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Abstract
We introduce a method for analysing emergent behaviours
in multi-agent simulations usingcomplex events. Complex
events are composed of interrelated events, and they can be
defined at any level of spatio-temporal abstraction (equal
to or above the lowest level of abstraction given by the
model). Minimaltypesof complex events define sets, which
are equated with particular emergent behaviours and can be
detected in simulation.

Since complex events are derived from the agent-based
model itself, they provide significant benefits when compared
with traditional state-aggregation methods. First, they provide
a method ofspecifyingemergent behaviour, so that such be-
haviour can be monitored. Second, they provide a mechanism
that retains the underlying structureof that behaviour. This
latter property supports analysis of the mechanisms at lower
levels that give rise to emergent behaviours, and identifica-
tion of patterns between levels. In other words, multi-agent
simulations become less ‘opaque’[1].

1. INTRODUCTION
Emergent behaviour in real-world systems is notoriously

unpredictable. When the UK government ordered the Na-
tional Health Service (NHS) to reduce the average time that
patients spent waiting for treatment, the emergent behaviour
at some hospitals was unexpected: quick operations were pri-
oritised over longer operations; patients were given unnec-
essary treatment to move them down the waiting list; a new
role of “hello nurse” was invented to greet patients (so they
were no longer “waiting”).1 It would surely be helpful if
we could model and simulate a complex system such as the
NHS, describe and observe emergent behaviours, and inves-
tigate those behaviours to understandhow they were created
(i.e. what were the constituent components or behaviours ata
lower level of abstraction that caused the behaviour to emerge
at the higher level?). However, it is difficult to model the be-
haviour “prioritising a quick operation over a longer oper-
ation” since the more interesting instances have many sub-

1http://www.blairwatch.co.uk/node/1692
http://www.24dash.com/health/19024.htm

components distributed across a significant timescale.
In this paper we introduce a new method for specifying,

detecting and analysing emergent behaviours that preserves
their underlying and contributory structure.

Agent-based simulations have been widely used in many
domains to study dynamic systems which also have dynamic
structures. Rules are defined at the level of agents, with
the behaviour of each type of agent being governed by its
own set of rules. From these agent-level behaviours, cer-
tain properties can emerge at the ‘macro-level’; these can be
atemporal patterns/structures or temporally extended prop-
erties, i.e. behaviours. While atemporal emergent patterns
can be described and analysed in terms of configurations of
agent states, there seems to be no corresponding structure-
preserving method for doing this for temporally extended
emergent properties. Instead, two types of approaches are typ-
ically used to measure ‘macro-level’ behaviour:

1. The aggregation of agent states (“State Aggregation”)
into a macro-variable or set of macro-variables (see
[2, 3] for examples). Changes in the macro-variable(s)
over the course of the simulation represent changes at
the macro-level (see Figure 1).

2. Human observation of the simulation, and of qualitative
changes in the dynamics e.g. flocking behaviour from
non-flocking behaviour [4] (a method for quantifying
this is given in [5]).

The use of State Aggregation results in loss of informa-
tion about thestructure of behaviour e.g. which agent in-
teractions have given rise to the behaviour, and how these
interactions are related in time and space. Since a set of
states is aggregated into a single measure, the relationship
between the high-level behaviour and the underlying agent
behaviours (generated from the agent-based model (ABM))
is lost. This lack of understanding as to how the agent level
relates to higher levels of observation is what makes simula-
tions ‘opaque’ [1]. On the other hand, human observation of
the simulation does preserve structure (which structures are
identified depends very much on the expertise and objectives
of the observer), but as a scientific method it is insufficiently
precise or methodical.

What we lack is a systematic method for describing emer-
gent behaviours in terms of the agent-based model. In some
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Figure 1. Caricature of the traditional view of multi-agent
simulation as a series of still frames. Each frame is a snapshot
of the system at a given time.

cases, this greatly hampers the contribution that ABM can
make to our understanding of a complex system. For example,
one might view the higher-level emergent behaviours of the
NHS as a consequence of its members’ behaviours (doctors,
managers, consultants, staff, patients, etc.). We might design
and run a multi-agent simulation of this successfully which
produces the expected changes in the system’s overall per-
formance. However, if this change in overall performance is
represented by a single variable, we lose a substantial amount
of useful information even though it is in our simulation. We
fail to identify the underlying agent interactions and organi-
sational behaviours that give rise to the higher-level aberrant
behaviour. How does bad management contribute to under-
performance? Are operational inefficiencies important? We
fail to identify these emergent behaviours in a simulation be-
cause they not been described in terms of what is going on at
the agent level. Yet answers to these types of questions give
us important information about the workings of the system
and which events are most significant in causing failure.

