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Highlights 

 

 Infants who had GM-IVH recruit different cortical sources following foot stimulation 

 Results indicate restructuring of somatosensory processing during the weeks after GM-IVH 

 GM-IVH is more detrimental for lower than upper limb somatosensory processing 
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Abstract 

 

High-grade (large) germinal matrix-intraventricular haemorrhage (GM-IVH) is one of the most 

common causes of somatomotor neurodisability in pre-term infants. GM-IVH presents during the 

first postnatal week and can impinge on somatosensory circuits resulting in aberrant somatosensory 

cortical events straight after injury. Subsequently, somatosensory circuits undergo significant plastic 

changes, sometimes allowing the reinstatement of a somatosensory cortical response. However, it is 

not known whether this restructuring results in a full recovery of somatosensory functions. To 

investigate this, we compared somatosensory responses to mechanical stimulation measured with 

18-channels EEG between infants who had high-grade GM-IVH (with ventricular dilatation and/or 

intraparenchymal lesion; n = 7 studies from 6 infants; mean corrected gestational age = 33 weeks; 

mean postnatal age = 56 days) and age-matched controls (n = 9 studies from 8 infants; mean 

corrected gestational age = 32 weeks; mean postnatal age = 36 days). We showed that infants who 

had high-grade GM-IVH did not recruit the same cortical source configuration following stimulation 

of the foot, but their response to stimulation of the hand resembled that of controls. These results 

show that somatosensory cortical circuits are reinstated in infants who had GM-IVH, during the 

several weeks after injury, but remain different from those of infants without brain injury. An 

important next step will be to investigate whether these evidences of neural reorganisation predict 

neurodevelopmental outcome.   
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1. Introduction 

 

Intraventricular haemorrhage arises from the germinal matrix (GM-IVH) – a highly vascularised 

transient structure of the pre-term brain (de Vries, 2018). GM-IVH presents during the first postnatal 

week and its cause is unclear, although it is associated with respiratory distress and cardiovascular 

problems and most frequent in extremely pre-term infants (Ancel et al., 2015; Chalak et al., 2011; 

Levene et al., 1982).  

 

High-grade (large) GM-IVH is associated with higher risk of adverse somatomotor development 

(Ancel et al., 2006; Payne et al., 2013), likely due to its disruption of motor and somatosensory 

circuits. During the week straight after injury, the resultant compression and acute inflammation of 

periventricular tissue (Adler et al., 2010) is often reflected in the absence or gross delay of a 

somatosensory cortical event (Pierrat et al., 1997; Pike et al., 1997; Pike and Marlow, 2000). A 

response can then be reinstated during the subsequent weeks (Klimach and Cooke, 1988; Pierrat et 

al., 1997; Pike and Marlow, 2000; Slater et al., 2010; Vries et al., 1990), which is associated with 

positive neurodevelopmental outcome (Willis et al., 1989). The return of a response likely represents 

the ability of thalamo-cortical tracts to adopt alternative trajectories to circumvent the injury and 

reach the cortex (Arichi et al., 2014; Guzzetta et al., 2007; Staudt et al., 2006; Wilke et al., 2009). 

 

However, processing of somatosensory input in pre-term infants involves multiple steps, beyond the 

simple transmission of the information to the brain (Donadio et al., 2018; Hrbek et al., 1973, 1968; 

Pike et al., 1997; Whitehead et al., 2019). Here we hypothesised that even if plastic changes allow 

the reinstatement of a cortical response to somatosensory input after GM-IVH, this response could 

still differ from that of infants who never experienced an injury. To test this hypothesis, we 

compared temporal and spatial differences in somatosensory cortical events following mechanical 

stimulation of the foot and hand between infants who had high grade GM-IVH and age-matched 

controls.  

