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ABSTRACT
Multiple Objective Genetic Programming (MOGP) is a
promising stock-picking technique for fund managers, be-
cause the Pareto front approximates the risk/reward Effi-
cient Frontier and simplifies the choice of investment model
for a given client’s attitude to risk.

Unfortunately GP solutions don’t work well if used in an
environment that is different from the training environment,
and the financial markets are notoriously unstable, often
lurching from one market context to another (e.g. “bull”
to “bear”). This turns out to be a hard problem — sim-
ple dynamic adaptation methods are insufficient and robust
behaviour of solutions becomes extremely important.

In this paper we provide the first known empirical results
on the robustness of MOGP solutions in an unseen envi-
ronment consisting of real-world financial data. We focus
on two well-known mechanisms to determine which leads to
the more robust solutions: Mating Restriction, and Diver-
sity Preservation. We introduce novel metrics for Pareto
front robustness, and a novel variation on Mating Restric-
tion, both based on phenotypic cluster analysis.

Categories and Subject Descriptors
I.2.M [Artificial Intelligence]: Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
GP, Multiobjective Optimization, Robustness, Portfolio Op-
timization, Finance, Dynamic Environment

1. INTRODUCTION
Genetic Programming (GP) is a popular technique for

evolving stock-picking models [4, 26, 30, 31]. These mod-
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els are equations that combine various time-series inputs to
provide a score for a given stock. The manager of an in-
vestment portfolio of equities applies a chosen model, buys
stocks with a high score and sell stocks with a low score.
Because this is low-frequency investment rather than high-
frequency trading, the stock-picking model (and thus the
buying and selling of stocks) is applied once a month, and
the training data consists of time series of monthly data.

Multiple Objective GP (MOGP) [5, 16, 20, 21] has an
added advantage for a fund manager with many clients, each
with a different portfolio and a different appetite for risk. In
a bi-objective MOGP using risk and return on investment
as the two objectives, the MOGP Pareto front approximates
the risk/reward Efficient Frontier [24] and the fund manager
can select a suitable model which provides the maximum
return on investment for each client’s required risk.

Unfortunately, real life is rarely simple, and specifically
the financial markets can be extremely unstable. What con-
cerns this research in particular is the correlation between
the time series data that is available to the stock-picking
model in training and the future performance of a given
stock. Our stock-picking models do not have to predict pre-
cise future stock prices, but they are required to rank the
stocks correctly according to future performance. If the cor-
relation between time series and future stock performance
changes, then a given model (equation) may become less ef-
fective in ranking stocks. We know from previous work [21,
31] that the performance of these stock-picking equations
can vary substantially when used in an environment that is
different to the training environment — and that the rela-
tive positions of solutions on the Pareto front may switch
(which is of concern to a client whose “lowest-risk” portfolio
might suddenly become the “highest-risk” portfolio) [16].

So how should the system respond to market instability?
One obvious response is to employ dynamic adaptation via
retraining, using new training data drawn from the new en-
vironments. However, in the context of monthly investment
this is problematic:

• the most pressing problem is the lack of new data, be-
cause the time series comprises only monthly data — it
is not feasible to train on just a handful of data points,
so the system must wait many months before sufficient
new data has been gathered to permit retraining (and
by that time, the market may have changed again);

• rather than waiting many months, the system may em-
ploy a “sliding window” method where it continuously



retrains on the most recent (say) twelve months of data
— the disadvantage with this approach is that for the
first (say) six months following a change the training
data will predominantly come from the old environ-
ment, and so it will still take some considerable time
before a more suitable equation can be evolved;

• how often should the system retrain? too frequently,
and too little data will be available: too infrequently,
and the retraining may be ineffective because it hap-
pens at the wrong time (e.g. just before a change in
the market);

• should the system only retrain when a change in the
market is detected? this would appear to be a better
solution, but turns out to be difficult to achieve (see
below).

Certain gross behaviour of the financial markets (e.g. a
“bull”, “bear”, or “volatile” market) can be identified by in-
spection of the behaviour of a benchmark portfolio (or “in-
dex” portfolio) which invests in all stocks equally (alterna-
tively, investing in all stocks using a standard weighting such
as capitalisation). The index can therefore be used to iden-
tify a change in market environment. However, it turns out
to be very difficult to detect the point at which a market
changes — it is relatively easy to identify a “bull”or a “bear”
market once it is established, but at the turning point it can
be difficult to know for certain whether the market is re-
ally changing, and difficult to determine the nature of the
new market (i.e. is it changing from “bull” to “bear” or from
“bull” to “volatile”?).

