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Medicina IV, Hospital Prof. Doutor Fernando Fonseca, Amadora, Portugal, 8 Department of Haematology,

King’s College Hospital NHS Foundation Trust, London, England, United Kingdom, 9 NIHR Biomedical

Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, London,

England, United Kingdom, 10 British Heart Foundation Centre, King’s College London, London, England, United

Kingdom, 11 Department of Cardiology, King’s College Hospital NHS Foundation Trust, London, England,

United Kingdom, 12 Institute of Health Informatics, University College London, London, England, United

Kingdom

* paulscott3@nhs.net (PAS); daniel.bean@kcl.ac.uk (DMB)

Abstract

Atrial fibrillation (AF) is the most common arrhythmia and significantly increases stroke risk.

This risk is effectively managed by oral anticoagulation. Recent studies using national registry

data indicate increased use of anticoagulation resulting from changes in guidelines and the

availability of newer drugs. The aim of this study is to develop and validate an open source risk

scoring pipeline for free-text electronic health record data using natural language processing.

AF patients discharged from 1st January 2011 to 1st October 2017 were identified from dis-

charge summaries (N = 10,030, 64.6% male, average age 75.3 ± 12.3 years). A natural lan-

guage processing pipeline was developed to identify risk factors in clinical text and calculate risk

for ischaemic stroke (CHA2DS2-VASc) and bleeding (HAS-BLED). Scores were validated vs

two independent experts for 40 patients. Automatic risk scores were in strong agreement with

the two independent experts for CHA2DS2-VASc (average kappa 0.78 vs experts, compared to

0.85 between experts). Agreement was lower for HAS-BLED (average kappa 0.54 vs experts,

compared to 0.74 between experts). In high-risk patients (CHA2DS2-VASc�2) OAC use has

increased significantly over the last 7 years, driven by the availability of DOACs and the transi-

tioning of patients from AP medication alone to OAC. Factors independently associated with

OAC use included components of the CHA2DS2-VASc and HAS-BLED scores as well as dis-

charging specialty and frailty. OAC use was highest in patients discharged under cardiology

(69%). Electronic health record text can be used for automatic calculation of clinical risk scores

at scale. Open source tools are available today for this task but require further validation. Analy-

sis of routinely collected EHR data can replicate findings from large-scale curated registries.
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Introduction

Atrial fibrillation (AF) affects 2% of the UK population and significantly increases stroke risk.

[1] Although this risk can be substantially reduced by oral anticoagulants (OAC), warfarin has

historically been underused in AF. Over the last decade the antithrombotic landscape has

changed significantly with: (1) the introduction of direct oral anticoagulants (DOACs), and (2)

the updated UK NICE 2014 AF guidelines[2] which introduced the CHA2DS2-VASc[3] and

HAS-BLED[4] risk calculators and removed endorsement of the use of antiplatelet agents for

stroke prevention. A number of large-scale observational studies have found that rates of OAC

use have significantly increased since the introduction of DOACs.[5–8] However, these previ-

ous analyses have used structured data, which do not capture the full clinical narrative, and

many studies have used registry data which can be costly and time-consuming to collect and

may not always accurately reflect real-world practice.

An alternative approach to observational research is the use of Electronic Health Record

(EHRs) data generated as part of routine clinical care.[9] Modern EHRs contain a combination

of structured (e.g. age, sex) and unstructured (e.g. free text, image) data. Whilst free text is

information-dense to a human reader, to be useful for computational analysis it requires con-

version to a structured format. Performing this process manually is very labour-intensive.

However, given the enormous volume of clinical data contained solely in written notes[10],

extracting this information is critical to realizing the full potential of EHRs.

Natural language processing (NLP) uses computer algorithms to identify key elements in

everyday language and extract meaning from spoken or written language. NLP can be used to

convert unstructured text found in EHRs to structured data. This should allow rapid, low-cost

and automated analysis of medical text, including the generation of observational data for

research purposes.

In this study we develop an NLP pipeline to calculate clinical risk scores from free text. We

build upon our existing data pooling, harmonization and information retrieval tool (CogStack

[11,12]), together with a semantic NLP tool for information extraction (SemEHR[13,14]). Pre-

vious studies have found it is possible to accurately predict CHA2DS2-VASc using EHR text.

[15–17] We build on this work to develop a flexible open source pipeline and calculate addi-

tional risk scores. Our specific objectives are to:

a. Develop and validate an NLP risk scoring pipeline.

b. Explore trends in antithrombotic medication use for AF including the impact of the avail-

ability of DOACs and changes in NICE 2014 guidelines.

c. Quantify the association between antithrombotic medication use and relevant clinical

patient-level variables.

Methods

Data, materials and code

A subset of the dataset limited to anonymisable information (e.g. only UMLS codes and demo-

graphics) is available on request to researchers with suitable training in information gover-

nance and human confidentiality protocols; contact jamesteo@nhs.net. All code for

calculating risk scores is open-source in GitHub at https://github.com/CogStack/risk-score-
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builder. Source text from patient records used in the study will not be available due to inability

to fully anonymise up to the Information Commissioner Office (ICO) standards. Risk factor-

level data is available as S3 Table.

