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Performance of five automated 
white matter hyperintensity 
segmentation methods in a 
multicenter dataset
Rutger Heinen  1*, Martijn D. Steenwijk2,3, Frederik Barkhof3,4, J. Matthijs Biesbroek  1,  
Wiesje M. van der Flier  5,6, Hugo J. Kuijf7, Niels D. Prins5, Hugo Vrenken2,3, Geert Jan Biessels  1,  
Jeroen de Bresser  8 & TRACE-VCI study group†

White matter hyperintensities (WMHs) are a common manifestation of cerebral small vessel disease, 
that is increasingly studied with large, pooled multicenter datasets. This data pooling increases 
statistical power, but poses challenges for automated WMH segmentation. Although there is 
extensive literature on the evaluation of automated WMH segmentation methods, such evaluations 
in a multicenter setting are lacking. We performed WMH segmentations in sixty patients scanned 
on six different magnetic resonance imaging (MRI) scanners (10 patients per scanner) using five 
freely available and fully-automated WMH segmentation methods (Cascade, kNN-TTP, Lesion-
TOADS, LST-LGA and LST-LPA). Different MRI scanner vendors and field strengths were included. We 
compared these automated WMH segmentations with manual WMH segmentations as a reference. 
Performance of each method both within and across scanners was assessed using spatial and volumetric 
correspondence with the reference segmentations by Dice’s similarity coefficient (DSC) and intra-
class correlation coefficient (ICC) respectively. We found the best performance, both within and across 
scanners, for kNN-TTP, followed by LST-LPA and LST-LGA, with worse performance for Lesion-TOADS 
and Cascade. Our findings can serve as a guide for choosing a method and also highlight the importance 
to further improve and evaluate consistency of methods in a multicenter setting.

Pooling of multicenter brain magnetic resonance imaging (MRI) data is a trend in various research fields, includ-
ing studies on ageing related brain diseases1–3. Pooling of multicenter data increases sample size (and thus statisti-
cal power) and can support a faster patient inclusion. Moreover, findings of multicenter studies may have a larger 
external validity and are more readily translatable to a clinical setting. However, pooling of brain MRI data poses 
challenges in automated segmentation due to variations in image acquisition.

White matter hyperintensities of presumed vascular origin (WMHs) are frequently encountered in studies 
on ageing related brain diseases. Achieving accurate and precise WMH segmentations can be challenging across 
MRI scanners of different vendors, field strengths and scan protocols. Variability in MRI acquisition can lead to 
differences in the contrast and borders of WMHs and thereby quantification bias4–6.

Several automated and semi-automated methods to segment WMHs currently exist, using various algorithms 
that rely on intensity, spatial information, or both5. These methods can be broadly classified as supervised (i.e. 
trained using manual segmentations as a refs7,8), unsupervised (without training9–11) and semi-supervised (with 
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only a small portion of the available data used for training12. A recent study provided an extensive overview of 
existing supervised, unsupervised and semi-supervised methods13. Challenges for these methods include false 
positive (e.g. artefacts, infarcts) and false negative (often for punctate lesions) results. Other challenges include 
dealing with varying WMH lesion loads (usually lower in MS than in patients with WMHs of presumed vascular 
origin) and with co-occurring pathologies (e.g. extensive atrophy). There is extensive literature on the evaluation 
of WMH segmentation methods in different settings, also addressing these challenges4. However, the perfor-
mance of such methods is typically evaluated on single center, single scanner datasets. For WMHs of presumed 
vascular origin, there is a lack of studies comparing performance of these methods in multicenter, multiscanner 
datasets and this is an important knowledge gap4,14.

Therefore, the present study aimed to assess performance, in terms of spatial and volumetric correspond-
ence with reference segmentations, of five automated WMH segmentation methods in a multicenter, multi-
scanner dataset of patients with WMHs of presumed vascular origin. In particular, we also addressed which 
methods showed variation in performance across scanners. In addition, we assessed if performance was depend-
ent on WMH lesion load. To this end, we selected five methods that were fully automatic and freely availa-
ble for academic research: Cascade15,16, k-nearest neighbor classification with tissue type priors (kNN-TTP)17, 
Lesion-TOpology-preserving Anatomical Segmentation (Lesion-TOADS)11, the Lesion Segmentation 
Tool Lesion Prediction Algorithm (LST-LPA) and the Lesion Segmentation Tool Lesion Growth Algorithm 
(LST-LGA)10.

Results
Reference segmentations. The reference segmentations showed a very good inter-rater agreement regard-
ing spatial (Dice’s similarity coefficient (DSC) ± standard deviation (SD): 0.80 ± 0.09) and volumetric agreement 
(Intra-class correlation coefficient (ICC): 0.97). The intra-rater agreement (DSC ± SD: 0.80 ± 0.08; ICC: 0.99) was 
also very good. In the test set, seventeen subjects had a Fazekas rating of 1, eighteen subjects had a 2, and seven 
subjects had a 3. The mean WMH volume (±SD) was 21 ± 10 mL with a median of 10 mL and volumes per patient 
ranging from 0.9 to 199 mL (see Table 1).

Quality assessment. Examples of the automated WMH segmentation results are shown in Fig. 1. Several 
differences between methods can be visually appreciated. For example, methods seemed to differ on how they 
segment (over or under) different types of WMHs (i.e. periventricular, confluent and punctuate WMHs). Also, 
the nature of segmentation errors varied between methods (i.e. false-positive (FP) versus false-negative (FN) 
WMH voxels: see Fig. 1). In a quantitative analysis, kNN-TTP showed the lowest mean FP and FN volumes 
(mean FP volume ± SD/mean FN volume ± SD: 2 ± 2/5 ± 11 mL), followed by LST-LPA (4 ± 4/6 ± 10 mL), 
LST-LGA (5 ± 5/8 ± 19 mL). Cascade showed a lower mean FP volume (8 ± 7 mL) but higher mean FN volume 
(12 ± 29 mL) than Lesion-TOADS (10 ± 16/7 ± 12 mL).

Performance of WMH segmentation methods. Performance of each method, both within and averaged 
across all scanners, is shown in Table 2. The highest mean performance across scanners was seen for kNN-TTP, 
both in terms of spatial correspondence with the reference segmentations (mean DSC ± SD: 0.73 ± 0.03) 
as in terms of volumetric correspondence with the reference segmentations (mean ICC ± SD: 0.97 ± 0.02) 
(see Table 2). LST-LPA showed a slightly lower performance in terms of volumetric correspondence (mean 
ICC ± SD: 0.92 ± 0.03) and performed less than kNN-TTP in terms of spatial correspondence (mean DSC ± SD: 
0.60 ± 0.06). The mean absolute WMH volume differences between the methods and the reference segmentations 
were also lowest for kNN-TTP (5 ± 3 mL; percentage of the mean WMH volume of the reference segmentations: 
24%) and LST-LPA (5 ± 2 mL; 24%) (see Table 2). Both methods did show a tendency for slight underestimation 
of the WMH volume compared to the reference segmentations. LST-LGA showed a performance comparable 
to LST-LPA (mean DSC ± SD: 0.57 ± 0.03; mean ICC ± SD: 0.65 ± 0.29) but with a larger mean absolute WMH 
volume difference (8 ± 5 mL; 38%). Performance was lower for Lesion-TOADS (0.53 ± 0.08/0.65 ± 0.29) and 
Cascade (0.40 ± 0.05/0.44 ± 0.01) with also markedly higher mean absolute WMH volume differences for both 
methods (Lesion-TOADS: 12 ± 8 mL; 57%; Cascade: 16 ± 7 mL; 76%) (see Table 2).

