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Abstract

Multiple primary outcomes are sometimes collected and analysed in randomised controlled
trials (RCTs), and are used in favour of a single outcome. By collecting multiple primary
outcomes, it is possible to fully evaluate the effect that an intervention has for a given disease
process. A simple approach to analysing multiple outcomes is to consider each outcome
separately, however, this approach does not account for any pairwise correlations between
the outcomes. Any cases with missing values must be ignored, unless an additional
imputation step is performed. Alternatively, multivariate methods that explicitly model the
pairwise correlations between the outcomes may be more efficient when some of the

outcomes have missing values.

When analysing multiple outcomes in a trial, it is important to control the family wise error
rate (FWER), which is the probability of finding at least one false positive result. A common
approach is to adjust the p-values for each statistical test. It is also important to consider the

power to detect the true effects of the intervention.

In this thesis, | present an overview of the relevant methods that could be used to analyse
multiple outcomes in RCTs, including methods based on multivariate multilevel models. |
perform simulation studies to provide guidance on which methods should be used to adjust
for multiple comparisons in the sample size calculation, and which methods should be used
for the analysis when the multiple primary outcomes are correlated. Additionally, | use
simulation studies to investigate the differences in the power obtained when using
multivariate models compared to analysing the outcomes separately using univariate
models. Different simulation scenarios were constructed by varying the number of
outcomes, the type of outcomes, the degree of correlations between the outcomes and the

proportions and mechanisms of missing data.






Impact Statement

Randomised controlled trials (RCTs) are the most rigorous way to investigate the
effectiveness of a new intervention. The conclusions drawn from RCTs can provide evidence
that can be used to decide whether an intervention should become routinely available for

patients.

Statistical methods are necessary for the design of trials and analysis of trial data. The use of
appropriate statistical tests is essential to prevent errors and biases, and therefore the
reporting of erroneous conclusions in medical research. Even though appropriate statistical
methods are needed to ensure only effective interventions become available, often
inappropriate statistical tests are used and hence potentially unreliable results are reported.
The aim of the work presented in this thesis is to provide guidance and recommendations

for the design and analysis of RCTs that use multiple outcomes.

When designing an RCT and analysing trial data, it is necessary to consider the number of
outcomes involved. | reviewed trials published in high impact clinical journals and have
shown that methods accounting for multiple outcomes are not regularly used when
calculating the sample size or when analysing trial data. My statistical investigations have
shown that different conclusions may have been drawn in certain published trials if the
correct steps had been taken to account for multiple comparisons during the analysis of trial
data. The number of incorrect analyses observed in recently published RCTs demonstrates
that there is a current need for clear guidance for the design and analysis of RCTs that use

multiple outcomes.

One of the practical recommendations | have provided is how to determine a sufficient
sample size. The sample size is an important consideration as the number of trial participants
is restricted by economic, ethical and practical considerations. On the other hand, if the
sample size is too small it may not be possible to correctly determine whether an
intervention works. | have described several approaches that can be used to determine the
required sample size for trials involving multiple outcomes. | have discussed that the chosen
approach would depend on the clinical objective of the trial. For example, the objective
might be to ascertain whether an intervention is effective on at least one of the outcomes.
Alternatively, it could be ascertain whether an intervention is effective on all of the
outcomes. | have shown that the sample size required varies depending on the chosen

clinical objective.



The research performed in this thesis has the potential to have a wide impact as it is directly
relevant to researchers who work on RCTs. Some of the work in this thesis has already been
published and cited (Vickerstaff et al., 2015, Vickerstaff et al., 2019). Should researchers
follow the guidance provided, it is expected that their analyses could potentially be more
robust in that there is a higher chance that only successful interventions are identified as
such; and more efficient in that fewer patients are recruited for RCTs with multiple

outcomes.
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Chapter 1 Introduction

Chapter 1

Introduction

Randomised controlled trials (RCTs) can be used to investigate the effectiveness of a new
intervention. An RCT is a study in which people are randomly assigned to two (or more)
groups to test the effect of a specific intervention on a health outcome of interest. In a
standard two-arm trial, one group receives the intervention being tested and the other group
receives a dummy intervention (placebo) or the usual care. The trial participants are followed
over time and their outcome data are collected to assess the effect of the new intervention.
In most clinical trials a single primary outcome is specified to investigate the effect of a health
intervention and this is often sufficient to determine whether the intervention is effective.
However, for many diseases and disorders, a patient’s health status cannot be adequately
quantified using a single primary outcome. Examples include mental health disorders, stroke
(Mayo and Scott, 2011) and chronic obstructive pulmonary disease (COPD) (Agusti and
Vestbo, 2011, Teixeira-Pinto et al., 2009, De Los Reyes et al., 2011). Therefore, in these
disease areas, multiple primary outcomes may be required to provide a comprehensive

understanding of the effects of an intervention.

In trials, multiple statistical tests may be performed to investigate the effect of the
intervention when analysing multiple outcome measures. Each time a statistical test is
performed, there is a chance that a statistically significant effect will be observed due to
chance when no effect is present. This is known as a ‘type | error’. As the number of statistical
tests performed on the same dataset increases, the probability of a type | error increases.
The issue associated with the increased chance of a type | error is referred to as ‘multiplicity’.
It is essential that multiplicity is accounted for when designing and analysing RCTs. Another
problem when analysing outcome data in RCTs is the failure to detect a true effect of the
intervention. This is known as a “type Il error’. The power of a study is defined as one minus
the probability of a type Il error. The desired power of the study is usually specified a priori.
A sample size calculation is typically performed in a trial to ensure that sufficient number of
participants are recruited to achieve the desired power. The sample size calculation is an
important part of designing a clinical trial to ensure that the trial is efficient, ethical and cost

effective (Rohrig et al., 2010).

Several methods have been proposed in the literature to address the issue of multiplicity,

however, many of these methods are not used in practice. In fact, many trials fail to account
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Chapter 1 Introduction

for multiplicity in the design and analysis stages. For the practitioner, it is often unclear which
(if any) of the proposed methods should be used to account for multiplicity whilst ensuring
that the analysis remains efficient. It is also important that the statistical issues are

communicated well to the clinicians to enable them to appropriately interpret the results.

To this end, the focus of this thesis is to evaluate the existing statistical techniques available
for the design of RCTs and the analysis of trial data with multiple outcomes. In the remainder
of this chapter | provide a brief introduction about how multiple outcomes may be analysed,

followed by the aims, scope and structure of the remainder of the thesis.

1.1 Overview

Before a trial commences, the primary outcome measure(s) (‘outcome(s)’) need to be
specified (WHO, 2012). The primary outcome can be defined as the outcome that is most
capable of providing clinically relevant and convincing evidence that is directly related to the
primary objective of the study (ICH E9 Expert Working Group, 1999). In this thesis, | focus on
the statistical issues related to the use of multiple primary outcomes, as a single outcome is
often not sufficient on its own to capture the range of clinically relevant intervention benefits

for a particular health condition (European Medical Agency, 2017).

The multiple outcomes may have the same data type, for example, several continuous
outcomes may be measured to quantify cognitive and behavioural components in order to
evaluate the effect of cognitive behavioural therapy on patients with a depressive disorder.
Alternatively, the outcomes may be of different data types. For example, researchers might
measure a continuous quality of life outcome and a binary outcome to indicate symptom

relapse when evaluating the effect of an antipsychotic drug on people with schizophrenia.

Missing outcome data is a common problem for RCTS since it is not always possible to
measure all specified primary outcomes for all participants. In fact, a review of published
trials showed that outcome data was missing in the majority of trials (Bell et al., 2014).
Missing outcome data will generally results in a loss of power and may lead to biased
estimated of the effect of the intervention., For example, patients in a smoking cessation
trial may be more likely to drop out if they continue to smoke, and therefore the patients

with observed outcome data may not be a representative samples.

Several approaches have been used to analyse trials with multiple outcomes in the presence

of missing data. A commonly approach, which is appealing due to its simplicity, has been to
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Chapter 1 Introduction

analyse the outcomes separately within a univariate framework (Pocock et al., 1987).
Patients are typically omitted from any analysis for which they have missing outcome data.
However, this approach does not account for the possible correlation between the outcomes
and consequently the precision of the estimates and the power may be lower than that
achieved by other approaches (Teixeira-Pinto et al., 2009). A variation on this approach is to
use multiple imputation to impute missing outcome data prior to the univariate analysis of
the outcomes (White et al., 2011). An advantage of this approach is that all outcomes may
be included in the imputation model and hence the correlation between the outcomes may

be accounted for (White et al., 2011).

More advanced methods include the use of multivariate methods such as the multivariate
multilevel (MM) model and the multivariate regression. These multivariate methods have
been used to analyse examination results in schools (Goldstein et al., 1993, Yang et al., 2002),
crime trends (Mohan et al., 2011, Tseloni and Zarafonitou, 2008) and health-related
behaviour (Maas et al., 2008). However, the use of these methods in trials has been limited
despite their potential to increase power (Snijders and Bosker, 2012). For example, the MM
has occasionally been used for an exploratory analysis in clinical trials (Hassiotis et al., 2009,

King et al., 2002).

It is important to control for multiplicity in confirmatory trials, in which the goal of the trial
is to confirm the effect of an intervention (Bender and Lange, 2001). It is crucial to ensure
that correct inferences are made from these trials as they inform healthcare policy and

medical practice.

It should be noted that the work in this thesis focuses on multivariate methods. The terms
multivariate and multivariable are sometimes used interchangeably in the literature (Hidalgo
and Goodman, 2013). However, these terms represent two types of analyses. A multivariable
linear regression model is a model in which multiple covariates or ‘independent’ variables
are used, for example, multiple covariates may be used to adjust the analyses for baseline
factors or stratification factors. In contrast, a multivariate linear regression model has

multiple outcomes or ‘dependent’ variables.

1.2 Aims and scope

The overall aim of the research is to address the need for an evaluation of methods to analyse

multiple primary outcomes in clinical trials.
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Chapter 1 Introduction

The aim is achieved by the following specific objectives:

- To review the literature of published RCTs to ascertain whether multiple primary
outcomes are commonly used, and to identify the methods that are frequently used

to account for multiplicity in the sample size calculation and analysis of RCTs.

- To evaluate the validity of existing methods that account for multiplicity arising from
multiple primary outcomes. Multiplicity should be addressed both in the sample size
calculation and statistical analysis. When using multiple primary outcomes, there is
limited guidance as to which method(s) should be used to address multiplicity,
especially when there are missing data in the primary outcomes. Using the results
from several simulation studies, | will conclude on which methods may be used to
account for multiplicity in the analysis of trials with multiple primary outcomes in the

presence of missing data.

- To investigate the possibility of using multivariate models as opposed to univariate
models for the analysis of RCTs with multiple outcomes, and to identify scenarios
when multivariate methods may be advantageous. For clinical trials, it is important
that the procedure has sufficient power to detect the effects of the intervention—

when they are present — whilst controlling the type | error.

- To provide practical recommendations regarding the approaches to be used for the

design and analysis of trials involving multiple outcomes.

1.3 Structure of the thesis

The remainder of this thesis is structured as follows. Chapter 2 is a review of statistical
methods that are proposed in the literature to account for multiple outcomes. Chapter 3 is
a review of RCTs recently published in high impact neurology and psychiatry journals to
ascertain whether multiple outcomes are used in practice and how these outcomes are

handled during the design and analysis of trials. Chapter 4 is a comparison of methods to
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adjust p-values (or equivalently significance levels) to account for multiplicity in the sample
size calculation and analysis of trials with multiple primary outcomes. Chapter 5 compares
selected multivariate methods for the analysis of multiple outcomes in terms of type | error
and power. Chapter 6 is a comparison of selected multivariate methods for the analysis of
multiple outcomes in terms of bias associated with the estimated effects of the intervention.
Chapter 7 investigates models that simultaneously analyse time-to-event and continuous

outcomes. Chapter 8 provides discussion, guidance and conclusions.
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Chapter 2 Background and key concepts

Chapter 2

Background and key concepts

This chapter provides a concise summary of the background and key concepts that are
required for the analysis of multiple outcomes. Definitions of the familywise error rate and
power are provided in the context of multiple outcomes. The reasons for missing data can
be classified as one of three ‘missing data mechanisms’. Moreover, a number of methods
that have been proposed to analyse multiple correlated outcomes in clinical trials are

summarised. The topics covered provide a foundation for the subsequent chapters.

2.1 Notation

The following notation will be used throughout this thesis. The problem of multiplicity due
to the assessment of multiple outcomes in RCTs is considered. This problem can be
formulated in terms of m null hypotheses which are denoted by Hyy, ..., Hyp,, respectively.
Each null hypothesis corresponds to the assessment of a new intervention based on one of
the m outcomes. The null hypothesis Hy; is defined in terms of a relevant intervention

parameter 6;, as given by
HOj: 9] = 61,

for j =1, ...,m. Here a value of Hj greater than 5j indicates a benficial effect and a value of
8; less than §; indicates a harmful effect. For continuous outcomes it is usual to specify
0; = uj1 — Wj, where uj; and u;, are the mean responses of the jt" outcome in the two
intervention groups, respectively. In this setting, §; is usually 0. The null hypotheses are

tested versus the alternative hypotheses, which are given by
Hle 9] * 51,

forj=1,..,m.pq, ..., pm denotes the marginal p-values for the appropriate statistical tests
associated with Hyy, ... Hyyp. Moreover, p(y), ..., Pan) denotes the ordered p-values that

correspond to the ordered null hypotheses that are denoted by Hy1), ... Hom), respectively.
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Chapter 2 Background and key concepts

2.2 Types of multiple primary outcomes

After specifying the primary outcome(s), investigators must identify a criterion to determine
whether the intervention has demonstrated an effect. When performing an RCT with
multiple primary outcomes, there are two main clinical decision rules that can be used to
determine whether the intervention is a success: all primary outcomes need to be
statistically significant; or, at least one of the primary outcomes needs to be statistically
significant. The primary outcomes are known as co-primary outcomes and alternative

outcomes, respectively.

2.2.1 Co-primary outcomes

The primary outcomes are known as co-primary outcomes when all outcomes must be
statistically significant to show that the intervention is effective. In some instances,
regulatory agencies have required that a statistically significant effect of the intervention is
shown on several outcomes before deeming the intervention is effective (Offen et al., 2007).
For example, for a regulatory agency to declare that a new migraine treatment is effective,
the intervention needs to be shown to be effective on four outcomes: pain, nausea,

photosensitivity and phonosensitivity.

For co-primary outcomes, it is recommended that all outcomes are tested at the same
significance level, say 0.05 (Committee for Proprietary Medicinal Products, 2002). No
adjustment for type | error is required to account for multiplicity when testing all co-primary
outcomes at the same significance level, however, adjustments to the power to detect an
intervention effect and sample size need to be considered. Depending on the correlations
between the outcomes, there may be a large reduction in the power to detect an
intervention effect (Offen et al., 2007). For example, for a trial with two independent co-
primary outcomes, if the power to detect the desired effect is 80% for each outcome, then
there would only be 64% (=80% x 80%) power to detect a true intervention effect on both
outcomes. If the correlation between the two outcomes is 0.5, then the power to detect a

true intervention effect is 69% (Offen et al., 2007).

2.2.2 Alternative outcomes

The primary outcomes are known as ‘alternative outcomes’ or ‘multiple primary outcomes’
when at least one outcome needs to be statistically significant in order to conclude that the
intervention is effective. In this case, any of the pre-specified primary outcomes can, on their

own, indicate a clinically meaningful benefit of the intervention. The benefits of the
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Chapter 2 Background and key concepts

intervention may be promoted differently depending on which outcome is shown to be
statistically significant. When using alternative outcomes, adjustments are needed to control
for inflated error rates (in particular, the familywise error rate defined below in Section 2.3).
Many methods have been introduced to control the error rates when analysing multiple
primary outcomes; these are described in Section 2.7. In this thesis, when discussing

‘multiple outcomes’, the focus is on the scenario of alternative outcomes.

2.3 Multiple comparisons theory

In this section, the definition of type | error and power is provided in the context of multiple

outcomes.

2.3.1 Familywise Error Rate

Multiple comparisons must be performed when analysing multiple outcomes to investigate
whether the intervention is effective for each outcome. If multiple comparisons are
performed at the nominal significance level, then the overall probability of finding at least
one false positive result can be unacceptably high. As a simple example, consider two
outcomes that are analysed independently of each other and at the nominal significance
level of 0.05. The probability of finding at least one false positive significant result is 0.098
(=1 — (1 —0.05)?). This probability is greater than the nominal significance level and is
known as the familywise error rate (FWER) (Alosh et al., 2014). The FWER obtained by
analysing a varying number of outcomes independently is displayed in Figure 2.1 below. Due
to the inflated FWER obtained when analysing multiple outcomes, it is important to account

for the number of primary outcomes when performing the analyses for confirmatory RCTs.

When controlling the FWER, it is necessary to consider pairwise correlations between the
outcomes (Phillips and Haudiquet, 2003). Selecting a method of analysis that ignores the
correlations may lead to adjustments that are overly conservative. This could waste
resources, as the required sample size is dependent on the method of primary analysis and

will be larger than necessary. This would inflate the costs and duration of the study.
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Figure 2.1 The familywise error rate obtained when analysing multiple outcomes without
adjusting for multiplicity.
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There are two approaches to controlling the FWER: strong control and weak control. The
strong control is defined as the control of the probability of incorrectly rejecting any true
hypothesis regardless of whether any of the other hypotheses are true (Dmitrienko et al.,
2009). In other words, the strong control refers to the control of the type | error rate under
any combination of true and false null hypotheses. It is necessary to have strong control of
the FWER for the primary outcomes in all confirmatory clinical trials, as stated in the
guidelines by regulators (Committee for Proprietary Medicinal Products, 2002). Weak control
of the FWER is computed under the assumption that all of the hypotheses are true. Without
any other safeguards, weak control of the FWER is unsatisfactory. Consequently, only

methods that have strong control of the FWER are investigated.

There are other error rate definitions that apply when there are a large number of
comparisons, for example, in genetic studies or microarray experiments, the false discovery
rate has been used (Dmitrienko et al., 2009). These definitions are not commonly used in

clinical trials and are therefore beyond the scope of this thesis.

2.3.2 Power

A key consideration for the design of clinical trials is the power of the trial to detect the
effects of the intervention in question, when they are present. When there are multiple

outcomes there are a number of ways to define the power. This is chosen depending on the
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clinical objective of the study. Three definitions discussed here are: disjunctive power,

conjunctive power and marginal power.

The disjunctive power (or minimal power), (Westfall et al., 2011), is the probability of finding
at least one true intervention effect across all of the outcomes (Dmitrienko et al., 2009, Bretz
et al., 2010). The conjunctive power (or maximal power) is the probability of finding a true
intervention effect for all outcomes (Westfall et al., 2011). It may be noted that the
disjunctive and conjunctive power have previous been referred to as ‘multiple’ and
‘complete’ power respectively (Westfall et al., 2011), however, this naming convention may
lead to confusion since disjunctive power may be greater than the conjunctive power (Senn
and Bretz, 2007). The marginal (or individual) power is the probability of finding a true
intervention effect on a particular outcome. It is calculated separately for each outcome.
When the clinical objective is to detect an intervention effect for at least one of the outcomes
the disjunctive power and marginal power are recommended. The conjunctive power is
recommended when the clinical objective is to detect an intervention effect on all the

outcomes (Dmitrienko et al., 2009, Bretz et al., 2010).

2.4 Missing data theory

In this section, | introduce the possible ‘missing data mechanisms’ and discuss some methods

that have been used in practice to handle missing data values in trials.

Missing data are observations that exist that could have been made but were not recorded,
or were recorded but then lost. Almost all randomised trials have outcomes that have
missing values as highlighted in a recent review of trials which found that 95% of trials
reported some missing data (Bell et al., 2014). For clinical trials, missing data may result from
the withdrawal of a participant or if a participant is lost to follow up. If the missing data are
ignored or incorrectly handled then the conclusions drawn from the data could be incorrect

(Carpenter and Kenward, 2007).

2.4.1 Missing data mechanisms

In this section, the missing data mechanisms are described. These mechanisms specify how
the underlying value of the missing observation is associated with the reason for being
missing. Rubin defines three missing data mechanisms: ‘missing completely at random’
(MCAR), ‘missing at random’ (MAR) and ‘missing not at random’ (MNAR) (Little and Rubin,

2014). These mechanisms are defined in turn below.
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Missing completely at random

The outcome data are said to be MCAR if there are no systematic differences between the
missing values and the observed values (Sterne et al., 2009). In this scenario, the missingness
does not depend on the baseline covariates or the outcome. For example, for a weight loss

trial if weight measurements are missing due to a malfunction of the weighing scales.

Missing at random

The outcome data are said to be MAR if the probability that the data are missing depends on
the values of the observed data. However, conditional on the values of the observed data,
the probability that the data are missing does not depend on the values of the missing data.
In other words, any systematic difference between the missing values and the observed
values can be explained by information in the observed data (Sterne et al., 2009). For
example, continuing with the weight loss trial, assuming that the participants’ age is
observed and included in the trial analysis, older individuals are more likely to have their
weight recorded by the GP but at any age, individuals with low and high weight are equally

likely to have their weight recorded.

Missing not at random

The outcome variable is said to be MNAR if there are systematic differences between the
missing values and the observed values, even after the information from the observed data
is taken into account (Sterne et al., 2009). That is, the probability of a missing outcome
depends on the unobserved outcomes as well as the observed data. Parameter estimation
from the observed data alone is typically biased. The amount of bias depends on the extent
of dropout and the strength of the relationship between the unobserved outcome and
probability of dropout. For example, continuing the weight loss trial example, individuals
who have gained weight may be more likely to miss appointments if they have not achieved

their target weight loss.

There is no test that can identify whether the missing data mechanism is MCAR, MAR or
MNAR. Consequently, when performing the analyses, it is necessary to make an assumption
about the missing data. An incorrect assumption can lead to biased estimates, which can

result in incorrect confidence intervals and, consequently incorrect p-values. Alternatively,
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the analysis may be inefficient resulting in wider confidence intervals and larger p-values

than necessary.

2.4.2 Methods of analysis with missing data

There are various methods that can handle missing data (Carpenter and Kenward, 2007). A
few of the methods that have been used in published trials are described below (Wood et

al., 2004).

Complete case analysis

A complete case analysis only considers the complete records. In other words, only the
participants without missing values are included. When the missing data is MCAR this

method results in unbiased estimates, however, the precision is reduced.

Multiple Imputation

Multiple imputation (MI) was first described by Rubin (Rubin, 1996). It follows from
regression imputation (using the observed data to predict the missing values). The process
is repeated numerous times to account for the uncertainty in the imputed values. The

multiple imputation process can be broken down into three stages:

1) Imputation: numerous sets of plausible values are created to ‘fill-in’ the missing
values to create ‘complete’ datasets.

2) Analysis: the desired analysis is performed on each of the complete data sets created
in(1).

3) Pooling: the results from the repeated analyses are combined into a single result.

There are various methods available to perform the imputation step. A commonly used
method is multiple imputation using chained equations (MICE). This is also known as Fully
Conditional Specification (FCS) as each partially observed variable is imputed from its full
conditional distribution given all other variables. MICE uses univariate models for each
partially observed variable conditioned on all the other variables. If we had partially observed
variables V; forj =1,...,m, then the MICE method would create m univariate models. The

algorithm is:

a) A simple imputation is performed, for example using the sample mean. All missing

values are ‘filled in’.

b) The imputations for V; are reset to missing.
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c) Vjisregressed against the other variables, and a regression equation is obtained.
d) The regression equation from stage c) is used to simulate the missing values in V/;.

e) Stages (b) to (d) are repeated for each V,,...,V,, in turn. This is called a ‘cycle’. At
the end of each cycle all missing values in the dataset have been replaced with

simulated values from regressions.
f) Stages (b) to (e) are then repeated so that a number of cycles are completed.

g) The final cycle in (f) provides a single imputed dataset. The process (a) to (f) is
repeated a number of times to create multiple datasets which are then combined

using Rubin’s rules.

Alternatively, a Bayesian method can be used to perform the imputation step by sampling
from the posterior distribution of the joint distribution for the missing data given the
observed data. When the joint likelihood function is complex, and cannot be simulated from
directly, Markov chain Monte Carlo (MCMC) may be used to obtain (approximate) simulated

values.

2.5 Motivating examples

In this section, two clinical trials are described. These trials are revisited later in this chapter
and subsequent chapters to illustrate the techniques. They are examples of real trials that
analysed multiple correlated outcomes and motivate this work. The first trial collected data
on three continuous outcomes. In contrast, the second trial collected a mixture of continuous

and binary outcomes.

2.5.1 Pro-active Care and its Evaluation for Enduring Depression Trial,

ProCEED

The ProCEED trial is a two arm, individually randomised controlled trial (Buszewicz et al.,
2010, Buszewicz et al., 2016). The trial aims to establish whether structured and pro-active
care of patients with chronic depression, in primary care, leads to a cost-effective
improvement in medical and social outcomes when compared with the usual GP care over
24 months. The dataset includes a sample of 558 participants with chronic depression taken

from 42 primary care practices across the United Kingdom.

