

It was included 112 females and 61 males with average of age 42.35 ± 15.59 years 

(range from 19 to 84 years). The included subjects had best corrected visual acuity 

of 20/40 or better (Snellen), intraocular pressure ≤ 21 mm Hg, axial length (22-26 

mm), and no history of any ocular disease (except cataract) and/or ocular surgery. 

OCT was performed to those normal subjects, and only scan quality level of 70 or 

more was accepted and should be free of artefact. After that, images were 

segmented automatically and verified that no errors existed prior to inclusion in the 

normative database. The mean macular thickness was then calculated based on the 



53 
 

Early Treatment of Diabetic Retinopathy Study (ETDRS) grid as shown in table 4. 

(Topconmedical website, [3]).  

Table 4. Macular Mean Thickness and Standard Deviation (SD) by grid ETDRS from 
the normative database. (Topconmedical website, [3]) 

 Centre Inner circle Outer circle 

T S N I T S N I 

Mean 233.68 289.64 302.11 304.40 298.36 240.14 256.75 274.62 246.91 

SD 19.71 14.86 15.51 15.36 15.42 13.20 13.69 16.60 15.31 

CI 95% 77.25 58.24 60.80 60.22 60.43 51.74 53.68 65.06 60.00 

  

1.5.7  OCT in AMD  

Drusen, pseudo-drusen and hyper-reflective foci are the early key features of dry 

AMD. These features with dynamic changes over time have been identified to be risk 

factors for disease progression. Fundus photography and biomicroscopy have been 

the traditional gold standard in the evaluation of drusen morphology and 

development (The Age-Related Eye Disease Study Research, 2001, Ferris et al., 

2013). However, these modalities interpretation is subject to significant discrepancy 

and are not able to outline indistinct drusen (Klein et al., 1991). SD-OCT has strongly 

replaced them and become the most popular modality in the evaluation of drusen. It 

is able to visualise drusen shape, area, height, volume, homogeneity and internal 

reflectivity and other drusen characteristics in details.   

1.5.7.1  Early and intermediate AMD 

It becomes feasible to automatically distinguish AMD from normal eyes by identifying 

total retina volumes and abnormal RPE drusen complex thickening and thinning 

volumes (Farsiu et al., 2014). Drusen are hallmark features of dry AMD. On OCT, 

soft and hard drusen appear as elevations in the RPE layer with variation in size, 

shape and reflectivity. The OCT characteristics of drusen have been revealed in 
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numerous studies (Khanifar et al., 2008, Leuschen et al., 2013, Spaide and Curcio, 

2010). They concluded that most of drusen are convex, homogenous with internal 

reflectivity and without overlying hyper-reflective foci (Khanifar et al., 2008). Hyper-

reflective foci overlying drusen are noted in some cases and it is felt to be pigment or 

RPE migration that associated with the risk of progression to focal atrophy (Ouyang 

et al., 2013a). In addition to these foci, drusen cores and atypical drusen reflectivity 

were also associated with RPE atrophy (Leuschen et al., 2013).    

Several studies have revealed a dynamic drusen growth pattern with a repeated 

cycle of increase and decrease in drusen area and volume over time (Yehoshua et 

al., 2011, Schlanitz et al., 2017).  A prospective longitudinal study by Folgar et 

al.(Folgar et al., 2016) identified that greater baseline drusen volume was associated 

with significant 2-year progression to wet AMD and an increase in drusen volume by 

0.1 mm3 increases the odds of developing CNV by 31%. Abdelfattah et al. 

(Abdelfattah et al., 2016) suggested that drusen volume measured by OCT can be 

used as a biomarker for AMD progression to late stage.  Lamin et al. (2019a) has 

shown that drusen volume growth rate across a 6mm macula cube using automated 

drusen analysis software may be used as a predictor for conversion to CNV 

especially occult type.   

Reticular pseudo drusen or subretinal drusenoid deposits are present in more than 

50% in patients with early/intermediate AMD and their prevalence is strongly 

associated with the presence and severity of AMD (Zarubina et al., 2016). These 

deposits are located above the RPE as opposed to the true drusen and are best 

visualized using infrared reflectance and SD-OCT imaging modalities (Saade and 

Smith, 2014). Like drusen, reticular pseudo drusen can be changed dynamically in 

shape, volume and stage, and developmentally are drusen independent (Querques 
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et al., 2012). Regression of reticular drusen were found to be associated with loss of 

the underlying choroidal thickness and outer retinal atrophy (Spaide, 2013).   

Disruption of ellipsoid zone and thinning of photoreceptor layer overlying drusen 

were observed in eyes with early/intermediate AMD using OCT. It is still unclear if 

these anatomical changes in the outer retina are happened before or after drusen 

formation and if results from mechanical compression or change in photoreceptor 

layer micro-environment from drusen (Schuman et al., 2009). Another abnormal 

manifestation in retinal layers over drusen that can be detected on OCT is the 

presence of hyper-reflective haze in the outer nuclear layer over drusen but this can 

simply be the presence of Henle’s layer (Schuman et al., 2009, Lujan et al., 2011).   

1.5.7.2  Wet AMD 

Wet AMD is referred to the neovascular/exudative type of AMD and is characterised 

by the formation of CNV. This CNV is associated with retinal pigment detachment 

and subretinal fluid as a result of its structure immaturity that results in fluid 

accumulation in different layer levels (Bressler et al., 1988b).   

CNV associated with AMD has been classified in several ways based upon the 

available technology used to detect the presence neovascularisation. Using 

fluorescein angiography (FA), CNV has been classified as either classic or occult 

(1991b). Classic CNV is characterised by well-demarcated hyperfluorescence in the 

early FA phase with progressive dye pooling in the subneurosensory space. Occult 

or minimally classic (less than 50% classic component) is characterised by mottled 

hyperfluorescence in the mid FA phase with late leakage of undetermined source. 

Using ICG angiography, occult CNV can be easily detected by delineating the CNV 

borders (Lim et al., 1995).   
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Gass (Gass, 1994) proposed a CNV classification system based on the location and 

structure of the formed CNV with respect to the RPE layer. CNV proliferated under 

the RPE was classified as type 1, while CNV proliferated above the RPE was 

classified as type 2. This classification was not well accepted because of the lack of 

appropriate imaging modalities. However, a modified Gass’ classification was 

proposed by Freund et al. (Freund et al., 2010) based on OCT. This new 

classification includes the previous 2 types and added a type 3 neovascularisation, 

the so-called retinal angiomatous proliferation, which is characterised by intraretinal 

neovascularisation. OCT is now the modality of choice to identify CNV’s earliest 

signs and disease activity in wet AMD. Combining a variety of imaging modalities 

such as OCT, FA and ICG might be useful for a comprehensive understanding of the 

pathophysiology of CNV formation in wet AMD as well as for monitoring disease 

activity.    

1.6 Changes in retinal layers with age, gender, 

ethnicity and axial length  

1.6.1  Introduction  

Optical coherence tomography (OCT) yields a cross-sectional representation of the 

retinal layers with resolution approaching that with histologic section, allowing 

precise evaluation of the normal macular structure as well as assessment of macular 

structural pathology. Qualitative assessment of OCT images guides clinical 

diagnoses, early detection of various retinal disorders and monitoring pathological 

macular changes. Traditionally, total retinal thickness is the quantitative measure for 

macular OCT in both clinical and research settings. Recently, development of 

segmentation layer algorithms have allowed quantification of the thickness or volume 
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of each retinal layer separately. This is of clinical and scientific interest as layers are 

often selectively attenuated in different retinal diseases. It is also important to be 

able to distinguish between physiological and pathological changes by 

understanding the normal structure of retinal layers, each of which has its specific 

structure and might be affected by different factors.  

Measurements of macular thickness and volume are commonly reported on the 

basis of the standard Early Treatment of Diabetic Retinopathy macular map (Figure 

7), which divides the macula into nine sectors. These include fovea (1mm), inner 

macula (1-3mm) and outer macula (3-6 mm) which are subdivided into 4 regions 

including superior, nasal. Inferior and temporal. There are 2 different measures of 

the fovea that have been used by studies; centre point foveal thickness (CPFT) and 

central foveal thickness (CFT). CPFT is defined as average of six radial scans 

centered at the foveola. CFT is defined as the central area with a diameter of 1 mm. 

These measurements were found to be affected by various factors such as age, 

gender, ethnicity and axial length (AL). This should be taken in consideration when 

interpreting retinal layer measurements. This section will summarises the impact of 

age, gender, ethnicity and refractive error on macular layer thicknesses and 

volumes.    
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Figure 7. Illustrative images depicting the 9 ETDRS subfields.  A, Macular image 
showing 1 mm, 3 mm and 6 mm circular areas. B, Macular image showing fovea, 
inner macula and outer macula.  

1.6.2  Age impact on macular layer thicknesses and 

volumes 

Several OCT studies have explored the effect of aging in changing the macular layer 

measures. It is essential to distinguish aging changes from pathological one. This 

can help in deep understanding of various macular diseases.                                       

Most of studies that measured CPFT reported an increase with age due to outer 

retinal layers thickening, as measured using OCT (Duan et al., 2010, Kashani et al., 

2010). CPFT values were presented in two age groups (< 50 and ≥ 50 years) with 

greater CPFT values in older age group (149-178 µm) than younger age groups 

(142-162 µm) (Subhi et al., 2016). The CPFT thickening rate for each decade ranges 

from 3.6 µm to 5 µm. However, some studies did find any change in CPFT with 

increasing age (Eriksson and Alm, 2009, Appukuttan et al., 2014).  
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Recent studies have measured CFT using OCT and found that CFT does not seem 

to change with age (Appukuttan et al., 2014, Agawa et al., 2011).  Other studies 

reported that the CFT either increase by 2–4 µm per decade (Duan et al., 2010, 

Kashani et al., 2010)  or decrease by 2.7 µm per decade (Eriksson and Alm, 2009). 

Analysis from the UK Biobank study from the scans of over 32000 participants 

showed a reduction in CFT with increasing age (Patel et al., 2016).  

The total macular thickness and volume were found to have negative correlations 

with age (Alamouti and Funk, 2003, Eriksson and Alm, 2009, Duan et al., 2010, 

Kashani et al., 2010, Appukuttan et al., 2014, Nieves-Moreno et al., 2018). Similarly, 

the UK Biobank study revealed macular  thinning with age (Patel et al., 2016). A 

review study reported that total macular thickness and volume decrease for each 

decade by 2.1–4.2 µm and 0.10-0.14 mm3 respectively (Subhi et al., 2016). 

A histological study showed that retinal neurons are lost annually by rate of 0.3-0.6 

% due to aging process (Repka and Quigley, 1989). In vivo OCT studies observed 

that inner retinal layer thickness in specific decreases with age and this including 

retinal nerve fiber layer, ganglion cell layer and inner nuclear layer thicknesses (Ooto 

et al., 2011, Appukuttan et al., 2014). This might explain why total macular thickness 

decreases with age and not CFT where inner retinal layers constitutes smaller 

portion of the total foveal thickness (Figure 8) (Subhi et al., 2016). 

A correlation between thicknesses/volumes of specific macular layers and age were 

performed by different studies with various results. Most studies revealed findings on 

age-associated changes of inner retinal layers. Reductions in thicknesses of inner 

retinal layers with increasing age are well-established in studies with a large sample 

(Subhi et al., 2016). This includes age-associated decrease in thickness of RNFL 
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(Neuville et al., 2009, Girkin et al., 2011, Ooto et al., 2011, Demirkaya et al., 2013) 

and GCL/IPL/INL (Ooto et al., 2011, Demirkaya et al., 2013, Nieves-Moreno et al., 

2018). However, other studies specifically with small sample did not find age-

associated changes in the inner retinal layer thicknesses (Savastano et al., 2014, 

Wang et al., 2015).  

Few studies revealed findings on age-associated changes of outer retinal layers. 

Increase in OPL thickness and volume has been reported in two studies of normal 

eyes (Demirkaya et al., 2013, Nieves-Moreno et al., 2018). ONL thinning with age 

has been reported in a recent study (Nieves-Moreno et al., 2018). Increasing PR 

layer thickness with age was also recently shown in an OCT study (Pakdel et al., 

2018), whereas another study reported PR layer thinning with age (Nieves-Moreno 

et al., 2018). A positive correlation between foveal RPE thickness and age has also 

been reported, supporting the finding of increasing CFT with age (Demirkaya et al., 

2013). However, the UK Biobank study revealed RPE thinning with age (among 

those aged over 45) (Ko et al., 2017). It is possible that differences in segmentation 

methods or population demographics might explain the controversial results. 
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Figure 8. Illustrative images depicting the age-associated changes in macular layer 
thicknesses. Light yellow colour represents thickness increase and dark orange 
represents thickness decrease. Ageing results in an overall thickening of the fovea 
(CFT) and a thinning of the inner and outer macula. (Adapted from ref. ((Subhi et al., 
2016)). 

1.6.3  Gender impact on macular layer thicknesses and 

volumes 

The impact of gender on foveal and macular thickness has been examined by many 

studies (Ooto et al., 2011, Appukuttan et al., 2014, Jonas et al., 2016, Nieves-

Moreno et al., 2018). Otto et al. (2011) measured the CFT and the total macular 

thickness of 130 males and 126 females and found both of them significantly greater 

in males than females. Similarly, Nieves-Moreno et al. (2018) reported that total 

macular thickness of 179 females and 118 males was considerably greater in males 

than females.  

Song et al. (2010) and Wagner-Schuman et al. (2011) showed that males had 11 µm 

thicker fovea than females. Jonas et al. (2016) and Nieves-Moreno et al. (2018) 

showed that males had 8 µm thicker macula than females. RNFL was found to be 

thicker in females (Ooto et al., 2011, Nieves-Moreno et al., 2018), whereas INL, OPL 

and OPL were markedly thicker in males (Ooto et al., 2011).  
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1.6.4  Ethnicity impact on macular layer thicknesses and 

volumes 

A number of studies reported ethnicity-associated changes in CFT and total macular 

thickness. The CFT for Caucasians, Hispanics and African Americans was 

measured by Stratus OCT and found to be 200.2±2.7 µm, 194.7±3.9 µm and 

181.0±20 µm respectively (Kashani et al., 2010). In another study, the CFT for 

Caucasians and Indians were reported to be, respectively, 272.7±20 µm and 260.1 

±18 µm as measured by Spectralis OCT (Appukuttan et al., 2014). Recent studies 

reported that Caucasian people have a significantly thicker CFT and retinal thickness 

compared to people of Hispanic, African and Asian descent (Girkin et al., 2011, Pilat 

et al., 2014). 

Caucasians were shown to have thicker PR inner and outer segment and ONL in the 

central filed compared to Asians. In contrast, Asians were shown to have thicker 

RPE (Pilat et al., 2014) and thicker RNFL compared to other ethnicities (Girkin et al., 

2011, Appukuttan et al., 2014). One study showed that Africans have the thinnest 

macular inner retina (Girkin et al., 2011). The variation in thickness observed 

between Africans/African Americans and Caucasians appears to be driven by 

differences in foveal pit morphology which is deeper and broader in the Africans 

(Wagner-Schuman et al., 2011).  

1.6.5  Axial length impact on macular layer thicknesses and 

volumes                                                                                                                      

Existing literature about axial length-associated change in retinal thickness shows 

controversial results. No effect of AL on retinal layer thickness has been reported in 
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a recent study of 146 healthy eyes (Wang et al., 2015). However, decrease in total 

macular and total macular volume with increasing AL has also been reported (Song 

et al., 2010).  Studies on myopes by Appukuttan et al (2014) and Jonas et al. (2016) 

showed that myopic eyes had thicker foveas and thinner parafovea.    

1.7  Heritability of retina and AMD 

1.7.1  Definitions 

Heritability describes how much the genetic values attribute to phenotypic variance. 

In other words, it accounts for differences in someone’s traits that can include 

characteristics like eye colour height, intelligence as well as health problems such as 

autism and schizophrenia. Statistically, heritability is a ratio/proportion of variances of 

a phenotype explained by inherited genetic variants. There are 2 different forms of 

statistics definition for heritability commonly used. Broad sense heritability (H2) which 

explains the effect of total genetic values on phenotypic variation. Narrow sense 

heritability (h2) which refers to the effect of additive genetic values on phenotypic 

variation. This can be used as useful tool to determine the degree of phenotype of 

children from transmitted genes from their parents and to predict risk of disease from 

parenteral family history. Thus, h2 is always less than H2 (total heritability) that can be 

explained by all genetic factors.   

Consequently, from the abovementioned definition of heritability, there is a 

dependence on the population to study the effect of genetics and environmental 

factors. This means that these factors are population specific. As a result, Genetic 

and environmental variances can vary across populations. Theoretically, the 

heritability of one trait in one population cannot be predicted in another population. 

However, in practice, similar traits’ heritabilities of different populations of the same 
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species are commonly similar, or even in different species. Heritability of the same 

trait can also vary between sexes as well as early and late life (Visscher et al., 2008).  

1.7.2  Estimations  

Several data sources are frequently used to estimate heritability. Traditionally and 

commonly, heritability has been estimated from twins’ studies, taking advantage that 

monozygotic (MZ) twin pairs have almost no differences in their DNA. In addition to 

that, MZ pairs have the same shared environment and any phenotypic traits 

differences would be attributed to unique environmental factors. In contrast, dizygotic 

twins (DZ) share approximately 50% of their DNA like other sibling pairs. Moreover, 

both MZ and DZ twin pairs are assumed to have the same shared environmental 

factors. Thus, if a trait appears to be more similar in MZ twins than DZ twins, 

genetics are likely to play an important role in determining that trait. As a result, 

comparing a trait in MZ twins against DZ twins are used by researchers to calculate 

an estimate of its heritability. Therefore, formal calculation of heritability by twin 

modelling permits estimation of the proportion of the variance in a trait that is 

attributable to genetic factors. 

The value of heritability estimate ranges from zero to one. The smaller the 

heritability, the more characteristic is likely to be due to environmental factors. There 

are various characteristics that have heritability of zero like language spoken and 

religion because they are not influenced by genetics. In contrast, the higher the 

heritability, the more the characteristic is likely to come from genetics with very low 

environmental contributions. Several disorders such as phenylketonuria have high 

heritability because they are caused by single gene mutation. Most of multifactorial 
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diseases are influenced by a combination of genetic and environmental and 

therefore have a heritability somewhere in the middle. 

Heritability does not provide information about what proportion of a trait is influenced 

by genetics and what proportion is influenced by environmental factors.  For 

example, heritability of 0.8 means 80% of a trait variability in a population is 

influenced by genetic factors among people but does not mean that the trait is 80% 

caused by genetics. Importantly, heritability can help to understand the influences of 

genetic and environmental factors on complex traits. 

1.7.3  Heritability studies of retina  

Recent twin studies have demonstrated significant heritability for macular thickness, 

macular pigment optical density and spatial patterns, retinal vascular patterns and 

peripapillary RNFL. 

1.7.3.1  Macular thickness 

The ability to measure macular thickness accurately has recently become possible, 

using OCT. Macular thickness is being used in monitoring retinal disorders such as 

diabetic macular edema during treatment. Clearly it is essential to determine to what 

extent genetic factors influence a person’s macular topography. By studying the role 

of genetic factors on healthy macula, a deep understanding of how disease 

influences its thickness can be achieved. Studies in twins offer quantification of 

relative contributions of genetic and environmental factors to variance in retinal 

structures such as macular thickness.  

Recent twins study has examined the genetic contribution to variance in macular 

thickness, as assessed by OCT.  Chamberlain et al (Chamberlain et al., 2006) 

explored the heritability of macular thickness using classical twin study. They 
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examined 109 twin pairs (58 MZ and 51 DZ), aged 50 to 85 years. Retinal thickness 

correlation was markedly higher in MZ than in DZ in all macular regions. The 

intrapair correlation for MZ and DZ twins was, respectively, 0.88 and 0.44 for the 

foveal region, 0.79 and 0.47 for the inner macular region, and 0.8 and 0.50 for the 

outer macular region. The heritability of the macular thickness for the fovea, inner 

macula and outer macula was estimated as 85%, 81%, and 81%, respectively. 

These findings suggest that genetic factors might affect the macular thickness in 

older healthy subjects.        

1.7.3.2  Peripapillary RNFL 

Premature loss of RNFL is characteristic of open angle glaucoma that occurs at 

accelerated rate in contrast to RNFL aging loss that occurs over a longer period of 

time late in life. A number of genes involved in the disease have been identified. 

However, these identified genes account for a small proportion of total number of 

glaucoma patients. Many studies suggest the importance of family history as a major 

risk factor but there are few data to assess the hereditary effect on glaucoma.    

Recent twins study has examined the genetic influence in determining the amount of 

peripapillary RNFL in healthy adults, using OCT. Hougaard et al (Hougaard et al., 

2003) explored the heritability of peripapillary RNFL thickness, using classical twin 

study. They examined 50 twin pairs (25 MZ and 25 DZ), aged 20 to 45 years. The 

within-pair difference in peripapillary RNFL thickness was 4.6% in MZ as compared 

to 7.3% in DZ pairs. The RNFL thickness measurement was found to decrease 3.8 

µm per decade. The heritability of the peripapillary thickness was estimated as 66% 

but this value increased to 83% when corrected for the effect of age. These findings 

suggest that genetic factors might affect peripapillary RNFL thickness in healthy 

adults.   
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1.7.3.3  Retinal vascular patterns 

Human retinal vasculature pattern varies significantly in people (Taarnhoj et al., 

2008). The importance of these variations is not completely understood for health 

and disease. However, correlations were found between retinal vascular fractals and 

ocular and systemic diseases such as diabetic retinopathy, Alzheimer and stroke. 

