
A calculus for multi-level emergent behaviours
in component-based systems and simulations

Chih-Chun Chen1, Sylvia B. Nagl2, and Christopher D. Clack3

1 Department of Computer Science, University College London
2 Department of Oncology and Biochemistry, University College London
3 Department of Computer Science, University College London

Summary. A major issue in Complexity Science is the formal description of emer-
gent properties and behaviours in terms of lower level properties and behaviours. As
a consequence, there are few techniques for empirically investigating specific emer-
gent properties. In this paper, we introduce a general compositional approach to
specifying such properties, using constraints to define representative sets of com-
positions. More specifically, we propose a calculus of complex events, which are
compositions of events generated from component-level rule executions. Complex
event types can be assembled hierarchically, giving a formal means of relating be-
haviours at different levels of abstraction. In being able to specify and then identify
complex events of different types in systems and simulations, we have a method for
empirically discovering relationships between behaviours defined at different levels.
The formalism offers two important practical advantages. Firstly, higher level prop-
erties can be defined with different degrees of specificity so they can be defined with
limited knowledge; we can then further sub-classify properties after they have been
detected to discover differences in their constituent properties. Secondly, the formal-
ism is related directly to the rules driving component behaviour so that all higher
level behaviours can ultimately be decomposed into rule executions; this is partic-
ularly important for desirable and dysfunctional properties, and in circumstances
where intervention at the component rule level is possible.

1 Introduction

Being able to understand and precisely analyse emergent behaviours in com-
plex systems is a key goal in both Complexity Science and complex systems
engineering. Emergent behaviours are those that arise from the organisational
relationships and dynamic interactions between the system’s components, and
which are then able to drive the trajectory of the system in a particular
direction. Information theory has provided a formal framework for defining
emergence, and techniques for establishing the degree of emergence in a given
system have been derived from this interpretation (see, for example (11), (26),
(3), (19)). However, there is currently no universal formalism for describing

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 35

2 Chen, Nagl & Clack

specific emergent properties in terms of their component properties (rather
than the presence of emergence in general in a system). Our approach aims
to address this while still assuming the information theoretic interpretation
of emergence. We also work on the assumption that there may be emergent
properties that can not be modelled or simulated because they are substrate-
dependent and hence not computable (at least in the classical sense) (6), (1);
these are not included in the current discussion.

The motivation for our work comes primarily from the growing use of
agent-based modelling and simulation in studying complex systems (25). How-
ever, the formalism itself is general enough to describe any system in which
higher level macro-properties (of which behaviours are a subset) can arise
from the lower level properties of system components and their relationships.
Many of the issues discussed here therefore apply equally to the engineering
of robotic and swarm systems, where system behaviour is dependent on the
collective behaviour of the system’s components. There already exist several
formalisms for specifying emergent behaviours in such systems e.g. temporal
logics (27) but these tend to ignore the multi-level, compositional nature of
many emergent properties.

In this paper, we first introduce a general approach for describing emer-
gent properties at multiple levels. We then propose a calculus for describing
emergent behaviours that allows them to be decomposed into lower level be-
haviours. The paper assumes familiarity with the elementary aspects of set,
category and type theories (good introductions to these topics can be found
in (20) and (16)).

1.1 Emergent Properties

As there is a lack of consensus as to what constitutes ‘emergence’ (see for
example (5), (8)), we will avoid an explicit definition and instead give the
assumed attributes that emergent properties are deemed to have in terms of
a multi-component system.

• Emergent properties are ‘macro’properties with respect to their con-
stituents4, i.e. they have either:
– a greater scope than its constituent properties i.e. for the property to

be present, it has to include more than one of the constituent proper-
ties; or

– a lower resolution i.e. the property makes fewer distinctions between
its constituent properties than can possibly be made. (within the infor-
mation theoretic framework, we say that it has lower statistical com-
plexity (2)); or

– both.

4 The converse does not hold however; not all ‘macro’ properties are necessarily
emergent.

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 36

Calculus for multi-level emergent behaviours 3

A more detailed account of these terms is given in Section 4.1 and formal
definitions can be found in (23).