Because some methods (Cascade, Lesion-TOADS, LST-LGA, and LST-LPA) do not necessarily have to be 
trained, analyses were repeated on all subjects (n = 60) without training of the methods. This did not change the 

WMH volume
GE Signa
HDxt 1.5T

GE Signa
HDxt 3T

GE Discovery
MR750 3T

Philips
Ingenuity 3T

Philips
Ingenia 3T

Philips
Achieva 3T

Overall
mean ± SD

Reference 22 ± 31 16 ± 18 9 ± 10 14 ± 17 41 ± 71 24 ± 26 21 ± 10

Cascade 26 ± 20 19 ± 11 13 ± 5 19 ± 10 12 ± 4 11 ± 5 17 ± 5

kNN-TTP 16 ± 19 14 ± 13 9 ± 10 14 ± 17 32 ± 49 20 ± 22 18 ± 7

Lesion-TOADS 19 ± 20 16 ± 12 11 ± 9 36 ± 24 30 ± 45 31 ± 16 24 ± 9

LST-LGA 20 ± 19 19 ± 23 12 ± 15 15 ± 20 22 ± 28 14 ± 17 17 ± 4

LST-LPA 18 ± 22 15 ± 18 11 ± 13 14 ± 18 33 ± 51 18 ± 22 18 ± 7

Table 1. Mean WMH volume of the reference segmentations and the segmentations of the methods for each 
scanner (n = 42; n = 7 per scanner). Note: Values represent mean WMH volumes ± SD in mL. Reference: 
reference segmentations.
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ranking of methods (data not shown). The average run time was shortest for Cascade (2 minutes), followed by 
kNN-TTP (10 minutes), LST-LPA (12 minutes), LST-LGA (25 minutes) and Lesion-TOADS (30 minutes).

Variations in performance across scanners. For each method, we determined if the DSC (i.e. spa-
tial correspondence with the reference standard) for each scanner differed relative to the other five scanners 
(Table 3). In this analysis, consistency of a method across scanners is reflected in small effect sizes. kNN-TTP 
showed the smallest variation in performance with the smallest effect sizes (range unstandardized beta coefficient: 
−0.06 to 0.01), followed by LST-LGA (−0.04 to 0.07), Cascade (−0.08 to 0.09), LST-LPA (−0.10 to 0.11) and 
Lesion-TOADS (−0.12 to 0.12). None of the effect sizes were significant after family wise error rate correction for 
multiple testing. Along the same lines, consistency of volumetric correspondence across scanners was assessed, 
by determining for each method the interaction between scanner and the relation between the assessed volume 
and the reference volume. Here we found a significant interaction for Lesion-TOADS on the Philips Ingenuity 3T 
scanner (family wise error rate corrected p < 0.05), indicating that performance was biased by scanner type. All 
other interactions were not significant (data not shown).

Performance of WMH segmentation methods for different WMH lesion loads. For all meth-
ods the DSC increased when Fazekas scores increased (see Table 4), as the DSC is particularly dependent on 
the absolute lesion load and the size of the individual lesions18. kNN-TTP and LST-LPA showed a good volu-
metric correspondence compared to the reference segmentations across all WMH lesion loads (see Table 4 and 
Supplementary Fig. 1). Also, variation in WMH volume measurements of these methods was small (i.e. narrow 
limits of agreement in the Bland Altman plots; see Fig. 2). Cascade, Lesion-TOADS and LST-LGA showed greater 
variation for different WMH lesion loads (i.e. wider limits of agreement in the Bland Altman plots, see Fig. 2). 
LST-LGA underestimated WMH volume at higher WMH lesion loads (see Fig. 2 and Supplementary Fig. 1). 

Figure 1. WMH segmentations of the methods regarding periventricular, confluent and punctuate WMHs. 
Example of WMH segmentations for a subject (subject A) with predominantly periventricular WMHs (panel 
A), a subject (subject B) with large confluent WMHs (panel B) and a subject (subject C) with predominantly 
punctuate WMHs (panel C). Top rows panels (A–C) original FLAIR scan and WMH reference segmentation 
(green) and WMH segmentations of all methods (red) are shown. Bottom rows panels (A–C) false negative 
voxels are shown in blue; false positive voxels are shown in yellow.
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Cascade and Lesion-TOADS overestimated WMH volumes at lower WMH lesion loads, while Cascade underes-
timated WMH volumes at higher WMH lesion loads (see Fig. 2 and Supplementary Fig. 1).

Discussion
The current study is the first to investigate the performance of five freely available and fully automated segmenta-
tion methods in a multicenter dataset of patients with WMHs of presumed vascular origin. Overall, performance 
of methods in terms of spatial and volumetric correspondence varied markedly both within and across scanners, 
with kNN-TTP and LST-LPA being the most consistent and best performing methods. Our findings can serve 
as a guide for choosing a method. In Table 5, we have provided a qualitative recommendation for each method 
regarding several aspects when automatically segmenting WMHs based on the results described earlier.

Many different automated methods currently exist to segment WMHs. Evaluation of these methods has mainly 
been performed in a single-center, single scanner setting, with variable performance across methods6–8,10,11,17,19–41. 

Method Measure
GE Signa HDxt
1.5T

GE Signa HDxt
3T

GE Discovery
MR750 3T

Philips Ingenuity
3T

Philips Ingenia
3T

Philips Achieva
3T

Overall
mean ± SD

Ref WMH 22 ± 31 16 ± 18 9 ± 10 14 ± 17 41 ± 71 24 ± 26 21 ± 10

Cascade

ΔWMH 4 ± 15 4 ± 19 4 ± 11 6 ± 12 −29 ± 68 −13 ± 22 −4 ± 13

|ΔWMH| 12 ± 9 14 ± 12 10 ± 5 11 ± 6 32 ± 66 15 ± 21 16 ± 7

DSC 0.48 ± 0.29 0.35 ± 0.20 0.34 ± 0.25 0.43 ± 0.22 0.40 ± 0.21 0.41 ± 0.14 0.40 ± 0.05

ICC 0.45 (−0.19; 0.87) 0.45 (−0.18; 0.87) * 0.44 (−0.16; 0.86) 0.43 (−0.40; 0.87) 0.46 (−0.32; 0.88) 0.44 ± 0.01

kNN-TTP

ΔWMH −5 ± 13 −2 ± 7 0.8 ± 3 0.9 ± 2 −9 ± 22 −4 ± 4 −3 ± 4

|ΔWMH| 6 ± 13 5 ± 6 2 ± 2 1 ± 2 10 ± 21 4 ± 4 5 ± 3

DSC 0.74 ± 0.11 0.68 ± 0.11 0.71 ± 0.12 0.74 ± 0.10 0.75 ± 0.14 0.76 ± 0.07 0.73 ± 0.03

ICC 0.99 (0.94; 1.00) 0.95 (0.73; 0.99) 0.97 (0.76; 0.99) 0.96 (0.80; 0.99) 0.99 (0.95; 1.00) 0.98 (0.88; 1.00) 0.97 ± 0.02