 

 

2. Material and Methods 

 

2.1. Subjects 

 

Subjects were recruited from the neonatal unit at the Elizabeth Garrett Anderson wing of University 

College London Hospitals. Ethical approval was obtained from the NHS Research Ethics Committee, 

and informed written parental consent was obtained prior to each study. Additional written parental 

consent was obtained to publish video data from one infant. The study conformed to the standards 

set by the Declaration of Helsinki. No neonates were acutely unwell at the time of study, required 

mechanical ventilation, or were receiving anti-seizure medication. Exclusion criteria included 

congenital abnormalities and severe intra-uterine growth restriction (defined here as abnormal 

antenatal Doppler ultrasound imaging and <2nd birth weight centile).  

 

Subjects included six infants who had high-grade GM-IVH and eight controls without high-grade GM-

IVH matched for both corrected gestational age (CGA) and postnatal age (PNA) (Table 1). The 

presence of GM-IVH was assessed by reviewing the reports of routine (clinically required) cranial 

                  



ultrasound scans carried out during the postnatal period, all evaluated and verified by a consultant 

neonatologist, recorded in the infant’s hospital notes. High-grade GM-IVH comprised: GM-IVH with 

ventricular dilatation (grade III) or GM-IVH with secondary intraparenchymal lesion (IPL) (de Vries, 

2018)) (Table 1). It is typical to combine these two subcategories in a single group as high-grade GM-

IVH (e.g. (Ancel et al., 2015; Chalak et al., 2011; Nevalainen et al., 2015; Olischar et al., 2007)). 

Control infants were defined as having either normal cranial ultrasound imaging or a small (grade I) 

germinal matrix haemorrhage which had not bled into the ventricles (one infant). Small germinal 

matrix haemorrhage is of no clinical significance (Payne et al., 2013; Radic et al., 2015) and 

associated with normal somatosensory cortical events during the neonatal period (Pierrat et al., 

1997; Pike et al., 1997). Throughout the following text, for brevity, GM-IVH refers to high-grade GM-

IVH. No infants received opiate or sedative medications in the 24 hours prior to the study apart from 

two infants in the GM-IVH group who were respectively receiving a weaning regime of oral 

morphine (32mcg/kg/dose) and chloral hydrate (50mg/kg/dose). Morphine does not affect ongoing 

or sensory-evoked brain activity at this age, when other medications and clinical factors are 

corrected for (Bell et al., 1993; Dix et al., 2018; Hartley et al., 2018). In children, chloral hydrate does 

not consistently affect electrical brain activity (Thoresen et al., 1997). 

 

 

Table 1: Clinical data of infants 

 High-grade GM-IVH 

 

Controls 

(No high-grade GM-IVH) 

No. of EEG studies 7 9 

No. of neonates 6a (3 female) 8b (2 female) 

No. of foot stimulation trains 

(Right: Left) 

10  

(7:3) 

12  

(7:5) 

No. of hand stimulation trains 

(Right: Left) 

5  

(3:2) 

8  

(3:5) 

Mean (range) CGA at study 

(weeks+days) 

33+4  

(30+3-35+6) 

32+3 

(29+1-35+5)  

Mean (range) GA at birth 

(weeks+days) 

25+4 

(23+6-30+0) 

27+3 

(24+5-32+4) 

Mean (range) PNA at study 

(days) 

56 

(31-77) 

36 

(21-65) 

GM-IVH details (infants ordered 

by ascending CGA) 

(limbs stimulated) 

#1 L grade III / R grade III 

(RF, LF, RH, LH) 

 

#2 L grade III / R grade III; post-

haemorrhagic hydrocephalus 

managed by therapeutic LPsc 

(RF, RH) 

 

#3a L IPL / R grade II 

(first study: RF, LF; second 

study: RF) 

 

#4 L grade III / R grade III 

(RF, RH) 

 

                  



 

#5 L grade I / R IPL 

(RF, LF) 

 

#6 L grade I / R IPL; post-

haemorrhagic hydrocephalus 

managed by therapeutic LPs
c
 

(RF, LH) 

PNA indicates postnatal age; GA indicates gestational age at birth; CGA indicates GA + PNA 

LPs = lumbar punctures; L = left; R = right; F = foot; H = hand 
a One infant (#3) studied twice with an inter-study interval of 14 days. 
b 

One infant studied twice with an inter-study interval of 27 days. 
c 
Managed post-haemorrhagic hydrocephalus is not consistently associated with additional somatosensory or 

other sensory cortical dysfunction, beyond that associated with the GM-IVH (Klebermass-Schrehof et al., 2013; 

Pierrat et al., 1997; Radic et al., 2015), although appears to confer a small degree of additional 

neurodevelopmental risk (Brouwer et al., 2008). 

