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Abstract  
Multiple primary outcomes are sometimes collected and analysed in randomised controlled 

trials (RCTs), and are used in favour of a single outcome. By collecting multiple primary 

outcomes, it is possible to fully evaluate the effect that an intervention has for a given disease 

process. A simple approach to analysing multiple outcomes is to consider each outcome 

separately, however, this approach does not account for any pairwise correlations between 

the outcomes. Any cases with missing values must be ignored, unless an additional 

imputation step is performed. Alternatively, multivariate methods that explicitly model the 

pairwise correlations between the outcomes may be more efficient when some of the 

outcomes have missing values.  

When analysing multiple outcomes in a trial, it is important to control the family wise error 

rate (FWER), which is the probability of finding at least one false positive result. A common 

approach is to adjust the p-values for each statistical test. It is also important to consider the 

power to detect the true effects of the intervention.  

In this thesis, I present an overview of the relevant methods that could be used to analyse 

multiple outcomes in RCTs, including methods based on multivariate multilevel models. I 

perform simulation studies to provide guidance on which methods should be used to adjust 

for multiple comparisons in the sample size calculation, and which methods should be used 

for the analysis when the multiple primary outcomes are correlated. Additionally, I use 

simulation studies to investigate the differences in the power obtained when using 

multivariate models compared to analysing the outcomes separately using univariate 

models. Different simulation scenarios were constructed by varying the number of 

outcomes, the type of outcomes, the degree of correlations between the outcomes and the 

proportions and mechanisms of missing data. 
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Impact Statement 
Randomised controlled trials (RCTs) are the most rigorous way to investigate the 

effectiveness of a new intervention. The conclusions drawn from RCTs can provide evidence 

that can be used to decide whether an intervention should become routinely available for 

patients.   

Statistical methods are necessary for the design of trials and analysis of trial data. The use of 

appropriate statistical tests is essential to prevent errors and biases, and therefore the 

reporting of erroneous conclusions in medical research. Even though appropriate statistical 

methods are needed to ensure only effective interventions become available, often 

inappropriate statistical tests are used and hence potentially unreliable results are reported. 

The aim of the work presented in this thesis is to provide guidance and recommendations 

for the design and analysis of RCTs that use multiple outcomes. 

When designing an RCT and analysing trial data, it is necessary to consider the number of 

outcomes involved. I reviewed trials published in high impact clinical journals and have 

shown that methods accounting for multiple outcomes are not regularly used when 

calculating the sample size or when analysing trial data. My statistical investigations have 

shown that different conclusions may have been drawn in certain published trials if the 

correct steps had been taken to account for multiple comparisons during the analysis of trial 

data. The number of incorrect analyses observed in recently published RCTs demonstrates 

that there is a current need for clear guidance for the design and analysis of RCTs that use 

multiple outcomes.  

One of the practical recommendations I have provided is how to determine a sufficient 

sample size. The sample size is an important consideration as the number of trial participants 

is restricted by economic, ethical and practical considerations. On the other hand, if the 

sample size is too small it may not be possible to correctly determine whether an 

intervention works. I have described several approaches that can be used to determine the 

required sample size for trials involving multiple outcomes. I have discussed that the chosen 

approach would depend on the clinical objective of the trial. For example, the objective 

might be to ascertain whether an intervention is effective on at least one of the outcomes. 

Alternatively, it could be ascertain whether an intervention is effective on all of the 

outcomes. I have shown that the sample size required varies depending on the chosen 

clinical objective.  
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The research performed in this thesis has the potential to have a wide impact as it is directly 

relevant to researchers who work on RCTs. Some of the work in this thesis has already been 

published and cited (Vickerstaff et al., 2015, Vickerstaff et al., 2019). Should researchers 

follow the guidance provided, it is expected that their analyses could potentially be more 

robust in that there is a higher chance that only successful interventions are identified as 

such; and more efficient in that fewer patients are recruited for RCTs with multiple 

outcomes.   
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1 Chapter 1  

Introduction 
Randomised controlled trials (RCTs) can be used to investigate the effectiveness of a new 

intervention. An RCT is a study in which people are randomly assigned to two (or more) 

groups to test the effect of a specific intervention on a health outcome of interest. In a 

standard two-arm trial, one group receives the intervention being tested and the other group 

receives a dummy intervention (placebo) or the usual care. The trial participants are followed 

over time and their outcome data are collected to assess the effect of the new intervention. 

In most clinical trials a single primary outcome is specified to investigate the effect of a health 

intervention and this is often sufficient to determine whether the intervention is effective. 

However, for many diseases and disorders, a patient’s health status cannot be adequately 

quantified using a single primary outcome. Examples include mental health disorders, stroke 

(Mayo and Scott, 2011) and chronic obstructive pulmonary disease (COPD) (Agusti and 

Vestbo, 2011, Teixeira-Pinto et al., 2009, De Los Reyes et al., 2011). Therefore, in these 

disease areas, multiple primary outcomes may be required to provide a comprehensive 

understanding of the effects of an intervention. 

In trials, multiple statistical tests may be performed to investigate the effect of the 

intervention when analysing multiple outcome measures. Each time a statistical test is 

performed, there is a chance that a statistically significant effect will be observed due to 

chance when no effect is present. This is known as a ‘type I error’. As the number of statistical 

tests performed on the same dataset increases, the probability of a type I error increases. 

The issue associated with the increased chance of a type I error is referred to as ‘multiplicity’. 

It is essential that multiplicity is accounted for when designing and analysing RCTs. Another 

problem when analysing outcome data in RCTs is the failure to detect a true effect of the 

intervention. This is known as a `type II error’. The power of a study is defined as one minus 

the probability of a type II error. The desired power of the study is usually specified a priori. 

A sample size calculation is typically performed in a trial to ensure that sufficient number of 

participants are recruited to achieve the desired power. The sample size calculation is an 

important part of designing a clinical trial to ensure that the trial is efficient, ethical and cost 

effective (Röhrig et al., 2010). 

Several methods have been proposed in the literature to address the issue of multiplicity, 

however, many of these methods are not used in practice. In fact, many trials fail to account 
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for multiplicity in the design and analysis stages. For the practitioner, it is often unclear which 

(if any) of the proposed methods should be used to account for multiplicity whilst ensuring 

that the analysis remains efficient. It is also important that the statistical issues are 

communicated well to the clinicians to enable them to appropriately interpret the results. 

To this end, the focus of this thesis is to evaluate the existing statistical techniques available 

for the design of RCTs and the analysis of trial data with multiple outcomes.  In the remainder 

of this chapter I provide a brief introduction about how multiple outcomes may be analysed, 

followed by the aims, scope and structure of the remainder of the thesis. 

 

1.1 Overview  

Before a trial commences, the primary outcome measure(s) (‘outcome(s)’) need to be 

specified (WHO, 2012). The primary outcome can be defined as the outcome that is most 

capable of providing clinically relevant and convincing evidence that is directly related to the 

primary objective of the study (ICH E9 Expert Working Group, 1999). In this thesis, I focus on 

the statistical issues related to the use of multiple primary outcomes, as a single outcome is 

often not sufficient on its own to capture the range of clinically relevant intervention benefits 

for a particular health condition (European Medical Agency, 2017). 

The multiple outcomes may have the same data type, for example, several continuous 

outcomes may be measured to quantify cognitive and behavioural components in order to 

evaluate the effect of cognitive behavioural therapy on patients with a depressive disorder. 

Alternatively, the outcomes may be of different data types. For example, researchers might 

measure a continuous quality of life outcome and a binary outcome to indicate symptom 

relapse when evaluating the effect of an antipsychotic drug on people with schizophrenia. 

Missing outcome data is a common problem for RCTS since it is not always possible to 

measure all specified primary outcomes for all participants. In fact, a review of published 

trials showed that outcome data was missing in the majority of trials (Bell et al., 2014). 

Missing outcome data will generally results in a loss of power and may lead to biased 

estimated of the effect of the intervention., For example, patients in a smoking cessation 

trial may be more likely to drop out if they continue to smoke, and therefore the patients 

with observed outcome data may not be a representative samples.   

Several approaches have been used to analyse trials with multiple outcomes in the presence 

of missing data. A commonly approach, which is appealing due to its simplicity, has been to 
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analyse the outcomes separately within a univariate framework (Pocock et al., 1987). 

Patients are typically omitted from any analysis for which they have missing outcome data. 

However, this approach does not account for the possible correlation between the outcomes 

and consequently the precision of the estimates and the power may be lower than that 

achieved by other approaches (Teixeira-Pinto et al., 2009). A variation on this approach is to 

use multiple imputation to impute missing outcome data prior to the univariate analysis of 

the outcomes (White et al., 2011). An advantage of this approach is that all outcomes may 

be included in the imputation model and hence the correlation between the outcomes may 

be accounted for (White et al., 2011).  

More advanced methods include the use of multivariate methods such as the multivariate 

multilevel (MM) model and the multivariate regression. These multivariate methods have 

been used to analyse examination results in schools (Goldstein et al., 1993, Yang et al., 2002), 

crime trends (Mohan et al., 2011, Tseloni and Zarafonitou, 2008) and health-related 

behaviour (Maas et al., 2008). However, the use of these methods in trials has been limited 

despite their potential to increase power (Snijders and Bosker, 2012). For example, the MM 

has occasionally been used for an exploratory analysis in clinical trials (Hassiotis et al., 2009, 

King et al., 2002). 

It is important to control for multiplicity in confirmatory trials, in which the goal of the trial 

is to confirm the effect of an intervention (Bender and Lange, 2001). It is crucial to ensure 

that correct inferences are made from these trials as they inform healthcare policy and 

medical practice.  

It should be noted that the work in this thesis focuses on multivariate methods. The terms 

multivariate and multivariable are sometimes used interchangeably in the literature (Hidalgo 

and Goodman, 2013). However, these terms represent two types of analyses. A multivariable 

linear regression model is a model in which multiple covariates or ‘independent’ variables 

are used, for example, multiple covariates may be used to adjust the analyses for baseline 

factors or stratification factors. In contrast, a multivariate linear regression model has 

multiple outcomes or ‘dependent’ variables.   

 

1.2 Aims and scope 

The overall aim of the research is to address the need for an evaluation of methods to analyse 

multiple primary outcomes in clinical trials.  
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The aim is achieved by the following specific objectives: 

- To review the literature of published RCTs to ascertain whether multiple primary 

outcomes are commonly used, and to identify the methods that are frequently used 

to account for multiplicity in the sample size calculation and analysis of RCTs.  

 

- To evaluate the validity of existing methods that account for multiplicity arising from 

multiple primary outcomes. Multiplicity should be addressed both in the sample size 

calculation and statistical analysis. When using multiple primary outcomes, there is 

limited guidance as to which method(s) should be used to address multiplicity, 

especially when there are missing data in the primary outcomes. Using the results 

from several simulation studies, I will conclude on which methods may be used to 

account for multiplicity in the analysis of trials with multiple primary outcomes in the 

presence of missing data. 

 

- To investigate the possibility of using multivariate models as opposed to univariate 

models for the analysis of RCTs with multiple outcomes, and to identify scenarios 

when multivariate methods may be advantageous. For clinical trials, it is important 

that the procedure has sufficient power to detect the effects of the intervention– 

when they are present – whilst controlling the type I error.  

 

- To provide practical recommendations regarding the approaches to be used for the 

design and analysis of trials involving multiple outcomes. 

 

 

1.3 Structure of the thesis 

The remainder of this thesis is structured as follows. Chapter 2 is a review of statistical 

methods that are proposed in the literature to account for multiple outcomes. Chapter 3 is 

a review of RCTs recently published in high impact neurology and psychiatry journals to 

ascertain whether multiple outcomes are used in practice and how these outcomes are 

handled during the design and analysis of trials. Chapter 4 is a comparison of methods to 
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adjust p-values (or equivalently significance levels) to account for multiplicity in the sample 

size calculation and analysis of trials with multiple primary outcomes. Chapter 5 compares 

selected multivariate methods for the analysis of multiple outcomes in terms of type I error 

and power. Chapter 6 is a comparison of selected multivariate methods for the analysis of 

multiple outcomes in terms of bias associated with the estimated effects of the intervention. 

Chapter 7 investigates models that simultaneously analyse time-to-event and continuous 

outcomes. Chapter 8 provides discussion, guidance and conclusions. 
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2 Chapter 2  

Background and key concepts  
This chapter provides a concise summary of the background and key concepts that are 

required for the analysis of multiple outcomes. Definitions of the familywise error rate and 

power are provided in the context of multiple outcomes. The reasons for missing data can 

be classified as one of three ‘missing data mechanisms’. Moreover, a number of methods 

that have been proposed to analyse multiple correlated outcomes in clinical trials are 

summarised. The topics covered provide a foundation for the subsequent chapters.  

 

2.1 Notation 

The following notation will be used throughout this thesis. The problem of multiplicity due 

to the assessment of multiple outcomes in RCTs is considered. This problem can be 

formulated in terms of 𝑚 null hypotheses which are denoted by 𝐻01, … , 𝐻0𝑚, respectively. 

Each null hypothesis corresponds to the assessment of a new intervention based on one of 

the 𝑚 outcomes. The null hypothesis 𝐻0𝑗 is defined in terms of a relevant intervention 

parameter 𝜃𝑗, as given by 

𝐻0𝑗: 𝜃𝑗  = 𝛿𝑗, 

for  𝑗 = 1, … , 𝑚. Here a value of 𝜃𝑗 greater than 𝛿𝑗  indicates a benficial effect and a value of 

𝜃𝑗 less than 𝛿𝑗  indicates a harmful effect. For continuous outcomes it is usual to specify       

𝜃𝑗 = 𝜇𝑗1 −  𝜇𝑗2 where 𝜇𝑗1 and 𝜇𝑗2 are the mean responses of the 𝑗𝑡ℎ outcome in the two 

intervention groups, respectively. In this setting, 𝛿𝑗  is usually 0. The null hypotheses are 

tested versus the alternative hypotheses, which are given by 

𝐻1𝑗: 𝜃𝑗 ≠  𝛿𝑗 , 

for 𝑗 = 1, … , 𝑚. 𝑝1, … , 𝑝𝑚 denotes the marginal p-values for the appropriate statistical tests 

associated with 𝐻01, … 𝐻0𝑚. Moreover, 𝑝(1), … , 𝑝(𝑚) denotes the ordered p-values that 

correspond to the ordered null hypotheses that are denoted by 𝐻0(1), … 𝐻0(𝑚), respectively.  
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2.2 Types of multiple primary outcomes 

After specifying the primary outcome(s), investigators must identify a criterion to determine 

whether the intervention has demonstrated an effect. When performing an RCT with 

multiple primary outcomes, there are two main clinical decision rules that can be used to 

determine whether the intervention is a success: all primary outcomes need to be 

statistically significant; or, at least one of the primary outcomes needs to be statistically 

significant. The primary outcomes are known as co-primary outcomes and alternative 

outcomes, respectively. 

2.2.1 Co-primary outcomes 

The primary outcomes are known as co-primary outcomes when all outcomes must be 

statistically significant to show that the intervention is effective. In some instances, 

regulatory agencies have required that a statistically significant effect of the intervention is 

shown on several outcomes before deeming the intervention is effective (Offen et al., 2007). 

For example, for a regulatory agency to declare that a new migraine treatment is effective, 

the intervention needs to be shown to be effective on four outcomes: pain, nausea, 

photosensitivity and phonosensitivity.   

For co-primary outcomes, it is recommended that all outcomes are tested at the same 

significance level, say 0.05 (Committee for Proprietary Medicinal Products, 2002).  No 

adjustment for type I error is required to account for multiplicity when testing all co-primary 

outcomes at the same significance level, however, adjustments to the power to detect an 

intervention effect and sample size need to be considered. Depending on the correlations 

between the outcomes, there may be a large reduction in the  power to detect an 

intervention effect (Offen et al., 2007). For example, for a trial with two independent co-

primary outcomes, if the power to detect the desired effect is 80% for each outcome, then 

there would only be 64% (=80% x 80%) power to detect a true intervention effect on both 

outcomes. If the correlation between the two outcomes is 0.5, then the power to detect a 

true intervention effect is 69% (Offen et al., 2007). 

2.2.2 Alternative outcomes 

The primary outcomes are known as ‘alternative outcomes’ or ‘multiple primary outcomes’ 

when at least one outcome needs to be statistically significant in order to conclude that the 

intervention is effective. In this case, any of the pre-specified primary outcomes can, on their 

own, indicate a clinically meaningful benefit of the intervention. The benefits of the 
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intervention may be promoted differently depending on which outcome is shown to be 

statistically significant. When using alternative outcomes, adjustments are needed to control 

for inflated error rates (in particular, the familywise error rate defined below in Section 2.3). 

Many methods have been introduced to control the error rates when analysing multiple 

primary outcomes; these are described in Section 2.7.  In this thesis, when discussing 

‘multiple outcomes’, the focus is on the scenario of alternative outcomes.  

 

2.3 Multiple comparisons theory 

In this section, the definition of type I error and power is provided in the context of multiple 

outcomes.  

2.3.1 Familywise Error Rate 

Multiple comparisons must be performed when analysing multiple outcomes to investigate 

whether the intervention is effective for each outcome. If multiple comparisons are 

performed at the nominal significance level, then the overall probability of finding at least 

one false positive result can be unacceptably high. As a simple example, consider two 

outcomes that are analysed independently of each other and at the nominal significance 

level of 0.05. The probability of finding at least one false positive significant result is 0.098 

(= 1 − (1 − 0.05)2). This probability is greater than the nominal significance level and is 

known as the familywise error rate (FWER) (Alosh et al., 2014). The FWER obtained by 

analysing a varying number of outcomes independently is displayed in Figure 2.1 below.  Due 

to the inflated FWER obtained when analysing multiple outcomes, it is important to account 

for the number of primary outcomes when performing the analyses for confirmatory RCTs.  

When controlling the FWER, it is necessary to consider pairwise correlations between the 

outcomes (Phillips and Haudiquet, 2003). Selecting a method of analysis that ignores the 

correlations may lead to adjustments that are overly conservative. This could waste 

resources, as the required sample size is dependent on the method of primary analysis and 

will be larger than necessary. This would inflate the costs and duration of the study.  



  Chapter 2 Background and key concepts 

27 
 

Figure 2.1 The familywise error rate obtained when analysing multiple outcomes without 
adjusting for multiplicity. 

 

There are two approaches to controlling the FWER: strong control and weak control. The 

strong control is defined as the control of the probability of incorrectly rejecting any true 

hypothesis regardless of whether any of the other hypotheses are true (Dmitrienko et al., 

2009). In other words, the strong control refers to the control of the type I error rate under 

any combination of true and false null hypotheses.  It is necessary to have strong control of 

the FWER for the primary outcomes in all confirmatory clinical trials, as stated in the 

guidelines by regulators (Committee for Proprietary Medicinal Products, 2002). Weak control 

of the FWER is computed under the assumption that all of the hypotheses are true. Without 

any other safeguards, weak control of the FWER is unsatisfactory. Consequently, only 

methods that have strong control of the FWER are investigated. 

There are other error rate definitions that apply when there are a large number of 

comparisons, for example, in genetic studies or microarray experiments, the false discovery 

rate has been used (Dmitrienko et al., 2009). These definitions are not commonly used in 

clinical trials and are therefore beyond the scope of this thesis. 

2.3.2 Power 

A key consideration for the design of clinical trials is the power of the trial to detect the 

effects of the intervention in question, when they are present. When there are multiple 

outcomes there are a number of ways to define the power. This is chosen depending on the 
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clinical objective of the study. Three definitions discussed here are: disjunctive power, 

conjunctive power and marginal power. 

The disjunctive power (or minimal power), (Westfall et al., 2011), is the probability of finding 

at least one true intervention effect across all of the outcomes (Dmitrienko et al., 2009, Bretz 

et al., 2010). The conjunctive power (or maximal power) is the probability of finding a true 

intervention effect for all outcomes (Westfall et al., 2011). It may be noted that the 

disjunctive and conjunctive power have previous been referred to as ‘multiple’ and 

‘complete’ power respectively (Westfall et al., 2011), however, this naming convention may 

lead to confusion since disjunctive power may be greater than the conjunctive power  (Senn 

and Bretz, 2007). The marginal (or individual) power is the probability of finding a true 

intervention effect on a particular outcome. It is calculated separately for each outcome. 

When the clinical objective is to detect an intervention effect for at least one of the outcomes 

the disjunctive power and marginal power are recommended. The conjunctive power is 

recommended when the clinical objective is to detect an intervention effect on all the 

outcomes (Dmitrienko et al., 2009, Bretz et al., 2010).  

2.4 Missing data theory 

In this section, I introduce the possible ‘missing data mechanisms’ and discuss some methods 

that have been used in practice to handle missing data values in trials. 

Missing data are observations that exist that could have been made but were not recorded, 

or were recorded but then lost. Almost all randomised trials have outcomes that have 

missing values as highlighted in a recent review of trials which found that 95% of trials 

reported some missing data (Bell et al., 2014).  For clinical trials, missing data may result from 

the withdrawal of a participant or if a participant is lost to follow up. If the missing data are 

ignored or incorrectly handled then the conclusions drawn from the data could be incorrect 

(Carpenter and Kenward, 2007).  

2.4.1 Missing data mechanisms 

In this section, the missing data mechanisms are described. These mechanisms specify how 

the underlying value of the missing observation is associated with the reason for being 

missing. Rubin defines three missing data mechanisms: ‘missing completely at random’ 

(MCAR), ‘missing at random’ (MAR) and ‘missing not at random’ (MNAR) (Little and Rubin, 

2014). These mechanisms are defined in turn below. 
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Missing completely at random 

The outcome data are said to be MCAR if there are no systematic differences between the 

missing values and the observed values (Sterne et al., 2009). In this scenario, the missingness 

does not depend on the baseline covariates or the outcome. For example, for a weight loss 

trial if weight measurements are missing due to a malfunction of the weighing scales. 

 

Missing at random 

The outcome data are said to be MAR if the probability that the data are missing depends on 

the values of the observed data. However, conditional on the values of the observed data, 

the probability that the data are missing does not depend on the values of the missing data. 

In other words, any systematic difference between the missing values and the observed 

values can be explained by information in the observed data (Sterne et al., 2009). For 

example, continuing with the weight loss trial, assuming that the participants’ age is 

observed and included in the trial analysis, older individuals are more likely to have their 

weight recorded by the GP but at any age, individuals with low and high weight are equally 

likely to have their weight recorded. 

 

Missing not at random 

The outcome variable is said to be MNAR if there are systematic differences between the 

missing values and the observed values, even after the information from the observed data 

is taken into account (Sterne et al., 2009). That is, the probability of a missing outcome 

depends on the unobserved outcomes as well as the observed data. Parameter estimation 

from the observed data alone is typically biased. The amount of bias depends on the extent 

of dropout and the strength of the relationship between the unobserved outcome and 

probability of dropout. For example, continuing the weight loss trial example, individuals 

who have gained weight may be more likely to miss appointments if they have not achieved 

their target weight loss.  

There is no test that can identify whether the missing data mechanism is MCAR, MAR or 

MNAR. Consequently, when performing the analyses, it is necessary to make an assumption 

about the missing data. An incorrect assumption can lead to biased estimates, which can 

result in incorrect confidence intervals and, consequently incorrect p-values. Alternatively, 
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the analysis may be inefficient resulting in wider confidence intervals and larger p-values 

than necessary.  

2.4.2 Methods of analysis with missing data 

There are various methods that can handle missing data (Carpenter and Kenward, 2007). A 

few of the methods that have been used in published trials are described below (Wood et 

al., 2004). 

Complete case analysis 

A complete case analysis only considers the complete records. In other words, only the 

participants without missing values are included. When the missing data is MCAR this 

method results in unbiased estimates, however, the precision is reduced.  

Multiple Imputation 

Multiple imputation (MI) was first described by Rubin (Rubin, 1996). It follows from 

regression imputation (using the observed data to predict the missing values). The process 

is repeated numerous times to account for the uncertainty in the imputed values. The 

multiple imputation process can be broken down into three stages: 

1) Imputation: numerous sets of plausible values are created to ‘fill-in’ the missing 

values to create ‘complete’ datasets. 

2) Analysis: the desired analysis is performed on each of the complete data sets created 

in (1). 

3) Pooling: the results from the repeated analyses are combined into a single result.  

There are various methods available to perform the imputation step. A commonly used 

method is multiple imputation using chained equations (MICE). This is also known as Fully 

Conditional Specification (FCS) as each partially observed variable is imputed from its full 

conditional distribution given all other variables. MICE uses univariate models for each 

partially observed variable conditioned on all the other variables. If we had partially observed 

variables 𝑉𝑗 for 𝑗 = 1, . . . , 𝑚, then the MICE method would create 𝑚 univariate models. The 

algorithm is: 

a) A simple imputation is performed, for example using the sample mean. All missing 

values are ‘filled in’. 

b) The imputations for 𝑉1 are reset to missing. 
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c) 𝑉1 is regressed against the other variables, and a regression equation is obtained. 

d) The regression equation from stage c) is used to simulate the missing values in 𝑉1. 

e) Stages (b) to (d) are repeated for each 𝑉2, . . . , 𝑉𝑚 in turn. This is called a ‘cycle’. At 

the end of each cycle all missing values in the dataset have been replaced with 

simulated values from regressions. 

f) Stages (b) to (e) are then repeated so that a number of cycles are completed. 

g) The final cycle in (f) provides a single imputed dataset. The process (a) to (f) is 

repeated a number of times to create multiple datasets which are then combined 

using Rubin’s rules. 

Alternatively, a Bayesian method can be used to perform the imputation step by sampling 

from the posterior distribution of the joint distribution for the missing data given the 

observed data. When the joint likelihood function is complex, and cannot be simulated from 

directly, Markov chain Monte Carlo (MCMC) may be used to obtain (approximate) simulated 

values. 

2.5  Motivating examples 

In this section, two clinical trials are described. These trials are revisited later in this chapter 

and subsequent chapters to illustrate the techniques. They are examples of real trials that 

analysed multiple correlated outcomes and motivate this work. The first trial collected data 

on three continuous outcomes. In contrast, the second trial collected a mixture of continuous 

and binary outcomes.  

2.5.1 Pro-active Care and its Evaluation for Enduring Depression Trial, 

ProCEED  

The ProCEED trial is a two arm, individually randomised controlled trial (Buszewicz et al., 

2010, Buszewicz et al., 2016). The trial aims to establish whether structured and pro-active 

care of patients with chronic depression, in primary care, leads to a cost-effective 

improvement in medical and social outcomes when compared with the usual GP care over 

24 months. The dataset includes a sample of 558 participants with chronic depression taken 

from 42 primary care practices across the United Kingdom.  

The ProCEED trial used the Beck Depression Inventory (BDI-II), which is a measurement of 

severity of depression, as its primary outcome. The main results indicated that the practice 
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nurse-led proactive care was beneficial for some participants. However, the result for the 

primary outcome was not statistically significant at the 5% level (effect on BDI-II: 1.2 95% 

confidence interval (-0.3, 2.7) p=0.125) (Buszewicz et al. 2016). The trial team were also 

interested in the work and social activities scale (WSAS) and quality of life (Euroquol-EQ-

VAS).  

The Pearson’s correlation coefficients between the values of the outcome collected at 

baseline show there is a strong correlation between the three outcomes (BDI-II/WSAS 𝑟 =

0.753; WSAS/EQ-VAS 𝑟 = −0.623; BDI-II/EQ-VAS 𝑟 = −0.605). There was missing data for 

each of the three outcomes. In total, 431 participants provided follow up data, however, 

there were only 429, 428 and 415 values recorded for BDI-II, WSAS and EuroQol respectively. 

412 participants provided data for all three outcomes.  

2.5.2 Ten Top Tips trial  

The Ten Top Tips (10TT) is also a two-arm, individually randomised controlled trial (Beeken 

et al., 2012, Beeken et al., 2017). This dataset includes a sample of obese patients taken from 

14 general practices across England. The general aim of the study was to investigate the 

effect of the 10TT intervention in primary care. The 10TT intervention consisted of a leaflet 

(called ‘Ten Top Tips’) listing target behaviours alongside advice on repetition and context 

stability. 

The 10TT study specified weight change as the primary outcome. However, the trial team 

were interested in using three outcomes: change in weight (kg), change in waist 

circumference (cm) and blood glucose level (mmol/L). The weight and waist circumferences 

outcomes are viewed as continuous outcomes. The blood glucose level is categorised into 

‘standard’ and ‘high’ groups (85% of the participants were categorised as standard). High 

blood glucose has been defined as levels greater than 7.0 mmol/L (WHO, website). The 

Pearson’s correlation coefficients between the outcomes at baseline show a participant’s 

weight is strongly correlated with a participant’s waist circumference (𝑟 =  0.775). There is 

weak/moderate correlation between the participant’s blood glucose level and a weight r=

0.280) and participant’s blood glucose level and waist circumference (𝑟 = 0.356). The 

primary outcome was measured at three months. At this follow up, 388 participants provided 

at least one outcome value. However, only 383, 378 and 330 values were provided for 

weight, waist circumference and blood glucose level respectively.   
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2.6 Methods to analyse multiple outcomes in randomised controlled 

trials 

In this section, relevant methods which can be used to analyse multiple correlated outcomes 

are described. A example of an illustrative trial is used to help describe the methods. In the 

illustrative two-arm trial there are 𝑚 primary outcomes, which are correlated. The 𝑖th trial 

participant is randomly assigned to either the intervention group (𝑥𝑖 = 1) or the control 

group (𝑥𝑖 = 0), for 𝑖 = 1, … , 𝑛.  Here, 𝑥𝑖 is an indicator variable and 𝑛 is the number of 

participants. 

The aim of the trial is to test the null hypotheses 𝐻0𝑗: 𝛽1𝑗 = 0 for 𝑗 = 1, … , 𝑚 which state 

that there is no effect of the intervention on the nominated outcome. Each test statistic 𝑡𝑗 is 

used to test the null hypothesis 𝐻𝑗. Further suppose that there is an overall null hypothesis  

𝐻(𝑚) = ⋂ 𝐻𝑗
𝑚
𝑗=1 . Under this overall hypothesis, the joint test statistic (𝑡1, … , 𝑡𝑚) has an M-

variate distribution. Let 𝑌𝑖𝑗  represent the outcome values corresponding to the 𝑖th participant 

and the 𝑗th outcome, 𝛽1𝑗 represent the effect of the intervention on the 𝑗th outcome and 𝛽0 

be the intercept term. Lastly, 𝑝𝑗  is the 𝑗𝑡ℎ marginal unadjusted p-value which is obtained 

from the appropriate statistical test associated with analysing the respective outcome. To 

analyse a continuous outcome an unpaired Student’s t-test may be used. To analyse a binary 

outcome a Chi-squared test may be used to investigate the intervention. The unadjusted 

statistical significance level is set to 𝛼. For simplicity, the subscript 𝑖 associated with 

participants are omitted in most of the models and additional covariates have not been 

included in the models.  

Unless otherwise stated, it is assumed that the intervention is shown to be effective if a 

statistically significant effect is found on at least one of the outcomes. Consequently, when 

referring to power for multiple comparisons disjunctive power is used, unless otherwise 

specified. These are the recommendations suggested by (Dmitrienko et al., 2009, Bretz et al., 

2010). 

2.6.1 Combine outcomes 

One approach to avoid the difficulties associated with multiple significance testing is to 

combine the outcomes to create a single composite outcome. It avoids the issue of testing 

multiple outcomes as only one test is performed (Phillips and Haudiquet, 2003). A composite 

outcome is defined as the union of the outcomes. Consequently, if a composite outcome is 

made up of two time-to-event outcomes, then the composite outcome is defined as either 
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event occurring or both events occurring. However, for simplicity investigators may only take 

into account the time until the first event (Dmitrienko et al., 2009). 

An example of a composite outcome is the time from randomisation until either a nonfatal 

ischemic stroke, fatal ischemic stroke or early death. Composite outcomes that combine 

several binary events, such as the previous example, most commonly arise in cardiovascular 

trials (Cordoba et al., 2010) or chronic disease trials (Cutter et al., 1999).  When the 

composite outcome is the time until the first event there is an increase in statistical 

efficiency, compared to selecting only one of the events as the primary outcome. The 

increase in efficiency arises from the increased event rate. This may reduce the required 

sample size and consequently the costs and duration of the RCT (Ferreira-González et al., 

2007, Freemantle et al., 2003). 

The composite outcome needs to be specified before the trial begins andall components 

should be of equal importance when assessing the effect of the intervention (Montori et al., 

2005). A composite outcome may not be appropriate when the effects of an intervention 

differ in magnitude and/or direction across the outcomes (Pogue et al., 2012). In particular, 

the latter may result in a large loss of power. 

2.6.2 Analysing outcomes separately 

It is common practice to analyse each outcome separately in a univariate framework. For 

example, when analysing continuous outcomes, an unpaired Student’s t-test may be 

performed to analyse the effect of the intervention for each of the pre-specified outcomes. 

One typically would like to adjust for baseline covariates (European Medical Agency, 2017) 

in which case a classic linear model is preferable. For the scenario of continuous outcomes, 

the linear model can be written as 

 𝑌𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑥 +  𝜖𝑗 ,  

 

(2.1)  

where  𝑌𝑗 , 𝑥, 𝛽0 and 𝛽1𝑗 are as previously defined and 𝜖𝑗 ~ 𝑁(0, 𝜎𝑒
2)  is the random error with 

variance 𝜎𝑒
2. By analysing the outcomes separately, the possible multivariate structure in the 

data has not be used. Indeed, an additional imputation step would be required to take into 

account any missing values.   

Multiple tests need to be performed to analyse multiple outcomes in a univariate framework, 

which may increase the familywise error rate (FWER). A variety of techniques can be used to 
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ensure that the error rate is kept to an acceptable level. These techniques are discussed in 

detail later in this section. 

2.6.3 Multivariate analysis 

More advanced techniques, including multivariate methods (Goldstein, 2011), have been 

proposed that enable multiples outcomes to be analysed simultaneously by taking into 

account the correlations between them (Teixeira-Pinto et al., 2009). The use of these 

methods could potentially lead to improved precision and greater power (McCulloch, 2008b) 

and hence smaller sample sizes. In addition, depending on the objective of the trial, we may 

also estimate an overall effect of the intervention across outcomes, as well as a separate 

effect for each outcome. 

Global statistical tests 

Another approach is to use a global testing procedure to estimate an overall effect of the 

intervention across outcomes, with. the trial deemed a success if the overall effect is 

statistically significant. Conceptually,the interpretation of results obtained from global 

procedures and the analysis of composite outcomes are similar and both avoid the issues 

associated with testing outcomes separately. However, unlike composite outcomes, global 

test procedures account for the correlations between the outcomes. Methods include the 

multivariate analysis of variance (MANOVA), the one-degree of freedom global test 

developed by Roy (Roy et al., 2003), and the test statistics developed by O’Brien (O’Brien, 

1984) and extended by Pocock  (Pocock, 1997).  

Global testing procedures require balanced data across all outcomes and will omit 

observations if any outcome values are missing. Given this limitation, global testing 

procedures are not widely used in clinical trials and therefore are not discussed further.  