Lesion-TOADS

ΔWMH −3 ± 10 0.5 ± 9 2 ± 3 23 ± 31 −11 ± 26 7 ± 24 3 ± 10

|ΔWMH| 5 ± 9 6 ± 6 3 ± 2 25 ± 29 14 ± 24 16 ± 18 12 ± 8

DSC 0.63 ± 0.21 0.56 ± 0.20 0.49 ± 0.22 0.43 ± 0.34 0.61 ± 0.15 0.46 ± 0.32 0.53 ± 0.08

ICC 0.80 (0.28; 0.96) 0.77 (0.22; 0.96) 0.69 (−0.01; 0.94) * 0.93 (0.65; 0.99) 0.08 (−0.54; 0.73) 0.65 ± 0.29

LST-LGA

ΔWMH −2 ± 13 4 ± 7 4 ± 6 2 ± 4 −19 ± 44 −10 ± 10 −4 ± 8

|ΔWMH| 7 ± 11 6 ± 6 4 ± 5 3 ± 2 19 ± 44 10 ± 10 8 ± 5

DSC 0.58 ± 0.16 0.53 ± 0.18 0.54 ± 0.12 0.53 ± 0.17 0.63 ± 0.18 0.59 ± 0.11 0.57 ± 0.03

ICC 0.95 (0.70; 0.99) 0.92 (0.62; 0.99) 0.97 (0.78; 1.00) 0.92 (0.61; 0.99) 0.90 (0.32; 0.98) 0.89 (−0.03; 0.99) 0.92 ± 0.03

LST-LPA

ΔWMH −3 ± 10 −0.2 ± 7 2 ± 5 0.6 ± 4 −8 ± 21 -−6 ± 6 −2 ± 4

|ΔWMH| 5 ± 8 4 ± 5 3 ± 5 3 ± 2 10 ± 20 7 ± 5 5 ± 2

DSC 0.65 ± 0.13 0.52 ± 0.20 0.53 ± 0.17 0.59 ± 0.17 0.69 ± 0.15 0.63 ± 0.11 0.60 ± 0.06

ICC 0.97 (0.85; 1.00) 0.87 (0.47; 0.98) 0.94 (0.71; 0.99) 0.88 (0.43; 0.98) 0.96 (0.80; 0.99) 0.93 (0.54; 0.99) 0.92 ± 0.04

Table 2. Performance of the WMH segmentation methods compared to the reference segmentations (n = 42; 
n = 7 per scanner). Note: WMH, ΔWMH, |ΔWMH| and DSC are shown as means ± SD. ICC is shown with 
95% confidence interval. Ref: Reference; WMH: WMH volume (mL); ΔWMH: difference in WMH volume 
(mL) between the reference segmentations and segmentations of the methods; |ΔWMH|: absolute difference 
in WMH volume (mL) between the reference segmentations and segmentations of the methods; DSC: dice 
similarity coefficient; ICC: intra-class correlation coefficient. *Negative ICC (not used for calculating the overall 
mean ICC).

Method
GE Signa HDxt
1.5T

GE Signa HDxt
3T

GE Discovery
MR750 3T

Philips Ingenuity
3T

Philips Ingenia
3T

Philips Achieva
3T

Cascade 0.09 [−0.09; 0.27] −0.06 [−0.24; 0.12] −0.08 [−0.26; 0.10] 0.03 [−0.15; 0.21] 0.003 [−0.18; 0.18] 0.01[−0.17; 0.19]

kNN-TTP 0.01 [−0.08; 0.10] −0.06 [−0.15; 0.03] −0.03 [−0.12; 0.07] 0.02 [−0.08; 0.11] 0.03 [−0.06; 0.12] 0.03 [−0.06; 0.12]

Lesion-TOADS 0.12 [−0.08; 0.33] 0.04 [−0.17; 0.24] −0.05 [−0.26; 0.16] −0.12 [−0.33; 0.08] 0.10 [−0.11; 0.30] −0.08 [−0.29; 0.12]

LST-LGA 0.02 [−0.11; 0.14] −0.04 [−0.17; 0.09] −0.03 [−0.16; 0.10] −0.04 [−0.17; 0.09] 0.07 [−0.05; 0.20] 0.02 [−0.10; 0.15]

LST-LPA 0.06 [−0.07; 0.20] −0.10 [−0.24; 0.03] −0.09 [−0.23; 0.05] −0.01 [−0.15; 0.13] 0.11 [−0.03; 0.24] 0.03 [−0.10; 0.17]

Table 3. Variation in performance across scanners by means of multiple linear regression analyses (n = 42; 
n = 7 per scanner). Data are represented as unstandardized beta coefficients with 95% confidence intervals. We 
assessed whether the DSC (as an outcome) depended on scanner (as a categorical variable with each scanner 
being compared to all other scanners as the reference) using linear regression analysis. A significant relation 
between a certain scanner and the DSC (family wise error rate corrected p-value of <0.05 using a Bonferroni 
correction) indicates that the performance (in terms of spatial correspondence with the reference segmentation) 
was biased for that segmentation method by the use of that scanner (compared to the other scanners). As can be 
seen in the table, no significant relations were seen for any of the methods.
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Some of these methods have also been assessed for scan-rescan reproducibility6,8,18, which is of particular impor-
tance when performing longitudinal research. However, since pooling of data across multiple centers is an impor-
tant trend in small vessel disease research42, there also is a need for automated WMH segmentation methods that 
perform well across different scanners. Clearly, a multicenter setting with different scan vendors poses challenges, 
as the method cannot be tuned to one single scan protocol. The question is thus which methods perform robustly 
enough in such a setting, but this has been explored by few studies. A recent study, coordinated by our group, 
compared the performance of twenty methods, but in contrast to the present study, many of the tested meth-
ods are not freely available yet43. Two previous studies compared different linear and nonlinear classification 
techniques to segment WMHs of presumed vascular origin44,45. The important difference between these and 
the current is that they primarily focused on the optimal choice of classifiers for WMH segmentation, using a 
general preprocessing pipeline. By contrast, we evaluated some of the same classifiers as an integral part of a fully 
automated WMH segmentation method, where the classifier only partially determines the performance of the 
entire method.

We observed that for segmentation of WMHs of presumed vascular origin, performance of the five tested 
methods varied markedly, both within and across scanners. kNN-TTP and LST-LPA were the most consistent 
methods across scanners. kNN-TTP was also the best performing method within scanners with a DSC compa-
rable to a manual segmentation as performed by a trained rater and an excellent ICC, whereas LST-LPA per-
formed less with regard to spatial correspondence with the reference segmentations. This could be relevant when 
choosing a method to segment WMHs for further analysis where spatial information of WMHs is of particular 
importance (e.g. lesion symptom mapping46). By contrast, when analyzing WMH volumes as a primary outcome, 
both methods could be suitable.