• An emergent property arises as a result, not only of the sum of its con-
stituents (as formalised in (9)), but also as a result of their interactions or
relationships with one another.

• In a multi-component system, emergent properties are those that are not
explicitly defined in the component specifications. This is based on the
design/observation distinction introduced in (21)

We will elaborate on these assumptions when we introduce the formalism.

1.2 Locating and composing properties

We define a property as anything that can be measured in a system. There
are four central ideas behind our proposed calculus, all relating to way that
properties can be located in a system or simulation.

1. Every property in a system consists of one or more (micro-)properties that
can be located in an n-dimensional (hyper)space. For the lifetime of the
system or simulation, properties can be located in this space by specifying
the coordinates in each of the dimensions. The coordinate system used to
specify the location can be global (from a whole system point of view) or
local (where locations are in relation to a particular constituent within the
system). For example, if the global coordinate (12, 1, 4, 2) represents the
location of a state transition in the 12th time step (first tuple item holds
time), located in coordinate (1, 4) of physical space (second and third
tuple items hold space) in component with ID 2 (final tuple item holds
component identity); the equivalent coordinate using a local coordinate
system defined with respect to component 2 at time step 11 in the same
spatial location would be (1, 0, 0, 0).

2. If two macro-properties consist of constituents of the same types and
constituents of the same type have the same configuration with respect to
each other in the two properties, we can say the two properties are of the
same type.

3. We can describe regions as well as point locations in a system or sub-
system space using propositional statements about the location in the
system/simulation’s various dimensions. For example, in a system with
only time and identity represented, (before 3, 4) stands for all the states
or state transitions that occur in component 4 before time step 3.

4. Higher level properties can be composed by defining organisational rela-
tionships between their constituents i.e. their configuration. This idea
is generalisable to any dimension.

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 37

4 Chen, Nagl & Clack

If a property is defined atemporally5, we call that property a state while
if the property has temporal extension, we call it a behaviour. In this paper,
we focus mainly on the latter of these.

1.3 Outline of the paper

The remainder of the paper is organised as follows:

• Section 2 introduces the main constructs that are used in our calculus
of complex events and illustrates them by using them to construct a for-
malism for macro-states. Our main assumptions about multi-component
systems is also given.

• Section 3 introduces the calculus and describes how complex event types
can be used to specify behaviour at any level of abstraction that can be
realised by the system or simulation.

• Section 4 revisits the criteria for emergence we outlined in Section 1.1 and
relates them explicitly to complex events. We also briefly discuss emergent
laws and top-down ‘causation’ in terms of our formalism.

• Section 5 suggests some promising directions for further work.
• Section 6 summarises and concludes the paper.

2 Assumptions and Fundamental constructs

In this section, we begin by stating our assumptions about the way state tran-
sitions occur in the multi-component systems we are concerned with. We then
introduce two key concepts: configuration and compositionality and illustrate
how they can be applied to subsystems, components and states. These two
concepts are also fundamental to the temporally extended version of our cal-
culus for temporally extended properties. Key terms are also more precisely
defined.

2.1 State transition rules and state transition functions in
multi-component systems

We assume that a multi-component system is composed of a set of compo-
nents, each of which instantiate a defined component type6. A component type
specifies the component’s behaviour with a set of state transition rules (many
formalisms exist for specifying component behaviour e.g. state charts (12),

5 An atemporal definition is one that does not internally refer to time e.g. being
blue but the property itself can persist through time, in which case it is defined
as part of a behaviour e.g. stay blue.

6 Unencapsulated state variables representing continuous media, spatially depen-
dent quantities etc. are also components under our definition.

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 38

Calculus for multi-level emergent behaviours 5

Petri nets (18), communicating X-machines (13) but these ultimately reduce
to a set of rules). State transition rules are defined relative to a source com-
ponent and are made up of a condition or trigger and a set of state transition
functions. The condition typically takes into account both the component’s
own state qC and the state of its environment qEnv/C , where the environment
of a component for a given rule is a set of n components Env/C = C1, ..., Cn

in some configuration λ. C and Env/C together make up a subsystem Sub/C
(see Definitions 5, 6 and 7). The condition is then the set of Sub/C states
sub1, ...subm under which the state transition functions of the rule are exe-
cuted (if the rule is non-deterministic, there is a further guard that determines
whether or not the functions are executed). A state transition function is a
mapping from a source state qsource to a target state qtarget, where qsource

and qtarget are both subsystem states defined relative to the component.