We propose a method for addressing this issue of how to
specify, detect and analyse emergent behaviours in multi-
agent simulationsin terms of the agent-based model. The
method applies to any level of spatio-temporal abstraction
that can be composed from the agent-based model and hence
allows us to relate different levels to one another using the
underlying agent model as a common denominator. Using a
simple example, we will demonstrate that our new method
supports an improved understanding of emergent behaviour
that cannot be provided by State Aggregation.

1.1. Structure of the Paper
Since our work is based on certain assumptions about com-

plex systems and emergence, those assumptions are made ex-
plicit in Section 2. We also give a brief generalised descrip-
tion of agent-based models.

Section 3. explains how events can be composed to
give complex events by specifying temporal, spatial and
component-based relationships between constituent events,
and Section 3.2. shows how emergent behaviours can be iden-
tified with setsof complex events. This provides a systematic
method for specifying temporally extended emergent proper-
ties (behaviours and entities) in terms of the underlying agent-
based model.

To illustrate our method, we give a simple worked exam-
ple and then run simulations to demonstrate the detection and
decomposition of of emergent behaviours. The final section
briefly summarises and concludes.

2. DEFINITIONS AND ASSUMPTIONS
The definition of terms such as ‘emergence’ and ‘levels’ is

heavily contested in the literature [6, 7]. In order to make ex-
plicit our assumptions therefore, we first give our definitions
of the emergence-related terms used throughout the paper. We
then give a generalised description of agent-based models.

2.1. Emergence and Emergent Properties
In this paper, we assume a particular definition of emer-

gence, based largely on the recent contributions from statisti-
cal mechanics that have sought to formalise emergence (see
[8] for a review); in particular, we use many of the definitions
given in [9]. While we acknowledge that these definitions will
not be accepted by all who work in the field, we argue that for
our current purposes they are useful definitions and providea
sound framework for defining emergence in multi-agent sim-
ulations. For our assumed definitions, we must first introduce
the concepts of scope and resolution.

The scope of a representation of the system is the ‘set of
components within the boundary between the associated sys-
tem and its environment’ [9]2 (at a given resolution). The
scopeS of a temporally extended system can be considered
to be made up of its temporal scopeSτ, which defines the set
of moments of time over which the system is represented and
a spatial scopeSx.

Resolution is the number of states that can be distin-
guished i.e. given the same scope, a higher-resolution (finer)
representation will be able to distinguish a greater numberof
possibilities. Again, there is both a spatial aspectRx and a
temporal aspectRτ which together define the overall resolu-
tion R.

A level of abstraction is then a function of the scope and
resolution, where a higher level of abstractionM has a greater
scope and/or a lower resolution than a lower level of abstrac-
tion µ (see equations (1), (2) and (3)):

RM ≤ Rµ (1)

2The system’s environment is considered to be outside the scope of rep-
resentation.



SM ≥ Sµ (2)

(RM,SM) 6= (Rµ,Sµ) (3)

Emergence is closely related to level of abstraction. Firstly,
we stipulate that anemergent property must be at a higher
level of abstraction than its constituent properties. Secondly,
an emergent property must not be detectable at a lower level
of abstraction (note that this is different from saying thatit
can not be detectedby lower level components). Finally, the
reason why an emergent property is not detectable at lower
levels is because it consists of a particular set of relationships
between its components as well as the components itself.

We further distinguish three types of emergent property:

1. emergentstate: an identifiable state at a particular level
of abstraction that results from a configuration of states
at lower levels of abstraction, defined atemporally3.

2. emergententity: an identifiable entity at a particular
level of abstraction that is able to persist through time
(has temporal extension) and which is subject to the
rules operating at that level of abstraction, but whose ex-
istence is dependent on entities and/or processes at lower
levels of abstraction.4

3. emergentbehaviour: an identifiable temporally ex-
tended process at a particular level of abstraction that
results from a set of processes operating at a lower level
of abstraction that arerelated to one anothertemporally
and/or spatially.