Moreover, it is found that retinal vascular fractals can predict long term microvascular 

complications in type 1 diabetes mellitus (Broe et al., 2014).   

Genetic and environmental factors influence on vessels’ pattern have been 

examined using retinal blood vessels because they are the only part of human 

vessels that can be visualised directly in vivo. Vergmann et al (Vergmann et al., 

2017) explored the heritability of retinal vascular fractals using classical twin study. 

They examined 99 twin pairs (50 MZ and 49 DZ), aged 20 to 46 years, using the 

box-counting method. The intrapair correlation was markedly higher in MZ than in DZ 

pairs. The intrapair correlation for MZ and DZ twins was 0.505 and 0.108, 

respectively. The heritability was estimated as 54%. These findings suggest that 

genetic factors might demonstrate the branching pattern of the retinal vessels in 

healthy adult twins.  

1.7.3.4  Macular pigment optical density  

Macular pigment (MP) is referred exclusively to two polar carotenoids (lutein and 

zeaxanthin). The concentration of MP is highest within retinal layers of inner and 

outer plexiform layers, and is concentrated maximally at the foveal area and 

decreases towards periphery (Handelman et al., 1988). Several studies have 

evaluated the MP pattern, using the fundus autofluorescence technique 

(Berendschot and van Norren, 2006, Dietzel et al., 2011, Zeimer et al., 2012). 
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Although MP appears to decline monotonically in density in most people, it shows a 

second distribution peak at 0.5° to 1.0° eccentricity in some people. It has been 

proposed that the second peak ring might follow the inner plexiform layer 

(Berendschot and van Norren, 2006). 

It has been suggested that MP has a role in protecting the retina from oxidative 

damage by its ability to absorb blue light. This property of MP and its location and 

distribution may play a role in reducing the risk of AMD as shown in recent studies 

(Nolan et al., 2007, Loane et al., 2008, Kernt et al., 2012). One study showed that 

eyes with AMD appeared to have lower prevalence of the ring like structures than 

healthy eyes (Dietzel et al., 2011). Another study found atypical MP profile to be 

associated with older age and cigarette smoking, which are risk factor for AMD 

(Kirby et al., 2010). Other factors that can affect the MP pattern were also 

determined such as diet, gender and percentage body fat (Curran-Celentano et al., 

2001, Nolan et al., 2004).  Therefore, investigating the role of genes in determining 

the MP levels becomes essential. A classic twin study is ideal for this purpose.  

Tariq et al (Tariq et al., 2014) explored the macular pigment optical density 

heritability using classical twin study. They examined 314 twins (88 MZ and 69 DZ 

pairs), aged 16 to 50 years, using fundus auto -fluorescence. The correlation of the 

ring like patterns of macular pigment was markedly higher in MZ than in DZ. The 

intrapair correlation for MZ and DZ twins was, respectively, 0.75 and 0.22, reflected 

in heritability estimates of 85%. The heritability was estimated as 84% of the total 

variance. Liew et al (Liew et al., 2005) also investigated the macular pigment optical 

density and found that the intrapair correlation for MZ and DZ is 0.83 and 0.50 

respectively. These findings suggest that genetic factors might affect the macular 

pigment optical density.   
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1.7.4  Heritability of AMD 

A number of environmental factors were identified to be associated with AMD. The 

multifactorial nature of the disease makes the possibility to find genetic contributions 

difficult. Heritability has helped to sort out this issue. Twins studies have shown 

remarkable degrees of concordance of AMD in MZ pairs versus DZ pairs. Klein et al 

(Klein et al., 1994) examined 9 MZ pairs and found that the fundus appearance and 

the visual impairment incidence were similar in 8 of the 9 pairs. Meyers et al (Meyers 

et al., 1995) demonstrated higher concordance of AMD in MZ (25 of 25) than in DZ 

(5 of 12) twin pairs, suggesting the importance of genetic factors. Similar findings 

were demonstrated by other studies, confirming that genetic factors play a significant 

role in the etiology of AMD (Hammond et al., 2002, Grizzard et al., 2003).    

Seddon et al (Seddon et al., 2005) examined 840 twins (210 MZ, 181 DZ twin pairs 

and 58 singletons). Of those 840, 241, 162 and 106 were diagnosed with early, 

intermediate and advanced AMD, respectively. They found that heritability estimates 

were 0.46, 0.67 and 0.71 for overall AMD, intermediate and advanced AMD 

respectively. Clearly, it can be said that the more severe form of the disease the 

higher heritability may have.   

The risk for first degree relative has been studied by Klaver et al (Klaver et al., 

1998a). They compared first degree relatives of 87 patients with advanced AMD with 

first degree relatives of 135 control individuals without AMD. The lifetime risk 

estimate for first degree relatives of advanced AMD and controls was 50% (95% CI = 

26-73%) and 12% (95% CI = 2-16%), respectively. The risk was considerably higher 

for first degree relatives who are affected by the diseases. Similar findings were 

found by Seddon et al., who reported that the prevalence of AMD was 26.9% and 
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11.6% for first degree relatives of patients with neovascular AMD and controls 

respectively. Together, these studies confirmed a significant genetic influence in the 

etiology of AMD. 

1.8 Drusen quantification  

1.8.1  Introduction 

Age-related macular degeneration (AMD) is one of the main causes of central vision 

impairment and legal blindness among the elderly worldwide (Evans et al., 2004, 

Friedman et al., 2004, Pascolini and Mariotti, 2012). Drusen are the clinical hallmark 

of early AMD. They can be observed ophthalmoscopically as yellowish white 

deposits and histopathologically as focal accumulations of extracellular material 

localised between the RPE and the inner collagenous layer of Bruch’s membrane 

(Sarks et al., 1994, van der Schaft et al., 1992a). Drusen were classified as small (< 

63 µm), intermediate (63 – 125 µm) or large (> 125 µm) as well as soft or hard (The 

Age-Related Eye Disease Study Research, 2001). 

Drusen are dynamic objects that could enlarge or regress in size through repeated 

cycles of expansion and shrinkage (Yehoshua et al., 2011). A recent natural history 

study of drusen has shown that the average drusen volume was found to increase 

over time and are more likely to progress to GA or CNV (Yehoshua et al., 2011). 

Similarly, drusen can regress and this can also lead to GA or CNV. It is also possible 

for drusen to regress and disappear without any residual sequelae (Bressler et al., 

1995, Klein et al., 2007). This becomes a desirable outcome in clinical trials that 

trying to prevent or slow further progression to late AMD (Parodi et al., 2009, Jobling 

et al., 2015, Garcia Filho et al., 2014). 
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Drusen analysis in AMD is regarded as the main subject of interest when it comes to 

disease diagnosis, classification and progression. Number, area and size of drusen 

have been evaluated by numerous longitudinal studies to assess their correlation 

with risk of progression to late AMD (Bressler et al., 1990b, Wang et al., 2003, Klein 

et al., 2002). Several reports confirmed that confluent large drusen are risk factor for 

development of GA or CNV (Ferris et al., 2005, Klein et al., 2007). These parameters 

are now used for AMD staging and for predicating the likelihood of progression to 

advanced AMD. 

1.8.2  Drusen quantification using colour fundus 

photography 

Traditionally, fundus photography is the gold standard technique in the evaluation of 

patients with drusen. Drusen count, area and volume are measured manually by 

examining colour fundus photographs using a set of standardised circles. Drusen 

quantification are required to classify AMD as well as to assess the risk of 

progression to advanced AMD. Therefore, colour fundus photography becomes a 

fundamental tool in different AMD classification systems and large epidemiologic 

studies such as the Age-Related Eye Disease Study Group, the International 

Classification system and the Wisconsin classification system (The Age-Related Eye 

Disease Study Research, 2001, Bird et al., 1995, Klein et al., 1991).  

Currently, a new clinical AMD classification system that combines the scientific 

literature with expert opinion has been introduced, attempting to establish consensus 

regarding nomenclature and classification systems as well as to make it easier in 

practical use (Ferris et al., 2013). This system developed a 5-stage classification 

scale for AMD. Eyes with no visible drusen or pigmentary abnormalities were 
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considered to have no signs of AMD. Small drusen was termed as drupelets and 

considered as normal ageing changes with no clinical significant for developing late 

AMD. While eyes with medium drusen but without pigmentary abnormalities were 

considered to have early AMD, eyes with large drusen or with pigmentary 

abnormalities associated with at least medium drusen were considered to have 

intermediate AMD. Finally, eyes with CNV or GA were considered to have late AMD. 

Despite these classification systems that are based on colour fundus photograph 

were validated and proven to be useful, there are several drawbacks associated with 

manual grading of drusen, such as, interpersonal variability even with experienced 

graders and its time and effort consuming (Klein et al., 1991, Shin et al., 1999). 

Furthermore, the difficulty in outlining indistinct drusen and the lack of providing 

direct information regarding drusen anatomy and their effect on surrounding retinal 

tissue are crucial limitations for achieving objective clinical assessment.  

Consequently, an automated detection and measurement of drusen from fundal 

photographs has been introduced as an attempt to make the grading of photographs 

easier and cheaper for clinicians and researchers (Bartlett and Eperjesi, 2007, 

Friberg et al., 2007, Smith et al., 2005). Although there is a great advancement in 

this field, these automated techniques have not gained acceptance owing to their 

failure to distinguish between drusen and other pale lesions as well as variable 

results compared with the manual method   (Morgan et al., 1994). As a result, they 

have not been widely used in research or clinical settings.   

1.8.3  Drusen quantification using OCT 

The introduction of OCT in ophthalmic field have revolutionised our understanding of 

different retinal pathologies. OCT provides in vivo cross sectional images of different 
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retinal structures that is analogues to the histological structure. Recently, developed 

spectral domain OCT (SD-0CT) technology allows detection of fine abnormal retinal 

pathology (Srinivasan et al., 2006b, Wojtkowski et al., 2005). SD-OCT can provide 

drusen visualisation as well as it can detect any changes in adjacent retinal anatomy. 

These information have been used to detail pathological features and longitudinal 

changes around drusen location like the development of drusen- associated atrophy 

(Wu et al., 2014, Ouyang et al., 2013b).  

Various automated segmentation algorithms to detect and quantify drusen on SD-

OCT images have been developed (Gregori et al., 2011, Yi et al., 2009, Farsiu et al., 

2008, Schlanitz et al., 2011, Iwama et al., 2012, Chen et al., 2013). Most of these 

algorithms segmented drusen based on the distance between an abnormal elevated 

RPE and a virtual normal RPE floor or calculated Bruch’s membrane. Very few of 

these algorithms have been validated for accurate measurement of drusen area, 

height and volume (Schlanitz et al., 2011, Gregori et al., 2011, Schlanitz et al., 2010, 

Chiu et al., 2012). Several recent studies showed that changes in drusen area and 

volume over time can be assessed automatically using SD-OCT (Abdelfattah et al., 

2016, Folgar et al., 2016, de Sisternes et al., 2014, Yehoshua et al., 2011, Nathoo et 

al., 2014). Thus, this strategy could change clinical practice significantly as a useful 

alternative method to drusen measurement by human graders using colour fundus 

photographs.   

Currently, there are three SD-OCT devices provided with automated segmentation 

algorithms including Cirrus (Carl Zeiss Meditec Inc., Dublin, CA), 3D OCT (Topcon, 

Tokyo, Japan) and Spectralis (Heidelberg Engineering, GmbH, Heidelberg, 

Germany). Schlanitz et al. (Schlanitz et al., 2010) compared the performance of the 

automated segmentation algorithms in the three SD-OCT devices by analysing a 
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total of 1356 drusen. They concluded that Cirrus showed significantly fewer errors in 

detecting drusen than 3D OCT, while Spectralis did not detect drusen accurately 

owing to its failure of offering a true RPE segmentation. However, Iwama et al. 

(Iwama et al., 2012) has also evaluated the algorithm in 3D OCT and demonstrated 

that their algorithm allowed automated drusen area and volume assessment with 

minimal segmentation failures and good agreement with the assessment by certified 

graders on colour fundus photography.   

1.8.4  Comparing drusen quantification by OCT with colour 

fundus photography 

The representation of drusen is different between colour fundus photography and 

OCT. In colour fundus images, drusen are spotted as a yellow clusters within the 

retina, while in SD-OCT algorithm defines drusen as a degree of deformity in the 

retinal pigment epithelial layer (RPE) (Diniz et al., 2014, Jain et al., 2010). 

Consequently, small drusen are not detected by OCT as they do not elevate RPE 

layer considerably. As a result, drusen count and area are underestimated by SD-

OCT compared to fundus photography (Gregori et al., 2014, Yehoshua et al., 2013, 

Diniz et al., 2014). However, drusen volume are measured reliably by SD-OCT 

(Gregori et al., 2011). It is possible for drusen volume to decrease by 88% without 

any apparent change in colour fundus photographs and still be accurately measured 

by SD-OCT algorithm, which render this technique superior to colour fundus 

photography (Yehoshua et al., 2011). In addition, SD-OCT algorithm can measure 

true drusen not pseudodrusen (reticular drusen or subretinal drusenoid deposits), 

which lie above the RPE layer (Sivaprasad et al., 2016).  
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1.8.5  Recent clinical studies based on OCT drusen 

quantification 

The ability of SD-OCT to measure drusen count, area and volume encouraged 

researchers to study the effect of these parameters on disease progression to 

advanced AMD (CNV or GA). Several reports have been published in this regard 

with variant results. Yehoshua et al. (Yehoshua et al., 2011)  evaluated prospectively 

the change in drusen area and volume of 143 eyes over 2 years using SD-OCT. The 

changes in drusen volume were more prominent over a longer follow up periods (12 

and 24 months) than at 6 months time. In this study 48% of eyes showed an 

increase in drusen volume while 40% remained stable and 12 % decreased at 12 

months.  

de Sisternes et al. (de Sisternes et al., 2014) using SD-OCT studied quantitative 

characteristics of drusen (count, area, volume and other features of drusen) to 

predict the likelihood of progression from early and intermediate AMD to CNV. Their 

retrospective study represented the results of 186 eyes of 128 AMD patients 

followed over a period of 5 years. They demonstrated that drusen volume, area, 

height and reflectivity are key features that can predict disease progression and 

drusen volume is the most sensitive predicator for progression within 30 months. 

Nathoo et al. (Nathoo et al., 2014) collected retrospective data of 83 AMD patients to 

analyse the association of drusen load with the development of late AMD. The 

authors found an association between drusen volume and drusen area, and the 

development of CNV or GA over a period of 2 years using SD-OCT. Abdelfattah et 

al. (Abdelfattah et al., 2016) followed retrospectively 89 patients with wet AMD in one 

eye and for a total follow up period of two years. This study showed that a drusen 
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volume of 0.03 mm3 and more, in the fellow eye, is associated with four-fold 

increase in the development of late stage AMD. Furthermore, the baseline drusen 

volume was significantly higher in eyes developed late stage AMD. Folgar et al. 

(Folgar et al., 2016)  reported similar findings and interestingly in their study for each 

0.1 mm3 increase in baseline volume there was an increase of 31% in risk of 

developing CNV. On the other hand, Silva et al. (Silva et al., 2011) showed that there 

was no association between drusen measurements and disease progression to 

CNV. In their study drusen area and number were evaluated as predictive risk 

factors of developing CNV in the fellow eyes of patients with wet AMD using 

multimodal imaging including SD-OCT.  

A recent study of 31 eyes evaluated drusen volume changes and their association 

with vascular changes and capillary retinal perfusion in intermediate AMD over a 

year follow-up (Reiter et al., 2019). The authors demonstrated that the increase in 

drusen volume was not associated with vascular changes or capillary retinal 

perfusion. A physiological-approached study of 15 AMD patients measured oxygen 

concertation at the outer retina, and then compared correlations between retinal 

thinning and drusen height and between retinal thinning and retinal hypoxia and 

found that the latter had a stronger correlation, indicating the potential value of this 

kind of study and its ability to detect earlier changes than OCT do (McHugh et al., 

2019).  
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1.9 Overall hypothesis of this thesis 

There are no markers that inform the time of conversion from early/intermediate 

AMD to wet AMD. For this reason, there is an unmet need to identify biomarkers that 

can fully predict the progression to wet AMD in order to allow early intervention 

before permanent damage. This study is designed to determine whether changes in 

imaging characteristics can more precisely explain conversion and be used to predict 

progression to wet AMD. I studied cohorts of normal eyes with aging, eyes with 

early/intermediate AMD and fellow eyes of patients with unilateral wet AMD to 

predict the rate of conversion to wet AMD. 

 

1.10  Aims and objectives of this thesis 

This study was designed to fulfil the following objectives:  

1. To identify changes in retinal layer volumes in AMD eyes, which might be 

used as biomarkers for disease conversion. 

2. To evaluate whether heritability was responsible for ageing changes of the 

retinal layer volumes. 

3. To evaluate whether any of drusen parameters (count, area, volume) would 

predict AMD progression to CNV. 

4. To identify biomarkers that can predict CNV type (occult or classic). 

5. To evaluate whether artificial intelligence such as deep learning methods 

using OCT imaging data can predict the likelihood of progression from 

early/intermediate AMD to wet AMD 
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2 Chapter 2: Methodology  

2.1 General methods 

This is a retrospective observational cohort study of patients attending a tertiary 

referral medical retina clinic in Moorfields Eye Hospital between April 2010 and 

December 2018. Clinical and demographic data were collected from the medical 

records of the patients. Available OCT scans and FFA images were also collected 

and correlated with the patients’ clinical data.  

2.1.1  Study population 

Patients with unilateral neovascular AMD and early or intermediate AMD in the fellow 

eye with 2 years follow-up were selected for the study. The eligible patients’ fellow 

eyes were divided into progressors and non-progressors. The progressors were 

defined as fellow eyes with new onset macular fluid on “Year 2” scans confirmed by 

fluorescein angiography to show the presence of CNV. The non-progressors were 

the fellow eyes that had not converted on “Year 2” scans. In chapter 6, the 

progressors were classified based on the type of CNV into classic and occult.  

A control group was also included in the study from normal healthy fellow eyes of 

patients with branch retinal vein occlusion.  

2.1.2  Data collection  

A baseline demographic data including age, sex, and laterality was recorded for all 

participants. Drusen measurements such as count, area and volume as well as 

retinal layer volumes such as retinal nerve fiber layer, ganglion cell-inner plexiform 

layer, inner nuclear layer, outer nuclear layer, photoreceptors, retinal pigment 

epithelium-Bruch’s membrane complex and total retinal volume were collected at 
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baseline, year 1 and year 2. These collected data were tabulated into an Excel 

spreadsheet before transferring them into SPSS for statistical analysis.   

2.1.3  Inclusion criteria  

The inclusion criteria for the AMD eyes included early or intermediate AMD in the 

study eye and neovascualr AMD in the fellow eye. Inclusion criteria also required the 

availability of three annual SDOCT scans captured at 12-15 months intervals. At 

least three scans over two years was required prior to conversion.  

2.1.4  Exclusion criteria  

Exclusion criteria were development of CNV within two years of the follow-up. Eyes 

with geographic atrophy, polypoidal choroidal vasculopathy, vitelliform lesions or 

other macular pathology such as diabetic retinopathy were excluded from the study. 

As we know that 20% of all AMD patients have polyps, for this reason we excluded 

these patients based on clinical suspicion and/or ICG availability. In addition, study 

eyes with poor quality OCT scan images (signal strength < 30), high refractive error 

(≥6 dioptres), glaucoma, previous retinal surgery or any other posterior segment 

disease were also excluded from the study. 

2.1.5  Ethical approval  

The Ethical Review Board of Moorfields Eye Hospital approved the data collection 

from the hospital medical records (ROAD 17/004). In chapter 4, the study had also 

local research ethics committee approval from the TwinsUK registry based at St 

Thomas’ Hospital and participants gave informed consent. These studies were 

conducted in accordance with the tenets of the Declaration of Helsinki.  

 



80 
 

2.2  Retinal imaging, drusen measurements and 

retinal layer segmentation 

Macular OCT images were acquired from one/both eye/s using a 6x6 mm macular 

cube scan (3D OCT, Topcon Corporation). All eyes had three SD-OCT scan images 

at baseline, year one and year two. The 3D OCT had a 6 µm axial image resolution 

and imaging speed of 18,000 axial scans per second. On the 3D OCT, the 3D 

macular scan used was 128 line raster with 512 A-scans each, within 6×6 mm2. This 

kind of imaging gives a detailed structure of the retina similar to its histological 

structure. However, the choroidal layers could not be measured using this method. 

The drusen characteristics in the fellow eye of each patient were determined using 

the drusen quantification software version 2.00 that is available on the Topcon 3D 

OCT device. Drusen measurements including drusen count, area and volume within 

the 6-mm cube centred on the fovea were collected retrospectively at baseline, year 

1 and year 2. The algorithm on 3D OCT, which was validated in a previous study 

(Iwama et al., 2012), defines drusen based on calculating the difference between the 

elevated RPE caused by drusen and a virtual line representing the presumed 

Bruch’s membrane. This study also showed that small drusen were poorly detected. 

Topcon 3D-OCT-2000 has a smallest drusen detection limit of 340 µm (Schlanitz et 

al., 2011). 

Macular layer volumes were derived for circles of 3 and 6 mm diameter around the 

foveal centre, using automated layer segmentation software (Orion, Voxeleron LLC). 