Definition 1. State transition. A state transition is a transformation of one
subsystem state q to another subsystem state q′. The state q before the trans-
formation is applied is called the source state and is denoted qsource, while the
state q′ after the transformation has been applied is called the target state and
denoted qtarget. (The definition for subsystem state is given in Definition 7).

Definition 2. State transition function. A state transition function is a func-
tion that maps the source subsystem state qsource to the target subsystem state
qtarget.

STF :: qsource → qtarget (1)

Definition 3. State transition rule. A state transition rule is a rule that re-
stricts the applicability a set of state transition functions to cases where the
propositional formula representing the realisation of condition evaluates to
true.

STR :: ({STF}, condition) (2)

2.2 Describing the organisation of system constituents using
configurations and constraints

Definition 4. Configuration. In general, a configuration ωx of a set of n
properties x1, ..., xn is a set of constraints Θx that together describe the or-
ganisation of the properties in an m-dimensional (hyper)space. At the low-
est level, each constraint is itself a configuration of a pair of properties
Θ = θx1−x2 × ...× θx1−xn, where θa−b locates the property b relative to a.

If the constraints in a configuration result in every constituent being point
located in the m-dimensional (hyper)space, we say the configuration is fully
determined. If any constituent location is defined as a region (after taking into
account all the constraints) e.g. given a range or left undefined in some dimen-
sion, the configuration is said to be partially determined. Two configurations
ωx and ωy are said to be identical when their constraint sets have exactly the

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 39

6 Chen, Nagl & Clack

same members; this is denoted by the identity operator ≡. They are said to be
equivalent when they apply to the same number of constituents and the ap-
plication of ωx’s member constraints is able to give every organisation 7 that
satisfies every one of ωy’s constraints and vice versa; equivalence is denoted
by the operator '. It is also worth noting that a partially determined con-
figuration defines a set of fully determined configurations that satisfy all its
constraints. This also means that a partially determined configuration ωPartA

can be a subset of another partially determined configuration ωPartB i.e. every
fully determined configuration in ωPartA has an equivalent fully determined
configuration in ωPartB .

ωPartA ⊆ ωPartB (3)

ωPartA = {ωA1,, ωAn}, ωPartB = {ωB1, ...ωBm}, m ≤ n (4)

∀ωA∃ωB(ωA ' ωB), ωA ∈ ωPartA, ωB ∈ ωPartB (5)

From Definition 4, we can define what it means for a set of components
to be in a configuration at a given point in time. This is then used to define
subsystem states in Definition 7.

Definition 5. Component configuration. A component configuration ωC at
time point ti of a set of components C0, C1, ..., Cn is the set of constraints pi

that together describe the organisation of the components at ti, ωti = (θ0−1ti×
θ1ti...× θnti).

Two (sub)systems sysA and sysB have equivalent component configura-
tions if sysA and sysB have the same number of components and for every
component C1sysA in sysA, there exists exactly one corresponding compo-
nent C1sysB in sysB which satisfies the same location constraint to a second
component C2sysB as C1sysA satisfies to C2sysA, and vice versa.

Definition 6. Subsystem. A subsystem Sub of a multi-component system is
a subset of the system’s components. If a system consists of a set of n compo-
nents Sys = C1, ..., Cn, Sub ⊆ Sys (a system is therefore its own subsystem).

Definition 7. Subsystem state. A subsystem state of a multi-component sys-
tem Sys at a given time point ti is the composition of the states of any subset
of a system’s components and a configuration ω. qSubti = qSubComponentsti ×
ωSubti.

7 in the case of fully determined configurations, there will only be one possible
organisation

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 40

Calculus for multi-level emergent behaviours 7

2.3 Compositionality of configurations, subsystems, components
and states

The constructs and terms defined above imply compositionality in that they
can be described by the recursive syntax:

A :: a | A1 •A2, (6)

where A is the construct, a is a primitive and • is the compositional oper-
ator.