2.2. Generalised Description of ABMs
An agent-based model (ABM) consists of a set of specifica-

tions for different component types, acomponent being any
element in the system that can be uniquely identified and that
can persist through time i.e. has an identity and is able to have
a history. Various classes of components (e.g. agents, objects,
unencapsulated state variables) might exist in the model; al-
though by definition agents should always be present, non-
agent component classes might also feature. Specifications
for component types define the set of possible states that in-
stances of the type can take, and are usually given in the form
of rules governing state transitions. Astate transition rule is
a function that changes the values of a set of variables when
a particular condition is satisfied. Agents and objects are said
to encapsulatea set of variables, which together represent the
state of that agent or object. Most of the state transition rules

3An atemporal definition means one that does notinternally refer to time
e.g. being blue. So while we can talk about states with reference to time e.g.
say that a state persists in time, the description of the state itself does not
include a reference to time.

4Note that thestate of an emergent entityis not the same as anemergent
state.

in an agent-based model are specified from the perspective of
a given component type.5

3. COMPLEX EVENTS
In this section we introduce our new concept ofcomplex

events, which are events that comprise one or more related
constituent events (the constituent events can also be complex
events). Thus, we define a complex eventCE to be either a
simple eventSE(with no further constituents) or two complex
events linked by a specified relationship⊲⊳:

CE :: SE|CE1 ⊲⊳ CE2 (4)

Relating Two Complex Events
We define the relationship⊲⊳ to be a temporal operator⊗

optionally followed by descriptions of (i) space constraints
and (ii) constraints pertaining to the variables or components
of the two related complex events. A detailed explanation of
⊗ and the two types of constraint is provided in Section 3.1.

Simple Events
We define a simple eventSE as a change in state (given

by a state transition functiontrans()) that occurs in time
with a non-negative duration (duration≥ 0) — see Equa-
tion 5, wherexid1, . . .xidi are specific variables in simulation,
andtstart andtend are respectively the start and end times of
the simple event. The variables may belong to different com-
ponents (e.g. agents), and the source component identity for
each variable may be specified as part of the subscriptsid1,
id2 etc.

Each simple event is an instance of asimple event type TSE,
which specifies (i) a transition function to be applied to spec-
ified variable types, and (ii) a duration — see Equation 6,
whereti are the types of the variables andd denotes the dura-
tion (a range, or defined value). An event type specifies a set
while an actual event is a member of such a set. Two simple
events are therefore of the same type (members of the same
set) if they apply the same function to the same variable types
for the same duration.

SE :: (trans(xid1, . . .xidi ), [tstart,tend]) (5)

TSE :: (trans(t1, . . . ti), d) (6)

State Transition Rules
In Section 2.2. we defined a state transition rule as a func-

tion that changes the values of a set of variables when a par-
ticular condition is satisfied. Thus Equation 7 gives the syntax

5E.g. a typical rule governing agent ‘actions’ has the format: if an agent
instance of typeA ‘perceives’ that conditionx is satisfied in its ‘neighbour-
hood’, transition f occurs, withx and f being defined relative to theA in-
stance rather than to some global frame of reference (an analogy can be
drawn with local and global coordinates in computer graphics). The modi-
fied variables may be encapsulated by zero or more components.



for a state transition ruleSTR, whereC is the condition that
needs to be satisfied for an event of typeTSE to occur:

STR :: (TSE, C) (7)

An eventeof typeE can be the condition for another event
f of typeF if the set of variable values that results from an
event of typeE is always equal to the condition for an event
of typeF, as defined by some state transition rule i.e. if

(Cf == transe),∀e∈ E,∀ f ∈ F

On the other hand, anE-type eventei can be a condition
for an F-type f j even when this relationship does not hold;
i.e. when the result of applyingtransei contingently results in
variable values that form the condition for another event. In
a dynamic simulation, the effect of a given event has differ-
ent consequences depending on previously and concurrently
occurring events; i.e. depending on context (both spatial and
temporal), the effect of an event can lead to different subse-
quent events (transe==Cf in some contexts andtranse==Cg

in others).

3.1. Specifying Complex Events
The concept of event composition has previously been in-

troduced in related work in the context of ABM e.g. [10, 11]
but such compositions mainly relate to individualagentbe-
haviours; the approach presented here builds on this work but
is more general since it addresses other relationships between
events besides temporal ones.