Multivariate regression 

Multivariate regression is an extension of the multiple regression that allows for multiple 

outcomes of the same type to be analysed. For example, this approach may be used to 

analyse several continuous or several binary outcomes. To model the effects of the 

intervention for two continuous outcomes, the following model can be used 

 𝒀 = 𝑿𝟏𝜷0 + 𝑿𝟐 𝜷𝟏 + 𝐄,  

 

(2.2)  
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where 𝐘 is a  𝑛 ×  2 matrix in which each row contains the outcome values for a single 

participant (for two outcomes, 𝑌𝑖 = (𝑦𝑖1, 𝑦𝑖2)), 𝑿𝟐 is a 𝑛 ×  1 column vector in which each 

element indicates whether the participant received the control (𝑥𝑖 = 0) or intervention (𝑥𝑖 =

1), 𝜷1 is a 1 ×  𝑛 row vector representing the effects of the intervention for the 2 outcomes, 

𝑿𝟏 is a 𝑛 ×  1 column vector of 1s, 𝜷0 is a 1 ×  𝑛 row vector representing the constant term 

(the ‘intercept’) for the 2 outcomes and 𝐄 is a 𝑛 ×  2  matrix representing the random error. 

The rows of the error term, 𝐄, are independently distributed as multivariate normal 𝑁2(0, 𝚺) 

with an unknown positive definite covariance matrix 𝚺.  

Equation (2.2) can be adapted to handle multiple binary outcomes by assuming 𝒀 is a latent 

variable, such that the observed binary outcome 𝑌𝒊𝒋
∗ = 1 if 𝑌𝑖𝑗 > 0, and 𝑌𝒊𝒋

∗ = 0 otherwise. 

Multivariate regression also requires balanced data across the outcomes. 

Factorisation modelling 

This approach involves factorisng the joint distribution of two correlated outcomes into a 

marginal and a conditional distribution. Univariate models can then be fitted to both 

components of the factorisation (Teixeira-Pinto and Harezlak, 2013). IT is possible to use 

different types of outcomes within this framework althoughthe estimated intervention 

effects are likely to be different from those obtained by modelling the outcomes separately 

because of different distributional assumptions. For the univariate analyses, it is assumed 

that the two outcomes are separate, whereas the factorisation model assumes that the 

second outcome is distributed conditionally on the first outcome (Teixeira-Pinto and 

Harezlak, 2013).  

With two correlated outcomes, where one is continuous (𝑌1) and the other is binary (𝑌2) we 

can use one of the two possible factorisations of their joint distribution 𝑓𝑌1,𝑌2
(𝑦1, 𝑦2) =

𝑓𝑌1 | 𝑌2 (𝑦1|𝑦2)𝑓𝑌2
(𝑦2). Fitzmaurice and Laird (1995) describe the factorisation model which 

uses a linear model for 𝑌1 and a probit model for  𝑌2, and including one covariate for the 

intervention. The model is 

 𝑌1 =  𝛽01 +  𝛽11𝑥 + 𝜏 (𝑌2 − 𝜇2) + 𝜖1,𝑝𝑟𝑜𝑏𝑖𝑡(𝜇2) = 𝛽02 +  𝛽12 𝑥, 

 

(2.3)  

where 𝜖1 ∼ 𝑁(0, 𝜎𝑐
2) is a normally-distributed random variable with mean zero and variance 

𝜎𝑐
2, and 𝜏 quantifies the association between 𝑌1 and 𝑌2 . 

Catalano and Ryan (1992) propose the ‘reverse’ of this model in which they use the other 

possible factorisation of the joint distribution 𝑓𝑌1,𝑌2
(𝑦1, 𝑦2) = 𝑓𝑌1

(𝑦1)𝑓𝑌2 | 𝑌1 (𝑦2|𝑦1).  This is 
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described in Teixeria-Pinto (2013).  At present there is no guidance on how to analyse more 

than two outcomes using the factorisation model. With 𝑘 outcomes, there are 𝑘! possible 

factorisations and there is no guidance as to which one is best to use. 

Latent variable model 

Several researchers have suggested several methods that use latent variables to model 

multiple correlated outcomes, including Sammel et al. (1997), McCulloch (2008a) and 

Dunson (2000).  

McCulloch (2008a) suggest introducing a random effect 𝑙 that will be shared across 

outcomes. Assuming we have values of one continuous normally distributed outcome 

(𝑌1) and a binary outcome (𝑌2), the model is 

 , 

𝑌1 =  𝛽01 +  𝛽11𝑥 + 𝑙 + 𝜖1, 

, 

 𝑃(𝑌2 = 1) =  𝜙(𝛽02 +  𝛽12𝑥 + 𝜆 𝑙), 

 

(2.4)  

   

where  𝑒1~ 𝑁(0, 𝜎1
2), 𝑙~ 𝑁(0, 𝜎𝑙

2) and 𝜎1
2 and 𝜎𝑙

2 are unknown variances. It is assumed that 

latent variable 𝑙 completely specifies the pairwise correlation between the outcomes and 

hence, conditional on this variable, the two outcomes are independent. The parameter 𝜆 

accounts for the fact that the linear predictors for 𝑌1 and 𝑌2 are on different scales and will 

therefore have different variances.  

The estimated intervention effects for this model are conditional on the latent variable, as 

shown in equation (2.4) andconsequently, they may not be comparable to the estimates 

obtained from the other methods discussed. To obtain effects for the binary outcomes that 

are comparable to those obtained from univarate analyses, we divide the regression 

coefficient 𝛽12 by  √𝜆2𝜎𝑙
2 +  𝜎2

2  (Teixeira‐Pinto and Normand, 2009). where 𝜎2
2  is fixed to 1 

if a probit link function is used, or to 
𝜋2

3
 if a logit link is used. A detailed discussion regarding 

the adjustments can be found in Teixeira‐Pinto and Normand (2008).  

Note that in the above example (2.4) there are four variance-covariance parameters: 𝜎1
2, 𝜎2

2,

𝜎𝑙
2 and 𝜆. In this example 𝜎2

2 is fixed due to the binary nature of the equation but the other 

three parameters need to be estimated. There are only two estimable quantities: the total 

residual of 𝑦1 
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𝑣𝑎𝑟(𝜖1) =  𝜎1
2 + 𝜎𝑙

2, 

and the correlation between the total residuals of the two equations 

𝑐𝑜𝑟𝑟(𝜖1, 𝜖2) =
𝑐𝑜𝑣(𝜖1,𝜖2)

√𝑣𝑎𝑟(𝜖1)𝑣𝑎𝑟(𝜖2)
=

𝜆𝜎𝑙
2

√(𝜎1
2+𝜎𝑙

2 )(𝜎2
2+𝜆2𝜎𝑙

2 )

. 

It is necessary to impose an additional constraint to ensure the model is not over 

parameterised so that the model parameters are identifiable (Teixeira‐Pinto and Normand, 

2009). One option is to fix the variance of the latent variable 𝜎𝑙
2. A similar restriction is 

needed to analysing multiple continuous or multiple binary outcomes.  

McCulloch (2008a) study this model in more depth and provide examples using other 

distributions. Sammel et al. (1997) discuss another latent variable model for mixed discrete 

and continuous outcomes. Their model allows use of any distribution from the exponential 

family. 

Multivariate multilevel model 

The multivariate multilevel (MM) model has been suggested as another approach to analyse 

correlated multiple outcomes. In the MM the multiple outcomes are considered to be nested 

within individuals and are treated in a similar manner to how repeated measurements are 

treated within the multilevel modelling framework(Goldstein et al., 2009, Goldstein, 2011). 

For two continuous outcomes, the following model is used 

 𝑌𝑗 = 𝑧1𝑗(𝛽01 + 𝛽11𝑥 + 𝜖1 ) + 𝑧2𝑗( 𝛽02 + 𝛽12𝑥 + 𝜖2 ), 

𝑧1𝑗 = 1 if 𝑗 = 1 and  𝑧1𝑗 = 0 otherwise, 

 𝑧2𝑗 = 1 − 𝑧1𝑗 , 

 

(2.5)  

where 𝑗 ∈  {1,2} indicates the outcomes, 𝑧𝑘𝑗 is an indicator for outcome 𝑌𝑗 𝑥𝑖  is the binary 

variable indicating whether the participant received the control (𝑥𝑖 = 0) or intervention 

(𝑥𝑖 = 1), 𝛽1𝑗 is the effect of the intervention and 𝝐 ~ 𝑁(𝟎, 𝛀𝒖) is the random error for the 

level 2 structure where 𝛀𝒖 is the unknown covariance matrix.  

Level one variation is not specified as the level exists solely to define the multivariate 

structure. The formulation as a multilevel model allows for estimation of a covariance matrix 

even if some of the outcome data are missing, as long as missing at random.  In the above 

model, two intervention effects have been specified, one for each outcome. However, a 

common effect across both outcomes may also be specified. Additionally, the model can be 
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extended to incorporate multiple covariates (Rasbash et al., 2012) and the model can handle 

mixed outcome types (Goldstein et al., 2009).  

Summary of the multivariate methods  

The factorisation, latent and MM models can handle continuous outcomes, binary outcomes 

or a mixture of both. In addition, these models can handle non-overlapping missingness, 

where values may be missing for some but not all some of the outcomes. That is, the number 

of observations does not need to be balanced across outcomes.  The multivariate regression, 

latent and MM models can easily be extended to several outcomes although the 

factorization can be cumbersome when there are several outcomes. As the factorization 

model cannot be extended to more than two outcomes, I encourage the use of the latent or 

MM model.  

When the effects are analysed separately an adjustment, such as those described below in 

Section 2.7, will need to be made for multiple comparisons to control FWER.  

 

2.7 Methods to control the familywise error rate 

In the previous section, I discussed methods to analyse multiple outcomes in the trial setting. 

When implementing many of these methods an intervention effect is estimated on each 

outcome and multiple comparison are performed. In confirmatory RCTs, the FWER must be 

maintained at an acceptable level which is usually 0.05. In this section, methods that may be 

used to control the FWER are described. 

2.7.1 Hierarchical testing of multiple outcomes 

Hierarchical testing involves ranking the outcomes according to their clinical relevance. The 

outcomes are ranked from most important to least important and then tested individually in 

the pre-specified hierarchical order. An outcome can only be tested if all previously tested 

outcomes have been shown to be statistically significant; otherwise the testing stops and no 

confirmatory claims can be based on the remaining outcomes. For example, if 𝑌1 and 𝑌2 are 

ordered to reflect clinical importance, the intervention effect on 𝑌2 can only examined if the 

intervention effect on 𝑌1 was found to be statistically significant.  Because of the hierarchical 

nature, the same significance level can be used for all tests and no formal adjustment is 

necessary. However, the power is reduced for outcomes that have lower ranks. Other 

methods have been introduced to maintain some of the power for the outcomes with lower 
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ranks, including the fixed-sequence and fallback methods (Dmitrienko and D'Agostino, 

2013). 

In some instances, there is a natural hierarchical order for the outcomes, for example, with 

respect to the clinical importance of the outcomes, and therefore it is suitable to use this 

technique to remove the problem of multiple comparisons. If investigators use this method, 

the ordering must be pre-specified and clearly reported in the study protocol (Committee 

for Proprietary Medicinal Products, 2002).  

2.7.2 Adjustment to the p-values 

To take account of multiple comparisons, the FWER may be controlled by applying a method 

to adjust the p-values produced by each statistical test used to investigate the effect of the 

intervention or equivalently the corresponding significance levels may be adjusted. Many 

techniques to adjust p-values have been proposed in the literature (Dmitrienko and 

D'Agostino, 2013, Shaffer, 1995, Dmitrienko et al., 2009). The techniques can be categorised 

into single step methods that test all hypotheses simultaneously, stepwise methods that rely 

on data-driven hypothesis ordering and stepwise methods that rely on a pre-specified 

hypothesis ordering.  Once the p-values have been adjusted for multiplicity, the intervention 

can be deemed to be effective if a statistically significant effect if found on at least one of 

the outcomes. The single step procedures are described below.  

Šidák method 

The Šidák method (Šidák, 1967) is a single step adjustment method. The adjusted p-value is 

given by 

 𝑝𝑗
Ši = 1 − (1 − 𝑝𝑗)

𝑚
, (2.6)  

where 𝑝𝑗
Ši is the Šidák p-value adjusted for multiplicity.  The p-value 𝑝𝑗

Ši  should be compared 

to the nominal significance level. Equivalently, the significance level could be adjusted so 

that the unadjusted p-values are compared to the adjusted significance level  

 
𝛼𝑗

Ši = 1 − (1 − 𝛼𝑗)
1
𝑚. 

(2.7)  

Under the assumption that the outcomes are independent, the method can be derived, as 

follows: 

         𝑃(no Type I error on 1 test) =  1 − 𝛼𝑗
Ši, 

→  𝑃(no Type I error on m tests) = (1 −  𝛼𝑗
Ši)

𝑚
, 

(2.8)  
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  →  𝑃(at least one type I error on m tests) 

=  1 −  (1 −  𝛼𝑗
Ši)

𝑚 
= 𝛼𝑗. 

The final line in equation (2.8) gives the result given in equation (2.7). By using the smaller 

significance level 𝛼𝑗
Ši for each outcome, the overall significance level is maintained at the 

nominal level. Figure 2.2 provides a graphical summary of the Šidák method when there are 

two outcomes. The Šidák equation was derived under the assumption that the outcomes are 

independent but also controls the FWER when the hypothesis test statistics are multivariate 

normal. 

Bonferroni method 

The most basic single step adjustment method is the Bonferroni method. It relies on a simple 

𝛼 splitting rejection rule. The adjusted p-value is defined as  

 𝑝𝑗
𝐵𝑜𝑛𝑓

=  𝑚 𝑝𝑗. (2.9)  

The adjusted p-value 𝑝𝑗
𝐵𝑜𝑛𝑓

 should be compared to the pre-specified significance level. 

Equivalently, the significance level could be adjusted so that the unadjusted p-values are 

Figure 2.2 Graphical summary of the Šidák method for two outcomes.  

The shaded area is the combination of p-values for which the null hypothesis is rejected, 
which is there is no effect of the intervention for the corresponding outcome.  The rejection 
region for outcome 1 is displayed on the left and the corresponding rejection region for 
outcome 2 is displayed on the right. Similar graphs are displayed in Dmitrienko and 
D'Agostino (2013). 
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compared to the adjusted significance level, for example, with two outcomes we would use 

an adjusted significance level 𝛼𝐵𝑜𝑛𝑓 =
𝛼𝑗

2
=

0.05

2
= 0.025 where 𝛼𝑗 is the unadjusted 

significance level. The method can be derived using the Taylor series expansion from the 

Šidák equation, as 

 
𝛼𝑗

Ši = 1 − (1 − 𝛼𝑗)
1
𝑚 

= 1 − (1 + (− 𝛼𝑗))

1
𝑚

 

= 1 − (1 +
1

𝑚
(−𝛼𝑗) + (

1

𝑚
) (

1

𝑚
− 1) (−𝛼𝑗)

2
+ ⋯ ) 

       ≈
𝛼𝑗

𝑚
 

       𝛼𝑗
𝐵𝑜𝑛𝑓

=
𝛼𝑗

𝑚
. 

 

(2.10)  

 

Figure 2.3 Graphical summary of the Bonferroni method for two outcomes.  

The shaded area is the combination of p-values for which the null hypothesis is rejected, that 
is there is no intervention effect for the corresponding outcome.  The rejection region for 
outcome 1 is displayed on the left and the corresponding rejection region for outcome 2 is 
displayed on the right. Similar graphs are displayed in Dmitrienko and D'Agostino (2013). 

 

Figure 2.3 provides a graphical summary of the Bonferroni method when there are two 

outcomes. The advantage of this method is that it is simple and it is a non-parametric 

method. As it a non-parametric method, it does not impose any restrictions of the type of 

test required or distribution of the test statistics. Given its simplicity, the Bonferroni method 
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is widely used in RCTs even though it can be conservative, when the outcomes are correlated 

or when the number of tests is large (Yoon et al., 2011, Tyler et al., 2011).  

The Bonferroni method is less powerful than the Šidák method since 

 
𝛼𝑗

𝐵𝑜𝑛𝑓
=

𝛼𝑗

𝑚 
<  1 − (1 − 𝛼𝑗)

1

𝑚 =  𝛼𝑗
Ši, 

(2.11)  

as shown in the Taylor expansion in equation (2.10). However, the improvement compared 

to the Bonferroni method is minimal, especially when there are less than ten tests (Simes, 

1986). 

Derivatives of the Šidák method 

The Dubey/Armitage-Parmar (D/AP), Tukey, Ciminera, Heyse (TCH), (Tukey et al., 1985); and 

the R2-adjustment (RSA), (Sankoh et al., 1997) adjustments are ad-hoc methods that are 

based on the Šidák method, which takes into account the correlation between the outcomes. 

These methods have the form 

 𝑝𝑗
𝑎𝑑𝑗

= 1 − (1 − 𝑝𝑗)
𝑔(𝑗)

. 

 

(2.12)  

where 𝑔(𝑗) is defined for each method. The D/AP method defines 𝑔(𝑗) as 𝑚1−𝜇𝑗 where 𝜇𝑗  

is the mean correlation between the 𝑗th outcome and the remaining 𝑚 − 1 outcomes. When 

using this method in the analysis of multiple outcomes, the mean correlation may be 

estimated from the data to calculate the adjusted p-values. The TCH has been derived for 

outcomes that have a strong correlation, it defines 𝑔(𝑗) as √𝑚 where 𝑚 is the number of 

outcomes. The RSA defines 𝑔(𝑗) =  𝑚1−𝑅2(𝑗) where 𝑅2(𝑗) is the value of 𝑅2 from an 

intercept-free linear regression with the 𝑗th variable as the outcome and the remaining 𝑚 −

1 variables as the predictors.  

There has been little theoretical work to assess the performance of these methods (Sankoh 

et al., 1997). One of the nice properties of the D/AP procedure, which may have contributed 

to its development, is that when the mean correlation between the 𝑗th outcome and the 

remaining 𝑚 − 1 outcomes is 0, then the D/AP method is equivalent to the Šidák method. 

On the other hand, when the mean correlation between the 𝑗th outcome and the remaining 

𝑚 − 1 outcomes is 1, then the D/AP is reduced to 𝑝𝑗
𝑎𝑑𝑗

= 𝑝𝑗, meaning that the adjusted p-

value is the same as the p-value unadjusted for multiplicity. When the mean correlation 

between the 𝑗th outcome and the remaining 𝑚 − 1 outcomes is 0.5 this method coincides 

with the TCH method.  
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The methods described so far have been single step methods. The data-driven methods that 

require the data to be ordered before implementing the adjustment are now described.   

Holm method 

The Holm ‘step-down’ method (Holm, 1979) is a data-driven stepwise method that is also 

known as the ‘sequentially rejective Bonferroni’ test.   

For this method, the p-values unadjusted for multiplicity are ranked from smallest 𝑝(1) to 

largest  𝑝(𝑚) and adjusted as follows 

 𝑝 (𝑘)
𝐻𝑜𝑙𝑚 = (𝑀 − 𝑘 + 1) 𝑝(𝑘), 

 

(2.13)  

where 𝑝(𝑘) is the unadjusted p-values corresponding to the outcome value 𝑌(𝑘) for 𝑘 =

1, … 𝑚, the rank of the p-value, and 𝑚 is the number of outcomes. Starting with the most 

significant p-value (smallest p-value), each p-value adjusted for multiplicity is compared to 

the pre-specified significance level, until a p-value greater than the significance level is 

observed after which the procedure stops (Wright, 1992).  The Holm method is described 

graphically in Figure 2.4.   



  Chapter 2 Background and key concepts 

45 
 

Figure 2.4 Graphical summary of the Holm method for two outcomes.  

The shaded area is the combination of p-values for which the null hypothesis is rejected, that 
is there is no effect of the intervention for the corresponding outcome.  The rejection region 
for outcome 1 is displayed on the left and the corresponding rejection region for outcome 2 
is displayed on the right. 

As with the Bonferroni method, the Holm method is a non-parametric method and therefore 

does not impose any restrictions on the distribution of the joint test statistic. 

The Holm method is more powerful than the simple Bonferroni method (Yoon et al., 2011) 

meaning that if a null hypothesis is rejected when using the Bonferroni method, the null 

hypothesis will also be rejected by the Holm method but additional hypothesis may be 

rejected when using the Holm method. This is shown graphically, as the shaded region is 

larger in Figure 2.4 which shows the rejection region for the Holm method compared to 

Figure 2.3 which shows the rejection region for the Bonferroni method.  

Hochberg Step-Up method  

The Hochberg step-up method (Hochberg, 1988) is analogous to the Holm step-down 

method. For this method, the p-values unadjusted for multiplicity are ranked from largest 

 𝑝(1) to smallest 𝑝(𝑚) and adjusted as follows 

 𝑝 (𝑘)
𝐻𝑜𝑐ℎ = (𝑚 − 𝑘 + 1) 𝑝(𝑘) 

 

(2.14)  

where 𝑝(𝑘) is the unadjusted p-values corresponding to the outcome value 𝑌(𝑘) for 𝑘 =

1, … , 𝑚 which is the rank of the p-value. Starting with the least significant p-value (largest p-

value), each p-value adjusted for multiplicity is compared to the pre-specified significance 

level, until a p-value lower than the significance level is observed after which the comparison 
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stops (Wright, 1992). Once the procedure stops, the current outcome is defined as 

statistically significant and all remaining outcomes (which have a p-value less than or equal 

to the one being tested) are defined as statistically significant. This is a semi-parametric 

method meaning it can be used to control the FWER when the distribution of the joint test 

statistic under the alternative hypothesis is known (for example multivariate normality) but 

not fully specified. If the Hochberg method is applied to multiplicity problems with a 

negatively correlated test statistic, the FWER may be inflated, however, the magnitude of 

the error rate inflations with negative correlation is typically trivial (Dmitrienko and 

D'Agostino, 2013). The Hochberg method is described graphically in Figure 2.5. 

 

Figure 2.5 Graphical summary of the Hochberg method for two outcomes.  

The shaded area is the combination of p-values for which the null hypothesis is rejected, that 
there is no effect of the intervention for the corresponding outcome. The rejection region 
for outcome 1 is displayed on the left and the corresponding rejection region for outcome 2 
is displayed on the right. 

The Hochberg method is more powerful than the Holm method (Candes, 2012). This is 

highlighted by a larger shaded region in Figure 2.5 compared to Figure 2.4. This means that 

when using the Hochberg method one is guaranteed to reject all null hypotheses that are 

rejected when using the Holm method, but additional null hypotheses may also be rejected 

when using the Hochberg method.  

The Hochberg method favours consistency among the outcomes across multiple tests in the 

sense that it is easier to achieve significance if all p-values are small. Whenever all p-values 

in a multiplicty problem are significant before an adjustment (i.e. none of the p-values 
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exceed 𝛼), all hypothesis will be rejected after the Hochberg method is applied  (Dmitrienko 

and D'Agostino, 2013).  

Hommel method  

The Hommel method (Hommel, 1988) is another data-driven stepwise method. For this 

method, the unadjusted p-values are ranked from largest 𝑝(𝑚) to smallest 𝑝(1). Let 𝑙 be the 

largest integer for which  

 𝑝(𝑚−𝑙+𝑗) >
𝑗𝛼

𝑙
, 

 

(2.15)  

for 𝑗 = 1, … 𝑙.   If no such 𝑗 exists then all outcomes can be deemed statistically significant; 

otherwise, all outcomes with 𝑝𝑖 ≤
𝛼

𝑗
 may be deemed statistically significant, for 𝑗 = 1, … , 𝑚 

and 𝑖 = 1, … , 𝑚. 

The Hommel method has greater power to detect a true effect of the intervention compared 

to the Hochberg method (Dmitrienko and D'Agostino, 2013). Similarly to the Hochberg 

method, it is a semi-parametric method meaning it can be used when the distribution of the 

test statistic under the alternative hypothesis is known but not fully specified. Additionally, 

it requires consistency among the outcomes of the individual tests as it is easier to achieve 

significance if the p-values for all hypotheses to be performed are small (Dmitrienko and 

D'Agostino, 2013). 

Another class of methods to account for multiple comparisons is the resampling method.  

The resampling methods take into account the correlation between the outcomes via 

bootstrapping (Westfall and Young, 1993).  I will consider one resampling method below.  

Stepdown MinP  

Another step-down method to adjust p-values is the ‘stepdown MinP’ method (Westfall and 

Young, 1993, Ge et al., 2003). Unlike the previous methods, it does not make any 

assumptions regarding the joint distribution of the test statistics, instead it attempts to 

approximate the true joint distribution by using a resampling approach. Consequently, the 

stepdown MinP is referred to as a ‘resampling based procedure’ (Dmitrienko et al., 2009). 

The resampling based procedure takes into account the correlation structure between the 

outcomes and therefore may yield more powerful tests compared to the other adjustment 

methods (Reitmeir and Wassmer, 1999). The steps to obtain the stepdown MinP p-value 

adjusted for multiplicity are: 1) calculate the observed test statistics for the observed 
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dataset; 2) resample the data with replacement within each group to obtain bootstrap 

resamples, compute the resampled test statistics for each resampled dataset and construct 

the reference distribution using the centred and/or scaled resampled test statistics; 3) 

calculate the critical value of a level α test based on the upper α percentile of the reference 

distribution, or obtain the raw p-values by computing the proportion of bootstrapped test 

statistics that are as extreme or more extreme than the observed test statistic (Li and Dye, 

2013).  

The resampling techniques have previously been recommended for clinical trials with 

multiple outcomes (Reitmeir and Wassmer, 1999) however, they are not widely used in 

clinical trial applications. The stepdown MinP was the only resample method discussed as it 

has been shown to perform well when compared to other resampling methods (Li and Dye, 

2013). 

All the methods that have been discussed so far have assumed that the study has been 

powered adequately for all primary outcomes. However, this may not be the case. In some 

scenarios, one outcome may have adequate power whilst the remaining primary outcomes 

are underpowered due to time and cost restraints. Alternatively, the study may not have 

been powered to investigate secondary outcomes but the investigator is still interested in 

exploring the effects of the intervention on the secondary outcomes. Prospective alpha 

allocation scheme and the adaptive alpha allocation approach are designed to be used in the 

scenario when some outcomes are underpowered. 

Prospective alpha allocation scheme (PAAS) 

The prospective alpha allocation scheme (PAAS) is a weighted version of the Bonferroni 

method (Moyé, 2000). For this approach, the outcomes have to be ranked in order of priority, 

with the most important outcome being ranked first. For two outcomes the approach is 

defined as: 

i) 𝛼1 is chosen as the significance level for the most important outcome, where  

0 <  𝛼1 < 𝛼, 

ii)  the second outcome has the following significance level: 

𝛼2 = 1 −  
1−𝛼

1− 𝛼1
, 

where 𝛼 is the pre-specified level of FWER which is usually 0.05. An extension for a larger 

number of primary and secondary outcomes is provided in Moyé (2000).  This approach is 
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useful when the outcomes can be hierarchically ordered in order of importance, for example, 

when there is one primary outcome and a key secondary outcome. However, it has limited 

use when alternative outcomes are used as the investigators may find it difficult to 

hierarchically order the outcomes or chose the level of 𝛼 to give each outcome. The PAAS is 

a simple way to accommodate outcomes that can be ordered a priori but it potentially under 

powers outcomes (Li and Mehrotra, 2008), consequently other approaches, including the 

adaptive alpha allocation approach have been proposed.  

Adaptive alpha allocation approach (4A) 

The adaptive alpha allocation approach (4A) is a feedback procedure (Li and Mehrotra, 2008). 

The method assumes that the outcomes can be grouped into two families. The first family 

includes primary outcomes that are adequately powered and the second family includes 

potentially underpowered outcomes, potentially the secondary outcomes. For two 

outcomes, the p-values unadjusted for multiplicity are ranked 𝑝(1) and 𝑝(2) according to the 

importance of the corresponding outcome. Assuming the outcomes are independent, the 

approach is defined as: 

i) The most important outcome is tested using 𝛼1 = 𝛼 − 𝜖,   𝜖 > 0 

ii) The least important outcome is tested using 

𝛼2 = {
𝛼                       if 𝑝(1) ≤  𝛼1

min (
𝛼𝑡

𝑝1
2 , 𝛼1)    if 𝑝(1) >  𝛼1   

, 

where 

𝛼𝑡 =  {
𝛼1 (1 − √2 𝛼1 − 𝛼 −  𝛼1

2)
2

   if 𝛼1 +  𝛼1
2 − 𝛼1

3 ≤ 𝛼

𝛼1  
𝛼−𝛼1

1− 𝛼1
                                   if 𝛼1 + 𝛼1

2 − 𝛼1
3 > 𝛼

 , 

where 𝛼𝑖 is the significance level corresponding to the outcome ranked 𝑖th and 𝛼 is the 

chosen FWER. Li and Mehrotra (2008) provide an extended version that takes into account 

any correlation between the outcomes. They provide tables describing the level of alpha to 

use depending on the correlation between the outcomes.  This approach is beneficial as it 

provides higher significance level for the less important outcomes. However, this work 

focuses on multiple primary outcomes which often cannot be ordered according to their 

level of importance.  
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Other methods 

There have been other methods that have been described in the literature to adjust p-values 

including Rom’s test which is more powerful than the Hochberg, Holm and Bonferroni 

methods; however, it is more complicated than these methods (Wright, 1992). Dunnett 

(1955) has suggested a family of methods which require the outcomes to be normally 

distributed. The limitation of the Dunnett methods is that they require a balanced design in 

that they require the same number of observations for all the outcomes. In the clinical trial 

setting, this is often not achieved with missing variables arising for numerous reasons, 

consequently the Dunnett methods are not described in more detail.   

 

Summary of methods which adjust p-values 

In this section, I have described methods to account for multiplicity based on adjusting 

univariate p-values. When calculating the p-values, it has been assumed that the main clinical 

objective of the trial is formulated in terms of investigating the effect of the intervention on 

several primary outcomes and the objective is met if at least one analysis produces a 

significant result (Dmitrienko and D'Agostino, 2013). A summary of adjustments, including 

those described above, are shown in Table 2.1.  

The Bonferroni and Holm methods are non-parametric. This means they both control the 

FWER in any setting. Hochberg and Hommel methods are semi-parametric and therefore 

certain distributional assumptions need to be satisfied to achieve the FWER control. Semi-

parametric methods can be used when the distribution of the joint test statistic used to test 

the null hypothesis is known but it is not fully specified. For example semi-parametric 

methods can be used when it is known that the joint distribution of the test statistic is 

multivariate normal but the mean of this distribution is not known. These distributional 

assumptions are not restrictive and many clinical trials meet these assumptions (Dmitrienko 

and D'Agostino, 2013). Parametric methods can be used when the joint distribution of the 

test statistic is fully specified.  
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Table 2.1 Methods that can be used to control the familywise error rate (FWER) when 
analysing multiple outcomes in clinical trials 

 Classification 

 

Distributional 

information 

Single step Data-driven 

hypothesis ordering 

Pre-specified 

hypothesis ordering 

Non-parametric Bonferroni Holm 

Stepdown MinP* 

Fixed-sequence  

Fallback 

Chain 

Semi-parametric Šidák 

TCH* 

D/AP* 

RSA* 

Hochberg 

Hommel 

 

 

Parametric Dunnett 

 

Step-down Dunnett 

Step-up Dunnett 

Parametric fallback 

Parametric chain 

Feedback 

This table is similar to a table from (Dmitrienko and D'Agostino, 2013) TCH = Tukey, Ciminera, 
Heyse; D/AP = Dubey/Armitage-Parmar; RSA = R2-adjustment. *These methods account for 
the correlations between outcomes. 
 

Single step methods are inefficient because they do not utilize the 𝛼 propagation and thus 

do not use up all of the available error rate. The stepwise methods are more powerful 

methods. As demonstrated by Figures 2.2-2.5, the common methods can be ordered in terms 

of increasing power: Bonferroni, Holm, Hochberg and Hommel. This highlights that Hommel 

and Hochberg are preferred over the other two methods in a multiplicity problem without 

hypothesis ordering. However these do require additional distributional assumptions over 

the other Bonferroni type methods (Dmitrienko and D'Agostino, 2013). 

Fixed sequence methods are used when the outcomes are ordered in terms of importance 

prior to the trial. These methods are not as useful when alternative or co-primary outcomes 

are used as investigators are unlikely to be able to order the importance of the outcomes. 

Consequently, the fixed sequence methods are not discussed in detail.   

When selecting the method to use the extent of the pairwise correlation between the 

primary outcomes needs to be considered along with the impact of the FWER. Most of the 

methods described above ignore the pairwise correlations. Ignoring these correlations could 
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result in a loss of efficiency and consequently less power being required to detect effects of 

the intervention (Teixeira-Pinto et al., 2009). The TCH method was designed for strongly 

correlated outcomes, consequently, when outcomes are independent the FWER observed is 

very high, nearly double the desired threshold (Blakesley et al., 2009). Researchers must be 

confident that the outcomes will be correlated if this method is chosen.   

 

2.8 Discussion  

Many techniques have been proposed to analyse multiple primary outcomes in clinical trials. 

The multivariate methods are more efficient compared to analysing the outcomes 

separately. The gains in efficiency may lead to smaller standard errors and, as a result, higher 

power. This in turn may affect the conclusions drawn. When analysing multiple outcomes in 

confirmatory randomised controlled trials, it is vital to control the FWER, to ensure that the 

chance of observing at least one statistically significant result by chance is not too high. Many 

p-value adjustment methods have been proposed to maintain the FWER. Even though many 

multivariate methods and methods to adjust p-values have been proposed, it is not known 

which of these methods, if any, are used in published clinical trials. 
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3 Chapter 3 

A review of recently published randomised 
controlled trials 
 

This chapter reviews recently published RCTs in the areas of neurology and psychiatry. The 

purpose of this chapter is to ascertain whether multiple primary outcomes are used in 

recently published trials, and to identify the methods that are used for the sample size 

calculation and for the statistical analysis of RCTs using multiple primary outcomes. In doing 

so, I will be able to ensure that the simulations in the following chapters are based on realistic 

scenarios to ensure their relevance. This will enable me to provide practical guidance for 

researchers that is applicable to current practice.  

The review focuses on major neurology and psychiatry journals. Neurology and psychiatry 

are two disease areas where multiple outcomes may provide a more comprehensive 

understanding of the potential effects of the intervention (Blakesley et al., 2009, Teixeira-

Pinto et al., 2009). More specifically, multiple outcomes may be beneficial in trials 

investigating interventions for depression (Tyler et al., 2011), stroke (Mayo and Scott, 2011) 

or long term mental health conditions (De Los Reyes et al., 2011). In these disease areas, 

multiple primary outcomes may be required to provide a comprehensive understanding of 

the effects of an intervention. 

I am primarily interested in the sample size calculation and the statistical analysis used in 

recently published trials. As discussed in chapter 2, when multiple outcomes are used, it is 

essential that all primary outcomes are taken into account during the design and analysis of 

the trial. If all outcomes are not considered, then the chosen analysis may be inefficient or 

the error rates may be unacceptably high. The sample size is an important consideration 

during the design of a trial. A good choice of sample size in necessary to ensure that the trial 

is efficient, ethical and cost effective (Röhrig et al., 2010). The number of primary outcomes 

and their pairwise correlations should be considered when determining the sample size. 

The work in this chapter has been published in Contemporary Clinical Trials (Vickerstaff et 

al., 2015). The full paper is provided in Appendix 1.  
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3.1 Methods 

3.1.1 Selecting the journals 

A number of journals were selected for having a high impact and for frequently publishing 

randomised trials in the fields of psychiatry and neurology. The impact factor used was based 

upon the Thomson Reuters Journal Citation Report, published in 2010. This report was 

selected as 2010 was the year before the articles included in the review were published 

(2011-2014). Thomson Reuters is the source of the annual Journal Impact Factors. By 

choosing journals with high impact factors, I am choosing high quality literature that is likely 

to be cited and used for further research.  