In the case of configurations for example, a configuration can be defined as
either a single location or a two configurations satisfying a set of constraints
with respect to one another:

ω :: ν | ω1 ./ ω2, (7)

where ν is a location and the ./ means that the right hand side configu-
ration satisfies a set of location constraints with respect to the left hand side
configuration.

Similarly, a subsytem is either a component or a set of two unordered
subsystems:

Sub :: C | (Sub1, Sub2) (8)

So a system can be decomposed into a hierarchy of subsystems, with the
largest subsystem being the system itself and the smallest subsystem being
a component. The greater the number of components in a subsystem, the
greater the scope and the higher the level.

Example 1. A system with three components (C1, C2, C3) can be decomposed
into the following subsystems:

1. (C1, C2, C3)
2. (C1, C2), (C1, C3), (C2, C3)
3. C1, C2, C3

Again using the compositional syntax, a subsystem state is either a com-
ponent state or two subsystem states satisfying the constraints of some con-
figuration:

qSub :: qC | qSub1 ./ qSub2 (9)

So we can decompose a given subsystem state into lower level subsystem
states, retaining the (sub)configurations of the components and the compo-
nent states.

Example 2. A subsystem state exists in 2-dimensional space, where component
C1 is located at (0,1) relative to C2 and C3 is located at (3, 4) relative to C2,
and C1, C2 and C3 are in states q0, q2 and q1 respectively. We can denote
this: [C1 ← q0] . (0, 1)[C2 ← q2] . (3, 4)[C3 ← q1].

This can be decomposed into the following subsystem states:

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 41

8 Chen, Nagl & Clack

1. [C1 ← q0] . (0, 1)[C2 ← q2] . (3, 4)[C3 ← q1]
2. • [C1 ← q0] . (0, 1)[C2 ← q2],
• [C1 ← q0] . (3, 5)[C3 ← q1] (from the location of C3 relative to C2),
• [C2 ← q2] . (3, 4)[C3 ← q1]

3. q0, q2, q1.

This compositional approach can be generalised to any property. For
example, a component C consists of a set of encapsulated state variables
whose values at ti together make up the component’s state qC at ti, qCti =
var0ti×var1ti, ...×varnti. We can specify subsets and configurations for these
variables within and between components and associate them with macro-
properties. In fact, the component’s state is itself a macro-property of its
constituent variable values. Figure 1 illustrates this general compositional ap-
proach.

Fig. 1. Property A is a fully determined property (i.e. each of its lowest level
constituent properties occupies a point location in the (hyper)space defined by a
set of dimensions) composed of Property B and Property C in some configuration.
B and C can be further decomposed, as can their constituents. ./ denotes the set
of constraints that determine the configuration; x, y and z are used to distinguish
between two different sets of constraints.

3 Complex events

In this section, we introduce the complex event calculus and describe how
complex event types can be used practically to specify and then detect macro-

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 42

Calculus for multi-level emergent behaviours 9

behaviours in systems. We then relate complex event type compositionality
to scope and specificity to resolution. We take as a starting assumption the
fact that behaviours are changes in state i.e. events (see Definition 8).

Definition 8. Event. An event is a state transition defined at a particular
level of abstraction.

The compositionality of state means that state transition functions can
also be decomposed into lower level state transition functions. For example, a
state transition function that maps a source subsystem state qSub to another
subsystem state q′Sub (the target state) can be decomposed into a set of lower
level subsystem state mappings, which can be further decomposed into a set
of component state mappings. If variables are the lowest level of state repre-
sentation, every state transition function can ultimately be reduced to a set
of state transitions mapping a variable value to a new variable value.

qSub → q′Sub ≡ {qSub → q′Sub} ≡ {qC → q′C} ≡ {var → var′} (10)

In a multi-component system, every event is the result of a state transition
function being applied; we call these simple events (See Definition 9) and their
level of abstraction depends on their state transition function.

Definition 9. Simple event. A simple event is a state transition that results
from the application of a state transition function.