 

 

 

 

2.2 EEG recording 

 

Up to eighteen recording electrodes (disposable Ag/AgCl cup electrodes) were positioned according 

to the modified international 10/10 electrode placement system. Montages customarily included Cz, 

CPz, C3, C4, CP3, CP4, F3, F4, F7, F8, T7, T8, P7, P8, O1, O2, and sometimes additionally Fz, P3, P4, 

POz, Oz, TP9, TP10. Two infants were studied twice ≥14 days apart which does not underestimate 

the variance (see the supplemental information in (Fabrizi et al., 2011)), leading to a total of 16 EEG 

studies. A reduced number of electrodes were applied if the infant became unsettled during set-up 

(median 18 electrodes applied; 14/16 EEG studies included ≥15 electrodes, minimum 10; no 

statistically significant difference in the number of electrodes applied between groups: p = .258, 

unpaired t test). The reference electrode was placed at either Fz or FCz. Target impedance of 

electrodes was <10 kΩ (André et al., 2010). A single lead I ECG was recorded from both shoulders. 

Respiratory movement was monitored with an abdominal movement transducer. EEG was recorded 

with a direct current (DC)-coupled amplifier from DC-800Hz using the Neuroscan (Scan 4.3) 

SynAmps2 EEG/EP recording system. Signals were digitized with a sampling rate of 2 kHz and a 

resolution of 24 bit. 

 

2.3. Tactile stimulation 

 

Mechanical taps were delivered to the lateral edge of the infants’ palms and heels using a hand-held 

tendon hammer with a 15mm2 contact surface (see Supplementary Video). The hammer had a piezo-

electric transducer that allowed to record the precise timing of the stimulation on the EEG recording 

(Worley et al., 2012). The interstimulus interval was long, variable, and self-paced by the 

experimenter (average 15 s) as shorter intervals could attenuate the somatosensory response 

(Desmedt and Manil, 1970; Gibson et al., 1992; Nevalainen et al., 2015; Stjerna et al., 2012). In case 

the infant moved, the tap was delayed for several seconds to avoid potential modulation of the 

                  



somatosensory response by the movement (Saby et al., 2016) and to allow movement artefacts to 

resolve. It was not possible to stimulate one of the two hands when a cannula or longline 

(peripherally inserted central venous catheter) was present, and a reduced number of stimuli were 

delivered if the infant became unsettled. This resulted in a total of 35 stimulation trains (i.e. 

stimulated limbs) of 2-32 stimuli (mean 13) delivered to one of the four limbs. There was no 

statistically significant difference in the distribution of right and left limbs stimulated between the 

GM-IVH and control groups (feet: p = .571, hands: p = .429, chi-squared tests; Table 1). 

 

 

Supplementary Video: Tactile stimulation of the heel in subject #6. Vertical yellow line indicates the 

occurrence of a tap. To maintain the infant’s comfort, they remain wrapped in their bedding, with only a small 

amount of skin uncovered to deliver the tap. Data are displayed referred to Fz (acquisition montage) and with 

a bandpass filter of 0.5-70Hz. Scale bar bottom left hand corner. Solid grey vertical lines mark each second and 

dashed grey vertical lines mark each 200 milliseconds. 