The ProCEED trial used the Beck Depression Inventory (BDI-II), which is a measurement of

severity of depression, as its primary outcome. The main results indicated that the practice
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nurse-led proactive care was beneficial for some participants. However, the result for the
primary outcome was not statistically significant at the 5% level (effect on BDI-II: 1.2 95%
confidence interval (-0.3, 2.7) p=0.125) (Buszewicz et al. 2016). The trial team were also
interested in the work and social activities scale (WSAS) and quality of life (Euroquol-EQ-

VAS).

The Pearson’s correlation coefficients between the values of the outcome collected at
baseline show there is a strong correlation between the three outcomes (BDI-II/WSAS r =
0.753; WSAS/EQ-VAS r = —0.623; BDI-II/EQ-VAS r = —0.605). There was missing data for
each of the three outcomes. In total, 431 participants provided follow up data, however,
there were only 429, 428 and 415 values recorded for BDI-II, WSAS and EuroQol respectively.

412 participants provided data for all three outcomes.

2.5.2 Ten Top Tips trial

The Ten Top Tips (10TT) is also a two-arm, individually randomised controlled trial (Beeken
etal.,, 2012, Beeken et al., 2017). This dataset includes a sample of obese patients taken from
14 general practices across England. The general aim of the study was to investigate the
effect of the 10TT intervention in primary care. The 10TT intervention consisted of a leaflet
(called ‘Ten Top Tips’) listing target behaviours alongside advice on repetition and context

stability.

The 10TT study specified weight change as the primary outcome. However, the trial team
were interested in using three outcomes: change in weight (kg), change in waist
circumference (cm) and blood glucose level (mmol/L). The weight and waist circumferences
outcomes are viewed as continuous outcomes. The blood glucose level is categorised into
‘standard’ and ‘high’ groups (85% of the participants were categorised as standard). High
blood glucose has been defined as levels greater than 7.0 mmol/L (WHO, website). The
Pearson’s correlation coefficients between the outcomes at baseline show a participant’s
weight is strongly correlated with a participant’s waist circumference (r = 0.775). Thereis
weak/moderate correlation between the participant’s blood glucose level and a weight r=
0.280) and participant’s blood glucose level and waist circumference (r = 0.356). The
primary outcome was measured at three months. At this follow up, 388 participants provided
at least one outcome value. However, only 383, 378 and 330 values were provided for

weight, waist circumference and blood glucose level respectively.
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2.6 Methods to analyse multiple outcomes in randomised controlled

trials

In this section, relevant methods which can be used to analyse multiple correlated outcomes
are described. A example of an illustrative trial is used to help describe the methods. In the
illustrative two-arm trial there are m primary outcomes, which are correlated. The i*" trial
participant is randomly assigned to either the intervention group (x; = 1) or the control
group (x; = 0), fori =1, ...,n. Here, x; is an indicator variable and n is the number of

participants.

The aim of the trial is to test the null hypotheses Hy;: B;; = 0 for j = 1, ..., m which state
that there is no effect of the intervention on the nominated outcome. Each test statistic ¢; is
used to test the null hypothesis H;. Further suppose that there is an overall null hypothesis
H(m) = }n=1 H;. Under this overall hypothesis, the joint test statistic (¢4, ..., t;;,) has an M-
variate distribution. Let Y;; represent the outcome values corresponding to the ™" participant
and the j* outcome, p1j represent the effect of the intervention on the j™ outcome and 3,
be the intercept term. Lastly, p; is the jt" marginal unadjusted p-value which is obtained
from the appropriate statistical test associated with analysing the respective outcome. To
analyse a continuous outcome an unpaired Student’s t-test may be used. To analyse a binary
outcome a Chi-squared test may be used to investigate the intervention. The unadjusted
statistical significance level is set to a. For simplicity, the subscript i associated with
participants are omitted in most of the models and additional covariates have not been

included in the models.

Unless otherwise stated, it is assumed that the intervention is shown to be effective if a
statistically significant effect is found on at least one of the outcomes. Consequently, when
referring to power for multiple comparisons disjunctive power is used, unless otherwise
specified. These are the recommendations suggested by (Dmitrienko et al., 2009, Bretz et al.,

2010).

2.6.1 Combine outcomes

One approach to avoid the difficulties associated with multiple significance testing is to
combine the outcomes to create a single composite outcome. It avoids the issue of testing
multiple outcomes as only one test is performed (Phillips and Haudiquet, 2003). A composite
outcome is defined as the union of the outcomes. Consequently, if a composite outcome is

made up of two time-to-event outcomes, then the composite outcome is defined as either
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event occurring or both events occurring. However, for simplicity investigators may only take

into account the time until the first event (Dmitrienko et al., 2009).

An example of a composite outcome is the time from randomisation until either a nonfatal
ischemic stroke, fatal ischemic stroke or early death. Composite outcomes that combine
several binary events, such as the previous example, most commonly arise in cardiovascular
trials (Cordoba et al., 2010) or chronic disease trials (Cutter et al., 1999). When the
composite outcome is the time until the first event there is an increase in statistical
efficiency, compared to selecting only one of the events as the primary outcome. The
increase in efficiency arises from the increased event rate. This may reduce the required
sample size and consequently the costs and duration of the RCT (Ferreira-Gonzalez et al.,

2007, Freemantle et al., 2003).

The composite outcome needs to be specified before the trial begins andall components
should be of equal importance when assessing the effect of the intervention (Montori et al.,
2005). A composite outcome may not be appropriate when the effects of an intervention
differ in magnitude and/or direction across the outcomes (Pogue et al., 2012). In particular,

the latter may result in a large loss of power.

2.6.2 Analysing outcomes separately

It is common practice to analyse each outcome separately in a univariate framework. For
example, when analysing continuous outcomes, an unpaired Student’s t-test may be
performed to analyse the effect of the intervention for each of the pre-specified outcomes.
One typically would like to adjust for baseline covariates (European Medical Agency, 2017)
in which case a classic linear model is preferable. For the scenario of continuous outcomes,

the linear model can be written as

Y = Boj + Brjx + €, (2.1)

where Y}, x, B and 5,  are as previously defined and €; ~ N (0, 62) is the random error with
variance g2. By analysing the outcomes separately, the possible multivariate structure in the
data has not be used. Indeed, an additional imputation step would be required to take into

account any missing values.

Multiple tests need to be performed to analyse multiple outcomes in a univariate framework,

which may increase the familywise error rate (FWER). A variety of techniques can be used to
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ensure that the error rate is kept to an acceptable level. These techniques are discussed in

detail later in this section.

2.6.3 Multivariate analysis

More advanced techniques, including multivariate methods (Goldstein, 2011), have been
proposed that enable multiples outcomes to be analysed simultaneously by taking into
account the correlations between them (Teixeira-Pinto et al., 2009). The use of these
methods could potentially lead to improved precision and greater power (McCulloch, 2008b)
and hence smaller sample sizes. In addition, depending on the objective of the trial, we may
also estimate an overall effect of the intervention across outcomes, as well as a separate

effect for each outcome.

Global statistical tests

Another approach is to use a global testing procedure to estimate an overall effect of the
intervention across outcomes, with. the trial deemed a success if the overall effect is
statistically significant. Conceptually,the interpretation of results obtained from global
procedures and the analysis of composite outcomes are similar and both avoid the issues
associated with testing outcomes separately. However, unlike composite outcomes, global
test procedures account for the correlations between the outcomes. Methods include the
multivariate analysis of variance (MANOVA), the one-degree of freedom global test
developed by Roy (Roy et al., 2003), and the test statistics developed by O’Brien (O’Brien,
1984) and extended by Pocock (Pocock, 1997).

Global testing procedures require balanced data across all outcomes and will omit
observations if any outcome values are missing. Given this limitation, global testing

procedures are not widely used in clinical trials and therefore are not discussed further.

Multivariate regression

Multivariate regression is an extension of the multiple regression that allows for multiple
outcomes of the same type to be analysed. For example, this approach may be used to
analyse several continuous or several binary outcomes. To model the effects of the

intervention for two continuous outcomes, the following model can be used

Y =X1Bo+ Xz B1+E (2.2)
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where Y is a n X 2 matrix in which each row contains the outcome values for a single
participant (for two outcomes, Y; = (¥;1,Vi2)), X2 is an x 1 column vector in which each
element indicates whether the participant received the control (x; = 0) or intervention (x; =
1), B1isal X nrow vector representing the effects of the intervention for the 2 outcomes,
X,isan x 1column vector of 1s, Byisal X nrow vector representing the constant term
(the ‘intercept’) for the 2 outcomes and Eis an x 2 matrix representing the random error.
The rows of the error term, E, are independently distributed as multivariate normal N, (0, X)

with an unknown positive definite covariance matrix X.

Equation (2.2) can be adapted to handle multiple binary outcomes by assuming Y is a latent

variable, such that the observed binary outcome Y;; = 1if ¥;; > 0, and Y;; = 0 otherwise.

Multivariate regression also requires balanced data across the outcomes.

Factorisation modelling

This approach involves factorisng the joint distribution of two correlated outcomes into a
marginal and a conditional distribution. Univariate models can then be fitted to both
components of the factorisation (Teixeira-Pinto and Harezlak, 2013). IT is possible to use
different types of outcomes within this framework althoughthe estimated intervention
effects are likely to be different from those obtained by modelling the outcomes separately
because of different distributional assumptions. For the univariate analyses, it is assumed
that the two outcomes are separate, whereas the factorisation model assumes that the
second outcome is distributed conditionally on the first outcome (Teixeira-Pinto and

Harezlak, 2013).

With two correlated outcomes, where one is continuous (Y; ) and the other is binary (¥,) we
can use one of the two possible factorisations of their joint distribution fy, v, (v1,y,) =
fr, 1 v, @11¥2) fr,(y2). Fitzmaurice and Laird (1995) describe the factorisation model which
uses a linear model for Y; and a probit model for Y,, and including one covariate for the

intervention. The model is
Y1 = Bor + Brax + 1 (Y2 — up) + €,probit(uy) = Poz + P12x,  (2.3)
where €; ~ N(0,02) is a normally-distributed random variable with mean zero and variance

02, and T quantifies the association between Y; and Y, .

Catalano and Ryan (1992) propose the ‘reverse’ of this model in which they use the other

possible factorisation of the joint distribution fy, v, (v1,¥2) = fr, 1) fy, |v, &2ly1). Thisis
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described in Teixeria-Pinto (2013). At present there is no guidance on how to analyse more
than two outcomes using the factorisation model. With k outcomes, there are k! possible

factorisations and there is no guidance as to which one is best to use.

Latent variable model

Several researchers have suggested several methods that use latent variables to model
multiple correlated outcomes, including Sammel et al. (1997), McCulloch (2008a) and

Dunson (2000).

McCulloch (2008a) suggest introducing a random effect [ that will be shared across
outcomes. Assuming we have values of one continuous normally distributed outcome

(Y1) and a binary outcome (Y;), the model is

Y1 = ﬁ01 + ﬁllx + l + €1, 24)

7

P(Y,=1) = ¢p(Boz + Bizx +11),

where e;~ N(0, 012), I~ N(O, 012) and 012 and 012 are unknown variances. It is assumed that
latent variable [ completely specifies the pairwise correlation between the outcomes and
hence, conditional on this variable, the two outcomes are independent. The parameter A
accounts for the fact that the linear predictors for Y; and Y, are on different scales and will

therefore have different variances.

The estimated intervention effects for this model are conditional on the latent variable, as
shown in equation (2.4) andconsequently, they may not be comparable to the estimates
obtained from the other methods discussed. To obtain effects for the binary outcomes that

are comparable to those obtained from univarate analyses, we divide the regression

coefficient 5, by ’/12012 + o2 (Teixeira-Pinto and Normand, 2009). where o7 is fixed to 1

2
if a probit link function is used, or to % if a logit link is used. A detailed discussion regarding

the adjustments can be found in Teixeira-Pinto and Normand (2008).

Note that in the above example (2.4) there are four variance-covariance parameters: 012, 022,
012 and A. In this example 022 is fixed due to the binary nature of the equation but the other
three parameters need to be estimated. There are only two estimable quantities: the total

residual of y;
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var(e;) = o2 + of,
and the correlation between the total residuals of the two equations

cov(€eq,€7) _ Ao}

Jvar(e)var(e,) - J(0f+012 o ria? ).

corr(e;, €5) =

It is necessary to impose an additional constraint to ensure the model is not over
parameterised so that the model parameters are identifiable (Teixeira-Pinto and Normand,
2009). One option is to fix the variance of the latent variable 012. A similar restriction is

needed to analysing multiple continuous or multiple binary outcomes.

McCulloch (2008a) study this model in more depth and provide examples using other
distributions. Sammel et al. (1997) discuss another latent variable model for mixed discrete
and continuous outcomes. Their model allows use of any distribution from the exponential

family.
Multivariate multilevel model

The multivariate multilevel (MM) model has been suggested as another approach to analyse
correlated multiple outcomes. In the MM the multiple outcomes are considered to be nested
within individuals and are treated in a similar manner to how repeated measurements are

treated within the multilevel modelling framework(Goldstein et al., 2009, Goldstein, 2011).

For two continuous outcomes, the following model is used

Y = 21j(Bo1 + Prax + €1) + 22(Poz + Pr2x + €2), (2.5)
z1j =1ifj=1and z;; = 0 otherwise,

z35 =1 — zyj,

where j € {1,2} indicates the outcomes, z,; is an indicator for outcome Y; x; is the binary
variable indicating whether the participant received the control (x; = 0) or intervention

(x; = 1), By is the effect of the intervention and € ~ N (0, 2,) is the random error for the
level 2 structure where Q,, is the unknown covariance matrix.

Level one variation is not specified as the level exists solely to define the multivariate
structure. The formulation as a multilevel model allows for estimation of a covariance matrix
even if some of the outcome data are missing, as long as missing at random. In the above
model, two intervention effects have been specified, one for each outcome. However, a

common effect across both outcomes may also be specified. Additionally, the model can be
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extended to incorporate multiple covariates (Rasbash et al., 2012) and the model can handle

mixed outcome types (Goldstein et al., 2009).

Summary of the multivariate methods

The factorisation, latent and MM models can handle continuous outcomes, binary outcomes
or a mixture of both. In addition, these models can handle non-overlapping missingness,
where values may be missing for some but not all some of the outcomes. That is, the number
of observations does not need to be balanced across outcomes. The multivariate regression,
latent and MM models can easily be extended to several outcomes although the
factorization can be cumbersome when there are several outcomes. As the factorization
model cannot be extended to more than two outcomes, | encourage the use of the latent or

MM model.

When the effects are analysed separately an adjustment, such as those described below in

Section 2.7, will need to be made for multiple comparisons to control FWER.

2.7 Methods to control the familywise error rate

In the previous section, | discussed methods to analyse multiple outcomes in the trial setting.
When implementing many of these methods an intervention effect is estimated on each
outcome and multiple comparison are performed. In confirmatory RCTs, the FWER must be
maintained at an acceptable level which is usually 0.05. In this section, methods that may be

used to control the FWER are described.

2.7.1 Hierarchical testing of multiple outcomes

Hierarchical testing involves ranking the outcomes according to their clinical relevance. The
outcomes are ranked from most important to least important and then tested individually in
the pre-specified hierarchical order. An outcome can only be tested if all previously tested
outcomes have been shown to be statistically significant; otherwise the testing stops and no
confirmatory claims can be based on the remaining outcomes. For example, if Y; and Y, are
ordered to reflect clinical importance, the intervention effect on Y, can only examined if the
intervention effect on Y; was found to be statistically significant. Because of the hierarchical
nature, the same significance level can be used for all tests and no formal adjustment is
necessary. However, the power is reduced for outcomes that have lower ranks. Other

methods have been introduced to maintain some of the power for the outcomes with lower
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ranks, including the fixed-sequence and fallback methods (Dmitrienko and D'Agostino,

2013).

In some instances, there is a natural hierarchical order for the outcomes, for example, with
respect to the clinical importance of the outcomes, and therefore it is suitable to use this
technique to remove the problem of multiple comparisons. If investigators use this method,
the ordering must be pre-specified and clearly reported in the study protocol (Committee

for Proprietary Medicinal Products, 2002).

2.7.2 Adjustment to the p-values

To take account of multiple comparisons, the FWER may be controlled by applying a method
to adjust the p-values produced by each statistical test used to investigate the effect of the
intervention or equivalently the corresponding significance levels may be adjusted. Many
techniques to adjust p-values have been proposed in the literature (Dmitrienko and
D'Agostino, 2013, Shaffer, 1995, Dmitrienko et al., 2009). The techniques can be categorised
into single step methods that test all hypotheses simultaneously, stepwise methods that rely
on data-driven hypothesis ordering and stepwise methods that rely on a pre-specified
hypothesis ordering. Once the p-values have been adjusted for multiplicity, the intervention
can be deemed to be effective if a statistically significant effect if found on at least one of

the outcomes. The single step procedures are described below.

Sidak method

The Sidak method (Sidak, 1967) is a single step adjustment method. The adjusted p-value is

given by
p=1-G-p)" 29
where pjé-i is the Sidak p-value adjusted for multiplicity. The p-value p]Si should be compared

to the nominal significance level. Equivalently, the significance level could be adjusted so

that the unadjusted p-values are compared to the adjusted significance level

.. 1 2.7
=1 (1-a)m 2.7)

Under the assumption that the outcomes are independent, the method can be derived, as
follows:
P(no Type I erroron 1test) = 1 — a]Si, (2.8)
<.\ m
— P(no Type I error on m tests) = (1 — a-S‘) ,

)
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— P(atleast one type I error on m tests)

=1- (1— ajgi)m = a;.

The final line in equation (2.8) gives the result given in equation (2.7). By using the smaller
significance level a]-gi for each outcome, the overall significance level is maintained at the
nominal level. Figure 2.2 provides a graphical summary of the Sidak method when there are
two outcomes. The Sidak equation was derived under the assumption that the outcomes are
independent but also controls the FWER when the hypothesis test statistics are multivariate

normal.

Bonferroni method

The most basic single step adjustment method is the Bonferroni method. It relies on a simple

a splitting rejection rule. The adjusted p-value is defined as

Bonf __

p; mp;. (2.9)

The adjusted p-value pfonf should be compared to the pre-specified significance level.

Equivalently, the significance level could be adjusted so that the unadjusted p-values are

Figure 2.2 Graphical summary of the Siddak method for two outcomes.

The shaded area is the combination of p-values for which the null hypothesis is rejected,
which is there is no effect of the intervention for the corresponding outcome. The rejection
region for outcome 1 is displayed on the left and the corresponding rejection region for
outcome 2 is displayed on the right. Similar graphs are displayed in Dmitrienko and
D'Agostino (2013).
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compared to the adjusted significance level, for example, with two outcomes we would use

an adjusted significance level aB°% =%=O'TOS= 0.025 where a; is the unadjusted

significance level. The method can be derived using the Taylor series expansion from the

Sidak equation, as

. 1 (2.10)
af" =1-(1—a)m

1

=1-(14(-a))"
=1-(a +%(—aj) ; (%) (l— 1) (~a)’ + )

m
)
m

Bonf __ &j

~
=

Figure 2.3 Graphical summary of the Bonferroni method for two outcomes.

The shaded area is the combination of p-values for which the null hypothesis is rejected, that
is there is no intervention effect for the corresponding outcome. The rejection region for
outcome 1 is displayed on the left and the corresponding rejection region for outcome 2 is
displayed on the right. Similar graphs are displayed in Dmitrienko and D'Agostino (2013).
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Figure 2.3 provides a graphical summary of the Bonferroni method when there are two
outcomes. The advantage of this method is that it is simple and it is a non-parametric
method. As it a non-parametric method, it does not impose any restrictions of the type of

test required or distribution of the test statistics. Given its simplicity, the Bonferroni method
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is widely used in RCTs even though it can be conservative, when the outcomes are correlated

or when the number of tests is large (Yoon et al., 2011, Tyler et al., 2011).
The Bonferroni method is less powerful than the Sidak method since

aJ.Bonf _ (2.11)

1
aj m— S0
g ;< 1—(1—aj)m—aj,
as shown in the Taylor expansion in equation (2.10). However, the improvement compared
to the Bonferroni method is minimal, especially when there are less than ten tests (Simes,

1986).

Derivatives of the Sidak method

The Dubey/Armitage-Parmar (D/AP), Tukey, Ciminera, Heyse (TCH), (Tukey et al., 1985); and
the R2-adjustment (RSA), (Sankoh et al., 1997) adjustments are ad-hoc methods that are
based on the Siddk method, which takes into account the correlation between the outcomes.

These methods have the form

dj g
pi” =1-(1-p)"". (2.12)

where g(j) is defined for each method. The D/AP method defines g(j) as m' ™" where p;
is the mean correlation between the j* outcome and the remaining m — 1 outcomes. When
using this method in the analysis of multiple outcomes, the mean correlation may be
estimated from the data to calculate the adjusted p-values. The TCH has been derived for
outcomes that have a strong correlation, it defines g(j) as vm where m is the number of
outcomes. The RSA defines g(j) = m*~R20U) where R2(j) is the value of R? from an
intercept-free linear regression with the j* variable as the outcome and the remaining m —

1 variables as the predictors.

There has been little theoretical work to assess the performance of these methods (Sankoh
et al., 1997). One of the nice properties of the D/AP procedure, which may have contributed
to its development, is that when the mean correlation between the j™ outcome and the
remaining m — 1 outcomes is 0, then the D/AP method is equivalent to the Sidak method.

On the other hand, when the mean correlation between the j™ outcome and the remaining

m — 1 outcomes is 1, then the D/AP is reduced to p;-ldj

= pj, meaning that the adjusted p-
value is the same as the p-value unadjusted for multiplicity. When the mean correlation
between the j™ outcome and the remaining m — 1 outcomes is 0.5 this method coincides

with the TCH method.
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The methods described so far have been single step methods. The data-driven methods that

require the data to be ordered before implementing the adjustment are now described.

Holm method

The Holm ‘step-down’ method (Holm, 1979) is a data-driven stepwise method that is also

known as the ‘sequentially rejective Bonferroni’ test.

For this method, the p-values unadjusted for multiplicity are ranked from smallest p(4 to

largest pn) and adjusted as follows

where p(y is the unadjusted p-values corresponding to the outcome value Yy for k =

1, ...m, the rank of the p-value, and m is the number of outcomes. Starting with the most
significant p-value (smallest p-value), each p-value adjusted for multiplicity is compared to
the pre-specified significance level, until a p-value greater than the significance level is
observed after which the procedure stops (Wright, 1992). The Holm method is described

graphically in Figure 2.4.
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Figure 2.4 Graphical summary of the Holm method for two outcomes.

The shaded area is the combination of p-values for which the null hypothesis is rejected, that
is there is no effect of the intervention for the corresponding outcome. The rejection region
for outcome 1 is displayed on the left and the corresponding rejection region for outcome 2
is displayed on the right.

Outcome 1 Qutcome 2

| %) D2

As with the Bonferroni method, the Holm method is a non-parametric method and therefore

does not impose any restrictions on the distribution of the joint test statistic.

The Holm method is more powerful than the simple Bonferroni method (Yoon et al., 2011)
meaning that if a null hypothesis is rejected when using the Bonferroni method, the null
hypothesis will also be rejected by the Holm method but additional hypothesis may be
rejected when using the Holm method. This is shown graphically, as the shaded region is
larger in Figure 2.4 which shows the rejection region for the Holm method compared to

Figure 2.3 which shows the rejection region for the Bonferroni method.

Hochberg Step-Up method

The Hochberg step-up method (Hochberg, 1988) is analogous to the Holm step-down
method. For this method, the p-values unadjusted for multiplicity are ranked from largest

P(1) to smallest p,,) and adjusted as follows

pf(l,?)ch =(m—k+1)pu (2.14)

where p(y) is the unadjusted p-values corresponding to the outcome value Yy, for k =
1, ..., m which is the rank of the p-value. Starting with the least significant p-value (largest p-
value), each p-value adjusted for multiplicity is compared to the pre-specified significance

level, until a p-value lower than the significance level is observed after which the comparison
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stops (Wright, 1992). Once the procedure stops, the current outcome is defined as
statistically significant and all remaining outcomes (which have a p-value less than or equal
to the one being tested) are defined as statistically significant. This is a semi-parametric
method meaning it can be used to control the FWER when the distribution of the joint test
statistic under the alternative hypothesis is known (for example multivariate normality) but
not fully specified. If the Hochberg method is applied to multiplicity problems with a
negatively correlated test statistic, the FWER may be inflated, however, the magnitude of
the error rate inflations with negative correlation is typically trivial (Dmitrienko and

D'Agostino, 2013). The Hochberg method is described graphically in Figure 2.5.

Figure 2.5 Graphical summary of the Hochberg method for two outcomes.

The shaded area is the combination of p-values for which the null hypothesis is rejected, that
there is no effect of the intervention for the corresponding outcome. The rejection region
for outcome 1 is displayed on the left and the corresponding rejection region for outcome 2
is displayed on the right.
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The Hochberg method is more powerful than the Holm method (Candes, 2012). This is
highlighted by a larger shaded region in Figure 2.5 compared to Figure 2.4. This means that
when using the Hochberg method one is guaranteed to reject all null hypotheses that are
rejected when using the Holm method, but additional null hypotheses may also be rejected

when using the Hochberg method.