Two simple events that occur in a system are said to be of the same type
if they result from the same state transition functions (state mappings) and
the mappings are applied as a consequence of the same rule being executed.

Definition 10. Simple event type. Two simple events are said to be of the
same type if (i) they are the result of the same state transition function and
(ii) the function is applied as a result of the same state transition rule.

Figure 2 shows the relationiship between component type and components
and between state transition functions and simple events in the executing
system.

Given these preliminaries, we can define a complex event CE as either a
simple event SE or two complex events linked by ./:

CE :: SE | CE1 ./ CE2 (11)

./ was introduced in Section 2.3. Here, it denotes the fact that CE2 satis-
fies a set of location constraints with respect to CE1. Conceptually, complex
events are a configuration of simple events where the configuration can be
defined in a hyperspace that includes time, physical space and any other di-
mensions.

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 43

10 Chen, Nagl & Clack

Fig. 2. Components instantiate component types in the real system or simulation
while simple events can be said to instantiate state transition functions.

Definition 11. Complex event (recursively defined). A complex event is either
a simple event SE or two complex events CE1 and CE2 satisfying a set of
location constraints with respect to each other:

CE1 ./x CE2, CE2 ./x−1 CE1 (12)

, where x−1 is the inverse of x so that CE1 ./x CE2 denotes satisfaction of the
set of location constraints x by CE2 with respect to CE1 and CE2 ./x−1 CE2

denotes the satisfaction of the set of location constraints x−1 by CE1 with
respect to CE2.

Location constraints define relationships between complex events, which
can be represented as a coloured multi-graph, where the coloured nodes stand
for event types and coloured edges stand for the different relationship types
(sets of location constraints) existing between events (4). It should also be
pointed out that because location constraints can be defined at different levels
of specificity (see also Section 3.2), different multigraphs can be drawn for the
same complex event. These alternative multigraphs can be seen to represent
different ‘views’ or descriptions of the same behaviour. Similarly, we can infer
‘hidden’ edges in a multi-graph when a relationship between one pair of events
implies a relationship between another pair of events e.g e1 < e2, e2 < e3
implies e1 < e3.

3.1 Specifying complex event types

We have already introduced the idea that events can be typed in our discussion
of simple events (see Definition 10). We now extend this to complex events.

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 44

Calculus for multi-level emergent behaviours 11

Definition 12. Complex event type. Two complex events CE1 and CE2 are
said to be of the same type if, for each constituent event e1 in CE1 there is
exactly one event e2 in CE2 satisfying the same location constraints, and e1
and e2 are events of the same type.

To specify a complex event type therefore, we need to specify the types for
each of the constituent events and the location constraints that hold between
them.

It is possible to use formal expressions from different formal systems such
as temporal logics to specify the location constraints. This itself is a worthy
subject for research since different applications are likely to have different
semantic and expressivity requirements. However, a comprehensive review and
analysis of the these different formal systems remains outside the scope of the
paper (good reviews can be found in (17) and (22)); here we only present a
few illustrative examples.

Example 3. Temporal constraints: ‖ concurrently, ; immediately after, ≺[[≤,
<, ≥, >]] t] [[less than or equal to, less than, greater than or equal to, greater
than] t time units] after .

E.g.

• E1 ≺ [< 4]E2 means that E2 occurs within 4 time units of E1.
• E1(≺ [< 4])∨ (≺ [> 8])E2 means that E2 occurs either within 4 time units

of E1 or it occurs more than 8 time units after E1.

Example 4. Spatial constraints: within distance v ◦(v), at location (x, [y, ..., z])
triangleright(x, [y, ..., z]).

E.g.

• E1 . (−3, 2)E2 means that every component in which a state changes oc-
curs as a consequence of E2 is (−3, 2) with respect to the corresponding
component in E1.

• E1 ≺ [< 4]∧ ◦(3)E2 means that E2 occurs within 4 time units and within
a distance of 3 units from E1.

Example 5. Token identical component [CA/CB].
E.g.

• E1[CA/CB]E2 means that E2 occurs in the same component (with the
same ID) as the component in which E1 occurs.