Ethical approval

This study was performed on anonymised data as a clinical audit for service evaluation. The

project was reviewed by the King’s College Hospital Information Governance committee

chaired by the Caldicott Guardian Professor Alastair Baker (the Caldicott Guardian is the stat-

utory individual responsible for protecting the confidentiality of health and care information

in a UK healthcare organisation) and approval was granted in November 2018 with continued

oversight. The legal basis of secondary use was analysis for service evaluation, operational per-

formance and clinical audit.

Cohort selection

We used an open-source retrieval system for unstructured clinical data (CogStack)[11,12] to

define a cohort of patients aged� 18 with AF admitted to KCH between 01-01-2011 and 01-

10-2017. We searched discharge summaries for adult inpatients discharged alive containing

the exact keywords “AF”, “PAF”, “AFib” or “Atrial Fibrillation”. Although the risk of stroke

and OAC indications in atrial flutter are similar to AF, in clinical practice in the UK many

patients with isolated typical flutter undergo flutter ablation after which there is significant var-

iation in practice in terms of long-term OAC prescription. For this reason we decided not to

include patients with flutter. Patients with missing data such as gender or discharge ward were

excluded (N = 397). We also excluded patients discharged directly from the emergency depart-

ment, day units or the clinical decision unit, as these did not constitute an inpatient admission

and did not generate the discharge summaries we used to identify discharge medication and

diagnosis of AF.

We further refined our cohort using an NLP pipeline SemEHR[13,14] which generates

semantic annotation and can detect negation, temporality (current, historic) and experiencer.

We excluded patients for which the NLP pipeline detected negation, a hypothetical mention or

another experiencer (the mention refers to another individual who is not the patient e.g. family

history) for AF.

We defined a new diagnosis of AF as the first mention of AF in a patient with at least one

previous visit and no earlier record of AF or prescription of antithrombotic medication.

CHA2DS2-VASc and HAS-BLED risk score calculation

We used the SemEHR NLP pipeline to annotate clinical documents with Unified Medical Lan-

guage System (UMLS) concepts.[18] To calculate CHA2DS2-VASc and HAS-BLED risk scores,

we manually mapped each phenotypic component of the score (e.g. stroke) to the closest gen-

eral term in the Human Phenotype Ontology (HPO)[19] and automatically included all

descendent terms in the ontology. All HPO concepts were then mapped automatically to

UMLS. Medications were manually mapped to UMLS concepts directly (as they are not pres-

ent in HPO), and the first child terms are included automatically using UMLS concept rela-

tionships. The only factor not included was a labile International Normalised Ratio (INR) in

the HAS-BLED score, which is not in HPO and is ambiguous in UMLS, and which is not reli-

ably recorded in the dataset.

The result is a mapping of each score component to a list of UMLS concepts, which was

manually refined based on manual review of a random sample of 205 patients by a single anno-

tator. The final mapping is available as S1 Table. For each component we then identified
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matching annotations in medical records using the NLP pipeline and awarded points as

defined for each score.

For patients with multiple admissions (and the possibility of change in risk scores over

time) we used the most recent admission to calculate risk scores.

Antithrombotic drug prescription

Antithrombotic prescriptions of OACs (apixaban, rivaroxaban, dabigatran, edoxaban, warfa-

rin) and antiplatelets (AP; aspirin, clopidogrel, dipyridamole, ticagrelor, prasugrel) were

extracted from free text discharge summaries. This was performed using a custom NLP pipe-

line written in Python and specifically adapted to the KCH record structure. Drug mentions

are identified by fuzzy matching and any detected mentions are tested for negation using regu-

lar expressions. The open source code is available at https://github.com/CogStack/OAC-NLP.

Hospital Frailty Risk Score (HFRS) calculation

We calculated the Hospital Frailty Risk Score (HFRS) proposed by Gilbert et al. [20] which

uses ICD-10 diagnostic codes to identify a group of patients at higher risk of adverse outcomes.

We mapped these ICD-10 codes to UMLS concept unique identifiers (CUI) using bio-ontol-

ogy.[21] We used SemEHR to detect all UMLS concepts in free text and calculate the total

frailty risk as the sum of concept weights as defined by Gilbert et al.[20]

Validation of AF diagnosis, antithrombotic drug prescription and NLP risk

scores

The diagnosis of AF and antithrombotic drug prescriptions were manually validated on a ran-

dom sample of 300 discharge summaries (AF diagnosis) or 200 discharge summaries (pre-

scription) taken from our cohort. Performance was measured by calculating the precision,

recall and F1 score.