The Hochberg method favours consistency among the outcomes across multiple tests in the
sense that it is easier to achieve significance if all p-values are small. Whenever all p-values

in a multiplicty problem are significant before an adjustment (i.e. none of the p-values
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exceed a), all hypothesis will be rejected after the Hochberg method is applied (Dmitrienko

and D'Agostino, 2013).
Hommel method

The Hommel method (Hommel, 1988) is another data-driven stepwise method. For this
method, the unadjusted p-values are ranked from largest p(;,) to smallest p(4). Let [ be the

largest integer for which

ja
Pam-1+j) = 7 (2.15)

forj =1,..1. If nosuch j exists then all outcomes can be deemed statistically significant;

otherwise, all outcomes with p; < % may be deemed statistically significant, forj =1, ...,m

andi=1,..,m.

The Hommel method has greater power to detect a true effect of the intervention compared
to the Hochberg method (Dmitrienko and D'Agostino, 2013). Similarly to the Hochberg
method, it is a semi-parametric method meaning it can be used when the distribution of the
test statistic under the alternative hypothesis is known but not fully specified. Additionally,
it requires consistency among the outcomes of the individual tests as it is easier to achieve
significance if the p-values for all hypotheses to be performed are small (Dmitrienko and

D'Agostino, 2013).

Another class of methods to account for multiple comparisons is the resampling method.
The resampling methods take into account the correlation between the outcomes via

bootstrapping (Westfall and Young, 1993). | will consider one resampling method below.

Stepdown MinP

Another step-down method to adjust p-values is the ‘stepdown MinP’ method (Westfall and
Young, 1993, Ge et al.,, 2003). Unlike the previous methods, it does not make any
assumptions regarding the joint distribution of the test statistics, instead it attempts to
approximate the true joint distribution by using a resampling approach. Consequently, the
stepdown MinP is referred to as a ‘resampling based procedure’ (Dmitrienko et al., 2009).
The resampling based procedure takes into account the correlation structure between the
outcomes and therefore may yield more powerful tests compared to the other adjustment
methods (Reitmeir and Wassmer, 1999). The steps to obtain the stepdown MinP p-value

adjusted for multiplicity are: 1) calculate the observed test statistics for the observed
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dataset; 2) resample the data with replacement within each group to obtain bootstrap
resamples, compute the resampled test statistics for each resampled dataset and construct
the reference distribution using the centred and/or scaled resampled test statistics; 3)
calculate the critical value of a level a test based on the upper a percentile of the reference
distribution, or obtain the raw p-values by computing the proportion of bootstrapped test
statistics that are as extreme or more extreme than the observed test statistic (Li and Dye,

2013).

The resampling techniques have previously been recommended for clinical trials with
multiple outcomes (Reitmeir and Wassmer, 1999) however, they are not widely used in
clinical trial applications. The stepdown MinP was the only resample method discussed as it
has been shown to perform well when compared to other resampling methods (Li and Dye,

2013).

All the methods that have been discussed so far have assumed that the study has been
powered adequately for all primary outcomes. However, this may not be the case. In some
scenarios, one outcome may have adequate power whilst the remaining primary outcomes
are underpowered due to time and cost restraints. Alternatively, the study may not have
been powered to investigate secondary outcomes but the investigator is still interested in
exploring the effects of the intervention on the secondary outcomes. Prospective alpha
allocation scheme and the adaptive alpha allocation approach are designed to be used in the

scenario when some outcomes are underpowered.

Prospective alpha allocation scheme (PAAS)

The prospective alpha allocation scheme (PAAS) is a weighted version of the Bonferroni
method (Moyé, 2000). For this approach, the outcomes have to be ranked in order of priority,

with the most important outcome being ranked first. For two outcomes the approach is

defined as:
i) a4 is chosen as the significance level for the most important outcome, where
0< ¢y <a,
ii) the second outcome has the following significance level:
1-a
a, =1-— o

where «a is the pre-specified level of FWER which is usually 0.05. An extension for a larger

number of primary and secondary outcomes is provided in Moyé (2000). This approach is
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useful when the outcomes can be hierarchically ordered in order of importance, for example,
when there is one primary outcome and a key secondary outcome. However, it has limited
use when alternative outcomes are used as the investigators may find it difficult to
hierarchically order the outcomes or chose the level of a to give each outcome. The PAAS is
a simple way to accommodate outcomes that can be ordered a priori but it potentially under
powers outcomes (Li and Mehrotra, 2008), consequently other approaches, including the

adaptive alpha allocation approach have been proposed.

Adaptive alpha allocation approach (4A)

The adaptive alpha allocation approach (4A) is a feedback procedure (Li and Mehrotra, 2008).
The method assumes that the outcomes can be grouped into two families. The first family
includes primary outcomes that are adequately powered and the second family includes
potentially underpowered outcomes, potentially the secondary outcomes. For two
outcomes, the p-values unadjusted for multiplicity are ranked p(1y and p(, according to the
importance of the corresponding outcome. Assuming the outcomes are independent, the

approach is defined as:

i) The most important outcome is tested usinga; = a —¢€, € >0
ii) The least important outcome is tested using
a ifpa) <

A, = . .
2 min (Z—%,al) ifpay > a4
where

2
al(l— 20, —a— alz) ifa, + af — a} <a

a—aq !

%= : 2 _ 3
ifa,+ af —aj >«

1-ay

where q; is the significance level corresponding to the outcome ranked i and « is the
chosen FWER. Li and Mehrotra (2008) provide an extended version that takes into account
any correlation between the outcomes. They provide tables describing the level of alpha to
use depending on the correlation between the outcomes. This approach is beneficial as it
provides higher significance level for the less important outcomes. However, this work
focuses on multiple primary outcomes which often cannot be ordered according to their

level of importance.
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Other methods

There have been other methods that have been described in the literature to adjust p-values
including Rom’s test which is more powerful than the Hochberg, Holm and Bonferroni
methods; however, it is more complicated than these methods (Wright, 1992). Dunnett
(1955) has suggested a family of methods which require the outcomes to be normally
distributed. The limitation of the Dunnett methods is that they require a balanced design in
that they require the same number of observations for all the outcomes. In the clinical trial
setting, this is often not achieved with missing variables arising for numerous reasons,

consequently the Dunnett methods are not described in more detail.

Summary of methods which adjust p-values

In this section, | have described methods to account for multiplicity based on adjusting
univariate p-values. When calculating the p-values, it has been assumed that the main clinical
objective of the trial is formulated in terms of investigating the effect of the intervention on
several primary outcomes and the objective is met if at least one analysis produces a
significant result (Dmitrienko and D'Agostino, 2013). A summary of adjustments, including

those described above, are shown in Table 2.1.

The Bonferroni and Holm methods are non-parametric. This means they both control the
FWER in any setting. Hochberg and Hommel methods are semi-parametric and therefore
certain distributional assumptions need to be satisfied to achieve the FWER control. Semi-
parametric methods can be used when the distribution of the joint test statistic used to test
the null hypothesis is known but it is not fully specified. For example semi-parametric
methods can be used when it is known that the joint distribution of the test statistic is
multivariate normal but the mean of this distribution is not known. These distributional
assumptions are not restrictive and many clinical trials meet these assumptions (Dmitrienko
and D'Agostino, 2013). Parametric methods can be used when the joint distribution of the

test statistic is fully specified.
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Table 2.1 Methods that can be used to control the familywise error rate (FWER) when
analysing multiple outcomes in clinical trials

Classification

Distributional Single step Data-driven Pre-specified
information hypothesis ordering  hypothesis ordering
Non-parametric Bonferroni Holm Fixed-sequence

Stepdown MinP* Fallback

Chain
Semi-parametric Sidak Hochberg
TCH* Hommel
D/AP*
RSA*
Parametric Dunnett Step-down Dunnett  Parametric fallback
Step-up Dunnett Parametric chain
Feedback

This table is similar to a table from (Dmitrienko and D'Agostino, 2013) TCH = Tukey, Ciminera,
Heyse; D/AP = Dubey/Armitage-Parmar; RSA = R2-adjustment. *These methods account for
the correlations between outcomes.

Single step methods are inefficient because they do not utilize the a propagation and thus
do not use up all of the available error rate. The stepwise methods are more powerful
methods. As demonstrated by Figures 2.2-2.5, the common methods can be ordered in terms
of increasing power: Bonferroni, Holm, Hochberg and Hommel. This highlights that Hommel
and Hochberg are preferred over the other two methods in a multiplicity problem without
hypothesis ordering. However these do require additional distributional assumptions over

the other Bonferroni type methods (Dmitrienko and D'Agostino, 2013).

Fixed sequence methods are used when the outcomes are ordered in terms of importance
prior to the trial. These methods are not as useful when alternative or co-primary outcomes
are used as investigators are unlikely to be able to order the importance of the outcomes.

Consequently, the fixed sequence methods are not discussed in detail.

When selecting the method to use the extent of the pairwise correlation between the
primary outcomes needs to be considered along with the impact of the FWER. Most of the

methods described above ignore the pairwise correlations. Ignoring these correlations could
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result in a loss of efficiency and consequently less power being required to detect effects of
the intervention (Teixeira-Pinto et al., 2009). The TCH method was designed for strongly
correlated outcomes, consequently, when outcomes are independent the FWER observed is
very high, nearly double the desired threshold (Blakesley et al., 2009). Researchers must be

confident that the outcomes will be correlated if this method is chosen.

2.8 Discussion

Many techniques have been proposed to analyse multiple primary outcomes in clinical trials.
The multivariate methods are more efficient compared to analysing the outcomes
separately. The gains in efficiency may lead to smaller standard errors and, as a result, higher
power. This in turn may affect the conclusions drawn. When analysing multiple outcomes in
confirmatory randomised controlled trials, it is vital to control the FWER, to ensure that the
chance of observing at least one statistically significant result by chance is not too high. Many
p-value adjustment methods have been proposed to maintain the FWER. Even though many
multivariate methods and methods to adjust p-values have been proposed, it is not known

which of these methods, if any, are used in published clinical trials.
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Chapter 3

A review of recently published randomised
controlled trials

This chapter reviews recently published RCTs in the areas of neurology and psychiatry. The
purpose of this chapter is to ascertain whether multiple primary outcomes are used in
recently published trials, and to identify the methods that are used for the sample size
calculation and for the statistical analysis of RCTs using multiple primary outcomes. In doing
so, | will be able to ensure that the simulations in the following chapters are based on realistic
scenarios to ensure their relevance. This will enable me to provide practical guidance for

researchers that is applicable to current practice.

The review focuses on major neurology and psychiatry journals. Neurology and psychiatry
are two disease areas where multiple outcomes may provide a more comprehensive
understanding of the potential effects of the intervention (Blakesley et al., 2009, Teixeira-
Pinto et al.,, 2009). More specifically, multiple outcomes may be beneficial in trials
investigating interventions for depression (Tyler et al., 2011), stroke (Mayo and Scott, 2011)
or long term mental health conditions (De Los Reyes et al., 2011). In these disease areas,
multiple primary outcomes may be required to provide a comprehensive understanding of

the effects of an intervention.

I am primarily interested in the sample size calculation and the statistical analysis used in
recently published trials. As discussed in chapter 2, when multiple outcomes are used, it is
essential that all primary outcomes are taken into account during the design and analysis of
the trial. If all outcomes are not considered, then the chosen analysis may be inefficient or
the error rates may be unacceptably high. The sample size is an important consideration
during the design of a trial. A good choice of sample size in necessary to ensure that the trial
is efficient, ethical and cost effective (Rohrig et al., 2010). The number of primary outcomes

and their pairwise correlations should be considered when determining the sample size.

The work in this chapter has been published in Contemporary Clinical Trials (Vickerstaff et

al., 2015). The full paper is provided in Appendix 1.
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3.1 Methods

3.1.1 Selecting the journals

A number of journals were selected for having a high impact and for frequently publishing
randomised trials in the fields of psychiatry and neurology. The impact factor used was based
upon the Thomson Reuters Journal Citation Report, published in 2010. This report was
selected as 2010 was the year before the articles included in the review were published
(2011-2014). Thomson Reuters is the source of the annual Journal Impact Factors. By
choosing journals with high impact factors, | am choosing high quality literature that is likely

to be cited and used for further research.

The areas of neurology and psychiatry were selected as RCTs are common in these areas
(Wittchen et al., 2011). Multiple outcomes are particularly common in these areas as one
outcome is rarely able to satisfactorily describe the health condition being investigated

(Blakesley et al., 2009).

After having reviewed the impact factors, the following journals were selected for the final

review:
Psychiatry Journals:
1. The American Journal Psychiatry (Am. J Psych)
2. JAMA Psychiatry (JAMA Psych)
Neurology Journals:
1. The Lancet Neurology
2. Neurology
General medicine journals:
1. The New England Journal of Medicine (NEJM)

2. The Lancet
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3.1.2 Search criteria

The journals were hand searched for reports of randomised trials published between July
2011 and June 2014 inclusive. The time frame was selected to ensure that the results

represented the methods currently adopted in the literature, at the time of writing.

The review of journals included additional supplementary material, such as protocols and
appendices provided that they were referred to in the paper. The following trials were
excluded from the analyses: proof of principle trials; phase Il trials, including pilot trials and
small crossover trials; secondary analyses of trials. They were excluded as they are
exploratory trials that lead on to confirmatory trials and they often have limited power. A
study was classified as a pilot if it was clearly defined as such, or if it was described as an

exploratory study prior to a larger study within the discussion section.

3.1.3 Outcomes

For each published trial, | examined the results in the abstract and the main text and the
methods used for sample size calculation and statistical analysis. | recorded the number of
primary and secondary outcomes and the methods used to account for multiple primary
outcomes. Each outcome was recognised as primary if it was explicitly described this way or
implicitly described this way by the aims of the trial. Otherwise, it was assumed that each
outcome was primary. In the event that the primary outcomes described in the abstract

differed to the main text, the outcomes reported in the main text were used.

| performed the initial assessments. For the trials where the primary outcomes were not
clearly specified, the trials were appraised independently by other assessors (my supervisors
Rumana Z. Omar and Gareth Ambler). All discrepancies were resolved by discussion between
assessors. The statistical analyses were performed using Stata version 12 (StataCorp

StataCorp).

3.2 Results

From the six journals, | reviewed a total of 3277 abstracts and identified 209 RCTs that met

the inclusion criteria. Details of the study screening process can be seen in Figure 3.1.
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Figure 3.1 Flow diagram of the screening process for the review of published RCTs.

Abstracts reviewed
n=3277

(Lancet=506; NEJM = 658;
Am. ) Psych = 264; JAMA psych = 355;
Lancet neuro = 126; Neurology = 1368)

Othersubjectareas excluded n=1058

(Lancet=449; NEJM = 609)

Neurology / psychiatry papers

n=2219
Otherstudy designs excluded n=1930
(Lancet=28; NEJIM =22;
Am.J Psych=210; JAMA psych =312;
Lancet neuro =75; Neurology =1283)
RCT papers
n=289

Non phase 3 trials excluded n= 80

(Lancet=3; NEJM =1;
Am.JPsych=11; JAMA psych=11;
Lancet neuro =18; Neurology =36)

Articles foranalysis n = 209

(Lancet=26; NEJM = 26;
Am.JPsych=43; JAMA psych =32;
Lancet Neuro = 33; Neurology =49)

The majority of the trials (92%) were parallel-group, individually randomised trials, with a
median number of subjects of 242 (IQR 112-549) and a median follow up time of six months
(IQR 3-17.5 months); Table 3.1 and Figure 3.2 summarise the characteristics of these trials.

A list of included studies can be found in Appendix 2.
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Table 3.1 Description of the trials included in the review of published randomised

controlled trials

Characteristic Number (%)
N =209
Journals The New England Journal of medicine 26 (12)
The Lancet 26 (12)
The American Journal of Psychiatry 43 (22)
JAMA psychiatry 32 (15)
The Lancet neurology 33 (16)
Neurology 49 (24)
Arms per trial 2 144 (68)
3 52 (25)
4+ 15 (7)
Sites per trial Single centre trial 36 (17)
Multi-centre trial 173 (83)
Design of trial Individually randomised, parallel design 193 (92)
Individually randomised, factorial design 4 (2)
Cluster randomised 12 (6)
Number of 1 142 (68)
primary 2 43 (21)
outcomes 3 14 (7)
4 4 (2)
>5 6 (3)
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Figure 3.2 Flow chart showing how the outcomes were analysed in the RCTs.

Eligible RCTs
n=209
[
| ]
More than 1 primary 1 primary outcome
outcome reported reported
n=67 n=142
]
[ |
Multiple primary Co-primary Composite primary
outcomes outcomes outcome -
n=60 n=7 n=6
]
[ |
Separate testing Simultaneous Separate testing of
n=58 testing n=2 secondary
outcomes n=136
] ]
| | | |
Lo o Multiplicity No multiplicity
Multiplicity No multiplicity adjustment adjustment
adjustment n=13 adjustment n=45
n=20 n=116

The trials included in the review were categorised by the number of primary outcomes (one
or more than one), type of primary outcomes (alternative outcomes or co-primary
outcomes), disease area of journal (psychiatry, neurology or general medicine) and
intervention type (drug or non-drug). The following sections describe the results for each of

these categories in turn.

3.2.1 Trials with no stated primary outcome or with multiple primary

outcomes

Six of the 209 trials (3%) did not clearly specify a primary outcome. These trials did not follow
the International Standards for Clinical Trials Registries produced by the World Health
Organisation which states that both the primary and secondary outcomes should be defined
and pre-specified (WHO, 2012). It was assumed that all the outcomes in these trials were

equally important, and therefore recognised as primary outcomes.

Nearly a third of the examined trials (n=60, 29%) reported results for multiple primary
outcomes. Forty-five (75%) of these 60 trials did not include adjustments for multiple
comparisons. If multiple comparisons had been accounted for using the Bonferroni method,
6 of the 26 trials that reported that the intervention was effective would have drawn
different conclusions. The results for one of these trials is described as a case study below.

The remaining 15 (25%) trials accounted for multiple comparisons: six used the Bonferroni
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method, seven used other adjustment methods (Holm, Hochberg-Benjamini, Sidak, Dunnett

and sequential adjustments), and two performed MANOVA.

Some investigators stated that they did not adjust for multiple comparisons (Weiss et al.,
2011, Nobile-Orazio et al., 2012, Dodel et al., 2013, Tariot et al., 2011, Gray et al., 2012). This
suggests that some of the authors are aware the analysis may be different if they had
adjusted for multiple outcomes. For example, Grey et al., (2012, p.5) wrote that “no
adjustments for multiple testing were made, as they are known to reduce statistical power
and increase the probability of accepting a null hypothesis that is truly false. Preliminary
analyses leading to a priori hypotheses suggest that differences noted are less likely to be
from chance alone”. In this paper by Gray et al. (2012) adjustments were not made,
presumably to achieve a statistically significant result even though the investigators were
aware of the limitations of their analysis. Another justification provided for not accounting

for multiple comparisons was “to prevent Type Il error”(Vitiello et al., 2014).

The problem of multiplicity can be overcome by specifying different primary outcomes for
different health features. For example, Launer et al. (2011) specified primary outcomes for

cognitive measures and brain structure measures, respectively.

The abstracts of the trials were also examined to see if the investigators had specified that
all the multiple outcomes were primary. The abstract summarises the paper and is often read
in isolation from the main text. As such, the main outcomes should be clearly stated in the
abstract (Hopewell et al., 2008). Just over half (57%, n=34) of the trials were found to clearly
specify multiple primary outcomes in the abstract. The remaining abstracts described the
outcomes, without specifying the order of importance, even though there were later

specified as primary and secondary in the body of the papers.

In addition, the sample size calculations were reviewed. Fourteen (23%) of the 60 trials that
reported multiple primary outcomes incorporated only one outcome in the sample size
calculation. Fourteen of the trials clearly reported sample size calculations that incorporated
more than one outcome. The methods to account for multiplicity in the sample size
calculation included: a multiplicity-adjusted significance level in the calculation (Nierenberg
et al., 2013); using simulations developed by Heo and Leon (2008), (Conrod et al., 2013); and
calculating the sample size separately for each of the primary outcomes then selecting the
largest value as the final sample size (Odekerken et al., 2012). Lovera et al. (2012) reported
that they based their sample size on several outcome variables, but did not clearly specify

the method that was used.
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3.2.2 Trials with co-primary outcomes

Seven (3%) of the 209 trials reported co-primary outcomes. Even though it is unnecessary,
two of these trials accounted for multiple comparisons of the co-primary outcomes in their
analysis: one used the Hochberg method and one used a pre-specified testing hierarchy. The
abstracts of the seven trials clearly specified all the co-primary outcomes. When calculating
the sample size, five of the trials performed calculations based on all co-primary outcomes

and two of the trials performed calculations based on just one outcome.

3.2.3 Trials with one stated primary outcome

The remaining 142 (67%) trials reported that only one of the multiple outcomes was primary.
Of these trials: five reported one primary and no secondary outcomes; and another six (3%)

used a composite primary outcome.

3.2.4 Psychiatry, neurology and general medicine journals

The results were also reviewed by the disease area of the journal in which the article was
published. The journals were grouped into the areas: psychiatry, neurology and general
medicine. Of these disease areas, the psychiatric journals reported multiple primary
outcomes the most frequently with 35 (47%) of the trials reporting multiple primary
outcomes. This compared to 18 trials (22%) in the neurological journals and 7 (13%) in the

general medicine journals reporting multiple primary outcomes.

Of those trials analysing multiple primary outcomes, 27/35 (77%) and 15/18 (83%) of the
trials in the psychiatric and the neurological journals respectively did not account for

multiplicity compared to 3/7 (43%) trials in the general medicine journals.

3.2.5 Drug versus non-drug trials

134 (64%) trials evaluated drug treatments, of which 30 (22%) reported multiple primary
outcomes of which only six (20%) accounted for multiplicity. Whereas 30 (40%) of the 75
non-drug trials analysed multiple primary outcomes of which nine (29%) accounted for

multiplicity.
3.2.6 Secondary outcomes

Nineteen (13%) of the 142 trials that reported only one outcome as primary accounted for
multiplicity in their secondary outcomes by adjusting the p-values, even though adjustments

may be less important for secondary outcomes (Moyé, 2003). An additional seven (5%) trials
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highlighted a main secondary outcome. Five of the 67 (7%) trials that had multiple primary
outcomes or co-primary outcomes adjusted for multiple comparisons in the analysis of their
secondary outcomes: two trials used sequential testing and three trials adjusted the p-

values.

Some of the investigators that used only one primary outcome highlight their awareness of
the problems associated with multiplicity by stating they did not adjust for multiple
secondary outcomes. Weaver et al. (2012) said that “no formal correction for multiple
analyses” were made. Nobile-Orazio et al. (2012) stated that “despite the large number of
tests done on the secondary outcomes, the type | error rate was not adjusted because these

analyses were mainly supportive”.

3.3 Case Study

The following section focuses on Hong et al. (2011), a paper included in the review. The
investigators did not account for multiplicity in the analysis. The aim of this case study is to
view if the conclusions in the article would have changed had multiple outcomes been

accounted for in the analysis.

The investigators considered the effects of moderate-dose treatment with varenicline on
neurobiological and cognitive biomarkers in smokers and non-smokers with schizophrenia
or schizoaffective disorder. The objective of the study was to investigate the effect of
varenicline on key biomarkers that are associated with schizophrenia. They stated seven key
biomarkers as their primary endpoints: prepulse inhibition, sensory gating, antisaccade,
visual spatial working memory, eyetracking, processing speed, and sustained attention. No
measures were taken to account for the use of multiple primary outcomes. As stated in the
title of the report the investigators considered the effect of the intervention in smokers and
non-smokers. This resulted in a large number of results being presented. The investigators
appear to selectively report the results with different outcomes being presented differently.
The results were either presented individually (smokers and non-smokers) or presented

combined (all participants).
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Table 3.2 The seven primary end points and corresponding p-values taken from the Hong
et al. (2011) manuscript.

The original p-values were not adjusted for multiplicity. The Bonferroni, Holm, Hochberg and
Hommel adjustment methods for multiplicity have been applied.

Outcome Adjustment method
None Bonferroni Holm Hochberg Hommel
1. Prepulse inhibition Not Sig*
2. Sensory gating 0.006 0.042 0.042 0.042 0.042
3. Antisaccade 0.034 0.238 0.204 0.204 0.204

4. Visual spatial working memory Not Sig*

5. Eyetracking Not Sig*
6. Processing speed Not Sig*
7. Sustained attention Not Sig*

*These outcomes were reported as not statistically significant, p > 0.05. They will remain

non-statistically significant when any is adjustment is applied.

As highlighted in the review, a variety of adjustment methods are used in published
randomised trials, so several methods have been used to account for multiplicity in this case
study. For any of the selected adjustment methods, the sensory gate outcome remains
statistically significant when comparing p=0.042 against the nominal 0.05 significance level.
However, the evidence of an effect of the intervention for this outcome has been reduced
from strong evidence to moderate evidence. The p-value corresponding to the antisaccade
outcome substantially increased to approximately 0.2 (ranging from 0.204 to 0.238). If any
of the adjustment methods had been used, the conclusion drawn would have been that there
is no evidence of an effect of the intervention for this outcome. All other outcomes would
remain not statistically significant. This case study demonstrates the importance of adjusting

the p-values, or equivalently the significance level, to account for multiple primary outcomes.