The areas of neurology and psychiatry were selected as RCTs are common in these areas 

(Wittchen et al., 2011). Multiple outcomes are particularly common in these areas as one 

outcome is rarely able to satisfactorily describe the health condition being investigated 

(Blakesley et al., 2009). 

After having reviewed the impact factors, the following journals were selected for the final 

review: 

Psychiatry Journals:  

1. The American Journal Psychiatry (Am. J Psych) 

2. JAMA Psychiatry (JAMA Psych) 

Neurology Journals: 

1. The Lancet Neurology 

2. Neurology 

General medicine journals: 

1. The New England Journal of Medicine (NEJM) 

2. The Lancet 
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3.1.2 Search criteria 

The journals were hand searched for reports of randomised trials published between July 

2011 and June 2014 inclusive. The time frame was selected to ensure that the results 

represented the methods currently adopted in the literature, at the time of writing. 

The review of journals included additional supplementary material, such as protocols and 

appendices provided that they were referred to in the paper. The following trials were 

excluded from the analyses: proof of principle trials; phase II trials, including pilot trials and 

small crossover trials; secondary analyses of trials. They were excluded as they are 

exploratory trials that lead on to confirmatory trials and they often have limited power. A 

study was classified as a pilot if it was clearly defined as such, or if it was described as an 

exploratory study prior to a larger study within the discussion section.  

3.1.3 Outcomes  

For each published trial, I examined the results in the abstract and the main text and the 

methods used for sample size calculation and statistical analysis. I recorded the number of 

primary and secondary outcomes and the methods used to account for multiple primary 

outcomes.  Each outcome was recognised as primary if it was explicitly described this way or 

implicitly described this way by the aims of the trial. Otherwise, it was assumed that each 

outcome was primary. In the event that the primary outcomes described in the abstract 

differed to the main text, the outcomes reported in the main text were used. 

I performed the initial assessments. For the trials where the primary outcomes were not 

clearly specified, the trials were appraised independently by other assessors (my supervisors 

Rumana Z. Omar and Gareth Ambler).  All discrepancies were resolved by discussion between 

assessors. The statistical analyses were performed using Stata version 12 (StataCorp 

StataCorp). 

3.2 Results 

From the six journals, I reviewed a total of 3277 abstracts and identified 209 RCTs that met 

the inclusion criteria.  Details of the study screening process can be seen in Figure 3.1. 
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Figure 3.1 Flow diagram of the screening process for the review of published RCTs.  

 

 

The majority of the trials (92%) were parallel-group, individually randomised trials, with a 

median number of subjects of 242 (IQR 112-549) and a median follow up time of six months 

(IQR 3-17.5 months); Table 3.1 and Figure 3.2 summarise the characteristics of these trials.  

A list of included studies can be found in Appendix 2. 

 

  

Neurology / psychiatry papers  
n=2219

Articles for analysis n = 209

(Lancet= 26; NEJM = 26;  
Am. J Psych = 43; JAMA psych = 32;
Lancet Neuro = 33; Neurology = 49)

Other study designs excluded n =1930 

(Lancet=28; NEJM =22; 
Am. J Psych =210; JAMA psych =312; 
Lancet neuro =75; Neurology =1283)

RCT papers
n= 289

Non phase 3 trials excluded  n = 80

(Lancet=3; NEJM =1; 
Am. J Psych =11; JAMA psych = 11; 
Lancet neuro =18; Neurology =36)

Other subject areas excluded n = 1058 

(Lancet = 449; NEJM =  609)

Abstracts reviewed
n= 3277

(Lancet= 506; NEJM = 658; 
Am. J Psych = 264; JAMA psych = 355; 
Lancet neuro = 126; Neurology = 1368)
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Table 3.1 Description of the trials included in the review of published randomised 
controlled trials 

Characteristic  Number (%)    

N = 209 

Journals The New England Journal of medicine 26 (12) 

 The Lancet 26  (12) 

 The American Journal of Psychiatry 43  (21) 

 JAMA psychiatry 32  (15) 

 The Lancet neurology 33  (16) 

 Neurology 49  (24) 

   

Arms per trial 2 

3 

4+ 

144  (68) 

52    (25) 

15    (7) 

   

Sites per trial Single centre trial 36     (17) 

 Multi-centre trial 173  (83) 
 

  

Design of trial Individually randomised, parallel design  193  (92) 

 Individually randomised, factorial design 4       (2) 

 Cluster randomised 12     (6) 

   

Number of 

primary 

outcomes 

1 142  (68) 

2 43    (21) 

3 14     (7) 

4 4       (2) 

≥ 5 6       (3) 
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Figure 3.2 Flow chart showing how the outcomes were analysed in the RCTs. 

 

 

The trials included in the review were categorised by the number of primary outcomes (one 

or more than one), type of primary outcomes (alternative outcomes or co-primary 

outcomes), disease area of journal (psychiatry, neurology or general medicine) and 

intervention type (drug or non-drug). The following sections describe the results for each of 

these categories in turn.  

3.2.1 Trials with no stated primary outcome or with multiple primary 

outcomes 

Six of the 209 trials (3%) did not clearly specify a primary outcome. These trials did not follow 

the International Standards for Clinical Trials Registries produced by the World Health 

Organisation which states that both the primary and secondary outcomes should be defined 

and pre-specified (WHO, 2012).  It was assumed that all the outcomes in these trials were 

equally important, and therefore recognised as primary outcomes. 

Nearly a third of the examined trials (n=60, 29%) reported results for multiple primary 

outcomes. Forty-five (75%) of these 60 trials did not include adjustments for multiple 

comparisons. If multiple comparisons had been accounted for using the Bonferroni method, 

6 of the 26 trials that reported that the intervention was effective would have drawn 

different conclusions. The results for one of these trials is described as a case study below. 

The remaining 15 (25%) trials accounted for multiple comparisons: six used the Bonferroni 

Eligible RCTs

n= 209

More than 1 primary 
outcome reported 

n= 67

Multiple primary 
outcomes 

n=60

Separate testing 
n=58 

Multiplicity 
adjustment n=13 

No multiplicity 
adjustment n=45 

Simultaneous 
testing n= 2

Co-primary 
outcomes 

n =7

1 primary outcome 
reported 

n= 142

Separate testing of 
secondary 

outcomes n=136

Multiplicity 
adjustment 

n=20

No multiplicity 
adjustment 

n=116

Composite primary 
outcome 

n=6
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method, seven used other adjustment methods (Holm, Hochberg-Benjamini, Šidák, Dunnett 

and sequential adjustments), and two performed MANOVA.    

Some investigators stated that they did not adjust for multiple comparisons (Weiss et al., 

2011, Nobile-Orazio et al., 2012, Dodel et al., 2013, Tariot et al., 2011, Gray et al., 2012). This 

suggests that some of the authors are aware the analysis may be different if they had 

adjusted for multiple outcomes. For example, Grey et al., (2012, p.5) wrote that “no 

adjustments for multiple testing were made, as they are known to reduce statistical power 

and increase the probability of accepting a null hypothesis that is truly false. Preliminary 

analyses leading to a priori hypotheses suggest that differences noted are less likely to be 

from chance alone”. In this paper by Gray et al. (2012) adjustments were not made, 

presumably to achieve a statistically significant result even though the investigators were 

aware of the limitations of their analysis. Another justification provided for not accounting 

for multiple comparisons was “to prevent Type II error”(Vitiello et al., 2014).   

The problem of multiplicity can be overcome by specifying different primary outcomes for 

different health features. For example, Launer et al. (2011) specified primary outcomes for 

cognitive measures and brain structure measures, respectively.  

The abstracts of the trials were also examined to see if the investigators had specified that 

all the multiple outcomes were primary. The abstract summarises the paper and is often read 

in isolation from the main text. As such, the main outcomes should be clearly stated in the 

abstract (Hopewell et al., 2008). Just over half (57%, n=34) of the trials were found to clearly 

specify multiple primary outcomes in the abstract. The remaining abstracts described the 

outcomes, without specifying the order of importance, even though there were later 

specified as primary and secondary in the body of the papers. 

In addition, the sample size calculations were reviewed. Fourteen (23%) of the 60 trials that 

reported multiple primary outcomes incorporated only one outcome in the sample size 

calculation. Fourteen of the trials clearly reported sample size calculations that incorporated 

more than one outcome. The methods to account for multiplicity in the sample size 

calculation included: a multiplicity-adjusted significance level in the calculation (Nierenberg 

et al., 2013); using simulations developed by Heo and Leon (2008), (Conrod et al., 2013); and 

calculating the sample size separately for each of the primary outcomes then selecting the 

largest value as the final sample size (Odekerken et al., 2012). Lovera et al. (2012) reported 

that they based their sample size on several outcome variables, but did not clearly specify 

the method that was used.   
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3.2.2 Trials with co-primary outcomes 

Seven (3%) of the 209 trials reported co-primary outcomes. Even though it is unnecessary, 

two of these trials accounted for multiple comparisons of the co-primary outcomes in their 

analysis: one used the Hochberg method and one used a pre-specified testing hierarchy. The 

abstracts of the seven trials clearly specified all the co-primary outcomes. When calculating 

the sample size, five of the trials performed calculations based on all co-primary outcomes 

and two of the trials performed calculations based on just one outcome.   

3.2.3 Trials with one stated primary outcome 

The remaining 142 (67%) trials reported that only one of the multiple outcomes was primary.  

Of these trials: five reported one primary and no secondary outcomes; and another six (3%) 

used a composite primary outcome.    

3.2.4 Psychiatry, neurology and general medicine journals 

The results were also reviewed by the disease area of the journal in which the article was 

published. The journals were grouped into the areas: psychiatry, neurology and general 

medicine. Of these disease areas, the psychiatric journals reported multiple primary 

outcomes the most frequently with 35 (47%) of the trials reporting multiple primary 

outcomes.  This compared to 18 trials (22%) in the neurological journals and 7 (13%) in the 

general medicine journals reporting multiple primary outcomes.   

Of those trials analysing multiple primary outcomes, 27/35 (77%) and 15/18 (83%) of the 

trials in the psychiatric and the neurological journals respectively did not account for 

multiplicity compared to 3/7 (43%) trials in the general medicine journals.  

3.2.5 Drug versus non-drug trials  

134 (64%) trials evaluated drug treatments, of which 30 (22%) reported multiple primary 

outcomes of which only six (20%) accounted for multiplicity. Whereas 30 (40%) of the 75 

non-drug trials analysed multiple primary outcomes of which nine (29%) accounted for 

multiplicity.  

3.2.6 Secondary outcomes 

Nineteen (13%) of the 142 trials that reported only one outcome as primary accounted for 

multiplicity in their secondary outcomes by adjusting the p-values, even though adjustments 

may be less important for secondary outcomes (Moyé, 2003). An additional seven (5%) trials 
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highlighted a main secondary outcome. Five of the 67 (7%) trials that had multiple primary 

outcomes or co-primary outcomes adjusted for multiple comparisons in the analysis of their 

secondary outcomes: two trials used sequential testing and three trials adjusted the p-

values. 

Some of the investigators that used only one primary outcome highlight their awareness of 

the problems associated with multiplicity by stating they did not adjust for multiple 

secondary outcomes.  Weaver et al. (2012) said that “no formal correction for multiple 

analyses” were made. Nobile-Orazio et al. (2012) stated that “despite the large number of 

tests done on the secondary outcomes, the type I error rate was not adjusted because these 

analyses were mainly supportive”. 

3.3 Case Study 

The following section focuses on Hong et al. (2011), a paper included in the review. The 

investigators did not account for multiplicity in the analysis. The aim of this case study is to 

view if the conclusions in the article would have changed had multiple outcomes been 

accounted for in the analysis.  

The investigators considered the effects of moderate-dose treatment with varenicline on 

neurobiological and cognitive biomarkers in smokers and non-smokers with schizophrenia 

or schizoaffective disorder. The objective of the study was to investigate the effect of 

varenicline on key biomarkers that are associated with schizophrenia. They stated seven key 

biomarkers as their primary endpoints: prepulse inhibition, sensory gating, antisaccade, 

visual spatial working memory, eyetracking, processing speed, and sustained attention. No 

measures were taken to account for the use of multiple primary outcomes. As stated in the 

title of the report the investigators considered the effect of the intervention in smokers and 

non-smokers. This resulted in a large number of results being presented. The investigators 

appear to selectively report the results with different outcomes being presented differently. 

The results were either presented individually (smokers and non-smokers) or presented 

combined (all participants).  
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Table 3.2 The seven primary end points and corresponding p-values taken from the Hong 
et al. (2011) manuscript.  

The original p-values were not adjusted for multiplicity. The Bonferroni, Holm, Hochberg and 
Hommel adjustment methods for multiplicity have been applied. 

 Outcome Adjustment method 

 
 

None Bonferroni Holm Hochberg Hommel 

1.  Prepulse inhibition Not Sig*     

2.  Sensory gating  0.006 0.042 0.042 0.042 0.042 

3.  Antisaccade 0.034 0.238 0.204 0.204 0.204 

4.  Visual spatial working memory Not Sig*     

5.  Eyetracking Not Sig*     

6.  Processing speed Not Sig*     

7. Sustained attention Not Sig*     

*These outcomes were reported as not statistically significant, 𝑝 >  0.05. They will remain 

non-statistically significant when any is adjustment is applied.  

As highlighted in the review, a variety of adjustment methods are used in published 

randomised trials, so several methods have been used to account for multiplicity in this case 

study. For any of the selected adjustment methods, the sensory gate outcome remains 

statistically significant when comparing p=0.042 against the nominal 0.05 significance level. 

However, the evidence of an effect of the intervention for this outcome has been reduced 

from strong evidence to moderate evidence. The p-value corresponding to the antisaccade 

outcome substantially increased to approximately 0.2 (ranging from 0.204 to 0.238). If any 

of the adjustment methods had been used, the conclusion drawn would have been that there 

is no evidence of an effect of the intervention for this outcome.  All other outcomes would 

remain not statistically significant. This case study demonstrates the importance of adjusting 

the p-values, or equivalently the significance level, to account for multiple primary outcomes.  

3.4 Discussion  

The review performed in this chapter has identified that multiple primary outcomes are 

commonly reported and analysed in RCTs that were published in high impact research 

journals. It was found that there is a lack of consistency in the reporting and analysis of the 

outcomes. It was often difficult to determine from the report the number of primary 
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outcomes being analysed in a trial and there was a lack of consistency when specifying the 

primary outcome.  

A variety of methods to handle multiple primary outcomes were noted in this review.  The 

majority of authors who accounted for multiplicity did so by adjusting the p-values. The most 

common technique observed was the Bonferroni method. If the outcomes are correlated, 

this adjustment method is conservative.  

In recent years, more complex multivariate methods have been used that utilise the positive-

pairwise correlations between outcomes (Teixeira-Pinto et al., 2009). The MANOVA method 

was the only multivariate method used despite the fact that multivariate methods could 

increase the power (Teixeira-Pinto et al., 2009, Yoon et al., 2011).  

In the majority of cases, the trials did not specify any steps to safeguard the inferences made 

when using multiple primary outcomes. Of these trials, 26 reported significant results. 

However, six of these would have drawn different conclusions if the Bonferroni method had 

been applied. In one trial, the intervention would not have been reported as effective for any 

of the primary outcomes and in five trials the intervention would be reported as effective for 

a small subset of the primary outcomes.    

Paradoxically, multiple authors demonstrated their awareness of the problems associated 

with multiplicity by stating they did not adjust for multiple outcomes. One reason given for 

not using any adjustments was “to prevent type II error” (Vitiello et al., 2014) whilst others 

did not provide any justification.   

The proportion of studies not adjusting for multiple outcomes may be underestimated in this 

review due to selective outcome reporting. A review of trials highlighted that selective 

reporting of outcomes, where only a subset of original outcome measures are fully reported, 

frequently occurs in randomised controlled trial (Dwan et al., 2013, Sendyk et al., 2019) . In 

some instances, multiple outcomes are pre-specified but only a subset are reported as 

primary outcomes. Consequently, the proportion of trials that fail to address the issues 

associated with multiplicity may be greater than observed here due to biases in reporting.  

For many of the trials, the authors correctly identified the primary outcomes in the abstract, 

however, there is still considerable room for improvement. For instance, a number of 

abstracts provided incomplete descriptions. Some abstracts also discussed multiple 

outcomes without any distinction between the primary and secondary outcomes.  
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The review performed here focuses on neurology and psychiatry trials although the review 

is likely to have wider applicability as multiple primary outcomes are also common in other 

disease areas. The review was also restricted to high quality, high impact journals. It is 

expected that the proportion of trials that fail to address the issues associated with 

multiplicity is actually greater in lower impact journals.  

 

3.5 Conclusions  

For the neurology and psychiatry RCTs considered in this chapter, which were published in a 

number of leading medical journals, it was found that multiple primary outcomes were 

commonly used but often inadequately analysed.  More complex multivariate methods could 

have been used that utilise the pairwise correlations between outcomes. A comparison of 

the complex multivariate methods would be beneficial to allow recommendations of 

methods to use in future trials.  
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4 Chapter 4 

Methods to adjust for multiple primary 
outcomes in the analysis and sample size 
calculation of randomised controlled trials 
 

It has been shown that multiple primary outcomes are commonly analysed to characterise 

the effect of an intervention in RCTs and it is common for these outcomes to be correlated. 

To investigate whether the intervention is effective for each outcome, it is necessary to 

perform multiple statistical tests. As discussed in previous chapters, when performing these 

tests, it is important to control the family wise error rate (FWER) at the nominal significance 

level. A common approach is to adjust the p-values produced by each statistical test. A 

variety of methods to adjust the p-values were reviewed in Chapter 2. In clinical trials, it is 

also important to consider the power of the tests to detect an effect of the intervention. 

When there are multiple outcomes, the power of the study can be defined in a number of 

ways depending on the clinical objective of the trial. First, the disjunctive power is the 

probability of finding at least one true intervention effect across all of the outcomes (Bretz 

et al., 2010). Second, the conjunctive power is the probability of finding a true intervention 

effect for all outcomes. Lastly, the marginal power is the probability of finding a true 

intervention effect for a particular outcome and is calculated separately for each outcome. 

To investigate multiple primary outcomes, we are typically interested in the disjunctive and 

marginal power, as recommended by Dmitrienko et al. (2009). 

The power requirements of a trial should match the clinical objectives, which need to be 

specified when designing the study. The sample size calculation should be calculated 

according to the clinical objectives. It was shown in my review of published RCTs (Chapter 3) 

that in current practice the sample size calculations in trials often focuses on the marginal 

power for each outcome. An approach that has been recommended and is often used in 

trials is to calculate the sample size separately for each of the primary outcomes by applying 

the Bonferroni method to amend the significance level (Chow et al., 2017). The largest value 

of the sample size is then considered as the final sample size for the trial (Odekerken et al., 

2012). 
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As previously mentioned, missing outcome data are common in RCTs which will inevitably 

reduce the power and efficiency of the study (Bell et al., 2014). As a result, there may be 

failure to detect true intervention effects, when they are present. As such, when considering 

the methods that adjust for multiple primary outcomes it is also important to consider the 

consequences and impact of missing outcome data.   

When using multiple primary outcomes, there is limited guidance as to which method(s) 

should be used to take account of multiplicity especially when there are missing data in the 

primary outcomes. Guidance is needed for both the sample size calculation and the statistical 

analysis of RCTs with multiple outcomes.  

Some studies have compared a selection of methods that adjust p-values to account for 

multiplicity to handle multiple outcomes in trials. Sankoh, Huque and Dubey (Sankoh et al., 

1997) compare a selection of adjustment methods for statistical analysis in terms of FWER 

but they do not evaluate the methods with respect to the power obtained.  Blakesley et al. 

(2009) discuss both FWER and power requirements for selected methods for a large number 

of outcomes with varying degrees of correlation. Lafaye de Micheaux et al. (2014) provide 

formulae to calculate the power and sample size for multiple outcomes. These require 

several assumptions to be made about the outcomes, including normality and whether the 

covariance matrix between the outcomes is known or not. They discuss global testing 

procedures, including the Hotelling T2 method. None of these studies have investigated the 

adjustment methods in the presence of missing data.  

There is limited literature discussing the sample size requirements for clinical trials with 

multiple primary outcomes where the clinical objective is to detect an intervention effect for 

at least one of the outcomes. Dmitrienko et al. (2009) and Senn and Bretz (2007) provide 

some discussion regarding the sample size in the context of multiple outcomes. However, 

neither discuss the sample size in the context of which adjustment method should be used. 

Moreover, they do not provide a comparative table depending on the type of desired power 

to show implications on the required sample sizes.  

In this chapter, I compare methods to adjust p-values in terms of FWER and power. I 

investigate two and four outcomes when there is complete outcome data and when the 

outcome data has missing values. I focus on two and four outcomes as my review found that 

the majority of the trials had considered just two primary outcomes. Additionally, it has been 

recommended that a trial should have no more than four primary outcomes (Capizzi and 

Zhang, 1996). I also consider a range of correlations between the outcomes. I consider both 
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marginal and disjunctive power. Based on my findings, I provide practical recommendations 

on the adjustment methods which could be used for the sample size calculation and analysis 

of RCTs with multiple primary outcome. I also present tables showing the implications of 

using the marginal and disjunctive power on the required sample size for a trial under 

different scenarios. The work in this chapter has been published in BMC Medical Research 

Methodology (Vickerstaff et al., 2019). The paper is provided in Appendix 3. 

4.1 Aim 

The aim of this chapter is to evaluate the validity of selected methods to account for 

potentially correlated multiple primary outcomes in the analysis and sample size calculation 

of RCTs.  

This aim is split into four objectives. The first objective is to compare methods that account 

for multiple primary outcomes using the ProCEED case study. The second objective is to 

perform a simulation study to compare methods to adjust for multiple outcomes in terms of 

FWER, disjunctive power and marginal power when investigating two or four correlated 

outcomes. The third objective is to compare the sample size needed to achieve the required 

marginal and disjunctive power. The final objective is to provide guidance as to which 

method(s) should be used during the design and analysis of RCTs with multiple primary 

outcomes which are correlated. 

 

Methods to account for multiple outcomes 

The following methods that account for multiplicity are compared in this chapter: Bonferroni, 

Holm, Hochberg, Hommel, Dubey-Armitage-Parmar (D/AP) and stepdown MinP resampling 

method.   

My review showed that the majority of trials that used multiple outcomes analysed the 

outcomes separately without any adjustments for multiple comparisons (Chapter 3). When 

adjustment methods were used, only the most basic methods were used, potentially due to 

how easily they can be implemented. The Bonferroni method was the most commonly used 

method, although the Holm and Hochberg methods were also used. As a consequence, in 

this chapter, I am focusing on the more basic techniques. 

The Bonferroni and Holm methods are used as they are well-known methods that are often 

used in clinical trials. When outcomes are independent, it has been shown that there may be 
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a gain in power when using the Hochberg and Hommel methods compared to using the 

Bonferroni and Holm methods. Consequently, I wish to investigate the performance of these 

methods for different scenarios, especially when the outcomes are correlated and when 

there are missing data in the outcomes.  

I also consider the Dubey/Armitage-Parmar (D/AP) method and stepdown MinP resampling 

method as these take account of the correlation between outcomes. The D/AP method was 

selected as there has been little theoretical work to assess the performance of the D/AP 

method and in which scenarios it should be used, however, it does lend itself to simulation 

assessment (Sankoh et al., 1997).  The resampling methods have previously been 

recommended for clinical trials with multiple outcomes, but they are not widely used in 

practice (Reitmeir and Wassmer, 1999).  The stepdown MinP has been shown to perform 

well when compared to other resampling methods (Li and Dye, 2013) and was therefore 

investigated in this paper. 

4.2 Case study 

A case study is presented to demonstrate use of the methods in a clinical trial setting. The 

ProCEED dataset was described in detail in Section 2.5. 

Methods 

The outcomes (BDI-II, WSAS and EQ-5D) were analysed separately using linear regression, 

using the univariate framework. Subsequently, methods were applied to the p-values 

produced by each statistical test. The p-values adjusted for multiplicity were then compared 

to the nominal significance level 0.05.   

Results 

For the BDI-II outcome, the standardised intervention effect was estimated to be 0.189 (95% 

CI 0.031, 0.347). When applying a Bonferroni correction, a p-value of 0.057 was observed 

which is above the nominal significance level of 0.05. In comparison, when applying the other 

correction methods a p-value less than the nominal significance level was observed (Holm 

p= 0.042, Hochberg p= 0.038; Hommel p=0.038 and D/AP p= 0.029). 

For the WSAS outcome, the effect of the intervention was statistically significant irrespective 

of the adjustment made (𝑝 ≤  0.042). As a consequence, if investigators require a single 

intervention effect to be detected to deem the intervention effective, then the intervention 
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is shown to be effective using all of the methods. However, the strength of evidence depends 

on the method used.  

For the EQ-5D outcome, no effect of the intervention is observed (𝑝 ≥ 0.097 for all 

adjustment methods). The Bonferroni is the most conservative method which is reflected in 

the corresponding p-value (𝑝 = 0.291) which is three times as large as the p-value for all 

other adjustment methods (𝑝 = 0.097). In other trials the adjustment method chosen could 

make a difference to whether the intervention effect is deemed statistically significant or 

not. The ProCEED trial results and all p-values are summarized in Table 4.1.  

Table 4.1 Analysis of the ProCEED dataset (top) and adjusting the resulting p-values to 
account for multiple comparisons (bottom) 

Outcome N Mean 
diff.* 

SE* 95% CI* Mean diff. on 
original scale 

P-value 

BDI-II 429 0.189 0.081 (0.031, 0.347) 2.762 0.019 

WSAS 428 0.195 0.080 (0.038, 0.350) 2.358 0.014 
EuroQol 415 -0.146 0.088 (0.318, -0.026) 3.147 0.097 

Adjust p-values to account for multiple comparisons 
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BDI-II 0.057 0.042 0.038 0.038 0.029 0.019 
WSAS 0.042 0.042 0.038 0.029 0.020 0.014 
EuroQol 0.291 0.097 0.097 0.097 0.097 0.097 

*These correspond to standardised intervention effects.  

BDI-II = Beck Depression Inventory; CI = Confidence interval; D/AP = Dubey/Armitage-
Parmar; Mean diff = mean difference; SE = standard error; WSAS = Work and social activities 
scale. 
 
For this example, I conclude that the intervention is effective for at least one outcome when 

using any of the adjustment methods. However, the interpretation of the effect of the 

intervention for each outcome can vary depending on which method is used. In practice, the 

choice of the adjustment method may also depend on other factors, such as the availability 

of simultaneous confidence intervals and unbiased estimates (Paux and Dmitrienko, 2018).  
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4.3 Simulation study 

I used the following model to simulate values for two continuous outcomes 𝒀𝒊 = (𝑌𝑖,1, 𝑌𝑖,2):  

 𝒀𝒊 =  𝜷𝟎 +  𝜷1𝑥𝑖 + 𝝐𝒊 . 

 

(4.1) 

Here 𝑥𝑖 indicates whether participant 𝑖 received the intervention or control,  𝜷1 =

( 𝛽11 , 𝛽12 )𝑇 is the vector of the effects of the intervention for each outcome, 𝝐𝐢  =

(𝜖𝑖,1, 𝜖𝑖,2 )
𝑇

  are errors which are realisations of a multivariate normal distribution  

𝝐𝒊~ 𝑁 ((
0

0
) , (

1 𝜌
𝜌 1

) ), 

and 𝜌 𝜖 {0.0, 0.2, 0.4, 0.6, 0.8}. The model was also extended to simulate values for four 

continuous outcomes. The model was extended such that the correlation between any pair 

of outcomes is the same. I investigated both equal intervention effect sizes and varying effect 

sizes across outcomes. For the equal intervention effect sizes, I specified an effect size of 

0.35 on all outcomes, that is 𝜷1 = (0.35 , 0.35)𝑇 or 𝜷1 = (0.35 , 0.35, 0.35, 0.35)𝑇 for two 

and four outcomes respectively. This represents a medium effect size, which reflects the 

anticipated effect size in many RCTs (Rothwell et al., 2018).  For the varying intervention 

effect sizes, I specified 𝜷1 = (0.2 , 0.4)𝑇 or 𝜷1 = (0.1 , 0.2, 0.3, 0.4)𝑇 for two and four 

outcomes, respectively. I also investigate the effect of skewed data by generating outcome 

values with equal intervention effect sizes following a gamma distribution with shape and 

scale parameter of 2. The gamma distribution is often used to model healthcare costs in 

clinical trials (Thompson and Nixon, 2005, Nixon and Thompson, 2005) and may also be 

appropriate for skewed clinical outcomes. 

I set the sample size to 260 participants, with an equal number of participants assigned to 

each arm. This provides 80% marginal power to detect a clinically important effect size of 

0.35 for each outcome, using an unpaired Student’s t-test and an unadjusted significance 

level of 0.05. I introduced missing data under the assumption that the data were missing 

completely at random (MCAR). When simulating two outcomes, 15% and 25% of the 

observations in outcome 1 and 2 were missing respectively, meaning that on average 

approximately 4% of the observations would be missing for both outcomes. When simulating 

four outcomes, 15% of the observations are missing in two outcomes and 25% of the 

observations are missing in the other two outcomes. This proportion of missingness in 
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outcomes is often observed in RCTs (Killaspy et al., 2015, Osborn et al., 2015, Hassiotis et al., 

2014). 

I estimated the FWER and disjunctive power by specifying no effect of the intervention 

(𝛽1𝑗 = 0) and an effect of the intervention (𝛽1𝑗 ≠ 0), respectively, and calculating the 

proportion of times a significant test results was observed for at least one of the outcomes. 

The marginal power was similarly estimated but I calculated the proportion of times an 

intervention effect was observed on the nominated outcome. For each scenario, I ran 10,000 

simulations. The simulations were run using R version 3.4.2. The stepdown MinP method was 

implemented using the NPC package (Caughey and Caughey, 2016). 

We calculated the sample size based on disjunctive power using the R package “mpe” (Kohl 

and Kolampally, 2017) and we calculated the sample size based on the marginal power using 

the R package “samplesize” (Scherer, 2016). The statistical methodology used for the sample 

size calculation in these packages is described in Appendix 4.  

 

4.3.1 Results 

The Bonferroni and Holm methods lead to the same FWER and disjunctive power when 

analysing multiple primary outcomes. This is because both methods adjust the smallest p-

value in the same way. Similarly, the Hochberg and Hommel methods lead to same FWER 

and disjunctive power when two primary outcomes are analysed and differences between 

these methods arise when analysing three or more outcomes.  

Family wise error rate, FWER 

The FWER obtained when evaluating two and four outcomes are displayed in Figure 4.1 and 

Figure 4.2, respectively. Following on from the explanation above, the Holm and Hommel 

methods are not displayed in Figure 4.1 and the Holm method is not displayed in Figure 4.2.  

When there is correlation between outcomes (𝜌 ≥  0.2), the D/AP method does not control 

the FWER. All other adjustment methods control the FWER in all scenarios. The stepdown 

MinP performs well in terms of FWER. Unlike the other methods, it maintains the error rate 

at 0.05 as the correlation between the outcomes increases. Differences between the 

Bonferroni, Hochberg and Hommel methods arise when there is moderate correlation 

between the outcomes (𝜌 ≥  0.4). The Hommel method provides the FWER which is closest 

to 0.05 whilst being controlled, followed by Hochberg and then Bonferroni. Very similar 
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results were observed when the outcomes were skewed, consequently these results are 

presented in the Appendix 5.  

Disjunctive power 

Figure 4.1 and Figure 4.2 show that the disjunctive power decreases as the correlation 

between the outcomes increases for all methods. I did not consider the power obtained 

when using the D/AP method due to its poor performance in controlling the FWER. When 

there are no missing data, the stepdown MinP and Hommel methods provide the highest 

disjunctive power. For weak to moderate correlations (𝜌 = 0.2 𝑡𝑜 0.6) the Hommel method 

has slightly more disjunctive power, but the stepdown MinP method performs better when 

there is strong correlation (𝜌 = 0.8). The stepdown MinP method gives the lowest power in 

the presence of missing data. This could be attributed to the fact that it uses listwise deletion 

removing participants with at least one missing value prior to the analysis which would result 

in a loss of power due to missing data. As expected the Bonferroni method gives a slightly 

lower power when compared to the other methods for complete data. However, it 

considerably outperforms the stepdown MinP method when there is missing data. Very 

similar results were observed when the outcomes were skewed. 

When the intervention effect sizes varied, the differences observed between the methods 

were less pronounced. When using four outcomes with varying effect sizes, very similar 

disjunctive power was observed to that of constant effect sizes. These results are displayed 

in the Appendix 5. When using the Hommel method, higher disjunctive power was observed 

compared to Holm and Bonferroni methods, albeit by a very minimal amount.  
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Figure 4.1 The FWER (top) and disjunctive power (bottom) obtained when analysing two 
continuous outcomes using a variety of methods to control the FWER.  

In the left-hand graphs, there are no missing data. In the right-hand graphs, the missing data 
are missing completely at random, with 15% missing in the first outcome and 25% missing in 
the second outcome (‘Missing data MCAR’).  The graphs display various degrees of 
correlation between the outcomes, range from 𝝆 =  𝟎 to 𝝆 =  𝟎. 𝟖.  

  

*The Monte Carlo standard errors (MCSE) were similar for all methods. When there were no missing data, the MCSE was 

between 0.002-0.004 for the disjunctive power and 0.002-0.004 for the FWER. In the missing data scenario, the MCSE 

was between 0.002-0.003 for the disjunctive power and between 0.003-0.005 for the FWER. 
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Figure 4.2 FWER (top) and disjunctive power (bottom) obtained when analysing four 
continuous outcomes using a variety of methods to control the FWER.  

In the left-hand graphs, there are no missing data. In the right-hand graphs, the missing data 
are missing completely at random, with 15% missing in two outcomes and 25% missing in 
the other two outcomes (‘Missing data MCAR’).  The graphs display various degrees of 
correlation between the outcomes, range from 𝝆 =  𝟎 to 𝝆 =  𝟎. 𝟖.  
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Marginal power 

The marginal power obtained for each outcome when using the different adjustment 

methods are shown in Table 4.2. In terms of marginal power, the Hommel method was the 

most powerful method, followed closely by the Hochberg method. When two independent 

outcomes were analysed, a power of 76.8% was observed after applying a Hommel method. 

*The MCSE were similar for all methods. When there were no missing data, the MCSE was between 0.001-

0.004 for the disjunctive power and 0.002-0.004 for the FWER. In the missing data scenario, the MCSE was 

between 0.001-0.004 for the disjunctive power and between 0.001-0.004 for the FWER. 
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The power decreased to 75.2% when four outcomes were analysed after applying a Hommel 

method. As expected the Bonferroni method was the most conservative method, providing 

the least power. However, contrary to popular belief, the Bonferroni method maintains 

similar levels of power as the correlation increases.  

When analysing two outcomes the proportion of simulations in which an effect of the 

intervention was observed for neither outcome, one outcome or both outcomes are shown 

in Table 4.3. When using the Holm method, a statistically significant effect of the intervention 

was observed on both outcomes for 48%-58% of the simulations. This reduced to 36%-48% 

of the simulations when using the Bonferroni method. As expected, when using the 

Hochberg and Hommel method the same results were observed. Compared to the Holm 

method, simulations with two statistically significant intervention effects were observed 

more frequently when using the Hochberg and Hommel methods.  