CHA2DS2-VASc and HAS-BLED risk scores were validated for a sample of 40 patients

selected at random after stratification by gender and age (this sample does not overlap with the

initial sample used to refine the automated scoring). Each patient was manually scored for all

components of CHA2DS2-VASc and HAS-BLED by two independent expert clinicians accord-

ing to agreed criteria (see S1 Table). Inter-annotator agreement for the final scores was calcu-

lated using a weighted Cohen’s kappa. Given the high-dimensional complexity of the HFRS,

we did not attempt to validate it and instead compared the score distribution to the original

findings of Gilbert et al.[20]

Statistical analysis

Categorical variables are expressed as percentages and compared using a chi-squared test. Nor-

mally distributed continuous variables are expressed as mean+/-standard deviation and com-

pared using Student t test. Skewed continuous variables (length of stay, number of visits,

HFRS) are expressed as median (minimum-maximum) and compared using a Kruskal-Wallis

H-test. Statistical analyses were performed using the StatsModels and scipy libraries in Python.

In all analyses a P<0.05 was considered significant.

We evaluated temporal trends in the rates of prescription of antithrombotic drugs for

patients at high stroke risk (CHA2DS2-VASc� 2) using linear regression with quarterly data,

retaining the last visit per quarter for each patient.

The association of individual risk score (CHA2DS2-VASc and HAS-BLED) components

and other clinical variables with antithrombotic prescription were evaluated in univariate and
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multivariate analyses. Factors with a significant association (P<0.05) in univariate analysis

were entered into multivariate models. These associations were estimated using odds ratios

from logistic regression. Uncontrolled hypertension and concomitant alcohol abuse were not

included in the models as there were too few positive cases in our validation data. Concomitant

drugs increasing bleeding risk were also excluded as this includes antiplatelets which could be

prescribed for anticoagulation.

Results

Cohort identification

We identified 11,260 adult patients admitted to KCH with a diagnosis of AF. After excluding

1,230 patients (Fig 1) we were left with a final cohort of 10,030 patients admitted 17,387 times

during the prescribing study period and 151,174 times in total (Table 1).

Fig 1. Derivation of the study cohort. AF = Atrial fibrillation, NLP = natural language processing.

https://doi.org/10.1371/journal.pone.0225625.g001
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Table 1. Baseline characteristics of study cohort.

Factor Total
(n = 10030)

Any OAC
(n = 5287)

Warfarin
(n = 3328)

DOAC
(n = 1873)

AP only
(n = 1902)

No Antithrombotic
medication (n = 1998)

P-value

Other clinical
variables

Age (y) 75.3 ± 12.3 75.1 ± 11.5 74.4 ± 11.1 76.4 ± 12.1 77.5 ± 12.5 74.5 ± 14.3 <0.001

Frailty (HFRS) 2.5 (0.0–28.1) 2.0 (0.0–28.1) 1.8 (0.0–23.0) 3.2 (0.0–28.1) 3.2 (0.0–20.5) 3.2 (0.0–28.1) <0.001

LOS (days) 6.5 (0.0–

390.0)

6.2 (0.0–360.4) 6.2 (0.0–326.2) 6.2 (0.0–

360.4)

6.4 (0.0–

253.7)

5.8 (0.0–390.0) 0.019

Previous

admissions (n)

7.0 (1.0–

242.0)

8.0 (1.0–242.0) 7.0 (1.0–178.0) 9.0 (1.0–

242.0)

6.0 (1.0–

215.0)

8.0 (1.0–189.0) <0.001

CHA2DS2-VASc
factors

Congestive heart

failure

3238 (32.3%) 1992 (37.7%) 1254 (37.7%) 711 (38.0%) 529 (27.8%) 511 (25.6%) <0.001

Diabetes mellitus 5722 (57.0%) 3222 (60.9%) 2044 (61.4%) 1125 (60.1%) 984 (51.7%) 976 (48.9%) <0.001

Female 4351 (43.4%) 2277 (43.1%) 1371 (41.2%) 866 (46.2%) 911 (47.9%) 886 (44.3%) <0.001

Hypertension 6828 (68.1%) 3664 (69.3%) 2226 (66.9%) 1376 (73.5%) 1323 (69.6%) 1256 (62.9%) <0.001

Stroke 4824 (48.1%) 2607 (49.3%) 1528 (45.9%) 1028 (54.9%) 967 (50.8%) 952 (47.6%) <0.001

Vascular disease 3132 (31.2%) 1710 (32.3%) 1082 (32.5%) 600 (32.0%) 562 (29.6%) 429 (21.5%) <0.001

CHA2DS2-VASc
score

0 156 (1.6%) 58 (1.1%) 29 (0.9%) 29 (1.6%) 22 (1.2%) 72 (3.6%)

1 392 (3.9%) 168 (3.2%) 118 (3.5%) 46 (2.5%) 78 (4.1%) 112 (5.6%)

2 932 (9.3%) 451 (8.5%) 306 (9.2%) 143 (7.6%) 171 (9.0%) 207 (10.4%)

3 1405 (14.0%) 707 (13.4%) 482 (14.5%) 214 (11.4%) 227 (11.9%) 312 (15.6%)

4 1700 (16.9%) 891 (16.9%) 608 (18.3%) 268 (14.3%) 303 (15.9%) 345 (17.3%)

5 1853 (18.5%) 1001 (18.9%) 625 (18.8%) 364 (19.4%) 370 (19.4%) 338 (16.9%)