3.4 Discussion

The review performed in this chapter has identified that multiple primary outcomes are
commonly reported and analysed in RCTs that were published in high impact research
journals. It was found that there is a lack of consistency in the reporting and analysis of the

outcomes. It was often difficult to determine from the report the number of primary
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outcomes being analysed in a trial and there was a lack of consistency when specifying the

primary outcome.

A variety of methods to handle multiple primary outcomes were noted in this review. The
majority of authors who accounted for multiplicity did so by adjusting the p-values. The most
common technique observed was the Bonferroni method. If the outcomes are correlated,

this adjustment method is conservative.

In recent years, more complex multivariate methods have been used that utilise the positive-
pairwise correlations between outcomes (Teixeira-Pinto et al., 2009). The MANOVA method
was the only multivariate method used despite the fact that multivariate methods could

increase the power (Teixeira-Pinto et al., 2009, Yoon et al., 2011).

In the majority of cases, the trials did not specify any steps to safeguard the inferences made
when using multiple primary outcomes. Of these trials, 26 reported significant results.
However, six of these would have drawn different conclusions if the Bonferroni method had
been applied. In one trial, the intervention would not have been reported as effective for any
of the primary outcomes and in five trials the intervention would be reported as effective for

a small subset of the primary outcomes.

Paradoxically, multiple authors demonstrated their awareness of the problems associated
with multiplicity by stating they did not adjust for multiple outcomes. One reason given for
not using any adjustments was “to prevent type Il error” (Vitiello et al., 2014) whilst others

did not provide any justification.

The proportion of studies not adjusting for multiple outcomes may be underestimated in this
review due to selective outcome reporting. A review of trials highlighted that selective
reporting of outcomes, where only a subset of original outcome measures are fully reported,
frequently occurs in randomised controlled trial (Dwan et al., 2013, Sendyk et al., 2019) . In
some instances, multiple outcomes are pre-specified but only a subset are reported as
primary outcomes. Consequently, the proportion of trials that fail to address the issues

associated with multiplicity may be greater than observed here due to biases in reporting.

For many of the trials, the authors correctly identified the primary outcomes in the abstract,
however, there is still considerable room for improvement. For instance, a number of
abstracts provided incomplete descriptions. Some abstracts also discussed multiple

outcomes without any distinction between the primary and secondary outcomes.
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The review performed here focuses on neurology and psychiatry trials although the review
is likely to have wider applicability as multiple primary outcomes are also common in other
disease areas. The review was also restricted to high quality, high impact journals. It is
expected that the proportion of trials that fail to address the issues associated with

multiplicity is actually greater in lower impact journals.

3.5 Conclusions

For the neurology and psychiatry RCTs considered in this chapter, which were published in a
number of leading medical journals, it was found that multiple primary outcomes were
commonly used but often inadequately analysed. More complex multivariate methods could
have been used that utilise the pairwise correlations between outcomes. A comparison of
the complex multivariate methods would be beneficial to allow recommendations of

methods to use in future trials.
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Chapter 4

Methods to adjust for multiple primary
outcomes in the analysis and sample size
calculation of randomised controlled trials

It has been shown that multiple primary outcomes are commonly analysed to characterise
the effect of an intervention in RCTs and it is common for these outcomes to be correlated.
To investigate whether the intervention is effective for each outcome, it is necessary to
perform multiple statistical tests. As discussed in previous chapters, when performing these
tests, it is important to control the family wise error rate (FWER) at the nominal significance
level. A common approach is to adjust the p-values produced by each statistical test. A
variety of methods to adjust the p-values were reviewed in Chapter 2. In clinical trials, it is
also important to consider the power of the tests to detect an effect of the intervention.
When there are multiple outcomes, the power of the study can be defined in a number of
ways depending on the clinical objective of the trial. First, the disjunctive power is the
probability of finding at least one true intervention effect across all of the outcomes (Bretz
et al.,, 2010). Second, the conjunctive power is the probability of finding a true intervention
effect for all outcomes. Lastly, the marginal power is the probability of finding a true
intervention effect for a particular outcome and is calculated separately for each outcome.
To investigate multiple primary outcomes, we are typically interested in the disjunctive and

marginal power, as recommended by Dmitrienko et al. (2009).

The power requirements of a trial should match the clinical objectives, which need to be
specified when designing the study. The sample size calculation should be calculated
according to the clinical objectives. It was shown in my review of published RCTs (Chapter 3)
that in current practice the sample size calculations in trials often focuses on the marginal
power for each outcome. An approach that has been recommended and is often used in
trials is to calculate the sample size separately for each of the primary outcomes by applying
the Bonferroni method to amend the significance level (Chow et al., 2017). The largest value
of the sample size is then considered as the final sample size for the trial (Odekerken et al.,

2012).

65



Chapter 4 Comparison of methods

As previously mentioned, missing outcome data are common in RCTs which will inevitably
reduce the power and efficiency of the study (Bell et al., 2014). As a result, there may be
failure to detect true intervention effects, when they are present. As such, when considering
the methods that adjust for multiple primary outcomes it is also important to consider the

consequences and impact of missing outcome data.

When using multiple primary outcomes, there is limited guidance as to which method(s)
should be used to take account of multiplicity especially when there are missing data in the
primary outcomes. Guidance is needed for both the sample size calculation and the statistical

analysis of RCTs with multiple outcomes.

Some studies have compared a selection of methods that adjust p-values to account for
multiplicity to handle multiple outcomes in trials. Sankoh, Huque and Dubey (Sankoh et al.,
1997) compare a selection of adjustment methods for statistical analysis in terms of FWER
but they do not evaluate the methods with respect to the power obtained. Blakesley et al.
(2009) discuss both FWER and power requirements for selected methods for a large number
of outcomes with varying degrees of correlation. Lafaye de Micheaux et al. (2014) provide
formulae to calculate the power and sample size for multiple outcomes. These require
several assumptions to be made about the outcomes, including normality and whether the
covariance matrix between the outcomes is known or not. They discuss global testing
procedures, including the Hotelling T2 method. None of these studies have investigated the

adjustment methods in the presence of missing data.

There is limited literature discussing the sample size requirements for clinical trials with
multiple primary outcomes where the clinical objective is to detect an intervention effect for
at least one of the outcomes. Dmitrienko et al. (2009) and Senn and Bretz (2007) provide
some discussion regarding the sample size in the context of multiple outcomes. However,
neither discuss the sample size in the context of which adjustment method should be used.
Moreover, they do not provide a comparative table depending on the type of desired power

to show implications on the required sample sizes.

In this chapter, | compare methods to adjust p-values in terms of FWER and power. |
investigate two and four outcomes when there is complete outcome data and when the
outcome data has missing values. | focus on two and four outcomes as my review found that
the majority of the trials had considered just two primary outcomes. Additionally, it has been
recommended that a trial should have no more than four primary outcomes (Capizzi and

Zhang, 1996). | also consider a range of correlations between the outcomes. | consider both
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marginal and disjunctive power. Based on my findings, | provide practical recommendations
on the adjustment methods which could be used for the sample size calculation and analysis
of RCTs with multiple primary outcome. | also present tables showing the implications of
using the marginal and disjunctive power on the required sample size for a trial under
different scenarios. The work in this chapter has been published in BMC Medical Research

Methodology (Vickerstaff et al., 2019). The paper is provided in Appendix 3.

4.1 Aim

The aim of this chapter is to evaluate the validity of selected methods to account for
potentially correlated multiple primary outcomes in the analysis and sample size calculation

of RCTs.

This aim is split into four objectives. The first objective is to compare methods that account
for multiple primary outcomes using the ProCEED case study. The second obijective is to
perform a simulation study to compare methods to adjust for multiple outcomes in terms of
FWER, disjunctive power and marginal power when investigating two or four correlated
outcomes. The third objective is to compare the sample size needed to achieve the required
marginal and disjunctive power. The final objective is to provide guidance as to which
method(s) should be used during the design and analysis of RCTs with multiple primary

outcomes which are correlated.

Methods to account for multiple outcomes

The following methods that account for multiplicity are compared in this chapter: Bonferroni,
Holm, Hochberg, Hommel, Dubey-Armitage-Parmar (D/AP) and stepdown MinP resampling

method.

My review showed that the majority of trials that used multiple outcomes analysed the
outcomes separately without any adjustments for multiple comparisons (Chapter 3). When
adjustment methods were used, only the most basic methods were used, potentially due to
how easily they can be implemented. The Bonferroni method was the most commonly used
method, although the Holm and Hochberg methods were also used. As a consequence, in

this chapter, | am focusing on the more basic techniques.

The Bonferroni and Holm methods are used as they are well-known methods that are often

used in clinical trials. When outcomes are independent, it has been shown that there may be
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a gain in power when using the Hochberg and Hommel methods compared to using the
Bonferroni and Holm methods. Consequently, | wish to investigate the performance of these
methods for different scenarios, especially when the outcomes are correlated and when

there are missing data in the outcomes.

| also consider the Dubey/Armitage-Parmar (D/AP) method and stepdown MinP resampling
method as these take account of the correlation between outcomes. The D/AP method was
selected as there has been little theoretical work to assess the performance of the D/AP
method and in which scenarios it should be used, however, it does lend itself to simulation
assessment (Sankoh et al.,, 1997). The resampling methods have previously been
recommended for clinical trials with multiple outcomes, but they are not widely used in
practice (Reitmeir and Wassmer, 1999). The stepdown MinP has been shown to perform
well when compared to other resampling methods (Li and Dye, 2013) and was therefore

investigated in this paper.

4.2 Case study

A case study is presented to demonstrate use of the methods in a clinical trial setting. The

ProCEED dataset was described in detail in Section 2.5.

Methods

The outcomes (BDI-Il, WSAS and EQ-5D) were analysed separately using linear regression,
using the univariate framework. Subsequently, methods were applied to the p-values
produced by each statistical test. The p-values adjusted for multiplicity were then compared

to the nominal significance level 0.05.

Results

For the BDI-Il outcome, the standardised intervention effect was estimated to be 0.189 (95%
Cl 0.031, 0.347). When applying a Bonferroni correction, a p-value of 0.057 was observed
which is above the nominal significance level of 0.05. In comparison, when applying the other
correction methods a p-value less than the nominal significance level was observed (Holm

p= 0.042, Hochberg p= 0.038; Hommel p=0.038 and D/AP p= 0.029).

For the WSAS outcome, the effect of the intervention was statistically significant irrespective
of the adjustment made (p < 0.042). As a consequence, if investigators require a single

intervention effect to be detected to deem the intervention effective, then the intervention
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is shown to be effective using all of the methods. However, the strength of evidence depends

on the method used.

For the EQ-5D outcome, no effect of the intervention is observed (p = 0.097 for all
adjustment methods). The Bonferroni is the most conservative method which is reflected in
the corresponding p-value (p = 0.291) which is three times as large as the p-value for all
other adjustment methods (p = 0.097). In other trials the adjustment method chosen could
make a difference to whether the intervention effect is deemed statistically significant or
not. The ProCEED trial results and all p-values are summarized in Table 4.1.

Table 4.1 Analysis of the ProCEED dataset (top) and adjusting the resulting p-values to
account for multiple comparisons (bottom)

Outcome | N Mean SE* 95% CI* Mean diff. on P-value
diff.* original scale
BDI-II 429 0.189 0.081 (0.031, 0.347) 2.762 0.019
WSAS 428 0.195 0.080 (0.038,0.350) 2.358 0.014
EuroQol 415 -0.146 0.088 (0.318,-0.026) 3.147 0.097
Adjust p-values to account for multiple comparisons
5 0 o 5
= E 3 € o o E
L o < € ~ AT
5 T o L ° =
fre) T E
BDI-II 0.057 0.042 0.038 0.038 0.029 0.019
WSAS 0.042  0.042 0.038 0.029 0.020 0.014
EuroQol 0.291  0.097 0.097 0.097 0.097 0.097

*These correspond to standardised intervention effects.

BDI-Il = Beck Depression Inventory; Cl = Confidence interval; D/AP = Dubey/Armitage-
Parmar; Mean diff = mean difference; SE = standard error; WSAS = Work and social activities
scale.

For this example, | conclude that the intervention is effective for at least one outcome when
using any of the adjustment methods. However, the interpretation of the effect of the
intervention for each outcome can vary depending on which method is used. In practice, the
choice of the adjustment method may also depend on other factors, such as the availability

of simultaneous confidence intervals and unbiased estimates (Paux and Dmitrienko, 2018).
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4.3 Simulation study
| used the following model to simulate values for two continuous outcomes Y; = (Y; 1,Y;):

Yi = ﬁo + ﬁlxl- + €;. (41)

Here x; indicates whether participant i received the intervention or control, B; =

(B11,B12)T is the vector of the effects of the intervention for each outcome, € =

(Ei'l, €i2 ) are errors which are realisations of a multivariate normal distribution

({0} 1))

and p € {0.0,0.2,0.4,0.6,0.8}. The model was also extended to simulate values for four
continuous outcomes. The model was extended such that the correlation between any pair
of outcomes is the same. | investigated both equal intervention effect sizes and varying effect
sizes across outcomes. For the equal intervention effect sizes, | specified an effect size of
0.35 on all outcomes, that is #; = (0.35,0.35) or B; = (0.35,0.35,0.35,0.35)7 for two
and four outcomes respectively. This represents a medium effect size, which reflects the
anticipated effect size in many RCTs (Rothwell et al., 2018). For the varying intervention
effect sizes, | specified B, = (0.2,0.4)T or B; = (0.1,0.2,0.3,0.4)7 for two and four
outcomes, respectively. | also investigate the effect of skewed data by generating outcome
values with equal intervention effect sizes following a gamma distribution with shape and
scale parameter of 2. The gamma distribution is often used to model healthcare costs in
clinical trials (Thompson and Nixon, 2005, Nixon and Thompson, 2005) and may also be

appropriate for skewed clinical outcomes.

| set the sample size to 260 participants, with an equal number of participants assigned to
each arm. This provides 80% marginal power to detect a clinically important effect size of
0.35 for each outcome, using an unpaired Student’s t-test and an unadjusted significance
level of 0.05. | introduced missing data under the assumption that the data were missing
completely at random (MCAR). When simulating two outcomes, 15% and 25% of the
observations in outcome 1 and 2 were missing respectively, meaning that on average
approximately 4% of the observations would be missing for both outcomes. When simulating
four outcomes, 15% of the observations are missing in two outcomes and 25% of the

observations are missing in the other two outcomes. This proportion of missingness in
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outcomes is often observed in RCTs (Killaspy et al., 2015, Osborn et al., 2015, Hassiotis et al.,

2014).

| estimated the FWER and disjunctive power by specifying no effect of the intervention
(B1j = 0) and an effect of the intervention (B,; # 0), respectively, and calculating the
proportion of times a significant test results was observed for at least one of the outcomes.
The marginal power was similarly estimated but | calculated the proportion of times an
intervention effect was observed on the nominated outcome. For each scenario, | ran 10,000
simulations. The simulations were run using R version 3.4.2. The stepdown MinP method was

implemented using the NPC package (Caughey and Caughey, 2016).

We calculated the sample size based on disjunctive power using the R package “mpe” (Kohl
and Kolampally, 2017) and we calculated the sample size based on the marginal power using
the R package “samplesize” (Scherer, 2016). The statistical methodology used for the sample

size calculation in these packages is described in Appendix 4.

4.3.1 Results

The Bonferroni and Holm methods lead to the same FWER and disjunctive power when
analysing multiple primary outcomes. This is because both methods adjust the smallest p-
value in the same way. Similarly, the Hochberg and Hommel methods lead to same FWER
and disjunctive power when two primary outcomes are analysed and differences between

these methods arise when analysing three or more outcomes.
Family wise error rate, FWER

The FWER obtained when evaluating two and four outcomes are displayed in Figure 4.1 and
Figure 4.2, respectively. Following on from the explanation above, the Holm and Hommel

methods are not displayed in Figure 4.1 and the Holm method is not displayed in Figure 4.2.

When there is correlation between outcomes (p = 0.2), the D/AP method does not control
the FWER. All other adjustment methods control the FWER in all scenarios. The stepdown
MinP performs well in terms of FWER. Unlike the other methods, it maintains the error rate
at 0.05 as the correlation between the outcomes increases. Differences between the
Bonferroni, Hochberg and Hommel methods arise when there is moderate correlation
between the outcomes (p = 0.4). The Hommel method provides the FWER which is closest

to 0.05 whilst being controlled, followed by Hochberg and then Bonferroni. Very similar
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results were observed when the outcomes were skewed, consequently these results are

presented in the Appendix 5.
Disjunctive power

Figure 4.1 and Figure 4.2 show that the disjunctive power decreases as the correlation
between the outcomes increases for all methods. | did not consider the power obtained
when using the D/AP method due to its poor performance in controlling the FWER. When
there are no missing data, the stepdown MinP and Hommel methods provide the highest
disjunctive power. For weak to moderate correlations (p = 0.2 to 0.6) the Hommel method
has slightly more disjunctive power, but the stepdown MinP method performs better when
there is strong correlation (p = 0.8). The stepdown MinP method gives the lowest power in
the presence of missing data. This could be attributed to the fact that it uses listwise deletion
removing participants with at least one missing value prior to the analysis which would result
in a loss of power due to missing data. As expected the Bonferroni method gives a slightly
lower power when compared to the other methods for complete data. However, it
considerably outperforms the stepdown MinP method when there is missing data. Very

similar results were observed when the outcomes were skewed.

When the intervention effect sizes varied, the differences observed between the methods
were less pronounced. When using four outcomes with varying effect sizes, very similar
disjunctive power was observed to that of constant effect sizes. These results are displayed
in the Appendix 5. When using the Hommel method, higher disjunctive power was observed

compared to Holm and Bonferroni methods, albeit by a very minimal amount.
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Figure 4.1 The FWER (top) and disjunctive power (bottom) obtained when analysing two

continuous outcomes using a variety of methods to control the FWER.

In the left-hand graphs, there are no missing data. In the right-hand graphs, the missing data
are missing completely at random, with 15% missing in the first outcome and 25% missing in

the second outcome (‘Missing data MCAR’).
correlation between the outcomes, range fromp = Otop = 0.8.
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*The Monte Carlo standard errors (MCSE) were similar for all methods. When there were no missing data, the MCSE was

between 0.002-0.004 for the disjunctive power and 0.002-0.004 for the FWER. In the missing data scenario, the MCSE

was between 0.002-0.003 for the disjunctive power and between 0.003-0.005 for the FWER.
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Figure 4.2 FWER (top) and disjunctive power (bottom) obtained when analysing four
continuous outcomes using a variety of methods to control the FWER.

In the left-hand graphs, there are no missing data. In the right-hand graphs, the missing data
are missing completely at random, with 15% missing in two outcomes and 25% missing in
the other two outcomes (‘Missing data MCAR’). The graphs display various degrees of
correlation between the outcomes, range fromp = Otop = 0.8.
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*The MCSE were similar for all methods. When there were no missing data, the MCSE was between 0.001-

0.004 for the disjunctive power and 0.002-0.004 for the FWER. In the missing data scenario, the MCSE was

between 0.001-0.004 for the disjunctive power and between 0.001-0.004 for the FWER.

Marginal power

The marginal power obtained for each outcome when using the different adjustment
methods are shown in Table 4.2. In terms of marginal power, the Hommel method was the
most powerful method, followed closely by the Hochberg method. When two independent

outcomes were analysed, a power of 76.8% was observed after applying a Hommel method.
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The power decreased to 75.2% when four outcomes were analysed after applying a Hommel
method. As expected the Bonferroni method was the most conservative method, providing
the least power. However, contrary to popular belief, the Bonferroni method maintains

similar levels of power as the correlation increases.

When analysing two outcomes the proportion of simulations in which an effect of the
intervention was observed for neither outcome, one outcome or both outcomes are shown
in Table 4.3. When using the Holm method, a statistically significant effect of the intervention
was observed on both outcomes for 48%-58% of the simulations. This reduced to 36%-48%
of the simulations when using the Bonferroni method. As expected, when using the
Hochberg and Hommel method the same results were observed. Compared to the Holm
method, simulations with two statistically significant intervention effects were observed
more frequently when using the Hochberg and Hommel methods.

Table 4.2 Marginal (individual) power obtained for each outcome, when analysing two

outcomes (top) and four outcomes (bottom), using a variety of methods to control the
FWER.

Two outcomes
Pairwise
correlation 5 = o S
g = £ 2 € o T
o [ [e) < = © =
between = = T S o o =
2 T T &
outcomes
0 80.9 72.4 78.5 79.2 79.2 78.2
0.2 80.6 71.8 77.8 78.6 78.6 77.7
0.4 80.0 71.3 76.6 77.7 77.7 76.7
0.6 80.0 71.0 76.0 77.4 77.4 76.7
0.8 80.3 71.3 75.6 77.4 77.4 77.2
Four outcomes
Pairwise
. c o0 — c
correlation @ g £ g GEJ g a
o 1 [e) < £ © =
between z c T S S g =
a T = &
outcomes
0 80.5 62.3 73.2 75.0 75.2 72.7
0.2 80.4 62.3 72.6 74.4 74.8 72.2
0.4 80.6 62.4 721 74.1 74.4 72.2
0.6 80.3 62.0 70.7 73.1 73.5 72.3
0.8 80.3 61.9 69.7 73.2 73.6 73.5

*D/AP method was not examined due to the poor performance observed when exploring

FWER.
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Table 4.3 The percentage of simulations in which an intervention effect was observed for
neither outcome, one outcome or both outcomes when analysing two outcomes, using a
variety of methods to control the FWER.

Pairwise
correlation Number of outcomes an
between intervention effect was
Method outcomes observed for

0 1 2
0 16.1 48.4 35.5
0.2 18.6 43.2 38.2
Bonferroni 0.4 20.6 37.7 41.7
0.6 23.4 32.7 43.9
0.8 26.3 26.3 47.5
0 16.1 35.6 48.3
0.2 18.6 31.0 50.4
Holm 0.4 20.6 26.4 53.0
0.6 23.4 22.0 54.6
0.8 26.3 16.0 57.7
0 15.1 35.6 49.4
0.2 17.6 31.0 51.5
Hochberg 0.4 19.3 26.4 54.3
0.6 22.0 22.0 56.0
0.8 24.8 16.1 59.1
0 15.1 35.6 49.4
0.2 17.6 31.0 51.5
Hommel 0.4 19.3 26.4 54.3
0.6 22.0 22.0 56.0
0.8 24.8 16.1 59.1

Sample size calculation

| recommend that the Bonferroni method is used for the sample size calculation when
designing trials with multiple correlated outcomes since it can be applied by adjusting the
significance level and it maintains the FWER to an acceptable level (up to a correlation of 0.6
between outcomes). As the Hochberg and Hommel methods are data-driven, it is not clear
how these more powerful methods could be incorporated into the sample size calculation
unless prior data are available, for example, a preliminary study is performed. Determination
of the required sample size may be dependent upon simulation based methods rather than
an analytic formula, which can be used for the Bonferroni method (Food and Drug

Administration, 2017).
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In Table 4.4, | present the sample size needed to achieve 90% disjunctive power for trials
with two outcomes for varying degrees of correlations between the outcomes for p =
{0.2,0.4,0.6,0.8}. For these calculations, | specified that there is an equal allocation of
participants between the intervention arms. More details regarding the sample size
calculation using the disjunctive power are provided in Senn and Bretz (2007). In order to
calculate the sample size a priori information on the degree of correlation between the
outcomes is required. For comparison, | also present the sample size required to obtain 90%
marginal power for each outcome. For all calculations, | have used the Bonferroni method to
account for multiple comparisons. | provide the required sample sizes when analysing four
outcomes in Table 4.4. The table provides sample sizes for varying effect sizes. The top line
provides an example sample size calculation for four outcomes where there is a small
standardised effect size for each of the four outcomes. In this case, the standardised effect
is 0.2 for all outcomes. If there is weak pairwise correlation between all four outcomes (p =
0.2), 325 participants would need to be recruited into each arm to obtain 90% disjunctive
power. As the pairwise correlation increases to p = 0.8 the required sample size increases
to 529. The required sample size to obtain 90% marginal for each outcome in this scenario is
716 participants per trial arm. This is the equivalent number of participants required to
obtain 90% disjunctive power if the outcomes are perfectly and positively correlated (p =
1.0). Consequently, the number of participants required to obtain 90% marginal power is

greater than the number of participants required to obtain 90% disjunctive power.

In the fourth line of the table, varying intervention effect sizes are expected across the
outcomes. For two outcomes, a small intervention effect was expected (A = 0.2) whereas a
medium intervention effect size is expected for the other two outcomes (A = 0.5). For this
example, the required sample size is much smaller if 90% disjunctive power is required. Only
75 participants are needed, per arm, if the pairwise correlation between the outcomesis 0.2.
The required sample size increases as the strength of the pairwise correlation increases.
When there is strong pairwise correlation (p = 0.8), 98 participants are required per trial
arm. In comparison, if the aim is to achieve 90% marginal power for each outcome the
sample size would be much higher; 716 participants would be required for each trial arm to
achieve 90% power for the two outcomes with a small intervention effect. The required
sample size for the other two outcomes with a large effect size would be 116 participants.
However, if the investigators would like to achieve 90% marginal power for all outcomes the
largest of these values (i.e. 716) would be required. As shown in the example, the required

sample size varies considerably depending on if marginal or disjunctive power is used.
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Table 4.4 Sample size required to obtain 90% disjunctive power and 90% marginal power
for each outcome when analysing two outcomes, after applying the Bonferroni method.