All methods tended to slightly underestimate WMH volumes at higher lesion loads, but this was most prom-
inent for LST-LGA and Lesion-TOADS. Lesion-TOADS and Cascade showed the lowest spatial and volumetric 
correspondence compared to the reference segmentation and especially performance of Lesion-TOADS also var-
ied across scanners. A possible explanation for the differences in performance between methods, both within and 
across scanners, could be that some methods are more robust to sources of variation in MRI acquisition than oth-
ers. In our study it is impossible to determine which MRI related factors contribute most to this variation. Future 
studies are therefore encouraged to determine these sources of variation and the relation to various methods. 
Another explanation within our study might be the variation in WMH volumes between scanners, which might 
have introduced variation caused by selection bias. Above all, our study highlights the need to further improve 
WMH segmentation methods. An important initiative was recently taken in the form of a WMH segmentation 
challenge43. In this challenge, new WMH segmentation methods were developed and evaluated on a multicenter 
dataset. The best performing method showed a similar DSC compared to kNN-TTP in the present study.

The number of subjects in our training set is relatively low: only eighteen subjects were used. The ability to 
train or optimize the included methods with only a limited number of training subjects can be considered a 
strength of the included approaches. It is often infeasible to acquire large amounts of training data (e.g. 100+ sub-
jects). Our training set was composed in such a way that it included data from the six different scanners—located 
in two institutes—that were used in this study. This ensured a large amount of possible variation in the MRI data 
to be used for training (kNN-TTP) or post-hoc optimization (Cascade, Lesion-TOADS, LST-LGA, and LST-LPA) 

Method
Fazekas 
scale

WMH volume 
reference

WMH volume 
method ΔWMH |ΔWMH| DSC ICC

Cascade

1 4 ± 4 12 ± 6 8 ± 6 8 ± 6 0.24 ± 0.16 0.02 (−0.12; 0.27)

2 16 ± 10 18 ± 11 2 ± 12 10 ± 6 0.50 ± 0.15 0.31 (−0.16; 0.67)

3 73 ± 61 26 ± 18 −47 ± 62 49 ± 60 0.54 ± 0.22 0.13 (−0.23; 0.67)

kNN-TTP

1 4 ± 4 5 ± 4 0.4 ± 1 0.9 ± 0.6 0.64 ± 0.10 0.91 (0.67; 0.97)

2 16 ± 10 15 ± 9 −1 ± 3 3 ± 2 0.78 ± 0.06 0.96 (0.90; 0.99)

3 73 ± 61 56 ± 41 −17 ± 22 18 ± 21 0.82 ± 0.06 0.92 (0.62; 0.99)

Lesion TOADS

1 4 ± 4 18 ± 20 13 ± 21 13 ± 21 0.35 ± 0.21 0.11 (−0.13; 0.43)

2 16 ± 10 19 ± 11 3 ± 13 6 ± 12 0.61 ± 0.20 0.50 (0.08; 0.78)

3 73 ± 61 53 ± 37 −20 ± 24 22 ± 22 0.77 ± 0.06 0.90 (0.49; 0.98)

LST-LGA

1 4 ± 4 4 ± 5 −0.3 ± 2 2 ± 2 0.47 ± 0.12 0.76 (0.46; 0.91)

2 16 ± 10 15 ± 10 −0.4 ± 7 5 ± 5 0.61 ± 0.14 0.84 (0.63; 0.94)

3 73 ± 61 53 ± 17 −20 ± 48 31 ± 40 0.70 ± 0.08 0.68 (−0.11; 0.94)

LST-LPA

1 4 ± 4 5 ± 5 0.3 ± 3 2 ± 2 0.49 ± 0.13 0.76 (0.45; 0.91)

2 16 ± 10 14 ± 10 −2 ± 6 4 ± 4 0.64 ± 0.14 0.85 (0.60; 0.94)

3 73 ± 61 62 ± 39 −11 ± 23 16 ± 18 0.78 ± 0.07 0.90 (0.53; 0.98)

Table 4. Performance of WMH segmentation methods for different WMH lesion loads. Note: WMH, ΔWMH, 
|ΔWMH| and DSC are shown as means ± SD. ICC is shown as means (95% confidence interval). ΔWMH: 
mean difference in WMH volume (mL) between the reference segmentations and segmentations of the 
methods. |ΔWMH|: mean absolute difference in WMH volume (mL) between the reference segmentations 
and segmentations of the methods. DSC: dice similarity coefficient; ICC: intra-class correlation coefficient. 
Seventeen subjects had a Fazekas scale of 1, eighteen subjects had a Fazekas scale of 2 and seven subjects had a 
Fazekas scale of 3.
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of the methods. Future studies could look into the optimal size and composition of the training set, possibly even 
further reducing the number of required training subjects. This would increase the applicability of these methods 
in other centers.

White matter lesions can also have a non-vascular etiology, like in multiple sclerosis (MS). White matter 
lesions in MS show a different load, morphology and distribution compared to WMHs of presumed vascular 
origin5. Nevertheless, evaluation of methods for segmentation of MS lesions can still be informative for WMH 
of vascular origin. In the field of MS, a previous study assessed the performance across scanners of Cascade, 
kNN-TTP, Lesion-TOADS, LST-LGA and LST-LPA47. This study showed the highest performance across 
scanners for kNN-TTP (DSC mean ± SD: 0.44 ± 0.14), followed by LST-LPA (0.37 ± 0.23), Lesion-TOADS 
(0.35 ± 0.18), LST-LGA (0.31 ± 0.23) and Cascade (0.26 ± 0.17). Although the etiology of MS lesions is different, 
the overall ranking of methods is comparable to the ranking in our study, with Cascade being the method with the 
worst performance. The overall performance for MS lesion segmentation of each method is however lower than 
in our study. This discrepancy can possibly be explained by the difference in white matter lesion load between 
the previous study in MS (WMH volume mean ± SD: 5 ± 7 mL) and our study (20 ± 9 mL). Particularly for the 
segmentation of multiple small lesions, the DSC can become relatively low.

The main strength of our study is that it allows a direct comparison in performance of these methods for 
multicenter use. To achieve this goal, we have constructed a high quality MRI dataset consisting of reference 

Figure 2. Bland Altman plots comparing WMH volume of each method versus the WMH volume of the 
reference segmentations. X-axis: mean WMH volume (in mL) of the automated and reference segmentations. 
Y-axis: difference (in mL) in WMH volume between the automated and reference segmentations. The lower 
(−1.96 SD) and upper (+1.96 SD) limits of agreement (dashed lines) and mean (straight line) are shown. A 
narrow width of the limits of agreement reflects a small amount of variation between the measurements of the 
reference and automated WMH segmentations. A positive difference on the y-axis is seen when WMH volume 
as measured by the automated method was larger than the reference WMH volume (i.e. overestimation). A 
negative difference on the y-axis is seen when WMH volume as measured by the automated method was smaller 
than the reference WMH volume (i.e. underestimation).