6 1651 (16.5%) 899 (17.0%) 540 (16.2%) 337 (18.0%) 338 (17.8%) 310 (15.5%)

7 1138 (11.3%) 628 (11.9%) 350 (10.5%) 269 (14.4%) 249 (13.1%) 180 (9.0%)

8 613 (6.1%) 371 (7.0%) 211 (6.3%) 153 (8.2%) 115 (6.0%) 92 (4.6%)

9 190 (1.9%) 113 (2.1%) 59 (1.8%) 50 (2.7%) 29 (1.5%) 30 (1.5%)

Total 4.7 ± 2.0 4.8 ± 2.0 4.7 ± 1.9 5.0 ± 2.0 4.8 ± 2.0 4.3 ± 2.1 <0.001

HAS-BLED
factors�

Abnormal liver

function

532 (5.3%) 240 (4.5%) 150 (4.5%) 89 (4.8%) 97 (5.1%) 176 (8.8%) <0.001

Abnormal renal

function

1706 (17.0%) 937 (17.7%) 539 (16.2%) 380 (20.3%) 307 (16.1%) 355 (17.8%) <0.001

Alcohol 75 (0.8%) 75 (1.4%) 26 (0.8%) 47 (2.5%) 0 (0.0%) 0 (0.0%) <0.001

Bleeding 1429 (14.2%) 604 (11.4%) 348 (10.5%) 241 (12.9%) 269 (14.1%) 483 (24.2%) <0.001

Drugs increasing

bleed risk

3504 (34.9%) 3504 (66.3%) 2130 (64.0%) 1317 (70.3%) - - -

HAS-BLED score 0 681 (6.8%) 204 (3.9%) 141 (4.2%) 62 (3.3%) 148 (7.8%) 194 (9.7%)

1 2716 (27.1%) 1053 (19.9%) 723 (21.7%) 314 (16.8%) 650 (34.2%) 638 (31.9%)

2 3528 (35.2%) 1780 (33.7%) 1186 (35.6%) 568 (30.3%) 783 (41.2%) 721 (36.1%)

3 2190 (21.8%) 1488 (28.1%) 866 (26.0%) 596 (31.8%) 267 (14.0%) 359 (18.0%)

4 763 (7.6%) 618 (11.7%) 338 (10.2%) 267 (14.3%) 53 (2.8%) 79 (4.0%)

5 135 (1.4%) 127 (2.4%) 65 (1.9%) 59 (3.1%) 1 (0.1%) 7 (0.3%)

6 17 (0.2%) 17 (0.3%) 9 (0.3%) 7 (0.4%) 0 (0.0%) 0 (0.0%)

Total 2.0 ± 1.1 2.3 ± 1.1 2.2 ± 1.1 2.5 ± 1.1 1.7 ± 0.9 1.8 ± 1.0 <0.001

Continuous variables are represented as mean ± standard deviation or median (min-max), categorical variables are represented as n (%). Hospital Frailty Risk Score

(HFRS) is calculated according to Gilbert et al.[20]. P-value calculated comparing the mutually-exclusive groups Warfarin, DOAC, AP-only, No Antithrombotic

medication. Continuous variables tested using a Kruskal-Wallis H-test, categorical variables tested using a Chi-squared test.

�uncontrolled hypertension is not shown for HAS-BLED as it was not detected for any patients. Stroke is only shown under CHA2DS2-VASc but is a factor for both

CHA2DS2-VASc and HAS-BLED.

https://doi.org/10.1371/journal.pone.0225625.t001
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Validation of AF diagnosis, antithrombotic drug prescription and NLP risk

scores

A diagnosis of AF was confirmed in 96% of 300 cases reviewed. Of these, 200 cases were manu-

ally coded for prescription of any of 10 antithrombotic medications. Five drugs with <5 posi-

tive examples in the validation sample were excluded (edoxaban, dipyridamole, prasugrel,

dabigatran, ticagrelor) due to the small sample size. The pipeline achieved perfect precision

and recall for these excluded drugs but the sample size was too small to be meaningful. The

average performance over the remaining 5 drugs was 95% precision at 97% recall (Table 2).

The performance of the automatic NLP scoring procedure was evaluated in 40 patients.

Overall the agreement between two human expert raters and the algorithm for CHA2DS2-

VASc was high for all pairs, and only slightly higher for the two human raters than for the algo-

rithm vs. either expert. HAS-BLED agreement however was lower for all comparisons (Table 3

and S2 Table). Total scores and risk factor-level variables are available as S3 Table.

Temporal trends in antithrombotic drug prescription

Prior to 2013, OAC use varied between 40–45% (mean 43.4%) with no strong trend (linear

regression R2 = 0.08, slope = +0.2% per quarter, Fig 2A and 2B). From 2013 onwards the aver-

age OAC rate remained above 47% and there was a gradual increase in OAC use such that at

the end of the study period 68.4% of patients were taking an OAC (linear regression R2 = 0.77,

slope = +1.2% per quarter). This increase in OAC rate is particularly pronounced from 2016

onwards (linear regression R2 = 0.86, slope = +2.7% per quarter). Conversely, the proportion

of patients taking an AP drug alone declined significantly from 48.9% at the start to 14.5% at

Table 2. Performance of the drug NLP pipeline in manual validation.