 

 

2.4 Analysis: pre-processing 

 

Data pre-processing was carried out using EEGLAB v.14 (Swartz Center for Computational 

Neuroscience). Data were re-referenced to common average (retrieving the reference channel Fz or 

FCz). Four trials from three datasets containing artefact were completely discarded which resulted in 

a total of 436 trials being analysed. There was no statistically significant difference in the number of 

trials analysed per stimulation train between the GM-IVH and control groups (hands: p = .081, feet: p 

= .371, unpaired t tests). Up to two bad channels (poor contact with the scalp) from two datasets 

were removed. Missing and discarded recordings were estimated with spherical interpolation as 

implemented in EEGLAB. Data were bandpass filtered at 0.5-40 Hz (2nd order Butterworth filter) 

with a 50 Hz notch filter (4th order Butterworth filter) and then epoched from -300 until +1300 ms 

around the stimulus. All EEG epochs were baseline corrected by subtracting the mean baseline signal 

and averaged across repetitions (i.e. single average response per limb stimulated). Traces from each 

stimulation train were aligned to correct for intra-subject latency jitter with Woody filtering (Woody, 

1967) (alignment window: 160-210 ms at midline central (foot stimulation) or contralateral central 

(hand stimulation) electrode; maximum allowed jitter -40 to +40 ms). The degree to which trials 

were aligned did not statistically differ between groups (feet: mean 20 (SD: 13) vs. 21 (SD: 13) ms, 

and hands: mean 19 (SD: 14) vs. 18 (SD: 12) ms, for GM-IVH vs. controls respectively (p ≥ .450, 

unpaired t tests). EEG recordings following stimulation of the left hemi-body were ‘side-swapped’ so 

that recordings contralateral to the stimulation site appear on the ‘same side’ of the scalp (left in 

Figures 1 and 2, which is then labelled as ‘contralateral to stimulation’). 

 

2.5. Analysis: intra-group characterisation of somatosensory cortical response 

 

Data analysis was carried out using Ragu (Koenig et al., 2011), which identifies the presence of, and 

then inter-group differences between, somatosensory cortical events using non-parametric 

permutation statistics timepoint by timepoint (n = 1000 randomization runs among channels). The 

presence and timing of somatosensory cortical events was established separately for infants with 

and without GM-IVH using the topographic consistency test (Koenig and Melie-García, 2010). This 

                  



test examines if and at what latencies a stimulus consistently elicits the same scalp field distribution 

across subjects using Global Field Power (GFP) measurements (Koenig and Melie-García, 2010). To 

account for multiple comparisons, the presence of somatosensory cortical events was considered 

significant if the time period in which the test resulted in p < .05 was at least 5% of the analysis 

window. Unlike methods to control for multiple comparisons such as false discovery rate, this 

considers the probability that consecutive samples differ (Guthrie and Buchwald, 1991).  

 

2.6. Analysis: inter-group comparison of somatosensory cortical response 

 

If the stimulus elicited somatosensory cortical events at the same latencies for the two groups, the 

neuronal activation could still differ in source configuration or magnitude between the groups. To 

test for inter-group differences in source configuration, we compared scalp field maps normalised to 

their GFP (i.e. magnitude independent, ‘topographic analysis of variance’ (TANOVA) (Wirth et al., 

2008)) for those periods when both groups had a somatosensory cortical event. To test for 

differences in magnitude, we compared GFP for those periods when both groups had a 

somatosensory cortical event which did not differ significantly in source configuration (Habermann 

et al., 2018). For display purposes we plotted the GFP of the grand average EEG response for each 

group (Figures 1 and 2 and Supplementary Figure 1) (the statistical comparison of GFP between 

groups uses each infant’s GFP data).  

 

 

3. Results 

 

3.1. Results: Brain activity in response to foot stimulation differed in infants who had GM-IVH 

 

Control infants had an early cortical event (151-257 ms), with symmetrical vertex negativity, which 

was absent in infants who had GM-IVH (Figure 1, Supplementary Figure 1). The response of both 

groups then included a brief event starting at 487 ms (controls) and 512 ms (GM-IVH) until 566 ms 

with a symmetrical distribution (Figure 1). However, the responses then diverged, with that of 

infants who had GM-IVH lacking the symmetrical vertex positivity observed in controls (p < 0.05 

TANOVA for 154 ms) (Figure 1, Supplementary Figure 1). The responses of the two groups then 

converged again in topography. Between 720-936 ms both had a bi-centro-temporal negativity, and 

between 1046-1202 ms a contralateral positivity and ipsilateral negativity. The response in controls 

lasted very slightly longer than GM-IVH infants (until 1295 ms) (Figure 1). There was no statistically 

significant difference in the magnitude of the response between the two groups (GFP during those 

periods when both groups had a cortical event p ≥ 0.12) (Figure 1).  