Whilst retraining is an important tool in responding to
the instability of the markets it is insufficient on its own;
it is also necessary to ensure that the evolved models will
continue to perform reasonably well when the market envi-
ronment in which they are used is different to that in which
they were trained. We don’t expect them to continue to be-
have well but we can require that they degrade gracefully
within a range of market change and do not suddenly pro-
duce catastrophically wrong results (it would be unreason-
able to expect good behaviour for a sudden extreme change).
We call this “solution robustness” and it is important be-
cause it provides a period of time within which either new
data can be gathered for retraining or human intervention
can take over prior to retraining.

In summary, solution robustness of MOGP is extremely
important for the real-world problem of stock-picking for
a monthly investment portfolio. It is therefore essential for
MOGP solutions to be analysed in unseen environments, not
just in training, and although it may be difficult to define an
absolute measure of solution robustness we must be able to
determine which of two solutions is more robust, and which
of two Pareto fronts is more robust.

1.1 Our approach
Our investigation focuses on the use of two well-known

techniques — Mating Restriction and Diversity Preserva-
tion. Following observations of phenotypic clustering in a
stock-picking MOGP [15], we hypothesize that each cluster
is specializing for a particular niche in the phenotype space
rather than fitting to specific data, and therefore restriction
of mating to others within the same phenotype cluster may
produce more robust individuals. We also know from prior

work that diversity preservation in GP favours smaller trees
and therefore avoids over-fitting [3], which we hypothesize
will also lead to more robust solutions.

Both techniques are known to provide benefits to Multiob-
jective Evolutionary Algorithms (see Section 2). However,
all prior work appears to be restricted to training (e.g. to im-
prove the distribution of solutions on the Pareto front) and
we have found no prior work which demonstrates a benefi-
cial effect on the robustness of solutions (nor of the Pareto
front) in unseen environments.

Specifically, we use SPEA2 [32] to apply an MOGP algo-
rithm to the evolution of factor models for asset selection
in a financial portfolio management problem in a dynamic
environment. We examine the performance of the evolved
solutions on out-of-sample (unseen) environments in com-
parison to a buy and hold strategy of stocks making up the
index (i.e. we compare performance against an index tracker
fund). We examine the effect of diversity and a new mat-
ing restriction technique based on phenotypic similarity of
solutions on the generalisation and robustness of solutions
on the out-of-sample environments. We are interested to
investigate the following issues:

• What are the suitable performance metrics to measure
success or failure of solutions in out-of-sample envi-
ronments (taking into account that a drop in objective
values is not a sufficient criterion since the new market
conditions may not allow for a higher value)?

• Are the trained MOGP solutions suitable for invest-
ment in an unseen subsequent environment (how well
do they perform in portfolio stock-picking)?

• What effect will a special technique of similarity-based
mating restriction have on the preservation of each
solution’s objective characteristics in unseen environ-
ments?

The paper is organised as follows. Section two presents
related work on MOEA in dynamic environments, previous
work on mating restriction in MOEA as well as research
on over-fitting avoidance in Genetic Programming. Sec-
tion three lays the definitions and metrics that will be used
throughout the rest of the paper and the proposed mating
restriction technique. Section four explains the experimen-
tal specifications, followed by results in Section five. Section
six concludes.

2. RELATED WORK

2.1 Evolutionary Multiobjective Optimization
Evolutionary Multiobjective Optimization (EMO) algo-

rithms [9, 11] are very useful in optimization problems where
the decision maker is interested in the knowledge of the var-
ious optimal trade-offs that exist between the problem’s ob-
jectives. EMO algorithms produce the set of solutions rep-
resenting this trade-off in a single run. Recent EMO algo-
rithms have been utilised in static training environments to
find the optimal trade-off and most research has focused on
improving the quality of the solutions, in terms of how close
they are to the true Pareto front, and the quality of the
front itself in terms of coverage and uniform distribution.
Recently, research into optimisation in dynamic multiobjec-
tive (DMO) problems has gained a lot of interest [6, 13].



In the dynamic problems studied, the initial training stage
has static input data, static constraints and static objec-
tive function. Then, a change occurs in one or more aspects
of the training environment and the old solution set is no
longer optimal. Retraining is usually done to evolve the
new Pareto front. During each retraining phase the envi-
ronment is static and the solutions evolved are to be used in
the same static environment until a further change occurs.