The following layer volumes were derived: retinal nerve fiber layer (RNFL), ganglion 

cell-inner plexiform layer (GCIPL), inner nuclear layer (INL), outer nuclear layer 

(ONL), photoreceptors (PR), retinal pigment epithelium-Bruch’s membrane complex 
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(RPE-BM) and total retinal volume (TRV). The layer boundaries are shown for a 

typical participant’s OCT scan in Figure 9.  

 

Figure 9. Retinal layer segmentation with detectable layer boundaries in a normal 
eye as analysed automatically by the Orion software. Layers 1-2 = Retinal Nerve 
Fiber Layer (RNFL); Layers 2-3 = Ganglion Cell Ganglion Cell and Inner Plexiform 
Layer (GCIPL); Layers 3-4 = Inner Nuclear Layer (INL); Layers 4-5 = Outer Plexiform 
Layer (OPL); Layers 5-6 = Outer Nuclear Layer (ONL); Layers 6-7 = Photoreceptor 
complex (PR); Layers 7-8 = Retinal Pigment Epithelium-Bruch’s Membrane complex 
(RPE-BM); Layers 1-8 = Total Retinal Layers 

 

2.3 Statistical Analysis  

 A test for normality (Shapiro-Wilks) was performed for each parameter. Where the 

distribution found to be normal, Student’s t-test was used; otherwise, nonparametric 

t-tests (Mann–Whitney U and Wilcoxon signed-rank) were used.  

The baseline measurements were analysed as predicators of progression to CNV 

using logistic regression analysis. Change in drusen measurements (count, area and 

volume) and/or retinal layer volumes from baseline to year 1 (first year) and from 

year 1 to year 2 (second year) were compared between the AMD eyes and the 

control group with the Mann-Whitney U test. A sub-analysis within each group was 

performed comparing drusen measurements and/or retinal layer volumes between 

the first year and the second year using Wilcoxon signed-rank test.  
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All statistical analyses were performed using SPSS software (IBM SPSS Statistics 

for Windows, Version 24.0). P values of < 0.05 were considered statistically 

significant. 
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3 Chapter 3: Changes in volume of various 

retinal layers over time in early and 

intermediate AMD 

3.1  Introduction  

Age –related macular degeneration (AMD) is one of the major causes of irreversible 

vision loss and blindness among people over 50 years of age in the western world 

(van Leeuwen et al., 2003, Friedman et al., 2004, Resnikoff et al., 2004). It is a 

progressive degenerative disease of the macula and is generally considered as a 

disease of the outer retina. AMD can be classified clinically into early, intermediate 

and advanced stage to characterize disease severity (Ferris et al., 2013). There are 

two advanced forms of AMD: neovascular (exudative or wet) AMD (nAMD) and 

geographic atrophy (GA).  

 Although nAMD is less common than GA, nAMD is responsible for 90% of all 

advanced cases of severe visual loss and legal blindness due to the development of 

choroidal neovascularisation (CNV) (Ferris et al., 1984). CNV is abnormal choroidal 

blood vessels that grow through Bruch membrane into the subretinal space, leading 

to the accumulation of subretinal fluid and pigment epithelium detachment (Green 

and Enger, 1993a, Campochiaro et al., 1999). CNV can develop into a discform scar 

as it matures. Therefore, there is an unmet need to identify biomarkers that can fully 

predict the progression to nAMD in order to initiate early treatment to reduce vision 

loss.  
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Different retinal layers have been described histologically as being affected by AMD. 

Photo- receptor cells loss (predominately rods) was found to occur in the earlier 

stage of AMD (Curcio et al., 1996, Jackson et al., 2002, Medeiros and Curcio, 2001), 

while an atrophy of the ganglion cell layer (GCL) occurs in the late stage of the 

disease (Medeiros and Curcio, 2001). 

The advancement in OCT’s image resolution have allowed us to compare in vivo 

retinal layers to the histological structure and improve segmentation to assess 

individual retinal layers. Several studies performed manual segmentation of retina 

and demonstrated that there are changes in the photoreceptor layer thickness, which 

is affected by drusen dynamics (Schuman et al., 2009, Hartmann et al., 2012, 

Sadigh et al., 2013, Sadigh et al., 2015). 

Recently, automated segmentation software programmes that enable analysis layers 

of the retina qualitatively and quantitatively have been introduced (Tan et al., 2016, 

Terry et al., 2016). Using these softwares, recent studies of AMD eyes have 

demonstrated that there are changes not only in the outer retinal layers as previously 

established but also in the inner retina such as the ganglion cell complex (GCC) 

thickness, which includes GCL and inner plexiform layer (IPL) (Savastano et al., 

2014, Lee and Yu, 2015, Yenice et al., 2015, Zucchiatti et al., 2015, Muftuoglu et al., 

2017).  

3.2 Aims 

In this study, we aimed to look at change in retinal layer volumetric measures on 

OCT in eyes with early/intermediate AMD compared to a control population over time 

to understand the longitudinal changes in these layers. It is also compared between 

the eyes that progressed to wet AMD and others that did not.   
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3.3 Methods 

 In addition to the methods have been discussed in chapter 2, the following analysis 

was also used in this study.  

Comparisons of mean of all retinal layer volumes between AMD eyes and control 

eyes were performed at baseline and year 2. Volume changes from baseline to year-

2 were also compared in each group and between the 2 groups.  

A sub-analysis was performed in the AMD eyes comparing retinal layer volumes 

between AMD eyes that progressed (progressors) to wet AMD and others that did 

not progress (non-progressors). Mean volumes of retinal layers were compared 

between the 2 groups at baseline and year 2. Longitindual changes of retinal layer 

volumes over the 2-year follow-up were also compared within each group and 

between the groups. The baseline retinal layer volumes were also analysed as 

predicators of progression to wet AMD using logistic regression analysis that 

generated the odds ratio (OR) with 95% confidence intervals (CIs).  

3.4  Results  

3.4.1  Demographics of Participants 

102 eyes of 102 individuals were included in the study. 71 participants (42 females 

[59.2%] and 28 males [39.4%]) were included in the AMD group and 31 participants 

(19 females [61.3%] and 12 males [38.7%]) were included in the control group.  

Mean (SD) ages were 74 (8.5) years and 64.1 (6.4) years for AMD and controls 

respectively.  

Of the 71 AMD participants, 31 patients progressed to wet AMD at 24 months ± 2 

months, while 40 did not progress (Figure 10). The progressors consisted of 23 
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females and 8 males. The non-progressors consisted of 20 females and 20 males. 

Mean ages were similar between the two subgroups. Table 5 summarises the 

participant demographics.   

 

 

 

 

Figure 10. Flow chart of the study participants of Chapter 3 

 

 

 

Study 
Participants 

(n=102)

Control Group 
(n=31)

AMD Group
(n=71)

Progressors 
(n=31)

Non-
Progressors 

(n=40)
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Table 5. Demographics of the Study Participants 

Variable Control AMD AMD Non-
Progressors 

AMD 
Progressors 

Number of Eyes  31 71 40 31 
Age  
  Mean (SD) 
  Median 
  Minimum- 
Maximum  

 
64.1 (6.4) 
65 
54 – 79 

 
74 (8.5)  

76 
57 - 91 

 
72 (8.7) 
72.5 
57-89 

 
76 (7.5) 
77 
62-91 

Sex  
  Female, n (%) 
  Male, n (%) 

 
19 (61.3%) 
12 (38.7 %) 

 
43 (60.6%) 
28 (39.4%) 

 
20 (50%) 
20 (50%) 

 
23 (74.2%) 
8 (25.8%) 

Laterality  
  Right, n (%) 
  Left, n (%) 

 
21 (67.7%) 
10 (32.3%) 

 
48 (67.6%) 
23 (32.4%) 

 
26 (65%) 
14 (35%) 

 
22 (71%) 
9 (29%) 

Follow-Up Exam 
/ Conversion 
(months) 
Mean (SD) 
Median 
Minimum – 
Maximum 

- -  
 
23.75 (1.33) 
24 
20 - 26 

 
 
23.32 (2.06) 
24 
17 - 27 

 

3.4.2  AMD versus Control 

3.4.2.1  Mean Retinal Layer Volumes at Baseline and Year 2 

Table 6 shows mean volumes of individual retinal layers in the central macular area 

(6 mm diameter) measured at two time points, baseline and year 2. There were 

statistically significant differences between the 2 groups in mean volumes of GCIPL, 

INL, PR and RPE-BM at both baseline and year 2. The GCIPL and INL had less 

volumes in AMD eyes than controls at baseline (both P < 0.05) and year 2 (both P < 

0.05). Conversely, PR and RPE-BM volumes were greater in AMD eyes than 

controls at baseline (both P < 0.05) and year 2 (both P < 0.05). Otherwise, no 

significant differences were found between the 2 groups in volumes of other retinal 

layers.  
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Table 6. Mean Retinal Layer Volumes at Baseline and Year 2 in Age-Related 
Macular Degeneration Eyes (n = 71) and Control Eyes (n = 31) 

 

 

Retinal Layer and Time Point AMD Group  

(n = 71) 

Mean (SD)    

Control Group 

(n = 31) 

Mean (SD) 

P Value 

TRV Baseline 8.22 (.44) 8.29 (.35) 0.469 

Year 2 8.16 (.45) 8.23 (.42) 0.563 

RNFL Baseline 1.12 (.13) 1.09 (.08) 0.506 

Year 2  1.09 (.13) 1.08 (.07) 0.438 

GCIPL Baseline 1.84  (.19) 1.97 (.14) 0.001 

Year 2  1.85 (.18) 1.95 (.16) 0.011 

INL Baseline 1.00 (.07) 1.03 (.06) 0.026 

Year 2  .990 (.07) 1.03 (.06) 0.014 

OPL Baseline .666 (.12) .672 (.06) 0.544 

Year 2  .705 (.11) .675 (.07) 0.133 

ONL Baseline 2.29 (.22) 2.24 (.17) 0.438 

Year 2  2.21 (.21) 2.23 (.16) 0.426 

PR Baseline 1.28 (.09) 1.25 (.06) 0.006 

Year 2  1.30 (.08) 1.25 (.06) 0.008 

RPE-BM Baseline .148 (.08)  .102 (.11) 0.000 

Year 2  .169 (.11) .102 (.09) 0.000 

 

Statistically significant values with P < 0.05 are in bold. 

TRV = Total Retinal Volume;  RNFL = Retinal Nerve fiber Layer; GCIPL = Ganglion Cell and Inner 

Plexiform Layer; INL = Inner Nuclear Layer; OPL = Outer Plexiform Layer; ONL = Outer Nuclear 

Layer; PR = Photoreceptors;    RPE-BM = Retinal Pigment Epithelium-Bruch’s Membrane complex  
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3.4.2.2  Longitudinal Volume Change from Baseline to Year 2 

Longitudinal comparisons from baseline to year 2 in AMD and control eyes are 

shown in table 7. Mean total retinal volumes (TRV) decreased significantly from 

baseline to year 2 in both AMD and control eyes by 0.0561 (P = 0.018) and 0.0579 

(P = 0.011) respectively. From baseline to year 2 in AMD eyes, mean volumes of 

RNFL and ONL decreased by 0.0232 mm3 (P= 0.033) and 0.0851 mm3 (P= 0.001) 

respectively. In contrast, there were significant increase in mean volumes of OPL 

and RPE-BM in AMD eyes by 0.0391 mm3 (P = 0.000) and 0.0209 mm3 (P = 0.000) 

respectively.  

From baseline to year 2, there were significant differences between AMD eyes and 

controls in longitudinal volume change of OPL (P = 0.02), ONL (P = 0.008) and RPE-

BM (P = 0.02). Otherwise, no significant deference was found between the 2 groups 

in the longitudinal volume change from baseline to year 2 of other retinal layers. 

Differentiation between AMD and control groups by volume measurements and 

longitudinal volume change are shown in Figure 11. It can be noted that, despite 

some overlap existed between AMD and controls, the GCIPL, INL, and ONL 

volumes of the AMD eyes were reduced substantially compared to control eyes.  
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Table 7. Longitudinal Change in Retinal Layer Volumes in Age-Related Macular 
Degeneration Eyes (n = 71) and Control Eyes (n = 31). 

 

Retinal Layer and Group Volume Change  

(Baseline – year 2) 

Mean (SD) 

P Value* P Value‡ 

TRV AMD .0561 (.195) 0.018 0.956 

Control .0579 (.118) 0.011 

RNFL AMD .0232 (.09) 0.033 0.904 

Control  .0184 (.05) 0.052 

GCIPL AMD -.0077 (.114) 0.324 0.757 

Control  .0171 (.074) 0.075 

INL AMD .0131 (.056) 0.053 0.361 

Control  .0035 (.045) 0.672 

OPL AMD -.0391 (.094) 0.000 0.02 

Control  -.0028 (.058) 0.792 

ONL AMD .0851 (.148) 0.001 0.008 

Control  .0206 (.06) 0.799 

PR AMD -.0184 (.072) 0.130 0.175 

Control  .0011 (.067) 0.926 

RPE-BM AMD -.0209 (.052) 0.000 0.02 

Control  .0007 (.023) 0.754 

 

Statistically significant values with P < 0.05 are in bold. 

TRV = Total Retinal Volume; RNFL = Retinal Nerve Fiber Layer; GCIPL = Ganglion Cell and Inner 

Plexiform Layer; INL = Inner Nuclear Layer; OPL = Outer Plexiform Layer; ONL = Outer Nuclear 

Layer; PR = Photoreceptors; RPE-BM = Retinal Pigment Epithelium-Bruch’s Membrane complex 

*Wilcoxon signed-rank test and Paired t-test for paired volume measurements, baseline versus 

year 2. 

‡ Mann-Whitney U test and Independent t-test, AMD group versus control group. 
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Figure 11. Box plots showing longitudinal volume change of AMD and control eyes  in total 
retinal volume (TRV), Retinal Nerve Fiber Layer (RNFL), Ganglion Cell Ganglion Cell and 
Inner Plexiform Layer (GCIPL), Inner Nuclear Layer (INL), Outer Plexiform Layer (OPL), 

Outer Nuclear Layer (ONL), Photoreceptors (PR), and Retinal Pigment Epithelium-Bruch’s 
Membrane complex (RPE-BM). AMD = age-related macular degeneration. 
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3.4.3  Progressors versus Non- Progressors  

3.4.3.1  Mean Retinal Layer Volumes at Baseline and Year 2  

Table 8 shows mean volumes of retinal layers of progressors and non-progressors at 

two time points, baseline and year 2. There were statistically significant difference 

between the progressers and non-progressers in mean volumes of GCIPL (p= 0.001) 

and OPL (p= 0.035) at baseline, and RPE-BM (0.017) at year 2. GCIPL and OPL 

volumes were smaller in progressers than non-progressers at baseline. Conversely, 

RPE-BM volume was greater in the progressing group than non-progressing one at 

year 2. Otherwise, no significant deference was found between the 2 groups in 

volumes of other retinal layers.  

3.4.3.2  Longitudinal Volume Change from Baseline to Year 2 

Longitudinal comparisons from baseline to year 2 in progressing and non-

progressing eyes are shown in table 9. Despite decreasing of mean TRV from 

baseline to year 2 in both groups, the reduction was a statistically significant (P = 

0.038) only in the non-progressing eyes by rate of 0.0614 mm3.  

Regarding the inner retinal layers, there was a significant decrease in mean volume 

of GCIPL by 0.0214 mm3 (0.017) in non- progressing eyes only. This reduction in the 

GCIPL volume was statistically significant between the 2 groups, suggesting early 

layer loss. In addition, there was a significant reduction in the INL volume in 

progressors only by .9768 mm3 (P = 0.042).  

Regarding the outer retinal layers, there were significant expansion in the volume of 

OPL and RPE-BM and reduction in the volume of ONL in both groups over the 2-

year follow-up. There was also an increase in PR volume from baseline to year 2 in 

non-progressors by 0.0240 mm3 (P = 0.034). 
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Table 8. Mean Retinal Layer Volumes at Baseline and Year 2 in Non-Progressers (n 
= 40) and Progressers (n = 31).   

 

 

Retinal Layer and Time Point Non-Progressors   Group 

( n= 40)  

Mean (SD)    

Progressors  Group 

(n =31) 

Mean (SD) 

P Value 

TRV Baseline 8.27 (.35) 8.15 (.53) 0.286 

Year 2 8.21 (.38) 8.10 (.54) 0.352 

RNFL Baseline 1.11 (.10) 1.13 (.16) 0.586 

Year 2  1.09 (.10) 1.09 (.17) 0.451 

GCIPL Baseline 1.91 (.17) 1.76 (.18) 0.001 

Year 2  1.88 (.17) 1.80 (.19) 0.051 

INL Baseline 1.00 (.07) .997 (.08) 0.571 

Year 2  1.00 (.06) .976 (.08) 0.214 

OPL Baseline .690 (.10) .634 (.14) 0.035 

Year 2  .725 (.10) .678 (.12) 0.097 

ONL Baseline 2.26 (.15) 2.33 (.28) 0.220 

Year 2  2.19 (.17) 2.24 (.25) 0.355 

PR Baseline 1.28 (.08) 1.29 (.09) 0.685 

Year 2  1.30 (.08) 1.30 (.09) 0.869 

RPE-

BM 

Baseline .141 (.09) .158 (.07) 0.074 

Year 2  .159 (.13) .183 (.08) 0.017 

Statistically significant values with P < 0.05 are in bold. 

TRV = Total Retinal Volume;  RNFL = Retinal Nerve fiber Layer; GCIPL = Ganglion Cell and Inner 

Plexiform Layer; INL = Inner Nuclear Layer; OPL = Outer Plexiform Layer; ONL = Outer Nuclear 

Layer; PR = Photoreceptors; RPE-BM = Retinal Pigment Epithelium-Bruch’s Membrane complex 
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Table 9. Longitudinal Change in Retinal Layer Volumes in Non-Progressors (n = 40) 
and Progressors (n = 31)   

 

 

 

Retinal Layer and Group Volume Change  

(Baseline – year 2) 

Mean (SD) 

P Value* P Value‡ 

TRV Non-Progressors   .0614 (.180) 0.038 0.805 

Progressors .0494 (.216) 0.214 

RNFL Non-Progressors   .0158 (.072) 0.083 0.711 

Progressors .0328 (.109) 0.081 

GCIPL Non-Progressors   .0214 (.089) 0.017 0.028 

Progressors -.0454 (.132) 0.337 

INL Non-Progressors   .0071 (.068) 0.437 0.354 

Progressors .0208 (.089) 0.042 

OPL Non-Progressors   -.0352 (.082) 0.010 0.643 

Progressors -.0441 (.110) 0.033 

ONL Non-Progressors   .0761 (.099) 0.000 0.935 

Progressors .0968 (.195) 0.01 

PR Non-Progressors   -.0240 (.068) 0.034 0.360 

 Progressors -.0113 (.077) 0.427 

RPE-BM Non-Progressors   -.0178 (.056) 0.05 0.297 

Progressors -.0248 (.047) 0.007 

Statistically significant values with P < 0.05 are in bold. 

TRV = Total Retinal Volume; RNFL = Retinal Nerve Fiber Layer; GCIPL = Ganglion Cell and Inner 

Plexiform Layer; INL = Inner Nuclear Layer; OPL = Outer Plexiform Layer; ONL = Outer Nuclear 

Layer; PR = Photoreceptors; RPE-BM = Retinal Pigment Epithelium-Bruch’s Membrane complex 

*Wilcoxon signed-rank test and Paired t-test for paired volume measurements in each group, 

baseline versus year 2. 

‡ Mann-Whitney U test and Independent t-test, Progressors group versus non-progressors group. 
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3.4.3.3  Prediction of progression to wet AMD based on baseline 

retinal layer volumes  

Baseline volumes of RNFL, GCIPL, INL, OPL, PR and RPE-BM were assessed as 

predictors of progression to wet AMD (Table 10). Logistic regression analysis of 

these measurements revealed that baseline volume of GCIPL was the only 

statistically significant among all other layers. For every one-unit decrease in GCIPL 

volume, we expect a 0.005 increase in the log-odds of progression to wet AMD.     

Table 10. Assessing predictors for AMD progression using logistic regression 
analysis 

Baseline 

Retinal 

Volumes 

B SE Odds Ratio 95% CI P value 

RNFL 3.614 2.655 37.131 .204 - 6755.431 .173 

GCIPL -5.224 2.576 .005 .000 - .839 .043 

INL 1.534 5.603 4.636 .000 - 272676 .784 

OPL -4.897 6.833 .007 .000 - 4894.59 .474 

ONL -.646 2.574 .524 .003 - 81.270 .802 

PR 7.192 5.760 1328.353 .017 - 106176904.040 .212 

RPE-BM 2.632 3.464 13.904 .016 -12342.559 .447 

 

 

3.5 Discussion  

The present study showed that some retinal layer volumes are significantly different 

between AMD and control eyes. The volume of inner retinal layers (GCIPL and INL) 

were lesser in AMD eyes than in controls, while the volume of outer retinal layers 

(PR and RPE-BM) were greater in AMD eyes as compared to controls. In addition, 

some retinal layers underwent volume change in AMD eyes over the 2-year follow-

up. There was a reduction in ONL volume in AMD eyes over the follow-up period. In 

contrast, OPL and RPE-BM increased in volume from baseline to year 2 in AMD 
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eyes. Therefore, measurements of inner and outer retinal layer volumes 

differentiated AMD eyes from control ones.  