Drug Accuracy Precision Recall F1 P FN FP TN TP

Warfarin 0.94 0.87 0.97 0.92 69 2 10 121 67

Aspirin 0.96 0.90 0.98 0.94 62 1 7 131 61

Rivaroxaban 1.00 1.00 0.95 0.98 22 1 0 178 21

Clopidogrel 1.00 1.00 0.94 0.97 17 1 0 183 16

Apixaban 1.00 1.00 1.00 1.00 13 0 0 187 13

Average 0.98 0.95 0.97 0.96

Discharge summaries were selected at random (n = 200) and manually annotated for the prescription of the 10 drugs detected by the pipeline. Performance for the 5

drugs with > 10 positive examples in manual annotation is shown. P = total positive examples in manual annotation, FN = false negative, FP = false positive, TN = true

negative, TP = true positive.

https://doi.org/10.1371/journal.pone.0225625.t002

Table 3. Inter-rater agreement statistics for CHA2DS2-VASc and HAS-BLED risk scores.

Score Rater 1 Rater 2 Kappa (95% CI)

CHA2DS2-VASc Algorithm Expert A 0.76 (0.65–0.86)

CHA2DS2-VASc Algorithm Expert B 0.80 (0.68–0.92)

CHA2DS2-VASc Expert A Expert B 0.85 (0.73–0.97)

HAS-BLED Algorithm Expert A 0.54 (0.36–0.72)

HAS-BLED Algorithm Expert B 0.53 (0.34–0.72)

HAS-BLED Expert A Expert B 0.74 (0.51–0.97)

Raters 1 and 2 are two independent clinician raters, Algorithm is the automatic scoring pipeline developed in this

paper.

https://doi.org/10.1371/journal.pone.0225625.t003
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the end of the study, with a consistent linear decrease over the period (linear regression R2 =

0.94, slope = -1.24% per quarter).

At the start of the study warfarin was the only widely available OAC. In 2012 NICE

endorsed the use of the first 2 DOACs (Dabigatran and Rivaroxaban) and the prescription of

both drugs increased from the end of 2012, at a similar time to when overall OAC use began to

rise. From then on there was a gradual increase in the use of DOACs at the expense of warfa-

rin, such that at the end of the study period in 2017 warfarin only contributed a third of all

OAC prescriptions.

For newly diagnosed AF (n = 4986) Antithrombotic drug trends closely mirrored those

found in the overall AF cohort (Fig 3).

Clinical factors associated with antithrombotic drug prescription

There was gradual increase in rates of OAC use with a higher CHA2DS2-VASc score (+1.6%

per point, linear regression R2 = 0.93, p< 0.001) (Fig 2C). Conversely OAC prescription

decreased with older age in patients�80 years (Fig 2E).

Fig 2. Antithrombotic drug prescribing patterns in the AF cohort patients with CHA2DS2-VASc� 2. A,B) Prescribing rates for all admissions during the study

period. A) OAC choice vs. no OAC. B) Prescribing of OAC and/or AP vs. neither. C) Prescribing rates stratified by CHA2DS2-VASc for all patients. D) Prescribing rates

grouped by HFRS as defined by Gilbert et al. Due to low numbers of patients with score> 20 the final (highest) bin is wider than the others. E) Prescribing rate vs. age at

discharge. Points are the mean prescribing rate per year for all ages with� 10 patients, a 10-year moving median (trend) is shown as a dashed red line. F) prescribing

rates in patients grouped by discharging specialty. In C, D, F the number above each bar indicates the number of patients. AP = antiplatelet, HFRS = hospital frailty risk

score, OAC = oral anticoagulant.

https://doi.org/10.1371/journal.pone.0225625.g002

Fig 3. Prescribing trends for new AF cases over the study period. The solid blue line represents warfarin, the solid pink line represents DOAC, the

dashed black line represents AP prescription without any OAC, the solid green line represents the no drug group. Total N = 4986. AP = antiplatelet,

DOAC = direct oral anticoagulant, OAC = oral anticoagulant.

https://doi.org/10.1371/journal.pone.0225625.g003
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Table 4. Univariate and multivariate logistic regression for factors associated with antithrombotic drug prescribing at most recent discharge for patients with

CHA2DS2-VASc� 2.