3.2 Specificity of complex event types

Just as partially determined configurations define sets of fully determined
configurations (see Section 2.2), complex event types can differ in specificity
with a fully determined complex event type CETFull being defined as one
whose constituent events are in a fully determined configuration. A partially

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 45

12 Chen, Nagl & Clack

determined complex event type CETPart is then one with a partially deter-
mined configuration and therefore defines a set of complex events with fully
determined configurations.

CETPart = {CETFull} (13)

The dimensions in which configurations are not fully specified lower the
resolution of the complex event, with weaker constraints (greater ranges of
possible values) implying a lower resolution in that dimension (this id defined
more precisely in Section 4.1). More generally, the greater the number of
complex event types with fully determined configurations that a complex event
type contains, the lower its resolution (see Figure 3).

Fig. 3. CETX is a fully determined complex event type which is an element in
CETY (a partially determined complex event type). CETY is a subset of CETZ ,
which is the least specific (lowest resolution) of the three complex event types.

4 When do complex event types represent emergent
behaviours?

In Section 1.1, we listed three main criteria that emergent properties should
fulfil, namely, (i) they should be macro-properties with respect to their con-
stituents, (ii) they should not be reducible to the sum of their constituents
and (iii) they have not been explicitly specified. In this section, we return to
these criteria and explicitly link them with categories of complex event types,
which can then be said to represent emergent behaviours. We also show how
emergent ‘laws’ and top-down ‘causation’ can be formalised.

4.1 Scope and Resolution of complex event types

The criteria for a property being a macro-property with respect to another
are that it has a greater scope, a lower resolution, or both. Complex event
types represent behaviours, so the scope and resolution of a complex event

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 46

Calculus for multi-level emergent behaviours 13

type is the scope and resolution of the behaviour represented by that complex
event type.

Definition 13. A behaviour M is a macro-behaviour with respect to another
behaviour m if the following is true of the complex event type CETM repre-
senting behaviour M and the complex event type CETm representing behaviour
m:

ScopeCETM
≥ ScopeCETm (14)

where a complex event type CETA has a greater scope than another complex
event type CET2 if the minimum number of simple events at the lowest possible
level required for CET1 is greater than that required for than in CET2.

ResolutionCETM
≤ ResolutionCETm (15)

where a complex event type CET1 has a lower resolution than another com-
plex event type CET2 if the set of CETfull defined by CET1 contains more
elements than CET2.

(ScopeCETM
, ResolutionCETM

) 6= (ScopeCETm , ResolutionCETm) (16)

4.2 Irreducibility of emergent behaviours

The second criterion required for us to say that a particular property is emer-
gent with respect to another is that the first can not be reduced simply to the
sum of the second. Applying this to behaviour, a behaviour M is emergent
with respect to another behaviour m if M can not be reduced simply to the
sum of ms. In complex event type terms, we can say that a complex event
type CETM is reducible to the sum of CETms if:

CETM = CETm[./ CETm]∗ = CET+
m (17)

where ∗ denotes 0 or more occurrences and + denotes 1 or more occurrences.
Hence, we can say that the emergent behaviour M is emergent with respect
to m when their complex event types CETM and CETm satisfy:

CETM = CETm[./ CETm]∗ 6= CET+
m (18)

This is consistent with the grammar-based definitions given in (7), (9) and
(15) e.g. Demazeau’s pseudo-equation:

MAS = A + E + I + O = emergence

, which corresponds to:

L(MAS) ⊃
∑

v∈vowels

(L(v))

, where vowels is a micro-partition of a macro MAS (8).
The final criterion for a behaviour to be classified as emergent is that it

is not explicitly specified in the component rules. This is the case when a
complex event type is not a simple event type.

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 47

14 Chen, Nagl & Clack

4.3 Emergent ‘laws’, top-down ‘causation’ and multi-functionality
in terms of complex events types

A popular application of the multi-component paradigm is in multi-agent sim-
ulations of complex systems to understand their properties. Scientists working
in this area are particularly interested in establishing rules at higher levels,
which they often call emergent laws. Top-down constraints (also known as
top-down ‘causation’8) and feedback are also effects that are sought in simu-
lations. While simple statistical techniques can be used to detect these effects
at the global level, a hierarchical approach has yet to be established. Defi-
nitions 14 and 15 support such an approach by stating in terms of complex
event types the criteria for behaviours at any two levels to be related in these
two ways.