Sub-analysis of the AMD eyes from baseline to year 2 showed that change in the 

inner retinal volumes (GCIPL and INL) might differentiate the progressors from the 

non-progressors, whereas the outer retinal volumes did not. The volume of GCIPL at 

baseline was thinner in the progressors and this volume did not change significantly 

over the 2-year follow-up. However, the INL volume decreased significantly in the 

progressors from baseline to year 2. Taken together, these findings suggest that 

GCIPL is affected firstly during the early stage of the disease, followed by INL that 

continues to decrease significantly prior to conversion.  

The current finding of GCIPL and INL thinning in early/intermediate AMD is 

consistent with previous studies using OCT (Savastano et al., 2014, Lee and Yu, 

2015, Yenice et al., 2015, Zucchiatti et al., 2015, Borrelli et al., 2017, Camacho et al., 

2017, Muftuoglu et al., 2017). Different theories were proposed to explain the 

underling mechanism of GCIPL and INL thinning. One theory is that this may occur 

as a result of retinal microvascular abnormality that leads to reduction in inner retina 

perfusion and ischemia (Toto et al., 2016, Toto et al., 2017, Feigl et al., 2007, 

Villegas-Perez et al., 1998). Toto and colleagues (2016, 2017) investigated alteration 

in superficial and deep retinal plexuses in patients affected by early/intermediate 

AMD using optical coherence tomography angiography (OCTA). The authors found 

that both retinal plexuses are changed and these changes start immediately at the 

early disease stages, resulting in damage of the inner and the outer retina. Evidence 

of a number of changes in the inner retinal vasculature has also been reported in an 

animal model (Villegas-Perez et al., 1998). Feigl et al., (2007) reviewed previous 

psychophysical and electrophysiological studies in early AMD and proposed that 
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most of the function impairment starts at the level of postreceptoral cell layers, 

especially those located in the INL and IPL. These inner retinal cell layers are 

primarily affected by chronic ischemia as reported previously (Yu and Cringle, 2001, 

Cringle et al., 2002). Postreceptor cell layers are located in the watershed zone 

between central retinal artery and choroid, and therefore are more vulnerable to 

ischemia than the photoreceptors that are located closer to the choroid This might 

explain why the photoreceptors are more resistant to ischemic distress than the 

postreceptoral cells. However, the exact reason for retinal vascular changes and 

retinal cell layers ischemia in AMD remain unclear.  

Another theory is that synaptic malformation due to photoreceptors loss could lead to 

reducing transneuronal input to inner retina, triggering the inner retina degeneration 

process (Strettoi et al., 2002). Evidence of disorganised synaptic architecture of the 

OPL and IPL in a retinal degenerative mice has been reported (Blanks et al., 1974). 

This type of anterograde degeneration (Wallerian degeneration) can extend to the 

brain tissue as shown in recent studies, which have found a reduction in the visual 

white matter volume in AMD (Yoshimine et al., 2018, Hernowo et al., 2014). A similar 

findings has also been reported in glaucoma (Hernowo et al., 2011).  In contrast, 

thinning of inner retinal layers can be resulted from neurological diseases (Petzold et 

al., 2017, Gulmez Sevim et al., 2019); thinning of the RNFL and GCIPL has been 

shown to be associated with dementia, Parkinson disease and multiple sclerosis (Ko 

et al., 2018, Khawaja et al., 2016). This might be explained by the mechanism of 

retrograde transneuronal degeneration from the brain tissue to the inner retina.  

The expansion in OPL layer volume in AMD eyes during the 2-year follow-up should 

be interpreted with caution as this layer is difficult to be imaged using OCT because 

a change in the angle of incidence of the OCT beam on the OPL can show it as 



98 
 

thicker if Henle’s fibres are revealed. Being a thin, plexiform layer, its variance is 

therefore high. So if this change is indeed real, it could occur mechanically as the 

retina attempts to preserve structural integrity through the role of the Muller cells. It is 

also consistent with a light microscopic study that demonstrated that there is a 

displacement of nuclei from the ONL into the OPL secondary to shrinkage of their 

attached fibres (Gartner and Henkind, 1981). OPL thickening with age has also been 

reported in a study of 297 healthy eyes (Nieves-Moreno et al., 2018). Thus, the OPL 

volume increase might represent remodelling or might also be a consequence of 

mechanical factors, including expansion as neighbouring cellular layers might reduce 

in volume.  

Despite no statistically difference in ONL volume between AMD eyes and controls, 

the reduction in ONL volume from baseline to year 2 in AMD eyes was statistically 

significant and this may indicate later degeneration of the phororeceptor nuclei. This 

finding is consistent with histopathology result that demonstrated ONL thinning in 

ageing models (Machida et al., 2000, Gartner and Henkind, 1981, Shelley et al., 

2009b). These findings have also been confirmed by recent studies using OCT that 

showed ONL thinning in eyes with intermediate AMD (Sadigh et al., 2013, Schuman 

et al., 2009, Brandl et al., 2019). This does not translate to visual loss in eyes with 

intermediate AMD suggesting that the volume of photoreceptors does have a certain 

level of redundancy and so existing nuclei may be sufficient to maintain synaptic 

connections and maintain visual function.  

Another interesting finding was the expansion of PR volume in AMD eyes which 

could be due to swelling of the cone distal axon as shown in a histological study 

(Shelley et al., 2009b). As the RPE ages, function, including phagocytosis of 

photoreceptor outer segments, may decline, which might explain this increase in PR 
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layer volume with age and in AMD (Bonilha, 2008). Increase in PR volume has been 

shown in a study of 68 normal eyes (Pakdel et al., 2018), agreeing with the results of 

the present study. Another explanation similar to that of the OPL expansion is that 

PR expansion might be due to displacement of nuclei from the ONL to the layer of 

ellipsoid zones of the rods and cones (Gartner and Henkind, 1981). Behbehani et 

al.(2017) also observed this in patients with multiple sclerosis and concluded that 

this was not “compensatory” thickening to the GCIPL thinning. However, a recent 

OCT study has reported a lesser PR thickness in eyes with early AMD stages 

compared to age-matched healthy eyes (Brandl et al., 2019). Reduction in PR outer 

segment thickness has also been shown in a longitudinal OCT study of 85 dry AMD 

eyes (Nittala et al., 2019). Using different methodology including OCT device, 

segmentation software and participant’s demographics might explain the 

disagreement with present study.   

Finally, the current study showed that RPE-BM volume was greater in AMD eyes 

than controls and there was a significant increase in its volume from baseline to year 

2. This finding is consistent with a recent study using Spectrals OCT (Brandl et al., 

2019). These findings can be explained in term of drusen formation, extracellular 

deposits that accumulate between RPE and BM. A previous study found that RPE-

BM thickening was associated with progression to advanced AMD (Ferrara et al., 

2017).  

This, to our knowledge, is the first study to explore longitudinally the change in retinal 

layer volumes in AMD eyes using OCT. Moreover, our study evaluated both the 

inner and outer retina that has not been done in most of the previous studies.   
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Limitations of the present study are no adjustments were made for age, sex, ethnicity 

and axial length or refraction. These factors affect retinal layer thickness and volume 

as shown in previous studies (Subhi et al., 2016), therefore, including them in a 

future study is required. . 

In summary, our data showed abnormal retinal layer volumes and total volume 

changes in eyes with early and intermediate AMD. The inner and outer retinal layer 

volume measurements differentiated AMD eyes from control eyes. The mean GCIPL 

and INL volumes were less in eyes with AMD as compared to control eyes, while the 

mean PR and RPE-BM volumes were higher. Moreover, OPL and RPE-BM volumes 

were found to increase, whereas the volume of ONL was found to decrease during 

the 2-year follow-up in AMD eyes. In progressors, there was a progressive reduction 

in the volume of INL and ONL, and a significant expansion in the volume of RPE-BM, 

but the GCIPL volume remained unchanged. The thinning of GCIPL volume at 

baseline may be used as a biomarker for disease conversion.  

By interpreting the whole data, we can conclude that reduction in GCIPL volume is 

followed by the reduction in INL volume as the disease progresses. These findings 

suggest that GCIPL and INL atrophies may precede ONL atrophy in AMD eyes, and 

migration of the latter nuclei to adjacent layers (OPL and RP) might be the cause of 

their expansions. This study shows that although significant efforts are made to 

study the outer retina in AMD, there are inner retinal changes that occur in these 

eyes and little attention has been paid to them as the changes are subtle and not 

visible with the naked eyes on routine retinal imaging.   
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4 Chapter 4: Retinal layer volumes: age 

associations and heritability (Twin Study) 

 

4.1 Introduction 

Spectral domain optical coherence tomography (OCT) yields a cross-sectional 

representation of the retinal layers allowing precise assessment of retinal structural 

pathology. Qualitative assessment of OCT images guides clinical diagnoses. For 

macular OCT, the quantitative measure traditionally used, in both clinical and 

research settings, is total retinal thickness, often divided into circular subfields 

around the foveal centre. More recently, segmentation algorithms have allowed 

quantification of the thickness or volume of each layer separately, from the thickness 

of the retinal nerve fibre layer (RNFL) down to the thickness of the retinal pigment 

epithelium (RPE). This is of clinical and scientific interest as layers are often 

selectively attenuated in different retinal diseases. In addition, thinning of retinal 

layers can be associated with neurological diseases (Petzold et al., 2017, Gulmez 

Sevim et al., 2019); thinning of the RNFL has been shown to be associated with 

cognitive impairment, with evidence that such measurements could have predictive 

value (Ko et al., 2018). Similarly thinning of the RPE-Bruch’s membrane (RPE-BM) 

with age have also been observed in the Biobank cohort aged 40-69 years (Ko et al., 

2017).  

Twin studies allow investigation of relative genetic and environmental contributions 

to phenotypic traits. By making measurements in monozygotic (MZ) and dizygotic 

(DZ) twin pairs, intra-pair correlation can be compared: a significantly higher 
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correlation in MZ twins indicates that genetic factors are important. Formal 

calculation of heritability by twin modelling permits estimation of the proportion of the 

variance in a trait that is attributable to genetic factors. Previous twin studies have 

demonstrated significant heritability for macular thickness (Chamberlain et al., 2006), 

macular pigment optical density (Liew et al., 2005, Hogg et al., 2012) and spatial 

patterns (a ring-like distribution of macular pigment that can be seen by fundus 

autofluorescence) (Hogg et al., 2012, Tariq et al., 2014), retinal vascular patterns 

(Vergmann et al., 2017) and peripapillary RNFL (Hougaard et al., 2003).  

4.2 Aims  

In the present study, we analysed segmented layer volumes from macular OCT 

scans in a twin cohort using an automated segmentation algorithm to investigate 

heritability of each layer separately. We also explored associations with age and 

right-left eye correlations in the same cohort. 

4.3 Methods 

Parts of the methods have been discussed in chapter 2. Additional methodologies 

are as follows:    

4.3.1  Participants 

Participants were recruited from the TwinsUK registry based at St Thomas’ Hospital. 

This is a cohort of largely healthy adult twins, who have volunteered for research 

studies (Moayyeri et al., 2013). The participants in the present study were taking part 

in a larger electroretinography study (Bhatti et al., 2017).  Figure 12 demonstrates 

the study participants of the present study.  
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Figure 12. Flow chart of the study participants of Chapter 4. 

 

4.3.2  Calculating correlations 

Coefficients of intra-pair correlation were calculated for MZ and DZ twins. Pearson 

coefficients were used, with Spearman coefficients also calculated for any 

parameters found to differ significantly from a normal distribution (Kolmogorov-

Smirnov test). Correlations with age were also calculated, as well as coefficients of 

inter-eye correlation for each parameter. 

4.3.3  Calculating heritability 

Age-adjusted heritability was estimated formally for each of the layer volumes 

(averaged between eyes for each participant), using maximum likelihood structural 

equation twin modelling as described previously (Mahroo et al., 2014), using the 

OpenMx package (http://openmx.psyc.virginia.edu) in the R statistical computing 

Study 
Participants

(n=184) 

MZ

(n=54 pairs)

DZ 

(n=38 pairs)
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environment (http://www.r-project.org). The variance of a trait is estimated by some 

combination of the contributions from 3 factors: the additive genetic component (A); 

the shared environment (C), or the non-additive genetic component (D); the unique 

environment (E). Univariant ACE or ADE models were executed with standardized 

path coefficients and expected variance and covariance matrices. Goodness of fit of 

the full and reduced ACE and ADE models were compared with the observed data. 

The most parsimonious model to explain the observed variance was selected using 

the Akaike information criterion; this was identified as the AE model for most of the 

phenotypes. Heritability was calculated as the proportion of total variance of the trait 

(V) resulting from the additive genetic effect (A) in the best-fitting model. 

4.4 Results 

Macular OCT images from 184 participants (54 MZ pairs; 38 DZ pairs) were included 

for analysis. In 4 participants, the image from one eye only was used due to a poor 

quality scan in the fellow eye. Mean (SD) age was 62.0 (11.1) years. For MZ pairs, 

mean (SD) age was 60.1 (11.6) years and ranged from 32 to 84 years. For DZ pairs, 

mean (SD) age was 64.8 (10.0) years, ranging from 36 to 86 years. MZ pairs were 

slightly younger (p=0.044), and so age-adjusted heritability estimates were 

generated. The majority of twins were females (all of the DZ pairs, and 93% of the 

MZ pairs), reflecting the demographics of the TwsinUK cohort. 

4.4.1  Mean values and correlations with age  

Table 11 shows means and standard deviations for the various layer volumes for the 

whole cohort. None of the parameters were found to differ significantly from a normal 

distribution with the exception of RPE-BM volume. Correlations with age are also 

given in Table 11. Here, parameters from both twins were averaged for each pair, so 
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that each pair contributed only once. Significant negative correlations with age were 

observed for TRV (for 3 mm and 6 mm circles), RNFL (6 mm circle), GCIPL (3 and 6 

mm), and INL (3 mm).  

Significant positive correlations with age were observed for PR (for 3 and 6 mm 

circles), RPE (3 and 6 mm), and OPL (6 mm circle). The age correlations were 

moderately strong (magnitude >0.4) for GCIPL (for 3 and 6 mm) and for PR (6 mm 

circle). These parameters are plotted against age in Figure 13. Using a simple linear 

fit, GCIPL volume declined by 0.022 mm3 (3 mm circle) and 0.067 mm3 (6 mm circle) 

per decade. PR volume (6 mm circle) increased by 0.033 mm3 per decade. 

4.4.2  Inter-eye correlations 

The final column of Table 11 gives the inter-eye correlation coefficient for each 

parameter. All inter-eye correlations were highly significant (p < 1x10-8). Correlations 

were highest (>0.8) for TRV and GCIPL (both for the 6 mm circle); all segmented 

layer volumes showed a higher correlation for the 6 mm circle compared with the 3 

mm circle.  
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Table 11. Segmented layer volumes, correlations with age, and correlations between 
eyes. Mean (SD) values are given for the whole cohort (n=184). Correlations with 
age are given (with parameters from both twins averaged within each twin pair). 
Inter-eye correlations are given for the cohort.  

Circle 
diameter 

(mm) 
Parameter 

Mean (SD) 
value (mm3) 

Correlation with age Inter-eye 
correlation 
coefficient 

Correlation 
coefficient 

p value 

3 

TRV 
2.178 

(0.098) 
-0.270* 0.009 0.768* 

RNFL 
0.209 

(0.019) 
-0.077 0.464 0.565* 

GCIPL 
0.548 

(0.053) 
-0.499* 4.21x10-7 0.748* 

INL 
0.289 

(0.026) 
-0.353* 5.52x10-4 0.633* 

OPL 
0.195 

(0.029) 
0.194 0.064 0.417* 

ONL 
0.625 

(0.048) 
-0.126 0.231 0.634* 

PR 
0.314 

(0.032) 
0.364* 3.56x10-4 0.433* 

RPE-BM 
0.041 

(0.070) 
0.245* 

(0.231*) 
0.018 

(0.025) 
0.469* 

(0.681*) 

6 

TRV 
8.331 

(0.371) 
-0.335* 0.001 0.863* 

RNFL 
1.158 

(0.127) 
-0.535* 4.01x10-8 0.754* 

GCIPL 
1.967 

(0.168) 
-0.483* 1.07x10-6 0.835* 

INL 
1.001 

(0.084) 
-0.157 0.134 0.748* 

OPL 
0.688 

(0.077) 
0.245* 0.018 0.428* 

ONL 
2.252 

(0.130) 
-0.163 0.119 0.774* 

PR 
1.266 

(0.099) 
0.424* 2.50x10-5 0.508* 

RPE-BM 
0.144 

(0.176) 
0.260* 

(0.263*) 
0.012 

(0.011) 
0.537* 

(0.673*) 
All inter-eye correlations were highly significant (p < 1x10-8).  
All are Pearson correlation coefficients, but for RPE-BM parameters, Spearman coefficients are also given in 
parentheses as these parameters deviated from a normal distribution.  
*Asterisk denotes significance (p < 0.05).   
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Figure 13. Selected layer volumes plotted as function of age. Points average both twins 
from each pair. Dashed lines show linear fits. A, GCIPL volume in 3 mm diameter central 
circle. Linear fit declines by 0.022 mm3 per decade. B, GCIPL volume in 6 mm diameter 
circle. Linear fit declines by 0.067 mm3 per decade. C, PR volume in 6 mm diameter circle. 
Linear fit increases by 0.033 mm3 per decade. 
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4.4.3  Correlations in MZ and DZ twins and estimates of 

heritability 

Table 12 gives coefficients of intra-pair correlation for MZ and DZ twins. The majority 

were statistically significant, and all were stronger in MZ than DZ twins, consistent 

with significant heritability. Age-adjusted heritability estimates are also given in Table 

12. The majority of parameters appeared to fit best with the AE model. Total retinal 

volume showed high heritability for both the 3 mm and 6 mm circles (point estimates 

of 83.0 and 87.5% respectively). Of the segmented layer volumes, heritability 

appeared highest for GCIPL (point estimates of 83.7 and 85.8% for the 3 and 6 mm 

circles respectively) and lowest for RPE-BM volumes (confidence intervals 

overlapping zero). Figure 14 plots TRV and GCIPL volumes (for the 6 mm circles) for 

twin pairs, illustrating the tighter correlation observed in MZ pairs for these 

parameters. Figure 15 plots MZ and DZ correlation coefficients for all parameters. 
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Figure 14. Selected layer volumes plotted for twin pairs (twin 2 is plotted against twin 
1). Left-hand panels are for monozygotic pairs; right-hand panels show dizygotic 

pairs. A and B, points plot total retinal volume for the 6 mm diameter circle. C and D, 
Ganglion cell-inner plexiform layer volume for the 6 mm diameter circle. 
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Table 12. MZ and DZ coefficients of intra-pair correlation for segmented layer 
volumes, and age-adjusted estimates of heritability.  

Circle 
diameter 

(mm) 
Parameter 

Coefficients of intra-pair correlations Heritability 
(%) 

Point 
estimate 
(95% CI) 

MZ pairs DZ pairs 

Coefficient p value Coefficient p value 

3 

TRV 0.848* 6.16x10-16 0.466* 0.003 
83.0 (73.9-

88.7) 

RNFL 0.440* 8.61x10-4 0.234 0.158 
42.9 (20.5-

60.6) 

GCIPL 0.875* 4.84x10-18 0.357* 0.027 
83.7 (74.0-

89.6) 

INL 0.707* 2.31x10-9 0.668* 4.53x10-6 
70.0 (56.2-

80.0) 

OPL 0.508* 8.80x10-5 0.325* 0.047 
50.2 (28.9-

66.2) 

ONL 0.522* 5.20x10-5 0.508* 0.001 
55.6 (37.2-

69.3) 

PR 0.525* 4.65x10-5 0.474* 0.003 
42.9 (22.9-

59.1) 

RPE-BM 
0.206 

(0.664*) 
0.136 

(4.36x10-8) 
0.104 

(0.344*) 
0.533 

(0.034) 
15.4† (<0.1-

49.0) 

6 

TRV 0.899* 2.85x10-20 0.576* 1.53x10-4 
87.5 (80.7-

91.8) 

RNFL 0.806* 2.04x10-13 0.481* 0.002 
71.3 (57.4-

80.8) 

GCIPL 0.890* 2.20x10-19 0.401* 0.013 
85.8 (77.4-

91.0) 

INL 0.708* 2.18x10-9 0.574* 1.66x10-4 
71.4† (58.2-

80.5) 

OPL 0.434* 0.001 0.238* 0.150 
38.3 (15.5-

56.9) 

ONL 0.686* 1.02x10-8 0.568* 2.02x10-4 
69.0† (54.7-

78.9) 

PR 0.649* 1.08x10-7 0.397* 0.014 
55.4 (35.4-

70.1) 

RPE-BM 
0.213 

(0.651*) 
0.122 

(1.01x10-7) 
0.165 

(0.307) 
0.323 

(0.061) 
16.3 (<0.1-

37.0) 
All are Pearson correlation coefficients; for RPE-BM parameters, Spearman coefficients are also given in 
parentheses as these parameters deviated from a normal distribution. *Asterisk denotes significance (p < 
0.05).  
Heritability estimates are from the AE model which provided the best fit for most parameters.  
†Denotes the following parameters, which showed a marginally better fit with other models: for INL at 6 
mm, ACE model generated a heritability estimate of 12.3% (<0.1-58.0%); for ONL at 6 mm, ACE model 
generated estimate of 22.6% (<0.1-73.6%); for RPE at 3 mm, E appeared the best fitting model. 
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Figure 15. Coefficients for intra-pair correlation for monozygotic and dizygotic pairs 
for segmented layer volumes. For RPE, Spearman coefficients are plotted as these 
volumes deviated from a normal distribution; Pearson coefficients are plotted for all 

other layers. 
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4.5 Discussion 

This study analysed segmented retinal layer volumes from spectral domain macular 

OCT scans obtained from 184 twin participants. Means (and standard deviations) 

were derived for each layer for circular regions of 3 and 6 mm in diameter around the 

foveal centre. Total retinal volume, and volumes of inner retinal layers (RNFL, 

GCIPL, INL) decreased with age; increasing volume with age was observed for PR, 

RPE-BM and OPL. Inter-eye correlations were all significant, and were highest for 

TRV and GCIPL volume. Intra-pair correlation was greater in all cases for MZ pairs 

than DZ pairs, and heritability estimates were highest (point estimates >80%) for 

TRV and GCIPL volume, and lowest for RPE-BM. 