In Section 3. we defined a complex event as being either a
simple event or a relationship between two complex events,
i.e.C1 ⊲⊳ C2. As stated previously, we define the relationship
⊲⊳ to be a temporal operator⊗ optionally followed by de-
scriptions of (i) space constraints and (ii) constraints pertain-
ing to the variables or components of the two related complex
events. Thus, the syntactic pattern for a complex event rela-
tionship⊲⊳ is given in Equation 8.

e1 ⊲⊳ e2 :: e1 ⊗ [space] [var] e2 (8)

where

• The temporal operator ‘⊗’: may for example specify
that the second evente2 is initiated at the same time ‘‖’,
before ‘≺’, after ‘≻’, or immediately after ‘;’ the first
evente1;

• The spatial constraint ‘space’: defines the space within
whiche2 should occur relative toe1; and

• The component or variable constraint ‘var’: defines
the relationships between variables or components of the
two eventse1 ande2.

⊗, [space] and [var] can be specified in any number of
ways using expressions derived from different systems of
logic and representation, depending on the expressivity re-
quirements of the specifications. To give an example, we in-
troduce the token identity operator ’/’, which is a[var] op-
erator. To specify which variable or component instances are
shared between two events, it is necessary to ‘get inside’ the
state transition functions6. The expression follows one of two
patterns:

(transe1(vars),transe2(vars), [e1(var)/e2(var)])

or

(src.transe1,src.transe2, [(src)e1/(src)e2)])

The first pattern constrains the variablevar in e1 to be
the sameas the variablevar in e2 — e.g. their subscripts
must show that they are encapsulated by the same compo-
nent (agent) and they must have the same name.varsstands
for the variables involved in each state transition function.

The second pattern uses the syntaxsrc.transe1 to denote
the source component (agent) that gave rise to the transition
transe1 (via evente1, as the result of some state transition
rule). The token identity operator expression(src)e1/(src)e2

then constrains the source component (agent) for evente1 to
bethe sameas the source component (agent) for evente2.

Complex Event Types
A complex event typeTCE is specified by specifying the

constituent event types and the relationships that must be sat-
isfied between instances of these types. More than one in-
stance of an event type can be required in the complex event
so that when a complex event type is instantiated, each event
instance plays a particular role in the complex event.

We can represent a complex event type specification as a
directed multi-graph (see Figure 2). A multi-graph is a set of
nodesN, indexed by integers and a directed adjacency rela-
tionship arc(n1,n2) defined for pairs of distinct nodes and
returning a non-negative integer value. The arcs are cate-
gorised by colour (the colours are greyscales in the figure)
to support more than one type of adjacency relationship i.e.
{arcA(n1,n2),arcB(n1,n2),arcC(n1,n2)...}, each of which
may or may not be satisfied between two nodes i.e. returns
trueor f alse. This means that no more than one instance of an
adjacency relationship type (arc colour) (arc shade) can exist
between two nodes. A colour function is a functioncolour(n)
associated with a set of nodes; for each noden, colour(n) is
the colour of that node.

The nodes represent the event instances in the complex
event type, with the colours standing for the event types. The

6Note that if distinct instances of a type of variable are stipulated inside
a transition function e.g.x0 andx1, this must be preserved. The operator ‘/’
only equates variable or component instances withindifferentevents.



arcs represent directed relationships between two events with
colours standing for particular types of relationship e.g.≺,
distance= 3. A simulation can also be represented as a di-
rected multi-graph with coloured nodes and coloured arcs
(many of whose colours we have no knowledge of). We can
therefore identify instances of complex events by identify-
ing subgraphs in the simulation graph which are isomorphic
with the complex event type graphs.7 This provides us with a
means of detecting the complex event types we have specified
when they are instantiated in simulation.

subgraphs of the

simulation graph can

be matched with

complex event types

simulation

complex

event type

Figure 2. A simulation can be represented by a coloured
multi-graph with coloured arcs. Different node colours (rep-
resented here by different shades of grey) stand for the differ-
ent event types. Arcs represent relationships (some of which
are of no interest to the modeller) with the colours (repre-
sented here by different line types — solid and dashed) stand-
ing for different relation types. We say that a complex event
type is instantiated in simulation when we can identify a sub-
graph in the simulation graph that is isomorphic with the
complex event type graph.