Method
Spatial 
correspondence

Volumetric 
correspondence

Lesion 
load

Different field 
strength

Different 
scanners

Computational 
Time

Cascade − − − − +/− ++

kNN-TTP + ++ + + + +

Lesion TOADS − +/− − + − +/−

LST-LGA − +/− − + + +/−

LST-LPA +/− ++ + +/− +/− +

Table 5. Considerations when choosing a method. Note: ++: highly recommended; +: recommended; +/−; 
neutral; −: not recommended. Spatial correspondence: based on Dice’s Similarity Coefficient (DSC). Volumetric 
correspondence: based on intraclass correlation coefficient (ICC) and mean and mean absolute WMH volume 
differences. Lesion load: based on both spatial and volumetric correspondence with varying lesion loads. 
Different field strength: based on both spatial and volumetric correspondence on 1.5 Tesla compared to 3 
Tesla MRI scanner of the same MRI vendor. Different scanners: based on the variation in performance across 
scanners, both in terms of spatial and volumetric correspondence. The (qualitative) recommendations were 
based on the results of the present study.
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segmentations. A possible limitation could be the downsampling of the 3D FLAIR images, since performance 
of automated methods tends to be better at higher resolution. However, downsampling was necessary for a fair 
comparison across all scanners. Furthermore, manual segmentation of 3D FLAIR scans is more time consuming 
than 2D FLAIR scans. Another limitation could be the comparison of binary reference segmentations with binary 
automated segmentations (i.e. thresholding the initial probabilistic output of the automated methods). However, 
the alternative approach of creating probabilistic manual segmentations (e.g. by combining binary manual seg-
mentations of the same subject performed by multiple raters into a single probabilistic segmentation) is very 
labor intensive. Moreover, it has limited added value over manual segmentation of a larger number of subjects. 
We have therefore invested in manual segmentations of more subjects in combination with determining optimal 
thresholds of the automated segmentations by using the training set. Another possible limitation of our study 
could be that we did not scan the same subject(s) on all six scanners. However, the aim of our study was not to 
assess (and quantify) the source of variation that could be introduced by using different MRI-scanners, but to 
determine the performance across scanners of widely used automated WMH segmentation methods in a dataset 
with different MRI-scanners that reflects general practice. A final limitation could be the selection of subjects for 
the present study. We chose to exclude subjects with severe motion artifacts and/or presence of large (sub)cortical 
brain infarcts. However, these brain abnormalities can often be observed in patients with WMH of presumed 
vascular origin and this could potentially lead to a different ranking in performance of the methods, as some 
methods might be more robust for these brain abnormalities. With regard to the design of the study and selection 
of methods, it could be argued that kNN-TTP is a supervised approach that uses fully annotated example data 
for training, whereas the other methods were only post hoc fine-tuned, which could have “favored” kNN-TTP as 
compared to the other methods. Yet, the counterargument would be that the training and test sets were kept fully 
separated in our study. Hence, the observation that a trained method, like kNN-TTP, outperformed the other 
methods would only strengthen the case for supervised methods in this application. In practice, such training 
takes only limited effort, as in our case the kNN-TTP was only offered a relatively low amount of training data 
(eighteen subjects).

In conclusion, performance of different methods for WMH segmentation varied markedly both within and 
across scanners. Our findings can serve as a guide for choosing a method and also highlight the importance 
to further improve and evaluate consistency of methods in a multicenter setting. Studies planning to segment 
WMHs from multicenter datasets should assess performance of their method of choice using a pilot sample of 
their data with manual segmentations.

Materials and Methods
Study population. Subjects with WMHs of presumed vascular origin (as defined by the STRIVE criteria)48 
were selected from the TRACE-VCI study. This is a multicenter study on subjects with vascular cognitive impair-
ment (VCI; n = 860) in the Netherlands and was described earlier49. In short, all patients that presented with 
cognitive complaints and vascular brain injury on MRI (i.e. possible VCI) were eligible to participate. Subjects 
scanned on six different MRI scanners were included. Four scanners were located at the Amsterdam University 
Medical Center (Amsterdam UMC), Amsterdam, the Netherlands (General Electric (GE) Signa HDxt 1.5T; GE 
Signa HDxt 3T; GE Discovery MR750 3T [General Electric Healthcare, Milwaukee, Wisconsin, USA] and Philips 
Ingenuity 3T [Philips Medical Systems, Best, the Netherlands]). Two scanners were located at the University 
Medical Center Utrecht (UMCU), Utrecht, the Netherlands (Philips Achieva 3T and Philips Ingenia 3T [Philips 
Medical Systems, Best, the Netherlands]). For the present study, ten subjects with varying WMH lesion load 
(Fazekas scale 1 to 3)50 were randomly selected per MRI scanner to represent the variation in WMH lesion 
load across the entire cohort. This led to inclusion of a total of 60 subjects (38 females, 22 males; age 68 ± 8 
years). Compared to the entire cohort, there was no significant difference in age in the current study population 
(Student’s t-test; p > 0.05). There was a significant difference in gender (chi-square test; p < 0.05) with a relatively 
higher percentage of females in the current study population compared to the entire cohort49. Subjects with severe 
motion artifacts and/or presence of large (sub)cortical brain infarcts (less than 10% of the total cohort) were not 
considered for the present study. From the 60 subjects, we selected a training set of 18 subjects (i.e. three sub-
jects per scanner; one randomly selected subject per Fazekas scale for each scanner) and a test set of 42 subjects 
(i.e. seven subjects per scanner). The training set and test set showed no significant difference in age (Student’s t 
test; p > 0.05), gender (chi-square test; p > 0.05) or WMH volume (Mann-Whitney U test; p > 0.05). The study 
was approved by the institutional review boards of the Amsterdam UMC and the UMCU (approval number 
14-083/C). All procedures were in accordance with the ethical standards of the responsible committee on human 
experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2013. All 
participating subjects provided written informed consent.

MR imaging. All subjects were scanned using an MRI protocol that included a 3D T1-weighted and 
fluid-attenuated inversion recovery (FLAIR) sequence49. The MRI sequence parameters are shown in Table 6. 
To make a fair comparison across all MRI scanners, all 3D FLAIR scans from subjects who were scanned at the 
Amsterdam UMC, were resampled in the axial plane to better match the 2D FLAIR acquisitions from the UMCU. 
This was done using a linear interpolation tool in MeVisLab (MeVis Medical Solutions AG, Bremen, Germany), 
resulting in 3 mm slices with an in-plane resolution of 0.95–1.21 mm51.

Reference segmentations. WMH reference segmentations were constructed as reference data for training 
and testing the automated WMH segmentation methods. The reference segmentations were obtained for all sub-
jects, prior to and without knowledge of the results of the automated segmentation methods, using the following 
procedure. An in-house developed MeVisLab (MeVis Medical Solutions AG, Bremen, Germany) tool was used 
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to semi-automatically delineate the contour of WMHs on all axial slices46,51. In short, WMHs were segmented 
using an iso-contouring technique. Contours were converted into binary segmentation masks by including all 
voxels having a (sub)voxel volume of at least 20% within the contour. This threshold value was chosen by visual 
comparison of images thresholded with values between 0 and 100% (intervals of 5%). All reference segmentations 
were constructed by a single rater (RH). To assess inter-rater reliability of the reference segmentations, JMB con-
structed reference segmentations on a subset of twenty subjects by using the same semi-automatic procedure. To 
assess intra-rater reliability of the reference segmentations, RH constructed a second segmentation on a subset 
of twenty subjects.