Reduction in retinal thickness (and RNFL thinning) with increasing age is well-

established (Alamouti and Funk, 2003, Ooto et al., 2011, Subhi et al., 2016, Nieves-

Moreno et al., 2018). Recently, analysis from the UK Biobank study, confirmed a 

reduction in macular thickness with increasing age (in fields other than the central 1 

mm subfield) from the scans of over 32000 participants (Patel et al., 2016). The 

finding in the present study of increasing volume with age in some outer retinal 

layers (OPL, PR and RPE-BM) is consistent with the findings of our previous study 

(Chapter 3).  

Increase in PR outer segment volume has been shown in a study of 68 normal eyes 

(Pakdel et al., 2018), agreeing with the results of the present study. OPL thickening 

with age has also been reported in a study of 297 healthy eyes (Nieves-Moreno et 

al., 2018). Interestingly, the same study reported PR layer thinning with age. It is 

possible that methodological differences explain the disagreement with the present 

study – that study used the Heidelberg Spectralis OCT device; thickness 
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measurements vary between devices (Pierro et al., 2010), and segmentation may 

also differ (Terry et al., 2016). Increasing OPL layer thickness with age, as found in 

the present study, was also recently reported in an OCT study of macaque eyes 

(Renner L, et al. IOVS 2019;60:ARVO E-Abstract 202) and OPL remodelling in aged 

vervet monkeys has been reported from a histological study (Garneau J, et al. IOVS 

2019;60:ARVO E-Abstract 3102). The OPL volume increase might represent 

remodelling or might also be a consequence of mechanical factors, including 

expansion as neighbouring cellular layers might reduce in volume with age. 

A positive correlation between foveal RPE thickness and age has also been reported 

by other authors (Demirkaya et al., 2013). However, the UK Biobank study revealed 

RPE thinning with age (among those aged over 45) (Ko et al., 2017), and it is 

possible that differences in segmentation methods or population demographics might 

explain why increase in volume with age was apparent in the present study. As the 

RPE ages, function, including phagocytosis of photoreceptor outer segments, may 

decline, which might explain an increase in photoreceptor layer volume with age 

(Bonilha, 2008).  

Our study demonstrated significant heritability of the majority of segmented layer 

volumes, with point estimates suggesting that 87.5% and 85.8% of the variance in 

TRV and in GCIPL volume respectively could be explained by genetic factors (for the 

6 mm diameter central area). Outer retinal layer volumes (especially RPE-BM) 

appeared to show lower heritability. This could represent a greater influence of, or 

vulnerability to, environmental factors. It could also relate to greater accuracy in 

quantification of the inner layers. If outer layer segmentation is less reliable, and 

more prone to measurement error, then this will manifest as a unique environmental 

factor, and act to reduce the estimated heritability. Inter-eye correlation (which can, 
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with limitations, act as a surrogate for repeatability given that both eyes of a healthy 

individual are highly correlated) was lower for the outer retinal layers, consistent with 

this notion.  

Limitations of the present study include its cross-sectional nature, which make 

conclusions regarding effects of age somewhat tentative; a longitudinal study would 

be needed to accurately assess change with age. The conclusions are dependent on 

the accuracy of the segmentation algorithm, and it is possible that different methods 

might yield differing findings. No adjustments were made for axial length or 

refraction. The TwinsUK cohort is largely female and of European descent, thus 

limiting generalisability to other demographics. Finally, a larger sample size would 

add power and help narrow the confidence intervals of the heritability estimates. 

 

 

 

 

 

 

 

 

 

 



115 
 

5 Chapter 5: Changes in number, area and 

volume of drusen in fellow eye of patients 

with neovascular AMD 

5.1 Introduction 

Drusen are extracellular focal deposits that accumulate between the basal lamina of 

the retinal pigment epithelium (RPE) and the inner collagenous layer of the Bruch’s 

membrane. They appear as yellowish white deposits on biomicroscopy and colour 

fundus photographs and have a predilection for the macula (Sarks et al., 1994, van 

der Schaft et al., 1992a).  

Drusen vary in size. They are the hallmark of age related macular degeneration 

(AMD). The classification of AMD is based on the size of drusen (Ferris et al., 2013). 

Small drusen or druplets defined as ≤63 µm in size have low risk of progression to 

advanced AMD. Early AMD is characterised by the presence of medium sized 

drusen (>63um to ≤125um). The presence of large drusen defined as size of 

>125um or more categorises the eye to having intermediate AMD. These eyes with 

intermediate AMD are at risk of progression to advanced AMD developing either 

choroidal neovascularisation (CNV) or geographic atrophy or both. They may also be 

associated with retinal epithelial pigmentary changes. The risk of development of 

CNV in the second eye in patients with unilateral advanced AMD is variable and can 

range from 20-50% over 5-10 years (1993, Klein et al., 1997b, Klein et al., 2002, 

Mitchell et al., 2002, Wang et al., 2007). Therefore, identifying new risk factors that 

can predict this conversion CNV more accurately is useful for counselling patients. 
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Although size and area of large drusen are established risk factors, more detailed 

drusen analysis has become an area of interest with the availability of more 

advanced imaging technology. Fundus colour photography is the gold standard used 

in the evaluation of patients with drusen in clinical practice and research (The Age-

Related Eye Disease Study Research, 2001). However, there are several drawbacks 

associated with fundus photography, such as, interpersonal variability and it is time 

and effort consuming (Klein et al., 1991, Shin et al., 1999). Furthermore, the difficulty 

in outlining indistinct drusen, variability of fundus pigmentation, the effect of media 

opacity on photographic quality are crucial limitations for achieving objective clinical 

assessment of drusen. The fundus photographs also do not show the three-

dimensional topography of drusen.  

The introduction of OCT in ophthalmic field have revolutionised our understanding of 

different retinal pathologies. OCT provides in vivo cross sectional images of different 

retinal structures that is analogues to the histological structure. Recently developed 

SD-OCT technology is able to provide real-time, high-resolution images of the 

macular area in two and three dimensions (Srinivasan et al., 2006b, Wojtkowski et 

al., 2005). Emerging of automated drusen segmentation algorithms has allowed to 

delineate drusen and longitudinally track changes in drusen count, area and volume 

in AMD eyes (Schlanitz et al., 2010, Iwama et al., 2012, Gregori et al., 2011).  

The drusen segmentation algorithm defines drusen as a degree of deformity in the 

RPE (Schlanitz et al., 2010, Diniz et al., 2014, Jain et al., 2010). Consequently, small 

drusen are not detected by OCT as they do not elevate RPE layer considerably. As a 

result, drusen count and area are underestimated by OCT compared to fundus 

photography (Gregori et al., 2014, Yehoshua et al., 2013, Diniz et al., 2014). 

However, the volume of drusen are measured reliably by SD-OCT, which render this 
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technique superior to colour fundus photography (Gregori et al., 2011). In addition, 

SD-OCT has the ability to differentiate between drusen and pseudodrusen (reticular 

drusen or subretinal drusenoid deposits), which lie above the RPE layer (Sivaprasad 

et al., 2016). Therefore, both modalities are considered as complementary to each 

other. 

Most of the previous studies have been conducted using the Cirrus OCT (Zeiss, 

USA) algorithm. The Topcon SD-OCT also has an in-built automated drusen 

analysis algorithm but has very limited publications on its use. Moreover, the 

detection limit of drusen is different with Cirrus OCT compared to Topcon OCT. One 

study has evaluated the Topcon algorithm and demonstrated that this algorithm has 

the ability to make an automated assessment of drusen area and volume with 

minimal segmentation failures. The study also showed that there was a good 

agreement with an assessment was performed by certified graders on colour fundus 

photography (Iwama et al., 2012). As Topcon OCT is widely used in daily practice, it 

is important to evaluate whether the Topcon drusen analysis algorithm provides the 

same outcomes as other similar algorithms over time. 

5.2 Aims 

In this study, we quantified the drusen load in terms of numbers, area and volume 

using the automated Topcon drusen analysis algorithm in fellow eyes of patients with 

unilateral neovascular AMD. Our objectives were to evaluate the change in these 

drusen parameters over time and to evaluate whether any of these parameters could 

predict conversion to CNV. 
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5.3 Methods  

The methods have been discussed in the methods section in chapter 2. As the data 

was not normally distributed and to adjust for baseline drusen parameters, we 

transformed the drusen area and volume to square root and cubic root as previously 

reported (Yehoshua et al., 2011, Gregori et al., 2011, Abdelfattah et al., 2016, Garcia 

Filho et al., 2014). We also assessed the variables that influenced the change in 

drusen parameters over the 2 years and the gradient of change over 1 and 2 years.  

5.4 Results 

5.4.1  Patients 

After reviewing the medical records of 1671 patients who treated with anti-VEGF 

therapy at Moorfields Eye Hospital between August 2008 and September 2016, 248 

patients were identified whom met the inclusion criteria. We excluded all patients 

who did not have an OCT scan done at 12 ± 2 months and 24 ± 2 months from 

baseline. We also excluded patients with at least one of the following; SD-OCT 

scans with an instrument image quality metric <30, scans with poor foveal centration 

and presence of artefacts. Among the 248 patients involved in the study, 161 (65%) 

were females and 87 (35%) were males with a mean age of 73.5 years (SD, 8.6). 

199 had intermediate AMD and 49 had early AMD. At 2 years ± 2 months, 69 eyes 

(28 %) developed CNV while 179 eyes (72 %) did not develop late stage AMD. 

Study development is detailed in figure 16. 
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Figure 16. Flow chart for study participant selection.  Retrospective analysis of 1671 
patients yielded 248 patients who were included in this trial. 

5.4.2  Baseline drusen count, area and volume 

measurements    

At baseline, the mean (SD) drusen count, drusen area and drusen volume were 6.58 

(7.1), 1.42 mm2 (1.85) and 0.06 mm3 (0.09) respectively  (square root drusen area 

and cube root drusen volume were, 0.9231mm (0.76) and 0.288 mm (0.2) 

respectively). Baseline drusen count, square root area and cube root volume 

measurements were compared between the two groups (69 CNV-developed eyes vs 

179 non CNV-developed one) using the Mann-Whitney U test. These three baseline 

drusen parameters (count, area, and volume) were greater in CNV-developed eyes 

than non CNV-developed as shown in table 13.  
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Table 13. Comparing baseline drusen count, area and volume between eyes that 
developed CNV and eyes that did not develop. 

Drusen Measurements Non CNV-

developed eyes (n= 

179) 

CNV-developed 

eyes (n= 69) 

P value 

Mean Drusen Count 

(SD) 

5.42  

(6.67) 

9.57 

 (7.41) 

< 0.001 

Mean Drusen Square Root 

Area 

(SD) 

0.8101 mm  (0.79) 1.2162 mm  (0.58) < 0.001 

Mean Drusen Cube Root 

Volume 

(SD) 

0.2499 mm (0.21) 0.3870 mm  (0.14) < 0.001 

 
 

5.4.3  Prediction of progression to CNV based on baseline 

drusen measurements 

Baseline count, area and volume measurements as well as age and sex were 

assessed as predictors of progression to CNV (Table 14). Logistic regression 

analysis of these drusen measurements revealed that, baseline volume was a 

significant predictor for developing CNV at 2 years of follow-up. Each 0.1 mm 

increase in the cubed root of baseline drusen volume increases the odds of 

progressing to CNV by 40% (95% CI 1.2-1.4; P <0.001).  

Table 14. Assessing predictors for CNV progression using logistic regression 
analysis 

 Odds Ratio 95% CI P value 

Age 1.067 1 - 1.1 < 0.001 
Sex 2.02 1 - 3.7 0.027 
Drusen Count 1.078 1 - 1.1 < 0.001 
Square Root Drusen Area, 0.1 mm increase 1.069 1-1.1 < 0.001 
Cube Root Drusen Volume, 0.1 mm increase 1.4 1.2-1.6 < 0.001 
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5.4.4  Change in drusen measurements over two time 

points (year 1 and year 2) 

We also compared the change rate of drusen counts, areas and volumes 

measurements between the 2 groups (progressed eyes and non-progressed) during 

the 1st year and 2nd year using Mann-Whitney-U test (Table 15). The change rate 

between the 2 groups in the 2nd year was statistically significant, particularly drusen 

volume (P = 0.019) and area (P = 0.027). However, the rate of change between the 

2 groups in the 1st year was not statistically significant. Change in drusen 

morphology is shown in Figure 17.  

 

Table 15. Comparing the change in drusen count, area and volume between the two 
groups in the first and second year 

Time Drusen parameters  Group 1 
(n = 179) 

Group 2          
(n = 69) 

P value 

Year 1  Count Change 1.15 1.33 0.484 
Square Root Area Change 0.12 (0.27) 0.11 (0.24) 0.902 
Cube Root Volume Change 0.02 (0.08) 0.02 (0.07) 0.834 

Year 2 Count Change 0.69 1.64 0.052 
Square Root Area Change 0.12 (0.27) 0.19 (0.27) 0.027 
Cube Root Volume Change 0.03 (0.09) 0.05 (0.07) 0.019 

 

 

Figure 18 shows the gradient at which the overall drusen volume changed in the two 

groups and the data shows that the total drusen volume increases steeply in the year 

preceding the development of CNV. 
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Figure 17. Change in drusen volume from baseline to 2 years. Shown here are the 
foveal scans for the subjects with the greatest and least change from baseline to 
year 2 for each cohort. The yellow is what the Topcon OCT designated as drusen 

volume for the scan.  Note that least change could also be a decrease in volume (top 
set). 
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Figure 18. Mean volume and change from baseline to year 2 in those with and 
without CNV.  (A) Shows the mean drusen volume, error bars or SEM.  (B) shows 
the distributions of drusen volumes.  While on average that with CNV had more 

drusen volume this was not absolute with the ranges overlapping nearly entirely. (C) 
On average those who went on to develop CNV had a greater increase in drusen 
volume, however again there was considerable overlap with those who did not. 
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5.5 Discussion 

This study confirms that increasing total drusen volume on SD-OCT is a predictor of 

conversion to CNV in the fellow eyes of patients with unilateral neovascular AMD. 

Our study shows that there is an accelerated increase in total drusen volume the 

year preceding the onset of CNV. The mean rate of increase in cube root drusen 

volume is 0.05 mm in the year preceding the development of CNV, compared with 

the first year follow-up of the same group as well as the non CNV-developed group 

that had a mean growth rate of cubic root drusen volume to be 0.02-0.03 mm per 

year. The cube root transformation of drusen volume and the square root 

transformation of drusen area were performed to eliminate the dependence of the 

drusen growth rate on the baseline drusen size (Yehoshua et al., 2011, Gregori et 

al., 2011, Abdelfattah et al., 2016, Garcia Filho et al., 2014).  

 
The study also shows that the patients with increased drusen growth rate may form 

an enriched cohort for clinical trials, evaluating preventive measures for the 

development of CNV as the event rate for this cohort will be higher than recruiting 

any patient with unilateral CNV when the reported probability of occurrence of CNV 

in the fellow eye is only around 10– 12% per year. It will also shorten the duration of 

the clinical trial. A previous study on drusen volume showed that recruiting patients 

with a baseline volume of > 0.03 mm3 or 0.31 mm cube root volume in the central 3 

mm diameter would result in 50% an increase in baseline volume and would enrich a 

prevention trial cohort and shorten the trial duration (Schaal et al., 2016). Adding a 

parameter of drusen growth rate of 0.05 mm cube root volume across 6 mm 

diameter of the macula centred at the fovea will further reduce the sample size.  
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Previous studies such as the Age-Related Eye Disease Study and Beaver Dam Eye 

Study used colour photographs to estimate drusen area. They showed that larger 

drusen areas were associated with a higher risk for progression to advanced AMD. 

Despite drusen area and volumes are highly correlated, OCT drusen volume are not 

corresponding to drusen area from colour fundus photographs. Moreover, it has 

been demonstrated that drusen volumes might be more repeatable metrics when 

compared to drusen area. Measurements of drusen area are inherently unstable due 

to poorly demarcated edges of drusen. As a result, a large change in drusen area 

can be gotten from a small difference in the diameter or border of the drusen. In 

contrast, drusen volume can be affected minimally by a small difference in their 

diameter or border owing to the topographic profile of drusen, the thickness of a 

druse at its edge is small relative to the center. One challenge of using drusen 

volume to risk stratify patients at a point in time is that drusen can fluctuate over time 

as they appear and disappear as shown previously. Yehoshua et al. (2011)  

evaluated prospectively the change in drusen area and volume of 143 eyes over 2 

years using OCT and found a significant change in drusen volume. In their study 

48% of eyes showed an increase in drusen volume while 40% remained stable and 

12 % decreased at 12 months. 

Our findings are consistent with recent studies that showed OCT drusen volume may 

serve as earlier and more sensitive predictor for the development of advanced AMD 

(Abdelfattah et al., 2016, Folgar et al., 2016). Abdelfattah et al. (2016) followed 

retrospectively 89 patients with wet AMD in one eye and for a total follow up period 

of two years. This study showed that a drusen volume of 0.03 mm3 and more, in the 

fellow eye, is associated with four-fold increase in the development of late stage 

AMD. Furthermore, the baseline drusen volume was significantly higher in eyes 
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developed late stage AMD. Folgar et al. (2016)  reported similar findings and 

interestingly in their study for each 0.1 mm3 increase in baseline volume there was 

an increase of 31% in risk of developing CNV.  Similarly, de Sisternes et al. (2014) 

using SD-OCT studied quantitative characteristics of drusen (count, area, volume 

and other features of drusen) to predict the likelihood of progression from early and 

intermediate AMD to CNV. Their retrospective study represented the results of 186 

eyes of 128 AMD patients followed over a period of 5 years. They demonstrated that 

drusen volume, area, height and reflectivity are key features that can predict disease 

progression and drusen volume is the most sensitive predicator for progression 

within 30 months.  Moreover, Nathoo et al. (2014) collected retrospective data of 83 

AMD patients to analyse the association of drusen load with the development of late 

AMD. The authors found an association between drusen volume and drusen area, 

and the development of CNV or GA over a period of 2 years using SD-OCT.  

To our knowledge, our study is the first in being used 3D OCT-2000 algorithm to 

study drusen quantification longitudinally and the largest study (sample size) of 

drusen volume for AMD patients who developed CNV (N=69). Our findings might be 

applied to clinical practice in order to counsel patients more accurately about the 

time to second eye involvement.  

Limitations of this study are the use of commercially available software that does not 

allow user correction of segmentation. While theoretically a limitation, this limitation 

is surpassed by the essential nature of the work. It is essential understanding for 

clinical care as SD-OCT segmentation and drusen identification correction is not 

currently cost/time effective in clinical practice. Therefore, understanding of change 

based on ‘raw’ outputs is needed.  Additionally, the inherent differences between 

devices, makes comparisons between devices not possible and therefore requires 
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each device to be independently verified. These differences result in two categories 

of differences.  

First, we did not subdivide drusen measurements into smaller macular subfield within 

the total macular field of 6 mm cube as the algorithm did not permit this analysis. 

Updated versions of this software are anticipated to provide this analysis. However, 

the study shows that the results obtained on drusen volume in 6 mm cube parallels 

that obtained in 3 mm central macula and can be used as a predictor of CNV.  

Secondly, we did not adjust for other known risk factors of disease progression such 

as smoking, raised BMI and genetic factors. We also excluded a large proportion of 

patients for whom scans were not available at the strict time-points planned for this 

study. The rationale for establishing a standardised 2-year follow-up interval was 

based on 2-year study endpoints, which showed that a greater baseline drusen 

volume was predicative of an increased 2-year progression to CNV (Folgar et al., 

2016).  

In summary, this study has shown that prognostic 2-year risk of converting to CNV 

was obtained from baseline OCT drusen volume measurements. Furthermore, 

drusen volume growth rate across a 6 mm macula cube using the automatic Topcon 

drusen analysis software may be also used as a predictor for conversion to CNV. 

Serial OCTs over a shorter time interval may provide better information than the two 

time points that we have chosen. 
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6 Chapter 6: Predictor of CNV type based on 

drusen load and retinal layer volumes 

6.1 Introduction 

Age-related macular degeneration (AMD) is a leading cause of severe vision loss in 

people over the age of 50 years in developed countries (Klaver et al., 1998b, Buch et 

al., 2005). There are 2 main forms of the disease: the dry form (including early and 

intermediate AMD and geographic atrophy) and the wet form. Wet AMD develops 

when new choroidal blood vessels grow and break through the Bruch’s membrane. 

This phenomenon is defined as choroidal neovascularization (CNV). CNV occurs in 

approximately 10-15% of all AMD cases, and these eyes are at high risk for severe 

visual loss, because it often results in elevation of the retinal pigment epithelium 

(RPE) with adjacent sub-retinal and intra-retinal fluid and hemorrhage (Rosenfeld et 

al., 2006).  CNV can be classified based on fluorescence angiography into occult, 

classic or mixed lesion types (1991a). Classic lesions are often aggressive with early 

and severe loss of vision, while occult lesions are often stable with less visual loss 

(Bressler et al., 1990a).   