2.2 Diversity and Generalisation in GP
Diversity maintenance in Evolutionary Computation is es-

sential to prevent premature convergence and improve gen-
eralization. Diversity is believed to benefit robustness and
generalisation because it favours smaller trees and thereby
avoids over-fitting: the work of [29] on generalization of GP
used for trading-rule discovery in the foreign exchange mar-
ket has found that smaller GP trees of depth two or three
have led to better generalization in the dollar-yen and dollar-
dm markets. The same result was also found by [1] when
evolving technical trading rules for generating buy and sell
decisions. Where trees of depth of 2-5 had, on average, out-
performed larger trees. It was shown in [3] that changing
the balance of crossover and mutation in GP has a signifi-
cant effect on the generalization capability of the algorithm.
Using a mutation rate of 50% yielded the best generalization
results, but it decreases if the mutation rate is increased fur-
ther than the 50%. In addition, the probability of generating
an outstanding run also increases by increasing the mutation
rate. The beneficial role of mutation was attributed to the
decrease in the number of introns.

Alternatively, the use of a “selection” set after training
is widespread in EA learning in general and was used for
GA and GP in the financial domain [2], [8]. However, some
researchers [29, 16] have found little gain from the use of
a selection set to improve generalization results on the out-
of-sample set. A detailed study by [7] on selection sets for
learning casts a big doubt on their usefulness for avoiding
over-fitting; their experimental results suggest that due to
the high complexity of the financial data, the addition of a
selection set may actually lead to the algorithm becoming
less able to exploit the hidden patterns in the data.

We are interested to investigate if the generalisation of GP
used in the multiobjective frame work will benefit from an
increase in mutation rate (and hence diversity) in the same
way.

2.3 Mating Restriction in EMO
Prior research into the effect of mating restrictions on

EMO algorithms has focused mostly on improving quality
of the search and/or diversity of the solution set. The ef-
fect of mating restriction in the EA literature dates back to
[14] who suggested that the crossover between parents who
are too different genotypically may hinder the search espe-
cially as the population starts to converge. [27] found that
restricting the mating to be between a non-dominated indi-
vidual and another individual that is dominated by it leads
to an acceleration (albeit small) in the progress towards the
Pareto front. In [12], it was found that recombination be-
tween individuals in different niches produces low fitness in-
dividuals, and hence a restriction was imposed to prevent
mating between dissimilar parents. However, in [19] mating
restriction was used to prevent mating between individuals
that are too close together in an effort to aid diversity and

help produce a better spread front. In [17], experiments
were carried out to examine the effect of mating similar or
dissimilar parents on small and large multiobjective test set
problems. Again, the results varied: on small test prob-
lems, choosing dissimilar parents had improved the search
ability; however, on large test problems, the search ability
was improved through the choice of similar parents instead.
The seemingly contradicting results may be due to (i) the
large, complex problems having a large and diverse search
space, where the EMO algorithm benefited from the pres-
sure towards convergence through mating of similar parents,
whereas (ii) in small problems, convergence to one niche of
the Pareto front can happen too soon and the need for im-
proved diversity increases.

In summary, the current research on mating restriction
in EMO can be divided into two main classes: mating of
similar parents or mating of dissimilar parents. The former
will speed up convergence and in some problems the quality
of the solutions. On the other hand, mating of dissimilar
parents will improve diversity, which is vitally important in
the EMO search. However, no research was carried out to
investigate the effect of encouraging mating of either similar
or dissimilar parents on the performance of the EMO on
out-of-sample data.

3. MOGP ROBUSTNESS IN DYNAMIC EN-
VIRONMENTS

We are interested in problems with dynamic environments
where the environment changes after training. In single ob-
jective problems, robustness is dependent on the GP models
discovered during training being robust enough such that
the underlying relationship is still valid and the fitness re-
mains close enough to the new optimal value. In the case of
multiple objectives, more needs to be achieved. First, it is
necessary to examine a set of trade-off solutions; the whole
of the front is required to be as close as possible to the op-
timal trade-off surface. In addition, the solutions should
maintain their objectives’ cluster classifications as much as
possible, such that a solution that was achieving high values
on all objectives, will keep the same high classification of
objectives in the new environment. Third, we will also be
interested in a front which retains its diversity and uniform
distribution, so that all regions of the trade-off hyper-surface
remain well represented.