Table 4.2 Marginal (individual) power obtained for each outcome, when analysing two 
outcomes (top) and four outcomes (bottom), using a variety of methods to control the 
FWER. 

Two outcomes 
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0 80.9 72.4 78.5 79.2 79.2 78.2 
0.2 80.6 71.8 77.8 78.6 78.6 77.7 
0.4 80.0 71.3 76.6 77.7 77.7 76.7 
0.6 80.0 71.0 76.0 77.4 77.4 76.7 
0.8 80.3 71.3 75.6 77.4 77.4 77.2 

Four outcomes 
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0 80.5 62.3 73.2 75.0 75.2 72.7 
0.2 80.4 62.3 72.6 74.4 74.8 72.2 
0.4 80.6 62.4 72.1 74.1 74.4 72.2 
0.6 80.3 62.0 70.7 73.1 73.5 72.3 
0.8 80.3 61.9 69.7 73.2 73.6 73.5 

*D/AP method was not examined due to the poor performance observed when exploring 

FWER. 
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Table 4.3 The percentage of simulations in which an intervention effect was observed for 
neither outcome, one outcome or both outcomes when analysing two outcomes, using a 

variety of methods to control the FWER.  

Method 

Pairwise 
correlation 
between 
outcomes 

Number of outcomes an 
intervention effect was 

observed for 

  0 1 2 

Bonferroni 

0 16.1 48.4 35.5 

0.2 18.6 43.2 38.2 

0.4 20.6 37.7 41.7 

0.6 23.4 32.7 43.9 

0.8 26.3 26.3 47.5 

Holm 

0 16.1 35.6 48.3 

0.2 18.6 31.0 50.4 

0.4 20.6 26.4 53.0 

0.6 23.4 22.0 54.6 

0.8 26.3 16.0 57.7 

Hochberg 

0 15.1 35.6 49.4 

0.2 17.6 31.0 51.5 

0.4 19.3 26.4 54.3 

0.6 22.0 22.0 56.0 

0.8 24.8 16.1 59.1 

Hommel 

0 15.1 35.6 49.4 

0.2 17.6 31.0 51.5 

0.4 19.3 26.4 54.3 

0.6 22.0 22.0 56.0 

0.8 24.8 16.1 59.1 

 

Sample size calculation 

I recommend that the Bonferroni method is used for the sample size calculation when 

designing trials with multiple correlated outcomes since it can be applied by adjusting the 

significance level and it maintains the FWER to an acceptable level (up to a correlation of 0.6 

between outcomes). As the Hochberg and Hommel methods are data-driven, it is not clear 

how these more powerful methods could be incorporated into the sample size calculation 

unless prior data are available, for example, a preliminary study is performed. Determination 

of the required sample size may be dependent upon simulation based methods rather than 

an analytic formula, which can be used for the Bonferroni method (Food and Drug 

Administration, 2017). 
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In Table 4.4, I present the sample size needed to achieve 90% disjunctive power for trials 

with two outcomes for varying degrees of correlations between the outcomes for 𝜌 =

{0.2, 0.4, 0.6, 0.8}. For these calculations, I specified that there is an equal allocation of 

participants between the intervention arms. More details regarding the sample size 

calculation using the disjunctive power are provided in Senn and Bretz (2007). In order to 

calculate the sample size a priori information on the degree of correlation between the 

outcomes is required. For comparison, I also present the sample size required to obtain 90% 

marginal power for each outcome. For all calculations, I have used the Bonferroni method to 

account for multiple comparisons. I provide the required sample sizes when analysing four 

outcomes in Table 4.4. The table provides sample sizes for varying effect sizes. The top line 

provides an example sample size calculation for four outcomes where there is a small 

standardised effect size for each of the four outcomes. In this case, the standardised effect 

is 0.2 for all outcomes. If there is weak pairwise correlation between all four outcomes (𝜌 =

0.2), 325 participants would need to be recruited into each arm to obtain 90% disjunctive 

power. As the pairwise correlation increases to 𝜌 = 0.8 the required sample size increases 

to 529. The required sample size to obtain 90% marginal for each outcome in this scenario is 

716 participants per trial arm. This is the equivalent number of participants required to 

obtain 90% disjunctive power if the outcomes are perfectly and positively correlated (𝜌 =

 1.0). Consequently, the number of participants required to obtain 90% marginal power is 

greater than the number of participants required to obtain 90% disjunctive power.  

In the fourth line of the table, varying intervention effect sizes are expected across the 

outcomes. For two outcomes, a small intervention effect was expected (∆ = 0.2) whereas a 

medium intervention effect size is expected for the other two outcomes (∆ = 0.5). For this 

example, the required sample size is much smaller if 90% disjunctive power is required. Only 

75 participants are needed, per arm, if the pairwise correlation between the outcomes is 0.2. 

The required sample size increases as the strength of the pairwise correlation increases. 

When there is strong pairwise correlation (𝜌 = 0.8), 98 participants are required per trial 

arm. In comparison, if the aim is to achieve 90% marginal power for each outcome the 

sample size would be much higher; 716 participants would be required for each trial arm to 

achieve 90% power for the two outcomes with a small intervention effect. The required 

sample size for the other two outcomes with a large effect size would be 116 participants. 

However, if the investigators would like to achieve 90% marginal power for all outcomes the 

largest of these values (i.e. 716) would be required. As shown in the example, the required 

sample size varies considerably depending on if marginal or disjunctive power is used.  
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Table 4.4 Sample size required to obtain 90% disjunctive power and 90% marginal power 
for each outcome when analysing two outcomes, after applying the Bonferroni method.  

Standardised effect 
sizes for each of the 

two outcomes 
Sample size required to obtain 

90% DISJUNCTIVE power 

Sample size required to 
obtain 90% MARGINAL 

power for each outcome 

Outcome 1 Outcome 2 

Correlation between outcomes   

0.2 0.4 0.6 0.8 Outcome 1 Outcome 2 

0.2 0.2 402 436 475 522 622 622 

0.2 0.3 237 251 264 274 622 278 

0.2 0.4 145 150 154 156 622 157 

0.2 0.5 96 98 99 100 622 101 

0.3 0.3 179 194 211 232 278 278 

0.3 0.4 126 135 144 152 278 157 

0.3 0.5 89 93 97 99 278 101 

0.4 0.4 101 109 119 131 157 157 

0.4 0.5 78 84 90 96 157 101 

0.5 0.5 65 70 76 84 101 101 

Note: Sample sizes provided are required per arm.  

Table 4.5 Sample size required to obtain 90% disjunctive power and 90% marginal power 
for each outcome when analysing four outcomes, after applying the Bonferroni method. 

Standardised effect 
sizes for each of the 

four outcomes 

Sample size required to 
obtain 

90% DISJUNCTIVE power 

Sample size required to 
obtain 90% MARGINAL 

power for each outcome 
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0.2 0.2 0.2 0.2 325 382 447 529 716 716 716 716 

0.2 0.2 0.3 0.3 189 215 242 270 716 716 319 319 

0.2 0.2 0.4 0.4 114 127 129 152 716 716 181 181 

0.2 0.2 0.5 0.5 75 82 89 98 716 716 116 116 

0.3 0.3 0.3 0.3 145 170 199 235 319 319 319 319 

0.3 0.3 0.4 0.4 101 117 133 151 319 319 181 181 

0.3 0.3 0.5 0.5 71 80 88 98 319 319 116 116 

0.4 0.4 0.4 0.4 82 96 112 133 181 181 181 181 

0.4 0.4 0.5 0.5 63 73 84 96 181 181 116 116 

0.5 0.5 0.5 0.5 52 61 72 85 116 116 116 116 

Note: Sample sizes provided are required per arm. 
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4.3.2 Discussion 

When using multiple primary outcomes in RCTs, it is important to control the FWER for 

confirmatory phase III trials. One method is to adjust the p-values produced by each 

statistical test for each outcome. Additionally, some of the outcomes are likely to have 

missing values. Consequently, any potential missing data should be considered when 

choosing an appropriate method to adjust the p-values. 

Statistical Analysis 

I found that all of the methods investigated, each controlled the FWER with the exception of 

the D/AP method. The finding is consistent with the results in Blakesley et al. (2009). The 

stepdown MinP performed best in terms of FWER. It maintained the error rate at 0.05 as the 

correlation between the outcomes increases; however, the R package used to implement 

the method uses listwise deletion, which removed participants with at least one missing 

value before the analysis resulting in a loss of power. The validity of this method depends on 

how the method is implemented and the extent of the missing data. 

I recommend that the Hommel method is used to control the FWER, provided that the 

distributional assumptions are met, as it provides slightly more disjunctive power than the 

Bonferroni and Holm methods. When using the Hommel method, it is assumed that the 

distribution of the joint test statistic under the alternative hypothesis is known but not fully 

specified. For example it is known that the joint distribution of the test statistic under the 

alternative hypothesis is multivariate normality, but the parameters are not specified. This 

distributional assumption associated with the Hommel method is not restrictive and is 

encountered in many multiplicity problems arising in clinical trials (Dmitrienko and 

D'Agostino, 2013). Even when the data followed a skewed distribution, the Hommel method 

performed well, showing it may be used to analyse a variety of outcomes, including when 

the normality assumption is violated.  

Given the availability of software packages to implement the more powerful methods, there 

is little reason to use the less powerful methods, such as the Holm method. For example, the 

Hommel method can easily be implemented in R or SAS. Despite that the Hommel method 

is not currently available in Stata or SPSS, the p-values can be readily transferred and 

adjusted in R. However, if the assumptions cannot be met, the simpler Holm method could 

be used. 



Chapter 4 Comparison of methods 

80 
 

When the intervention effect size varied across outcomes, I found that the differences in 

disjunctive power between the methods were less pronounced. It appeared that the 

outcome with the largest effect size ‘dominated’ the disjunctive power. When the sample 

size is based on disjunctive power, the outcome with the largest effect size would have high 

marginal power, whereas the outcome with the smallest effect size would have low marginal 

power – much below the overall desired level of power. It follows that when investigators 

are looking for an intervention effect for at least one outcome, it is unlikely that they will see 

an intervention effect for the outcomes with the smaller effect sizes without seeing an 

intervention effect on the outcomes with the largest effect size. Consequently, for this 

scenario, it may be advisable to choose the outcome(s) which is expected to have the largest 

effect size as the primary outcome(s) and treat the other outcomes as secondary outcomes, 

however, this decision will need to account for the relative clinical importance of the 

outcomes. Alternatively, when the intervention effect size varies across the outcomes, 

investigators may wish to consider ‘alpha spending’ in which the total alpha (usually 0.05) is 

distributed or ‘spent’ across the analyses. For example, for a scenario with two primary 

outcomes, the outcome which is expected to have the largest effect size may be assigned 

the majority of the alpha with a small portion of the alpha reserved for the alpha with the 

smallest effect size.  

I appreciate that in practice the choice of adjustment method may also depend on other 

factors, such as the availability of simultaneous confidence intervals and unbiased estimates 

of the intervention effects. It is standard practice to report 95% confidence intervals 

alongside point estimates and p-values. When using multiple primary outcomes, it may be 

necessary to adjust these confidence intervals so that they correspond to the p-values 

adjusted for multiplicity. The confidence interval may be easily adjusted when using the 

Bonferroni or Holm methods using the R package AdjustPvalues (Paux and Dmitrienko, 

2018). However, it is not straightforward to adjust the confidence interval when using the 

Hochberg and Hommel methods. Consequently, the reported confidence intervals may not 

align with the p-values when these methods are used. In this instance, the conclusions should 

be based on the p-values and not the confidence intervals (European Medical Agency, 2017).  

If confidence intervals that correspond to the chosen multiplicity adjustment are not 

available or are difficult to derive, then it is advised to use simple but conservative confidence 

intervals, such as those based on Bonferroni method (European Medical Agency, 2017). 

It is not necessary to control the FWER for all types of trial designs, for example, for trial 

designs with co-primary outcomes, where all outcomes have to be declared statistically 
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significant for the intervention to be deemed successful. In this scenario, no adjustment has 

to be made to control the FWER and the conjunctive power is used. I have not evaluated the 

conjunctive power as it is not relevant to the scenarios considered in this chapter. The 

conjunctive power behaves in reverse to the disjunctive power and is substantially reduced 

compared to the marginal power. As an illustration, if two independent co-primary outcomes 

are used and there is a marginal power of 80% for each outcome, the conjunctive power of 

statistical significance for both outcomes is 80% x 80% = 64%. Additionally, as the correlation 

between outcomes increases, the conjunctive power increases. The conjunctive power will 

never be larger than the marginal power (80% for this example) and the sample sizes for 

clinical trials will have to be adjusted accordingly (Senn and Bretz, 2007). The sample size will 

need to be adjusted to take account of the multiple co-primary outcomes. Formulae and 

corresponding sample size tables are given in Sugimoto et al. (2012).  

Additionally, adjustments for multiple comparisons may not be necessary for early phase 

drug trials. However, it is generally accepted that adjustments to control the FWER are 

required in confirmatory studies, that is when the goal of the trial is the definitive proof of a 

predefined key hypothesis for the final decision making (Bender and Lange, 2001).  

My review of trials with multiple outcomes showed that majority of the trials analysed the 

outcomes separately without any adjustments for multiple comparisons. Where adjustment 

methods were used, only the most basic methods were used, possibly due to their ease of 

implementation. The Bonferroni method was the most commonly used method, although 

the Holm and Hochberg methods were also used. As a consequence, I focused on relatively 

simple techniques in this chapter. However, more advanced methods, such as graphical 

methods to control the FWER are available and described in  Bretz et al. (2011) and Bretz et 

al. (2009).  

Regardless of the adjustment method chosen, for all trials using multiple outcomes, the 

analysis plan should clearly describe how the outcomes will be tested including which 

adjustment method, if any, will be used (Food and Drug Administration, 2017). Any 

additional outcomes that have not been pre-specified in the analysis plan cannot, in general 

be used to demonstrate the effectiveness of an intervention, even in successful trials (Food 

and Drug Administration, 2017).  
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Sample size 

When designing a clinical trial, it is important to calculate the sample size needed to detect 

a clinically important intervention effect. Usually the number of participants that can be 

recruited in a trial is restricted because of ethical, economic and practical considerations. 

However, if the sample size is too small it may not be possible to detect an important effect. 

The sample size calculation is usually based on an appropriate statistical method which will 

be used for the primary analysis depending on the study design and objectives. The required 

sample size can vary greatly depending on if marginal power or overall disjunctive power is 

used, which highlights the importance of considering the clinical objective of the trial in the 

sample size calculation. To account for multiplicity in the sample size calculation, I 

recommend that the Bonferroni method is used. The Bonferroni method can  be applied 

easily within the sample size calculation using an analytical formula (Food and Drug 

Administration, 2017) and our simulation study showed that it maintains the FWER to an 

acceptable level for low to moderate correlation between the outcomes. Additionally, there 

is only a small reduction in power when using the Bonferroni method when compared to the 

other methods in the presence of missing data. In contrast, the other methods investigated 

in this paper are data driven. For these methods, it is unclear how these can be implemented 

in the absence of a preliminary study. 

One method that has been used to calculate the sample size, for multiple primary outcomes, 

is to calculate the sample size based on the individual marginal power for each outcome and 

to then choose the maximum sample size for the trial (Odekerken et al., 2012). This method 

guarantees adequate marginal power for each individual test. However, this approach will 

overestimate the number of participants required if the investigators are interested in 

disjunctive power. Moreover, it may be difficult to achieve the required sample size in trials 

where recruitment is a problem. As such, trials may be closed down prematurely. Finally, I 

recommend that the sample size should be inflated to account for the expected amount of 

missing data. 

Study extensions and limitations  

In this chapter, I only investigated continuous outcomes. However, in randomised controlled 

trials binary outcomes or a combination of continuous and binary outcomes may be used. 

For two binary outcomes, the maximum possible pairwise correlation between the outcomes 

will be less than one in absolute magnitude (Warner, 2008). Therefore, I would expect similar 
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results for two binary outcomes but with less pronounced differences between methods for 

the strong correlations.  

Additionally, I only investigated global effects, that is either no interventions effect on any of 

the outcomes (𝛽1𝑗 = 0 ) or an intervention effect on all the outcomes (𝛽1𝑗 ≠ 0). Global 

effects are most realistic when the strength of the correlation between the outcomes is 

moderate to strong. However, in practice a mixture of no effects and some intervention 

effects may be observed, especially when the strength of the correlation between the 

outcomes is weak. 

4.3.3 Conclusions 

To ensure that the FWER is controlled when analysing multiple primary outcomes in 

confirmatory randomised controlled trials, I recommend that either the Hochberg or 

Hommel method is used in the analysis for optimal power, when the distributional 

assumptions are met. When designing the trial, the sample size should be calculated 

according to the clinical objective of the trial. When specifying multiple primary outcomes, if 

considered appropriate, disjunctive power could be used, which has smaller sample size 

requirements compared to that when using the individual marginal powers. The Bonferroni 

method can be used in the sample size calculation to account for multiplicity. 
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5 Chapter 5 

Evaluation of multivariate methods to 
analyse multiple outcomes in clinical trials 
Several approaches have been used to analyse trials with multiple outcomes in the presence 

of missing data. A simple approach to the analysis of multiple primary outcomes is to analyse 

each outcome separately. As found in the review in Chapter 3, this has been the most 

common approach to analyse multiple primary outcomes in recently published randomised 

trials. Patients are typically omitted from any analysis for which they have missing outcome 

data. However, this approach does not account for the correlation between the outcomes 

and consequently the precision of the estimates and the power may be lower than that 

achieved by other approaches (Teixeira-Pinto et al., 2009).  

In Chapter 2, I reviewed the methods that were recently used in the literature to analyse 

multiple outcomes. It was noted that multivariate methods make use of the correlations 

between outcomes and can provide more efficient estimators when some outcomes have 

missing values. The multivariate models discussed were the factorisation model, the latent 

variable model and the multivariate multilevel (MM) model. All three models can handle 

continuous outcomes, binary outcomes or a combination of the two. In addition, these 

models can handle non-overlapping missingness and therefore the number of observations 

does not need to be equal across outcomes. The factorisation, latent and MM models can 

easily be extended to handle several outcomes, although the factorisation model can be 

cumbersome when there are more than three outcomes. For this reason, I focus on the latent 

and MM models and set out to investigate the scenarios in which multivariate methods are 

superior, and to what extent, with respect to the efficiency gained. 

For a comparison, I also investigated analysing outcomes separately with and without 

imputation of missing data values. Complete case analysis is often used in practice, although 

imputation is recommended to handle missing data prior to analysis. Multiple imputation is 

a common imputation method that has become readily available in recent years with 

packages available in most statistical programs, including R, Stata and SAS. 
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5.1 Aim 

The aim of this chapter is to compare the multivariate multilevel (MM) and latent variable 

(LV) models to univariate models with (MI+UV) and without multiple imputation (UV) with 

respect to power and FWER. In the trial setting, it is important to have sufficient power to 

detect the true intervention effects, when they are present, whilst controlling the FWER. 

Consequently, I focus on the disjunctive power and FWER obtained when using these 

methods. Recommendations are made regarding which of these methods provides the most 

power whilst controlling the FWER. 

 

5.2 Methods  

Several scenarios were considered by varying the number of outcomes, the outcome type, 

the correlation between the outcomes, the size of the intervention effect, the missing data 

mechanism and the percentage of missing data values. Details of the different simulation 

factors considered are described in Table 5.1.  

The following model was used to simulate values for two continuous outcomes 𝒀𝒊 =

(𝑌𝑖,1, 𝑌𝑖,2)
𝑇

,  

 𝒀𝒊 =  𝜷𝟎 +  𝜷1𝑥𝑖 + 𝝐𝒊 , 

 

(5.1) 

where 𝑥𝑖 indicates whether the participant 𝑖 received intervention (𝑥𝑖 =  1) or control (𝑥𝑖 =

 0), 𝜷1 = ( 𝛽11 , 𝛽12 )𝑇 is the vector of the effect of the intervention for each outcome, 𝝐𝐢 =

(𝜖𝑖,1, 𝜖𝑖,2 )
𝑇

  are errors which are realisations of a multivariate normal distribution  

𝝐𝒊 ∼ 𝑁 ((
0

0
) , (

1 𝜌
𝜌 1

) ), 

and 𝜌 is the correlation between outcomes. The model was also extended in the obvious way 

to simulate four continuous outcomes. To simulate binary outcomes a similar model was 

used,with an extra final step todichotomise the continuous outcomes at zero. 
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Table 5.1 Scenarios simulated to evaluate methods which may be used to analyse multiple 
outcomes. 

Variable  Simulation factors 

Number of outcomes  2 or 4  

Outcome type  Continuous; binary; and mixed (half continuous and half binary)  

Correlation between 

outcomes  
0.0, 0.2, 0.4, 0.6, 0.8  

Effect size (ES) of 

intervention effect  

Continuous outcomes  
Equal: ES = 0.35 for all outcomes. 
Varying ES = (0.2, 0.4)T or ES = (0.1, 0.2, 0.3, 0.4) T for two and four 
outcomes respectively.  

Binary outcomes  
Equal: the percentage of events in the control and intervention 
arms were 50% and 65%, respectively for all outcomes (equivalent 
to an effect size of 0.385).  

Mixed outcomes  
Equal: ES = 0.35 for all outcomes.  

Missing data 

mechanism  
Missing completely at random (MCAR), missing at random (MAR) 

Percentage of 

missing data values  

Low and high levels of missingness. 
Percentages varied on depending on the missingness mechanisms 
and the number of outcomes, as described below: 
 
MCAR and MAR, 2 outcomes  

Low: 15% and 25% missing values in outcome 1 and 2  
High: 30% and 50% missing values in outcome 1 and 2  

 

MCAR and MAR, 4 outcomes  
Low: 15%, 15%, 25% and 25% missing values in outcome 1, 2, 3 
and 4  
High: 20%, 30%, 40% and 50% missing values in outcome 1, 2, 3 
and 4  

 

  

 

The sample size was set as 260 for the continuous and mixed scenarios and 340 for the binary 

scenarios, with equal numbers of participants being allocated to the two intervention 

groups. These numbers were obtained from sample size calculations for a single outcome 

using the equal effect sizes in Table 5.1, 5% statistical significance and 80% power.  

Missing data was introduced under a variety of assumptions. I specified two forms of 

missingness: missing completely at random (MCAR) and missing at random (MAR).  For both 
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MCAR and MAR, I investigate low and high levels of missingness as described in the Table 5.1 

above. 

I expect that the low levels of missingness are representative of many clinical trials. The high 

levels of missingness are less frequently observed in real settings and represent more 

extreme scenarios. However, these extreme levels of missingness do occur in clinical trials, 

for example, in the 10TT trial described in Chapter 2, only 58% of the randomised participants 

completed the weight loss outcome at two years and 31% of randomised participants had 

complete quality of life and cost data at two years (Beeken et al., 2017). 

Missingness was implemented by simulating values from a multivariate Bernoulli distribution 

(Leisch et al., 1998) and setting the outcome variables to be missing depending on the 

corresponding binary indicator. When data are MCAR the missingness does not depend on 

the observed outcome value or the intervention arm. In the MAR scenarios the probability 

of misssingness depends on the intervention group with outcome being more likely to be 

missing in the control arm compared to the intervention arm. 

I estimated the FWER by specifying that the intervention had no effect (𝜷𝟏 = 𝟎) then 

calculating the proportion of times a significant test result was observed for at least one of 

the outcomes over 10,000 simulations. To control the FWER, the Holm method was used. To 

estimated the disjunctive power a similar approach was used with a specified intervention 

effect (𝜷𝟏  ≠ 𝟎). The bias associated with the estimated intervention effects was calculated 

as the difference between the average intervention effect �̂� and the true value of the 

intervention effect 𝛽, as given by 

𝐵𝑖𝑎𝑠 =  �̂� − 𝛽. 

More specifically, �̂� =
1

𝑁
∑ �̂�𝑖

𝑁
𝑖=1  is the sample mean of the estimate of the intervention 

effect, where 𝑁 is the number of simulations performed, �̂�𝑖 is estimated intervention effect 

within each of the 𝑁 simulations. The amount of bias that is considered problematic to be 

has varied from 
1

2
𝑆𝐸(�̂�) (Schafer and Graham, 2002) to 2𝑆𝐸(�̂�) (Sinharay et al., 2001), 

where 𝑆𝐸(�̂�) is the empirical standard error (EmpSE) of the estimated effect. The empirical 

SE estimates the long-run standard deviation of �̂� over the 𝑁 simulation repetitions. I 

consider any bias greater than 
1

2
𝑆𝐸(�̂�) to be as problematic. The Monte Carlo standard error 

(MCSE) was also calculated to provide an estimate of the inaccuracy of the Monte Carlo 

samples for each scenario.  
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The following methods of analysis were used: 

1) Univariate models (UV). This was used as the comparator for the other methods. 

2) Multiple imputation followed by univariate models (MI+UV).  

3) Multivariate multilevel model (MM).  

4) Latent variable model (LV).  

For the univariate approach, the continuous outcomes were analysed using a linear 

regression model and the binary outcomes were analysed using a probit regression model. 

The latter was used as this corresponds to how the data were generated. 

Multiple imputation was implemented using chained equations (MICE) since this is one of 

the most widely used methods to impute missing data (Sterne et al., 2009). The outcomes 

in the two intervention arms were imputed separately which is equivalent to imputing the 

missing values conditional on the intervention arm. Forty imputations were used for all 

scenarios, which is the recommended number of imputations when 50% of the data are 

missing (Graham et al., 2007). Estimates were pooled across imputed datasets using Rubin’s 

rules (Rubin, 2004). The LV models used adaptive quadrature (Rabe-Hesketh et al., 2005) 

with ten integration points to fit the models by maximum likelihood estimation. To ensure 

that the model is not over parameterised so that all model parameters are identifiable, one 

of the parameters must be fixed. The parameter to be fixed should be specified carefully on 

a case-by-case basis. For all scenarios in this chapter, the latent factor variance was fixed to 

0.8 (Grilli and Rampichini, 2006). In the scenarios with binary outcomes, we fixed the latent 

factor to 1. The MM model was implemented in MLwiN via R using the package ‘R2MLwiN’ 

(Leckie and Charlton, 2013, Zhang et al., 2016b). The MI+UV model was implemented using 

the ‘mice’ package in R; and the LV method was implemented using GLLAMM in Stata 

Release 14 (StataCorp, 2015). 

 

5.3 Results 

To begin, I compare each method to the UV model and later I compare all the methods 

together. 
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Multiple imputation and then univariate models, MI + UV 

The FWER varies between 3.1% and 5.9%. The FWER and disjunctive power obtained when 

using two continuous outcomes are shown in Table 5.2a. When using continuous outcomes, 

the estimates of the intervention effects were unbiased (results shown in Appendix 6). When 

there is weak correlation between the two outcomes (𝜌 < 0.4), the imputed values are 

highly variable which leads to slightly higher empirical standard errors for the estimated 

intervention effects compared to using the complete data only. The empirical standard 

errors for the estimated intervention effects are shown in Appendix 6. As a consequence, the 

disjunctive power observed when using the MI+UV is reduced by up to 17% compared to UV 

method (results shown in Table 5.2a). In contrast, when there is strong correlation between 

the outcomes and the missing data are not overlapping across outcomes, if MI+UV approach 

is used, the observed outcome values are highly predictive of the missing outcome values. 

This leads to smaller empirical standard errors, as shown in Appendix 6. Consequently, the 

disjunctive power for MI+UV is increased compared to UV, by up to 6%.  

When analysing four continuous outcomes, the MI+UV approach performs slightly better. 

When there is no correlation between the outcomes, the disjunctive power is still reduced 

compared to the UV, however, by only 2%. Whereas for strong correlation between the 

outcomes, the disjunctive power for MI+UV is increased compared to UV by 11%. 

When analysing two binary outcomes (Table 5.2b), the MI+UV approach had lower 

disjunctive power when compared to analysing the outcomes separately when there is a low 

proportion of missing data under both MCAR and MAR scenarios. When analysing two binary 

outcomes, the FWER is maintained at an acceptable level (FWER ≤  5.1%). A small bias in the 

estimates of the intervention effects was observed when analysing two binary outcomes 

(results shown in Appendix 6). This may be due to the multiple imputation program requiring 

us to use logistic regression for the imputation instead of a probit regression as per the rest 

of the analyses.  

When analysing mixed outcome types, the MI+UV only slightly increases the disjunctive 

power to detect an intervention effect compared to UV. When there is a large proportion of 

missing data and there is strong correlation between the two outcomes a 4% disjunctive 

power gain can be achieved compared to UV.   
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Table 5.2a FWER and disjunctive power when evaluating two continuous outcomes. 
Multivariate and univariate methods are compared for scenarios which vary in terms of missingness, percentage of missing data and degree of correlation between 
outcomes. The Holm method was applied to all scenarios to account for multiplicity.  

Type of 
Missingness ↓ 

% of missing values 
for each outcome ↓ 

𝝆  
↓ 

Family wise error rate (FWER) Disjunctive power 
Relative power 

(vs. UV) 
  

 Method →  UV  MI + UV MM      LV         UV MI + UV MM LV MI+UV MM LV 

Complete 
 

(0%, 0%) 

0 0.051 - 0.054 0.053 0.923 - 0.927 0.922 - 1.00 1.00 

0.2 0.048 - 0.050 0.050 0.898 - 0.903 0.903 - 1.01 1.00 

0.4 0.047 - 0.049 0.049 0.868 - 0.872 0.872 - 1.01 1.01 

0.6 0.046 - 0.048 0.048 0.834 - 0.840 0.840 - 1.01 1.01 

0.8 0.041 - 0.044 0.053 0.798 - 0.804 0.809 - 1.01 1.01 

MCAR (15%, 25%) 

0 0.049 0.047 0.052 0.051 0.841 0.806 0.849 0.845 0.96 1.01 1.01 

0.2 0.046 0.044 0.051 0.050 0.823 0.805 0.834 0.833 0.98 1.01 1.01 

0.4 0.048 0.046 0.051 0.051 0.791 0.792 0.803 0.802 1.00 1.02 1.02 

0.6 0.047 0.047 0.049 0.049 0.762 0.783 0.789 0.789 1.03 1.04 1.03 

0.8 0.046 0.049 0.047 0.056 0.739 0.770 0.769 0.776 1.04 1.04 1.05 

MCAR (30%, 50%) 

0 0.053 0.033 0.058 0.058 0.710 0.554 0.727 0.724 0.78 1.02 1.02 

0.2 0.050 0.033 0.056 0.055 0.704 0.579 0.720 0.719 0.82 1.02 1.02 

0.4 0.049 0.043 0.054 0.053 0.681 0.652 0.710 0.710 0.96 1.04 1.04 

0.6 0.050 0.053 0.052 0.052 0.651 0.683 0.698 0.698 1.05 1.07 1.07 

0.8 0.049 0.059 0.052 0.062 0.642 0.701 0.698 0.705 1.09 1.09 1.10 

MAR 
 

(15%, 25%) 

0 0.048 0.043 0.052 0.051 0.839 0.798 0.846 0.843 0.95 1.01 1.01 

0.2 0.047 0.046 0.052 0.052 0.814 0.789 0.825 0.825 0.97 1.01 1.01 

0.4 0.050 0.050 0.053 0.053 0.794 0.798 0.810 0.810 1.01 1.02 1.02 

0.6 0.048 0.051 0.050 0.050 0.766 0.785 0.792 0.792 1.03 1.03 1.03 

0.8 0.043 0.046 0.044 0.052 0.738 0.771 0.769 0.774 1.05 1.04 1.05 

MAR (30%, 50%) 

0 0.052 0.031 0.057 0.056 0.709 0.538 0.725 0.723 0.76 1.02 1.02 

0.2 0.051 0.032 0.057 0.056 0.686 0.558 0.707 0.706 0.81 1.03 1.03 

0.4 0.049 0.039 0.052 0.052 0.678 0.636 0.704 0.703 0.94 1.04 1.04 

0.6 0.051 0.053 0.052 0.052 0.658 0.676 0.695 0.695 1.03 1.06 1.06 

0.8 0.048 0.056 0.049 0.058 0.640 0.689 0.689 0.696 1.08 1.08 1.09 
Key: MM = multivariate multilevel model; UV = univariate model; MI + UV = multiple imputation followed by univariate model; LV = Latent variable model; 𝜌 ∗ = correlation between  
outcomes. Note: Monte Carlo standard errors (MCSE) were consistent across methods. MCSE Range for FWER = (0.0020, 0.0030); MCSE Range for Power = (0.0027, 0.0049). 
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Table 5.2b  FWER and disjunctive power when analysing two binary outcomes. 
Multivariate and univariate methods are compared for scenarios which vary in terms of missingness, percentage of missing data and degree of correlation between 
outcomes. The Holm method was applied to all scenarios to account for multiplicity.   

Type of  
missingness  ↓ 

% of missing values 
for each outcome  ↓ 

𝜌 
 ↓ 

Family wise error rate  
(FWER) 

Disjunctive power 
Relative power  

(vs. UV) 

  Method → UV MI + UV MM LV UV MI + UV MM LV MI+UV MM LV 

Complete (0%, 0%) 

0 0.050 - 0.046 0.051 0.914 - 0.913 0.924 - 1.00 1.01 

0.2 0.050 - 0.046 0.051 0.906 - 0.905 0.903 - 1.00 1.00 

0.4 0.055 - 0.049 0.051 0.884 - 0.883 0.886 - 1.00 1.00 

0.6 0.047 - 0.043 0.050 0.868 - 0.867 0.861 - 1.00 0.99 

0.8 0.049 - 0.044 0.038 0.833 - 0.831 0.819 - 1.00 0.98 

MCAR (15%, 25%) 

0 0.053 0.051 0.051 0.050 0.843 0.832 0.842 0.848 0.99 1.00 1.01 

0.2 0.048 0.044 0.048 0.046 0.830 0.823 0.829 0.826 0.99 1.00 1.00 

0.4 0.047 0.045 0.046 0.046 0.816 0.811 0.819 0.816 0.99 1.00 1.00 

0.6 0.049 0.044 0.048 0.041 0.793 0.794 0.803 0.789 1.00 1.01 0.99 

0.8 0.045 0.043 0.048 0.036 0.768 0.774 0.786 0.763 1.01 1.02 0.99 

MCAR (30%, 50%) 

0 0.048 0.042 0.046 0.044 0.731 0.706 0.730 0.714 0.97 1.00 0.98 

0.2 0.051 0.044 0.051 0.045 0.714 0.692 0.714 0.696 0.97 1.00 0.97 

0.4 0.048 0.045 0.049 0.040 0.706 0.685 0.711 0.680 0.97 1.01 0.96 

0.6 0.049 0.045 0.048 0.035 0.678 0.665 0.693 0.661 0.98 1.02 0.97 

0.8 0.051 0.042 0.048 0.033 0.671 0.666 0.697 0.632 0.99 1.04 0.94 

MAR (15%, 25%) 

0 0.049 0.047 0.050 0.050 0.844 0.835 0.844 0.845 0.99 1.00 1.00 

0.2 0.049 0.046 0.048 0.048 0.829 0.822 0.829 0.821 0.99 1.00 0.99 

0.4 0.051 0.048 0.051 0.043 0.812 0.805 0.813 0.801 0.99 1.00 0.99 

0.6 0.051 0.049 0.054 0.045 0.793 0.792 0.801 0.789 1.00 1.01 0.99 

0.8 0.044 0.042 0.046 0.037 0.777 0.781 0.789 0.755 1.00 1.02 0.97 

MAR (30%, 50%) 

0 0.046 0.041 0.046 0.046 0.712 0.690 0.711 0.711 0.97 1.00 1.00 

0.2 0.049 0.044 0.048 0.049 0.708 0.687 0.708 0.689 0.97 1.00 0.97 

0.4 0.050 0.045 0.050 0.043 0.693 0.673 0.695 0.676 0.97 1.00 0.98 

0.6 0.050 0.044 0.048 0.039 0.679 0.672 0.689 0.651 0.99 1.01 0.96 

0.8 0.050 0.042 0.051 0.031 0.659 0.664 0.684 0.608 1.01 1.04 0.92 

 
Key: MM = multivariate multilevel model; UV = univariate model; MI + UV = multiple imputation followed by univariate model; LV = Latent variable model; 𝜌 = correlation between outcomes. Note: Monte 
Carlo standard errors (MCSE) for were consistent across methods. MCSE Range for FWER = (0.0016, 0.0023); MCSE Range for Power = (0.0027, 0.0049). 
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Table 5.2c  FWER and disjunctive power when analysing one continuous and one binary outcome (‘mixed’ outcome type).   
Multivariate and univariate methods are compared for scenarios which vary in terms of missingness, percentage of missing data and degree of correlation between 
outcomes. The Holm method was applied to all scenarios to account for multiplicity. 