It is important to distinguish between occult and classic CNV lesions, because the 

natural course of the disease and its prognosis and benefit from certain treatments 

vary between different types of CNV (1996, Stevens et al., 1997). This was 

specifically realised when PDT or laser treatment were the first lines of treatment. 

PDT has been established only for those lesions that are predominantly classic CNV 

(1999), while laser photocoagulation has been used mainly for those lesions that 

have some evidence of classic CNV (1991a). Furthermore, the importance of 
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classifying CNV lesions as classic and occult has also been reported recently in the 

anti-VEGF era in MARINA and ANCHOR trails that assessed ranibizumab as 

intravitreal treatment of CNV secondary to AMD. MARINA trial was for occult CNVs 

(Chang et al., 2007), whereas ANCHOR trail was for predominantly classic lesions 

(Brown et al., 2006). Currently, the clinical relevance of CNV classification in wet 

AMD eyes is uncertain. This is because anti-VEGF agents were found to be effective 

in treating CNV regardless of its type (Invernizzi et al., 2019). However, classic CNV 

is associated with poor prognosis, risk of atrophy and fibrosis after anti-VEGF 

therapy compared to occult CNV (CATT).  

This was confirmed in a recent analysis of randomized controlled trials of wet AMD 

eyes treated with anti-VEGF agents which has reported its results using CNV types 

in order to show the different in trials’ outcomes (Daniel et al., 2018). New trials to 

test novel therapies also specify the CNV type among their inclusion criteria (Danis 

et al., 2014, Jaffe et al., 2017). Thus, CNV classification will allow for more effective 

trials as prognosis and treatment may vary based on CNV type.  

The risk of developing occult CNV in the second eye of patients with unilateral occult 

CNV has been found to be high (Chang et al., 1995). Various studies on patients 

with unilateral CNV secondary to AMD have identified important risk factors for 

development of CNV in the fellow eye (Roy and Kaiser-Kupfer, 1990, 1993, 

Pieramici and Bressler, 1998, Sandberg et al., 1998). The characteristics of drusen 

of the fellow eye are reported to be correlated with the type of CNV in the affected 

eye (Marsiglia et al., 2015, Pauleikhoff et al., 1990a, Abugreen et al., 2003). For 

example, occult CNV are more likely to be associated with intermediate drusen than 

pure classic CNV that may occur in eyes with no or small drusen (Abugreen et al., 

2003). However, very few studies investigated the correlation between clinical 
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characteristics such as drusen load preceding the development of CNV in the same 

eye. We reported that the mean change in macular drusen load in eyes that 

converted to wet AMD increase a year before conversion to wet AMD especially in 

eyes with occult CNV (Lamin et al., 2019a).  

6.2 Aims 

In this study, we aim to investigate a cohort of patients who were undergoing 

treatment for unilateral CNV and who developed CNV in the fellow eye at the end of 

the two-year study period. In the fellow eye, automated drusen and retinal layer 

quantification measurements were obtained from spectral domain OCT scans prior 

to the conversion onset.  The aim of this study was to investigate whether any 

correlation existed between these parameters and the subsequent CNV type in the 

same eye (i.e. fellow eyes). We also investigated correlation in CNV type between 

the two eyes in these patients as it is known that drusen phenotypes are similar 

between eyes. So we hypothesised that certain drusen or retinal layer quantification 

parameters may indeed better explain the symmetry of type of bilateral CNV. 

6.3 Methods 

Parts of the methods have been discussed in chapter 2 and an additional discussion 

will be added here. Consecutive FA and OCT images of patients with unilateral wet 

AMD were reviewed from the database of Moorfields Eye Hospital. For inclusion in 

this study, patients were required to have CNV in one eye as evidenced by FA, and 

had developed a CNV lesion in the fellow eye with at least 2 years of follow-up 

before developing the lesion. We excluded all patients with polypoidal choroidal 

vasculopathy based on ICG availability or clinical suspicion, subfoveal fibrosis or 

ungradable CNV due to haemorrhage or poor imaging quality. Eyes with CNV 
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secondary to other causes rather than AMD or without available FA images were 

also excluded.  

The classification of CNV lesions was graded independently by two ophthalmologists 

(A.L. and A.E.) for each patient on the basis of early, mid and late frames of FA. The 

CNV type was classified based on FA as occult, classic or RAP. Mixed lesions were 

classified as classic CNV because the number of participants were small and classic 

CNV holds bad prognosis.  Any discrepancies between the two ophthalmologists 

were resolved by a third expert consultant (S.S.). Details of this part has been 

discussed in chapter 2.  

Agreement of CNV type between the 2 eyes in cases where the fellow eye 

developed CNV was quantified with the Kappa (k) statistic.  

6.4 Results  

6.4.1  Demographic features of participants  

A total of 209 patients with unilateral wet AMD and had their FA available were 

identified (Figure 19). Seventy patients met the inclusion criteria.  Of these 70 

patients, 19 were excluded due to absence of FA in the fellow eye. In those 51 

patients’ fellow eyes, 29 eyes were classified with occult CNV, 20 eyes with a classic 

CNV and 2 eyes with a RAP type.  As RAP lesions were rare, we only compared the 

differences in the quantifications of drusen load and retinal layer volume between the 

classic and occult types.  

For drusen load quantifications, the whole cohort of 29 occult CNVs and 20 classic 

CNVs were included in the study. For occult lesion participants, the mean (SD) age 

of 22 females (75%) and 7 males (25%) was 75.7 (7.5) years, ranging from 60 to 88 



132 
 

years. For classic lesion participants, the mean (SD) age of 14 females (70%) and 6 

males (30%) was 75.8 (6.5) years and ranged from 65 to 85 years.  

For retinal layer segmentation analysis, only 17 participants were included (10 occult 

and 7 classic). Other participants were excluded because their macular OCT images 

of the 2 year protocol were not available. For occult lesion participants, the mean 

(SD) age of 7 females (70%) and 3 males (30%) was 82.4 (7.6) years, ranging from 

71 to 93 years. For classic lesion participants, the mean (SD) age of 4 females 

(57%) and 3 males (43%) was 80.2 (7.5) years and ranged from 71 to 91 years.   

 

Figure 19. Flow chart of the present study of Chapter 6.  

 

Assessed  for 
eligibility 
(n=209)

Eligible for 
the study 

(n=70)

Study 
participants 

(n=51)

Occult CNV
(n=29)

Classic CNV 
(n=20)

RAP

(n=2)

Excluded (no 
FFA image) 

(n=19) 
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6.4.2  Drusen load in occult and classic CNV 

Table16 shows means and standard deviations of drusen load including count, area 

and volume at baseline, year 1 and year 2 and longitudinal change in drusen area 

and volume from baseline to year 1 and from year 1 to year 2.  While drusen 

parameters (count, area, volume) were alike in both CNV groups, the rates of 

change of drusen area and drusen volume were higher in the occult group in the 

year preceding the development of CNV. 

Table 16. Drusen parameters in AMD eyes prior to convert to either occult (N=29) or 
classic (N=20) CNV. 

Drusen parameter  Time point Occult (N=29) 

Mean (SD) 

Classic (N=20) 

Mean (SD) 

P value   

Drusen Count Baseline 9.93 (8) 8.50 (5.7) 0.729 

Year 1 11.48 (7.8) 9.85 (6) 0.561 

Year 2 11.69 (8.8) 11.65 (7) 0.791 

Drusen Area 

(mm2) 

Baseline 1.49 (1.2) 1.77 (1.38) 0.483 

Year 1 1.84 (1.48) 2.21 (1.7) 0.528 

Year 2 2.63 (1.8) 2.46 (1.8) 0.707 

Drusen Volume 

(mm3) 

Baseline  .070 (.07) .078 (.06) 0.464 

Year 1 .085 (.089) .104 (.084) 0.309 

Year 2 .131 (.114) .118 (.1) 0.640 

Change in drusen 

Area (mm2) 

Baseline-Year 1 .354 (.61) .44 (.89) 0.855 

Year 1-Year2 .788 (.8) .252 (.7) 0.046 

Change in drusen 

Volume (mm3) 

Baseline-Year 1 .014 (.02) .026 (.04) 0.784 

Year 1-Year2 .046 (.04) .013 (.03) 0.022 

 

6.4.3  Retinal layer volumes in occult and classic CNV 

Table 17 shows means and standard deviations for the various layer volumes for 17 

participants preceding the development of CNV. There were statistically significant 
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differences between the 2 CNV types in mean volume of ONL (3 mm). The ONL 

volume was thinner in eyes preceding classic CNVs than occult CNVs at baseline 

and year 1, indicating early decrease in photoreceptor volume in eyes that progress 

to classic CNV type. Otherwise, no significant differences were found between the 2 

CNV lesions in volumes of other retinal layers.  

Table 17. Mean retinal layer volumes at 3 mm and 6 mm in AMD eyes prior to 
convert to either occult (N=10) or classic (N=7) CNV. 

Retinal 
Layer 

Time 
point 

Mean Retinal layer Volumes at 3 
mm 

Mean Retinal layer Volumes at 6 
mm 

Occult (n= 
10) 

Classic (n= 
7) 

P 
value 

Occult (n= 
10) 

Classic  
 (n= 7) 

P 
value 

TRV Baseline 2.19 (.19) 2.07 (.12) .118 8.32 (.65) 7.92 (.48) .283 

Year 1 2.17 (.18) 2.03 (.12) .118 8.24 (.62) 7.85 (.54) .283 

Year 2 2.17 (.18) 2.03 (.12) .172 8.27 (.62) 7.88 (.54) .283 

RNFL Baseline .215 (.03) .200 (.02) .205 1.19 (.17) 1.11 (.23) .283 

Year 1 .206 (.04) .196 (.02) .770 1.16 (.19) 1.06 (.22) .495 

Year 2 .217 (.02) .196 (.03) .283 1.15 (.14) 1.05 (.31) .495 

GCIPL Baseline .508 (.07) .511 (.04) .845 1.75 (.24) 1.76 (.13) .558 

Year 1 .508 (.08) .498 (.04) 1 1.73 (.18) 1.73 (.13) .922 

Year 2 .526 (.07) .500 (.07) .558 1.82 (.20) 1.74 (.17) .283 

INL Baseline .301 (.03) .278 (.02) .143 1 (.08) .90 (.06) .435 

Year 1 .301 (.03) .269 (.02) .143 1 (.08) .96 (.09) .696 

Year 2 .288 (.03) .270 (.02) .380 .99 (.09) .96 (.07) .696 

OPL Baseline .161 (.04) .183 (.04) .380 .592 (.13) .623 (.11) .626 

Year 1 .156 (.03) .190 (.06) .435 .577 (.10) .627 (.11) .380 

Year 2 .186 (.04) .182 (.04) .922 .648 (.12) .624 (.11) .696 

ONL Baseline .689 (.06) .589 (.06) .011 2.47 (.24) 2.21(.23) .064 

Year 1 .686 (.08) .576 (.07) .015 2.48 (.27) 2.24 (.24) .079 

Year 2 .626 (.08) .584 (.08) .495 2.34 (.28) 2.27 (.28) .558 

PR Baseline .318 (.02) .306 (.02) .495 1.29 (.11) 1.23 (.10) .435 

Year 1 .316 (.02) .304 (.02) .380 1.28 (.09) 1.21 (.09) .172 

Year 2 .325 (.03) .302 (.02) .172 1.30 (.09) 1.22 (.09) .172 

RPE-BM Baseline .047 (.02) .048 (.06) .329 .137 (.03) .157 (.07) .696 

Year 1 .048 (.02) .054 (.06) .495 .135 (.04) .171 (.08) .283 

Year 2 .067 (.04) .068 (.05) .845 .152 (.05) .200 (.07) .172 
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Table 18 shows longitudinal change of retinal layer volumes at 3 mm and 6 mm from 

baseline to year 1 and from year 1 to year 2 in occult and classic CNV lesions. From 

baseline to year 1, no differences were found between the 2 CNV types or even 

within each CNV group. From year 1 to year 2, most of retinal layer volume changes 

were observed in the outer retina, particularly in the occult group. There were 

significant differences between the 2 CNV groups in longitudinal volume of ONL (3 

mm and 6 mm) and OPL (3 mm). There was a progressive reduction in the volume 

of ONL, and an expansion in the volume of OPL in eyes that developed occult CNV. 

In the occult CNV group, INL (3 mm) and ONL volumes (3 mm and 6 mm) decreased 

significantly from year 1 to year 2. In contrast, there were significant increase in 

mean volumes of OPL (3 mm and 6 mm) and RPE-BM (3 mm) from year 1 to year 2. 

In the classic CNV group, only RPE-BM volume (6 mm) increased significantly from 

year 1 to year 2.  
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Table 18. Longitudinal Change in Retinal Layer volumes at 3 mm and 6 mm  in AMD 
eyes prior to convert to either occult (N=10) or classic (N=7) CNV. 

Circle 
diameter 

(mm) 

Retinal 
layer 

volume 

CNV 
subtype 

Year 1 volume change Year 2 volume change 

Mean 
(mm3) 

P 
Value* 

P 
Value

ⱡ 

Mean 
(mm3) 

P 
Value* 

P 
Value

ⱡ 

 
 
 
 
 
 
 

            
           3 

TRV Occult -.0189 .059 .380 -.0048 .721 .626 

Classic -.0357 .128 .003 .735 

RNFL Occult -.0089 .203 1 .011 .285 .770 
 Classic -.0042 .612 .0008 1 

GCIPL Occult -.0004 .878 .696 .017 .333 .329 

Classic -.0134 .499 .002 .612 

INL Occult .0007 .646 .118 
 

-.0131 .037 .143 

Classic -.0091 .176 .001 .866 

OPL Occult -.0052 .333 .770 .029 .007 .015 

Classic .006 .866 -.0077 1 

ONL Occult -.0029 .959 .435 -.0599 .005 .002 

Classic -.0130 .176 .008 .499 

PR Occult -.0021 .721 .770 .009 .646 .435 

Classic -.0020 .735 -.0023 .499 

RPE-BM Occult .0007 .241 1 .018 .007 .495 

Classic .005 .063 .014 .063 

 
 
 
 
 
 
 

         
          6 

TRV Occult -.0845 .093 .845 .0269 .721 .922 

Classic -.0667 .237 .0299 .735 

RNFL Occult -.0337 .445 .770 -.0024 .575 .845 

Classic -.0466 .237 -.0099 .735 

GCIPL Occult -.0283 .333 .922 .0907 .114 .205 

Classic -.0311 .237 .0067 .735 

INL Occult -.0041 .646 .696 -.0136 .241 .435 
 Classic -.0073 1 .0000 .735 

OPL Occult -.0147 .139 .558 .0714 .028 .118 
 Classic .0048 .866 -.0033 .866 

ONL Occult .0071 .646 .495 
 

-.1417 .013 .025 
 Classic .0311 .310 .0298 .499 

PR Occult -.0109 .333 .626 .0225 .878 1 

Classic -.0175 .176 .0066 1 

RPE-BM Occult -.0010 .575 .283 .0166 .074 .558 

Classic .0143 .091 .0287 .043 

*Wilcoxon signed-rank test for paired volume measurements, Year 1 (baseline versus 
year 1) and Year 2 (year 1 versus year 2).  
ⱡ Manne Whitney U test, Occult versus Classic. 
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6.4.4  Correlation in CNV type between the two eyes 

Table 19 summarises CNV types in patients with bilateral CNV. Of the 51 patients 

with bilateral CNV, 48 (94%) had similar CNV types in both eyes: 27 patients had 

occult CNV in both eyes, 19 patients had classic lesions in both eyes and 2 patients 

had RAP lesions in both eyes. The kappa statistic was 0.89 (95% CI 0.76-1.0) 

indicating a strong level of agreement between the two eyes.  

Table 19. CNV types in patients with bilateral CNV 

 CNV type in fellow eye Total 

Occult Classic RAP 

CNV type 

in 1st eye 

Occult 27 1 0 28 

Classic 2 19 0 21 

RAP 0 0 2 2 

Total  29 20 2 51 

 

6.5 Discussion 

In this study we compared the 2-year change in drusen load and retinal layer 

volumes between eyes that developed occult and classic CNV lesion at the end of 2 

year follow-up period. When comparing drusen load between the 2 CNV types, there 

were significant increases in drusen area and volume in the preceding 12 months 

prior to develop occult CNV, whereas no significant differences were found in means 

of drusen count, area and volume at baseline, year 1 or year 2 between the 2 CNV 

groups. When comparing retinal layer volumes between the 2 CNV types, thinning of 

baseline ONL was found in the classic CNV groups, and significant differences in 

change volumes of ONL and OPL were found between the 2 CNV groups in year 2 
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only (no differences between the 2 CNVs were found in year 1). In occult CNVs, the 

volumes of ONL and INL were found to be reduced, whereas OPL and RPE-BM 

volumes were found to be expanded from year 1 to year 2. It is likely that occult CNV 

pushes up the inner retinal layers as it grows below the RPE, resulting in thinning in 

the inner retina. In classic CNVs, only RPE-BM volume increased from year 1 to year 

2. This possible be explained by the fact  that the lesion has broken through the RPE 

so the inner retina is less affected anatomically. We also investigated, in the same 

cohort, agreement between CNV type in second eyes developing CNV and the first 

eye CNV. Agreement was high (kappa statistic 0.89).  

Drusen load findings of our study support findings reported previously in the 

literature. It has been reported that the clinical features in the fellow eye correlate 

with the type of CNV in the affected eye in AMD patients with unilateral CNV using 

colour fundus photography (Abugreen et al., 2003, Sivaprasad et al., 2006).  

Abugreen et al. (2003) found that the fellow eyes of occult CNV have significantly 

more severe AMD features compared to the eyes with classic CNV. Similarly, 

Sivaprasad et al. (2006) showed that this kind of association between the CNV type 

in the affected eye and the severity of the disease in the fellow eye can be only 

applied on Caucasians in compared to the Chinese patients who did not show a 

similar disease pattern.  

It is important to notice that the present study investigated longitudinally the 

correlation between prior drusen load quantifications using SD-OCT and subsequent 

CNV type in the same eye. Our data showed that a greater increase in OCT drusen 

area and volume can be seen in the year before developing occult CNV in compared 

to other eyes that developed classic CNV. As these drusen quantifications were 

measured by SD-OCT, the scans only detected soft drusen and no other type of 
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drusen such as RPD could be quantified. Thus, our findings of no significant 

differences between the 2 CNV groups in means of OCT drusen count, area and 

volume at baseline, year 1 or year 2 are consistent with the recent work of Marsiglia 

et al. (2015), who showed that soft drusen on colour photgraphs in one eye are not 

associated with CNV type in the other eye.  

Our study demonstrated significant baseline thinning of ONL in eyes that developed 

classic CNV. The Thinning of ONL in AMD eyes has been reported in recent studies 

using OCT that showed ONL thinning in eyes with intermediate AMD (Schuman et 

al., 2009, Sadigh et al., 2013, Brandl et al., 2019). We also reported in a recent study 

that ONL layer is either not affected at early AMD stages or the amount of damage is 

not significant to be detected at earlier stages of the disease (Lamin et al., 2019b). 

Our finding suggests that ONL degenerates earlier in eyes that will develop classic 

CNV type than occult one but does not visibly worsen over time. Additional finding in 

this study supports this hypothesis which is a significant reduction in ONL volume in 

the eyes that developed occult CNV. Other notable observation in this study was that 

OPL increased in volume in the occult type. OPL thickening with age and in AMD 

has been reported recently (Nieves-Moreno et al., 2018, Lamin et al., 2019b). This 

increase in OPL volume may represent a compensatory expansion as a 

consequence to ONL thinning. 

Finally, the observed symmetry in CNV types between the 2 eyes was high and this 

may give us an idea of the likelihood symmetry between the 2 eyes when trying to 

predicate the CNV type that most likely to be developed in a fellow eye of a patient 

with unilateral wet AMD. The symmetry of CNV type between eyes of AMD patients 

has been reported previously in a study of 115 patients and showed that patients 

with unilateral occult CNV have a high risk of developing occult CNV in the fellow 
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eye (Chang et al., 1995). However, a recent study reported a poor agreement (kappa 

statistic 0.16) in the symmetry of CNV between the 2 eyes in patients with bilateral 

wet AMD (Mann et al., 2011). It is possible that methodological differences explain 

the disagreement with the present study.  

To our knowledge, this is the first study to longitudinally investigate a difference in 

retinal layer volumes and drusen load between occult and classic CNVs in order to 

identify imaging biomarkers. These biomarkers may aid in predicating the CNV type 

before developing in AMD eyes. This will allow for more individualised patients care 

and more effective trials because prognosis and treatment may vary based on CNV 

type.  

Limitations include- retrospective study; possible ascertainment bias as only included 

patients with active CNV undergoing treatment. No adjustments were made for axial 

length or refraction. Further longitudinal studies involve other factors such as 

subretinal drusenoid deposits, pigmentary changes and choroidal thickness may 

enable the development of a risk score based on weight evidence of each imaging 

marker. 