Any OAC vs no OAC DOAC vs Warfarin AP-only vs OAC-only
Univariate Multivariate Univariate Multivariate Univariate Multivariate

Group Factor OR

(95%CI)

P-

value

OR (95%

CI)

P-value OR

(95%CI)

P-value OR (95%

CI)

P-value OR

(95%CI)

P-value OR (95%

CI)

P-value

Other clinical
variables

Age (per 20 years) 0.9

(0.9–

1.0)

0.039 0.9 (0.8–

0.9)

<0.001 1.3

(1.2–

1.4)

<0.001 0.8 (0.8–

0.9)

<0.001 1.4

(1.2–

1.5)

<0.001 1.0 (1.0–

1.1)

0.080

LOS (per 14 days) 0.9

(0.9–

1.0)

<0.001 1.0 (0.9–

1.0)

0.016 1.1

(1.1–

1.2)

<0.001 1.1 (1.0–

1.1)

0.025 1.1

(1.0–

1.1)

0.006 1.0 (1.0–

1.1)

0.073

Visits (per 10) 1.1

(1.0–

1.1)

<0.001 1.1 (1.1–

1.1)

<0.001 1.1

(1.1–

1.1)

<0.001 1.0 (1.0–

1.1)

0.446 0.9

(0.9–

1.0)

<0.001 0.9 (0.9–

1.0)

<0.001

CHA2DS2-VASc
factors

Congestive heart

failure

1.7

(1.6–

1.8)

<0.001 1.7 (1.5–

1.8)

<0.001 1.0

(0.9–

1.1)

0.899 0.7

(0.6–

0.8)

<0.001 0.7 (0.6–

0.8)

<0.001

Diabetes mellitus 1.4

(1.3–

1.5)

<0.001 1.2 (1.1–

1.3)

<0.001 1.0

(0.9–

1.1)

0.973 0.8

(0.7–

0.9)

<0.001 0.9 (0.8–

1.0)

0.033

Female 1.0

(0.9–

1.0)

0.327 1.2

(1.1–

1.4)

0.002 1.1 (1.0–

1.2)

0.169 1.1

(1.0–

1.2)

0.221

Hypertension 1.1

(1.0–

1.2)

0.042 1.1 (1.0–

1.2)

0.137 1.4

(1.2–

1.5)

<0.001 1.1 (0.9–

1.2)

0.254 1.1

(1.0–

1.2)

0.089

Stroke 1.1

(1.0–

1.2)

0.020 1.3 (1.1–

1.4)

<0.001 1.4

(1.3–

1.6)

<0.001 1.0 (0.9–

1.2)

0.669 1.0

(0.9–

1.1)

0.551

Vascular disease 1.1

(1.0–

1.2)

0.018 0.9 (0.8–

0.9)

0.003 1.0

(0.9–

1.1)

0.685 1.3

(1.1–

1.5)

<0.001 1.6 (1.4–

1.9)

<0.001

HAS-BLED factors Abnormal liver

function

0.7

(0.6–

0.9)

<0.001 0.7 (0.5–

0.8)

<0.001 1.0

(0.8–

1.3)

0.952 1.1

(0.8–

1.4)

0.559

Abnormal renal

function

1.1

(1.0–

1.2)

0.136 1.3

(1.1–

1.5)

0.002 1.0 (0.8–

1.1)

0.594 0.9

(0.8–

1.0)

0.117

Bleeding 0.6

(0.5–

0.7)

<0.001 0.6 (0.5–

0.6)

<0.001 1.3

(1.1–

1.5)

0.014 0.9 (0.8–

1.2)

0.620 1.2

(1.0–

1.4)

0.081

Frailty HFRS (per 10

points)

0.8

(0.7–

0.9)

<0.001 0.7 (0.6–

0.8)

<0.001 2.6

(2.2–

3.0)

<0.001 2.1 (1.8–

2.6)

<0.001 1.2

(1.0–

1.4)

0.015 1.2 (1.0–

1.4)

0.041

Discharge Location Stroke 0.6

(0.6–

0.7)

<0.001 (reference) 1.4

(1.1–

1.6)

<0.001 (reference) 2.2

(1.9–

2.5)

<0.001 (reference)

Cardiology 2.2

(2.0–

2.5)

<0.001 2.6 (2.2–

3.0)

<0.001 0.7

(0.6–

0.8)

<0.001 0.5 (0.4–

0.7)

<0.001 0.3

(0.3–

0.4)

<0.001 0.2 (0.2–

0.3)

<0.001

Elderly Care 0.8

(0.7–

0.9)

<0.001 1.2 (1.0–

1.4)

0.036 1.9

(1.6–

2.2)

<0.001 0.8 (0.7–

1.1)

0.234 1.2

(1.0–

1.4)

0.013 0.6 (0.5–

0.7)

<0.001

Other medical

specialties

0.8

(0.8–

0.9)

<0.001 1.2 (1.0–

1.4)

0.013 1.2

(1.0–

1.3)

0.023 0.7 (0.5–

0.8)

<0.001 1.0

(0.9–

1.1)

0.905 0.6 (0.5–

0.7)

<0.001

Surgery &

Trauma

1.2

(1.1–

1.3)

<0.001 1.6 (1.4–

1.8)

<0.001 0.7

(0.6–

0.8)

<0.001 0.5 (0.4–

0.6)

<0.001 0.8

(0.7–

1.0)

0.013 0.5 (0.4–

0.5)

<0.001

All factors significant at p<0.05 level in univariate analysis were included in the multivariate model. HFRS = hospital frailty risk score, LOS = length of stay

https://doi.org/10.1371/journal.pone.0225625.t004
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In multivariate analysis (Table 4) clinical variables associated with a higher rate of OAC use

(vs. no OAC) included heart failure, diabetes and stroke. Factors negatively associated with

OAC use included a history of vascular disease, abnormal liver function and history of bleed-

ing. Older patients receiving OAC were more likely to be on warfarin vs. DOACs. Higher rates

of AP drug use alone (vs. OAC) were associated with the presence of vascular disease, whereas

heart failure, and diabetes were associated with lower rates.