Standardised effect Sample size required to
sizes for each of the Sample size required to obtain obtain 90% MARGINAL
two outcomes 90% DISJUNCTIVE power power for each outcome
Correlation between outcomes
Outcome 1 Outcome 2 0.2 0.4 0.6 0.8 | Outcome 1l Outcome 2
0.2 0.2 402 436 475 522 622 622
0.2 0.3 237 251 264 274 622 278
0.2 0.4 145 150 154 156 622 157
0.2 0.5 96 98 99 100 622 101
0.3 0.3 179 194 211 232 278 278
0.3 0.4 126 135 144 152 278 157
0.3 0.5 89 93 97 99 278 101
0.4 0.4 101 109 119 131 157 157
0.4 0.5 78 84 90 96 157 101
0.5 0.5 65 70 76 84 101 101

Note: Sample sizes provided are required per arm.

Table 4.5 Sample size required to obtain 90% disjunctive power and 90% marginal power
for each outcome when analysing four outcomes, after applying the Bonferroni method.

Standardised effect Sample size required to Sample size required to

sizes for each of the obtain obtain 90% MARGINAL

four outcomes 90% DISJUNCTIVE power power for each outcome

Correlation between
outcomes

i ()] [ep] < i o (90 <t
E £ E & E £ £ £
g 8 g8 38 3 3 ] S
5 5 5 5 5 5 5 5
© © 9 91492 04 06 08 °c ° 9o ©
0.2 02 02 0.2 325 382 447 529 716 716 716 716
02 02 03 03 189 215 242 270 | 716 716 319 319
02 02 04 04 114 127 129 152 | 716 716 181 181
02 02 05 05 75 82 89 98 | 716 716 116 116
03 03 03 03 145 170 199 235 319 319 319 319
03 03 04 04 101 117 133 151 | 319 319 181 181
03 03 05 05 71 80 88 98 | 319 319 116 116
04 04 04 04 82 96 112 133 181 181 181 181
04 04 05 05 63 73 84 96 181 181 116 116
05 05 05 0.5 52 61 72 85 116 116 116 116

Note: Sample sizes provided are required per arm.

78



Chapter 4 Comparison of methods

4.3.2 Discussion

When using multiple primary outcomes in RCTs, it is important to control the FWER for
confirmatory phase Il trials. One method is to adjust the p-values produced by each
statistical test for each outcome. Additionally, some of the outcomes are likely to have
missing values. Consequently, any potential missing data should be considered when

choosing an appropriate method to adjust the p-values.
Statistical Analysis

| found that all of the methods investigated, each controlled the FWER with the exception of
the D/AP method. The finding is consistent with the results in Blakesley et al. (2009). The
stepdown MinP performed best in terms of FWER. It maintained the error rate at 0.05 as the
correlation between the outcomes increases; however, the R package used to implement
the method uses listwise deletion, which removed participants with at least one missing
value before the analysis resulting in a loss of power. The validity of this method depends on

how the method is implemented and the extent of the missing data.

| recommend that the Hommel method is used to control the FWER, provided that the
distributional assumptions are met, as it provides slightly more disjunctive power than the
Bonferroni and Holm methods. When using the Hommel method, it is assumed that the
distribution of the joint test statistic under the alternative hypothesis is known but not fully
specified. For example it is known that the joint distribution of the test statistic under the
alternative hypothesis is multivariate normality, but the parameters are not specified. This
distributional assumption associated with the Hommel method is not restrictive and is
encountered in many multiplicity problems arising in clinical trials (Dmitrienko and
D'Agostino, 2013). Even when the data followed a skewed distribution, the Hommel method
performed well, showing it may be used to analyse a variety of outcomes, including when

the normality assumption is violated.

Given the availability of software packages to implement the more powerful methods, there
is little reason to use the less powerful methods, such as the Holm method. For example, the
Hommel method can easily be implemented in R or SAS. Despite that the Hommel method
is not currently available in Stata or SPSS, the p-values can be readily transferred and
adjusted in R. However, if the assumptions cannot be met, the simpler Holm method could

be used.
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When the intervention effect size varied across outcomes, | found that the differences in
disjunctive power between the methods were less pronounced. It appeared that the
outcome with the largest effect size ‘dominated’ the disjunctive power. When the sample
size is based on disjunctive power, the outcome with the largest effect size would have high
marginal power, whereas the outcome with the smallest effect size would have low marginal
power — much below the overall desired level of power. It follows that when investigators
are looking for an intervention effect for at least one outcome, it is unlikely that they will see
an intervention effect for the outcomes with the smaller effect sizes without seeing an
intervention effect on the outcomes with the largest effect size. Consequently, for this
scenario, it may be advisable to choose the outcome(s) which is expected to have the largest
effect size as the primary outcome(s) and treat the other outcomes as secondary outcomes,
however, this decision will need to account for the relative clinical importance of the
outcomes. Alternatively, when the intervention effect size varies across the outcomes,
investigators may wish to consider ‘alpha spending’ in which the total alpha (usually 0.05) is
distributed or ‘spent’ across the analyses. For example, for a scenario with two primary
outcomes, the outcome which is expected to have the largest effect size may be assigned
the majority of the alpha with a small portion of the alpha reserved for the alpha with the

smallest effect size.

| appreciate that in practice the choice of adjustment method may also depend on other
factors, such as the availability of simultaneous confidence intervals and unbiased estimates
of the intervention effects. It is standard practice to report 95% confidence intervals
alongside point estimates and p-values. When using multiple primary outcomes, it may be
necessary to adjust these confidence intervals so that they correspond to the p-values
adjusted for multiplicity. The confidence interval may be easily adjusted when using the
Bonferroni or Holm methods using the R package AdjustPvalues (Paux and Dmitrienko,
2018). However, it is not straightforward to adjust the confidence interval when using the
Hochberg and Hommel methods. Consequently, the reported confidence intervals may not
align with the p-values when these methods are used. In this instance, the conclusions should
be based on the p-values and not the confidence intervals (European Medical Agency, 2017).
If confidence intervals that correspond to the chosen multiplicity adjustment are not
available or are difficult to derive, then it is advised to use simple but conservative confidence

intervals, such as those based on Bonferroni method (European Medical Agency, 2017).

It is not necessary to control the FWER for all types of trial designs, for example, for trial

designs with co-primary outcomes, where all outcomes have to be declared statistically
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significant for the intervention to be deemed successful. In this scenario, no adjustment has
to be made to control the FWER and the conjunctive power is used. | have not evaluated the
conjunctive power as it is not relevant to the scenarios considered in this chapter. The
conjunctive power behaves in reverse to the disjunctive power and is substantially reduced
compared to the marginal power. As an illustration, if two independent co-primary outcomes
are used and there is a marginal power of 80% for each outcome, the conjunctive power of
statistical significance for both outcomes is 80% x 80% = 64%. Additionally, as the correlation
between outcomes increases, the conjunctive power increases. The conjunctive power will
never be larger than the marginal power (80% for this example) and the sample sizes for
clinical trials will have to be adjusted accordingly (Senn and Bretz, 2007). The sample size will
need to be adjusted to take account of the multiple co-primary outcomes. Formulae and

corresponding sample size tables are given in Sugimoto et al. (2012).

Additionally, adjustments for multiple comparisons may not be necessary for early phase
drug trials. However, it is generally accepted that adjustments to control the FWER are
required in confirmatory studies, that is when the goal of the trial is the definitive proof of a

predefined key hypothesis for the final decision making (Bender and Lange, 2001).

My review of trials with multiple outcomes showed that majority of the trials analysed the
outcomes separately without any adjustments for multiple comparisons. Where adjustment
methods were used, only the most basic methods were used, possibly due to their ease of
implementation. The Bonferroni method was the most commonly used method, although
the Holm and Hochberg methods were also used. As a consequence, | focused on relatively
simple techniques in this chapter. However, more advanced methods, such as graphical
methods to control the FWER are available and described in Bretz et al. (2011) and Bretz et
al. (2009).

Regardless of the adjustment method chosen, for all trials using multiple outcomes, the
analysis plan should clearly describe how the outcomes will be tested including which
adjustment method, if any, will be used (Food and Drug Administration, 2017). Any
additional outcomes that have not been pre-specified in the analysis plan cannot, in general
be used to demonstrate the effectiveness of an intervention, even in successful trials (Food

and Drug Administration, 2017).
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Sample size

When designing a clinical trial, it is important to calculate the sample size needed to detect
a clinically important intervention effect. Usually the number of participants that can be
recruited in a trial is restricted because of ethical, economic and practical considerations.
However, if the sample size is too small it may not be possible to detect an important effect.
The sample size calculation is usually based on an appropriate statistical method which will
be used for the primary analysis depending on the study design and objectives. The required
sample size can vary greatly depending on if marginal power or overall disjunctive power is
used, which highlights the importance of considering the clinical objective of the trial in the
sample size calculation. To account for multiplicity in the sample size calculation, |
recommend that the Bonferroni method is used. The Bonferroni method can be applied
easily within the sample size calculation using an analytical formula (Food and Drug
Administration, 2017) and our simulation study showed that it maintains the FWER to an
acceptable level for low to moderate correlation between the outcomes. Additionally, there
is only a small reduction in power when using the Bonferroni method when compared to the
other methods in the presence of missing data. In contrast, the other methods investigated
in this paper are data driven. For these methods, it is unclear how these can be implemented

in the absence of a preliminary study.

One method that has been used to calculate the sample size, for multiple primary outcomes,
is to calculate the sample size based on the individual marginal power for each outcome and
to then choose the maximum sample size for the trial (Odekerken et al., 2012). This method
guarantees adequate marginal power for each individual test. However, this approach will
overestimate the number of participants required if the investigators are interested in
disjunctive power. Moreover, it may be difficult to achieve the required sample size in trials
where recruitment is a problem. As such, trials may be closed down prematurely. Finally, |
recommend that the sample size should be inflated to account for the expected amount of

missing data.
Study extensions and limitations

In this chapter, | only investigated continuous outcomes. However, in randomised controlled
trials binary outcomes or a combination of continuous and binary outcomes may be used.
For two binary outcomes, the maximum possible pairwise correlation between the outcomes

will be less than one in absolute magnitude (Warner, 2008). Therefore, | would expect similar
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results for two binary outcomes but with less pronounced differences between methods for

the strong correlations.

Additionally, | only investigated global effects, that is either no interventions effect on any of
the outcomes (f; = 0) or an intervention effect on all the outcomes (B;; # 0). Global
effects are most realistic when the strength of the correlation between the outcomes is
moderate to strong. However, in practice a mixture of no effects and some intervention
effects may be observed, especially when the strength of the correlation between the

outcomes is weak.

4.3.3 Conclusions

To ensure that the FWER is controlled when analysing multiple primary outcomes in
confirmatory randomised controlled trials, | recommend that either the Hochberg or
Hommel method is used in the analysis for optimal power, when the distributional
assumptions are met. When designing the trial, the sample size should be calculated
according to the clinical objective of the trial. When specifying multiple primary outcomes, if
considered appropriate, disjunctive power could be used, which has smaller sample size
requirements compared to that when using the individual marginal powers. The Bonferroni

method can be used in the sample size calculation to account for multiplicity.
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Chapter 5

Evaluation of multivariate methods to
analyse multiple outcomes in clinical trials

Several approaches have been used to analyse trials with multiple outcomes in the presence
of missing data. A simple approach to the analysis of multiple primary outcomes is to analyse
each outcome separately. As found in the review in Chapter 3, this has been the most
common approach to analyse multiple primary outcomes in recently published randomised
trials. Patients are typically omitted from any analysis for which they have missing outcome
data. However, this approach does not account for the correlation between the outcomes
and consequently the precision of the estimates and the power may be lower than that

achieved by other approaches (Teixeira-Pinto et al., 2009).

In Chapter 2, | reviewed the methods that were recently used in the literature to analyse
multiple outcomes. It was noted that multivariate methods make use of the correlations
between outcomes and can provide more efficient estimators when some outcomes have
missing values. The multivariate models discussed were the factorisation model, the latent
variable model and the multivariate multilevel (MM) model. All three models can handle
continuous outcomes, binary outcomes or a combination of the two. In addition, these
models can handle non-overlapping missingness and therefore the number of observations
does not need to be equal across outcomes. The factorisation, latent and MM models can
easily be extended to handle several outcomes, although the factorisation model can be
cumbersome when there are more than three outcomes. For this reason, | focus on the latent
and MM models and set out to investigate the scenarios in which multivariate methods are

superior, and to what extent, with respect to the efficiency gained.

For a comparison, | also investigated analysing outcomes separately with and without
imputation of missing data values. Complete case analysis is often used in practice, although
imputation is recommended to handle missing data prior to analysis. Multiple imputation is
a common imputation method that has become readily available in recent years with

packages available in most statistical programs, including R, Stata and SAS.
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5.1 Aim

The aim of this chapter is to compare the multivariate multilevel (MM) and latent variable
(LV) models to univariate models with (MI+UV) and without multiple imputation (UV) with
respect to power and FWER. In the trial setting, it is important to have sufficient power to
detect the true intervention effects, when they are present, whilst controlling the FWER.
Consequently, | focus on the disjunctive power and FWER obtained when using these
methods. Recommendations are made regarding which of these methods provides the most

power whilst controlling the FWER.

5.2 Methods

Several scenarios were considered by varying the number of outcomes, the outcome type,
the correlation between the outcomes, the size of the intervention effect, the missing data
mechanism and the percentage of missing data values. Details of the different simulation

factors considered are described in Table 5.1.
The following model was used to simulate values for two continuous outcomes Y; =
(Y1 Yi2)

Yi= Bo+ Bixi + €, (5.1)

where x; indicates whether the participant i received intervention (x; = 1) or control (x; =

0), B1 = (B11,B12 )7 is the vector of the effect of the intervention for each outcome, €; =

(ei_l, €i2 ) are errors which are realisations of a multivariate normal distribution

an(0).0 %)

and p is the correlation between outcomes. The model was also extended in the obvious way
to simulate four continuous outcomes. To simulate binary outcomes a similar model was

used,with an extra final step todichotomise the continuous outcomes at zero.

85



Chapter 5 Comparison of multivariate methods

Table 5.1 Scenarios simulated to evaluate methods which may be used to analyse multiple

outcomes.

Variable

Simulation factors

Number of outcomes

2or4d

Outcome type

Continuous; binary; and mixed (half continuous and half binary)

Correlation between

outcomes

0.0,0.2,0.4,0.6,0.8

Effect size (ES) of

intervention effect

Continuous outcomes
Equal: ES = 0.35 for all outcomes.
Varying ES = (0.2, 0.4)" or ES = (0.1, 0.2, 0.3, 0.4) " for two and four
outcomes respectively.

Binary outcomes
Equal: the percentage of events in the control and intervention
arms were 50% and 65%, respectively for all outcomes (equivalent
to an effect size of 0.385).

Mixed outcomes
Equal: ES = 0.35 for all outcomes.

Missing data

mechanism

Missing completely at random (MCAR), missing at random (MAR)

Percentage of

missing data values

Low and high levels of missingness.
Percentages varied on depending on the missingness mechanisms
and the number of outcomes, as described below:

MCAR and MAR, 2 outcomes
Low: 15% and 25% missing values in outcome 1 and 2
High: 30% and 50% missing values in outcome 1 and 2

MCAR and MAR, 4 outcomes
Low: 15%, 15%, 25% and 25% missing values in outcome 1, 2, 3
and 4
High: 20%, 30%, 40% and 50% missing values in outcome 1, 2, 3
and 4

The sample size was set as 260 for the continuous and mixed scenarios and 340 for the binary

scenarios, with equa

| numbers of participants being allocated to the two intervention

groups. These numbers were obtained from sample size calculations for a single outcome

using the equal effect

sizes in Table 5.1, 5% statistical significance and 80% power.

Missing data was introduced under a variety of assumptions. | specified two forms of

missingness: missing completely at random (MCAR) and missing at random (MAR). For both
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MCAR and MAR, | investigate low and high levels of missingness as described in the Table 5.1

above.

| expect that the low levels of missingness are representative of many clinical trials. The high
levels of missingness are less frequently observed in real settings and represent more
extreme scenarios. However, these extreme levels of missingness do occur in clinical trials,
for example, in the 10TT trial described in Chapter 2, only 58% of the randomised participants
completed the weight loss outcome at two years and 31% of randomised participants had

complete quality of life and cost data at two years (Beeken et al., 2017).

Missingness was implemented by simulating values from a multivariate Bernoulli distribution
(Leisch et al., 1998) and setting the outcome variables to be missing depending on the
corresponding binary indicator. When data are MCAR the missingness does not depend on
the observed outcome value or the intervention arm. In the MAR scenarios the probability
of misssingness depends on the intervention group with outcome being more likely to be

missing in the control arm compared to the intervention arm.

| estimated the FWER by specifying that the intervention had no effect (1 = 0) then
calculating the proportion of times a significant test result was observed for at least one of
the outcomes over 10,000 simulations. To control the FWER, the Holm method was used. To
estimated the disjunctive power a similar approach was used with a specified intervention
effect (1 # 0). The bias associated with the estimated intervention effects was calculated
as the difference between the average intervention effect § and the true value of the

intervention effect 3, as given by

Bias = f —B.

. 5 1 5 . . . .
More specifically, § = ;Z]i\]:lﬁi is the sample mean of the estimate of the intervention

effect, where N is the number of simulations performed, ,[?l- is estimated intervention effect

within each of the N simulations. The amount of bias that is considered problematic to be
has varied from %SE(B) (Schafer and Graham, 2002) to 2SE(f) (Sinharay et al., 2001),
where SE(f) is the empirical standard error (EmpSE) of the estimated effect. The empirical
SE estimates the long-run standard deviation of ﬁ over the N simulation repetitions. |
consider any bias greater than %SE(/?) to be as problematic. The Monte Carlo standard error

(MCSE) was also calculated to provide an estimate of the inaccuracy of the Monte Carlo

samples for each scenario.
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The following methods of analysis were used:

1) Univariate models (UV). This was used as the comparator for the other methods.
2) Multiple imputation followed by univariate models (MI+UV).
3) Multivariate multilevel model (MM).

4) Latent variable model (LV).

For the univariate approach, the continuous outcomes were analysed using a linear
regression model and the binary outcomes were analysed using a probit regression model.

The latter was used as this corresponds to how the data were generated.

Multiple imputation was implemented using chained equations (MICE) since this is one of
the most widely used methods to impute missing data (Sterne et al., 2009). The outcomes
in the two intervention arms were imputed separately which is equivalent to imputing the
missing values conditional on the intervention arm. Forty imputations were used for all
scenarios, which is the recommended number of imputations when 50% of the data are
missing (Graham et al., 2007). Estimates were pooled across imputed datasets using Rubin’s
rules (Rubin, 2004). The LV models used adaptive quadrature (Rabe-Hesketh et al., 2005)
with ten integration points to fit the models by maximum likelihood estimation. To ensure
that the model is not over parameterised so that all model parameters are identifiable, one
of the parameters must be fixed. The parameter to be fixed should be specified carefully on
a case-by-case basis. For all scenarios in this chapter, the latent factor variance was fixed to
0.8 (Grilli and Rampichini, 2006). In the scenarios with binary outcomes, we fixed the latent
factor to 1. The MM model was implemented in MLwiN via R using the package ‘R2MLwiN’
(Leckie and Charlton, 2013, Zhang et al., 2016b). The MI+UV model was implemented using
the ‘mice’ package in R; and the LV method was implemented using GLLAMM in Stata
Release 14 (StataCorp, 2015).

5.3 Results

To begin, | compare each method to the UV model and later | compare all the methods

together.
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Multiple imputation and then univariate models, Ml + UV

The FWER varies between 3.1% and 5.9%. The FWER and disjunctive power obtained when
using two continuous outcomes are shown in Table 5.2a. When using continuous outcomes,
the estimates of the intervention effects were unbiased (results shown in Appendix 6). When
there is weak correlation between the two outcomes (p < 0.4), the imputed values are
highly variable which leads to slightly higher empirical standard errors for the estimated
intervention effects compared to using the complete data only. The empirical standard
errors for the estimated intervention effects are shown in Appendix 6. As a consequence, the
disjunctive power observed when using the MI+UV is reduced by up to 17% compared to UV
method (results shown in Table 5.2a). In contrast, when there is strong correlation between
the outcomes and the missing data are not overlapping across outcomes, if MI+UV approach
is used, the observed outcome values are highly predictive of the missing outcome values.
This leads to smaller empirical standard errors, as shown in Appendix 6. Consequently, the

disjunctive power for MI+UV is increased compared to UV, by up to 6%.

When analysing four continuous outcomes, the MI+UV approach performs slightly better.
When there is no correlation between the outcomes, the disjunctive power is still reduced
compared to the UV, however, by only 2%. Whereas for strong correlation between the

outcomes, the disjunctive power for MI+UV is increased compared to UV by 11%.

When analysing two binary outcomes (Table 5.2b), the MI+UV approach had lower
disjunctive power when compared to analysing the outcomes separately when there is a low
proportion of missing data under both MCAR and MAR scenarios. When analysing two binary
outcomes, the FWER is maintained at an acceptable level (FWER < 5.1%). A small bias in the
estimates of the intervention effects was observed when analysing two binary outcomes
(results shown in Appendix 6). This may be due to the multiple imputation program requiring
us to use logistic regression for the imputation instead of a probit regression as per the rest

of the analyses.

When analysing mixed outcome types, the MI+UV only slightly increases the disjunctive
power to detect an intervention effect compared to UV. When there is a large proportion of
missing data and there is strong correlation between the two outcomes a 4% disjunctive

power gain can be achieved compared to UV.
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Table 5.2a FWER and disjunctive power when evaluating two continuous outcomes.
Multivariate and univariate methods are compared for scenarios which vary in terms of missingness, percentage of missing data and degree of correlation between
outcomes. The Holm method was applied to all scenarios to account for multiplicity.

o — -
Miszi\t/'lpgi::s ¢ fﬁroefaTl'llsZTtgc:::ej, i Family wise error rate (FWER) Disjunctive power Rela(fll;l.eur:;))wer

Method - uv Ml + UV MM uv Ml + UV MM MI+UV MM

0 0.051 - 0.054 0.053 | 0.923 - 0.927 0.922 - 1.00 1.00

0.2 0.048 - 0.050 0.050 | 0.898 - 0.903 0.903 - 1.01 1.00

Complete (0%, 0%) 0.4 0.047 - 0.049 0.049 | 0.868 - 0.872 0.872 - 1.01 1.01

0.6 0.046 - 0.048 0.048 | 0.834 - 0.840 0.840 - 1.01 1.01

0.8 0.041 - 0.044 0.053 | 0.798 - 0.804 0.809 - 1.01 1.01

0 0.049 0.047 0.052 0.051 | 0.841 0.806 0.849 0.845 0.96 1.01 1.01

0.2 0.046 0.044 0.051 0.050 | 0.823 0.805 0.834 0.833 0.98 1.01 1.01

MCAR (15%, 25%) 0.4 0.048 0.046 0.051 0.051 | 0.791 0.792 0.803 0.802 1.00 1.02 1.02

0.6 0.047 0.047 0.049 0.049 | 0.762 0.783 0.789 0.789 1.03 1.04 1.03

0.8 0.046 0.049 0.047 0.056 | 0.739 0.770 0.769 0.776 1.04 1.04 1.05

0 0.053 0.033 0.058 0.058 | 0.710 0.554 0.727 0.724 0.78 1.02 1.02

0.2 0.050 0.033 0.056 0.055 | 0.704 0.579 0.720 0.719 0.82 1.02 1.02

MCAR (30%, 50%) 0.4 0.049 0.043 0.054 0.053 | 0.681 0.652 0.710 0.710 0.96 1.04 1.04

0.6 0.050 0.053 0.052 0.052 | 0.651 0.683 0.698 0.698 1.05 1.07 1.07

0.8 0.049 0.059 0.052 0.062 | 0.642 0.701 0.698 0.705 1.09 1.09 1.10

0 0.048 0.043 0.052 0.051 | 0.839 0.798 0.846 0.843 0.95 1.01 1.01

0.2 0.047 0.046 0.052 0.052 | 0.814 0.789 0.825 0.825 0.97 1.01 1.01

MAR (15%, 25%) 0.4 0.050 0.050 0.053 0.053 | 0.794 0.798 0.810 0.810 1.01 1.02 1.02

0.6 0.048 0.051 0.050 0.050 | 0.766 0.785 0.792 0.792 1.03 1.03 1.03

0.8 0.043 0.046 0.044 0.052 | 0.738 0.771 0.769 0.774 1.05 1.04 1.05

0 0.052 0.031 0.057 0.056 | 0.709 0.538 0.725 0.723 0.76 1.02 1.02

0.2 0.051 0.032 0.057 0.056 | 0.686 0.558 0.707 0.706 0.81 1.03 1.03

MAR (30%, 50%) 0.4 0.049 0.039 0.052 0.052 | 0.678 0.636 0.704 0.703 0.94 1.04 1.04

0.6 0.051 0.053 0.052 0.052 | 0.658 0.676 0.695 0.695 1.03 1.06 1.06

0.8 0.048 0.056 0.049 0.058 | 0.640 0.689 0.689 0.696 1.08 1.08 1.09

Key: MM = multivariate multilevel model; UV = univariate model; Ml + UV = multiple imputation followed by univariate model; LV = Latent variable model; p * = correlation between

outcomes. Note: Monte Carlo standard errors (MCSE) were consistent across methods. MCSE Range for FWER = (0.0020, 0.0030); MCSE Range for Power = (0.0027, 0.0049).
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Table 5.2b FWER and disjunctive power when analysing two binary outcomes.
Multivariate and univariate methods are compared for scenarios which vary in terms of missingness, percentage of missing data and degree of correlation between
outcomes. The Holm method was applied to all scenarios to account for multiplicity.