                  



 
 

Figure 1: Brain activity in response to foot stimulation is different in infants who had germinal matrix-

intraventricular haemorrhage (GM-IVH). Upper panel left: grand average global field power (GFP) showing 

consistent neuronal activation in controls and in infants who had GM-IVH (somatosensory cortical events, 

green shading, the height of the grey area indicates the p-value of the Topographic Consistency Test). Upper 

panel right: topoplots display mean topographies across time points of intra-group topographic consistency 

(green shading) and time points in which both groups had consistent neuronal activation of the same 

topography (blue shading) or different topography (grey shading) (normalised by GFP). Lower panel: Grand 

average of the EEG recordings and GFP. 2-column fitting image. 

 

 

Supplementary Figure 1: Individual topographies across time points in which brain activity in response to 

foot stimulation is different in infants who had germinal matrix-intraventricular haemorrhage (GM-IVH). 

Lower panel: Grand average global field power (GFP) showing time points of consistent neuronal activation 

(somatosensory cortical events) only in controls (green shading) and not infants who had GM-IVH, and time 

points in which both groups had consistent neuronal activation but of different topography (grey shading). 

Upper panel: Individual (within rectangles) and grand average (bold outline) topoplots display mean 

topographies across these time points (normalised by GFP). 2-column fitting image. 

 

 

3.2. Results: Brain activity in response to hand stimulation was similar across infants who had GM-

IVH and controls 

                  



 

In contrast to foot stimulation, the response to hand stimulation had almost exactly the same 

duration in infants who had GM-IVH and controls (overlap: 167-1300 ms) (Figure 2). Its mean 

topography comprised a negativity over the contralateral centro-temporal region, and positivity 

maximal at the midline frontal and posterior areas, and did not significantly differ between the two 

groups for its whole duration (p ≥ 0.27 TANOVA) (Figure 2). The magnitude of the response in infants 

who had GM-IVH was slightly greater than controls, but this did not reach statistical significance (p < 

0.10 GFP 411-448 ms) (Figure 2). 

 

 
Figure 2: Brain activity in response to hand stimulation is not significantly different in infants who had 

germinal matrix-intraventricular haemorrhage (GM-IVH). Upper panel left: grand average global field power 

(GFP) showing consistent neuronal activation in controls and in infants who had GM-IVH (somatosensory 

cortical events, green shading, the height of the grey area indicates the p-value of the Topographic Consistency 

Test). Upper panel right: topoplots display mean topographies across time points in which both groups had 

consistent neuronal activation of the same topography (blue shading) (normalised by GFP). Lower panel: 

Grand average of the EEG recordings and GFP. 2-column fitting image. 

 

 

4. Discussion 

 

                  



Here we show that in pre-term infants who had GM-IVH, brain responses to mechanical stimulation 

of the limbs, even if recovered, are still significantly different from controls several weeks after the 

injury. 

 

Consistent somatosensory activity following stimulation of the foot starts only at 512 ms in infants 

who had GM-IVH, 361 ms later than controls: infants who had GM-IVH lack a somatosensory event 

that occurs at approximately 200 ms in controls and which resembles previous reports (Cindro et al., 

1985, 1985; Donadio et al., 2018; Fabrizi et al., 2011; Minami et al., 1996; Pike et al., 1997; Slater et 

al., 2010; Whitehead et al., 2019). This delay could arise from altered thalamo-somatosensory 

cortical transmission: in infants who had a large GM-IVH these tracts can be as extensively re-routed 

as to pass via the insula (Arichi et al., 2014), and neonatal animal models of this injury demonstrate 

disruption of structural thalamo-somatosensory cortical maps (Quairiaux et al., 2010). As relatively 

early responses with central scalp negativity in neurologically normal pre-term infants have been 

attributed to the primary somatosensory cortex, and their topographic organisation interpreted as 

reflecting the neural map of limb representation (Nevalainen et al., 2015, 2012; Whitehead et al., 

2019), our data suggest that infants who had GM-IVH have impaired processing at this crucial first 

‘rung’ of hierarchical sensory functioning. 