Type of  
missingness ↓ 

% of missing values 
for each outcome↓ 

𝝆  ↓ Family wise error rate  
(FWER) 

Disjunctive power relative power 
 (vs. UV) 

  Method → UV MI + UV MM LV UV MI + UV MM LV MI+UV MM LV 

Complete 
 

(0%, 0%) 0 0.047 - 0.048 0.048 0.855 - 0.858 0.858 - 1.00 1.00 

0.2 0.044 - 0.044 0.044 0.836 - 0.840 0.838 - 1.00 1.00 

0.4 0.043 - 0.045 0.046 0.813 - 0.818 0.815 - 1.01 1.00 

0.6 0.045 - 0.046 0.041 0.791 - 0.795 0.779 - 1.01 0.98 

0.8 0.048 - 0.049 0.030 0.764 - 0.770 0.721 - 1.01 0.94 

MCAR (15%,25%) 0 0.047 0.047 0.049 0.048 0.778 0.779 0.783 0.782 1.00 1.01 1.01 

0.2 0.049 0.050 0.052 0.051 0.756 0.758 0.764 0.763 1.00 1.01 1.01 

0.4 0.047 0.046 0.048 0.046 0.742 0.746 0.754 0.750 1.01 1.02 1.01 

0.6 0.046 0.045 0.049 0.039 0.716 0.723 0.732 0.706 1.01 1.02 0.99 

0.8 0.046 0.043 0.045 0.029 0.693 0.708 0.714 0.671 1.02 1.03 0.97 

MCAR 
 

(30%,50%) 0 0.047 0.054 0.049 0.051 0.650 0.660 0.660 0.658 1.02 1.02 1.01 

0.2 0.049 0.052 0.052 0.052 0.641 0.651 0.654 0.651 1.02 1.02 1.01 

0.4 0.047 0.055 0.048 0.049 0.636 0.651 0.652 0.644 1.02 1.03 1.01 

0.6 0.046 0.051 0.049 0.038 0.620 0.643 0.644 0.604 1.04 1.04 0.97 

0.8 0.046 0.047 0.045 0.029 0.609 0.635 0.637 0.595 1.04 1.05 0.98 

MAR (15%,25%) 
 

0 0.051 0.049 0.053 0.053 0.771 0.772 0.778 0.777 1.00 1.01 1.01 

0.2 0.052 0.052 0.053 0.053 0.753 0.752 0.761 0.760 1.00 1.01 1.01 

0.4 0.050 0.050 0.052 0.049 0.731 0.733 0.741 0.736 1.00 1.01 1.01 

0.6 0.052 0.050 0.051 0.042 0.710 0.728 0.732 0.707 1.03 1.03 1.00 

0.8 0.041 0.039 0.042 0.025 0.696 0.712 0.718 0.678 1.02 1.03 0.97 

 
MAR 

 

(30%,50%) 0 0.049 0.052 0.051 0.051 0.645 0.653 0.656 0.655 1.01 1.02 1.02 

0.2 0.051 0.052 0.052 0.051 0.641 0.652 0.654 0.651 1.02 1.02 1.02 

0.4 0.049 0.053 0.053 0.049 0.628 0.648 0.644 0.635 1.03 1.03 1.01 

0.6 0.046 0.050 0.050 0.037 0.614 0.646 0.637 0.603 1.05 1.04 0.98 

0.8 0.051 0.050 0.052 0.032 0.608 0.647 0.639 0.597 1.06 1.05 0.98 
Key: MM = multivariate multilevel model; UV = univariate model; MI + UV = multiple imputation followed by univariate model; LV = Latent variable model; ρ = correlation between outcomes. Note: Monte 
Carlo standard errors (MCSE) for the simulation were consistent across methods. MCSE Range for FWER = (0.0019, 0.0028); MCSE Range for Power = (0.0030, 0.0050). 
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Table 5.3a FWER and disjunctive power when analysing four continuous outcomes. 
Multivariate and univariate methods are compared for scenarios which vary in terms of missingness, percentage of missing data and degree of correlation between 
outcomes. The Holm method was applied to all scenarios to account for multiplicity. 

Type of  
missingness ↓ 

% of missing values 
for each outcome↓ 

𝝆  ↓ Family wise error rate  
(FWER) 

Disjunctive power Relative power 
 (vs. UV) 

  
Method 

→ UV MI + UV MM UV MI + UV MM MI+UV MM 

Complete 
(0%, 0%,  

0%, 0%) 

0 0.046 - 0.051 0.980 - 0.982 - 1.00 

0.2 0.049 - 0.052 0.950 - 0.954 - 1.00 

0.4 0.046 - 0.050 0.915 - 0.920 - 1.01 

0.6 0.040 - 0.043 0.858 - 0.866 - 1.01 

0.8 0.035 - 0.038 0.788 - 0.797 - 1.01 

MCAR 
(15%, 25%,  

15%, 25%) 

0 0.052 0.050 0.059 0.937 0.933 0.946 1.00 1.01 

0.2 0.048 0.050 0.056 0.899 0.898 0.907 1.00 1.01 

0.4 0.044 0.049 0.051 0.852 0.864 0.874 1.01 1.03 

0.6 0.045 0.047 0.046 0.801 0.827 0.831 1.03 1.04 

0.8 0.036 0.036 0.036 0.749 0.788 0.789 1.05 1.05 

MCAR 
(20%, 30%,  

40%, 50%) 

0 0.045 0.045 0.053 0.876 0.855 0.891 0.98 1.02 

0.2 0.051 0.053 0.057 0.836 0.836 0.859 1.00 1.03 

0.4 0.046 0.053 0.054 0.787 0.811 0.826 1.03 1.05 

0.6 0.047 0.051 0.050 0.739 0.791 0.797 1.07 1.08 

0.8 0.043 0.047 0.040 0.680 0.757 0.750 1.11 1.10 

MAR 
(15%, 25%,  

15%, 25%) 

0 0.052 0.050 0.058 0.938 0.931 0.945 0.99 1.01 

0.2 0.048 0.049 0.053 0.902 0.901 0.913 1.00 1.01 

0.4 0.048 0.050 0.053 0.849 0.865 0.874 1.02 1.03 

0.6 0.043 0.047 0.049 0.802 0.829 0.834 1.03 1.04 

0.8 0.039 0.039 0.039 0.748 0.785 0.784 1.05 1.05 

MAR 
(20%, 30%,  

40%, 50%) 

0 0.050 0.049 0.059 0.874 0.857 0.891 0.98 1.02 

0.2 0.050 0.053 0.059 0.828 0.824 0.851 0.99 1.03 

0.4 0.048 0.050 0.052 0.783 0.808 0.820 1.03 1.05 

0.6 0.044 0.050 0.049 0.739 0.791 0.798 1.07 1.08 

0.8 0.041 0.043 0.038 0.691 0.763 0.759 1.10 1.10 
Key: MM = multivariate multilevel model; UV = univariate model; MI + UV = multiple imputation followed by univariate model; LV = Latent variable model; ρ = correlation between outcomes. Note: 
Monte Carlo standard errors (MCSE) for the simulation were consistent across methods. MCSE Range for FWER = (0.0018, 0.0024); MCSE Range for Power = (0.0013, 0.0047) 
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Table 5.3b FWER and disjunctive power when analysing two continuous and two binary outcomes (four ‘mixed’ outcomes).  

Multivariate and univariate methods are compared for scenarios which vary in terms of missingness, percentage of missing data and degree of correlation between 
outcomes. The Holm method was applied to all scenarios to account for multiplicity. 
 

Type of  
missingness ↓ 

% of missing values for 
each outcome↓ 

𝝆  ↓ 
Family wise error rate  

(FWER) 
Disjunctive power 

Relative power 
 (vs. UV) 

  Method → UV MI + UV MM UV MI + UV MM MI+UV MM 

Complete 
(0%, 0%,  

0%, 0%) 

0 0.048 - 0.050 0.948 - 0.951 - 1.00 
0.2 0.044 - 0.047 0.908 - 0.912 - 1.00 
0.4 0.048 - 0.049 0.874 - 0.878 - 1.01 
0.6 0.040 - 0.041 0.821 - 0.827 - 1.01 
0.8 0.037 - 0.038 0.765 - 0.771 - 1.01 

MCAR 
(15%, 25%,  

15%, 25%) 

0 0.050 0.046 0.052 0.883 0.863 0.891 0.98 1.01 

0.2 0.052 0.046 0.056 0.842 0.827 0.852 0.98 1.01 

0.4 0.047 0.044 0.050 0.803 0.801 0.821 1.00 1.02 

0.6 0.044 0.042 0.046 0.755 0.769 0.785 1.02 1.04 

0.8 0.044 0.040 0.045 0.706 0.731 0.749 1.04 1.06 

MCAR 
(20%, 30%,  

40%, 50%) 

0 0.050 0.041 0.054 0.811 0.761 0.823 0.94 1.01 
0.2 0.049 0.041 0.052 0.774 0.744 0.796 0.96 1.03 
0.4 0.045 0.038 0.049 0.740 0.730 0.765 0.99 1.03 
0.6 0.046 0.039 0.052 0.703 0.715 0.746 1.02 1.06 
0.8 0.041 0.032 0.042 0.656 0.689 0.712 1.05 1.09 

MAR 
(15%, 25%,  

15%, 25%) 

0 0.046 0.042 0.049 0.880 0.856 0.886 0.97 1.01 

0.2 0.051 0.047 0.054 0.841 0.829 0.852 0.99 1.01 

0.4 0.046 0.041 0.046 0.797 0.801 0.819 1.01 1.03 

0.6 0.046 0.044 0.051 0.757 0.773 0.786 1.02 1.04 

0.8 0.040 0.038 0.041 0.711 0.737 0.745 1.04 1.05 

MAR 
(20%, 30%,  

40%, 50%) 

0 0.048 0.040 0.054 0.808 0.761 0.820 0.94 1.02 

0.2 0.051 0.043 0.055 0.760 0.728 0.783 0.96 1.03 

0.4 0.048 0.043 0.055 0.738 0.730 0.768 0.99 1.04 

0.6 0.043 0.035 0.045 0.688 0.703 0.731 1.02 1.06 

0.8 0.044 0.036 0.044 0.646 0.688 0.706 1.07 1.09 
\ 

Key: MM = multivariate multilevel model; UV = univariate model; MI + UV = multiple imputation followed by univariate model; ρ = correlation between outcomes. Note: Monte Carlo standard errors 
(MCSE) for the simulation were consistent across methods. MCSE Range for FWER = (0.0017, 0.0023); MCSE Range for Power = (0.0020, 0.0048) 
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Table 5.4a Disjunctive power when analysing two continuous outcomes with varying effect sizes. 
Multivariate and univariate methods are compared for scenarios which vary in terms of missingness, percentage of missing data and degree of correlation between 
outcomes. The Holm method was applied to all scenarios to account for multiplicity. 

Type of  
missingness ↓ 

% of missing values for 
each outcome↓ 

𝝆  ↓ Disjunctive Power 
Relative power  

(vs. UV) 

  Method → UV MI + UV MM MI+UV MM 

Complete 
 

(0%, 0%) 

0 0.775 - 0.789 - 1.01 

0.2 0.754 - 0.763 - 1.01 

0.4 0.738 - 0.747 - 1.01 

0.6 0.729 - 0.738 - 1.01 

0.8 0.717 - 0.726 - 1.01 

MCAR (15%,25%) 

0 0.641 0.607 0.655 0.95 1.02 

0.2 0.633 0.612 0.650 0.97 1.03 

0.4 0.618 0.629 0.648 1.02 1.05 

0.6 0.601 0.637 0.648 1.06 1.08 

0.8 0.590 0.665 0.666 1.13 1.13 

MCAR 
 

(30%,50%) 

0 0.475 0.374 0.499 0.79 1.05 

0.2 0.476 0.394 0.508 0.83 1.07 

0.4 0.453 0.435 0.500 0.96 1.10 

0.6 0.442 0.497 0.512 1.12 1.16 

0.8 0.443 0.560 0.551 1.27 1.25 

MAR 
(15%,25%) 

 

0 0.649 0.612 0.665 0.94 1.02 

0.2 0.630 0.611 0.650 0.97 1.03 

0.4 0.616 0.624 0.644 1.01 1.04 

0.6 0.601 0.638 0.645 1.06 1.07 

0.8 0.592 0.665 0.668 1.12 1.13 

 
MAR 

 
(30%,50%) 

0 0.455 0.367 0.480 0.81 1.06 

0.2 0.461 0.383 0.490 0.83 1.06 

0.4 0.444 0.419 0.490 0.95 1.10 

0.6 0.430 0.471 0.496 1.10 1.15 

0.8 0.427 0.553 0.544 1.30 1.28 

Key: MM = multivariate multilevel model; UV = univariate model; MI + UV = multiple imputation followed by univariate model; 𝜌 = correlation between outcomes.  
Note: Monte Carlo standard errors were consistent across methods. The range of the MCSE was 0.003 to 0.005 
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Table 5.4b Disjunctive power when analysing four continuous outcomes with varying effect size. 
Multivariate and univariate methods are compared for scenarios which vary in terms of missingness, percentage of missing data and degree of correlation between 
outcomes. The Holm method was applied to all scenarios to account for multiplicity. 

Type of  
missingness ↓ 

% of missing values for 
each outcome↓ 

𝝆  ↓ Disjunctive Power 
Relative power  

(vs. UV) 

  Method → UV MI + UV MM MI+UV MM 

Complete 
(0%, 0%, 

0%, 0%) 

0 0.799 - 0.812 - 1.02 

0.2 0.743 - 0.757 - 1.02 

0.4 0.717 - 0.732 - 1.02 

0.6 0.676 - 0.689 - 1.02 

0.8 0.635 - 0.649 - 1.02 

MCAR 
(15%, 25%, 

15%, 25%) 

0 0.652 0.646 0.683 0.99 1.05 

0.2 0.616 0.630 0.646 1.02 1.05 

0.4 0.600 0.620 0.644 1.03 1.07 

0.6 0.558 0.618 0.626 1.11 1.12 

0.8 0.531 0.613 0.619 1.15 1.17 

MCAR 
(20%, 30%, 

40%, 50%) 

0 0.510 0.486 0.552 0.95 1.08 

0.2 0.476 0.483 0.532 1.02 1.12 

0.4 0.442 0.498 0.517 1.13 1.17 

0.6 0.423 0.534 0.538 1.26 1.27 

0.8 0.386 0.572 0.553 1.48 1.43 

MAR 
(15%, 25%, 

15%, 25%) 

0 0.655 0.648 0.678 0.99 1.03 

0.2 0.619 0.626 0.648 1.01 1.05 

0.4 0.590 0.622 0.636 1.05 1.08 

0.6 0.552 0.613 0.621 1.11 1.13 

0.8 0.517 0.606 0.605 1.17 1.17 

MAR 
(20%, 30%, 

40%, 50%) 

0 0.484 0.479 0.528 0.99 1.09 

0.2 0.459 0.479 0.508 1.04 1.11 

0.4 0.437 0.500 0.510 1.15 1.17 

0.6 0.415 0.513 0.519 1.24 1.25 

0.8 0.376 0.555 0.543 1.48 1.44 
Key: MM = multivariate multilevel model; UV = univariate model; MI + UV = multiple imputation followed by univariate model; LV = Latent variable model; ρ = correlation between outcomes.
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Multivariate multilevel model (MM)  

The FWER fluctuated around 5%. The highest level of FWER observed when analysing two 

continuous outcomes was 5.8%. The FWER was highest in the scenarios when there were 

high levels of missing data. 

If there are no missing data, the MM model performed similarly to analysing the outcomes 

separately. The small difference in FWER and disjunctive power when analysing continuous 

outcomes may be attributed to the fact the UV p-values are calculated using a Student’s t-

distribution, whereas the MM p-values are calculated using a normal distribution. The effects 

of the intervention were unbiased when analysing two continuous outcomes.  

As expected, benefits in terms of disjunctive power are seen when there are missing data as 

the MM model is able to use observations where one of the outcome values is missing. Even 

when there is weak correlation, the MM model performs better than the UV model. For 

continuous outcomes, when there is a low proportion of missing data small power gains may 

be observed when the correlation is strong (𝜌 > 0.4). When the correlation is 0.8, a relative 

gain of up to 4% may be observed between the MM model and UV models. When there is a 

large proportion of missing data, up to a 9% gain in disjunctive power was achieved by the 

MM model compared to the UV model. When analysing four continuous outcomes, similar 

results are observed. The relative gains between the MM and UV models range from 5%, 

when there are low levels of missing data, to 10% when there are high levels of missing data 

and the between outcome correlation is strong. These results are displayed in Table 5.3a. 

Additionally, similar results are observed when varying intervention effect sizes are used. 

When analysing two outcomes with varying intervention effect sizes, with high levels of 

missing data and strong correlation between the outcomes, a gain of up to 10% may be 

observed between the MM and UV models. These results are displayed in Table 5.4a. 

For two binary outcomes, the UV and MM models perform identically when there are no 

missing data. When there is a low level of missing data (20%) the differences between the 

MM and UV models are minimal with differences ranging from 0% to a 2% relative increase 

in disjunctive power. Larger differences are seen when there is a large amount of missing 

data and the two outcomes are strongly correlated.  

For two binary outcomes, the estimates of the intervention effects are unbiased. The largest 

relative disjunctive power increase, compared to the UV model, is 4% when there is 40% 

overall missingness and the correlation is strong (𝜌=0.8). When analysing two binary 

outcomes the MM model occasionally did not converge. This most frequently occurred when 
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the correlation between the two outcomes was strong (𝜌= 0.8) and there was no effect of 

the intervention.  

When analysing four binary outcomes, the MM model often did not converge. For example, 

when simulating no effect of the intervention and no missing data 37.1% of the simulations 

(n=18558/50000) reported an error and the results were displayed as “NA”. Other 

simulations reported final values but they do not appear to have converged as the results 

are much larger than expected, for example the coefficients for the estimated effect size are 

greater than 1000, when I simulated an effect size of 0. Consequently, I have not reported 

results for four binary outcomes. It is perhaps an unusual scenario that a clinical trial would 

have four binary outcomes without any continuous outcomes and therefore this should not 

affect the conclusions regarding the MM model. 

Latent variable model (LV) 

When using the latent variable model, the FWER observed ranged from 2.5% up to 6.2% 

across the continuous and mixed scenarios. The results for the model were heavily 

dependent on the assumptions made regarding the variance of the latent factor.  

For two continuous outcomes, the power gains were comparable to that of the MM model. 

For two mixed outcomes, after fixing the variance of the latent factor, the FWER was overly 

conservative when the correlation between the outcomes was strong. This resulted in a loss 

of disjunctive power compared to the other methods.  

The use of the LV model was not investigated for four outcomes due to the increased FWER 

when using two outcomes. 

Comparison of methods 

When applying the MM, MI+UV and LV model, and using the Holm method to account for 

multiplicity, the FWER fluctuates around 5% (between 3.1% and 6.2%). In terms of disjunctive 

power, the MM model performs better than using MI+UV method in the majority of 

scenarios. When there is little correlation between the two outcomes, the MM model 

provides a small increase in disjunctive power compared to analysing the outcomes 

separately. Whereas when using the MI+UV approach, the disjunctive power is decreased as 

the standard errors are increased. As the correlation increases between two outcomes, the 

benefits of the MM model continue to increase. When the correlations between the 

outcomes are very strong (𝜌 = 0.8) the MM model and MI+UV approach perform similarly. 



     Chapter 5 Comparison of multivariate methods 

99 
 

For two continuous outcomes, unbiased estimates of the intervention effect were obtained 

using all methods. The Monte Carlo standard errors (MCSE) of the disjunctive power and 

FWER estimates were similar for all methods. For the FWER estimates the MCSE ranged from 

0.0020 to 0.0030 and for the disjunctive power estimates the MCSE ranged from 0.0027 to 

0.0049. Similar MCSE were found for the analysis of two binary outcomes and mixed 

outcome types too (as reported in tables 2b and 2c). For binary outcomes, slightly biased 

estimates of the intervention effect were obtained when using the MM method.  

5.4 Case studies 

Re-analysis of the ProCEED trial and 10TT trial. 

The two real datasets, ProCEED (Buszewicz et al., 2016) and 10TT (Beeken et al., 2012, 

Beeken et al., 2017), are re-analysed to illustrate the differences and similarities between 

the multivariate multilevel model (MM) and analysing outcomes separately. The ProCEED 

dataset includes three continuous outcomes whereas the 10TT dataset includes a 

combination of continuous and binary outcomes. The code used to implement the MM, using 

Stata, R and MlwiN are described in Appendix 7.  

5.4.1 Pro-active Care and its Evaluation for Enduring Depression Trial, 

ProCEED 

For this analysis, the 24 month outcomes were used. In all analyses, the corresponding 

baseline values were adjusted for in the model. The outcomes have been standardised so 

that the estimate of the intervention effect using the three questionnaires can be compared. 

Standardisation also ensures that no single outcome dominates when using the multivariate 

technique. On the other hand, standardisation makes the interpretation of data more 

complex and care is needed when interpreting results of transformed data. For this reason, 

I also provide results that have been transformed back to the original scales.  

When using the MM model, the improvement on the scale is required to be in the same 

direction for each outcome. That is, there should be a positive correlation between all 

outcomes. On the WSAS and BDI-II scales, a higher score means greater impairment, whereas 

on the Euroqol, a lower score means greater impairment. The Euroqol will be reversed to 

enable the three outcomes to be combined in a multivariate analysis.  

The results for the two models are displayed in Table 5.5 (top). The univariate analysis uses 

complete case analysis, whereas the MM model allow for overlapping missingness. For the 
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MM model 431 participants are used compared to 429, 428 and 415 participants for the 

three outcomes when analysing them separately using univariate models. The standard 

errors are very similar across the models. As multiple tests have been performed, it is 

important to apply an adjustment to the p-values to control the FWER. The results of 

applying various adjustments are displayed in Table 5.5 (bottom).  

 

Table 5.5 Analysis of the ProCEED dataset using univariate models and a multivariate 
multilevel model (top) followed by adjusting the resulting p-values to account for multiple 
comparisons (bottom) 

 N Mean 
diff.* 

SE* 95% CI* Mean diff. 
on original 
scale 

P-value 

Univariate analysis    
BDI-II 429 0.189 0.081 (0.031, 0.347) 2.762 0.019 

WSAS 428 0.195 0.080 (0.038, 0.350) 2.358 0.014 
EuroQol 415 -0.146 0.088 (0.318, -0.026) 3.147 0.097 

Multivariate multilevel model 
analysis  

   

BDI-II  0.211 0.082 (0.050, 0.372) 3.078 0.010 
WSAS 431 0.207 0.081 (0.048, 0.364) 2.500 0.011 
EuroQol  -0.146 0.088 (0.318, -0.027) 3.141 0.098 

Adjusting the p-values reported above to account for multiple comparisons 
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Univariate analysis 

BDI-II 0.057 0.042 0.038 0.038 0.029 0.019 
WSAS 0.042 0.042 0.038 0.029 0.020 0.014 
EuroQol 0.291 0.097 0.097 0.097 0.097 0.097 

Multivariate multilevel analysis 
BDI-II 0.030 0.030 0.022 0.020 0.014 0.010 

WSAS 0.033 0.030 0.022 0.022 0.017 0.011 
EuroQol 0.294 0.098 0.098 0.098 0.098 0.098 

*Standardised intervention effects.  
BDI-II = Beck Depression Inventory; CI = Confidence interval; D/AP = Dubey/Armitage-
Parmar; Mean diff = mean difference; SE = standard error; WSAS = Work and social activities 
scale 
 

In summary, similar results are obtained when using both the MM model and the univariate 

model. Different conclusions might have been drawn when using the Bonferroni method 
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compared to using the other adjustment methods, as the p-value adjusted for multiplicity 

using Bonferroni method increased to above the 0.05 significance level. For all other 

adjustment methods, the same conclusions should be drawn from both analyses. One 

advantage of the MM model over the univariate analysis is that a ‘composite’ joint effect can 

also be calculated if appropriate. If a joint effect is desired, the investigators would need to 

decide which of the outcomes to combine. It is possible to combine some of the outcomes 

into a common effect whilst keeping an individual intervention effect for the remaining 

outcomes. For example, a joint effect could have been estimated for BDI-II and WSAS whilst 

simultaneously calculating an individual intervention effect for EuroQol. This would result in 

less statistical comparisons being performed and, therefore, less stringent rules can be 

placed on the resulting p-values. In a trial scenario, the decision to combine outcomes would 

need to be made a priori at the start of the study and documented in the statistical analysis 

plan.  

5.4.2 Ten Top Tips trial 

In these analyses, the outcomes were standardised and the corresponding baseline variables 

were included for in the model. For the univariate analysis, the estimated effects of the 

intervention on the original scales for the weight and waist circumference effects are                     

-0.872kg and -0.858cm respectively, compared to the MM model results of -0.880kg and            

-0.888cm, respectively.  

After adjusting for multiplicity, the weight outcome remains statistically significant at the 5% 

level. The most conservative adjustment increases the p-value to 0.012 for both analyses. 

The waist circumference and glucose level remain above the 5% significance level when any 

of the adjustments for multiplicity are applied.  

The estimated effect for blood glucose differs slightly for the two models. This is likely to be 

due to missing data for blood glucose, which is ignored by the univariate model. As the MM 

model uses the correlations between the outcomes, I observed increased disjunctive power 

and improved precision for the effect of the intervention.  
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Table 5.6 Analysis of Ten Top Tip dataset using univariate models and a multivariate 
multilevel model (top) followed by adjusting the resulting p-values to account for multiple 
comparisons (bottom) 

 N Coef. Standard 
error 

95% Confidence 
interval 

P-value 

Univariate analysis      
Standardised weight 383 -0.052 

 
0.018 (-0.088, -0.016) 0.004 

Standardised waist 
circumference 

378 -0.069 
 

.0483 (-0.164, 0.026) 0.153 

Blood glucose 
(normal/high) 

330 -0.260 0.314 (-0.875, 0.355) 0.407 

Multivariate multilevel analysis  

Standardised weight  -0.053 0.018 (-0.088, -0.017) 0.004 

Standardised waist 
circumference 

388 -0.071 0.048 (-0.166, 0.023) 0.138 

Blood glucose 
(normal/high) 

 -0.295 0.311 (-0.904, 0.315) 0.343 

 

 

In summary, the MM model allows both continuous and binary outcomes to be analysed 

simultaneously in a single step. However, I found that in this trial scenario use of the MM 

model made little difference to the results and conclusions.  

Adjusting the p-values reported above to account for multiple comparisons 
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Univariate analysis 

Weight  0.012 0.012 0.012 0.012 0.007 0.004 

Waist 
circumference 

0.459 0.306 0.306 0.306 0.235 0.153 

Blood glucose 1.00 0.407 0.407 0.407 0.669 0.407 

Multivariate multilevel analysis 
Weight  0.012 0.012 0.012 0.012 0.007 0.004 

Waist 
circumference 

0.414 0.276 0.276 0.276 0.213 0.138 

Blood glucose 1.000 0.343 0.343 0.343 0.589 0.343 
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5.5 Discussion  

In this section, I have performed a simulation study to investigate the differences in 

disjunctive power and FWER achieved using the multivariate multilevel (MM) model, a latent 

variable (LV) model and a univariate model with and without multiple imputation (MI+UV 

and UV, respectively). 

The simulations suggested that the power to detect an effect of the intervention can be 

increased by using multivariate multilevel (MM) models as opposed to analysing each 

outcome separately with or without multiple imputation (UV and MI+UV). However, I found 

that the power gains were small in all but extreme scenarios, for example, when there is 

strong correlation between outcomes or when there are high levels of missing data. Pituch 

et al. (2016) and Snijders and Bosker (2012) reported efficiency gains for MM model 

compared to UV models in presence of missing data based on case studies. 

When the pairwise correlations between the outcomes were weak, the power was reduced 

when using the MI+UV approach compared to using the UV approach. These findings are 

consistent with the results presented in Sullivan et al. (2018), which state that MI may be 

less efficient than complete case analysis due to Monte Carlo simulation error.  

The MM model offers a computational advantage to the MI+UV approach as the MM model 

enables the analysis to be performed in just one step. In contrast, the MI+UV approach 

requires three steps: specifying the imputation model and performing the imputation, fitting 

the analysis model to each imputed dataset; scombining the results across the imputed 

datasets. 

When a single primary outcome is specified in a trial, the MM model can still be used for the 

analysis of secondary outcomes. Alternatively, when there are missing values in the primary 

outcome, both the primary and secondary outcomes can be analysed simultaneously using 

the MM model. Additionally, the MM model allows for joint effects to be estimated although 

this should be documented in advance in a statistical analysis plan.   

The results from the LV model are dependent on the constraints imposed on the model. In 

this work, the latent factor variance was fixed. For a discussion of alternative constraints see 

Skrondal and Rabe-Hesketh (2004).  
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5.6 Conclusions 

It was found that the power to detect an effect of an intervention may be increased by using 

MM models rather than using UV models. However, it was found that the gains were small 

except in the more extreme scenarios, such as strong correlation between outcomes or high 

levels of missing data. The MM model may be used as a one-step method instead of the more 

commonly used MI+UV approach. The MM model may also be useful when analysing 

multiple correlated secondary outcomes or to estimate a joint intervention effect.   
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6 Chapter 6  

Evaluation of methods to analyse multiple 
outcomes when data are missing not at 
random 
The majority of randomised trials have missing outcome data. There is now an understanding 

that simple approaches, such as discarding the participants with missing data from the 

analysis is unacceptable (Little et al., 2012). As a consequence, there has been an increase in 

the use of more complex methods, in particular multiple imputation (MI). As previously 

discussed in Chapter 2, when implementing these more complex methods, it is usually under 

the assumption that the underlying missingness mechanism is missing at random (MAR). 

However, this assumption is untestable, that is, by using the observed data it is not possible 

to distinguish between MAR and the missingness mechanism missing not at random (MNAR). 

Misleading inferences and incorrect conclusions may be made if the assumptions about the 

missingness mechanism are incorrect.   

Under the MNAR assumption, parameter estimation from the observed data alone is 

typically biased. The amount of bias depends on the proportion of dropout and the strength 

of the relationship between the unobserved outcome and probability of dropout (White and 

Carlin, 2010). In this chapter, I investigate the whether the multivariate multilevel (MM) 

model can reduce the bias in the estimated effect of the intervention when the missing data 

mechanism is MNAR.   

6.1 Aim 

The aim of this section is to investigate the bias in the estimated coefficients when using the 

multivariate multilevel model and to compare the results to the bias that arises from 

analysing the outcomes separately. This includes when multiple imputation is used to handle 

any missing outcome values that are MNAR. 

6.2 Simulation study methods 

I generated the data using a similar methodology to that described in the previous chapter. 

However, for this chapter I investigated scenarios which vary in the number of outcomes, 
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outcome type, percentage of missing data and degree of correlation between outcomes. The 

different factors considered are described in Table 6.1.  

Table 6.1 Scenarios implemented to investigate methods when missing data are missing 
not at random. 

Factors    

Number of 
outcomes  

2 outcomes, 4 outcomes  

Outcome type  
Continuous outcomes; binary outcomes; and half continuous and half 
binary outcomes, which is referred to as ‘mixed’ outcomes  

Pairwise 
correlation 
between 
outcomes  

0.0, 0.2, 0.4, 0.6, 0.8  

Effect size (ES) of 
intervention effect  

Continuous outcomes  
    Equal: ES = 0.35 for all outcomes. 
Binary outcomes  

 Equal: the percentage of events in the control and intervention arms  
were 50% and 65%, respectively for all outcomes.  

Mixed outcomes  
    Equal: ES = 0.35 for all outcomes.  

Missing data 
mechanism  

Missing not at random (MNAR)  

Percentage of 
missing data 
values  

Low: 15% of observations were missing for half the outcomes. The other 
outcomes had no missing values. 
 
Medium: 30% of observations were missing in half the outcomes. The 
other outcomes had no missing values. 
 
High: 50% of observations were missing in half the outcomes, the other 
outcomes had no missing values. 
 
High overlapping: When investigating two outcomes 30% and 50% of 
observations in outcome 1 and 2 were missing; when investigating four 
outcomes 20%, 30%, 40%, 50% of observations were missing for each of 
the outcomes respectively. 

 

Missing data that are missing not at random (MNAR) was introduced with varying quantities 

of missing data. The percentage of missing data simulated reflects those data observed in 

published clinical trials (Beeken et al., 2017, Hassiotis et al., 2018, Killaspy et al., 2015). The 

different scenarios have been referred to as ‘low’, ‘medium’, ‘high’ and ‘high overlapping’. 

The first three scenarios are more realistic when data comes from different sources. For 

example, the data may be complete when collected from the hospital notes whilst other 
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patient reported outcomes have a chance of being may be missing.  Overlapping missingness 

is more likely to be observed when all the outcomes are patient reported outcomes.  

To simulate the data under the MNAR mechanism, a complete dataset was first simulated. 

The dataset was then sorted in ascending order according to the outcome in which the 

missing data was to be introduced. The outcome data were divided into quartile groups and 

the missingness was introduced in each quartile group. The percentage of values which were 

set to missing increased for each quartile as shown in Table 6.2.  

Table 6.2 The percentage of missing observations per quartile used to simulate data that 
are missing not at random (MNAR)  

 Percentage of observations missing per 

quartile 

Total percentage 

missing observations 

1st 2nd 3rd 4th 

0% 0 0 0 0 

15% 0 7.5 22.5 30 

20% 0 10 30 40 

30% 0 15 45 60 

40% 0 20 60 80 

50% 0 25 75 100 

 

The following methods of analysis were used: 

1) Univariate model (UV). This was used as the comparator for the other methods. 

2) Multiple imputation followed by univariate models (MI+UV).  

3) Multivariate multilevel model (MM).  

The details regarding how these methods were implemented are described in Chapter 5.  