Hospital Frailty Risk Score (HFRS) and antithrombotic prescription

As HFRS increased, OAC use did not significantly change but there was a clear decrease in AP

drug use either alone or with an OAC (-8.3% per group, linear regression R2 = 0.85, p< 0.01,

Fig 2D). However in multivariate analysis increasing HFRS was strongly negatively associated

with OAC use, positively associated with DOAC use and positively associated with AP drug

use only.

Relationship between discharging specialty and OAC use

We found a large variation in OAC prescribing rates between different specialities (Fig 2F).

The highest rate of OAC use was in patients discharged from cardiology (68.8%, n = 1048),

with lower rates of OAC use in patients discharged under a surgical team (56.6%, n = 2768), a

medical specialty (52.3%, n = 3196), elderly care (46.8%, n = 1249) and the stroke unit (42.0%,

n = 1222). The relationship between discharge location and antithrombotic drug use remained

significant after correction for a range of clinical variables, age and HFRS (Table 4).

Medication switching in AF patients

We identified a group of 1708 patients (CHA2DS2-VASc� 2) with 2 or more admissions at

least 12 months apart. Of these 895 (52.4%) changed their antithrombotic medication status

(Fig 4A). Overall there was an increase in OAC use from 985 to 1069 patients (+8.5%) and a

net movement of patients to DOACs from warfarin and AP drugs. These findings were more

marked when only patients whose admissions straddled the 2014 NICE guidelines update

were included (1096 patients; Fig 4B).

Fig 4. Medication switching in patients with CHA2DS2-VASc� 2 at last visit. a) all visits at least 12 months apart and b) last visit before vs last visit after the 2014 NICE

guideline update (b is a subset of a). Line width indicates overall proportion.

https://doi.org/10.1371/journal.pone.0225625.g004
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Discussion

We have developed a pipeline to calculate clinical risk scores from free-text using NLP. Using

this pipeline, we were able to estimate CHA2DS2-VASc and HAS-BLED risk scores from free-

text EHR data that are in line with those calculated manually and could scale up to analyse

data on over 10,000 AF patients managed at a multi-site large UK NHS Trust.

We were able to replicate the changes in antithrombotic drug practices observed over the

last 7 years in previous registry-based observational studies. First, there has been a substantial

increase in the proportion of AF patients at high risk of stroke (CHA2DS2-VASc� 2) pre-

scribed an OAC, with OAC use rising from 42% in 2011 to 62% in 2017. Second, there has

been a reduction in the use of warfarin and an increase in DOAC prescription, such that in

2017 more patients were discharged on a DOAC than warfarin. Third, the use of AP drugs

alone to prevent stroke has dropped significantly, from 40% in 2011 to 10% in 2017.

Semantic NLP analysis of routinely-generated clinical data

Clinical applications of NLP are an active research area. A recent systematic review identified

71 NLP applications for clinical text, 12 of which are open-source.[22] We took different

approaches to NLP for the two major components of our study: extracting medication from

discharge summaries and detecting clinical concepts in text (to derive risk scores). For medica-

tions, we use a series of regular expression rules tuned to the specific prescription text used in

this study with high precision but less generalizability. For risk scoring, we built a concept

mapping pipeline on top of an open-source clinical NLP tool SemEHR[13], which can detect

far more concepts than it is feasible to manually code rules for, but with the trade-off that it is

not specifically designed for any particular disease concepts.

Use of EHR data for retrospective and prospective applications in

cardiology

EHRs have been increasingly used to support observational studies. However, typically this

involves the transcription of clinical data from EHRs into a registry-specific electronic case

report form, an approach with many of the limitations inherent of a classical observational

study. The development and maintenance of case registries is time-consuming, and the scope

of the research questions that can be answered are limited to the dataset defined a priori. By

using a domain-agnostic concept mapping pipeline (SemEHR) on unstructured text, our

study was able to test both conventional risk scores (CHA2DS2-VASc) and a novel risk score

(HFRS).

Ours is not the first study to utilize unstructured EHR data in AF research.[15–17,23] Our

study builds on this previous work through the use of text data with an NLP pipeline, the cal-

culation of additional risk scores and an analysis of prescribing patterns. Whilst we evaluate

our pipeline in the context of AF, our aim is to provide an open tool for clinical risk scoring

calculations in general.