3.2. Specifying Emergent Behaviour with Sets
of Complex Event Types

Obviously, it is not feasible to specify all the possible com-
plex event types that model an emergent behaviour or emer-
gent entity, since these can be realised in many different ways
(many of which we have no explicit knowledge of). Rather,
we should be able to define classes or sets of complex event
types that model an emergent behaviour. Each member of a
set then represents an exemplar of a particular emergent be-
haviour. Each Complex Event must contain at least one com-
plex event typeTCE that isminimal — i.e. they capture the
minimal behaviour that can be categorised as an example of

7Note, also that a given component can participate in many graphs at
the same time. This equates to its participation in different events at various
levels of abstraction.

the emergent behaviour described by the set.8

For example, the set of minimal complex event types for
flocking behaviour are all those where two boids within a de-
fined spatial distanced from one another move through space
in the same direction over some minimum length of timet.
So we can say that an emergent behaviour is modelled by a
set of minimal complex event types and instantiated in sim-
ulation when one of these minimal complex events is instan-
tiated (see Figure 3). Any further complexity that may be re-
quired for specifying or detecting emergent behaviour may be
incorporated via the specification of more elaborate complex
events.

Although we use crisp sets in the current discussion, our
scheme can be extended to incorporate fuzzy set concepts
[12, 13] by allowing different degrees of membership for both
complex event type sets and emergent behaviour sets.

setX: complex event
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X
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Figure 3. The emergent behaviourE is said to be instanti-
ated in a simulation when an event of one of the event types
in the setsetX or setY is instantiated. The set of complex
event types that representE is the union of the setssetXand
setY.

4. EXAMPLE: PREDATOR-PREY MODEL
To demonstrate our method for understanding simulations

in terms of complex events and emergent behaviours, we use
a simple predator-prey model. However, instead of only con-
sidering overall population changes, we also try to understand
the way these come about through emergent group behaviours
by detecting the the complex events associated with them.

4.1. Model: Agent Rules and Validation
In our model, there are two species: lions and antelopes.

Lions are the predator species and antelopes the prey.
The simulation rules for a lion, and associated state transi-

tion rules, are:

8The minimal complex event type specifications themselves define a set
of event types.



(l=lion; a=antelope; x andy are coordinates)

1. If an antelope is detected within distanced, kill antelope
with probabilityp(kill ). The killing of an antelope takes
place instantly.

(KillA ,CkillA)

where

KillA = (transKillA (a,(x,y)),0)

transKillA (a,(x,y)) = dead(a)at(x,y)

CKillA = exists(a)within(d)∧ (random≤ p(kill ))

2. If the antelope is killed, a new lion is born at the location
of the dead antelope (which is then removed from the
system). The birth of a new lion takes place after a delay
of one time step.

(LBirth,CLBirth)

where

LBirth = (transLBirth((x,y)),1)

transLBirth((x,y)) = replace(l ,a)at((x,y))

CLBirth = deadA((x,y))

3. Die with probabilityp(lDeath) (instantly) if there is no
antelope within distanced.

(LDeath,CLDeath)

where

LDeath= (transLDeath(l ,(x,y)),0)

transLDeath(l ,(x,y)) = empty(x,y)

CLDeath= (¬CKillA )∧ (random≤ p(LDeath))

4. Move one step in a random direction at each time step if
no killing of antelopes or death has taken place.

(MoveL,CMoveL)

where

MoveL= (transMoveL(l ,(x,y))),0)

transMoveL(l ,(x,y)) = Move(l)to(x1,y1);new(x1,y1)

CMoveL= (¬CKillA )∧ (¬CLDeath)

The simulation rules and state transition rules for an ante-
lope are:

1. Move one step in a random direction at each time step
(if not dead).

(MoveA,CMoveA)

where

MoveA= (transMoveA(a,(x,y))),0)

transMoveA(a,(x,y)) = Move(a)to(x1,y1);new(x1,y1)

CMoveA= any

2. A new antelope is born at random location with proba-
bility p(aBirth)

(ABirth,CABirth)

where

ABirth = (transABirth((x,y)),0)

transABirth((x,y)) = new(a)at(x1,y1); random(x1,y1)

CABirth = random≤ p(aBirth)

4.2. Experiment: What are the Mechanisms
Underlying Population Dynamics?

To illustrate the specification and detection of emergent
behaviours using complex events, we introduce two dif-
ferent emergent behaviours,betweenlion overhuntingand
samelion overhuntingto give us insight into the mecha-
nisms underlying changes in lion population. While track-
ing the numbers of lions and antelopes would permit mea-
surement of overall system behaviour, this overall system
behaviour can have different underlying causes. We distin-
guish betweenbetweenlion overhunting, where more than
one lion within a particular area makes a kill resulting in
starvationin the area orsamelion overhunting, where a sin-
gle lion kills twice in immediate succession and then starves.