The MM, UV+MI and UV methods were compared using the bias, mean square error and 

coverage of 95% confidence intervals associated with the estimated effect of the 

intervention (Burton et al., 2006). Assuming, the 𝑖th simulated dataset yields a point estimate 

�̂�𝑖  with standard error 𝑆𝐸(�̂�𝑖), for 𝑖 = 1, … , 𝑁, then the bias is the difference between the 

average estimate of the intervention effect, 

�̂� =
1

𝑁
∑ 𝛽�̂�

𝑁
𝑖=1 , 
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and the true value for the estimate of interest, 𝛽, that is 

𝐵𝑖𝑎𝑠 =  �̂� − 𝛽. 

 The mean square error is a measure of accuracy which incorporates both measures of bias 

and variability and is calculated by 

𝑀𝑆𝐸 =  (�̂� − 𝛽 )
2

+ (𝑆𝐸(�̂�))
2

 , 

where 𝑆𝐸(�̂�) is the empirical standard error of the estimate of the intervention effect over 

all simulations, √
1

𝑁−1
 ∑ (𝑁

𝑖=1  �̂�𝑖 −  �̅̂�  )2 . The coverage of a confidence interval is the 

proportion of times that the obtained confidence intervals contains the true specified 

parameter. In other words, the coverage is the proportion of times the 100 (1 − 𝛼)% 

confidence interval �̂�𝑖 ± 𝑧1−
𝛼

2
 𝑆𝐸(�̂�𝑖) includes 𝛽 , where 𝑆𝐸(�̂�𝑖) is the standard error of the 

estimate of the intervention effect within each simulation and 𝑧1−
𝛼

2
 is the 1 −

𝛼

2
 quantile of 

the standard normal distribution. The coverage should be approximately equal to the 

nominal coverage rate, e.g. 95 per cent of samples for 95 per cent confidence intervals, to 

properly control the type I error rate for testing a null hypothesis of no effect (Collins et al., 

2001). If the coverage is too high, it suggests that the confidence intervals are too 

conservative which could lead to a loss of power. This may be referred to as ‘over-coverage’. 

In contrast, ‘under-coverage’ is when the coverage is too low.  This is unacceptable as it 

indicates over-confidence which leads to higher than expected type I errors (Burton et al., 

2006). One suggested criterion for acceptability of the coverage is that the coverage should 

not fall outside of approximately two standard errors of the nominal coverage probability 

(p),  

(𝑝) =  √(
𝑝(1−𝑝)

𝑁
)  . 

In this example, I calculate the 95% confidence intervals using 10,000 simulations so the 

𝑆𝐸(�̂�) = 0.00218 and hence between 94.56% and 96.44% of the confidence intervals 

should include the true value. 
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6.3 Results 

Multiple imputation followed by univariate analyses (MI+UV) 

The estimated effects of the intervention, and the corresponding biases are shown in Figure 

6.1 for varying levels of missing data, when using two continuous outcomes. The 

corresponding Monte Carlo SE, empirical SE, mean square error and coverage of the 95% 

confidence intervals associated with the estimated effects of the intervention are provided 

in Appendix 8. 

When analysing two continuous outcomes in which the first outcome is complete and the 

second outcome has low levels of missing data (‘low’), there is a very small amount of bias 

in the estimates of the intervention effects for both outcomes. This is not problematic given 

that the bias is within the accepted range of ± 
1

2
𝑆𝐸(�̂�). The Monte Carlo SE of the estimated 

bias remained consistent and comparable to those observed when analysing the complete 

cases, varying between 0.00055 and 0.00062. The empirical standard errors ranged from 

0.124 to 0.138. The coverage of the 95% confidence interval for the estimated intervention 

effect when using the complete case analysis was within the accepted range, varying from 

94.6% to 95.1%. This was comparable to using the MI+UV approach in which the coverage 

varied from 94.5% to 95.0%.  

As the amount of missing data increases, higher amount of bias can be observed in the 

estimates of the intervention effects for outcome 2. When there are high levels of missing 

data in outcome 2 (‘high’), bias may be observed in the estimates of the intervention effects. 

In this scenario, the empirical SE varied from 0.122 to 0.146. Consequently, any estimated 

intervention effects below 0.289 can be considered problematic due to high levels of bias. 

Using the UV method, the estimated intervention effects for outcomes with high levels of 

missing data are very biased and may be viewed as problematic. When there is no correlation 

between the two outcomes, the MI+UV approach was unable to reduce the bias in the 

estimates of the intervention effects compared to only using the UV method. When using 

the MI+UV approach, the bias in the estimate of the intervention effect decreases as the 

correlation between outcomes increases. In this scenario, the coverage of the 95% 

confidence interval for the estimates for outcome 2 was outside of the acceptable range 

(varying from 63.6% to 71.7% when using the MI+UV approach). This under-coverage is 

expected given the high levels bias in the estimate of the intervention effect. Outcome 1 in 

these scenarios does not have any missing data and consequently as expected the estimates 

of the intervention effect are not biased. 
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When the outcome variables have overlapping missingness, the MI+UV approach increases 

the bias in the outcome variable with the least amount of missing data. The values are 

imputed using the intervention effect estimated from the second outcome which is biased 

and the intervention group indicator. As the correlation between the outcomes increase the 

bias in the outcome with the highest level of missing data decreases. The results for varying 

levels of missing data when using two binary outcomes and one continuous and one binary 

outcome (‘mixed’) are shown in Figure 6.2 and Figure 6.3 respectively. A similar situation in 

terms of bias is observed when analysing binary and ‘mixed’ outcomes.  

The observed bias in the estimated intervention effects for various scenarios when using four 

continuous outcomes are displayed in Figure 6.4. When analysing four outcomes, the bias is 

reduced even further. When analysing four outcomes in which two outcomes have 30% 

missing data (‘medium’ levels of missing data), no gains in terms of bias may be made when 

there is no correlation between the outcomes, but when there is moderate correlation 

between the outcomes (𝜌 ≥ 0.4) the bias is reduced compared to using complete case 

analysis. When there is strong pairwise correlation between the outcomes (𝜌 = 0.8), the 

MI+UV approach is able to remove the majority of the bias in the estimated intervention 

effects so that only a small amount of bias is observed.   

Multivariate multilevel model, MM  

The MM model performs similarly to the MI+UV approach. As displayed in Figure 6.1, when 

analysing two continuous outcomes and there are low levels of missing data, there is a low 

level of bias in the estimated intervention effects and the MM model is unable to reduce 

much of the bias. When both outcomes have missing values (‘high overlapping missing’), the 

gains in terms of bias can be seen when using the MM model compared to analysing the 

outcomes separately when the correlation between the outcome is at least 𝜌 =  0.4.  When 

analysing continuous outcomes, the empirical standard errors were comparable to using UV 

method. The empirical standard errors of estimate of the intervention effects over all 

simulations are displayed in Appendix 8. 

When analysing two binary outcomes with high levels of overlapping missing data, smaller 

empirical standard errors were obtained when using the MM model compared to the UV 

model. However, the standard errors were larger than those seen when using MI+UV 

approach. 

As with the analysis in previous chapters, when analysing four binary outcomes the 

multivariate model often did not converge. For example, when there is a high level of 
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overlapping missing data the MM model did not converge in 29% of the simulations. 

Consequently, I have not reported any results for four binary outcomes. Given it is unusual 

to have four binary outcomes in a trial, without a continuous outcome, I did not investigate 

this scenario further. 

The results for various scenarios when using two continuous and two binary (‘mixed’) 

outcomes are displayed in Figure 6.4, the corresponding empirical standard errors are 

summarised in Appendix 8. The observed bias in the estimated intervention effects when 

using the MM model is comparable to that when using MI+UV approach when there is a low 

to medium amount of missing data. When there are high levels of missing data and weak 

correlation between the outcome variables (𝜌 = 0.2) small gains in terms of removing the 

bias in the estimated intervention effects may be seen when using the MM model compared 

to the UV model. As the correlation between the outcomes increases, larger gains are seen 

as the bias in the estimated intervention effect decreases when using the MM model.  
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Figure 6.1 Bias in estimating intervention effect when simulating two continuous outcomes 
and data are MNAR. 

The blue dots represent the average of the estimated intervention effect (�̂�) for outcome 1. 

The red dots represent the average of estimated intervention effect (�̂�) for outcome 2. The 
five dots (of either colour) clustered together represents different correlation between the 
outcomes from 0 (left) to 0.8 (right in increments of 0.2. Each graph corresponds to adifferent 
level of missing data as indicated. A Monte Carlo standard error for the estimated bias of 
between 0.0005 and 0.0007 was observed for all scenarios. 
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Figure 6.2 Bias in estimating intervention effect when simulating two binary outcomes and 
data are MNAR.  

The blue dots represent the average of the estimated intervention effect (�̂�) for outcome 1. 

The red dots represent the average of estimated intervention effect (�̂�) for outcome 2. The 
five dots (of either colour) clustered together represents different correlation between the 
outcomes from 0 (left) to 0.8 (right) in increments of 0.2. Each graph corresponds to a 
different level of missing data as indicated. The true intervention effect is represented by the 
black horizontal line.   
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Figure 6.3 Bias in estimating intervention effect when simulating two ‘mixed’ outcomes 
and data are MNAR.  

The blue dots represent the average of the estimated intervention effect (�̂�) for outcome 1. 

The red dots represent the average of estimated intervention effect (�̂�) for outcome 2. The 
five dots (of either colour) clustered together represents different correlation between the 
outcomes from 0 (left) to 0.8 (right) in increments of 0.2. Each graph represents a different 
level of missing data as indicated. The true intervention effect is represented by the black 
horizontal line. 
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Figure 6.4 Bias in estimating intervention effect when simulating four continuous 
outcomes and data are MNAR.  

The four colours each represent the average of the estimates treatment effects for the 
outcomes. The five dots (of each colour) clustered together represents different correlation 
between the outcome from 0 (left) to 0.8 (right) in increments of 0.2. Each graph represents 
a different level of missing data as indicated.. The bottom graph has high level of overlapping 
missing data. The true intervention effect is represented by the black horizontal line. 
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Figure 6.5 Bias in estimating intervention effect when simulating two continuous and two 
binary (‘mixed’) outcomes and data are MNAR.  

The four colours each represent the average of the estimated treatment effects for the a 
outcomes. The five dots (of each colour) clustered together represents different correlation 
between the outcome from 0 (left) to 0.8 (right) in increments of 0.2. Each graph corresponds 
to a different level of missing data. The true intervention effect is represented by the black 
horizontal line.  
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6.4 Discussion 

In this section, I investigated the bias in the estimated effects of the intervention when using 

the multivariate multilevel (MM) model compared to the bias observed when analysing the 

outcomes separately. The investigation included multiple imputation to handle any missing 

outcome values that are MNAR.  

I have shown that when the MI+UV approach and MM model are used there is no reduction 

in bias in the estimated intervention effects if there is no correlation between the outcomes. 

However, there was a reduction in bias in the estimated intervention effects using both the 

MI+UV and MM methods when the outcomes are strongly correlated and in the presence of 

high levels of missing data. There was a notable reduction in bias when the correlation 

exceeds 0.4. The MM model appeared to outperform the MI+UV approach in the more 

extreme cases of high levels of missing data. However, as expected neither approach was 

able to remove the bias entirely. As a consequence, any inferences and conclusions made 

within the trial setting should be confirmed with sensitivity analyses under the alternative 

assumption that the missing data are MNAR. One approach would be to use MI to impute 

the missing values under the MAR assumption and to modify the MAR-imputed data to 

reflect a range of plausible scenarios. This can be obtained by multiplying the imputed values 

by a constant or by adding a constant to the imputed values. The adjusted results could be 

analysed by following the standard MI method, by analysing each imputed dataset and then 

combining the results.  

Further reductions in terms of bias of the estimated intervention effects may have been 

observed if additional covariates had been included in the multiple imputation model that 

had taken account of the reason for missingness. By adding more variables into the model, 

it makes the MAR assumption more likely.  

6.5 Conclusions 

I found that the bias in the estimated effects of the intervention may be reduced by using 

either multiple imputation prior to analysing the outcomes separately or the multivariate 

multilevel model rather than analysing complete cases only. In the majority of the scenarios, 

very similar average estimates of the effects of the intervention were obtained when 

implementing the multiple imputation approach and multivariate multilevel model resulting 

in similar levels of bias of the estimated intervention effects.   
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7 Chapter 7   

Evaluation of methods to jointly analyse 
continuous outcomes and survival 
outcomes  
 

7.1 Introduction 

In previous chapters, the focus has been on multiple primary outcomes that are either all 

continuous, binary or a combination of the two. However, clinicians may also be interested 

in time-to-event (survival) outcomes, such as time until death, drug relapse, or discharge 

from hospital. A time-to-event and a continuous outcome may be specified together as the 

primary outcomes in a trial.  

The Contingency intervention for the Reduction of Cannabis use in Early psychosis (CiRCLE) 

trial is an example of when time-to-event and continuous outcomes were collected (Johnson 

et al., 2016). In the CiRCLE trial, the time to relapse was the single primary outcome, but they 

also measured positive symptom severity (using Positive and Negative Syndrome Scale, 

PANSS), which was also considered to be a key outcome (Kay et al., 1987). The outcomes 

were measured at three months and eighteen-months after the baseline measurement. It 

has been shown that cannabis use is associated with increased psychotic symptoms (Seddon 

et al., 2015). Consequently, it is expected that the time to relapse and PANSS scores (which 

measures psychotic symptoms) have a strong association.  

Often when measuring a continuous outcome alongside a time-to-event outcome in trials, 

the continuous outcome is collected at multiple time points (longitudinally) over the follow 

up period. Joint models can be used to link the time-to-event outcome (relapse) with the 

continuous outcome (PANSS) to provide more accurate estimates of the effects of the 

intervention (Lawrence Gould et al., 2015).  

In recent years, studies have investigated joint modelling of time-to-event outcomes with 

longitudinal continuous outcomes. Lawrence Gould et al. (2015) provide a summary of 

currently available joint models with an emphasis on Bayesian approaches. Ibrahim et al. 

(2010) also review joint modelling methods but focus on the bias observed in the time-to-

event outcome when implementing joint models. In contrast, other studies have focused on 
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estimating the magnitude of the association between the time-to-event and continuous 

outcomes (Wang et al., 2012, Hatfield et al., 2011). By estimating the magnitude of the 

association between the outcomes, investigators can ascertain whether the survival time is 

associated with the continuous outcome for an individual. It has also been shown that joint 

models provide more efficient estimates of the effects of the intervention on the time-to-

event and the continuous outcome, compared to analysing the two outcomes separately 

(Ibrahim et al., 2010, Wang et al., 2012). Several approaches for joint modelling have been 

suggested, however, it is not clear which of these models perform best in terms of bias and 

efficiency for both the time-to-event outcome and the continuous outcome.  

 

7.2 Aim 

The overarching aim of this chapter is to evaluate joint models to simultaneously analyse 

time-to-event and continuous outcomes. The specific objectives are: to review the existing 

methods that may be used to jointly model time-to-event and continuous outcomes; and to 

evaluate the performance of joint models in terms of bias and efficiency for the estimated 

effect of the intervention for both the time-to-event and continuous outcomes. The results 

will be compared to those obtained when analysing the outcomes separately.  

 

7.3 Methods to analyse time-to-event and longitudinal outcomes 

In this section, I describe methods that have been proposed to jointly analyse time-to-event 

and longitudinal continuous outcomes in RCTs. Joint models generally consist of two sub-

models: one for the time-to-event outcome and one for the longitudinal continuous 

outcome.  

The longitudinal continuous observations are usually modelled using a linear mixed model 

(Lawrence Gould et al., 2015) 

𝑌𝑖𝑘 =  𝛽0𝑖 + 𝛽1𝑥𝑖𝑘 +  𝑧𝑖𝑘𝑢𝑖 + 𝜖𝑖𝑘. 

Here, the 𝑌𝑖𝑘  are the observed outcome values for participant 𝑖 at time 𝑘. The 𝛽0𝑖 are 

intercepts that vary for each participant. The 𝑥𝑖 are binary variables that represent whether 

the participant is in the intervention group (𝑥𝑖 = 1) or not (𝑥𝑖 = 0) and  𝛽1 is the coefficient 

for the effect of the intervention. The 𝑢𝑖 are the random effects, which are normally 

distributed with a mean of zero and an unknown covariance parameter, that correspond to 
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the time-varying random effects 𝑧𝑖𝑘. Lastly, 𝜖𝑖𝑘 is the random error term, which is also 

normally distributed with a mean of zero and an unknown covariance parameter. The model 

can easily be extended to also include additional covariates, for example, baseline 

assessments. Equivalently, the linear mixed model may be written as 

𝑌𝑖(𝑡) =  𝑚𝑖(𝑡)  + 𝜖𝑖(𝑡), 

where the complete ‘true’ unknown patient-specific longitudinal trajectory be denoted by 

𝑚𝑖𝑘. 

In the following sections, I discuss approaches to model a time-to-event outcome that is 

associated with the longitudinal continuous outcome.  

Analysing the outcomes separately 

The time-to-event outcome may be modelled separately to the longitudinal continuous 

outcome without any link between the two models. One model that is widely used to 

investigate the effect of the intervention on time-to-event outcomes is the Cox regression 

model (Cox, 1972). It models the hazard function denoted by ℎ(𝑡), which is the risk of dying 

at time t given the individual is alive at time t. It is defined as follows 

ℎ(𝑡) = ℎ0(𝑡) exp(𝜙𝑥𝑖). 

Here, ℎ0(𝑡) is the baseline hazard at time 𝑡, 𝑥𝑖 represents whether the participant is in the 

intervention group (𝑥𝑖 = 1) or not (𝑥𝑖 = 0) and 𝜙 is the associated log hazard ratio. The 

model could be extended to include additional covariates, for example, baseline assessments 

as before. 

A key assumption for the Cox regression model is that the hazard functions for the two 

groups of participants should be proportional at all time points. Due to this, it is referred to 

as a proportional hazards model. One of the reasons for the popularity of the Cox 

proportional hazards model is that no assumptions are required about the underlying 

probability distribution of the outcome data (Cox, 1972) (Henderson et al., 2000). However, 

bias in the estimated treatment effect may occur and an unspecified baseline hazard may 

lead to an underestimation of standard errors of estimated treatment effect (Hsieh et al., 

2006).  

Other models can be used to analyse the time-to-event outcome, such as the exponential, 

Weibull or Gompertz distributions. These survival models do, however, make assumptions 

about the underlying probability distribution of the outcome data.  
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Shared parameters model 

The idea behind the shared parameter joint model is to link the longitudinal and survival 

models via shared parameters. Let  𝑀𝑖(𝑡) = {𝑚𝑖(𝑠); 0 ≤ 𝑠 ≤ 𝑡} denote the corresponding 

true, but unknown, longitudinal profile up to the survival time 𝑡. Then the proportional 

hazards model is defined as 

ℎ(𝑡|𝑀𝑖(𝑡), 𝑥𝑖) = ℎ0(𝑡) exp(𝜙𝑥𝑖 + 𝛼𝑚𝑖(𝑡)) 

where ℎ0(𝑡) is the baseline hazard function at time 𝑡.  𝑥𝑖 represents if the participant is in 

the intervention group or not, 𝜙 is the associated log hazard ratio and 𝛼 is the association 

parameter. exp(𝛼) is the hazard ratio for a unit increase in 𝑚𝑖(𝑡) at time 𝑡. By including the 

true unobserved trajectory function 𝑚𝑖(𝑡) in the linear predictor of the proportional hazards 

model, it is possible to link the longitudinal model and the proportional hazards model by a 

joint model. This joint model assumes that the association is based on the current value of 

the longitudinal response at time 𝑡. Once again, this model could be extended to include 

additional covariates, as necessary.  

Joint random effects models 

An alternative method is to use only the random effects in the linear predictor of the survival 

model. The random effects 𝑢𝑖 are taken from the longitudinal model and are time-

independent. Using joint random effects, the hazards model 

ℎ(𝑡|𝑀𝑖(𝑡), 𝑥𝑖) = ℎ0(𝑡) exp(𝜙𝑥𝑖 + 𝛼𝑢𝑖), 

includes both the population level mean of the random effect, plus a subject specific 

deviation (Henderson et al., 2000). 

When using the joint random effect model, the time-to-event data may be modelled using a 

Cox proportional hazards regression model with time-varying covariates. Although, as 

discussed earlier, other survival models may also be used. The longitudinal outcome is 

usually modelled using a linear mixed effects model. The association is captured by the joint 

random effects.  

Correlated random effects model 

Longitudinal outcomes and time-to-event data outcomes may also be jointly modelled via 

correlated random effects models (Philipson et al., 2012). One approach to analyse the time-
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to-event outcome is to use a Cox proportional hazards model with a log-Gaussian frailty. The 

longitudinal model and the survival model are linked by allowing the Gaussian random 

effects of the linear model to be correlated with the frailty term of the Cox proportional 

hazards model. The model specifies latent vectors 𝑢𝑖 and 𝑣𝑖 that follow a zero-mean 

multivariate distribution, which are drawn independently for each participant. Given 𝑢𝑖 and 

𝑣𝑖, the longitudinal model is a linear mixed model as previously described. The hazards model 

is 

ℎ𝑖(𝑡) = ℎ0(𝑡) exp(𝜙𝑥𝑖 + 𝛾𝑖𝑘𝑣𝑖) 

where ℎ𝑖(𝑡) is the hazard for subject 𝑖 at time 𝑡, the 𝑥𝑖 are the binary variables that indicate 

whether the participant is in the intervention group (𝑥𝑖 = 1) or not (𝑥𝑖 = 0), 𝜙 is the 

associated log hazard ratio and the 𝛾𝑖𝑘  are time-varying explanatory variables. The models 

are linked via the multivariate distribution of the random effects 𝑢𝑖 and 𝑣𝑖. 

 

7.4 Software for the joint modelling of time-to-event and longitudinal 

outcomes 

In this section, I discuss mainstream statistical packages to jointly model longitudinal and 

time-to-event outcomes. For the statistical software environment R, a  variety of routines 

are available including joineR (Philipson et al., 2012), jointModel (Rizopoulos, 2010), 

frailtyPack (Rondeau et al., 2012), joineRML. The methodology for each routine is described 

below.  

The joineR package implements the correlated random effects model. The JointModel 

package implements the shared parameter model (Rizopoulos, 2010). Leaving the baseline 

hazard function unspecified in JointModel leads to an underestimation of the standard errors 

of the parameter estimates (Hsieh et al., 2006). Consequently, even though an unspecified 

baseline hazard function is one of the options in the package, it is not recommended (Yuen 

and Mackinnon, 2016). Other distribution options, such as Weibull or Gamma or more 

flexible models based on spline-based approaches should be used instead. The joint model 

implemented in the frailtyPack package estimates simultaneously the longitudinal and 

survival processes using the relationship via random effects (Rondeau et al., 2012, Król et al., 

2017). This package can also be used to jointly model longitudinal outcomes; recurrent 

events, for example hospital admissions; and terminal events, for example, death. 
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I have focused on the packages available in R. However, the package stjm is available in Stata 

(Crowther et al., 2013) and the package JMfit (Zhang et al., 2016a) is available in SAS.  

Most of the packages mentioned only allow for one longitudinal outcome. Given that 

investigators should try and limit the number of primary outcomes, this is unlikely to be an 

issue in most trials. It should be noted, however, that the R package joineRML can be used if 

multiple longitudinal outcomes are required.  

 

7.5 Simulation study 

A simulation study was used to compare the performance of the joint models in terms of the 

bias and efficiency of the estimated effect of the intervention for both the time-to-event and 

continuous outcomes. The results will be compared to those obtained when analysing the 

outcomes separately.  

Scenarios were simulated by varying the strength of the association between the longitudinal 

continuous outcome and the time-to-event outcome and the level of missing data for the 

continuous outcome.  Details of these scenarios are provided in Table 7.1. 

The simulated datasets contain a single continuous longitudinal and a single time-to-event 

outcome, which may be correlated. I simulated the data using a joint model that only shared 

the random effects. The random effects had a mean of zero. The longitudinal model 

contained a fixed intercept, time covariate and a binary intervention assignment covariate. 

The survival model was adjusted by only the binary intervention assignment covariate. It was 

assumed that the event was terminal and therefore no longitudinal information was 

recorded for an individual after their survival time. To generate the data the “simjointmeta” 

package in R was used. 

Table 7.1 Scenarios simulated to evaluate methods which may be used to analyse a time-
to-event outcome and a continuous outcome 

Variable Values 

Association parameter 0, 0.5, 1, 1.5 

Percentage of missing data 

values 

1) No additional missing data 

2) 25% of the continuous outcome was set to 

missing using a missing completely at random 

mechanism (‘additional missing data’). 
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I set the sample size to 560 participants, as this approximately the number in the motivating 

CiRCLE trial dataset, with an equal number of participants being allocated to each of the two 

randomised groups. For the longitudinal continuous outcome, I specified three follow up 

time points and a standardised intervention effect of 0.25 at both follow up time points. 

When assuming a significance level of 5%, the longitudinal outcome was individually 

powered at 84% when the association parameter between the models was zero. For the 

time-to-event outcome, a standardised intervention effect of 0.5 was chosen. The time-to-

event outcome was censored such that there was approximately 50% censoring. 

The bias associated with the estimated intervention effects was of primary interest. I also 

calculated: the FWER, the marginal power for each outcome, the overall disjunctive power, 

the coverage of the estimated intervention effects, the empirical standard error (EmpSE) and 

the mean square error of the estimated intervention effects and the Monte Carlo standard 

error (MCSE) of bias for the estimated intervention effects.  

To account for multiple outcomes when calculating the FWER and the disjunctive power, the 

Bonferroni method was used. For each scenario, I ran 2500 simulations.  

The following methods were used to analyse the data: 

1) Univariate models (UV). For the longitudinal continuous outcome, a linear mixed 

model was implemented. For the time-to-event outcome a Cox proportional hazards 

model was implemented.  

2) Correlated random effects models (using the R package JoineR) 

3) Shared parameter estimates (using the R package JointModel) 

4) Shared random effects (using the R package FrailtyPack) 

When using the JointModel package, I specified the baseline hazard as a piecewise-constant 

function, meaning that the baseline hazard was specified to have different constant values 

within different time intervals. Additionally, the JointModel package offers two options for 

numerical integration: the standard Gauss-Hermite rule and the pseudo-adaptive Gauss-

Hermite rule. It has been shown that the latter can be more effective in that typically fewer 

quadrature points are required to obtain an approximation error of the same magnitude and 

computational burden is reduced (Rizopoulos, 2010). Consequently, the latter was used in 

the analyses using the JointModel package. When implementing the models, the default 

settings were used for all other options. 
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7.6 Results  

The estimated intervention effect together with the estimated bias of the estimated 

intervention effects are shown in Figure 7.1 and Figure 7.2. The figures show that when the 

outcomes are analysed separately, the estimator for the time-to-event outcome can be 

biased. When the association parameter was set to zero, no bias was observed, however, 

bias was observed when the association parameter was set to 0.5. The bias further increased 

when the association parameter was increased. When the association parameter was set to 

1.5, the univariate Cox proportional hazards model significantly underestimated the 

intervention effect. The estimated bias in the estimated intervention effect for the survival 

model is reduced when implementing the joint models. When the association parameter was 

set to 1.5, the correlated random effects model (implemented using JoineR) provided the 

least biased estimates. The estimator of the intervention effect for the longitudinal model is 

unbiased when the association parameter was set to 0 or 0.5, as found for each of the 

methods. When the association parameter was set to 1.5, a small downward bias was 

observed for the univariate approach. The correlated random effects model (implemented 

using JoineR) and the shared random effects model (implemented using FrailtyPack) 

approach produced the least biased estimates. Similar results were observed for when 25% 

of the continuous outcome was set to missing (this scenario has been referred to as 

‘additional missing data’). The under-coverage of the univariate time-to-event outcome 

reflects the downwards bias described above.  

The joint models increase the empirical standard error compared to analysing the outcomes 

separately. There were noticeable differences in the empirical standard errors when the 

association parameter was set to 1.5 (Time-to-event outcome: Univariate = 0.116; JoineR = 

0.159; Fatality Pack = 0.164; JointModel = 0.152).  When the association parameter was set 

to 0 and 0.5, the mean square error observed was comparable for each of the methods. 

When the association parameter was set to 1.5, the joint random effect models 

(implemented using JoineR) and the model that utilised shared parameters between the 

longitudinal model and the survival model (implemented using JointModel) performed best 

in terms of mean square error. 

The FWER was controlled at around 0.05 (ranging from 0.041 to 0.057) when there was no 

additional missing data in the longitudinal outcome. When there was missing data, the FWER 

slightly increased for the shared random effects model (implemented using the frailty pack) 

ranging from 0.052 to 0.063 depending on the magnitude of the association parameter.  
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The marginal power for both outcomes was reduced as the association parameter increased. 

When the association parameter was set to zero, the longitudinal outcome had 84%-85% 

power and the time-to-event outcome had 99% power. The higher marginal power in the 

time-to-event outcome is likely to have dominated the disjunctive power results.  
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Figure 7.1  Bias in estimating the intervention effects when simulating one time-to-event 
and one continuous outcome and no additional missing data in the continuous outcome. 

The red dots represent the average of the estimated intervention effect (�̂�) for the time-to-
event outcome, with error bars representing ± 1.96 ×  Monte CarloSE(Bias). The light blue 

dots represent the average of the estimated intervention effect (�̂�) for the continuous 
longitudinal outcome, with error bars representing ± 1.96 ×  Monte CarloSE(Bias). The 
association parameter varied across the graphs. This is described by the “association” in the 
headings for each of the graphs. The true intervention effects on both outcomes are 
represented by the grey horizontal line. 
 

  

 

 

  

Association = 0.0 Association = 0.5 

Association = 1.0 Association = 1.5 
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The red dots represent the average of estimated intervention effect (�̂�) for the time-to-event 
outcome, with error bars representing ± 1.96 ×  Monte CarloSE(Bias). The light blue dots 

represent the average of the estimated intervention effect (�̂�) for the continuous 
longitudinal outcome, with error bars representing ± 1.96 ×  Monte CarloSE(Bias). The 
association parameter varied across the graphs. This is described by the “association” in the 
headings for each of the graphs. The true intervention effects on both outcomes are 
represented by the grey horizontal line. 
 

 

  

Association = 0.0 Association = 0.5 

Association = 1.0 Association = 1.5 

Figure 7.2 Bias in estimating intervention effects when simulating one time-to-event and 
one continuous outcome with additional missing data in the continuous outcome. 
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Table 7.2 Coverage of the estimated intervention effects obtained when evaluating one 
time-to-event outcome and one longitudinal outcome.  

The univariate model is compared to three joint models. The scenarios evaluated vary by the 
type of missing data and the magnitude of the association parameter. The nominal coverage 
probability is 95.0% 
 

                    

Additional 
missingness 
for 
continuous 
outcome ↓ 

Association 
between 
outcomes 
↓ 

Continuous longitudinal 
outcome 

Time-to-event outcome 

  Method  → Uni JoineR Frailty 
Pack 

Joint 
Model 

Uni JoineR Frailty 
Pack 

Joint 
Model 

 

None 

0 94.8 94.4 94.7 94.7 94.1 94.1 93.7 94.0 

0.5 95.2 94.8 95.2 95.8 93.4 94.0 94.0 93.7 

1 94.6 95.1 95.6 95.4 88.0 95.2 95.2 93.8 

1.5 95.0 96.0 96.2 96.0 76.2 95.5 95.7 93.2 

 

MCAR 25% 

0 94.9 94.5 94.6 94.7 94.9 94.8 94.8 95.0 

0.5 93.2 94.2 94.0 94.1 93.6 95.0 94.4 94.6 

1 94.6 94.2 94.8 94.8 90.4 95.0 95.6 94.6 

1.5 94.4 94.8 94.8 95.4 76.8 96.4 96.0 94.8 

 

Table 7.3 Empirical standard error of the estimated intervention effects obtained when 
evaluating one continuous outcome and one time-to-event outcome 

The univariate model is compared to three joint models.  The scenarios evaluated vary by 
the type of missing data and the magnitude of the association parameter. 

                    

Additional 
missingness 
for 
continuous 
outcome ↓ 

Association 
between 
outcomes 
↓ 

Continuous longitudinal 
outcome 

Time-to-event outcome 

  Method  → Uni JoineR Frailty 
Pack 

Joint 
Model 

Uni JoineR Frailty 
Pack 

Joint 
Model 

 

None 

0 0.083 0.083 0.083 0.083 0.119 0.12 0.12 0.119 

0.5 0.083 0.084 0.084 0.084 0.118 0.126 0.126 0.125 

1 0.081 0.082 0.082 0.082 0.116 0.139 0.14 0.134 

1.5 0.081 0.083 0.083 0.082 0.116 0.159 0.164 0.152 

 

MCAR 25% 

0 0.094 0.094 0.094 0.094 0.12 0.121 0.121 0.121 

0.5 0.093 0.093 0.093 0.093 0.124 0.131 0.132 0.130 

1 0.090 0.091 0.091 0.090 0.114 0.141 0.143 0.136 

1.5 0.089 0.091 0.090 0.089 0.122 0.166 0.180 0.162 
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Table 7.4 The Monte Carlo standard errors of the estimated intervention effects obtained 
when evaluating one continuous outcome and one time-to-event outcome. 

The univariate model is compared to three joint models. The scenarios evaluated vary by the 
type of missing data and the magnitude of the association parameter. 

                    

Additional 
missingness 
for 
continuous 
outcome ↓ 

Association 
between 
outcomes 
↓ 

Continuous longitudinal outcome Time-to-event outcome 

  Method  → Uni Joine 
R 

Frailty 
Pack 

Joint 
Model 

Uni Joine 
R 

Frailty 
Pack 

Joint 
Model 

 

None 

0 0.007 0.007 0.007 0.007 0.014 0.014 0.014 0.014 

0.5 0.007 0.007 0.007 0.007 0.014 0.016 0.016 0.016 

1 0.007 0.007 0.007 0.007 0.021 0.019 0.02 0.018 

1.5 0.007 0.007 0.007 0.007 0.033 0.025 0.027 0.024 

 

MCAR 25% 

0 0.009 0.009 0.009 0.009 0.014 0.015 0.015 0.015 

0.5 0.009 0.009 0.009 0.009 0.022 0.021 0.021 0.02 

1 0.009 0.008 0.008 0.008 0.020 0.020 0.020 0.019 

1.5 0.009 0.008 0.008 0.008 0.035 0.028 0.033 0.027 

 

Table 7.5 The familywise error rate obtained when evaluating one continuous and one 
time-to-event outcome 

The univariate model is compared to three joint models. The scenarios evaluated vary by the 
type of missing data and the magnitude of the association parameter. The Bonferroni 
method was used to account for the multiplicity. 
 

Additional 
missingness 
for 
continuous 
outcome ↓ 

Association 
between 
outcomes 
↓ 

 

  Method  → Uni Joine 
R 

Frailty 
Pack 

Joint 
Model 

 

None 

0 0.041 0.045 0.042 0.040 

0.5 0.052 0.057 0.050 0.050 

1 0.050 0.052 0.055 0.049 

1.5 0.048 0.047 0.052 0.045 

 

MCAR 25% 

0 0.055 0.056 0.063 0.055 

0.5 0.050 0.052 0.057 0.05 

1 0.055 0.056 0.063 0.055 

1.5 0.040 0.043 0.052 0.038 
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Table 7.6 The marginal power obtained for each of the outcomes when evaluating one 
continuous outcome and one time-to-event outcome. 