To develop a metric testing for the degree of preservation
of objectives clusters, we used the K-means [23] clustering
algorithm to classify the objective values into three clusters
in training and then in validation, and compared them. In
training, the K-means usually ends up with two clusters on
both extremes of all objectives, and one with middle values
of all objectives. For example, for a problem with 2 objec-
tives, every solution is classified as belonging to one of the
following clusters (see Fig. 1):

〈High,High〉,〈Medium,Medium〉,〈Low, Low〉

A more stringent test for robustness is the preservation
of solution rank-order. We used a ranking algorithm that
gave ranks to solutions based on sorting the objective val-
ues of each objective separately. In training environments
the ranking algorithms usually resulted in equivalent rank-
ing for the objective values achieved by each solution, see
Fig. 2. For example, if a solution had a rank of (6, 6) then
this means that each of its objective values was ranked sixth.



Figure 1: Classification of solutions into clusters
— a robust system is one where solutions do not
change clusters as the environment changes

Figure 2: Ranking of solutions — a robust system
is one where solutions minimally change their rel-
ative rank with respect to other solutions

Equal values of objectives ranks was almost always observed
in training, but is often not observed in validation. We ex-
amined the ranking order of the solutions in validation for
how closely correlated they are to their rank order achieved
in training. The better the rank order correlation, the more
robust the solutions are.

3.1 Definitions and Metrics
To quantify robustness in dynamic environments, we need

to assess several aspects.

• First, are the solutions (presumably near optimal in
the training environment) still near optimal in the new
environment? From a financial perspective, a relative
measure of solution performance can be obtained from
a measure of their risk-adjusted return, as given by the
Sharpe ratio [28].

• Second, how much have the solutions changed their
objectives-cluster and rank-order amongst other so-
lutions on the Pareto front? This provides a degree
of confidence that a solution expected to yield a cer-
tain relative risk-adjusted-return will have a similar
behaviour in the new environment.

• Finally, how good is the spread and distribution of so-
lutions on the new front formed in validation? This can
be measured using the same metrics used to measure
the distribution characteristics of the front in training.

The following definitions and metrics aim to provide un-
derstanding and measurement of the second aspect of ro-
bustness.

Definition 1 : Objectives Clusters
Solutions on the Pareto front are classified into clusters such
that members of a cluster have similar classifications for
each of their objectives. A cluster Ci is identified by a
vector of the m classification values of the cluster centroid
(c1, c2, ...cm), where m is the number of objectives. Hence,
we have:

Cluster(Ci) = 〈Cluster(o1), ..., Cluster(om)〉

where Cluster(oj) ∈ {L, M, H} and the jth value in the
cluster shows the jth centroid value classification.

Table 1: Cluster Distance Change Measurement

High(H) Medium(M) Low(L)
High(H) 0 1 2

Medium(M) 1 0 l
Low(L) 2 1 0

Definition 2: Cluster of a Solution
In each generation in training, after the Front has been iden-
tified, we run the K-means clustering algorithm which as-
signs a cluster membership to each solution xk on the front,
where k is the index of the solutions, k ∈ [1, n], and n is the
total number of solutions on the Pareto front. Thus, for all
solutions on the front, the following function is defined:

Cluster(xk) = Ci if xk ∈ Ci

To measure cluster change between environments, the clus-
tering algorithm is run again after validation and we mea-
sure element-wise differences across the cluster vector and
add the differences. For example, in a two-objective prob-
lem where only three clusters exist, if a solution moves from
a cluster 〈high, high〉 to 〈medium,medium〉 then we mea-
sure this as a move of length 2, whereas if it moves from
〈high, high〉 to 〈low, low〉 then this is given a measure of 4.
Table 1 shows the measure for the cluster distance change.

Definition 3: Rank of a Solution
At the last generation of training, a ranking algorithm is
run after the Pareto front has been identified, after which
each solution has a rank order and the following function is
defined for all solutions on the front:

Rank(xk) = (Ranko1, Ranko2, ...Rankom)

where Rankoj is the rank order of objective j value among
other objectives values for other solutions on the front.