 

When consistent somatosensory activity following foot stimulation begins in infants who had GM-

IVH, they briefly share the same cortical source configuration as controls (for 54 ms) but this source 

configuration quickly diverges, indicating further differences in neural processing between groups. It 

is likely that the impaired early encoding of tactile input disrupts the trajectory of subsequent 

processing steps, limiting the GM-IVH infants’ ability to recruit the same hierarchical processing 

pathways as controls (Thivierge and Marcus, 2007; Whitehead et al., 2019). Indeed, animal models 

confirm that hierarchical propagation of somatosensory-evoked cortical activity depends upon the 

initial activation (Quairiaux et al., 2011), and a fMRI study of infants who had GM-IVH demonstrated 

that they were unable to recruit the supplementary motor area into their somatosensory cortical 

response, unlike controls (Arichi et al., 2014). Nevertheless, despite the early differences observed 

here between infants who had GM-IVH and controls (until 720 ms), during the latter part of the 

cortical response they again share the same source configuration. This could reflect the ability of 

restructured somatosensory circuits in infants who had GM-IVH to eventually realign the response 

with that observed in uninjured infants.  

 

Failure to recruit the same cortical source configuration as controls in infants who had GM-IVH is 

specific to stimulation of the foot, and not the hand. Greater impairment of somatosensory 

processing of lower limb input, relative to the upper limbs, has been reported for the early thalamo-

cortical afferent volley in GM-IVH (Pierrat et al., 1997) and is likely explained by the projections of 

those limbs being located closer to the ventricular wall (Staudt et al., 2000). Here we show that 

relatively greater differences in lower limb somatosensory functioning between infants who had 

GM-IVH and controls extends also to the later processing steps. All the same, following hand 

stimulation there was a trend for infants who had GM-IVH to have an amplified somatosensory 

cortical event. In line with this, comparable amplification of background cortical activity has been 

reported in neonates following brain injury, often termed ‘dysmaturity’ (Okumura et al., 2002; 

Watanabe et al., 1999; Whitehead et al., 2016), to reflect that large cortical events are typically 

associated with immature brain activity (Fabrizi et al., 2011; Hrbek et al., 1973; Milh et al., 2007; 

                  



Vanhatalo et al., 2009; Whitehead et al., 2018b, 2018a). Future research should attempt to 

distinguish whether such amplification is potentially adaptive (Antón-Bolaños et al., 2019; Burbridge 

et al., 2014; Frank et al., 2001; Jha et al., 2005; Shen and Colonnese, 2016; Tolner et al., 2012; Xu et 

al., 2011; Zhang et al., 2012), or rather simply a marker of damage (Furlong et al., 1993; Mauguière, 

2005; Riquelme and Montoya, 2010), by correlating this variable with neurodevelopmental 

outcome. 

 

Although both grade III GM-IVH and IPL originate from germinal matrix haemorrhage, the exact 

pathophysiology of the injury will be different between that associated with compressive ischemia 

but no parenchymal damage (grade III) and secondary haemorrhagic venous infarction resulting in 

IPL (de Vries, 2018; Luo et al., 2019; Pierrat et al., 1997; Quairiaux et al., 2010; Volpe, 2009; Witte et 

al., 2000). Future prospective studies should examine larger populations of infants who had GM-IVH 

so that i) grade III GM-IVH and IPL can be studied separately, ii) differences in processing of 

somatosensory input contra- and ipsilateral to unilateral lesions can be dissociated, and iii) inter-

individual differences in alternative somatosensory cortical developmental trajectories can be 

delineated. Nevertheless, here we show that high-grade GM-IVH is associated with restructuring of 

somatosensory circuitry in the several weeks following injury resulting in inability to recruit the same 

cortical source configuration as controls following foot stimulation. This evidence provides insight 

into functional reorganisation following one of the most commonly acquired brain injuries of the 

pre-term period (Gale et al., 2018; Stoll et al., 2015).   
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