In summary, the association between simple automated quantification of drusen and 

retinal layer volumes using the method described, and subsequent CNV type would 

suggest that multiple pathogenetic mechanisms explain whether develop occult or 

classic CNV. This hypothesis might be tested by further studies on larger cohorts of 

patients. The observations of the present study provide imaging biomarkers that may 

help in predicating the type of CNV. Also, the strong agreement between CNV types 

in patients with bilateral CNV is consistent with distinct pathogenetic mechanisms or 

patient-specific modifiers, with some patients more at risk of one type than another, 
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which may support separating these subgroups in future trials of novel therapies or 

treatment regimens.        
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7 Chapter 7: Deep learning for prediction of 

AMD progression  

7.1 Introduction 

Advanced age-related macular degeneration (AMD) is a leading cause of vision loss 

for people over 50 and accounts for 8.7% of all blindness worldwide (Wong et al., 

2014). AMD proceeds in distinct stages from early, to intermediate, to advanced.  In 

advanced, wet (neovascular) AMD, blood vessel growth (choroidal 

neovascularization - CNV) can lead to irreversible damage to the photoreceptors and 

rapid vision loss. Currently, patients can progress to wet AMD without symptoms or 

any measurable change. Thus, it is of the utmost importance to try and determine 

which patients are at the highest risk for conversion to wet AMD to allow intervention 

before permanent damage. 

Neovascularization is typically diagnosed based on signs of exudation, seen either 

by fundus examination and confirmed using fluorescein angiography (Spaide, 2004) 

or by visualizing fluid pockets seen cross-sectionally using depth resolved optical 

coherence tomography (OCT) images (Rosenfeld, 2016). In the absence of 

exudation, indocyanine green angiography (ICGA) imaging may be useful in 

identifying patients at risk of leakage (Schneider et al., 1997, Hanutsaha et al., 

1998). This ability to see subclinical neovascularization in the macula has been 

underutilized in part due to the lack of therapeutics, but also given its cost and 

discomfort (de Oliveira Dias et al., 2018). 

More recently, however, OCT angiography (OCTA), and in particular swept-source 

(SS) OCTA, is beginning to address these issues with a more patient-friendly ability 
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to image subclinical neovasculation (Choi et al., 2015). Like the more established 

structural OCT, the approach is non-contact and requires no injections and is very 

fast. OCTA images blood flow by taking multiple images in the same location and 

using a decorrelation algorithm to detect the motion of the blood cells as signal 

(Zarubina et al., 2016). By these means OCTA is able to resolve, for example, flow in 

the capillary beds. Being able to see the choriocapillaris and delineate areas of 

perfusion / non-perfusion opens a new window onto vascular health in the retina, 

including the much-needed ability to see and assess subclinical neovascular 

complexes. 

The prognostic value of vascular abnormalities in predicting exudative AMD is an 

area of active investigation. While the early studies using fluorescent dye imaging 

(Hanutsaha et al., 1998, Schneider et al., 1997) have shown that subclinical 

irregularities (plaques, spots) are valuable biomarkers, new noninvasive techniques 

seek to build on this. The more recent findings correlating SS OCTA with ICGA 

imaging for example attempt to bridge this early work to the newer technologies 

(Roisman et al., 2016, Chung et al., 2018, Hirano et al., 2018). It is still an open area 

of research, however, and tremendous interest exists in utilizing more established 

imaging techniques such as structural OCT and fundus photography alongside more 

advanced algorithms to create clinical biomarkers stratifying a patient’s level of risk 

of conversion to wet AMD. The motivation is pragmatic given that structural OCT 

imaging is the standard of care in the management of ocular diseases, is more 

affordable than OCTA, and has higher utilization and legacy data. It thus remains the 

most compelling modality to study for indications of subclinical CNV. 

Another area of active research de Sisternes et al., (2014), for example, used 

traditional, feature-based modeling techniques applied to a number of hand-crafted 
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features, or parameters, for prediction of conversion to wet AMD. The features used 

included volume, height and reflectivity of drusen. In the case where the advanced 

AMD was geographic atrophy (GA) as opposed to neovascular, the same lab has 

developed similarly crafted features that were predictive of GA progression (Niu et 

al., 2016). In this study, the best feature was thinning and loss of reflectivity of the 

inner/outer segment junction, a structural measure derived from the OCT data.   

A similar combination of OCT-based structural features and visual acuity were used 

temporally across an initiation phase to characterize response to anti-VEGF 

treatment using a random forest classifier (Bogunovic et al., 2017). With areas under 

the curves (AUCs) between 0.7 and 0.8, the resulting predictive model had 

comparable performance with an expert human grader in predicting both low and 

high anti-VEGF treatment requirements. Interestingly, they found that temporally 

differential features were not found to play an important, discriminatory role in their 

model’s predictions, and that a cross sectional analysis, as is presented here, 

achieved the same performance. More recently, Schmidt-Erfurth et al., (2018) used 

machine learning methods to assimilate various imaging, demographic and genetic 

features to predict the likelihood of conversion from intermediate to advanced AMD. 

In a study of 495 eyes, they had separate models for conversion to wet AMD 

(N=114) and geographic atrophy (N=45), and reported AUCs of 0.68 and 0.80, 

respectively, using 10-fold cross validation. The deep learning component used 

segmented hyperreflective foci in the OCT data producing an en face map of their 

location that generated nine separate numerical features based on location and 

distribution that was included in the final 71 features used. The “predictive hallmarks” 

for CNV were reported as “mostly drusen-centric”.  
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7.2 Aims  

In this work we look to derive OCT-based biomarkers based on a deep learning 

classifier to help predict which patients will progress from early/intermediate AMD to 

wet AMD using OCT imaging data alone.  For context, we also present the 

performance of more traditional machine learning classifiers using features akin to 

those of de Sisternes et al., (2014) and Schmidt-Erfurth et al., (2018). 

7.3 Methods 

The participant demographics of this study has been discussed in chapter 3 and 
summarized Table 5. 

 

7.3.1  Traditional image processing 

Following earlier work (de Sisternes et al., 2014, Schmidt-Erfurth et al., 2018), we 

first assayed to perform the prediction using traditional image processing and 

machine learning techniques. All datasets were analyzed using patient data and 

layer-based biomarkers from OCT analysis software (Orion, Voxeleron LLC, 

Pleasanton, CA). The software automatically segments the OCT volumes into 8 

retinal layers allowing analysis of various metrics such as average thicknesses and 

volumes of the different layers (and of the drusen) within the ETDRS zones (1991b) 

based on an automatic foveal centration. All segmentations were verified to be error-

free (AL and JDO), and then analyzed for separation using a state-of-the-art 

machine learning classifier. Example segmentations for both progressors and non-

progressors are shown in Figures 20 and 21, where we highlight more normal 

looking retinas and also those with some obvious drusen. Multiple layer 

segmentation offers multiple parameters that can be analyzed in an effort to 



146 
 

separate the two groups. An ETDRS grid has 9 zones, and with 7 average 

thicknesses being reported in each of these zones we can use any combination of 

thicknesses, or volumes over different regions to train a classifier to predict the class.   

 

Figure 20. The left-hand side shows segmentations in both the progressor (top, 
bottom) and non-progressor (middle) groups. The right hand side shows their 

corresponding total retinal thickness maps in microns. 
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Figure 21. The left-hand side shows segmentations in both the progressor (top, 
bottom) and non-progressor (middle) groups. The right hand side shows their 

corresponding drusen thickness maps in microns. 
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We used a 32-dimensional feature vector that comprised biomarkers from the 

segmentation as well as patient information (Table 20). We used a support vector 

machine (SVM), a well-defined, state-of-the-art machine learning classifier to 

perform the prediction (Boser et al., 1992). The SVM was trained with radial basis 

functions for the kernel and the free parameters (box constraint, kernel scale) were 

chosen empirically. We evaluated the SVM using 5-fold cross validation taking care 

that the splits were made at the volume level so that no one patient’s data ever 

appeared in both the training and testing sets. We report both the receiver operating 

characteristic (ROC) curve as well as its AUC in Figure 22. 

Table20. The 32 features used to train the SVM classifier.  The thicknesses were taken as 
averages with the fovea-centered ETDRS grid, where: IA=inner annulus (circle of 3mm 
diameter, less the central 1mm subfield), OA=outer annulus (circle of 6mm diameter, less 
the central 1mm subfield and the IA), TA= IA+OA, D=entire 6mm diameter circle.  The layer 
names follow the APOSTEL recommendations(Cruz-Herranz et al., 2016), and are: retinal 
nerve fiber layer (RNFL), ganglion-cell + inner plexiform layer (GC-IPL), inner nuclear layer 
(INL), outer plexiform layer (OPL), outer nuclear layer (ONL), photo receptor complex (PR), 
as well as RPE to Bruch’s and the total retinal thickness (TRT).  Foveal thicknesses of the 
RNFL and GCIPL were excluded. 

Layer RNFL GC-IPL INL OPL ONL PR RPE to Bruch’s TRT Patient-based 

Zones IA,OA,

TA 

IA,OA,

TA 

IA,OA,

TA,D 

IA,OA,

TA,D 

IA,OA,

TA,D 

IA,OA,

TA,D 

IA,OA,TA,D IA,OA,

TA,D 

Age, Sex 

Featur

es 

3 3 4 4 4 4 4 4 2 
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Figure 22. The above compares the performance of the SVM classifier (left) with the 
same data + instrument type added as a feature (right).  This information appears to 
offer very little improvement in the classification.  

 

7.3.2  Deep Learning-based Analysis 

Our deep learning approach consists of a two-step process decoupling the image 

segmentation step from the classification step. This has the effect of allowing the 

classifier to focus specifically on the regions of interest. After the segmentation step, 

we tried two different CNNs: 

1. Transfer learning using the popular VGG16 network (Simonyan and 

Zisserman, 2014) 

2. AMDnet, a novel, simplified architecture trained from scratch 

7.3.2.1  Segmentation-based Preprocessing 

The 71 volumes were decomposed into 9088 B-scans which were preprocessed 

using the aforementioned layer segmentation software, to identify the inner limiting 

membrane (ILM) and Bruch’s membrane (Figure 23). Each B-scan was then cropped 

from the ILM to a fixed offset (390 microns) below Bruch’s membrane and resampled 

to a uniform size (Figure 24). The offset used was designed to capture choroidal 
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information over a fixed area beneath the choriocapillaris. It was chosen based on 

work from Manjunath et al. (2011) to represent 2 standard deviations above the 

mean subfoveal choroidal thickness in a population with AMD. This preprocessing 

was performed to reduce the variance of the training set and create some invariance 

to scale. 

 

Figure 23. Example B-scan showing the automated segmentation (ILM in red, RPE 
in blue, and Bruch’s membrane in magenta)  used for the pre-processing.  In this 
example, we clearly see signal in the choroid, albeit diminished below the drusen. 

 

 

Figure 24 . An example of the preprocessing used to normalize the B-scans. The top 
row shows B-scans from a Topcon OCT scanner and the bottom row shows the 
corresponding images with normalization applied.  The data is cropped between the 
ILM (red) and a fixed offset (390 µm) from Bruch’s membrane (magenta-solid), which 
is itself estimated as a baseline (magenta-dashed) to the retinal pigment epithelium 
(RPE) (blue).   Normalization in this way greatly reduces the variance in the training 
set and allows for robust training of smaller data sets as well as better generalizability.  
Note that, despite this being an SD-OCT device, the signal in the choroid is apparent 
and strong in each case. 
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7.3.2.2  A Transfer Learning Model 

To evaluate the preprocessing, an existing, well-established deep convolutional 

neural network (CNN) (VGG16) (Simonyan and Zisserman, 2014) was fine-tuned 

using transfer learning based on the standard strategy of retraining only the fully-

connected layers of the model (Rattani and Derakhshani, 2017). We used the 

original paper’s fully-connected layer sizes (4096 neurons each) changing only the 

final layer from 1000 neurons to 2 neurons to fit our problem. Similar to Rattani and 

Derakhshani (2017), we experimented with simpler versions with a smaller number 

of neurons, settling on 512 and 128 neurons for the first two fully-connected layers, 

respectively. This process was applied to both the raw and preprocessed B-scans.  

The raw and preprocessed B-scans were resized to 224x224 to match VGG16’s 

expected input. The training was run for 2500 epochs using stochastic gradient 

descent with Nesterov momentum and a learning rate of 5e-5. To avoid overtraining, 

we used early stopping with a patience of 20. The resulting classifiers were 

evaluated using the same 5-fold cross validation splits from the prior, traditional 

image processing analysis. 

7.3.2.3  The AMDnet Model 

Alternate architectures were explored in an effort to further improve the results. We 

tried both deeper, more complex networks as well as shallower, simpler ones and 

eventually settled on the latter. AMDnet (Figures 25 & 26) consists of just 3 

convolutional layers with varying amounts of pooling. The number of parameters for 

this model is just over 2 million vs. more than 27 million (12 million trainable) for 
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VGG16. Given the relatively small size of the dataset, we took care to regularize this 

model in three specific ways: 

1. We used dropout regularization with a percentage of 45% at the end of all but 

one of the convolutional and fully-connected layers. Dropout essentially acts 

during training on each batch to randomly remove a percentage of the 

previous layer’s neurons. Dropout has the effect of averaging an ensemble of 

classifiers which produces more robust results and resists overtraining (Hinton 

et al., 2012). 

2. We used L2 regularization for each of the convolutional layers which 

penalizes very large weights and has the effect of simplifying the model. 

3. We used maxnorm regularization for the dense layers which also works to 

simplify the model by requiring the norm of a given layer’s weights to be less 

than a pre-specified value. 
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Figure 25. A schematic of the architecture of AMDnet. 

 

Figure 26 has a detailed breakdown of the architecture of AMDnet. We evaluated 

AMDnet using the exact same 5-fold cross validation and splits as described above.   

 

Figure 26. A detailed breakdown of AMDnet. 
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7.3.3  Feature analysis 

In an effort to tease out what latent features the classifier is relying on, and perhaps 

learn something about disease process itself, we also performed an occlusion 

sensitivity analysis (Zeiler and Fergus, 2013) of the outputs of the neural network. 

The occlusion analysis shows the regions of the image that are most discriminative 

with respect to a specific class. Such visualizations help interpret the overall results, 

especially in asking whether the method makes basic sense and whether artifacts or 

irrelevant features are driving the performance. This we revisit more thoroughly in 

the discussion. 

7.4 Results 

7.4.1  Traditional image processing 

The summary results of the SVM analysis are shown in Figure 22 on the left. With 

AUC’s in the range of 0.74-0.82 (mean = 0.78), these results are consistent with 

what has been previously reported by for this type of approach (de Sisternes et al., 

2014, Schmidt-Erfurth et al., 2018). 

Another consideration was given to potential bias introduced based on machine type 

as the two Topcon devices use different spectrometers, resulting in different axial 

resolutions. To investigate this, we added the dimensionality of the scan’s axial 

resolution (either 480 or 885 pixels) as a feature, acting as an instrument flag. All 

features were scaled to zero mean and unit variance as part of the training process 

(test features being scaled based on the learned ranges). We reran the best 

performing SVM from the previous experiment using this new feature set and report 

the results in Figure 22 on the right. The mean AUC for this experiment of 0.79 
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suggests that having knowledge of the instrument appears to add little to no 

additional information to the classifier’s performance.   

Finally, we explore the potential bias of the follow-up interval on the performance of 

the classifier. Following the experiments above, we chose an operating point with 

false positive rate of 0.25 and looked at the true positives, true negatives, false 

positives and false negatives with respect to follow-up interval. We conclude, based 

on Figure 27, that small variations in the follow-up interval do not introduce a large 

bias into the results. 

 

Figure 27. An analysis of the SVM results for a specific operating point (FP rate = 
0.25).  The follow-up interval does not seem to have a marked effect on the results. 

 

7.4.2  Deep Learning 

The results comparing the effect of the preprocessing (Figure 28) are presented at 

both the B-scan and volume levels. The prediction value for the volume-level 

analysis was calculating by taking the mean of each volume’s individual B-scan 

predictions. For VGG16 with preprocessing, the AUC was 0.82 at the B-scan level 
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and 0.87 at the volume level while the same run without preprocessing (only scaling 

to match the VGG16 input) had AUC’s of 0.67 and 0.69, respectively. The results for 

the same 5-fold validation for AMDnet are shown in Figure 29. We achieve a marked 

improvement with AMDnet at the B-scan level (0.89) and at the volume level (0.91). 

Interestingly, we also performed simple augmentation of the data (adding small 

rotations plus noise) but were unable to improve the algorithm’s performance. This 

very clearly demonstrates the benefits of preprocessing as, regardless of network 

and evaluation metric, the performance improves each time. 

 

Figure 28. Per-B-scan (left) and per-patient (right) ROC and AUC results for the fine-
tuned VGG16 CNN using segmentation-based preprocessing (blue) and just simple 
resizing (red). As expected, preprocessing to reduce the variance of the input data 
dramatically improves the results. 
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Figure 29 . Per-B-scan (left) and per-patient (right) ROC and AUC results for 

AMDnet (green) and VGG16 with preprocessing (blue).  The simplified AMDnet 

architecture shows improvements across both sets. 

 

 

The results of the feature analysis, shown in Figure 30, illustrate that the areas 

around the retinal pigment epithelium (RPE) and choroid seem to be the most useful 

to the classifier in making its predictions. In particular, this analysis shows that pixels 

around the RPE have the largest impact on the final score of the classifier in the 

case of non-progressors while progressors seem to have more sub-RPE choroidal 

involvement.  In addition, we stacked the class activation maps into volumes looking 

for a pattern in the en face direction (Figure 31). These results suggest a stronger 

response nasally for non-progressors while the temporal area relies more on the 

temporal region. Further investigation is needed, but this difference could potentially 

be due to the presence of more photoreceptors nasally or large arterioles nasally 

skewing the choroidal density. 



158 
 

 

Figure 30 . Occlusion sensitivity analysis for progressors (right) and non-progressors 
(middle).  These images were derived by averaging the occlusion analysis outputs 
for all B-scans in their respective groups.  The average structure for all B-scans is 
shown on the left and the mean location of Bruch’s membrane in all scans is plotted 
in magenta. This analysis shows that, in particular, pixels around the RPE have the 
largest impact on the final score of the classifier for non-progressors.  It also 
suggests more sub-RPE or choroidal involvement for progressors. 

 

 

 

Figure 31 . En face visualization of occlusion sensitivity analysis. The results from 
each B-scan’s occlusion analyses were stacked into a volume and all of these 
volumes were averaged. An en face image of the average volume is displayed for 
non-progressors (left) and progressors (right). The non-progressors seems to have 
more relevant features in the nasal side of the volumes while the progressors show 
the opposite effect. 
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7.5 Discussion 

We have reported on a use of deep learning to predict conversion to wet AMD using 

OCT imaging. The results show clear separation between the progressors and the 

non-progressors and the occlusion sensitivity analysis indicates that relevant 

features are brought to bear by the technique. In the following we add context to 

these findings, discuss their clinical relevance, present some limitations of the study, 

and close with some conclusions. 

One of the major challenges in the clinical management of patients with 

early/intermediate AMD is the assessment of risk of conversion and any metrics 

supportive of this assessment are welcome. Structural OCT data have been used to 

create anatomical biomarkers such as thickness and volumetric measures, but 

despite being researched for several years now, compelling indicators of conversion 

have yet to emerge. Instead, interest has turned to OCTA where subclinical 

neovascularization is being observed and studies are being carried out on how to 

quantify these observations such that they can be deployed clinically. OCTA 

instrumentation is, however, less widely used, and longitudinal data less readily 

available. In addition, OCTA data has greater dependence on variations in signal 

strength across different systems and is vulnerable to projection artifacts that makes 

it difficult to assess flow as a reliable bio-marker, especially in the case of 

neovascularization underneath the RPE (Type 1) (Novais et al., 2016). With the 

advent of more advanced feature extractors and classifiers facilitated through deep 

learning, we have revisited and further mined the OCT data sets for signal that, akin 

to OCTA, might be supportive of the subclinical assessment of non-exudative 

neovascularization. 
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An immediate interpretation of the findings is that the neural network has discovered 

specific patterns indicative of pathological change. OCT-based features identified in 

early CNV have been previously reported (Mukkamala et al., 2012, Querques et al., 

2014, Sato et al., 2007, Spaide, 2009). The analysis we report on, however, looks at 

data before any clinically observable signs of conversion, so consideration must be 

given to more subtle features including textural changes that are perhaps occurring 

as a direct result of early physiological changes. Pathology detection using OCT 

texture analysis has itself been previously researched (Gossage et al., 2003). Such 

approaches failed to gain traction, but in the advent of better computational 

resources and the more sophisticated learning approaches, we envisage a 

resurgence in such work. The texture descriptors were examples of hand-crafted 

features, a technique that has been superseded by the ability to instead learn the 

features through deep learning. Similarly, in the work from de Sisternes (2014), Niu 

(2016) and Schmidt-Erfurth (2018), the features were manually crafted, and, through 

extensive use of regression, applied to temporal data in their final models. Through 

learning the features in a systematic way afforded by deep neural networks, more 

powerful and better regularized solutions are now possible. Very important to the 

method, however, is the pre-processing of the input data via a segmentation step 

that 1) gives us some invariance to instrumentation and 2) allows the network to 

concentrate on tissue of interest. This is somewhat akin to the recent work by De 

Fauw (2018) where their classification scheme uses a separate segmentation step, 

here using a U-Net deep learning architecture (Ronneberger O., 2015) and then 

classifying the homogenous tissue regions into referral classes using a second deep 

learning architecture, one that is very similar in composition to that used in this study.  
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In our work, however, we do not disregard the image intensities and distributions as 

they are critical to our method in differentiating the classes. 