Definition 4: Robustness of a Solution:
Robustness of a solution xk to a multiobjective problem
is defined qualitatively as the degree of its insensitivity to
changes in the environment, and is measured quantitatively
by three measures:

1. Is the solution still optimal in the new environment?

2. How well it preserved its cluster in the new environ-
ment — using the cluster distance change metric ∆k

∆k =
Pm

j=1(Cluster(oj)
env1 − (Cluster(oj)

env2)

3. How well it preserved its rank-order in the new envi-
ronment — measured by the rank change metric δk

δk =
Pm

j=1(Rank(oj)
env1 − Rank(oj)

env2)



Definition 5 : Robustness of the Pareto Front :
Robustness of the Pareto front between two environments is
defined by four measures:

1. How close is the front to the optimal Pareto front?

2. How well its solutions maintain their objectives’ clus-
ters between the two environments — measured by
calculating the mean cluster distance µ across all n

solutions in the front: µ =
Pn

k=1(∆(xk))

3. How well its solutions’ ranks have remained closely cor-
related between the two environments — measured us-
ing a rank correlation test (e.g. Spearman Rank Cor-
relation [25]). The Spearman test returns a number
in the range [−1, 1] known as the Spearman Coeffi-
cient (ρ). The closer the value is to 1, the stronger the
correlation between the two rankings. A value of −1
implies negative correlation and a value of 0 implies
independence between the two ranks.

ρ(objm) = 1 − 6
n(n2

−1)

n
X

k=1

δ
2
k

4. How well the Pareto front maintained its diversity and
uniform distribution — measured using the spacing (S)
and hole-relative-size (HRS) metrics [10].1

3.2 Cluster-based Mating Restriction
Previous work [15] has shown that solutions evolved for

each objectives-cluster have common characteristics that dis-
tinguish them from solutions in other clusters. That has led
us to believe that in this financial domain, the MOGP is
discovering rules belonging to various niches (correspond-
ing to the clusters). If this were actually the case, then by
limiting the mating to parents belonging to the same clus-
ter and hence sharing the same objectives characteristics we
will further help this speciation. We are interested to inves-
tigate the effect this special kind of similarity mating will
have on one particular aspect of generalization which is the
movement from one cluster to the others between training
and validation environments.

The MOEA algorithm used is SPEA2 [32], where the
underlying evolutionary algorithm is a GP. Individuals in
SPEA2 are compared based on Pareto dominance and the
non-dominated solutions of each generation are placed in
a separate archive. Selection of parents is limited to this
archive. We have simulated a mating restriction technique
whereby mating is restricted to parents belonging to the
same cluster. Parents are selected using binary tournament
selection of size 7 with replacement, exactly as in standard
SPEA2. The difference is, the second parent is accepted only
if it belongs to the same cluster as the first parent. If not,
we attempt to reselect the second parent for a maximum of
four more times. If we fail to select a parent belonging to
the same cluster after five trials, the first parent crosses over
with a copy of itself.

4. EXPERIMENTAL SPECIFICATION
In this section the portfolio optimization problem is de-

scribed, followed by details of the investment strategy used

1A Hypervolume metric can also be useful but is not pre-
sented here.

for the simulation of an investment fund with real life con-
straints and parameters. Finally, the MO algorithm and the
GP parameters are presented.

4.1 Stock Selection for Portfolio Optimization
An equity portfolio is a collection of stocks, which provides

diversification and therefore a degree of protection against
the price volatility of underlying individual stocks [24].

The general portfolio optimization problem is the choice of
an optimum set of assets to include in the portfolio, and the
distribution of investor’s wealth among them, such that the
objectives sought by holding the portfolio are maximized.
In this work, we are considering two objectives: maximizing
the expected portfolio return E and minimizing the portfolio
variance V (the average squared deviation of the return from
its expected mean value). These are given by E =

Pn

i=1 xiµi

and V =
Pn

i=1

Pn

j=1 xixjσij where n is the number of se-
curities in portfolio, xi is the relative amount invested in
security i,

Pn

i=1 xi = 1, µi is the mean expected return of
security i, and σij is the covariance between assets i and j.

These equations are solved by a set of points that consti-
tute the efficient frontier [24] of the problem. The points con-
stituting the curve represent portfolios that give the highest
return for a certain expected risk, or the minimum risk for
a certain expected return.