Definition 14. An emergent law exists between two complex event types
CETx and CETy when a complex event type CETx exists such that the oc-
currence of CETx implies the occurrence of some complex event of the type
CETy i.e. CETx → CETy, and CETx is not a simple event.

Definition 15. A top-down constraint effect exists between two complex event
types CETM and CETm when an emergent law CETM → CETm holds and
CETm is a lower level complex event type with respect to CETM .

Finally, we can use the complex event type formalism to express multi-
functionality. A complex event type can be decomposed into different com-
binations of constituent events (see also the decomposition of property C in
Figure 1), e.g.:

CETA = CETx1 ./1 CET2 = CETx1 ./2 CET3 (19)

where ./1 and ./2 are different sets of configuration constraints.
The overlapping of constituent properties gives us a criterion by which to

establish multi-functionality.

Definition 16. A complex event type CETx is multi-functional if it is a con-
stituent event in more than one complex event type.

Example 6. If
CETA = CETx ./ CETy (20)

and
CETB = CETx ./ CETz (21)

we say that CETx is multi-functional and that it has a role in CETA and
CETB

8 Here, we make no assumptions about the metaphysical status of top-down con-
straints i.e. we take an agnostic stance on whether these constraints have real
causal power, supervene on lower level laws, or are epiphenomena. This has been
a long-standing debate in the Philosophy of Science, see, for example (10), (24),
(14)

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 48

Calculus for multi-level emergent behaviours 15

5 Directions for further investigation

In this section, we propose several directions for extending the formalism and
enhancing its practical application.

• We have assumed that every fully defined complex event type in a partially
defined complex event type set representing a behaviour is an equally
good exemplar of that behaviour. However, an extended formulation in
terms of fuzzy set membership functions would be worth investigating for
some behaviours that can not be crisply defined. The same holds for the
specification of subsystem states any other emergent properties.

• The specification of configuration constraints for complex event types and
subsystem states should be further formalised. A sound approach would
be to use the same formalism as used to specify the system (statecharts,
petri nets etc.) to specify states and execution trajectories.

• In this paper, we have used the dimensions of physical space, time and
component identity to ‘locate’ events and states. However, our approach
could be generalised to other dimensions and to other properties so that
other types of inter-level relationships can be identified.

• Quantitative techniques are required to precisely express and evaluate the
participation of lower level properties in higher level ones since they often
overlap.

• The implementation of complex event detection can be extremely costly
from a computational point but the compositional nature of complex
events could provide a promising means of optimising the search.

6 Summary and Conclusion

In this paper we have introduced a compositional approach to formalising
and analysing emergent properties. In general, emergent properties can be
described by constituent properties that are organisationally related in a set of
dimensions. Organisational constraints can result in fully specified properties,
where the configuration of the constituent properties is fully determined, or
they can be partially specified so that the property is represented by a set.
More specifically, we have proposed a practical formalism that can be used
to categorise different system sub-trajectories so they can usefully be used
to understand the mechanisms at work at multiple system levels. This allows
us to analyse an emergent behaviour at any level and establish relationships
between behaviours at multiple levels. Furthermore, by reducing behaviours at
higher levels to smaller and smaller ‘motifs’ of behaviour, with simple events
(and hence state transition rules) at the lowest level, we have a sound method
for engineering and modifying multi-component systems to exhibit or prevent
certain emergent behaviours.

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 49

16 Chen, Nagl & Clack

References

[1] F. Boschetti and R. Gray. Emergence and computability. Emergence:
Complexity and Organisation, pages 120–130, 2007.

[2] F. Boschetti and R. Gray. A Turing test for Emergence. Springer-Verlag,
London, UK, 2007.

[3] F. Boschetti, M. Prokopenko, M. Macraedie, and A. Grisogono. Defin-
ing and detecting emergence in complex networks. In R. Khosla, R. J.
Howlett, and L. C. Jain, editors, Knowledge-based intelligent informa-
tion and engineering systems, 9th International Conference, KES, vol-
ume 3684 of LNCS, pages 573–580. Springer, September 2005.