Automated WMH segmentation methods. For the present study, we included methods that were 
fully-automated and freely available for academic research: Cascade, kNN-TTP, Lesion-TOADS, LST-LGA, and 
LST-LPA. All methods were ran on FLAIR and 3D T1-weighted MR-images of all subjects to obtain WMH seg-
mentations. Default settings were used as much as possible. The training set of subjects (n = 18) was used to train 
and tune each of the methods (i.e. to determine optimal thresholds). For Cascade, we ran the segmentation algo-
rithm on the training set while changing the two main parameters (lower threshold and upper threshold: {0.05, 
0.075, 0.100, …, 1.00})15,16. We then chose the parameter combination that generated the highest DSC in the 
training set (in the current study: lower threshold = 0.95; upper threshold = 0.975). A similar approach was used 
to derive the optimal parameter settings for LST-LGA (parameters kappa {0.05, 0.10, …, 1.00} and lesion prob-
ability threshold {0.05, 0.10, …, 1.00}; optimal settings for kappa: 0.25 and lesion probability threshold of 0.2)10. 
For LST-LPA and kNN-TTP only the lesion probability threshold was tuned {0.05, 0.10, …, 1.00}, resulting in 
optimal values of 0.3 for LST-LPA and 0.35 for kNN-TTP17. Because in kNN-TTP, the reference data are actively 
used in every run of the algorithm, a leave-one-out cross-validation was used to optimize kNN-TTP parameters 
to ensure independence of the evaluation17. We did not exclude specific brain regions (such as the brain stem 
or basal ganglia where often higher false positive rates can be observed) from the analyses, since the aim of our 
study was to evaluate methods using their own processing. For a detailed overview of the workflow used for each 
method, see the Supplementary Information.

Statistical analysis. All automated WMH segmentation methods were evaluated on the test set (n = 42; 
i.e. 7 subjects per scanner). Several evaluation metrics currently exist to evaluate performance of WMH seg-
mentation methods, each with their own advantages and disadvantages (for an overview see52). For the present 
study, we chose frequently used evaluation metrics that have been used in recent comparative studies on WMH 
segmentation8,47.

Quality assessment. We evaluated all methods qualitatively by visually comparing the output of each method 
with the reference segmentations. Next, we evaluated all methods quantitatively by calculating false positive (FP) 
volumes (in mL) and false negative (FN) volumes (in mL) of the WMH segmentations of each method using the 
reference segmentations.

Performance within scanners. The performance of each method was assessed per scanner by measuring: (a) the 
spatial (i.e. voxel-wise) correspondence with the reference segmentations by using the DSC; (b) the volumetric 
correspondence with the reference WMH volumes by using the ICC (two-way mixed model with absolute agree-
ment after log-transforming WMH volumes because of non-normal distribution); (c) the mean differences and 
mean absolute differences between WMH volumes of each method and the reference WMH volumes. Because 
specific methods (Cascade, Lesion-TOADS, LST-LGA, and LST-LPA) do not necessarily have to be trained, per-
formance was also determined in secondary analyses on all subjects (n = 60) without training of the methods.

Mean performance across scanners. The mean performance of each method across scanners was determined by 
averaging the mean DSC, ICC and absolute volume differences of each scanner.

Center Scanner vendor, type Tesla Sequence Slices TR (ms) TE (ms) TI (ms) Voxel size (mm)

A GE, Signa HDxt 1.5
3D T1 172 12.3 5.2 — 0.98 × 0.98 × 1.50

3D FLAIR 128 6500 117 1987 1.21 × 1.21 × 1.30

A GE, Signa HDxt 3
3D T1 176 7.8 3.0 — 0.94 × 0.94 × 1.00

3D FLAIR 132 8000 126 2340 0.98 × 0.98 × 1.20

A GE, Discovery MR750 3
3D T1 176 8.2 3.2 — 0.94 × 0.94 × 1.00

3D FLAIR 160 8000 130 2340 0.98 × 0.98 × 1.20

A Philips, Ingenuity 3
3D T1 180 9.9 4.6 — 0.87 × 0.87 × 1.00

3D FLAIR 321 4800 279 1650 1.04 × 1.04 × 0.56

B Philips, Achieva 3
3D T1 192 7.9 4.5 — 1.00 × 1.00 × 1.00

2D FLAIR 48 11000 125 2800 0.96 × 0.95 × 3.00

B Philips, Ingenia 3
3D T1 192 7.9 4.5 — 1.00 × 1.00 × 1.00

2D FLAIR 48 11000 125 2800 0.96 × 0.95 × 3.00

Table 6. Overview of MRI sequence parameters for each scanner. Note: A = Amsterdam University Medical 
Center; B = Utrecht University Medical Center; TR = repetition time; TE = echo time; TI = inversion time.
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Variations in performance across scanners. To investigate the variation in performance across scanners of each 
method, we performed the following two analyses:

 (a) For each method, we assessed whether the DSC (as an outcome) depended on scanner (as a categorical 
variable with each scanner being compared to all other scanners as the reference) using linear regression 
analysis. This resulted in a unstandardized beta coefficient with 95% confidence intervals for each scanner. 
A significant relation between a certain scanner and the DSC (family wise error rate corrected p-value of 
<0.05 using a Bonferroni correction) indicates that the performance (in terms of spatial correspondence 
with the reference segmentation) was biased by the use of that scanner (compared to the other scanners).

 (b) For each method, we assessed whether the relation between the reference WMH volumes (as an outcome) 
and WMH volumes of the automated WMH segmentation method (as a determinant) depended on scan-
ner (as a categorical variable with each scanner being compared to all other scanners as the reference) by 
using linear regression analyses. Because of non-normal distribution, WMH volumes of each method and 
the reference WMH volumes were log-transformed. A significant interaction between the log transformed 
WMH volume of a method and a certain scanner (family wise error rate corrected p-value of <0.05), 
indicates that performance of that method (in terms of volumetric correspondence with the reference 
segmentation) was biased by the use of that scanner (compared to the other scanners).

Performance for different WMH lesion loads. In addition, the MRI scans of all subjects were stratified based on 
the Fazekas scale (Fazekas scale 1/2/3: n = 17/n = 18/n = 7). We then assessed whether the performance of each 
method was dependent on the WMH lesion load (i.e. Fazekas scale) using DSC, ICC and mean (absolute) volume 
differences. In addition, Bland-Altman plots were made to compare WMH volume of each method with the ref-
erence WMH volumes53. Bland Altman plots provide a graphical representation of the amount of variation from 
the mean when comparing WMH volumes of the WMH segmentation methods and the reference segmentations. 
In these plots, a narrow width of the limits of agreement reflects a small amount of variation between WMH 
volumes of the WMH segmentation methods and the reference segmentations. The difference between WMH 
volumes of the WMH segmentation methods and the reference segmentation reflects over- or underestimation 
of the WMH segmentation methods. Both a change in the direction of WMH volume differences (i.e. positive or 
negative differences) as well as the distribution of WMH volume differences (narrow or wide) for different WMH 
lesion loads, can reflect performance of a WMH segmentation method to be dependent on the WMH lesion load.