4.2 Investment Strategy
We simulate a long-only sector-neutral portfolio of 25

stocks. The balanced investment across several industries
guards against the price shocks of any one sector. The stocks
are selected from the UK stock market as represented by
the FTSE100. For every stock, data of 22 financial factors2

over 80 months is available. The total period is divided into
training and validation. For training (in-sample), 48 months
from May 1999 to April 2003 are used. For validation (out-
of-sample), the data is that of the last 20 months from May
2004 to December 2005. The return on investment (ROI) of
an “Index Fund” portfolio that invests one million pounds,
with equal proportions in the 82 stocks of the universe, over
the two time periods selected for training and validation, is
depicted respectively in Figs. 3 and 4.

The investment strategy employed is inspired by real world
fund management practices. The portfolio consists of one
cash line plus a fixed cardinality of n = 25 stocks. The
initial portfolio value is Co = £1, 000, 000 in cash with no
stock holdings. After that, the portfolio will constitute of n

securities, and the current cash holding will be denoted by
C, where we try to keep C less than or equal a maximum
bound Cmax = 3% of the total fund value. S is the universe
of equities, Sn is the set of securities held in the portfolio.
For all buying and selling decisions, it is assumed we can
trade at the opening price of that day. During the holding
period, interest received on cash holdings is ignored.

At the start of each month, we calculate the attractiveness
of each stock in S using the factor model (GP decision tree),
and rank them accordingly. If any of the stocks we currently
hold falls in the bottom quartile, it is sold. If the number of
stocks currently in the portfolio is less than n or C > Cmax,
then we need to buy stocks from the top quartile, starting
with the most attractive. The proportion to be invested in

2For details of the factors used please refer to [16]. Data
supplied by Reuters.



Figure 3: Index Fund ROI During Training

Figure 4: Index Fund ROI During Validation

each stock is Ci, and is decided by:

Ci = min(
C

n − |Sn|
, 4% of total fund value) (1)

If cash still exceeds Cmax, it is used to bring each stock
holding up to 4% or up to the maximum permitted by the
extra cash. Transaction costs of 1.5% of the transaction
value are deducted. Additional realistic constraints are im-
posed: lower and upper bounds on investment per stock,
and maximum cash holding.

4.3 Experimental Parameters
The multiobjective algorithm used is SPEA2 [32]. The im-

plementation (in Java) is based on the ECJ package [22]. All
experiments had a population size of 500, archive size 200,
and run for 35 generations, after which no further improve-
ment (in training) was observed regardless of any additional
computation. The method of tree generation is ramped half
and half [18]. The terminal set for the tree consists of techni-
cal and fundamental financial factors describing a company’s
performance, plus constants. The function set includes ad-
dition, subtraction, multiplication, division, power 2, and
power 3. The MOGP has two conflicting objectives to sat-
isfy; return maximization and risk minimization. Return
is defined as the annualized average return, and risk is the
standard deviation of the annualized average return.

5. EXPERIMENTS AND RESULTS
Four sets of simulations were conducted. Results are re-

ported for 15 runs of each system, which are sufficient for the
statistical tests that we use to compare all systems against
each other - i.e. the Kruskal-Wallis H test and the Tukey-
Kumar test [25]. Statistical results are based on observation
of only the unique individuals in the archive to prevent mul-
tiples of either good or bad solutions biasing the results.
Crossover probability is 0.7 throughout.

5.1 Experiments
Four experiments were run as follows.

Standard SPEA2
The standard SPEA2 algorithm is used in the simulations.
Reproduction probability 0.3, no mutation.

Diversity Enhancement
Standard SPEA2 with enhanced diversity is used in this set.
To increase the diversity, High mutation probability of 0.3,
no reproduction. Also, in each generation, after the archive
is built, duplicate individuals are deleted.

Mating Restriction
The underlying algorithm is SPEA2. However, mating re-
striction as described in Section 3.2 is employed. For com-
parison with the first set of simulations, the reproduction
probability is 0.3, no mutation.

Mating Restriction and Diversity Enhancement
Same as the previous set of simulations with the exception
that the operators used are crossover with 0.7 probability
and mutation with 0.3 probability.

5.2 Results
All results reported are regarding the performance of so-

lution on the out-of-sample period.

1. Quality of solution - The average quality of solutions
was compared for each system (averaged across all so-
lutions in the Front, and across all runs). The Sharpe
ratios achieved by using factor models evolved by each
of the four techniques for investment during validation
show that using diversity-enhanced-mating-restriction
gives the best result (Sharpe=2.11), mating restric-
tion comes second (1.95), diversity preservation is third
(1.6) and standard SPEA2 has the worst performance
(1.42). By comparison, the index performance on the
same period (i.e. the performance of an index tracker
fund) had a Sharpe ratio of 1.364 — this was measured
by simulating a long-only investment of £1, 000, 000 in
equal proportion in all 82 stocks making up the index
for the duration of the validation period — and the
best possible Sharpe ratio achieved was 3.15 (achieved
by post-hoc exhaustive training of all systems).