Type of % of missing values p Family wise error rate Disjunctive power Relative power
missingness |, for each outcome | | (FWER) (vs. UV)
Method > uv Ml + UV MM LV uv Ml + UV MM LV MI+UV MM LV
0| 0.050 - 0.046  0.051 | 0914 - 0.913 0.924 - 1.00 1.01
0.2 | 0.050 - 0.046  0.051 | 0.906 - 0.905 0.903 - 1.00 1.00
Complete (0%, 0%) 0.4 | 0.055 - 0.049  0.051 | 0.884 - 0.883 0.886 - 1.00 1.00
0.6 | 0.047 - 0.043  0.050 | 0.868 - 0.867 0.861 - 1.00 0.99
0.8 | 0.049 - 0.044  0.038 | 0.833 - 0.831 0.819 - 1.00 0.98
0| 0.053 0.051 0.051  0.050 | 0.843 0.832 0.842 0.848 0.99 1.00 1.01
0.2 | 0.048 0.044 0.048 0.046 | 0.830 0.823 0.829 0.826 0.99 1.00 1.00
MCAR (15%, 25%) 0.4 | 0.047 0.045 0.046  0.046 | 0.816 0.811 0.819 0.816 0.99 1.00 1.00
0.6 | 0.049 0.044 0.048 0.041 | 0.793 0.794 0.803 0.789 1.00 1.01 0.99
0.8 | 0.045 0.043 0.048 0.036 | 0.768 0.774 0.786 0.763 1.01 1.02 0.99
0| 0.048 0.042 0.046  0.044 | 0.731 0.706 0.730 0.714 0.97 1.00 0.98
0.2 | 0.051 0.044 0.051 0.045 | 0.714 0.692 0.714 0.696 0.97 1.00 0.97
MCAR (30%, 50%) 0.4 | 0.048 0.045 0.049 0.040 | 0.706 0.685 0.711 0.680 0.97 1.01 0.96
0.6 | 0.049 0.045 0.048  0.035 | 0.678 0.665 0.693 0.661 0.98 1.02 0.97
0.8 | 0.051 0.042 0.048 0.033 | 0.671 0.666 0.697 0.632 0.99 1.04 0.94
0| 0.049 0.047 0.050 0.050 | 0.844 0.835 0.844 0.845 0.99 1.00 1.00
0.2 | 0.049 0.046 0.048  0.048 | 0.829 0.822 0.829 0.821 0.99 1.00 0.99
MAR (15%, 25%) 0.4 | 0.051 0.048 0.051 0.043 | 0.812 0.805 0.813 0.801 0.99 1.00 0.99
0.6 | 0.051 0.049 0.054  0.045 | 0.793 0.792 0.801 0.789 1.00 1.01 0.99
0.8 | 0.044 0.042 0.046  0.037 | 0.777 0.781 0.789 0.755 1.00 1.02 0.97
0| 0.046 0.041 0.046  0.046 | 0.712 0.690 0.711 0.711 0.97 1.00 1.00
0.2 | 0.049 0.044 0.048 0.049 | 0.708 0.687 0.708 0.689 0.97 1.00 0.97
MAR (30%, 50%) 0.4 | 0.050 0.045 0.050 0.043 | 0.693 0.673 0.695 0.676 0.97 1.00 0.98
0.6 [ 0.050 0.044 0.048 0.039 | 0.679 0.672 0.689 0.651 0.99 1.01 0.96
0.8 | 0.050 0.042 0.051 0.031 | 0.659 0.664 0.684 0.608 1.01 1.04 0.92

Key: MM = multivariate multilevel model; UV = univariate model; MI + UV = multiple imputation followed by univariate model; LV = Latent variable model; p = correlation between outcomes. Note: Monte
Carlo standard errors (MCSE) for were consistent across methods. MCSE Range for FWER = (0.0016, 0.0023); MCSE Range for Power = (0.0027, 0.0049).
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Table 5.2c FWER and disjunctive power when analysing one continuous and one binary outcome (‘mixed’ outcome type).
Multivariate and univariate methods are compared for scenarios which vary in terms of missingness, percentage of missing data and degree of correlation between
outcomes. The Holm method was applied to all scenarios to account for multiplicity.

Type of % of missingvalues p J Family wise error rate Disjunctive power relative power
missingness | for each outcome |, (FWER) (vs. UV)
Method > uv  Ml+ UV MM uv  Ml+ UV MM MI+UV MM
Complete (0%, 0%) 0| 0.047 - 0.048 0.048 | 0.855 - 0.858 0.858 - 1.00 1.00
0.2 | 0.044 - 0.044 0.044 | 0.836 - 0.840 0.838 - 1.00 1.00
0.4 | 0.043 - 0.045 0.046 | 0.813 - 0.818 0.815 - 1.01 1.00
0.6 | 0.045 - 0.046 0.041 | 0.791 - 0.795 0.779 - 1.01 0.98
0.8 | 0.048 - 0.049 0.030 | 0.764 - 0.770 0.721 - 1.01 0.94
MCAR (15%,25%) 0| 0.047 0.047 0.049 0.048 | 0.778 0.779 0.783 0.782 1.00 1.01 1.01
0.2 | 0.049 0.050 0.052 0.051 | 0.756 0.758 0.764  0.763 1.00 1.01 1.01
0.4 | 0.047 0.046 0.048 0.046 | 0.742 0.746 0.754 0.750 1.01 1.02 1.01
0.6 | 0.046 0.045 0.049 0.039 | 0.716 0.723 0.732 0.706 1.01 1.02 0.99
0.8 | 0.046 0.043 0.045 0.029 | 0.693 0.708 0.714 0.671 1.02 1.03 0.97
MCAR (30%,50%) 0| 0.047 0.054 0.049 0.051 | 0.650 0.660 0.660  0.658 1.02 1.02 1.01
0.2 | 0.049 0.052 0.052 0.052 | 0.641 0.651 0.654  0.651 1.02 1.02 1.01
0.4 | 0.047 0.055 0.048 0.049 | 0.636 0.651 0.652  0.644 1.02 1.03 1.01
0.6 | 0.046 0.051 0.049 0.038 | 0.620 0.643 0.644 0.604 1.04 1.04 0.97
0.8 | 0.046 0.047 0.045 0.029 | 0.609 0.635 0.637 0.595 1.04 1.05 0.98
MAR (15%,25%) 0| 0.051 0.049 0.053 0.053 | 0.771 0.772 0.778 0.777 1.00 1.01 1.01
0.2 | 0.052 0.052 0.053 0.053 | 0.753 0.752 0.761 0.760 1.00 1.01 1.01
0.4 | 0.050 0.050 0.052 0.049 | 0.731 0.733 0.741 0.736 1.00 1.01 1.01
0.6 | 0.052 0.050 0.051 0.042 | 0.710 0.728 0.732 0.707 1.03 1.03 1.00
0.8 | 0.041 0.039 0.042 0.025 | 0.696 0.712 0.718 0.678 1.02 1.03 0.97
(30%,50%) 0| 0.049 0.052 0.051 0.051 | 0.645 0.653 0.656  0.655 1.01 1.02 1.02
MAR 0.2 | 0.051 0.052 0.052 0.051 | 0.641 0.652 0.654 0.651 1.02 1.02 1.02
0.4 | 0.049 0.053 0.053 0.049 | 0.628 0.648 0.644  0.635 1.03 1.03 1.01
0.6 | 0.046 0.050 0.050 0.037 | 0.614 0.646 0.637 0.603 1.05 1.04 0.98
0.8 | 0.051 0.050 0.052 0.032 | 0.608 0.647 0.639  0.597 1.06 1.05 0.98

Key: MM = multivariate multilevel model; UV = univariate model; MI + UV = multiple imputation followed by univariate model; LV = Latent variable model; p = correlation between outcomes. Note: Monte
Carlo standard errors (MCSE) for the simulation were consistent across methods. MCSE Range for FWER = (0.0019, 0.0028); MCSE Range for Power = (0.0030, 0.0050).
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Table 5.3a FWER and disjunctive power when analysing four continuous outcomes.
Multivariate and univariate methods are compared for scenarios which vary in terms of missingness, percentage of missing data and degree of correlation between
outcomes. The Holm method was applied to all scenarios to account for multiplicity.

Chapter 5 Comparison of multivariate methods

missTingﬁng:s N2 Z:ro:aTLSz:ch?TI,ZT P Family \(AII:E“?E%ror rate Disjunctive power Rela(t\i‘sl.e Up\t;o)wer
Method uv MI + UV MM uv MI + UV MM MI+UV MM
0 0.046 - 0.051 0.980 - 0.982 - 1.00
(0%, 0%, 0.2 0.049 - 0.052 0.950 - 0.954 - 1.00
Complete 0%, 0%) 0.4 0.046 - 0.050 0.915 - 0.920 - 1.01
' 0.6 0.040 - 0.043 0.858 - 0.866 - 1.01
0.8 0.035 - 0.038 0.788 - 0.797 - 1.01
0 0.052 0.050 0.059 0.937 0.933 0.946 1.00 1.01
(15%, 25%, 0.2 0.048 0.050 0.056 0.899 0.898 0.907 1.00 1.01
MCAR 15%, 25%) 0.4 0.044 0.049 0.051 0.852 0.864 0.874 1.01 1.03
' 0.6 0.045 0.047 0.046 0.801 0.827 0.831 1.03 1.04
0.8 0.036 0.036 0.036 0.749 0.788 0.789 1.05 1.05
0 0.045 0.045 0.053 0.876 0.855 0.891 0.98 1.02
(20%, 30%, 0.2 0.051 0.053 0.057 0.836 0.836 0.859 1.00 1.03
MCAR 40%, 50%) 0.4 0.046 0.053 0.054 0.787 0.811 0.826 1.03 1.05
' 0.6 0.047 0.051 0.050 0.739 0.791 0.797 1.07 1.08
0.8 0.043 0.047 0.040 0.680 0.757 0.750 111 1.10
0 0.052 0.050 0.058 0.938 0.931 0.945 0.99 1.01
(15%, 25%, 0.2 0.048 0.049 0.053 0.902 0.901 0.913 1.00 1.01
MAR 15%, 25%) 0.4 0.048 0.050 0.053 0.849 0.865 0.874 1.02 1.03
0.6 0.043 0.047 0.049 0.802 0.829 0.834 1.03 1.04
0.3 0.039 0.039 0.039 0.748 0.785 0.784 1.05 1.05
0 0.050 0.049 0.059 0.874 0.857 0.891 0.98 1.02
(20%, 30%, 0.2 0.050 0.053 0.059 0.828 0.824 0.851 0.99 1.03
MAR 40%, 50%) 0.4 0.048 0.050 0.052 0.783 0.808 0.820 1.03 1.05
' 0.6 0.044 0.050 0.049 0.739 0.791 0.798 1.07 1.08
0.8 0.041 0.043 0.038 0.691 0.763 0.759 1.10 1.10

Key: MM = multivariate multilevel model; UV = univariate model; Ml + UV = multiple imputation followed by univariate model; LV = Latent variable model; p = correlation between outcomes. Note:
Monte Carlo standard errors (MCSE) for the simulation were consistent across methods. MCSE Range for FWER = (0.0018, 0.0024); MCSE Range for Power = (0.0013, 0.0047)
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Table 5.3b FWER and disjunctive power when analysing two continuous and two binary outcomes (four ‘mixed’ outcomes).

Multivariate and univariate methods are compared for scenarios which vary in terms of missingness, percentage of missing data and degree of correlation between
outcomes. The Holm method was applied to all scenarios to account for multiplicity.

Type of % of missing values for Family wise error rate . . . Relative power
missingness each outcome, Py (FWER) Disjunctive power (vs. UV)
Method - UV  MI+UV MM UV MI+UV MM | MiI+Uv MM
0 0.048 - 0.050 | 0.948 - 0.951 - 1.00
(0%, 0%, 0.2 0.044 - 0.047 | 0.908 - 0.912 - 1.00
Complete 0.4 0.048 - 0.049 | 0.874 - 0.878 - 1.01
0%, 0%) 0.6 0.040 - 0.041 | 0.821 - 0.827 - 1.01
0.8 0.037 - 0.038 | 0.765 - 0.771 - 1.01
0 0.050 0.046 0.052 | 0.883 0.863 0.891 0.98 1.01
(15%, 25%, 0.2 0.052 0.046 0.056 | 0.842 0.827 0.852 0.98 1.01
MCAR 0.4 0.047 0.044 0.050 | 0.803 0.801 0.821 1.00 1.02
15%, 25%) 0.6 0.044 0.042 0.046 | 0.755 0.769 0.785 1.02 1.04
0.8 0.044 0.040 0.045 | 0.706 0.731 0.749 1.04 1.06
0 0.050 0.041 0.054 | 0.811 0.761 0.823 0.94 1.01
(20%, 30%, 0.2 0.049 0.041 0.052 | 0.774 0.744 0.796 0.96 1.03
MCAR 0.4 0.045 0.038 0.049 | 0.740 0.730 0.765 0.99 1.03
40%, 50%) 0.6 0.046 0.039 0.052 | 0.703 0.715 0.746 1.02 1.06
0.8 0.041 0.032 0.042 | 0.656 0.689 0.712 1.05 1.09
0 0.046 0.042 0.049 | 0.880 0.856 0.886 0.97 1.01
(15%, 25%, 0.2 0.051 0.047 0.054 | 0.841 0.829 0.852 0.99 1.01
MAR 0.4 0.046 0.041 0.046 | 0.797 0.801 0.819 1.01 1.03
15%, 25%) 0.6 0.046 0.044 0.051| 0757 0.773 0.786 1.02 1.04
0.8 0.040 0.038 0.041 | 0.711 0.737 0.745 1.04 1.05
0 0.048 0.040 0.054 | 0.808 0.761 0.820 0.94 1.02
(20%, 30%, 0.2 0.051 0.043 0.055 | 0.760 0.728 0.783 0.96 1.03
MAR 0.4 0.048 0.043 0.055 | 0.738 0.730 0.768 0.99 1.04
40%, 50%) 0.6 0.043 0.035 0.045 | 0.688 0.703 0.731 1.02 1.06
0.8 0.044 0.036 0.044 | 0.646 0.688 0.706 1.07 1.09

Key: MM = multivariate multilevel model; UV = univariate model; MI + UV = multiple imputation followed by univariate model; p = correlation between outcomes. Note: Monte Carlo standard errors
(MCSE) for the simulation were consistent across methods. MCSE Range for FWER = (0.0017, 0.0023); MCSE Range for Power = (0.0020, 0.0048)
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Table 5.4a Disjunctive power when analysing two continuous outcomes with varying effect sizes.
Multivariate and univariate methods are compared for scenarios which vary in terms of missingness, percentage of missing data and degree of correlation between
outcomes. The Holm method was applied to all scenarios to account for multiplicity.

Type of % of missing values for .. . Relative power
missi&:;ness N each outgcome\l/ p Y Disjunctive Power (vs. Uril)
Method > uv Ml + UV MM MI+UV MM
0 0.775 - 0.789 - 1.01
Complete 0.2 0.754 - 0.763 - 1.01
(0%, 0%) 0.4 0.738 - 0.747 - 1.01
0.6 0.729 - 0.738 - 1.01
0.8 0.717 - 0.726 - 1.01
0 0.641 0.607 0.655 0.95 1.02
0.2 0.633 0.612 0.650 0.97 1.03
MCAR (15%,25%) 0.4 0.618 0.629 0.648 1.02 1.05
0.6 0.601 0.637 0.648 1.06 1.08
0.8 0.590 0.665 0.666 1.13 1.13
0 0.475 0.374 0.499 0.79 1.05
0.2 0.476 0.394 0.508 0.83 1.07
MCAR (30%,50%) 0.4 0.453 0.435 0.500 0.96 1.10
0.6 0.442 0.497 0.512 1.12 1.16
0.8 0.443 0.560 0.551 1.27 1.25
0 0.649 0.612 0.665 0.94 1.02
(15%,25%) 0.2 0.630 0.611 0.650 0.97 1.03
MAR 0.4 0.616 0.624 0.644 1.01 1.04
0.6 0.601 0.638 0.645 1.06 1.07
0.8 0.592 0.665 0.668 1.12 1.13
0 0.455 0.367 0.480 0.81 1.06
0.2 0.461 0.383 0.490 0.83 1.06
MAR (30%,50%) 0.4 0.444 0.419 0.490 0.95 1.10
0.6 0.430 0.471 0.496 1.10 1.15
0.8 0.427 0.553 0.544 1.30 1.28

Key: MM = multivariate multilevel model; UV = univariate model; Ml + UV = multiple imputation followed by univariate model; p = correlation between outcomes.
Note: Monte Carlo standard errors were consistent across methods. The range of the MCSE was 0.003 to 0.005
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Table 5.4b Disjunctive power when analysing four continuous outcomes with varying effect size.
Multivariate and univariate methods are compared for scenarios which vary in terms of missingness, percentage of missing data and degree of correlation between
outcomes. The Holm method was applied to all scenarios to account for multiplicity.

Type of % of missing values for . . Relative power
missingness |, each outcome, PV Disjunctive Power (vs. UV)
Method - uv MI+UV MM MI+UV MM
o| 0799 - 0.812 - 1.02
(0% 0% 0.2 0743 - 0.757 . 1.02
Complete 0.4 0717 - 0.732 - 1.02
0%, 0%) 06| 0676 - 0.689 ; 1.02
08| 0635 - 0.649 - 1.02
0| 0652 0646 0.683 0.99 1.05
(15%, 25%, 0.2 0616  0.630 0.646 1.02 1.05
MCAR 04| 0600 0620 0.644 1.03 1.07
15%, 25%) 0.6 0558 0618 0.626 1.11 1.12
08| 0531 0613 0.619 1.15 1.17
0| o510 0486 0.552 0.95 1.08
(20%, 30%, 0.2 0476  0.483 0.532 1.02 1.12
MCAR 04| 0442 0498 0.517 1.13 1.17
40%, 50%) 06| 0423 0534 0.538 1.26 1.27
08| 038 0572 0.553 1.48 1.43
0| 0655 0648 0.678 0.99 1.03
(15%, 25%, 0.2 0619  0.626 0.648 1.01 1.05
MAR 04| 0590 0622 0.636 1.05 1.08
15%, 25%) 06 0.552 0.613 0.621 1.11 1.13
08| 0517  0.606 0.605 1.17 1.17
0| 0484 0479 0.528 0.99 1.09
(20%, 30%, 0.2 0459  0.479 0.508 1.04 1.11
MAR 04| 0437 0500 0.510 1.15 1.17
40%, 50%) 06| 0415 0513 0.519 1.24 1.25
08| 0376 0555 0.543 1.48 1.44

Key: MM = multivariate multilevel model; UV = univariate model; Ml + UV = multiple imputation followed by univariate model; LV = Latent variable model; p = correlation between outcomes.
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Multivariate multilevel model (MM)

The FWER fluctuated around 5%. The highest level of FWER observed when analysing two
continuous outcomes was 5.8%. The FWER was highest in the scenarios when there were

high levels of missing data.

If there are no missing data, the MM model performed similarly to analysing the outcomes
separately. The small difference in FWER and disjunctive power when analysing continuous
outcomes may be attributed to the fact the UV p-values are calculated using a Student’s t-
distribution, whereas the MM p-values are calculated using a normal distribution. The effects

of the intervention were unbiased when analysing two continuous outcomes.

As expected, benefits in terms of disjunctive power are seen when there are missing data as
the MM model is able to use observations where one of the outcome values is missing. Even
when there is weak correlation, the MM model performs better than the UV model. For
continuous outcomes, when there is a low proportion of missing data small power gains may
be observed when the correlation is strong (p > 0.4). When the correlation is 0.8, a relative
gain of up to 4% may be observed between the MM model and UV models. When there is a
large proportion of missing data, up to a 9% gain in disjunctive power was achieved by the
MM model compared to the UV model. When analysing four continuous outcomes, similar
results are observed. The relative gains between the MM and UV models range from 5%,
when there are low levels of missing data, to 10% when there are high levels of missing data
and the between outcome correlation is strong. These results are displayed in Table 5.3a.
Additionally, similar results are observed when varying intervention effect sizes are used.
When analysing two outcomes with varying intervention effect sizes, with high levels of
missing data and strong correlation between the outcomes, a gain of up to 10% may be

observed between the MM and UV models. These results are displayed in Table 5.4a.

For two binary outcomes, the UV and MM models perform identically when there are no
missing data. When there is a low level of missing data (20%) the differences between the
MM and UV models are minimal with differences ranging from 0% to a 2% relative increase
in disjunctive power. Larger differences are seen when there is a large amount of missing

data and the two outcomes are strongly correlated.

For two binary outcomes, the estimates of the intervention effects are unbiased. The largest
relative disjunctive power increase, compared to the UV model, is 4% when there is 40%
overall missingness and the correlation is strong (p=0.8). When analysing two binary

outcomes the MM model occasionally did not converge. This most frequently occurred when
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the correlation between the two outcomes was strong (p= 0.8) and there was no effect of

the intervention.

When analysing four binary outcomes, the MM model often did not converge. For example,
when simulating no effect of the intervention and no missing data 37.1% of the simulations
(n=18558/50000) reported an error and the results were displayed as “NA”. Other
simulations reported final values but they do not appear to have converged as the results
are much larger than expected, for example the coefficients for the estimated effect size are
greater than 1000, when | simulated an effect size of 0. Consequently, | have not reported
results for four binary outcomes. It is perhaps an unusual scenario that a clinical trial would
have four binary outcomes without any continuous outcomes and therefore this should not

affect the conclusions regarding the MM model.

Latent variable model (LV)

When using the latent variable model, the FWER observed ranged from 2.5% up to 6.2%
across the continuous and mixed scenarios. The results for the model were heavily

dependent on the assumptions made regarding the variance of the latent factor.

For two continuous outcomes, the power gains were comparable to that of the MM model.
For two mixed outcomes, after fixing the variance of the latent factor, the FWER was overly
conservative when the correlation between the outcomes was strong. This resulted in a loss

of disjunctive power compared to the other methods.

The use of the LV model was not investigated for four outcomes due to the increased FWER

when using two outcomes.

Comparison of methods

When applying the MM, MI+UV and LV model, and using the Holm method to account for
multiplicity, the FWER fluctuates around 5% (between 3.1% and 6.2%). In terms of disjunctive
power, the MM model performs better than using MI+UV method in the majority of
scenarios. When there is little correlation between the two outcomes, the MM model
provides a small increase in disjunctive power compared to analysing the outcomes
separately. Whereas when using the MI+UV approach, the disjunctive power is decreased as
the standard errors are increased. As the correlation increases between two outcomes, the
benefits of the MM model continue to increase. When the correlations between the

outcomes are very strong (p = 0.8) the MM model and MI+UV approach perform similarly.
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For two continuous outcomes, unbiased estimates of the intervention effect were obtained
using all methods. The Monte Carlo standard errors (MCSE) of the disjunctive power and
FWER estimates were similar for all methods. For the FWER estimates the MCSE ranged from
0.0020 to 0.0030 and for the disjunctive power estimates the MCSE ranged from 0.0027 to
0.0049. Similar MCSE were found for the analysis of two binary outcomes and mixed
outcome types too (as reported in tables 2b and 2c). For binary outcomes, slightly biased

estimates of the intervention effect were obtained when using the MM method.

5.4 Case studies
Re-analysis of the ProCEED trial and 10TT trial.

The two real datasets, ProCEED (Buszewicz et al., 2016) and 10TT (Beeken et al., 2012,
Beeken et al.,, 2017), are re-analysed to illustrate the differences and similarities between
the multivariate multilevel model (MM) and analysing outcomes separately. The ProCEED
dataset includes three continuous outcomes whereas the 10TT dataset includes a
combination of continuous and binary outcomes. The code used to implement the MM, using

Stata, R and MIwiN are described in Appendix 7.

5.4.1 Pro-active Care and its Evaluation for Enduring Depression Trial,

ProCEED

For this analysis, the 24 month outcomes were used. In all analyses, the corresponding
baseline values were adjusted for in the model. The outcomes have been standardised so
that the estimate of the intervention effect using the three questionnaires can be compared.
Standardisation also ensures that no single outcome dominates when using the multivariate
technique. On the other hand, standardisation makes the interpretation of data more
complex and care is needed when interpreting results of transformed data. For this reason,

| also provide results that have been transformed back to the original scales.