The univariate model is compared to three joint models. The scenarios evaluated vary by the 
type of missing data and the magnitude of the association parameter. No adjustment has 
been made to account for the multiplicity. 

                    

Additional 
missingness 
for 
continuous 
outcome ↓ 

Association 
between 
outcomes ↓ Continuous longitudinal 

outcome 
Time-to-event outcome 

  Method  → Uni Joine 
R 

Frailty 
Pack 

Joint 
Model 

Uni Joine 
R 

Frailty 
Pack 

Joint 
Model 

 

None 

0 0.844 0.847 0.848 0.847 0.992 0.99 0.992 0.991 

0.5 0.812 0.845 0.842 0.827 0.987 0.989 0.989 0.992 

1 0.801 0.841 0.845 0.82 0.948 0.956 0.961 0.961 

1.5 0.785 0.826 0.835 0.807 0.88 0.881 0.895 0.894 

 

MCAR 25% 

 0 0.760 0.752 0.761 0.76 0.987 0.986 0.988 0.987 

0.5 0.700 0.733 0.749 0.714 0.931 0.937 0.941 0.946 

1 0.690 0.744 0.756 0.712 0.938 0.944 0.952 0.954 

1.5 0.706 0.739 0.766 0.720 0.826 0.835 0.850 0.862 

 

Table 7.7 The overall disjunctive power obtained when evaluating a continuous outcome 
and a time-to-event outcome 

The univariate model is compared to three joint models. The scenarios evaluated vary by the 
type of missing data and the magnitude of the association parameter. The Bonferroni 
method has been used to account for the multiplicity. 
 

Additional 
missingness 
for 
continuous 
outcome ↓ 

Association 
between 
outcomes 
↓ 

 

  Method  → Uni Joine 
R 

Frailty 
Pack 

Joint 
Model 

 

None 

0 0.996 0.991 0.996 0.996 

0.5 0.985 0.987 0.990 0.990 

1 0.970 0.970 0.985 0.981 

1.5 0.934 0.947 0.967 0.960 

 

MCAR 25% 

0 0.993 0.988 0.993 0.993 

0.5 0.978 0.978 0.978 0.985 

1 0.951 0.953 0.963 0.962 

1.5 0.882 0.897 0.923 0.912 
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7.7 Discussion 

In this chapter, I performed a simulation study to investigate the differences in bias obtained 

when using three different joint modelling approaches to jointly analyse a time-to-event 

outcome and a continuous outcome in a trial. The results were compared to those obtained 

using separate univariate models. Additionally, I quantified the differences in disjunctive 

power and FWER achieved using the different methods.  

The routines have been implemented in the statistical software R to enable the joint 

modelling to be “user-friendly” and more readily accessible. The time to estimate the 

different models varied considerably. The shared parameter model took several minutes 

longer to implement than the other methods. This is because it used bootstrapping to 

calculate the confidence intervals. In practice, when analysing a single dataset, bootstrapping 

only needs to be performed once, which in usual cases would not significantly delay the 

analysis. 

The interpretation of the estimated intervention effect for the time-to-event outcome varied 

across the different R packages. When implementing the models with shared random effects 

(using the joineR package), the intervention effects are specific to each of the models. As a 

result, the estimates are easy to interpret.  In contrast, when using the shared parameter 

model (implemented using the JointModel package) the overall intervention effect is 

decomposed into two parts: the direct and indirect effects. The direct component stems 

from parameters being included in the survival model as fixed effects. The indirect 

components link the survival model to the estimated coefficients calculated by the 

longitudinal model.  The two intervention effects may be combined to provide the overall 

intervention effect. The overall effect is the sum of the direct component plus the product 

of the relevant association parameter and the indirect component (Ibrahim et al., 2010).  The 

combined intervention effect is comparable with the intervention effects estimated using 

the other methods. Whilst it is easy to calculate the combined estimated intervention effect, 

it is not as straightforward to combine the variances. If the confidence intervals are required, 

then the other methods may be easier to implement.  

The univariate Cox model underestimated the intervention effect, which resulted in a 

downward bias of the estimated intervention effects for the time-to-event outcome. The 

bias was reduced when using any of the joint models investigated. The FWER is maintained 

at an acceptable level around 0.05 when implementing the univariate model of the joint 

models via the JoineR routine or JointModel routine, however, when implementing 
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fraitlypack, the FWER is increased for some scenarios. The disjunctive power was increased 

when using the joint models compared to using the univariate models. The greatest benefit 

in terms of disjunctive power was observed when there was additional missing data in the 

continuous outcome and high association between the outcomes. Taking into account these 

simulation results and the interpretation of the estimated intervention effect discussed 

earlier I would recommend that the JoineR routine is used.   

One feature of the joint models examined in this chapter is that the time-to-event outcome 

must be terminal. As a result of this assumption, the models do not consider any longitudinal 

measurement after the event of interest has occurred. However, there are scenarios in which 

the event is not terminal and longitudinal measurements continue to be collected after the 

event. For example in the CiRCLE trial described in Section 7.1, the event of interest was time 

to relapse, defined as admission to an acute mental health service. The longitudinal 

outcomes, which included positive psychotic symptoms, were measured at 3 months and 18 

months regardless of if the participant had an event or not. In this example, 88 participants 

relapsed prior to the 18 month follow-up but still provided data at this time point. If this data 

was removed from the analysis, incorrect conclusions may be drawn regarding the effect of 

the intervention on the longitudinal outcomes.  

 

Study extensions and limitations 

The joint modelling framework may also be used to assess the effect of the longitudinal 

outcomes on the probability of the event occurring. This may be useful in psychiatry trials or 

palliative care trials where it is likely that the continuous outcome is associated with the 

time-to-event outcome.  

When simulating the data, it was assumed that no longitudinal data was collected after the 

event of interest. This reflects the situation when the event is terminal, for example, if a 

participant dies. In this instance, no further longitudinal information is collected on the 

participant. In some trials, however, the event may not be terminal and longitudinal data 

may still be collected after the event or alternatively the event may be recurrent. For 

example, in psychiatry trials the event may be time until return to drug use. In this instance, 

after the event (return to drug use) information may still be collected. Different methodology 

may be required to analyse such data (Mazroui et al., 2012, Kim et al., 2012, Liu et al., 2004). 
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The frailtyPack routine described earlier can be used to implement a joint model of 

longitudinal continuous outcomes and recurrent events. 

Additionally, I only considered frequentist methods for the joint modelling of time-to-event 

and longitudinal outcomes, however, Bayesian methods have been proposed by Faucett and 

Thomas (1996), Ibrahim et al. (2010) and Wang and Taylor (2001).  These Bayesian methods 

also use a proportional hazards model for the survival model, however, a different 

longitudinal model is used. Bayesian methods may be modelled in R using JMBayes (Zhang 

et al., 2016a) which uses OpenBUGS or WinBUGS (Lawrence Gould et al., 2015). 

 

7.8 Conclusions  

Joint models can be used to link time-to-event outcomes with continuous outcomes and 

could provide better more accurate estimates of the effect of the intervention. The time-to-

event and continuous outcomes may be analysed using a survival model and a longitudinal 

model, respectively, and these models can be linked. The bias in the estimators for the time-

to-event outcome is reduced when using the joint models.  
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8 Chapter 8 

Discussion, guidance and conclusions 
 

The work in this thesis was primarily motivated by the difficulties raised by clinicians working 

on RCTs in the field of psychiatry. I have experienced first-hand, when designing trials,that 

clinicians can find it challenging to select a single primary outcome that encompasses all 

aspects of the health condition they are investigating. As a consequence, several outcomes 

are often chosen as the primary outcomes.  

There are numerous approaches available to analyse RCTs with multiple outcomes. Previous 

work suggested that multivariate methods may produce more precise and accurate 

estimates of intervention effects when compared to univariate methods (Pituch et al., 2016, 

Snijders and Bosker, 2012). However, the extent of these benefits and the scenarios in which 

these benefits may be realised was not known. Additionally, there was a lack of guidance 

regarding which approach should be used to calculate the required sample size for an RCT 

when there are multiple primary outcomes. As a result, the overarching aim of this thesis 

was to understand which methodologies should be used to calculate the required sample 

size and to perform the analysis of an RCT that has multiple primary outcomes.  

The specific objectives were to: 

1. Investigate the frequency that multiple primary outcomes are recorded and analysed in 

published RCTs, and to investigate which methods are used for the sample size 

calculation and analysis of these trials. 

2. Investigate which of the relevant adjustment methods should be used to control the 

FWER when analysing correlated primary outcomes. 

3. Investigate which of the relevant methods should be used to analyse multiple primary 

outcomes and to determine the scenarios in which the methods should be used. 

In the remainder of this chapter, I provide a brief summary of my findings, followed by 

recommendations on which methods should be used. Finally, I review possible areas for 

further research and present my overall conclusions.  
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8.1 Summary of thesis and findings 

In Chapter 2, I provided a concise summary of the background and key concepts that are 

required when discussing multiple outcomes. I introduced the concept of ‘alternative 

outcomes’ and ‘co-primary outcomes’ and explained that the work in this thesis focuses on 

alternative outcomes. This is when the main clinical objective of a trial is formulated in terms 

of investigating the effect of the intervention on several primary outcomes, and the objective 

is met if at least one analysis produces statistically significant results. Following this, I 

provided the definitions of the familywise error rate (FWER) and disjunctive power. Both of 

these concepts need to be considered when selecting the method to analyse multiple 

primary outcomes. I then went on to discuss missing data theory. Almost all RCTs have 

outcomes that have missing values (Bell et al., 2014) and if the missing data are ignored or 

incorrectly handled then the conclusions drawn from the data could be incorrect (Carpenter 

and Kenward, 2007).  One approach that I discussed to handle missing data was the use of 

multiple imputation.  

I reviewed relevant methodologies that have been commonly used or recommended for use 

in the statistical analysis of multiple primary outcomes. I discussed some of the 

disadvantages of using global test statistics (including the necessity to have balanced data 

across the outcomes) and using factorisation modelling (including the lack of guidance on 

how to use this model for more than two outcomes). I observed that the multivariate 

multilevel model is rarely used in clinical trials. However, it is used in other areas of research 

and could be easily applied to clinical trials. I explained why the multivariate multilevel model 

and the latent variable model are my preferred methods amongst those discussed. Briefly, 

both these methods can handle continuous outcomes, binary outcomes or a combination of 

the two types. In addition, the number of observations does not need to be balanced across 

outcomes and the methods can easily be extended to handle more than two outcomes. 

In Chapter 3, I reviewed RCTs that were published in high impact neurology and psychiatry 

journals. The review showed that multiple outcomes were commonly used but are often 

inadequately analysed. The majority of trials analysed outcomes separately without any 

adjustment for multiple comparisons. When adjustment methods were implemented, only 

the most basic methods were used. The Bonferroni approach was the most commonly used 

method, although the Holm, Hochberg and Šidák methods were also used. This review 

highlighted that multiple outcomes are being used in RCTs but guidance is needed regarding 

which methods should be used for the sample size calculation and analysis.  
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This leads on to Chapter 4 which investigated methodologies to control the FWER when 

analysing correlated multiple outcomes. One approach is to adjust the p-values from each 

statistical test used to investigate the effect of the intervention or alternatively the 

significance level used in the comparisons. When analysing multiple correlated outcomes, I 

recommend that either the Hommel or Hochberg method is used, assuming that the 

distributional assumptions are met. I highlighted that the sample size requirement to achieve 

the desired disjunctive power may be smaller than that required to achieve the desired 

marginal power. The choice between whether to specify a disjunctive or marginal power 

should depend on the clinical objective.  

In Chapter 5, I evaluated multivariate methods for the analysis of multiple primary outcomes 

in clinical trials. I performed a simulation study to investigate the differences between the 

preferred multivariate methods and the standard univariate approach, with and without 

multiple imputation. The work focused on continuous outcomes, binary outcomes and a 

combination of the two types. My simulation results suggest that the power to detect an 

intervention effect may be increased by using multivariate multilevel models, rather than by 

analysing each outcome separately. However, I found that the power gains were small in all 

but the most extreme scenarios. The largest gains were observed when there was strong 

correlation between the outcomes and high levels of missing data. My findings are consistent 

with the results presented in Pituch et al. (2016) and Snijders and Bosker (2012). Additionally, 

the multivariate multilevel model does not require any prior imputation of missing data. The 

multivariate multilevel model is also flexible allowing both shared intervention effects and 

individual intervention effects to be estimated. 

The work was extended in Chapter 6 to consider data which are missing not at random 

(MNAR). Under MNAR, parameter estimation from the observed data alone is typically 

biased. I investigated whether the multivariate multilevel model could reduce the bias in the 

estimated intervention effect when the missing data mechanism is MNAR. As expected, no 

reduction in terms of bias were made when there was no correlation between the outcomes. 

A notable reduction in bias for both the multivariate multilevel model and the multiple 

imputation approach occurred when there was moderate to high pairwise correlation 

between the outcomes.  

In Chapter 7, I considered methods to analyse time-to-event outcomes alongside continuous 

outcomes. Joint models can be used to link time-to-event outcomes with continuous 

outcomes and these models may provide better estimates of the intervention effect 
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compared to analysing the outcomes separately. The simulation results showed that when 

the outcomes are analysed separately, parameter estimation for the time-to-event outcome 

is typically biased. The bias is reduced when using joint models. The largest reduction of bias 

in the estimates were observed when there was a strong association between the time-to-

event and continuous outcomes. 

 

8.2 Recommendations for reporting 

In Chapter 3, I reviewed published randomised controlled trials. When extracting the 

information required for the review, I noted that key information was missing from some of 

the papers. For example, in some papers it was unclear which, if any, of the outcomes were 

deemed primary. As a result, I have made the following recommendations regarding the 

reporting of results of a clinical trial.  

Once the authors have specified the methods for the sample size calculation and analysis, 

the protocol and journal article should be written in sufficient detail to ensure the reader is 

fully aware of the methods used. As advised by the current ICH guidelines, the trial objectives 

should be clearly stated (Phillips and Haudiquet, 2003). Furthermore, the authors should 

ensure that they have specified the primary and secondary outcomes, methods of 

measurements and time points of interest at the start of the trial (WHO, 2012). The 

documentation of the pre-specified outcomes is encouraged by the CONSORT checklist 

(Schulz et al., 2010). The sample size calculation should be based on all the primary outcomes 

(Chan et al., 2013). Authors should report the sample size calculation and state which of the 

outcomes are used in its calculation to ensure that the reader is aware of how the trial is 

powered.  

With regards to multiplicity arising from multiple outcomes, CONSORT state that “authors 

should exercise special care when evaluating the results of trials with multiple comparisons”  

(Schulz et al., 2010). I recommend that the chosen method to maintain the FWER at the 

desired level is reported and justification for the choice provided. If the RCT is viewed as 

confirmatory, the ICH E9 guidelines state that any aspects of multiplicity should be identified 

in the protocol; adjustment should always be considered and the details of any adjusting 

method, or an explanation of why an adjustment is not thought to be necessary, should be 

set out in the analysis plan (Phillips and Haudiquet, 2003). The abstract should be clear, 

transparent, and sufficiently detailed (Hopewell et al., 2008), as explained in the CONSORT 
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statement. This is because readers often base their assessment of the trial on the 

information provided in the abstract. It is important that the abstract is an accurate record 

of the trial and is not in any way ambiguous or misleading. 

There is no general consensus regarding the importance of secondary outcomes; they can 

be viewed as supportive evidence or as a basis for additional claims. If secondary outcomes 

are viewed as supportive evidence then statistical adjustments may not be required (Pocock, 

1997). Appropriate caution should be exercised when interpreting their results. One option 

to ensure that secondary outcomes are given less emphasis would be to present estimates 

of the intervention effect for them with the corresponding confidence intervals, rather than 

the p-values. This would give information about the level of precision and whether the 

confidence level included a clinically important intervention effect. If the secondary 

outcomes are used for additional claims then multiplicity needs to be accounted for when 

analysing these outcomes too (Committee for Proprietary Medicinal Products, 2002). For 

example, further confirmatory statistical testing on secondary variables can be performed 

using a further hierarchical order for the secondary variables (Committee for Proprietary 

Medicinal Products, 2002).  

8.3 Implementation of the recommended methods when analysing 

multiple outcomes  

The sample size calculation for any clinical trial should reflect the clinical aims of the trial. If 

multiple primary outcomes are used then this should be reflected in the calculation.  When 

calculating the required sample size for an RCT with multiple primary outcomes, I 

recommend that the Bonferroni method is used to account for multiplicity. To implement 

the Bonferroni method in the sample size calculation, any standard package may be used. 

For example, in Stata the power command may be used or in R the samplesize command 

may be used. The significance level would need to be adjusted according to the Bonferroni 

method.  

During the analysis stage I recommend that either the Hochberg or Hommel method is used 

to control the FWER. To implement the Hochberg or Hommel p-value adjustment method, I 

recommend using the R package p.adjust. The Hochberg method may be implemented in 

Stata using the multproc command. There is no inbuilt function in Stata to use the Hommel 

method. However, if this method is desired, I would recommend that the user performs the 

analysis in their chosen software and copies the p-values into R for adjustment.  
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To analyse multiple continuous outcomes, multiple binary outcomes or a combination of the 

two, I recommend that the multivariate multilevel model is used. The multivariate multilevel 

model may be implemented using the statistical software package MLwiN (Rabash et al., 

2009). MLwiN can be used via R and Stata using the R2MlwiN (Zhang et al., 2016b) and 

runMLwiN (Leckie and Charlton, 2013) packages, respectively. Details of how the 

multivariate multilevel model can be implemented in Stata and R are provided in        

Appendix 7.  

To analyse a time-to-event outcome and a continuous outcome, I suggest that a joint model 

is used. In particular, I recommend that a correlated random effects model is used which 

may be implemented using the JoineR package in R.  

8.4 Limitations and future work 

Based on my review of published trials, I focused on the simpler methods to control the 

FWER. However, there are other more advanced methods available in the literature. For 

example, to control the FWER, graphical methods (Bretz et al., 2011, Bretz et al., 2009) or 

Dunnett’s methods (Dunnett, 1955) may be used. The step-down Dunnett method and step-

up Dunnett method require complicated, iterative procedures that have not been 

implemented in any statistical software (Blakesley et al., 2009). I therefore felt that the other 

methods were more relevant for the comparison. The graphical methods may be used to 

evaluate outcomes that have a pre-specified hierarchy (Bretz et al., 2009, Bretz et al., 2011). 

Graphical models may also be used when the analysis plan is complex due to splitting of the 

overall alpha among the outcomes. The graphical models are particularly useful if there is a 

desire to have a ‘second chance’ for an outcome that was not statistically significant at the 

initially assigned outcome-specific alpha. Outcomes that were not statistically significant 

initially receive ‘pass-along’ alpha from a different outcome that was statistically significant 

at the initially assigned alpha (Food and Drug Administration, 2017).  

In the review of published RCTs, I observed that the majority of papers that analysed multiple 

primary outcomes specified two primary outcomes and very few papers used more than four 

outcomes. Consequently, in this thesis, I focused on providing recommendations for 

analysing two to four outcomes. However, in other areas of research such as genetic studies 

the number of outcomes being analysed maybe more than this. Further work is required to 

investigate which methods should be used when analysing a larger number of outcomes. 
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The focus of this work was on multiple primary outcomes, however, similar issues regarding 

multiplicity will also arise when analysing multiple intervention groups (Freidlin et al., 2008, 

Baron et al., 2013) or multiple patient populations (Brookes et al., 2001). Further work is 

required to see which methods would be best suited to analyse the data accounting for 

multiplicity in these scenarios.  

I have not considered the Bayesian framework in this thesis. When a Bayesian framework is 

used, external evidence may be included in all aspects of an RCT, including the design, 

analysis and interpretation (Spiegelhalter et al., 2004). As a consequence, the Bayesian 

approach may be viewed as more efficient as it is able to make use of all available evidence 

rather than restricting the analysis to just the new data collected. Additionally, the Bayesian 

framework is valuable as it can provide a more flexible approach to the analysis that can be 

adapted to each trial (Spiegelhalter et al., 2004). In this work, I have often assumed that the 

outcomes are normally distributed, either directly or via a latent variable. In a Bayesian 

analysis, more complicated models can be used. This may be required when analysing health 

economic data, which often includes skewed cost data and utility values which lie between 

zero and one.  

8.5 Conclusions 

In this thesis, I addressed the need for a review and evaluation of how multiple outcomes 

are analysed in published randomised controlled trials. I also addressed the need for a 

comparison between univariate and relevant multivariate methods for the analysis of clinical 

trials. The multivariate multilevel model can be used to analyse clinical trials with multiple 

primary outcomes, which are correlated, to produce a more accurate estimate of the 

intervention effects.  
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Appendix 4 

Sample size calculation to obtain desired 
marginal and disjunctive power 
This appendix contains additional background on the methodology for the sample size 

calculations described in the method section of the Chapter 4. The results described in this 

section are a concise summary of the relevant results that can be found in textbooks on 

sample size calculations (Machin et al., Sozu et al., 2015). 

In all trials, the power requirements should match the clinical objective which should be pre-

specified when designing the study and the sample size should be performed accordingly. In 

current practice sample size calculations often focus on the marginal power for each 

outcome. However, we may also be interested in the disjunctive power. In this appendix, we 

describe the sample size calculation required assuming that we are interested initially in 

maximising the marginal power and secondly the disjunctive power.  

We assume that we have a two-arm trial in which there are 𝑀 primary outcomes. We are 

interested in testing the null hypotheses 𝐻𝑗 (𝑗 = 1, … , 𝑀) that there is not an intervention 

effect on the corresponding outcomes. The test statistics 𝑧𝑗 are used to test the null 

hypotheses 𝐻𝑗. Further suppose that there is an overall null hypothesis  𝐻0(𝑀) = ⋂ 𝐻𝑗
𝑀
𝑗=1 . 

Under this overall hypothesis, the joint test statistic (𝑧1, … , 𝑧𝑀) has an M-variate 

distribution. 

 

A4.1 Sample size calculation for marginal power 

We use the marginal power when we are interested in the power to detect an intervention 

effect on a nominated outcome. The desired marginal power may be specified for each 

outcome. In this case, we test the hypothesis null 𝐻𝑗 that there is not an intervention effect 

on the corresponding outcome. 

To estimate the sample size we used an unpaired Student’s t-test and we assumed equal 

variances. Suppose we wish to detect a standardised effect size 𝛥𝑗  , then for significance level 

𝛼, and power 1 − 𝛽, the number of subjects per group is given by: 
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𝑛 = 2
2 (𝑧

1−
𝛼
2

+ 𝑧1−𝛽)
2

𝛥𝑗
2  

 

where 𝑧1−𝛼/2 and 𝑧1−𝛽 are the ( 1 −
𝛼

2
 ) and (1 − 𝛽) quantiles of the standard normal 

distribution respectively. Further details on the sample size calculation based on the marginal 

power can be found in the textbook ‘Sample Size Tables for Clinical Studies’ by Machin et al. 

(2018). In the article, we calculated the required sample size using the R package 

“samplesize”.  

 

A4.2 Sample size calculation for disjunctive power 

We use the disjunctive power when we are interested in testing the overall null hypothesis 

(𝐻0(𝑀)) that there is no difference between intervention groups for all 𝑀 outcomes. The 

overall alternative hypothesis  (𝐻1(𝑀)) is that there is an intervention effect on at least one 

of the 𝑀 outcomes. We assume that the variances are known. For the standardised effect 

size 𝛥𝑗, 𝑗 =  1, … , 𝑀, the overall disjunctive power is 

1 −  𝛽 = 𝑃 [⋃  {𝑍𝑗 > 𝑧
1−

𝛼
2

} |

𝑀

𝑗=1

 𝐻1(𝑀)] 

= 1 −  𝑃 [⋂ {𝑍𝑗 ≤  𝑧
1− 

𝛼
2

} |

𝑀

𝑗=1

 𝐻1(𝑀)] 

= 1 −  𝑃 [⋂{𝑍𝑗
∗ ≤  𝑐𝑗

∗} |

𝑀

𝑗=1

 𝐻1(𝑀)] 

 

where 𝑍𝑗
∗ =  𝑍𝑗 − √𝑗𝑛 𝛥𝑗  and 𝑐𝑗

∗ = 𝑧1− 
𝛼

2
− √𝑗𝑛 𝛥𝑗 and 𝑛 is the number of subjects per 

group. The vector of test statistics (𝑍1
∗, … , 𝑍𝑗

∗) is distributed as an m-variate normal 

distribution 𝑁𝑀(𝟎, 𝝆𝒛 ) where the off diagonal element of 𝝆𝒛 is given by 𝜌𝑗𝑗′. The disjunctive 

power is calculated by using the cumulative distribution function of the m-variate normal 

distribution. The sample size is the smallest integer required to achieve the desired overall 

power of 1 − β at the significance level of α. Further details regarding this sample size 

calculation are provided in a textbook by Sozu et al. (2015). 
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In the body of the thesis, I calculated the sample size for a pre-specified disjunctive power 

using the R package “mpe”, in particular I used the command “atleast.one.endpoint”. The 

function can be used to computer the sample size for continuous multiple primary outcomes 

where a significant difference for at least one outcome is expected.  



Appendix 5 

192 
 

Appendix 5 

Methods to adjust for multiple 
comparisons in the analysis of randomised 
controlled trials with multiple primary 
outcomes which have varying effect sizes 
or are skewed. 
In this appendix, I examine methods to adjust for multiple comparisons in additional 

scenarios. I begin by varying the effect size across the outcomes. I then simulate data that 

has a skewed distribution.  

A5.1 Varying the effect size across outcomes 

The following results were obtained by assuming varying intervention effect sizes across 

continuous outcomes. When analysing two outcomes, I specified that the intervention effect 

sizes were 0.2 and 0.4 for the outcomes respectively. When analysing four outcomes, I 

specified that the intervention effect sizes were 0.1, 0.2, 0.3 and 0.4 for each of the outcomes 

respectively.  
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Figure A5.1 Disjunctive power obtained when evaluating two continuous outcomes using 
a variety of methods to control the FWER. 

In the left-hand graph, there are no missing data. In the right-hand graph, the missing data 
are missing completely at random, with 15% missing in the first outcome and 25% missing in 
the second outcome (‘Missing data MCAR’). The graphs display various degrees of correlation 
between the outcomes, range from 𝝆 =  𝟎 to 𝝆 =  𝟎. 𝟖. 

 

Figure A5.2 Disjunctive power obtained when evaluating four continuous outcomes using 
a variety of methods to control the FWER.  

In the left-hand graph, there are no missing data. In the right-hand graph, the missing data 
are missing completely at random, with 15% missing in two outcomes and 25% missing in 
the other two outcomes (‘Missing data MCAR’).  The graphs display various degrees of 
correlation between the outcomes, range from 𝝆 =  𝟎 to 𝝆 =  𝟎. 𝟖. 

  

*The Monte Carlo standard errors (MCSE) were similar for all methods. When there were no missing data, the 

MCSE was between 0.002-0.004 for the disjunctive power.  



Appendix 5 

194 
 

A5.2 Skewed data 

I investigated the effect of skewed data by generating the outcome data (with equal 

intervention effect sizes) using a gamma distribution shape parameter = 2 and scale 

parameter =2. One iteration of the data are shown below to demonstrate the distribution of 

the data.  

Figure A4.3 One iteration of the data drawn to investigate the effect of skewed data. 
Distribution of outcome 1 is shown on the left and the distribution of outcome 2 is shown on 
the right. 
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Figure A5.4 FWER (top) and disjunctive power (bottom) obtained when evaluating two 
continuous outcomes which have a skewed distribution, using a variety of methods to 
control the FWER. 

In the left-hand graphs, there are no missing data. In the right-hand graphs, the missing data 
are missing completely at random, with 15% missing in the first outcome and 25% missing in 
the second outcome. The graphs display various degrees of correlation between the 
outcomes, range from 𝝆 =  𝟎 to 𝝆 =  𝟎. 𝟖. 
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10 Appendix 6 

11 Bias and empirical standard errors 
obtained when using multivariate and 
univariate approaches to analyse outcomes 
and the data are MCAR and MAR  

In this appendix, I provide additional simulation results to compare the multivariate 

multilevel (MM) model and the latent variable (LV) model in comparison to univariate 

models with and without multiple imputation (MI+UV, respectively). I investigate scenarios 

which vary in types of missingness, percentage of missing data and degree of correlation 

between outcomes.  The results from this appendix are referred to in Chapter 5.  

The figures in this section show the estimated intervention effects obtained when using the 

different methods to analyse two outcomes using various scenarios. The tables that follow 

show the empirical standard errors of the estimated intervention effects obtained in the 

different scenarios. 

In this section when discussing low level of missing data, there is 15% and 25% missing 

outcome data for outcome 1 and outcome 2 respectively. For high level of missing data, there 

is 30% and 50% missing outcome data for outcome 1 and outcome 2 respectively. 
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Figure A6.1 Bias in estimating the intervention effects obtained when simulating two 
continuous outcomes. The blue dots represent the average of the estimated intervention 

effect (�̂�) for outcome 1. The red dots represent the average of estimated intervention effect 

(�̂�) for outcome 2. The five dots (of each colour) clustered together represents different 
correlation between the outcomes from 0 (left) to 0.8 (right) in increments of 0.2. Each graph 
displayed has different level/type of missing data as indicated. The true intervention effect 
is represented by the black horizontal line. 
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Figure A6.2 Bias in estimating the intervention effects obtained when simulating two 
binary outcomes. The blue dots represent the average of the estimated intervention effect 

(�̂�) for outcome 1. The red dots represent the average of estimated intervention effect (�̂�) 
for outcome 2. The five dots (of each colour) clustered together represents different 
correlation between the outcomes from 0 (left) to 0.8 (right) in increments of 0.2. Each graph 
displayed has different level/type of missing data as indicated. The true intervention effect 
is represented by the black horizontal line. 
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Figure A6.3 Bias in estimating the intervention effects obtained when simulating two 
mixed outcomes (outcome 1 is continuous and outcome 2 is binary). The blue dots 

represent the average of the estimated intervention effect (�̂�) for outcome 1. The red dots 

represent the average of estimated intervention effect (�̂�) for outcome 2. The five dots (of 
either colour) clustered together represents different correlation between the outcomes 
from 0 (left) to 0.8 (right) in increments of 0.2. Each graph displayed has different level/type 
of missing data, as indicatd. The true intervention effect is represented by the black 
horizontal line 
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Table A6.1a Empirical standard error (EmpSE) of estimated intervention effect when evaluating two continuous outcomes  

Type of 
Missingness ↓ 

% of missing values 
for each outcome ↓ 

𝝆  
↓ 

EmpSE of estimated intervention 
effect on outcome 1 

EmpSE of estimated intervention 
effect on outcome 2 

  

 Method →  UV  MI + UV MM      LV         UV MI + UV MM LV 

Complete 
 

(0%, 0%) 

0 0.123 - 0.123 0.123 0.124 - 0.124 0.124 

0.2 0.123 - 0.123 0.123 0.124 - 0.124 0.124 

0.4 0.125 - 0.125 0.125 0.124 - 0.124 0.124 

0.6 0.124 - 0.124 0.124 0.123 - 0.123 0.123 

0.8 0.125 - 0.125 0.128 0.124 - 0.124 0.128 

MCAR (15%, 25%) 

0 0.134 0.137 0.134 0.134 0.145 0.153 0.145 0.145 

0.2 0.134 0.135 0.134 0.134 0.143 0.145 0.142 0.142 

0.4 0.135 0.134 0.134 0.134 0.143 0.142 0.141 0.141 

0.6 0.136 0.134 0.133 0.133 0.145 0.141 0.140 0.140 

0.8 0.133 0.130 0.129 0.131 0.143 0.135 0.134 0.137 

MCAR (30%, 50%) 

0 0.148 0.156 0.148 0.148 0.177 0.197 0.177 0.177 

0.2 0.148 0.153 0.148 0.148 0.176 0.187 0.175 0.175 

0.4 0.148 0.148 0.147 0.147 0.177 0.175 0.171 0.171 

0.6 0.149 0.147 0.146 0.146 0.175 0.168 0.165 0.165 

0.8 0.147 0.143 0.141 0.142 0.175 0.157 0.154 0.155 

MAR 
 

(15%, 25%) 

0 0.133 0.136 0.133 0.133 0.145 0.153 0.145 0.145 

0.2 0.134 0.135 0.134 0.134 0.143 0.146 0.143 0.143 

0.4 0.136 0.136 0.135 0.135 0.143 0.142 0.141 0.141 

0.6 0.134 0.132 0.132 0.132 0.143 0.139 0.138 0.138 

0.8 0.135 0.132 0.132 0.133 0.144 0.136 0.135 0.137 

MAR (30%, 50%) 

0 0.147 0.155 0.147 0.147 0.178 0.199 0.178 0.178 

0.2 0.148 0.153 0.148 0.148 0.181 0.193 0.180 0.180 

0.4 0.148 0.149 0.146 0.146 0.180 0.179 0.175 0.175 

0.6 0.150 0.150 0.148 0.148 0.180 0.173 0.169 0.169 

0.8 0.148 0.143 0.142 0.143 0.180 0.160 0.157 0.158 
Key: MM = multivariate multilevel model; UV = univariate model; MI + UV = multiple imputation followed by univariate model; LV = Latent variable model; 𝜌 ∗ = correlation between outcomes.  
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Table A6.1b Empirical standard error (EmpSE) of estimated intervention effect when evaluating two binary outcomes  

Type of  
missingness ↓ 

% of missing values 
for each outcome ↓ 

𝝆  ↓ 
EmpSE of estimated intervention 

effect on outcome 1 
EmpSE of estimated intervention 

effect on outcome 2 

  Method → UV MI + UV MM UV MI + UV MM 

Complete (0%, 0%) 

0 0.138 - 0.141 0.137 - 0.137 

0.2 0.138 - 0.141 0.140 - 0.140 

0.4 0.137 - 0.140 0.139 - 0.139 

0.6 0.138 - 0.141 0.139 - 0.139 

0.8 0.139 - 0.142 0.138 - 0.139 

MCAR (15%, 25%) 

0 0.150 0.150 0.151 0.162 0.161 0.162 

0.2 0.150 0.150 0.151 0.160 0.159 0.160 

0.4 0.150 0.149 0.151 0.159 0.158 0.158 

0.6 0.150 0.149 0.150 0.160 0.157 0.157 

0.8 0.149 0.147 0.148 0.161 0.153 0.155 

MCAR (30%, 50%) 

0 0.166 0.165 0.167 0.198 0.196 0.199 

0.2 0.166 0.165 0.167 0.197 0.194 0.203 

0.4 0.166 0.164 0.166 0.195 0.190 0.194 

0.6 0.167 0.165 0.167 0.199 0.190 0.193 

0.8 0.165 0.161 0.163 0.199 0.184 0.188 

MAR (15%, 25%) 

0 0.149 0.149 0.150 0.159 0.158 0.159 

0.2 0.151 0.151 0.152 0.159 0.159 0.160 

0.4 0.151 0.150 0.152 0.160 0.158 0.158 

0.6 0.149 0.148 0.149 0.162 0.159 0.160 

0.8 0.151 0.148 0.150 0.160 0.154 0.156 

MAR (30%, 50%) 

0 0.165 0.164 0.166 0.200 0.197 0.201 

0.2 0.167 0.166 0.172 0.201 0.197 0.201 

0.4 0.167 0.166 0.167 0.202 0.196 0.199 

0.6 0.166 0.163 0.166 0.202 0.192 0.196 

0.8 0.168 0.163 0.170 0.204 0.186 0.191 
Key: MM = multivariate multilevel model; UV = univariate model; MI + UV = multiple imputation followed by univariate model; 𝜌 = correlation between outcomes.  
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Table 6.1c  Empirical standard error (EmpSE) of estimated intervention effect when evaluating ‘mixed’ outcomes (one continuous and one binary) 

Type of  
missingness ↓ 

% of missing values 
for each outcome↓ 

𝝆  ↓ 
EmpSE of estimated intervention 

effect on outcome 1 
EmpSE of estimated intervention 

effect on outcome 2 

  Method → UV MI + UV MM LV UV MI + UV MM LV 

Complete 
 

(0%, 0%) 

0 0.124 - 0.160 0.160 0.124 - 0.160 0.161 

0.2 0.124 - 0.158 0.158 0.124 - 0.158 0.165 

0.4 0.125 - 0.158 0.158 0.125 - 0.158 0.186 

0.6 0.122 - 0.159 0.159 0.122 - 0.159 0.272 

0.8 0.124 - 0.160 0.160 0.124 - 0.160 0.504 

MCAR (15%,25%) 

0 0.134 0.134 0.134 0.134 0.185 0.184 0.185 0.186 

0.2 0.134 0.135 0.134 0.134 0.182 0.181 0.182 0.190 

0.4 0.135 0.135 0.134 0.134 0.184 0.181 0.182 0.218 

0.6 0.134 0.133 0.133 0.133 0.185 0.179 0.180 0.325 

0.8 0.136 0.134 0.134 0.134 0.181 0.172 0.174 0.687 

MCAR 
 

(30%,50%) 

0 0.150 0.150 0.150 0.150 0.224 0.221 0.225 0.228 

0.2 0.148 0.149 0.148 0.148 0.226 0.221 0.226 0.237 

0.4 0.148 0.148 0.147 0.147 0.226 0.218 0.222 0.275 

0.6 0.148 0.146 0.146 0.146 0.225 0.211 0.216 0.389 

0.8 0.149 0.145 0.145 0.146 0.228 0.203 0.210 0.553 

MAR 
(15%,25%) 

 

0 0.133 0.133 0.133 0.133 0.184 0.183 0.184 0.185 

0.2 0.135 0.135 0.135 0.135 0.183 0.182 0.183 0.190 

0.4 0.135 0.135 0.134 0.134 0.183 0.181 0.182 0.219 

0.6 0.133 0.132 0.132 0.132 0.182 0.176 0.177 0.313 

0.8 0.134 0.131 0.131 0.132 0.183 0.174 0.176 0.515 

 
MAR 

 
(30%,50%) 

0 0.149 0.150 0.150 0.150 0.229 0.225 0.230 0.233 

0.2 0.150 0.151 0.150 0.150 0.231 0.225 0.230 0.243 

0.4 0.149 0.149 0.148 0.148 0.230 0.220 0.226 0.278 

0.6 0.148 0.146 0.146 0.146 0.232 0.216 0.222 0.389 

0.8 0.149 0.145 0.145 0.146 0.229 0.205 0.212 0.566 
Key: MM = multivariate multilevel model; UV = univariate model; MI + UV = multiple imputation followed by univariate model; LV = Latent variable model; ρ = correlation between outcomes.  
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Appendix 7  

The implementation of the multivariate 
multilevel model using Stata, R and MlwiN 
This appendix contains details on how to implement the multivariate multilevel (MM) model 

and latent variable model. I recommend that the software `MLwiN’ is used to implement the 

MM model (Rabash et al., 2009). This software is freely available for academics through the 

Bristol University website.  MLwiN can be used via R and Stata using the R2MlwiN (Zhang et 

al., 2016b) and runMLwiN (Leckie and Charlton, 2013) packages, respectively. Alternatively, 

when analysing multiple outcomes that are all the same type (say all continuous outcomes) 

the multivariate multilevel model can been implemented using a standard multilevel model. 