2. Preservation of solutions order - i.e. do solutions
retain their relative order on the Front when moving
from training to an unseen environment? We use four
metrics: the number of solutions that changed clus-
ter, the distance cluster change, the Spearman corre-
lations on both objectives. Fig. 5 shows the number
of solutions that changed their cluster as a percent-
age of the Front size (the smaller the better). Only
31% of the diversity-enhanced-mating-restriction tech-
nique have changed their cluster as opposed to 55%



Figure 5: Points Changing Cluster

Figure 6: Average Distance Cluster Change

in the standard SPEA2. Fig. 6 shows the average
distance cluster change (the smaller the better), and
Fig. 7 shows the Spearman coefficient (the closer to 1
the better)for objectives one (Rho1) and objective two
(Rho2).

3. Distribution of solutions on the front - Measured
using the spread and HRS metrics, where on both met-
rics smaller values are better. Fig. 8 shows the aver-
age values achieved for the two metrics respectively.
On the spread metric, standard SPEA2 achieved the
worst, and MR+DIV achieved the best, average value.
However, on the HRS metric, the SPEA2 had the best
value, and mating restriction the worst.

The results of the Kruskal-Wallis statistical analysis are
given by H and P in Table 2 — the final row indicates the
value of ω from a Tukey-Kumar test. For example: the
Sharpe Ratio’s ω value of 0.44 indicates that any two sys-
tems with Sharpe Ratio means differing by at least 0.44 are
drawn from different populations with a significance given
by the P-value (in this case 94%). These results indicate

Figure 7: Spearman Correlation Coefficient

Figure 8: The HRS and Spread Metrics

Table 2: Statistical Test Results (Validation)

Avg Dist Change % Change RHO1 RHO2 Sharpe
H 5.817 3.958 1.723 6.964 7.512
P 0.121 0.266 0.632 0.073 0.057
ω 11.44 0.29 0.16 0.225 0.44

that SPEA2 and MR+DIV differ significantly in both the
Sharpe Ratio (94%) and RHO2 (93%).

6. CONCLUSION
We have applied an MOGP algorithm to the evolution

of factor models for stock selection in a financial portfolio
management problem. The evolved factor models represent
investment models of an underlying relationship between the
financial factors considered. Due to the dynamic nature of
the financial market, the optimal values of its efficient fron-
tier are continuously changing. If these algorithms are to
be judged useful in such a real world environment, the fac-
tor models evolved in the training phase must be robust in
subsequent environments — they must remain reasonably
profitable (at reasonable risk) for long enough to permit new
data to be gathered for retraining.

We have investigated the performance of evolved MOGP
solutions using SPEA2 in an unseen, out-of-sample envi-
ronment. A mating restriction scheme based on phenotype
clusters was developed to improve robustness, and compared
with both the standard SPEA2 system and SPEA2 with ad-
ditional mutation (to improve population diversity).

Results indicate that diversity in MOGP generalization
plays a role similar to that played in GP, and further in-
vestigation of the effect of various levels of mutation and
other diversity enhancement techniques on generalization in
MOGP should be worthwhile. We have found that the in-
troduction of cluster-based mating restriction in addition to
the increase in diversity provided the best generalization re-
sults while also greatly enhancing the quality of solutions
as measured by the Sharpe ratio. This result supports the
hypothesis that speciation occurs in MOGP and that pre-
serving the niche characteristics can benefit robustness.

Results in this research are entirely based on empirical
evaluation in the field of evolving stock selection rules for
monthly investment and statistical analysis of the results.
Our insights from the field and from previous related re-
search back up the results found. However more theoretical
analysis is needed to improve the understanding of factors



that affect the generalization of multiobjective evolutionary
algorithms and hence improve their usability as optimiza-
tion tools in financial and other complex real world prob-
lems. For further future work, we would like to expand this
study to include training and validation of the MOGP in a
variety of financial environments. Also of great interest is
to investigate a suitable measure for the severity of change
in the financial context, and consequently account for the
maximum change to which an MOGP solution is robust.
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