When using the MM model, the improvement on the scale is required to be in the same
direction for each outcome. That is, there should be a positive correlation between all
outcomes. On the WSAS and BDI-Il scales, a higher score means greater impairment, whereas
on the Euroqol, a lower score means greater impairment. The Euroqol will be reversed to

enable the three outcomes to be combined in a multivariate analysis.

The results for the two models are displayed in Table 5.5 (top). The univariate analysis uses

complete case analysis, whereas the MM model allow for overlapping missingness. For the
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MM model 431 participants are used compared to 429, 428 and 415 participants for the
three outcomes when analysing them separately using univariate models. The standard
errors are very similar across the models. As multiple tests have been performed, it is
important to apply an adjustment to the p-values to control the FWER. The results of

applying various adjustments are displayed in Table 5.5 (bottom).

Table 5.5 Analysis of the ProCEED dataset using univariate models and a multivariate
multilevel model (top) followed by adjusting the resulting p-values to account for multiple
comparisons (bottom)

N Mean SE* 95% CI* Mean diff. P-value
diff.* on original
scale
Univariate analysis
BDI-II 429 0.189 0.081 (0.031,0.347) 2.762 0.019
WSAS 428 0.195 0.080 (0.038, 0.350) 2.358 0.014
EuroQol 415 -0.146  0.088 (0.318, -0.026) 3.147 0.097
Multivariate multilevel model
analysis
BDI-II 0.211 0.082 (0.050, 0.372) 3.078 0.010
WSAS 431 0.207 0.081 (0.048, 0.364) 2.500 0.011
EuroQol -0.146  0.088 (0.318,-0.027) 3.141 0.098

Adjusting the p-values reported above to account for multiple comparisons

Bonferroni
Holm
Hochberg
Hommel
D/AP
No
adjustment

Univariate analysis

BDI-II 0.057 0.042 0.038 0.038 0.029 0.019
WSAS 0.042 0.042 0.038 0.029 0.020 0.014
EuroQol 0.291 0.097 0.097 0.097 0.097 0.097
Multivariate multilevel analysis
BDI-II 0.030 0.030 0.022 0.020 0.014 0.010
WSAS 0.033 0.030 0.022 0.022 0.017 0.011
EuroQol 0.294 0.098 0.098 0.098 0.098 0.098
*Standardised intervention effects.
BDI-Il = Beck Depression Inventory; Cl = Confidence interval; D/AP = Dubey/Armitage-

Parmar; Mean diff = mean difference; SE = standard error; WSAS = Work and social activities
scale

In summary, similar results are obtained when using both the MM model and the univariate

model. Different conclusions might have been drawn when using the Bonferroni method
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compared to using the other adjustment methods, as the p-value adjusted for multiplicity
using Bonferroni method increased to above the 0.05 significance level. For all other
adjustment methods, the same conclusions should be drawn from both analyses. One
advantage of the MM model over the univariate analysis is that a ‘composite’ joint effect can
also be calculated if appropriate. If a joint effect is desired, the investigators would need to
decide which of the outcomes to combine. It is possible to combine some of the outcomes
into a common effect whilst keeping an individual intervention effect for the remaining
outcomes. For example, a joint effect could have been estimated for BDI-Il and WSAS whilst
simultaneously calculating an individual intervention effect for EuroQol. This would result in
less statistical comparisons being performed and, therefore, less stringent rules can be
placed on the resulting p-values. In a trial scenario, the decision to combine outcomes would
need to be made a priori at the start of the study and documented in the statistical analysis

plan.

5.4.2 Ten Top Tips trial

In these analyses, the outcomes were standardised and the corresponding baseline variables
were included for in the model. For the univariate analysis, the estimated effects of the
intervention on the original scales for the weight and waist circumference effects are
-0.872kg and -0.858cm respectively, compared to the MM model results of -0.880kg and

-0.888cm, respectively.

After adjusting for multiplicity, the weight outcome remains statistically significant at the 5%
level. The most conservative adjustment increases the p-value to 0.012 for both analyses.
The waist circumference and glucose level remain above the 5% significance level when any

of the adjustments for multiplicity are applied.

The estimated effect for blood glucose differs slightly for the two models. This is likely to be
due to missing data for blood glucose, which is ignored by the univariate model. As the MM
model uses the correlations between the outcomes, | observed increased disjunctive power

and improved precision for the effect of the intervention.
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Table 5.6 Analysis of Ten Top Tip dataset using univariate models and a multivariate
multilevel model (top) followed by adjusting the resulting p-values to account for multiple

comparisons (bottom)

(normal/high)

N Coef. Standard 95% Confidence P-value
error interval

Univariate analysis
Standardised weight 383 -0.052 0.018 (-0.088, -0.016) 0.004
Standardised waist 378 -0.069 .0483 (-0.164, 0.026) 0.153
circumference
Blood glucose 330 -0.260 0.314 (-0.875, 0.355) 0.407
(normal/high)
Multivariate multilevel analysis
Standardised weight -0.053 0.018 (-0.088, -0.017) 0.004
Standardised waist 388 -0.071 0.048 (-0.166, 0.023) 0.138
circumference
Blood glucose -0.295 0.311 (-0.904, 0.315) 0.343

Adjusting the p-values reported above to account for multiple comparisons

5 s B |5
= £ 3 £ = o E
g o < € = Z %
c I 8 le) ()] =]
2 T T e
Univariate analysis
Weight 0.012 0.012 0.012 0.012 0.007 0.004
Waist 0459 0306 0306 0306 0.235 0.153
circumference
Blood glucose 1.00 0.407 0.407 0.407 0.669 0.407
Multivariate multilevel analysis
Weight 0.012 0.012 0.012 0.012 0.007 0.004
Waist 0414 0276 0276 0276 0.213 0.138
circumference
Blood glucose 1.000 0.343 0343 0.343 0.589 0.343

In summary, the MM model allows both continuous and binary outcomes to be analysed

simultaneously in a single step. However, | found that in this trial scenario use of the MM

model made little difference to the results and conclusions.
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5.5 Discussion

In this section, | have performed a simulation study to investigate the differences in
disjunctive power and FWER achieved using the multivariate multilevel (MM) model, a latent
variable (LV) model and a univariate model with and without multiple imputation (MI+UV

and UV, respectively).

The simulations suggested that the power to detect an effect of the intervention can be
increased by using multivariate multilevel (MM) models as opposed to analysing each
outcome separately with or without multiple imputation (UV and MI+UV). However, | found
that the power gains were small in all but extreme scenarios, for example, when there is
strong correlation between outcomes or when there are high levels of missing data. Pituch
et al. (2016) and Snijders and Bosker (2012) reported efficiency gains for MM model

compared to UV models in presence of missing data based on case studies.

When the pairwise correlations between the outcomes were weak, the power was reduced
when using the MI+UV approach compared to using the UV approach. These findings are
consistent with the results presented in Sullivan et al. (2018), which state that MI may be

less efficient than complete case analysis due to Monte Carlo simulation error.

The MM model offers a computational advantage to the MI+UV approach as the MM model
enables the analysis to be performed in just one step. In contrast, the MI+UV approach
requires three steps: specifying the imputation model and performing the imputation, fitting
the analysis model to each imputed dataset; scombining the results across the imputed

datasets.

When a single primary outcome is specified in a trial, the MM model can still be used for the
analysis of secondary outcomes. Alternatively, when there are missing values in the primary
outcome, both the primary and secondary outcomes can be analysed simultaneously using
the MM model. Additionally, the MM model allows for joint effects to be estimated although

this should be documented in advance in a statistical analysis plan.

The results from the LV model are dependent on the constraints imposed on the model. In
this work, the latent factor variance was fixed. For a discussion of alternative constraints see

Skrondal and Rabe-Hesketh (2004).
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5.6 Conclusions

It was found that the power to detect an effect of an intervention may be increased by using
MM models rather than using UV models. However, it was found that the gains were small
except in the more extreme scenarios, such as strong correlation between outcomes or high
levels of missing data. The MM model may be used as a one-step method instead of the more
commonly used MI+UV approach. The MM model may also be useful when analysing

multiple correlated secondary outcomes or to estimate a joint intervention effect.
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Chapter 6

Evaluation of methods to analyse multiple
outcomes when data are missing not at
random

The majority of randomised trials have missing outcome data. There is now an understanding
that simple approaches, such as discarding the participants with missing data from the
analysis is unacceptable (Little et al., 2012). As a consequence, there has been an increase in
the use of more complex methods, in particular multiple imputation (MI). As previously
discussed in Chapter 2, when implementing these more complex methods, it is usually under
the assumption that the underlying missingness mechanism is missing at random (MAR).
However, this assumption is untestable, that is, by using the observed data it is not possible
to distinguish between MAR and the missingness mechanism missing not at random (MNAR).
Misleading inferences and incorrect conclusions may be made if the assumptions about the

missingness mechanism are incorrect.

Under the MNAR assumption, parameter estimation from the observed data alone is
typically biased. The amount of bias depends on the proportion of dropout and the strength
of the relationship between the unobserved outcome and probability of dropout (White and
Carlin, 2010). In this chapter, | investigate the whether the multivariate multilevel (MM)
model can reduce the bias in the estimated effect of the intervention when the missing data

mechanism is MNAR.

6.1 Aim

The aim of this section is to investigate the bias in the estimated coefficients when using the
multivariate multilevel model and to compare the results to the bias that arises from
analysing the outcomes separately. This includes when multiple imputation is used to handle

any missing outcome values that are MNAR.

6.2 Simulation study methods

| generated the data using a similar methodology to that described in the previous chapter.

However, for this chapter | investigated scenarios which vary in the number of outcomes,
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outcome type, percentage of missing data and degree of correlation between outcomes. The
different factors considered are described in Table 6.1.

Table 6.1 Scenarios implemented to investigate methods when missing data are missing
not at random.

Factors

Number of

2 outcomes, 4 outcomes
outcomes

Continuous outcomes; binary outcomes; and half continuous and half|

Outcome type . L .
yp binary outcomes, which is referred to as ‘mixed’ outcomes

Pairwise
correlation
between
outcomes

0.0,0.2,0.4,0.6,0.8

Continuous outcomes
Equal: ES = 0.35 for all outcomes.
Binary outcomes
Equal: the percentage of events in the control and intervention arms
were 50% and 65%, respectively for all outcomes.
Mixed outcomes
Equal: ES = 0.35 for all outcomes.

Effect size (ES) of
intervention effect

Missing data

. Missing not at random (MNAR)
mechanism

Low: 15% of observations were missing for half the outcomes. The other
outcomes had no missing values.

Medium: 30% of observations were missing in half the outcomes. The
other outcomes had no missing values.

Percentage of
missing data High: 50% of observations were missing in half the outcomes, the other
values outcomes had no missing values.

High overlapping: When investigating two outcomes 30% and 50% of|
observations in outcome 1 and 2 were missing; when investigating four,
outcomes 20%, 30%, 40%, 50% of observations were missing for each of
the outcomes respectively.

Missing data that are missing not at random (MNAR) was introduced with varying quantities
of missing data. The percentage of missing data simulated reflects those data observed in
published clinical trials (Beeken et al., 2017, Hassiotis et al., 2018, Killaspy et al., 2015). The
different scenarios have been referred to as ‘low’, ‘medium’, ‘high’ and ‘high overlapping’.
The first three scenarios are more realistic when data comes from different sources. For

example, the data may be complete when collected from the hospital notes whilst other
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patient reported outcomes have a chance of being may be missing. Overlapping missingness

is more likely to be observed when all the outcomes are patient reported outcomes.

To simulate the data under the MNAR mechanism, a complete dataset was first simulated.
The dataset was then sorted in ascending order according to the outcome in which the
missing data was to be introduced. The outcome data were divided into quartile groups and
the missingness was introduced in each quartile group. The percentage of values which were
set to missing increased for each quartile as shown in Table 6.2.

Table 6.2 The percentage of missing observations per quartile used to simulate data that
are missing not at random (MNAR)

Percentage of observations missing per
guartile
Total percentage 1%t 2nd 3 4th
missing observations
0% 0 0 0 0
15% 0 7.5 225 30
20% 0 10 30 40
30% 0 15 45 60
40% 0 20 60 80
50% 0 25 75 100

The following methods of analysis were used:

1) Univariate model (UV). This was used as the comparator for the other methods.
2) Multiple imputation followed by univariate models (MI+UV).

3) Multivariate multilevel model (MM).
The details regarding how these methods were implemented are described in Chapter 5.

The MM, UV+MI and UV methods were compared using the bias, mean square error and
coverage of 95% confidence intervals associated with the estimated effect of the
intervention (Burton et al., 2006). Assuming, the i*" simulated dataset yields a point estimate
B; with standard error SE(B;), for i = 1, ..., N, then the bias is the difference between the

average estimate of the intervention effect,

A 1aN 5
B = ;Zizlﬁu
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and the true value for the estimate of interest, 8, that is
Bias = f — 8.

The mean square error is a measure of accuracy which incorporates both measures of bias
and variability and is calculated by
2

7

MSE = (B —p)" +(SE(B))

where SE(ﬁ) is the empirical standard error of the estimate of the intervention effect over

all simulations, \/ﬁ N( f; — B )2. The coverage of a confidence interval is the

proportion of times that the obtained confidence intervals contains the true specified
parameter. In other words, the coverage is the proportion of times the 100 (1 — a)%

confidence interval §; + Z,_a SE(B;) includes B, where SE(f;) is the standard error of the
2
estimate of the intervention effect within each simulation and z, _« is the 1 — % quantile of
2

the standard normal distribution. The coverage should be approximately equal to the
nominal coverage rate, e.g. 95 per cent of samples for 95 per cent confidence intervals, to
properly control the type | error rate for testing a null hypothesis of no effect (Collins et al.,
2001). If the coverage is too high, it suggests that the confidence intervals are too
conservative which could lead to a loss of power. This may be referred to as ‘over-coverage’.
In contrast, ‘under-coverage’ is when the coverage is too low. This is unacceptable as it
indicates over-confidence which leads to higher than expected type | errors (Burton et al.,
2006). One suggested criterion for acceptability of the coverage is that the coverage should

not fall outside of approximately two standard errors of the nominal coverage probability

(p),

0= B

In this example, | calculate the 95% confidence intervals using 10,000 simulations so the
SE(p) = 0.00218 and hence between 94.56% and 96.44% of the confidence intervals

should include the true value.
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6.3 Results

Multiple imputation followed by univariate analyses (MI+UV)

The estimated effects of the intervention, and the corresponding biases are shown in Figure
6.1 for varying levels of missing data, when using two continuous outcomes. The
corresponding Monte Carlo SE, empirical SE, mean square error and coverage of the 95%
confidence intervals associated with the estimated effects of the intervention are provided

in Appendix 8.

When analysing two continuous outcomes in which the first outcome is complete and the
second outcome has low levels of missing data (‘low’), there is a very small amount of bias

in the estimates of the intervention effects for both outcomes. This is not problematic given
that the bias is within the accepted range of + %SE(L?). The Monte Carlo SE of the estimated

bias remained consistent and comparable to those observed when analysing the complete
cases, varying between 0.00055 and 0.00062. The empirical standard errors ranged from
0.124 to 0.138. The coverage of the 95% confidence interval for the estimated intervention
effect when using the complete case analysis was within the accepted range, varying from
94.6% to 95.1%. This was comparable to using the MI+UV approach in which the coverage
varied from 94.5% to 95.0%.

As the amount of missing data increases, higher amount of bias can be observed in the
estimates of the intervention effects for outcome 2. When there are high levels of missing
data in outcome 2 (‘high’), bias may be observed in the estimates of the intervention effects.
In this scenario, the empirical SE varied from 0.122 to 0.146. Consequently, any estimated
intervention effects below 0.289 can be considered problematic due to high levels of bias.
Using the UV method, the estimated intervention effects for outcomes with high levels of
missing data are very biased and may be viewed as problematic. When there is no correlation
between the two outcomes, the MI+UV approach was unable to reduce the bias in the
estimates of the intervention effects compared to only using the UV method. When using
the MI+UV approach, the bias in the estimate of the intervention effect decreases as the
correlation between outcomes increases. In this scenario, the coverage of the 95%
confidence interval for the estimates for outcome 2 was outside of the acceptable range
(varying from 63.6% to 71.7% when using the MI+UV approach). This under-coverage is
expected given the high levels bias in the estimate of the intervention effect. Outcome 1 in
these scenarios does not have any missing data and consequently as expected the estimates

of the intervention effect are not biased.
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When the outcome variables have overlapping missingness, the MI+UV approach increases
the bias in the outcome variable with the least amount of missing data. The values are
imputed using the intervention effect estimated from the second outcome which is biased
and the intervention group indicator. As the correlation between the outcomes increase the
bias in the outcome with the highest level of missing data decreases. The results for varying
levels of missing data when using two binary outcomes and one continuous and one binary
outcome (‘mixed’) are shown in Figure 6.2 and Figure 6.3 respectively. A similar situation in

terms of bias is observed when analysing binary and ‘mixed’ outcomes.

The observed bias in the estimated intervention effects for various scenarios when using four
continuous outcomes are displayed in Figure 6.4. When analysing four outcomes, the bias is
reduced even further. When analysing four outcomes in which two outcomes have 30%
missing data (‘medium’ levels of missing data), no gains in terms of bias may be made when
there is no correlation between the outcomes, but when there is moderate correlation
between the outcomes (p = 0.4) the bias is reduced compared to using complete case
analysis. When there is strong pairwise correlation between the outcomes (p = 0.8), the
MI+UV approach is able to remove the majority of the bias in the estimated intervention

effects so that only a small amount of bias is observed.

Multivariate multilevel model, MM

The MM model performs similarly to the MI+UV approach. As displayed in Figure 6.1, when
analysing two continuous outcomes and there are low levels of missing data, there is a low
level of bias in the estimated intervention effects and the MM model is unable to reduce
much of the bias. When both outcomes have missing values (‘high overlapping missing’), the
gains in terms of bias can be seen when using the MM model compared to analysing the
outcomes separately when the correlation between the outcome is at least p = 0.4. When
analysing continuous outcomes, the empirical standard errors were comparable to using UV
method. The empirical standard errors of estimate of the intervention effects over all

simulations are displayed in Appendix 8.

When analysing two binary outcomes with high levels of overlapping missing data, smaller
empirical standard errors were obtained when using the MM model compared to the UV
model. However, the standard errors were larger than those seen when using MI+UV

approach.

As with the analysis in previous chapters, when analysing four binary outcomes the

multivariate model often did not converge. For example, when there is a high level of
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overlapping missing data the MM model did not converge in 29% of the simulations.
Consequently, | have not reported any results for four binary outcomes. Given it is unusual
to have four binary outcomes in a trial, without a continuous outcome, | did not investigate

this scenario further.

The results for various scenarios when using two continuous and two binary (‘mixed’)
outcomes are displayed in Figure 6.4, the corresponding empirical standard errors are
summarised in Appendix 8. The observed bias in the estimated intervention effects when
using the MM model is comparable to that when using MI+UV approach when there is a low
to medium amount of missing data. When there are high levels of missing data and weak
correlation between the outcome variables (p = 0.2) small gains in terms of removing the
bias in the estimated intervention effects may be seen when using the MM model compared
to the UV model. As the correlation between the outcomes increases, larger gains are seen

as the bias in the estimated intervention effect decreases when using the MM model.
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Figure 6.1 Bias in estimating intervention effect when simulating two continuous outcomes
and data are MNAR.

The blue dots represent the average of the estimated intervention effect (ﬁ) for outcome 1.
The red dots represent the average of estimated intervention effect (Z?) for outcome 2. The
five dots (of either colour) clustered together represents different correlation between the
outcomes from O (left) to 0.8 (right in increments of 0.2. Each graph corresponds to adifferent
level of missing data as indicated. A Monte Carlo standard error for the estimated bias of
between 0.0005 and 0.0007 was observed for all scenarios.
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Figure 6.2 Bias in estimating intervention effect when simulating two binary outcomes and
data are MNAR.

The blue dots represent the average of the estimated intervention effect (fi) for outcome 1.
The red dots represent the average of estimated intervention effect (ﬁ) for outcome 2. The
five dots (of either colour) clustered together represents different correlation between the
outcomes from 0 (left) to 0.8 (right) in increments of 0.2. Each graph corresponds to a

different level of missing data as indicated. The true intervention effect is represented by the
black horizontal line.
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Figure 6.3 Bias in estimating intervention effect when simulating two ‘mixed’ outcomes
and data are MNAR.

The blue dots represent the average of the estimated intervention effect (ﬁ) for outcome 1.
The red dots represent the average of estimated intervention effect (Z?) for outcome 2. The
five dots (of either colour) clustered together represents different correlation between the
outcomes from 0 (left) to 0.8 (right) in increments of 0.2. Each graph represents a different

level of missing data as indicated. The true intervention effect is represented by the black
horizontal line.
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Figure 6.4 Bias in estimating intervention effect when simulating four continuous
outcomes and data are MNAR.

The four colours each represent the average of the estimates treatment effects for the
outcomes. The five dots (of each colour) clustered together represents different correlation
between the outcome from O (left) to 0.8 (right) in increments of 0.2. Each graph represents
a different level of missing data as indicated.. The bottom graph has high level of overlapping
missing data. The true intervention effect is represented by the black horizontal line.
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Figure 6.5 Bias in estimating intervention effect when simulating two continuous and two

binary (‘mixed’) outcomes and data are MNAR.

The four colours each represent the average of the estimated treatment effects for the a
outcomes. The five dots (of each colour) clustered together represents different correlation
between the outcome from O (left) to 0.8 (right) in increments of 0.2. Each graph corresponds
to a different level of missing data. The true intervention effect is represented by the black

horizontal line.
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6.4 Discussion

In this section, | investigated the bias in the estimated effects of the intervention when using
the multivariate multilevel (MM) model compared to the bias observed when analysing the
outcomes separately. The investigation included multiple imputation to handle any missing

outcome values that are MNAR.

| have shown that when the MI+UV approach and MM model are used there is no reduction
in bias in the estimated intervention effects if there is no correlation between the outcomes.
However, there was a reduction in bias in the estimated intervention effects using both the
MI+UV and MM methods when the outcomes are strongly correlated and in the presence of
high levels of missing data. There was a notable reduction in bias when the correlation
exceeds 0.4. The MM model appeared to outperform the MI+UV approach in the more
extreme cases of high levels of missing data. However, as expected neither approach was
able to remove the bias entirely. As a consequence, any inferences and conclusions made
within the trial setting should be confirmed with sensitivity analyses under the alternative
assumption that the missing data are MNAR. One approach would be to use Ml to impute
the missing values under the MAR assumption and to modify the MAR-imputed data to
reflect a range of plausible scenarios. This can be obtained by multiplying the imputed values
by a constant or by adding a constant to the imputed values. The adjusted results could be
analysed by following the standard MI method, by analysing each imputed dataset and then

combining the results.

Further reductions in terms of bias of the estimated intervention effects may have been
observed if additional covariates had been included in the multiple imputation model that
had taken account of the reason for missingness. By adding more variables into the model,

it makes the MAR assumption more likely.

6.5 Conclusions

| found that the bias in the estimated effects of the intervention may be reduced by using
either multiple imputation prior to analysing the outcomes separately or the multivariate
multilevel model rather than analysing complete cases only. In the majority of the scenarios,
very similar average estimates of the effects of the intervention were obtained when
implementing the multiple imputation approach and multivariate multilevel model resulting

in similar levels of bias of the estimated intervention effects.
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Chapter 7

Evaluation of methods to jointly analyse
continuous outcomes and survival
outcomes

7.1 Introduction

In previous chapters, the focus has been on multiple primary outcomes that are either all
continuous, binary or a combination of the two. However, clinicians may also be interested
in time-to-event (survival) outcomes, such as time until death, drug relapse, or discharge
from hospital. A time-to-event and a continuous outcome may be specified together as the

primary outcomes in a trial.

The Contingency intervention for the Reduction of Cannabis use in Early psychosis (CiRCLE)
trial is an example of when time-to-event and continuous outcomes were collected (Johnson
et al., 2016). In the CiRCLE trial, the time to relapse was the single primary outcome, but they
also measured positive symptom severity (using Positive and Negative Syndrome Scale,
PANSS), which was also considered to be a key outcome (Kay et al., 1987). The outcomes
were measured at three months and eighteen-months after the baseline measurement. It
has been shown that cannabis use is associated with increased psychotic symptoms (Seddon
et al., 2015). Consequently, it is expected that the time to relapse and PANSS scores (which

measures psychotic symptoms) have a strong association.

Often when measuring a continuous outcome alongside a time-to-event outcome in trials,
the continuous outcome is collected at multiple time points (longitudinally) over the follow
up period. Joint models can be used to link the time-to-event outcome (relapse) with the
continuous outcome (PANSS) to provide more accurate estimates of the effects of the

intervention (Lawrence Gould et al., 2015).