Multilevel models can be implemented in most standard packages (e.g. using mixed in Stata 

or lmer in R).  

I used Stata to implement the latent variable model and therefore recommend the use of 

the mixed command or GLLAMM package to implement this model depending on the 

outcome type. The latent variable model could also be fitted using Proc NLMIXED in SAS.  

In the sections below, I provide coding to implement the MM model using MLwiN via Stata 

and R and the latent variable model in Stata. For the following coding examples I assume that 

the data are in wide format, that is there is one line of data for each participant. If the data 

are required in a different format, this is described in more detail below with the code. In 

the examples I have a dataset called 𝑑𝑎𝑡𝑎𝑆𝑖𝑚. This contains two outcomes (𝑌1, 𝑌2); a variable 

to label if a participant received the intervention or not (𝑎𝑟𝑚); and, a participant identifier 

number (𝑝𝑖𝑑).  

A7.1 Coding to implement MM model using MlwiN in Stata 

In this section I explain how to analyse a dataset with two outcomes using the MM model in 

Stata. I provide coding to analyse two continuous outcomes, two binary outcomes and a 

mixture of outcome types (one continuous and one binary outcome). Prior to performing the 

analysis, MLwiN must be installed and a variable which is kept constant at 1 must also be 

created.  

To begin, install the “runmlwin” package. 

. ssc install runmlwin 
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Change the global MLwiN file path to the local file directory of MLwiN 

. global MLwiN_path "PATH"    // where PATH is the local file directory to MLwiN 

. gen cons = 1 

To analyse two continuous outcomes, type 

. runmlwin (Y1 arm cons, eq(1)) (Y2 arm cons , eq(2))   /// 

level1(pid: (cons, eq(1))(cons, eq(2))  nopause 

To analyse two binary outcomes type 

. runmlwin (Y1 arm cons, eq(1)) (Y2 arm cons , eq(2)) /// 

  level1(pid: (cons, eq(1))(cons, eq(2)))   ///   

  discrete(distribution(binomial binomial) /// 

link(logit) denom(cons cons)) nopause 

To analyse one continuous outcome and one binary outcome type 

. runmlwin (Y1 arm cons, eq(1)) (Y2 arm cons , eq(2)) /// 

  level1(pid: (cons, eq(1))(cons, eq(2)))    ///   

  discrete(distribution(normal binomial)  /// 

link(logit) denom(cons cons)) nopause 

To extract the fixed effects and the corresponding variances type 

. matrix b_results = e(b) 

. matrix var_results = e(V) 

 

A7.2 MM model using MLwiN in R 

In this section I explain how to analyse a dataset with two outcomes using the MM model in 

R. Once again, MLwiN must be install before running this analysis. When using R, any missing 

data should be entered as “NA”. 

To begin, install the “R2MLwin” package. 

> install.packages("R2MLwiN") 



  Appendix 7 

205 
 

To analyse continuous outcomes, type 
 
> mv.model <- runMLwiN(c(Y1, Y2) ~ 1 + arm + (1| pid), 

D=Multivariate Normal”, data=dataSim) 

To analyse binary outcomes, type 
 
> mv.model <- runMLwiN( c(probit(Y1, cons), probit(Y2, cons)) ~ 

1 + arm  , D=c("Mixed", "Binomial", "Binomial"), data = dataSim, 

estoptions = list(EstM = 1) 

and to analyse one continuous and one binary outcome type 

> mv.model <- runMLwiN( c(Y1, probit(Y2, cons)) ~ 1 + arm + 

(1[1] | pid ), D=c("Mixed", "Normal", "Binomial"), data = 

dataSim)  

To extract the fixed effects and the corresponding standard errors type 

> mv.model@FV  

> mv.model@FV.cov 

When analysing binary outcomes, a logit link function may also be used. The MM model runs 

quicker when using R compared to when using Stata.  

A7.3 Latent variable model in Stata 

In this section, I explain how to fit the latent model described by McCulloch (2008a) in Stata 

using the add in GLLAMM module. To implement this model, it is necessary to convert the 

data into a ‘long’ format.  The following code can be used to analyse two continuous 

outcomes. 

. findit gllamm 

. eq het : cons_1 cons_2 

. eq load: cons_1 cons_2 

. gllamm outcome arm1 arm2 cons_1 cons_2,    /// 

                s(het) i(pid) eq(load) nocons allc  

 
Even though this coding can be used, when using the latent variable model to analyse two 

continuous outcomes in Stata, it is recommended to use mixed instead of the gllamm.  

Both methods require the same data preparation into the long format.  The mixed 

command runs much quicker and more accurate results are obtained (Rabe-Hesketh and 

Skrondal, 2008).  Under the assumption of normality for the random effects and of the 

outcomes given random effects, the likelihood has a simple closed form which the mixed 

mailto:mv.model@FV
mailto:mv.model@FV.cov
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command utilises. On the other hand, gllamm uses numerical integration which is much 

slower. As all the features that are available in gllamm are also available with the mixed 

command the GLLAMM producers encourage the use of mixed instead (Rabe-Hesketh and 

Skrondal, 2008).   

The following code can be used to analyse two mixed outcomes (1 continuous outcome and 

1 binary outcome): 

. eq het : cons_1 

. eq load: cons_1 cons_2 

. constraint define 2 [pid1_1]cons_1=0.8 

. gllamm outcome arm1 arm2 cons_1 cons_2,    /// 

s(het) i(pid) eq(load) nocons allc constraint(2)  /// 

family(gauss bin) link(id probit)   /// 

fv(response) lv(response)  

 

Note that in the model with mixed outcome types it is necessary to impose a restriction on 

some of the variances. In the model, I have restricted that the factor variance to 0.8. For a 

discussion of alternative constraints see Skrondal and Rabe-Hesketh, 2004, pp. 107-108.  

Further details for gllamm can be found on their webpage http://www.gllamm.org. 

A7.3 Other R packages 

An alternative multivariate approach could be implemented using the SabreR package in R. 

This package is designed to run “multivariate generalised linear mixed models”. The 

outcomes can take the form of binary, ordinal, count and linear events and the different 

types can be combined. Currently (June 2019) the package cannot handle missing data. This 

is a downfall for the package and therefore I have not investigated it further as one main 

advantage of using multivariate analysis is the fact it can handle missing data. Details about 

the package can be found: http://sabre.lancs.ac.uk/model_intro.html.The team at Swansea 

University, lead by Prof. Damon Berridge are currently updating this software. They hope to 

provide a package which can handle multiple outcomes of mixed type and allowing for 

missing data. Consequently, this could be a viable option for multivariate analysis soon. 

  

http://www.gllamm.org/
http://sabre.lancs.ac.uk/model_intro.html
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Appendix 8  

Monte Carlo standard errors of the bias of the estimated intervention 
effects, empirical standard errors and coverage of the 95% confidence 
intervals when data are MNAR 
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% missing 
↓ 

Correlation 
between 
outcomes ↓ 

Continuous 2 outcomes Binary 2 outcomes 

 Method  → UV  MI + UV MM  UV  MI+UV MM  

  Outcome # → 1 2 1 2 1 2 1 2 1 2 1 2 

Lo
w

  

0
%

, 1
5

%
 0 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007 

0.2 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007 
0.4 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007 
0.6 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006 0.0007 0.0006 0.0008 
0.8 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007 

M
ed

iu
m

  

0
%

 3
0

%
 

0 0.0006 0.0006 0.0006 0.0007 0.0006 0.0006 0.0006 0.0008 0.0006 0.0008 0.0006 0.0008 

0.2 0.0005 0.0006 0.0005 0.0007 0.0005 0.0006 0.0006 0.0008 0.0006 0.0008 0.0006 0.0008 

0.4 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0008 0.0006 0.0008 0.0006 0.0008 

0.6 0.0005 0.0006 0.0005 0.0006 0.0005 0.0006 0.0006 0.0008 0.0006 0.0007 0.0006 0.0008 

0.8 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0008 0.0006 0.0007 0.0006 0.0010 

H
ig

h
 

 0
%

 5
0

%
 

0 0.0006 0.0006 0.0006 0.0007 0.0006 0.0006 0.0006 0.0018 0.0006 0.0012 0.0006 0.0015 

0.2 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0019 0.0006 0.0012 0.0006 0.0015 

0.4 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0006 0.0017 0.0006 0.0012 0.0006 0.0013 

0.6 0.0005 0.0005 0.0005 0.0006 0.0005 0.0005 0.0006 0.0017 0.0006 0.0013 0.0017 0.0012 

0.8 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005 0.0006 0.0018 0.0006 0.0013 0.0006 0.0010 

H
ig

h
 

o
ve

rl
ap

p
in

g 

3
0

%
 5

0
%

 0 0.0006 0.0006 0.0007 0.0006 0.0006 0.0006 0.0008 0.0017 0.0008 0.0012 0.0008 0.0014 

0.2 0.0006 0.0006 0.0007 0.0006 0.0006 0.0006 0.0008 0.0018 0.0008 0.0012 0.0008 0.0014 

0.4 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0008 0.0016 0.0008 0.0012 0.0008 0.0013 

0.6 0.0006 0.0005 0.0006 0.0005 0.0006 0.0005 0.0008 0.0017 0.0008 0.0012 0.0008 0.0012 

0.8 0.0006 0.0006 0.0006 0.0005 0.0006 0.0005 0.0008 0.0019 0.0007 0.0013 0.0009 0.0012 

 

Table A8.1 Monte Carlo standard errors of the estimated bias when data are missing not at random using two continuous outcomes (left) and two 

binary outcomes (right) 
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Table A8.2 Monte Carlo standard errors of the estimated bias when data are missing not at random using two ‘mixed’ outcomes. 

% missing 
↓ 

Correlation 
between 
outcomes ↓ 

Mixed 2 outcomes 

  Method  → UV   MI + UV   MM   

  Outcome # → 1 2 1 2 1 2 

Lo
w

  

0
%

, 1
5

%
 0 0.0006 0.0008 0.0006 0.0008 0.0006 0.0008 

0.2 0.0006 0.0008 0.0006 0.0008 0.0006 0.0008 
0.4 0.0006 0.0008 0.0006 0.0008 0.0006 0.0008 
0.6 0.0006 0.0008 0.0006 0.0008 0.0006 0.0008 
0.8 0.0005 0.0008 0.0005 0.0007 0.0005 0.0007 

M
ed

iu
m

  

0
%

 3
0

%
 

0 0.0006 0.0009 0.0006 0.0009 0.0006 0.0009 

0.2 0.0006 0.0009 0.0006 0.0009 0.0006 0.0009 

0.4 0.0006 0.0009 0.0006 0.0009 0.0006 0.0009 

0.6 0.0006 0.0009 0.0006 0.0008 0.0006 0.0008 

0.8 0.0006 0.0009 0.0006 0.0008 0.0006 0.0008 

H
ig

h
 

 0
%

 5
0

%
 

0 0.0006 0.0031 0.0006 0.0013 0.0006 0.0024 

0.2 0.0005 0.0031 0.0005 0.0013 0.0005 0.0020 

0.4 0.0006 0.0031 0.0006 0.0014 0.0006 0.0016 

0.6 0.0006 0.0031 0.0006 0.0014 0.0006 0.0013 

0.8 0.0006 0.0030 0.0006 0.0013 0.0006 0.0010 

H
ig

h
 

o
ve

rl
ap

p
in

g 

3
0

%
 5

0
%

 0 0.0006 0.0031 0.0006 0.0013 0.0006 0.0019 

0.2 0.0006 0.0031 0.0006 0.0013 0.0006 0.0019 

0.4 0.0006 0.0032 0.0006 0.0013 0.0006 0.0017 

0.6 0.0006 0.0032 0.0006 0.0013 0.0006 0.0014 

0.8 0.0006 0.0031 0.0006 0.0013 0.0006 0.0012 
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Table A8.3 Monte Carlo standard errors of the estimated bias when data are missing not at random using four continuous outcomes. 

% missing 
↓ 

Correlation 
between 
outcomes ↓ 

Continuous 4 outcomes 

  Method  → UV MI + UV MM 

  Outcome # → 1 2 3 4 1 2 3 4 1 2 3 4 

Lo
w

  

0
%

, 0
%

 1
5

%
 

1
5

%
 

0 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 
0.2 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 
0.4 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 
0.6 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 
0.8 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 

M
ed

iu
m

  

0
%

 0
%

 3
0

%
 

3
0

%
 

0 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 

0.2 0.0005 0.0006 0.0007 0.0006 0.0005 0.0006 0.0007 0.0006 0.0005 0.0006 0.0006 0.0006 

0.4 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 

0.6 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005 0.0006 0.0006 

0.8 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 

H
ig

h
 

 0
%

 0
%

 5
0

%
 

5
0

%
 

0 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 

0.2 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 

0.4 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 

0.6 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0006 0.0006 0.0005 0.0005 

0.8 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0006 0.0006 0.0005 0.0005 

H
ig

h
 

o
ve

rl
ap

p
in

g 

2
0

%
 3

0
%

 4
0

%
 

5
0

%
 

0 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 

0.2 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 

0.4 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0005 0.0006 0.0006 0.0006 0.0005 

0.6 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005 

0.8 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005 
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Table A8.4 Monte Carlo standard errors of the estimated bias when data are missing not at random using four mixed outcomes. 

% missing 
↓ 

Correlation 
between 
outcomes ↓ 

Mixed 4 outcomes 

  Method  → UV MI + UV MM 

  Outcome # → 1 2 3 4 1 2 3 4 1 2 3 4 

Lo
w

  

0
%

, 0
%

 1
5

%
 

1
5

%
 

0 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008 
0.2 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008 
0.4 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008 
0.6 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0007 0.0006 0.0006 0.0007 0.0008 
0.8 0.0005 0.0006 0.0007 0.0008 0.0005 0.0006 0.0007 0.0007 0.0005 0.0006 0.0007 0.0008 

M
ed

iu
m

  

0
%

 0
%

 3
0

%
 

3
0

%
 

0 0.0006 0.0006 0.0007 0.0009 0.0006 0.0007 0.0007 0.0009 0.0006 0.0006 0.0007 0.0009 

0.2 0.0006 0.0006 0.0007 0.0009 0.0006 0.0007 0.0007 0.0009 0.0006 0.0006 0.0007 0.0009 

0.4 0.0006 0.0006 0.0007 0.0009 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0009 

0.6 0.0006 0.0006 0.0007 0.0009 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008 

0.8 0.0006 0.0006 0.0007 0.0009 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008 

H
ig

h
 

 0
%

 0
%

 5
0

%
 

5
0

%
 

0 0.0006 0.0005 0.0007 0.0032 0.0006 0.0006 0.0007 0.0012 0.0006 0.0006 0.0007 0.0024 

0.2 0.0006 0.0006 0.0007 0.0033 0.0006 0.0006 0.0007 0.0012 0.0006 0.0006 0.0007 0.0026 

0.4 0.0005 0.0006 0.0007 0.0033 0.0005 0.0006 0.0007 0.0012 0.0005 0.0005 0.0007 0.0015 

0.6 0.0006 0.0006 0.0007 0.0030 0.0005 0.0005 0.0007 0.0013 0.0006 0.0005 0.0007 0.0012 

0.8 0.0005 0.0005 0.0007 0.0031 0.0005 0.0005 0.0007 0.0012 0.0005 0.0005 0.0007 0.0010 

H
ig

h
 

o
ve

rl
ap

p
in

g 

2
0

%
 3

0
%

 4
0

%
 

5
0

%
 

0 0.0006 0.0006 0.0010 0.0032 0.0006 0.0006 0.0010 0.0012 0.0006 0.0006 0.0010 0.0020 

0.2 0.0006 0.0006 0.0010 0.0032 0.0006 0.0006 0.0010 0.0012 0.0006 0.0006 0.0010 0.0018 

0.4 0.0006 0.0006 0.0010 0.0032 0.0006 0.0006 0.0009 0.0012 0.0006 0.0006 0.0010 0.0015 

0.6 0.0006 0.0006 0.0010 0.0030 0.0006 0.0006 0.0009 0.0012 0.0006 0.0006 0.0009 0.0012 

0.8 0.0006 0.0006 0.0010 0.0031 0.0006 0.0006 0.0009 0.0011 0.0006 0.0006 0.0009 0.0010 
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Table A8.5 Empirical standard errors of the estimated intervention effect for two continuous (left) and two binary (right) outcomes. 

% missing 
↓ 

Correlation between 
outcomes ↓ 

Continuous 2 outcomes Binary 2 outcomes 

  Method  → UV   MI + UV MM   UV   MI + UV  MM   

  Outcome # → 1 2 1 2 1 2 1 2 1 2 1 2 

Lo
w

  

0
%

 1
5

%
 

0 0.124 0.134 0.124 0.138 0.124 0.134 0.137 0.151 0.137 0.150 0.137 0.151 

0.2 0.124 0.134 0.124 0.135 0.124 0.134 0.140 0.151 0.140 0.151 0.140 0.152 

0.4 0.125 0.134 0.125 0.134 0.125 0.133 0.139 0.150 0.139 0.149 0.140 0.150 

0.6 0.124 0.134 0.124 0.131 0.124 0.130 0.138 0.150 0.138 0.148 0.138 0.177 

0.8 0.124 0.134 0.124 0.129 0.124 0.128 0.139 0.151 0.139 0.146 0.139 0.149 

M
ed

iu
m

  

0
%

 3
0

%
 

0 0.124 0.143 0.124 0.157 0.124 0.143 0.138 0.171 0.138 0.170 0.138 0.171 

0.2 0.123 0.143 0.123 0.147 0.123 0.142 0.139 0.170 0.139 0.169 0.140 0.172 

0.4 0.125 0.142 0.125 0.142 0.125 0.139 0.139 0.171 0.139 0.169 0.139 0.169 

0.6 0.122 0.142 0.122 0.141 0.122 0.135 0.139 0.171 0.139 0.167 0.139 0.189 

0.8 0.124 0.141 0.124 0.137 0.124 0.130 0.138 0.170 0.138 0.162 0.139 0.214 

H
ig

h
 

 0
%

 5
0

%
 

0 0.125 0.123 0.125 0.146 0.125 0.123 0.139 0.397 0.139 0.261 0.140 0.337 

0.2 0.125 0.124 0.125 0.138 0.125 0.123 0.138 0.415 0.137 0.264 0.138 0.325 

0.4 0.124 0.123 0.124 0.127 0.124 0.122 0.138 0.380 0.138 0.275 0.139 0.296 

0.6 0.122 0.122 0.122 0.124 0.122 0.119 0.139 0.372 0.139 0.284 0.383 0.267 

0.8 0.124 0.122 0.124 0.123 0.124 0.117 0.138 0.395 0.138 0.301 0.139 0.235 

H
ig

h
 o

ve
rl

ap
p

in
g 

3
0

%
 5

0
%

 

0 0.140 0.124 0.147 0.136 0.140 0.125 0.172 0.387 0.171 0.263 0.174 0.318 

0.2 0.143 0.124 0.147 0.133 0.142 0.124 0.172 0.394 0.171 0.261 0.180 0.313 

0.4 0.141 0.124 0.143 0.128 0.140 0.123 0.169 0.365 0.168 0.267 0.180 0.297 

0.6 0.141 0.123 0.140 0.122 0.139 0.120 0.171 0.384 0.169 0.278 0.183 0.278 

0.8 0.141 0.124 0.138 0.119 0.136 0.120 0.170 0.417 0.168 0.292 0.191 0.263 
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Table A8.6 Empirical standard errors of the estimated intervention effect for two ‘mixed’ outcomes. 

% missing 
↓ 

Correlation between 
outcomes ↓ 

Mixed 2 outcomes 

  Method  → UV   MI + UV MM   

  Outcome # → 1 2 1 2 1 2 

Lo
w

  

0
%

 1
5

%
 

0 0.126 0.172 0.126 0.171 0.126 0.172 

0.2 0.124 0.172 0.124 0.171 0.124 0.171 

0.4 0.124 0.171 0.124 0.169 0.124 0.170 

0.6 0.123 0.172 0.123 0.168 0.123 0.169 

0.8 0.122 0.172 0.122 0.165 0.122 0.166 

M
ed

iu
m

  

0
%

 3
0

%
 

0 0.124 0.196 0.124 0.194 0.124 0.195 

0.2 0.125 0.194 0.125 0.192 0.125 0.194 

0.4 0.124 0.196 0.124 0.192 0.124 0.191 

0.6 0.123 0.197 0.123 0.189 0.124 0.188 

0.8 0.124 0.198 0.124 0.180 0.124 0.180 

H
ig

h
 

 0
%

 5
0

%
 

0 0.123 0.697 0.123 0.288 0.123 0.534 

0.2 0.123 0.682 0.123 0.299 0.123 0.441 

0.4 0.124 0.699 0.123 0.305 0.124 0.353 

0.6 0.124 0.686 0.124 0.313 0.124 0.286 

0.8 0.125 0.676 0.124 0.293 0.125 0.233 

H
ig

h
 o

ve
rl

ap
p

in
g 

3
0

%
 5

0
%

 

0 0.142 0.697 0.143 0.285 0.143 0.415 

0.2 0.141 0.698 0.142 0.286 0.141 0.421 

0.4 0.141 0.711 0.141 0.289 0.141 0.379 

0.6 0.141 0.719 0.141 0.297 0.141 0.317 

0.8 0.143 0.692 0.143 0.287 0.143 0.269 
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Table A8.7 Mean square error of the estimated bias, when exploring two continuous (left) and two binary (right) outcomes. 

% missing 
↓ 

Correlation between 
outcomes ↓ 

Continuous 2 outcomes Binary 2 outcomes 

  Method  → UV   MI + UV MM   UV   MI + UV MM   

  Outcome # → 1 2 1 2 1 2 1 2 1 2 1 2 

Lo
w

  

0
%

 1
5

%
 

0 0.015 0.018 0.015 0.019 0.015 0.018 0.019 0.024 0.019 0.024 0.019 0.024 

0.2 0.015 0.018 0.015 0.018 0.015 0.018 0.020 0.024 0.020 0.024 0.020 0.024 

0.4 0.016 0.018 0.016 0.018 0.016 0.018 0.019 0.024 0.019 0.023 0.020 0.024 

0.6 0.015 0.018 0.015 0.017 0.015 0.017 0.019 0.024 0.019 0.023 0.019 0.032 

0.8 0.015 0.018 0.015 0.017 0.015 0.016 0.019 0.024 0.019 0.022 0.019 0.023 

M
ed

iu
m

  

0
%

 3
0

%
 

0 0.015 0.021 0.015 0.026 0.015 0.021 0.019 0.050 0.019 0.050 0.019 0.051 

0.2 0.015 0.021 0.015 0.023 0.015 0.021 0.019 0.051 0.019 0.050 0.020 0.050 

0.4 0.016 0.021 0.016 0.021 0.016 0.020 0.019 0.050 0.019 0.046 0.019 0.046 

0.6 0.015 0.021 0.015 0.020 0.015 0.019 0.019 0.051 0.019 0.044 0.019 0.051 

0.8 0.015 0.021 0.015 0.019 0.015 0.017 0.019 0.050 0.019 0.036 0.019 0.055 

H
ig

h
 

 0
%

 5
0

%
 

0 0.016 0.048 0.016 0.054 0.016 0.048 0.019 1.202 0.019 0.927 0.019 1.141 

0.2 0.016 0.046 0.016 0.050 0.016 0.045 0.019 1.229 0.019 0.920 0.019 1.106 

0.4 0.015 0.047 0.015 0.047 0.015 0.042 0.019 1.193 0.019 0.892 0.019 0.975 

0.6 0.015 0.047 0.015 0.043 0.015 0.034 0.019 1.183 0.019 0.827 0.147 0.746 

0.8 0.015 0.046 0.015 0.037 0.015 0.023 0.019 1.213 0.019 0.703 0.019 0.405 

H
ig

h
 o

ve
rl

ap
p

in
g 

3
0

%
 5

0
%

 

0 0.021 0.047 0.023 0.050 0.021 0.047 0.050 1.202 0.050 0.932 0.051 1.134 

0.2 0.021 0.047 0.023 0.049 0.021 0.046 0.052 1.211 0.053 0.918 0.056 1.113 

0.4 0.021 0.047 0.022 0.048 0.021 0.044 0.051 1.182 0.054 0.898 0.058 1.036 

0.6 0.021 0.047 0.022 0.044 0.021 0.038 0.050 1.195 0.056 0.848 0.062 0.880 

0.8 0.021 0.047 0.021 0.039 0.020 0.029 0.051 1.245 0.063 0.774 0.077 0.648 
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Table A8.8 Mean square error of the estimated bias, when exploring two mixed outcomes. 

% missing 
↓ 

Correlation between 
outcomes ↓ 

Mixed 2 outcomes 

  Method  → UV   MI + UV  MM   

  Outcome # → 1 2 1 2 1 2 

Lo
w

  

0
%

 1
5

%
 

0 0.016 0.030 0.016 0.030 0.016 0.030 

0.2 0.015 0.031 0.015 0.030 0.015 0.030 

0.4 0.015 0.030 0.015 0.030 0.015 0.030 

0.6 0.015 0.031 0.015 0.029 0.015 0.029 

0.8 0.015 0.031 0.015 0.028 0.015 0.028 

M
ed

iu
m

  

0
%

 3
0

%
 

0 0.015 0.058 0.015 0.058 0.015 0.058 

0.2 0.016 0.058 0.016 0.056 0.016 0.057 

0.4 0.015 0.059 0.015 0.053 0.015 0.053 

0.6 0.015 0.060 0.015 0.048 0.015 0.048 

0.8 0.015 0.058 0.015 0.039 0.015 0.039 

H
ig

h
 

 0
%

 5
0

%
 

0 0.015 1.725 0.015 0.920 0.015 1.439 

0.2 0.015 1.686 0.015 0.894 0.015 1.258 

0.4 0.015 1.718 0.015 0.806 0.015 0.975 

0.6 0.015 1.692 0.015 0.655 0.015 0.630 

0.8 0.016 1.677 0.015 0.420 0.016 0.317 

H
ig

h
 o

ve
rl

ap
p

in
g 

3
0

%
 5

0
%

 

0 0.021 1.711 0.021 0.881 0.021 1.259 

0.2 0.021 1.725 0.021 0.864 0.021 1.249 

0.4 0.021 1.742 0.022 0.799 0.022 1.081 

0.6 0.021 1.776 0.023 0.696 0.024 0.808 

0.8 0.022 1.721 0.026 0.514 0.029 0.511 
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Table A8.9 Coverage of 95% confidence intervals for the estimated intervention effects, when exploring two continuous (left) and two binary (right) 
outcomes. 

% missing 
↓ 

Correlation between 
outcomes ↓ 

Continuous 2 outcomes Binary 2 outcomes 

  Method  → UV   MI + UV MM   UV   MI + UV MM   

  Outcome # → 1 2 1 2 1 2 1 2 1 2 1 2 

Lo
w

  

0
%

 1
5

%
 

0 95.0 94.8 95.0 94.6 94.9 94.7 95.2 93.9 95.2 93.9 95.3 93.8 

0.2 94.9 94.6 94.9 94.5 94.8 94.6 94.7 94.1 94.7 94.1 94.8 93.9 

0.4 94.6 94.7 94.6 94.5 94.5 94.5 95.0 94.2 95.0 94.2 95.0 93.9 

0.6 94.9 94.9 94.9 94.6 94.8 94.8 95.3 94.2 95.3 94.3 95.5 94.1 

0.8 94.8 95.1 94.8 94.5 94.7 94.7 94.8 94.2 94.8 94.5 94.8 94.0 

M
ed

iu
m

  

0
%

 3
0

%
 

0 94.9 94.2 94.9 93.2 94.8 94.0 95.0 85.7 95.0 85.5 95.1 85.3 

0.2 95.2 94.3 95.2 94.2 95.1 94.1 94.8 84.9 94.8 85.3 94.9 84.9 

0.4 94.6 94.1 94.6 93.9 94.5 94.0 95.1 85.6 95.1 86.8 95.2 86.6 

0.6 94.8 94.3 94.8 93.9 94.7 94.3 95.0 85.0 95.0 87.7 95.1 87.5 

0.8 95.1 94.5 95.1 93.7 95.0 94.8 95.1 85.2 95.1 90.4 95.1 90.3 

H
ig

h
 

 0
%

 5
0

%
 

0 94.7 69.5 94.7 70.3 94.6 68.8 95.2 2.5 95.2 3.6 95.3 2.4 

0.2 94.8 70.5 94.8 71.7 94.7 70.8 95.1 2.5 95.2 3.8 95.2 2.6 

0.4 94.9 69.8 94.9 69.6 94.8 71.9 95.5 2.5 95.4 6.0 95.5 3.3 

0.6 95.1 69.6 95.1 66.1 95.0 77.4 94.7 2.2 94.7 9.4 94.8 5.7 

0.8 95.0 70.2 95.0 63.6 94.9 86.2 95.0 2.6 95.1 18.9 95.3 18.7 

H
ig

h
 o

ve
rl

ap
p

in
g 

3
0

%
 5

0
%

 

0 94.3 70.3 96.8 79.2 94.2 69.5 85.3 2.5 85.4 3.5 87.7 2.3 

0.2 94.0 70.2 96.4 77.8 93.8 70.1 84.5 2.4 84.2 3.7 86.5 2.2 

0.4 94.3 69.5 95.7 74.0 93.9 70.7 84.6 2.1 83.1 4.6 85.4 2.4 

0.6 94.1 69.4 94.4 69.5 93.6 74.5 85.2 2.7 82.5 7.7 84.2 3.9 

0.8 94.4 69.9 93.9 66.9 93.5 81.9 84.9 2.6 79.3 12.7 79.4 6.8 
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Table A8.10 Coverage of the 95% confidence intervals, when exploring two mixed outcomes. 

% missing 
↓ 

Correlation between 
outcomes ↓ 

Mixed 2 outcomes 

  Method  → UV   MI + UV MM   

  Outcome # → 1 2 1 2 1 2 

Lo
w

  

0
%

 1
5

%
 

0 94.8 94.4 94.8 94.5 94.7 94.5 

0.2 94.8 94.4 94.8 94.5 94.7 94.5 

0.4 95.1 94.4 95.1 94.5 95.0 94.4 

0.6 95.2 94.4 95.2 94.7 95.1 94.7 

0.8 95.0 94.3 95.0 94.7 94.8 94.6 

M
ed

iu
m

  

0
%

 3
0

%
 

0 95.0 87.7 95.0 87.9 95.0 87.8 

0.2 94.7 87.7 94.7 88.3 94.5 88.1 

0.4 94.8 87.7 94.8 89.2 94.7 88.8 

0.6 95.1 87.3 95.1 89.8 94.9 89.6 

0.8 94.8 88.0 94.8 92.6 94.7 92.2 

H
ig

h
 

 0
%

 5
0

%
 

0 94.8 8.1 94.8 10.3 94.7 7.5 

0.2 95.1 8.8 95.1 12.7 95.0 8.4 

0.4 94.9 8.7 94.9 18.3 94.9 10.1 

0.6 94.6 8.6 94.7 30.5 94.8 17.4 

0.8 94.8 8.2 94.9 53.1 95.3 35.9 

H
ig

h
 o

ve
rl

ap
p

in
g 

3
0

%
 5

0
%

 

0 94.1 8.8 93.1 11.6 93.9 7.7 

0.2 93.9 8.7 92.7 12.7 93.7 8.1 

0.4 94.0 8.7 92.5 16.1 93.3 8.7 

0.6 94.2 8.4 91.7 23.7 92.4 12.5 

0.8 94.1 8.6 90.0 38.3 90.2 22.0 
 