Data availability
The data that support the findings of this study are available from the final author, upon reasonable request.

Received: 31 May 2019; Accepted: 22 October 2019;
Published: xx xx xxxx

References
 1. Carrillo, M. C., Bain, L. J., Frisoni, G. B. & Weiner, M. W. Worldwide Alzheimer’s disease neuroimaging initiative. Alzheimers. 

Dement. 8, 337–42 (2012).
 2. Williamson, J. D. et al. The Action to Control Cardiovascular Risk in Diabetes Memory in Diabetes Study (ACCORD-MIND): 

Rationale, Design, and Methods. Am. J. Cardiol. 99 (2007).
 3. Mueller, S. G. et al. Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). 

Alzheimer’s Dement. 1, 55–66 (2005).
 4. De Guio, F. et al. Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. 

J. Cereb. Blood Flow Metab. 36, 1319–1337 (2016).
 5. Caligiuri, M. E. et al. Automatic Detection of White Matter Hyperintensities in Healthy Aging and Pathology Using Magnetic 

Resonance Imaging: A Review. Neuroinformatics 13, 261–276 (2015).
 6. Jain, S. et al. Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. NeuroImage Clin. 8, 

367–375 (2015).
 7. Ghafoorian, M. et al. Automated detection of white matter hyperintensities of all sizes in cerebral small vessel disease. Med. Phys. 43, 

6246–6258 (2016).
 8. Griffanti, L. et al. BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of 

white matter hyperintensities. Neuroimage 141, 191–205 (2016).
 9. Bowles, C. et al. Pseudo-healthy image synthesis for white matter lesion segmentation. Lecture Notes in Computer Science (including 

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9968 LNCS, 87–96 (2016).
 10. Schmidt, P. et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. Neuroimage 59, 

3774–3783 (2012).
 11. Shiee, N. et al. A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage 49, 

1524–1535 (2010).
 12. Qin, C. et al. A large margin algorithm for automated segmentation of white matter hyperintensity. Pattern Recognit. 77, 150–159 

(2018).
 13. Guerrero, R. et al. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural 

networks. NeuroImage Clin. 17, 918–934 (2018).
 14. Ling, Y., Jouvent, E., Cousyn, L., Chabriat, H. & De Guio, F. Validation and Optimization of BIANCA for the Segmentation of 

Extensive White Matter Hyperintensities. Neuroinformatics 1–13, https://doi.org/10.1007/s12021-018-9372-2 (2018).
 15. Damangir, S. et al. Multispectral MRI segmentation of age related white matter changes using a cascade of support vector machines. 

J. Neurol. Sci. 322, 211–216 (2012).
 16. Damangir, S. et al. Reproducible segmentation of white matter hyperintensities using a new statistical definition. Magn. Reson. 

Mater. Physics, Biol. Med. 30, 227–237 (2017).
 17. Steenwijk, M. D. et al. Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-

TTPs). NeuroImage. Clin. 3, 462–9 (2013).
 18. Admiraal-Behloul, F. et al. Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. Neuroimage 

28, 607–617 (2005).

https://doi.org/10.1038/s41598-019-52966-0
https://doi.org/10.1007/s12021-018-9372-2


1 0Scientific RepoRtS |         (2019) 9:16742  | https://doi.org/10.1038/s41598-019-52966-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

 19. Admiraal-Behloul, F. et al. Fully automatic segmentation of white matter hyperintensities in {MR} images of the elderly. Neuroimage 
28, 607–617 (2005).

 20. Anbeek, P., Vincken, K. L., Van Osch, M. J. P., Bisschops, R. H. C. & Van Der Grond, J. Probabilistic segmentation of white matter 
lesions in MR imaging. Neuroimage 21, 1037–1044 (2004).

 21. Beare, R. et al. Development and validation of morphological segmentation of age-related cerebral white matter hyperintensities. 
Neuroimage 47, 199–203 (2009).

 22. Brickman, A. M. et al. Quantitative approaches for assessment of white matter hyperintensities in elderly populations. Psychiatry 
Res. - Neuroimaging 193, 101–106 (2011).

 23. de Boer, R. et al. White matter lesion extension to automatic brain tissue segmentation on MRI. Neuroimage 45, 1151–1161 (2009).
 24. Erus, G., Zacharaki, E. I. & Davatzikos, C. Individualized statistical learning from medical image databases: Application to 

identification of brain lesions. Med. Image Anal. 18, 542–554 (2014).
 25. Gibson, E., Gao, F., Black, S. E. & Lobaugh, N. J. Automatic segmentation of white matter hyperintensities in the elderly using FLAIR 

images at 3T. J. Magn. Reson. Imaging 31, 1311–1322 (2010).
 26. Herskovits, E. H., Bryan, R. N. & Yang, F. Automated Bayesian segmentation of microvascular white-matter lesions in the ACCORD-

MIND study. Adv. Med. Sci. 53, 182–90 (2008).
 27. Iorio, M. et al. White matter hyperintensities segmentation: A new semi-automated method. Front. Aging Neurosci. 5 (2013).
 28. Ithapu, V. et al. Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer’s 

disease risk and aging studies. Hum. Brain Mapp. 35, 4219–4235 (2014).
 29. Khayati, R., Vafadust, M., Towhidkhah, F. & Nabavi, M. Fully automatic segmentation of multiple sclerosis lesions in brain MR 

FLAIR images using adaptive mixtures method and markov random field model. Comput. Biol. Med. 38, 379–390 (2008).
 30. Lao, Z. et al. Computer-Assisted Segmentation of White Matter Lesions in 3D MR Images Using Support Vector Machine. Acad. 

Radiol. 15, 300–313 (2008).
 31. Moeskops, P. et al. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of 

presumed vascular origin in MRI. NeuroImage Clin. 17, 251–262 (2017).
 32. Ramirez, J. et al. Lesion Explorer: A comprehensive segmentation and parcellation package to obtain regional volumetrics for 

subcortical hyperintensities and intracranial tissue. Neuroimage 54, 963–973 (2011).
 33. Rincón, M. et al. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features. 

Neuroinformatics 15, 231–245 (2017).
 34. Sajja, B. R. et al. Unified approach for multiple sclerosis lesion segmentation on brain MRI. Ann. Biomed. Eng. 34, 142–151 (2006).
 35. Simões, R. et al. Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images. Magn. Reson. 