Trends in antithrombotic drug use

Large retrospective population-based studies have established a clear trend of increased OAC

prescribing in AF patients, driven by uptake of DOACs.[6,7] Our ability to reproduce these

findings by applying NLP to unstructured EHR data strongly supports the validity of the NLP

pipeline. In our analysis, OAC prescription was independently associated with risk factors for

stroke and bleeding, consistent with the findings of other studies.
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Despite a significant increase in OAC use during our study period, ~35% of patients at high

risk of stroke were still not prescribed an OAC indicating there are some remaining barriers to

OAC use. In our data, a documented bleeding problem (present in 14% of the cohort and asso-

ciated with 40% reduction in OAC use) and increasing frailty (Table 4) were independent pre-

dictors of OAC underuse, suggesting that perceived risk of bleeding and risk of harm due to

OAC continues, particularly in elderly patients, to have a strong influence on the antithrombo-

tic drug decision-making process.[24–26]

HFRS proposed by Gilbert et al. [20] is a high-dimensional frailty score calculated from

ICD-10 diagnostic codes. When we evaluated antithrombotic drug prescription using HFRS as

a continuous variable and adjusting for other clinical variables and discharging specialty, there

was a significant relationship between HFRS and antithrombotic drug use (Table 4). Patients

with a higher HFRS were less likely to take an OAC, more likely to take a DOAC (vs. warfarin)

if they were on an OAC, and more likely to take an AP drug alone versus an OAC. This sug-

gests there is an underlying high-dimensional frailty characteristic influencing clinician deci-

sion-making despite not being explicitly calculated.

The highest OAC prescription rates were in patients discharged from a cardiology ward

(n = 1048, 69%), whereas OAC use was significantly lower in patients discharged from an

elderly care ward (n = 1240, 47%) and other medical specialties (n = 3196, 52%). Although in

part this may reflect the differing case mix of specialty patient populations, given the magni-

tude of the differences seen even with multivariate correction of clinical variables (including

stroke and bleed risk factors and frailty risk score), it is likely that some of our findings are due

to specialty-specific behaviours in relation to AF and bleeding risk. This suggests efforts to

continue to increase OAC prescribing rates beyond current may be most effective if targeted

by clinical specialty.

Limitations

One of the major limitations of an EHR- and NLP-based approach, as used in our analysis, is

data accuracy. We manually validated the major variables in our analysis but the accuracy of

our NLP algorithm deserves closer scrutiny as there is a risk of causing a significant degrada-

tion in data accuracy. Whilst the agreement between our algorithm and clinical experts was

high for CHA2DS2-VASc and fair for HAS-BLED, in all comparisons the agreement between

experts was higher. This gap represents room for improvement in the algorithm primarily due

to difficulty detecting some risk factors.

Retrospective assessment of the data source of many of the variables in the HAS-BLED

score is challenging irrespective of the approach used, with a previous study finding that inter-

rater reliability between human observers for some HAS-BLED components is low.[15] This

disagreement at the level of the data source is commonly described even with curated registry

data.[27] This limitation particularly affected the “uncontrolled hypertension” and “labile

INR” features of the HAS-BLED score, neither of which is reliably recorded or detected. This

leaves some comorbidity associated with bleeding risk unaccounted for in our multivariate

analysis.

Unlike the use of registry data, routine EHR data may not capture all necessary clinical

information on all patients, as this is a secondary use of the record. It is therefore possible that

we have missed important co-morbidities in some of the patients. This may have led to an

overall underestimation of co-morbidities in our patient population, as well as undermined

some of our analyses relating clinical variables to anti-thrombotic drug use.
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The NLP algorithm was tested on data from one multi-site organization using three differ-

ent EHR systems over a 6-year period. While this may show a degree of generalizability, fur-

ther validation on data from other EHR systems in other organizations will be needed.

We used data from inpatient admissions as these more accurately record data on drug pre-

scriptions. As a result our patient population has the potential to be older and frailer, with

more comorbidity, than typical community AF cohorts. Although our population had similar

baseline characteristics to the populations in previous studies[28,29], not all co-morbidities

may be captured. This is a limitation is inherent in the design of all studies using routinely gen-

erated non-curated data.

Our study did not attempt to distinguish between the different temporal patterns of atrial

fibrillation (permanent, persistent, paroxysmal). This is because these temporal patterns are

frequently not used in free text or used ambiguously (e.g. ‘PAF’ could mean any of the terms).

Nonetheless, national and international guidelines on anticoagulation for AF do not have dif-

ferent anticoagulation recommendations for different temporal patterns.

Finally, our data is observational. Therefore, although we have demonstrated associations

between changes in antithrombotic drug use and a range of clinical variables, it is not possible

to conclude a causal link.

Conclusion

We present a novel open-source methodology for an automated pipeline to calculate risk

scores from NLP and track prescribing patterns, incorporating future disease entities, risk pro-

files and ontologies. We have used this methodology to demonstrate significant changes in

antithrombotic practice in AF since the introduction of DOACs, in a large NHS Trust. The

tools used in this study are open-source and transparent (CogStack[12], SemEHR[14] and our

pipeline) allowing any other organization to validate on their own cohorts and optimize local

population health at low cost. This highlights the power of semantic NLP processing tools for a

disease-specific domain, but is generalizable to a variety of other diseases and use-cases, and

highlights the growing impact of health informatics in healthcare.[30]
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