[4] C-C. Chen, S. B. Nagl, and C. D. Clack. Specifying, detecting and
analysing emergent behaviours in multi-level agent-based simulations. In
Proceedings of the Summer Simulation Conference, Agent-directed simu-
lation. SCS, 2007.

[5] M. Christen and L. R. Franklin. The concept of emergence in complexity
science: Finding coherence between theory and practice. In Proceedings
of the Complex Systems Summer School, 2002.

[6] B. Cooper and P. Odifreddi. Incomputability in nature, pages 137–160.
Computability and models. Kluwer Academic, Dordrecht, 2003.

[7] J. Dassow, R. Freund, and G. Paun. Cooperating array grammar sys-
tems. International Journal of Pattern Recognition Artificial Intelligence,
9:1029–1053, 1995.

[8] J. Deguet, Y. Demazeau, and L. Magnin. Elements about the emergence
issue: A survey of emergence definitions. ComPlexUs, 3:24–31, August
2006.

[9] Y. Demazeau. Steps towards multi-agent oriented programming. In First
International Workshop on Multi Agent Systems, Boston, Mass., 1997.

[10] M. Friedman. Explanation and scientific undersatnding. Journal of Phi-
losophy, 71:5–19, 1974.

[11] P. Grassberger. Toward a quantitative theory of self-generated complex-
ity. International Journal of Theoretical Physics, 25:907–938, 1986.

[12] D. Harel. Statecharts: A visual formalism for complex systems. SCP,
8:231–274, 1987.

[13] P. Kefalas, M. Halcombe, G. Eleftherakis, and M. Gheorghe. A formal
method for the development of agent-based systems. In V. Plekhanova,
editor, Intelligent Agent Software Engineering, UK, 2003. Idea Group
Publishing.

[14] J. Kim. In emergence or reduction?, volume 1, chapter Downward cau-
sation, pages 119–138. Walter de Gruyter & Co., 1992.

[15] A. Kubik. Toward a formalization of emergence. Artificial Life, 9:41–66,
2003.

[16] F. W. Lawvere and S. H. Schamiel. Conceptual mathematics: a first
introduction to categories. Cambridge University Press, 1997.

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 50

Calculus for multi-level emergent behaviours 17

[17] F. Moller and G. Birtwistle. Logics for concurrency: Structure versus
automata. Lecture Notes in Computer Science. Springer, 1996.

[18] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut fuer
Instrumentelle Mathematik, Bonn, 1962.

[19] D. Polani. Emergence, intrinsic structure of informatio, and agenthood.
In International Conference on Complex Systems (ICCS), 2006.

[20] M. D. Potter. Sets: An introduction. Oxford Science Publications, Claren-
don Press, Oxford, 1990.

[21] E. Ronald and M. Sipper. Design, observation, surprise! a test of emer-
gence. Artifcial Life, 5:225–239, 1999.

[22] C. A. Rouff, M. G. Hinchey, J. Rash, W. Truszkowski, and D. Gordon-
Spears, editors. Agent technology from a formal perspective. Springer-
Verlag London, 2005.

[23] A. Ryan. Emergence is coupled to scope, not level. Nonlinear Sciences,
2007.

[24] W. Salmon. Scientific explanation and the causal structure of the world.
Princeton University Press, 1984.

[25] C. R. Shalizi. Methods and Techniques of Complex Systems Science: An
Overview, chapter Methods and Techniques of Complex Systems Science:
An Overview, pages 33–114. Springer, New York, 2006.

[26] C. R. Shalizi, K. L. Shalizi, and R. Haslinger. Quantifying
self-organisation with optimal predictors. Physical Review Letters,
93(118701), 2004.

[27] A. F. T. Winfield, J. Sa, M-C Fernandez Gago, C. Dixon, and M. Fisher.
On formal specification of emergent behaviours in swarm robotic sys-
tems. International Journal of Advanced Robotic Systems, 2(4):363–370,
December 2005.

© EPNACS'2007 within ECCS'07, Dresden (Germany), October 4th, 2007 51