Imaging 31, 1182–1189 (2013).
 36. Smart, S. D., Firbank, M. J. & O’Brien, J. T. Validation of automated white matter hyperintensity segmentation. J. Aging Res. 2011, 

391783 (2011).
 37. Tsai, J. Z. et al. Automated segmentation and quantification of white matter hyperintensities in acute ischemic stroke patients with 

cerebral infarction. PLoS One 9, e104011 (2014).
 38. Wang, R. et al. Automatic segmentation and volumetric quantification of white matter hyperintensities on fluid-attenuated inversion 

recovery images using the extreme value distribution. Neuroradiology 57, 307–320 (2015).
 39. Wang, R. et al. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-

likelihood estimator. Acad. Radiol. 21, 1512–1523 (2014).
 40. Wu, Y. et al. Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI. Neuroimage 32, 1205–1215 

(2006).
 41. Zhong, Y., Utriainen, D., Wang, Y., Kang, Y. & Haacke, E. M. Automated White Matter Hyperintensity Detection in Multiple 

Sclerosis Using 3D T2 FLAIR. Int. J. Biomed. Imaging 2014 (2014).
 42. Dichgans, M. et al. METACOHORTS for the study of vascular disease and its contribution to cognitive decline and 

neurodegeneration: An initiative of the Joint Programme for Neurodegenerative Disease Research. Alzheimer’s and Dementia 12, 
1235–1249 (2016).

 43. Kuijf, H. J. et al. Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities; Results of the WMH 
Segmentation Challenge. IEEE Trans. Med. Imaging 1–36, https://doi.org/10.1109/TMI.2019.2905770 (2019).

 44. Dadar, M. et al. Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in 
aging. Neuroimage 157, 233–249 (2017).

 45. Samaille, T. et al. Contrast-Based Fully Automatic Segmentation of White Matter Hyperintensities: Method and Validation. PLoS 
One 7 (2012).

 46. Biesbroek, J. M. et al. Impact of Strategically Located White Matter Hyperintensities on Cognition in Memory Clinic Patients with 
Small Vessel Disease. PLoS One 11, e0166261 (2016).

 47. de Sitter, A. et al. Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study. 
Neuroimage 163, 106–114 (2017).

 48. Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and 
neurodegeneration. The Lancet Neurology 12, 822–838 (2013).

 49. Boomsma, J. M. F. et al. Vascular Cognitive Impairment in a Memory Clinic Population: Rationale and Design of the ‘Utrecht-
Amsterdam Clinical Features and Prognosis in Vascular Cognitive Impairment’ (TRACE-VCI) Study. JMIR Res. Protoc. 6, e60 
(2017).

 50. Fazekas, F., Chawluk, J. B. & Alavi, A. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. American Journal 
of Neuroradiology 8, 421–426 (1987).

 51. Ritter, F. et al. Medical image analysis. IEEE Pulse 2, 60–70 (2011).
 52. Taha, A. A. & Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging 

15 (2015).
 53. Martin Bland, J. & Altman, D. Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement. Lancet 

327, 307–310 (1986).

Acknowledgements
N.P.A. Zuithoff, assistant professor in Biostatistic Research for his help in the statistical analyses. The TRACE-
VCI study is supported by Vidi grant 91711384 and Vici grant 91816616 from ZonMw, The Netherlands, 
Organisation for Health Research and Development and grant 2010T073 from the Dutch Heart Association to 
Geert Jan Biessels. Research of the VUMC Alzheimer Center is part of the neurodegeneration research program 
of the Neuroscience Campus Amsterdam. The VUMC Alzheimer Center is supported by Stichting Alzheimer 
Nederland and Stichting VUMC fonds. F.B. is supported by the NIHR UCLH biomedical research center.

https://doi.org/10.1038/s41598-019-52966-0
https://doi.org/10.1109/TMI.2019.2905770


1 1Scientific RepoRtS |         (2019) 9:16742  | https://doi.org/10.1038/s41598-019-52966-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

Author contributions
R.H., M.S., H.V., G.J.B. and J.B. designed the study. R.H., M.S., M.B. and H.K. collected and analyzed the data. 
F.B., W.F. and N.P. collected data. R.H. and J.B. wrote the initial draft of the manuscript. G.J.B., F.B., W.F., N.P. and 
H.V. critically revised the manuscript. All authors of the present manuscript agreed to contribute and carefully 
revised the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-52966-0.
Correspondence and requests for materials should be addressed to R.H.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-52966-0
https://doi.org/10.1038/s41598-019-52966-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/


1 2Scientific RepoRtS |         (2019) 9:16742  | https://doi.org/10.1038/s41598-019-52966-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

Consortia
TRACE-VCI study group

E. van den Berg9 ,G. J. Biessels9 , J. M. F. Boomsma9 , L.G. Exalto9 , D. A. ferro9, C. J. M. Frijns9, 

O. N. Groeneveld9, R. Heinen9, N. M. van Kalsbeek9 , J. H. Verwer9, J. de Bresser10, H. J. Kuijf11, 

M. E. Emmelot-Vonk12, H. L. Koek12, M. R. Benedictus13, J. Bremer13, W. M. van der Flier13, A. E. 

Leeuwis13, J. Leijenaar13, N. D. Prins13, P. Scheltens13, B. M. Tijms13, F. Barkhof14, M. P. Wattjes14, 

C. E. Teunissen15, T. Koene16, J.M. F. Boomsma17, H. C. Weinstein17, M. Hamaker18, R. Faaij18, M. 

Pleizier18, M. Prins18, E. Vriens18 

9Department of Neurology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. 

10Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The 
Netherlands. 11Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The 
Netherlands. 12Department of Geriatrics, University Medical Center Utrecht, Utrecht University, Utrecht, 

The Netherlands,. 13Alzheimer Center and Department of Neurology, Amsterdam UMC, Vrije Universiteit 
Amsterdam, Amsterdam, The Netherlands. 14Department of Radiology and Nuclear Medicine, Amsterdam 
UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. 15Department of Clinical Chemistry, 

Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. 16Department of Medical 
Psychology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. 17Department 
of Neurology, Onze Lieve Vrouwe Gasthuis West, Amsterdam, The Netherlands. 18Hospital Diakonessenhuis, 

Zeist, The Netherlands.

https://doi.org/10.1038/s41598-019-52966-0

	Performance of five automated white matter hyperintensity segmentation methods in a multicenter dataset
	Results
	Reference segmentations. 
	Quality assessment. 
	Performance of WMH segmentation methods. 
	Variations in performance across scanners. 
	Performance of WMH segmentation methods for different WMH lesion loads. 

	Discussion
	Materials and Methods
	Study population. 
	MR imaging. 
	Reference segmentations. 
	Automated WMH segmentation methods. 
	Statistical analysis. 
	Quality assessment. 
	Performance within scanners. 
	Mean performance across scanners. 
	Variations in performance across scanners. 
	Performance for different WMH lesion loads. 


	Acknowledgements
	Figure 1 WMH segmentations of the methods regarding periventricular, confluent and punctuate WMHs.
	Figure 2 Bland Altman plots comparing WMH volume of each method versus the WMH volume of the reference segmentations.
	Table 1 Mean WMH volume of the reference segmentations and the segmentations of the methods for each scanner (n = 42 n = 7 per scanner).
	Table 2 Performance of the WMH segmentation methods compared to the reference segmentations (n = 42 n = 7 per scanner).
	Table 3 Variation in performance across scanners by means of multiple linear regression analyses (n = 42 n = 7 per scanner).
	Table 4 Performance of WMH segmentation methods for different WMH lesion loads.
	Table 5 Considerations when choosing a method.
	Table 6 Overview of MRI sequence parameters for each scanner.