In our experiment, we ensure the lions will become extinct
by making them voracious killers — we setp(kill ) = 1 so
that a lion always kills when it has an antelope in its neigh-
bourhood. Since a lion cannot die when killing an antelope,
its death must be a consequence of not having an antelope
nearby; we will then investigate the emergent behaviour to
determine whether extinction is caused by the overhunting of
single lions, or by the competition of two or more lions hunt-
ing in close proximity.

We define starvation, betweenlion overhunting and
samelion overhuntingbehaviours as follows.

• starvation: A lion goes for three time steps without see-
ing an antelope and then dies.

MoveL0; [same(l)]MoveL1

; [same(l)]MoveL2; [same(l)]LDeath0

wheresame(l) is:

(transMoveL0(l ,(x,y)),transMoveL1(l ,(x,y)),

[MoveL0(l)/MoveL1(l)])

• betweenlion overhunting: Two different lions within a
given distancerange1 from one another each kill an an-
telope (either the same or different antelope) at the same



time (‘‖’). After this, there is at least one starvation event
in the area inhabited by these two lions (range2).

(l .KillA0‖[within(range1)][¬(l)same]KillA1

; [within(range2)]starvation)

• samelion overhunting: The same lion kills an antelope
two time steps in succession and then dies from starva-
tion.

l .KillA0; [(l)same]l .KillA1

; [(l)same]starvation

where(l)sameis:

(transl .KillA0(a,(x,y)), transl .KillA1(a,(x,y)),

[(l)KillA0/(l)(KillA1)])

Figure 4 shows how these complex event types can be
represented by graphs.

between_lion_overhunting

same_lion_overhunting

starvation

Figure 4. Graphs for complex event typesstarvation,
betweenlion overhuntingand samelion overhunting. With
key below.

Figure 5 shows the degree to which the above complex
event types occur in simulations with different population
densities before the extinction of lions. In this particular ex-
ample, we use a simple additive measure that counts the num-
ber of times the above complex event types are detected in the
simulation. Notice thatsamelion overhuntingoccurs very

infrequently. This is likely to be due to the low antelope num-
bers, which means that it is unlikely for the same individualto
make a kill twice. Also, whilesamelion overhuntingis lim-
ited by the number of individuals,betweenlion overhunting
is not, since the same individual can participate in more than
one instance ofbetweenlion overhunting.

Both betweenlion overhunting and
samelion overhunting complex event types define a
particular set of relationships between events that are tem-
porally and spatially structured and which can be detected
in simulation. By contrast, State Aggregation methods lose
information about the deep structure of emergent behaviour.
Also, assigning variables to particular quantities, e.g. number
of agents and number of deaths, does not enable us to identify
or quantify emergentbehaviourssince the variables are based
on systemstatesat different points in time and hence only
measure theconsequencesof behaviours at particular times.
On the other hand, human observation of the simulation does
not relate directly to the model. Because complex events are
defined ultimately in terms of the agent-based model itself
(its events and rules), we are able to understand how model
rules relate to multi-level behaviours and how alterationsin
these rules are likely to affect these behaviours.

Furthermore, we can define complex events at different
degrees of generality and further investigate their more de-
tailed structures. For example,betweenlion overhuntingcan
be subclassed intosameantelopeand di f f erent antelope.
Once we have identified a set of complex events belonging
to the same type, we can specify further constraints to distin-
guish between these events.
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density) gives the greatest number of instances of
betweenindividual overhunting.



5. SUMMARY AND CONCLUSIONS
In this paper we have introduced and demonstrated a novel

method using Complex Events for identifying specific emer-
gent behaviours in an agent-based simulation. This can be ap-
plied to behaviour at any level of abstraction above the agent-
based model level.

Since emergent behaviours are composed of events at the
model level, we do not have to lose information about the
structure of behaviours at different levels (unlike previous
State Aggregation methods). The decomposition of higher
level behaviours into lower level events allows us to predict
more reliably how changes at the model level (e.g. changes in
agent rules) affect behaviours at multiple levels.

We have demonstrated how the use of Complex Events pro-
vides a twofold benefit: it provides a method of specifying
emergent behaviour, so that such behaviour can be monitored;
and it provides a mechanism that retains the underlying, con-
tributory structure of that behaviour. This therefore provides a
rich mechanism for specifying, detecting and analysing emer-
gent behaviour.
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