The results show that the signals are localised at the RPE level extending to the 

choroid. This finding paves our way to concentrating research to these layers. There 

has been significant confusion as to which outer layer is primarily involved – is it the 

photoreceptors and the hypoxia induced mainly by the rod function or is it the 

lipofuscin loaded RPE cells that interfere with the metabolic transfer of nutrients and 

the visual cycle or is it the atherosclerosis and slowing of blood flow of the 

choriocapillaris that is not involved. The study results cannot be used to conclude a 

inciting layer but it shows that in eyes that are at risk of conversion to neovascular 

AMD, the choroidal signals increase significantly while those that do not progress 

show significant signals around the RPE layer.  This mirrors our findings on 

increasing thickness of the outer retina before conversion. However, the choroidal 

signals are very important as it suggests subclinical neovascularisation that is not 

detectable on OCT. Our study needs to be validated in a larger cohort but is 

definitely showing a clear distinction between progressors and non-progressors.  

This study is not without some limitations. Although this is not a large and balanced 

data set, more data would help better support our conclusions. To address this, 

unbiased estimates of performance are reported including the cross-validation 

approach given in the method section, where care was taken to evenly balance the 

cohorts in the test and training sets, ensuring same subject data was not used 

across data sets.  As a pilot study, however, the findings are compelling. 

A second limitation could perhaps also be considered a strength of the method given 

the positive results and the indication that information in the choroid is of importance 
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to the performance. This is namely the SDOCT scanner used (Topcon 3d OCT) has 

a light source of 840nm which offers limited depth penetration given its relatively 

short wavelength. Longer wavelengths are preferred for resolving detail in the 

choroid even if these lose some axial resolution. However, through simple review of 

the B-scans (see Figures 20 and 21, for example), one can see clear choroidal 

signal in the OCT data.  And conversely, this speaks to the strength of the method as 

even with this limited penetration, there is clearly information in the choroidal regions 

of the data that is being used to discriminate progressors from non-progressors 

(Figure 30). We are currently collecting data to test the method using other devices, 

including SS OCT as well as depth enhanced imaging (EDI), a spectral domain 

approach that puts the focal plane (point of greatest signal) lower in the image. In 

addition, no adjustments were made for age or risk factors such as smoking.  

This study is on a population of unilateral neovascular AMD eyes, who have a high 

risk of conversion. Therefore, studying the non-progressors and progressors in this 

enriched cohort allowed us to target the pathological area better. As this is the case, 

however, it is not known how the models and results would generalize to patients 

with bilateral early/intermediate AMD, who constitute the majority of the at-risk 

population. Again, this is an interesting avenue of research that we would also like to 

look at in more detail. 

To conclude, we report that a deep learning CNN with layer segmentation-based 

preprocessing shows strong predictive power with respect to the progression of 

early/intermediate AMD to advanced AMD. Such adjunct analysis could be useful in, 

for example, setting the frequency of patient visits and guiding interventions. 
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8  Chapter 8: Summary, conclusion and future 

directions 

Identifying biomarkers that can predict the progression to wet AMD is an unmet 

need, in order to allow early intervention before permanent damage. There are a 

numbers of clinical trials that have failed to prevent progression to advanced AMD. 

Although these failures have been attributed to the drugs not being effective, a 

fundamental flaw is that the end-points that mark disease progression are limited 

and require measurement over years. AMD is also a heterogeneous disease. This 

thesis aimed to study various aspects of disease progression to wet AMD including 

the study of heritability and imaging characteristics. I studied cohorts of normal eyes 

with aging, eyes with early/intermediate AMD and fellow eyes of patients with 

unilateral wet AMD to predict the rate of conversion to wet AMD.  

The thesis is divided into 5 parts, first a study on measurement of retinal layer 

volumes of healthy and AMD patients. Second, the heritability of retinal layer 

volumes. Third, the drusen measurements and their associations with wet AMD 

progression. Fourth, the difference between occult and classic CNVs in terms of 

drusen load and retinal layer volumes. Finally, the use of deep learning to predict 

AMD progression.  

8.1 Changes in volume of various retinal layers over 

time in early and intermediate AMD 

This part of the thesis aimed to evaluate volume changes longitudinally in inner and 

outer retinal layers in early and intermediate AMD and compare the results to age 
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matched control population using OCT. Moreover, a sub-analyses of the AMD eyes 

that progressed to wet AMD and other that did not progress were performed. The 

rationale for conducting this study was to identify changes in retinal layer volumes in 

AMD eyes, which might be used as biomarkers for disease conversion. 

The emergence of software that have the ability to segment the retina into layers 

akin to its histological structure influenced us to conduct the study. We used Orion 

segmentation software, which has been shown by many previous studies to be able 

to measure thicknesses and volumes of retinal layers with distinct boundaries. It is 

designed to accurately and rapidly segmenting macular OCT images into 7 layers 

(excluding TRV) including Retinal Nerve Fiber Layer (RNFL), Ganglion Cell-Inner 

Plexiform Layer (GCIPL), Inner Nuclear Layer (INL), Outer Plexiform Layer (OPL), 

Outer Nuclear Layer (ONL), Photoreceptors (PR), and Retinal Pigment Epithelium-

Bruch’s Membrane complex (RPE-BM).  

Our results of a longitudinal study of 102 participants over 2 years showed that inner 

and outer retina layer volumes may differentiate AMD eyes from healthy eyes. When 

comparing progressors to non-progressors eyes, we found that baseline volume of 

GCIPL may differentiate between the 2 groups.  

Firstly, we compared baseline and year 2 volume measurements of AMD with 

controls and found that some inner retinal layer volumes (GCIPL and INL) were 

thinner and some outer retinal volumes (PR and RPE-BM) were thicker in eyes with 

AMD compared to healthy eyes. We then explored longitudinal changes over 2 years 

follow-up. OPL and RPE-BM volumes were found to increase, whereas the volume 

of ONL was found to decrease during the 2-year follow-up in AMD eyes. 
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Secondly, we performed a sub-analysis in the AMD eyes, aiming to differentiate 

between eyes that progressed to wet AMD and others that did not. There were 

significant difference between the progressers and non-progressers in mean 

volumes of GCIPL and OPL at baseline, and RPE-BM at year 2. GCIPL and OPL 

volumes were less in progressers than non-progressers at baseline. Conversely, 

RPE-BM volume was greater in the progressing group than non-progressing one at 

year 2. When looking at the progressors during the 2-year follow-up, there was a 

progressive reduction in the volume of INL and ONL, and a significant expansion in 

the volume of RPE-BM. The GCIPL volume remained unchanged in progressors 

over the 2 years. The thinning of GCIPL volume at baseline may be used as a 

biomarker for disease conversion.   

By looking at outer retinal layer volumes, we know that the expansion of RPE-BM 

and PR volume is likely to be a consequence of RPE function failure, resulting in 

drusen formation (RPE-BM expansion) and decline in phagocytosis of photoreceptor 

outer segments (PR expansion) (Bonilha, 2008). In addition, the expansion in OPL 

volume might represent remodelling or might also be a consequence of mechanical 

factors, including expansion as neighbouring cellular layers might reduce in volume. 

Of note, the volume of ONL did not show any difference between AMD and control 

eyes as well as between the progressors and non-progressors but during the follow-

up period there was a noticeable reduction in ONL volume in AMD eyes regardless 

of the disease subgroup (progressors or non-progressors). Histological study 

demonstrated that rods are more vulnerable to damage than cones in AMD eyes, 

suggesting rods loss begin first then cones in more advanced form of the disease 

(Curcio et al., 1996). This may explain the huge reduction of ONL volume in more 

advanced dry AMD as there are significantly more rods in the macular area than 
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cones. This also explains that cone related visual function remains normal until 

advanced AMD involves the fovea but rod related dark adaptation reduces in eyes 

with intermediate early long before disease progresses to advanced AMD. Thus, we 

conclude that ONL thinning may be an early sign of AMD eyes. Large cohorts need 

to be tested on this to validate my findings.  

Moving to the inner retina, the thinning of GCIPL and INL that we found in our study 

is already established in recent studies using OCT, and thought to be a 

consequence of either ischemia or transynaptic issue (Villegas-Perez et al., 1998, 

Feigl et al., 2007, Toto et al., 2016, Toto et al., 2017, Strettoi et al., 2002), although 

these have not been confirmed in histopathological studies. RNFL also decreased in 

volume but in slower rate compared to other inner retinal layers. Thus, we conclude 

that all inner retinal layers decrease in AMD eyes. These changes are unlikely just 

related to compression from outer retinal thickening and suggest that AMD may in 

fact affect all layers of the retina because the reduction in GCIPL and INL volume 

precede the reduction in ONL volume as the disease progresses. This finding gives 

clues that inner retina may be markedly damaged before outer retina. Our finding of 

chapter 4 (heritability of retinal layer volumes study) showed that genetic 

predisposition play a role in variance in inner retinal layer volumes might partly 

explain the early degeneration of the inner retinal layers in the present study. 

However, the theory on inner retinal ischaemia and dysfunction of synaptic 

transmission suggested by other authors need to be investigated further. 
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8.2 Retinal layers volumes: age association and 

heritability  

This section of the thesis aimed to investigate segmented macular layer volumes 

from macular OCT scans from a healthy adult twin cohort (TwinsUK), exploring 

heritability and changes with age of each layer separately. The rationale for 

conducting this study was to evaluate whether heritability was responsible for ageing 

changes of the retinal layer volumes. 

Twin studies allow investigation of relative genetic and environmental contributions 

to phenotypic traits. A higher correlation in MZ twin pairs indicates that genetic 

factors are important in determining variance in retinal layer volumes and this can be 

performed by comparing intra-pair correlation of retinal layer volumes in MZ and DZ 

twin pairs. Estimation of the proportion of the variance in a trait that is attributable to 

genetic factors can therefore be formally calculated by twin modelling, defined as 

heritability.  

Our results of this cross sectional study of 184 (92 pair) twins showed significant 

heritability of the majority of segmented layer volumes. We also found that TRV, and 

volume of some inner retinal layers, decreased with age, while outer layer volumes 

increased with age.  

Firstly, we explored heritability of retinal layer volumes using the twin study paradigm 

and found that intra-pair correlation was greater for MZ than DZ for all layers. 

Heritability estimates were highest (>80%) for TRV and GCIPL volume, and lowest 

for RPE-BM volume. High heritability of inner retinal volumes represents greater 

importance of genetic factors in the volumes variance of inner retinal layers, whereas 
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low heritability of outer retinal layer volumes could represent a greater influence of 

environmental factors on these outer retinal layers.  

Secondly, we examined age-associated changes in retinal layer volumes and found 

that TRV and volumes of inner retinal layers (RNFL, GCIPL, and INL) decreased 

with age; increasing volume with age was observed for most outer retinal layers (PR, 

RPE and OPL), though not the ONL. Our findings of thinning in inner retinal layer 

volumes with increasing age are completely consistent with findings of previous 

studies in the literature (Ooto et al., 2011, Demirkaya et al., 2013, Nieves-Moreno et 

al., 2018). However, the finding in the present study of thickening in some outer 

retinal layers with increasing age is not consistent completely with other studies. 

Outer retinal layer thicknesses have been shown to be either increase, decrease or 

do not change with age; it is possible that methodological differences explain the 

disagreement between studies.  

By interpreting the data of the present study together with the previous study 

(chapter 3), we can conclude that the high heritability of inner retinal layers might 

explain the early degeneration of inner retinal layers in AMD eyes. Moreover, 

changes in retinal layer volumes with age are exactly similar to that seen in AMD 

eyes. However, the rate of change over time was significantly greater in AMD eyes 

compared to age-matched control healthy eyes.  

8.3 Changes in numbers, area and volume of drusen 

in fellow eye of patients with neovascular AMD 

This part of the thesis aimed to explore the rate of change in drusen morphology 

based on OCT images in fellow eyes of patients with unilateral wet AMD. The 
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rationale for conducting this study was to evaluate whether any of drusen 

parameters (count, area, volume) would predict AMD progression to CNV; then can 

be used as a biomarker for disease conversion.  

Recently, drusen measurements such as number and area have been established 

as risk factors of AMD progression. They are routinely measured on colour fundus 

photograph but this is prone to errors and reader variability, and is time consuming. 

The advance in OCT and the development of automated drusen segmentation 

algorithms have allowed us to detect and quantify drusen more accurately and 

easily. Topcon OCT is widely used in daily practice and it has its own in-built drusen 

software, which makes drusen measurement more convenient for the research as 

well as clinical purpose. Therefore, taking this opportunity forward by studying 

drusen, using Topcon, was one of the reasons for conducting the present study, in 

order to be applied to clinical practice. As a result, patients can be counselled more 

accurately about the time to second eye involvement 

Our results of this longitudinal study of 248 participants demonstrated a significant 

change in drusen parameters occur in AMD eyes in the preceding 12 months prior to 

conversion to wet AMD. Changes in drusen volume were the most sensitive 

predictor of conversion to wet AMD.   

Firstly, we compared baseline drusen count, area and volume between fellow eyes 

that developed CNV (CNV-developed) by year 2 and those that did not (non CNV-

developed), and found that the mean measurements were larger in CNV-developed 

eyes than non CNV-developed ones. We also analysed the baseline measurements 

as predictors of progression to CNV by year 2 and found that baseline drusen 

volume was a significant predictor for developing CNV.  
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Secondly, we also compared the rate of change of drusen parameters between 

CNV-developed eyes and non CNV-developed eyes over the 2-year follow-up in 

terms of 2 time points; year 1 (from baseline to year) and year 2 (year 1 to year 2). 

While there was no difference in the rate of change between the two groups at year 

1, there was a statistically significant difference at year 2, particularly drsuen volume 

and area. Drusen volume and area increased significantly in CNV-developed eyes in 

the year preceding conversion, indicating the importance of these OCT drusen 

measurements as biomarkers for disease progression.  

Taken together, this study has shown that drusen volume growth rate across a 6 mm 

macula cube using the automatic Topcon drusen analysis software may be used as 

a predictor for conversion to CNV.  

By interpreting findings of the present study together with chapter 3 findings, we can 

conclude that increase in RPE-BM volume correlates with increase in drusen 

volume/area over time in eyes with early/intermediate AMD. However, as some eyes 

have very few drusen especially in eyes with classic CNV, I investigated further as to 

whether this change applies to all CNV.  

8.4 Predictor of CNV type based on drusen load and 

retinal layer volumes 

This part of the thesis aimed to evaluate whether any correlation existed between 

prior drusen and/or retinal layer quantification measurements and the subsequent 

CNV type. The rationale for conducting this study was to identify biomarkers that can 

predict CNV type (occult or classic). 
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Distinguishing between classic and occult CNV types based on identified predictive 

biomarkers might aid in separating these CNV lesions in future trials of novel 

therapies. Although CNV classification is not required in the current treatment of wet 

AMD with anti-VEGF, recent trials of novel therapies have included CNV type as a 

part in their inclusion criteria (Danis et al., 2014, Jaffe et al., 2017). This indicates the 

significance of classifying CNV as the natural history of wet AMD varied between 

CNV types. Classic lesions are aggressive and associated with severe vision loss 

and scar formation (Daniel et al., 2018), whereas occult CNVs are often stable and 

associated with overall a better visual acuity than other CNVs (Invernizzi et al., 

2019). Therefore, predicting the CNV type will allow for more individualised patients 

care and more effective trials because prognosis and treatment may vary based on 

CNV type.  

Our results of this longitudinal study of 51 participants demonstrated a significant 

increase in drusen area and volume in the preceding 12 months prior to develop 

occult CNV. We also found that baseline volume of ONL may differentiate between 

the 2 CNV groups.  

Firstly, we compared means of drusen count, area and volume at baseline, year 1 

and year 2 between eyes that developed occult and classic CNVs, and there were 

no statistical differences between the 2 CNV types. We also compared the rate of 

change of drusen area and volume between the 2 groups over the 2-year follow-up 

in terms of 2 time points; year 1 (from baseline to year) and year 2 (year 1 to year 2). 

The rate of change of drusen area and volume was higher in occult CNV types than 

in classic CNV types in year 2.  
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Secondly, we compared means of retinal layer volumes at baseline, year 1and year 

2 and found that only volume of ONL at baseline and year 1 was thinner in classic 

CNVs than occult CNVs. We then explored longitudinal changes over 2 years follow-

up in terms of 2 time points; year 1 and year 2. In year 1, no differences were found 

between the 2 CNV groups or within each CNV group.  In year 2, significant 

differences in change volumes of ONL (3 mm and 6 mm) and OPL (3 mm) were 

found between the 2 CNV groups. There was a progressive reduction in the volume 

of ONL, and an expansion in the volume of OPL. In occult CNVs, OPL (3 mm and 6 

mm) and RPE-BM (3 mm) volumes were found to be expand, whereas the volumes 

of ONL (3 mm and 6 mm) and INL (3 mm) were found to be reduced. In classic 

CNVs, only RPE-BM (6 mm) volume increased and no other changes were found.  

Taken together, this study has shown that increase in drusen area and volume, and 

reduction in volume of ONL in the preceding year prior to conversion to wet AMD are 

associated with developing of occult type CNV in particular. The ONL volume 

showed a reduction two years prior to development of classic CNV and remained 

unchanged over the 2-year follow-up, indicating that this layer degenerated earlier in 

the classic CNV type.  

8.5 Deep learning for prediction of AMD progression 

This part of the thesis aimed to evaluate whether artificial intelligence such as deep 

learning methods using OCT imaging data can predict the likelihood of progression 

from early/intermediate AMD to wet AMD. 

Our results of this study of 71 participants demonstrated the ability of our deep 

learning model to identify those who progressed to wet AMD (progressors) than 

those who did not (non-progressors). The quantitative feature for progression was 
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the area around the retinal pigment epithelium (RPE) and choroid, suggesting more 

sub-RPE choroidal involvement for progressors versus non-progressors.  

Two deep convolutional neural networks (CNN) were trained using the OCT data: (1) 

a novel, simplified CNN architecture was trained from scratch and (2) VGG16, a 

popular CNN for large scale image recognition (Simonyan and Zisserman, 2014). 

Preprocessing was added in the form of a segmentation-based normalization to 

reduce variance in the data and improve performance. 

Our predictive model with preprocessing achieved an area under the ROC curve 

(AUC) of 0.89 for B-scans and 0.91 for volumes. Results for VGG16 with 

preprocessing were 0.82 for B-scans and 0.87 for volumes. 

In summary, a deep learning CNN with layer segmentation-based preprocessing 

shows strong predictive power for the progression of early/intermediate AMD to wet 

AMD. Regardless of the network architecture, using the segmentation-based 

preprocessing has shown to improve overall performance. Predictive hallmark for 

CNV progression was significant involvement of sub-RPE choroidal region.  

8.6 Conclusion  

This thesis has identified imaging biomarkers that can be used in predicting AMD 

progression from early and intermediate stages to wet AMD. This could allow us to 

identify patients who are likely to progress to advanced stage, and thereby permit 

making the appropriate management and follow-up. 

Our approach was based on computational analysis of patients’ images only. This 

technology based approach may be used in future clinical trials to predict the risk of 

disease progression. 
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To sum up, drusen load increases and retinal layer volumes changes before 

conversion to wet AMD and automated drusen and retinal layer volumes 

measurement tools may be used as useful biomarkers to monitor eyes for 

conversion to wet AMD. The deep learning technique also suggests the choroid may 

indeed be involved early before conversion and we need to validate this finding in 

large cohorts. This thesis indicates that there are multiple ways by which our known 

markers of AMD can be used to refine conversion rates more accurately. Other 

findings such as inner retinal heritability and choroidal changes preceding conversion 

add new dimensions to our understanding of conversion to wet AMD. These may 

allow earlier detection of AMD progression, enabling earlier treatment and better 

clinical outcomes.  

8.7 Future directions  

My thesis adds valuable information to AMD literature, the findings have thrown light 

to novel areas of investigations to better phenotype this heterogeneous disease.  

Firstly, the OCT finding of inner layer volumes thinning in early AMD stages suggests 

pathological process affecting particularly ganglion cell-inner plexiform layer and 

inner nuclear layer very early in the AMD disease process. I also show that 

heritability may account for these changes. Therefore, researchers can now focus 

their attention on complement genotype changes on inner retina.  

Secondly, outer nuclear layer thinning at early AMD stage may occur mainly in eyes 

that convert to CNV type. This concept better explains why dark adaptation is 

affected early in AMD. Further structure-function studies should be directed to this 

field. 
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Thirdly, the deep learning predictive model shows that the predictive hallmark for 

CNV conversion is at the sub-RPE choroidal region in eyes that progressed to wet 

AMD. Although imaging of the choroid remains challenging, this thesis directs the 

focus of future research to the choroid. Interestingly, this study has shown that the 

non-progressors seem to have more relevant features in the nasal side of the 

volumes while the progressors show the opposite effect. This hypothesis might be 

tested by further studies on larger cohorts of patients. 

Finally, we would like to use the same methodology to look at geographic atrophy 

development/progression in AMD patients.  
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9 References from websites 

1. OCT SCANS 

http://www.octscans.com 

2. Voxeleron  

https://www.voxeleron.com/orion/ 

3. Topcon 

https://www.topcon.co.jp/en/eyecare/products/product/diagnostic/oct/3DOCT-

2000_E.html 

4. TOPCON 3D OCT Series Normative Database 

http://www.topconmedical.com/_assets/cf/downloadFile.cfm?section=productLit&f

ile=3D-OCT-Series-Normative-Summary.pdf&parentUUID=55E1DBB5-CB99-

9BF1-88CBBBE970ECAB77. 
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