In recent years, studies have investigated joint modelling of time-to-event outcomes with
longitudinal continuous outcomes. Lawrence Gould et al. (2015) provide a summary of
currently available joint models with an emphasis on Bayesian approaches. lbrahim et al.
(2010) also review joint modelling methods but focus on the bias observed in the time-to-

event outcome when implementing joint models. In contrast, other studies have focused on
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estimating the magnitude of the association between the time-to-event and continuous
outcomes (Wang et al., 2012, Hatfield et al., 2011). By estimating the magnitude of the
association between the outcomes, investigators can ascertain whether the survival time is
associated with the continuous outcome for an individual. It has also been shown that joint
models provide more efficient estimates of the effects of the intervention on the time-to-
event and the continuous outcome, compared to analysing the two outcomes separately
(Ibrahim et al., 2010, Wang et al., 2012). Several approaches for joint modelling have been
suggested, however, it is not clear which of these models perform best in terms of bias and

efficiency for both the time-to-event outcome and the continuous outcome.

7.2 Aim

The overarching aim of this chapter is to evaluate joint models to simultaneously analyse
time-to-event and continuous outcomes. The specific objectives are: to review the existing
methods that may be used to jointly model time-to-event and continuous outcomes; and to
evaluate the performance of joint models in terms of bias and efficiency for the estimated
effect of the intervention for both the time-to-event and continuous outcomes. The results

will be compared to those obtained when analysing the outcomes separately.

7.3 Methods to analyse time-to-event and longitudinal outcomes

In this section, | describe methods that have been proposed to jointly analyse time-to-event
and longitudinal continuous outcomes in RCTs. Joint models generally consist of two sub-
models: one for the time-to-event outcome and one for the longitudinal continuous

outcome.

The longitudinal continuous observations are usually modelled using a linear mixed model

(Lawrence Gould et al., 2015)
Yik = Boi + BiXix + ZiU; + €

Here, the Y;; are the observed outcome values for participant i at time k. The f,; are
intercepts that vary for each participant. The x; are binary variables that represent whether
the participant is in the intervention group (x; = 1) or not (x; = 0) and f; is the coefficient
for the effect of the intervention. The u; are the random effects, which are normally

distributed with a mean of zero and an unknown covariance parameter, that correspond to
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the time-varying random effects z;;. Lastly, €;; is the random error term, which is also
normally distributed with a mean of zero and an unknown covariance parameter. The model
can easily be extended to also include additional covariates, for example, baseline

assessments. Equivalently, the linear mixed model may be written as
Vi) = mi(t) +€(t),

where the complete ‘true’ unknown patient-specific longitudinal trajectory be denoted by

mik.

In the following sections, | discuss approaches to model a time-to-event outcome that is

associated with the longitudinal continuous outcome.

Analysing the outcomes separately

The time-to-event outcome may be modelled separately to the longitudinal continuous
outcome without any link between the two models. One model that is widely used to
investigate the effect of the intervention on time-to-event outcomes is the Cox regression
model (Cox, 1972). It models the hazard function denoted by h(t), which is the risk of dying

at time t given the individual is alive at time t. It is defined as follows

h(t) = ho(t) exp(x;).

Here, hy(t) is the baseline hazard at time t, x; represents whether the participant is in the
intervention group (x; = 1) or not (x; = 0) and ¢ is the associated log hazard ratio. The
model could be extended to include additional covariates, for example, baseline assessments

as before.

A key assumption for the Cox regression model is that the hazard functions for the two
groups of participants should be proportional at all time points. Due to this, it is referred to
as a proportional hazards model. One of the reasons for the popularity of the Cox
proportional hazards model is that no assumptions are required about the underlying
probability distribution of the outcome data (Cox, 1972) (Henderson et al., 2000). However,
bias in the estimated treatment effect may occur and an unspecified baseline hazard may
lead to an underestimation of standard errors of estimated treatment effect (Hsieh et al.,

2006).

Other models can be used to analyse the time-to-event outcome, such as the exponential,
Weibull or Gompertz distributions. These survival models do, however, make assumptions

about the underlying probability distribution of the outcome data.
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Shared parameters model

The idea behind the shared parameter joint model is to link the longitudinal and survival
models via shared parameters. Let M;(t) = {m;(s); 0 < s < t} denote the corresponding
true, but unknown, longitudinal profile up to the survival time t. Then the proportional

hazards model is defined as

h(t1M; (), x;) = ho(t) exp(dx; + am;(t))

where hy(t) is the baseline hazard function at time t. x; represents if the participant is in
the intervention group or not, ¢ is the associated log hazard ratio and « is the association
parameter. exp(«) is the hazard ratio for a unit increase in m;(t) at time t. By including the
true unobserved trajectory function m;(t) in the linear predictor of the proportional hazards
model, it is possible to link the longitudinal model and the proportional hazards model by a
joint model. This joint model assumes that the association is based on the current value of
the longitudinal response at time t. Once again, this model could be extended to include

additional covariates, as necessary.

Joint random effects models

An alternative method is to use only the random effects in the linear predictor of the survival
model. The random effects u; are taken from the longitudinal model and are time-

independent. Using joint random effects, the hazards model
h(tIM;(2), x;) = ho(t) exp(¢x; + au;),

includes both the population level mean of the random effect, plus a subject specific

deviation (Henderson et al., 2000).

When using the joint random effect model, the time-to-event data may be modelled using a
Cox proportional hazards regression model with time-varying covariates. Although, as
discussed earlier, other survival models may also be used. The longitudinal outcome is
usually modelled using a linear mixed effects model. The association is captured by the joint

random effects.
Correlated random effects model

Longitudinal outcomes and time-to-event data outcomes may also be jointly modelled via

correlated random effects models (Philipson et al., 2012). One approach to analyse the time-
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to-event outcome is to use a Cox proportional hazards model with a log-Gaussian frailty. The
longitudinal model and the survival model are linked by allowing the Gaussian random
effects of the linear model to be correlated with the frailty term of the Cox proportional
hazards model. The model specifies latent vectors u; and v; that follow a zero-mean
multivariate distribution, which are drawn independently for each participant. Given u; and
v;, the longitudinal model is a linear mixed model as previously described. The hazards model

is
hi(t) = ho(t) exp(dx; + Vi Vi)

where h;(t) is the hazard for subject i at time t, the x; are the binary variables that indicate
whether the participant is in the intervention group (x; = 1) or not (x; = 0), ¢ is the
associated log hazard ratio and the y;;, are time-varying explanatory variables. The models

are linked via the multivariate distribution of the random effects u; and v;.

7.4 Software for the joint modelling of time-to-event and longitudinal

outcomes

In this section, | discuss mainstream statistical packages to jointly model longitudinal and
time-to-event outcomes. For the statistical software environment R, a variety of routines
are available including joineR (Philipson et al., 2012), jointModel (Rizopoulos, 2010),
frailtyPack (Rondeau et al., 2012), joineRML. The methodology for each routine is described

below.

The joineR package implements the correlated random effects model. The JointModel
package implements the shared parameter model (Rizopoulos, 2010). Leaving the baseline
hazard function unspecified in JointModel leads to an underestimation of the standard errors
of the parameter estimates (Hsieh et al., 2006). Consequently, even though an unspecified
baseline hazard function is one of the options in the package, it is not recommended (Yuen
and Mackinnon, 2016). Other distribution options, such as Weibull or Gamma or more
flexible models based on spline-based approaches should be used instead. The joint model
implemented in the frailtyPack package estimates simultaneously the longitudinal and
survival processes using the relationship via random effects (Rondeau et al., 2012, Krél et al.,
2017). This package can also be used to jointly model longitudinal outcomes; recurrent

events, for example hospital admissions; and terminal events, for example, death.
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I have focused on the packages available in R. However, the package stjm is available in Stata

(Crowther et al., 2013) and the package JMfit (Zhang et al., 2016a) is available in SAS.

Most of the packages mentioned only allow for one longitudinal outcome. Given that
investigators should try and limit the number of primary outcomes, this is unlikely to be an
issue in most trials. It should be noted, however, that the R package joineRML can be used if

multiple longitudinal outcomes are required.

7.5 Simulation study

A simulation study was used to compare the performance of the joint models in terms of the
bias and efficiency of the estimated effect of the intervention for both the time-to-event and
continuous outcomes. The results will be compared to those obtained when analysing the

outcomes separately.

Scenarios were simulated by varying the strength of the association between the longitudinal
continuous outcome and the time-to-event outcome and the level of missing data for the

continuous outcome. Details of these scenarios are provided in Table 7.1.

The simulated datasets contain a single continuous longitudinal and a single time-to-event
outcome, which may be correlated. | simulated the data using a joint model that only shared
the random effects. The random effects had a mean of zero. The longitudinal model
contained a fixed intercept, time covariate and a binary intervention assignment covariate.
The survival model was adjusted by only the binary intervention assignment covariate. It was
assumed that the event was terminal and therefore no longitudinal information was
recorded for an individual after their survival time. To generate the data the “simjointmeta”
package in R was used.

Table 7.1 Scenarios simulated to evaluate methods which may be used to analyse a time-
to-event outcome and a continuous outcome

Variable Values

Association parameter 0,05,1,15

Percentage of missing data | 1) No additional missing data
values 2) 25% of the continuous outcome was set to
missing using a missing completely at random

mechanism (‘additional missing data’).
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| set the sample size to 560 participants, as this approximately the number in the motivating
CiRCLE trial dataset, with an equal number of participants being allocated to each of the two
randomised groups. For the longitudinal continuous outcome, | specified three follow up
time points and a standardised intervention effect of 0.25 at both follow up time points.
When assuming a significance level of 5%, the longitudinal outcome was individually
powered at 84% when the association parameter between the models was zero. For the
time-to-event outcome, a standardised intervention effect of 0.5 was chosen. The time-to-

event outcome was censored such that there was approximately 50% censoring.

The bias associated with the estimated intervention effects was of primary interest. | also
calculated: the FWER, the marginal power for each outcome, the overall disjunctive power,
the coverage of the estimated intervention effects, the empirical standard error (EmpSE) and
the mean square error of the estimated intervention effects and the Monte Carlo standard

error (MCSE) of bias for the estimated intervention effects.

To account for multiple outcomes when calculating the FWER and the disjunctive power, the

Bonferroni method was used. For each scenario, | ran 2500 simulations.
The following methods were used to analyse the data:

1) Univariate models (UV). For the longitudinal continuous outcome, a linear mixed
model was implemented. For the time-to-event outcome a Cox proportional hazards
model was implemented.

2) Correlated random effects models (using the R package JoineR)

3) Shared parameter estimates (using the R package JointModel)

4) Shared random effects (using the R package FrailtyPack)

When using the JointModel package, | specified the baseline hazard as a piecewise-constant
function, meaning that the baseline hazard was specified to have different constant values
within different time intervals. Additionally, the JointModel package offers two options for
numerical integration: the standard Gauss-Hermite rule and the pseudo-adaptive Gauss-
Hermite rule. It has been shown that the latter can be more effective in that typically fewer
qguadrature points are required to obtain an approximation error of the same magnitude and
computational burden is reduced (Rizopoulos, 2010). Consequently, the latter was used in
the analyses using the JointModel package. When implementing the models, the default

settings were used for all other options.
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7.6 Results

The estimated intervention effect together with the estimated bias of the estimated
intervention effects are shown in Figure 7.1 and Figure 7.2. The figures show that when the
outcomes are analysed separately, the estimator for the time-to-event outcome can be
biased. When the association parameter was set to zero, no bias was observed, however,
bias was observed when the association parameter was set to 0.5. The bias further increased
when the association parameter was increased. When the association parameter was set to
1.5, the univariate Cox proportional hazards model significantly underestimated the
intervention effect. The estimated bias in the estimated intervention effect for the survival
model is reduced when implementing the joint models. When the association parameter was
set to 1.5, the correlated random effects model (implemented using JoineR) provided the
least biased estimates. The estimator of the intervention effect for the longitudinal model is
unbiased when the association parameter was set to 0 or 0.5, as found for each of the
methods. When the association parameter was set to 1.5, a small downward bias was
observed for the univariate approach. The correlated random effects model (implemented
using JoineR) and the shared random effects model (implemented using FrailtyPack)
approach produced the least biased estimates. Similar results were observed for when 25%
of the continuous outcome was set to missing (this scenario has been referred to as
‘additional missing data’). The under-coverage of the univariate time-to-event outcome

reflects the downwards bias described above.

The joint models increase the empirical standard error compared to analysing the outcomes
separately. There were noticeable differences in the empirical standard errors when the
association parameter was set to 1.5 (Time-to-event outcome: Univariate = 0.116; JoineR =
0.159; Fatality Pack = 0.164; JointModel = 0.152). When the association parameter was set
to 0 and 0.5, the mean square error observed was comparable for each of the methods.
When the association parameter was set to 1.5, the joint random effect models
(implemented using JoineR) and the model that utilised shared parameters between the
longitudinal model and the survival model (implemented using JointModel) performed best

in terms of mean square error.

The FWER was controlled at around 0.05 (ranging from 0.041 to 0.057) when there was no
additional missing data in the longitudinal outcome. When there was missing data, the FWER
slightly increased for the shared random effects model (implemented using the frailty pack)

ranging from 0.052 to 0.063 depending on the magnitude of the association parameter.
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The marginal power for both outcomes was reduced as the association parameter increased.
When the association parameter was set to zero, the longitudinal outcome had 84%-85%
power and the time-to-event outcome had 99% power. The higher marginal power in the

time-to-event outcome is likely to have dominated the disjunctive power results.
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Figure 7.1 Bias in estimating the intervention effects when simulating one time-to-event
and one continuous outcome and no additional missing data in the continuous outcome.

The red dots represent the average of the estimated intervention effect (ﬁ) for the time-to-
event outcome, with error bars representing + 1.96 X Monte CarloSE(Bias). The light blue
dots represent the average of the estimated intervention effect (,@) for the continuous
longitudinal outcome, with error bars representing + 1.96 X Monte CarloSE(Bias). The
association parameter varied across the graphs. This is described by the “association” in the

headings for each of the graphs. The true intervention effects on both outcomes are
represented by the grey horizontal line.

Association = 0.0 Association = 0.5

0.6+ 0.6 1
- - - - * L ] -
.
804 804
[ @] (8]
- - - = - e e -
0.2 021
Uni JoineR FrailtyPack JointMadel Uni JoineR FrailtyPack JointhWodel
Method Method
Association = 1.0 Association = 1.5
0.61 064
& - L)
. hd .
8o ¢ 04
7 (=]
Q o .
. & & ) . & & -
0.2 0z
Uni JoineR  FrailyPack JointModel uni JoineR  FrailyPack Jointhodel
Method Method

127



Chapter 7 Survival outcome

Figure 7.2 Bias in estimating intervention effects when simulating one time-to-event and
one continuous outcome with additional missing data in the continuous outcome.

The red dots represent the average of estimated intervention effect (£) for the time-to-event
outcome, with error bars representing + 1.96 X Monte CarloSE(Bias). The light blue dots
represent the average of the estimated intervention effect (8) for the continuous
longitudinal outcome, with error bars representing + 1.96 X Monte CarloSE(Bias). The
association parameter varied across the graphs. This is described by the “association” in the

headings for each of the graphs. The true intervention effects on both outcomes are
represented by the grey horizontal line.

Association = 0.0 Association = 0.5

0.6 051
- -  J L ] | J * *
L
T ©
1 S 041
8 04 S
- & L L L] - - Ld
024 0.2
Uni JoineR  FrailtyPack JointModel o JoineR  FraiiyPack Jointiiode|
‘Method ‘ o WMethod

Association=1.0 Association=1.5

Uni

JoineR  FrailtyPack JointModel U;-u'
Method

JoineR FrailtyPack JointModel
Method

128



Chapter 7 Survival outcome

Table 7.2 Coverage of the estimated intervention effects obtained when evaluating one
time-to-event outcome and one longitudinal outcome.

The univariate model is compared to three joint models. The scenarios evaluated vary by the
type of missing data and the magnitude of the association parameter. The nominal coverage
probability is 95.0%

Additional Association
missingness between Conti longitudinal
for outcomes ontinuous longitudina Time-to-event outcome
continuous outcome
outcome |,
Method = Uni JoineR  Frailty  Joint Uni JoineR  Frailty Joint
Pack Model Pack Model
01]94.8 94.4 94.7 94.7 94.1 94.1 93.7 94.0
None 0.5]95.2 94.8 95.2 95.8 93.4 94.0 94.0 93.7
1194.6 95.1 95.6 95.4 88.0 95.2 95.2 93.8
1.5 | 95.0 96.0 96.2 96.0 76.2 95.5 95.7 93.2
01949 94.5 94.6 94.7 94.9 94.8 94.8 95.0
MCAR 25% 0.5]93.2 94.2 94.0 94.1 93.6 95.0 94.4 94.6
1|94.6 94.2 94.8 94.8 90.4 95.0 95.6 94.6
1.5]|94.4 94.8 94.8 95.4 76.8 96.4 96.0 94.8

Table 7.3 Empirical standard error of the estimated intervention effects obtained when
evaluating one continuous outcome and one time-to-event outcome

The univariate model is compared to three joint models. The scenarios evaluated vary by
the type of missing data and the magnitude of the association parameter.

Additional Association
missingness  between . L
for outcomes Continuous longitudinal Time-to-event outcome
continuous N outcome
outcome
Method = Uni JoineR  Frailty  Joint Uni JoineR  Frailty  Joint
Pack Model Pack Model
00083 0.083 0.083 0.083 [0.119 0.12 0.12 0.119
None 0.5 0.083 0.084 0.084 0.084 |0.118 0.126 0.126 0.125
1]10.081 0.082 0.082 0.082 |0.116 0.139 0.14 0.134
1.5]10.081 0.083 0.083 0.082 |0.116 0.159 0.164 0.152
010094 0.094 0.094 0.094 |0.12 0.121 0.121 0.121
MCAR 25% 0.5 0.093 0.093 0.093 0.093 | 0.124 0.131 0.132 0.130
1]10.090 0.091 0.091 0.090 |0.114 0.141 0.143 0.136
1.5]10.089 0.091 0.090 0.08 |0.122 0.166 0.180 0.162
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Table 7.4 The Monte Carlo standard errors of the estimated intervention effects obtained
when evaluating one continuous outcome and one time-to-event outcome.

The univariate model is compared to three joint models. The scenarios evaluated vary by the
type of missing data and the magnitude of the association parameter.

1.5

0.009 0.008 0.008 0.008
0.009 0.008 0.008 0.008

Additional Association
missingness between
for outcomes Continuous longitudinal outcome Time-to-event outcome
continuous N
outcome
Method - Uni Joine  Frailty Joint Uni Joine  Frailty Joint
R Pack Model R Pack Model
0 | 0.007 0.007 0.007 0.007 | 0.014 0.014 0.014 0.014
None 0.5 | 0.007 0.007 0.007 0.007 | 0.014 0.016 0.016 0.016
1| 0.007 0.007 0.007 0.007 | 0.021 0.019 0.02 0.018
1.5 | 0.007 0.007 0.007 0.007 | 0.033 0.025 0.027 0.024
0 | 0.009 0.009 0.009 0.009 | 0.014 0.015 0.015 0.015
MCAR 25% 0.5 | 0.009 0.009 0.009 0.009 | 0.022 0.021 0.021 0.02

0.020 0.020 0.020 0.019
0.035 0.028 0.033 0.027

Table 7.5 The familywise error rate obtained when evaluating one continuous and one
time-to-event outcome

The univariate model is compared to three joint models. The scenarios evaluated vary by the
type of missing data and the magnitude of the association parameter. The Bonferroni
method was used to account for the multiplicity.

Additional Association
missingness between
for outcomes
continuous
outcome
Method - Uni Joine  Frailty  Joint
R Pack Model
01 0.041 0.045 0.042 0.040
None 0.5 0.052 0.057 0.050 0.050
1]10.050 0.052 0.055 0.049
1.510.048 0.047 0.052 0.045
0| 0.055 0.056 0.063 0.055
MCAR 25% 0.5]10.050 0.052 0.057 0.05
1 0.055 0.056 0.063 0.055
1.510.040 0.043 0.052 0.038
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Table 7.6 The marginal power obtained for each of the outcomes when evaluating one
continuous outcome and one time-to-event outcome.

The univariate model is compared to three joint models. The scenarios evaluated vary by the
type of missing data and the magnitude of the association parameter. No adjustment has
been made to account for the multiplicity.

Additional Association
missingness  between Conti longitudinal
for outcomes ¢ ontinuous longitudina Time-to-event outcome
continuous outcome
outcome |,
Method = Uni Joine Frailty  Joint Uni Joine Frailty  Joint
R Pack Model R Pack Model
010844 0.847 0.848 0.847 | 0.992 0.99 0.992 0.991
None 0.5]10.812 0.845 0.842 0.827 | 0987 0.989 0.989 0.992
110801 0.841 0.845 0.82 0948 0.956 0.961 0.961
1.5]0.785 0.826 0.835 0.807 | 0.88 0.881 0.895 0.894
0]0.760 0.752 0.761 0.76 0.987 0.986 0.988 0.987
MCAR 25% 0.5]0.700 0.733 0.749 0.714 [ 0931 0.937 0.941 0.946
110690 0.744 0.756 0.712 | 0.938 0.944 0.952 0.954
1.5]0.706 0.739 0.766 0.720 | 0.826 0.835 0.850 0.862

Table 7.7 The overall disjunctive power obtained when evaluating a continuous outcome
and a time-to-event outcome

The univariate model is compared to three joint models. The scenarios evaluated vary by the
type of missing data and the magnitude of the association parameter. The Bonferroni
method has been used to account for the multiplicity.

Additional Association
missingness  between
for outcomes
continuous |
outcome |,
Method - Uni Joine Frailty Joint
R Pack Model
01099 0.991 0.996 0.996
None 0.5 | 0.985 0.987 0.990 0.990
1]10.970 0.970 0.985 0.981
1510934 0.947 0.967 0.960
0 0.993 0.988 0.993 0.993
MCAR 25% 0.5]0.978 0.978 0.978 0.985
110951 0.953 0.963 0.962
1.510.882 0.897 0.923 0.912
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7.7 Discussion

In this chapter, | performed a simulation study to investigate the differences in bias obtained
when using three different joint modelling approaches to jointly analyse a time-to-event
outcome and a continuous outcome in a trial. The results were compared to those obtained
using separate univariate models. Additionally, | quantified the differences in disjunctive

power and FWER achieved using the different methods.

The routines have been implemented in the statistical software R to enable the joint
modelling to be “user-friendly” and more readily accessible. The time to estimate the
different models varied considerably. The shared parameter model took several minutes
longer to implement than the other methods. This is because it used bootstrapping to
calculate the confidence intervals. In practice, when analysing a single dataset, bootstrapping
only needs to be performed once, which in usual cases would not significantly delay the

analysis.

The interpretation of the estimated intervention effect for the time-to-event outcome varied
across the different R packages. When implementing the models with shared random effects
(using the joineR package), the intervention effects are specific to each of the models. As a
result, the estimates are easy to interpret. In contrast, when using the shared parameter
model (implemented using the JointModel package) the overall intervention effect is
decomposed into two parts: the direct and indirect effects. The direct component stems
from parameters being included in the survival model as fixed effects. The indirect
components link the survival model to the estimated coefficients calculated by the
longitudinal model. The two intervention effects may be combined to provide the overall
intervention effect. The overall effect is the sum of the direct component plus the product
of the relevant association parameter and the indirect component (lbrahim et al., 2010). The
combined intervention effect is comparable with the intervention effects estimated using
the other methods. Whilst it is easy to calculate the combined estimated intervention effect,
it is not as straightforward to combine the variances. If the confidence intervals are required,

then the other methods may be easier to implement.

The univariate Cox model underestimated the intervention effect, which resulted in a
downward bias of the estimated intervention effects for the time-to-event outcome. The
bias was reduced when using any of the joint models investigated. The FWER is maintained
at an acceptable level around 0.05 when implementing the univariate model of the joint

models via the JoineR routine or JointModel routine, however, when implementing
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fraitlypack, the FWER is increased for some scenarios. The disjunctive power was increased
when using the joint models compared to using the univariate models. The greatest benefit
in terms of disjunctive power was observed when there was additional missing data in the
continuous outcome and high association between the outcomes. Taking into account these
simulation results and the interpretation of the estimated intervention effect discussed

earlier | would recommend that the JoineR routine is used.

One feature of the joint models examined in this chapter is that the time-to-event outcome
must be terminal. As a result of this assumption, the models do not consider any longitudinal
measurement after the event of interest has occurred. However, there are scenarios in which
the event is not terminal and longitudinal measurements continue to be collected after the
event. For example in the CiRCLE trial described in Section 7.1, the event of interest was time
to relapse, defined as admission to an acute mental health service. The longitudinal
outcomes, which included positive psychotic symptoms, were measured at 3 months and 18
months regardless of if the participant had an event or not. In this example, 88 participants
relapsed prior to the 18 month follow-up but still provided data at this time point. If this data
was removed from the analysis, incorrect conclusions may be drawn regarding the effect of

the intervention on the longitudinal outcomes.

Study extensions and limitations

The joint modelling framework may also be used to assess the effect of the longitudinal
outcomes on the probability of the event occurring. This may be useful in psychiatry trials or
palliative care trials where it is likely that the continuous outcome is associated with the

time-to-event outcome.

When simulating the data, it was assumed that no longitudinal data was collected after the
event of interest. This reflects the situation when the event is terminal, for example, if a
participant dies. In this instance, no further longitudinal information is collected on the
participant. In some trials, however, the event may not be terminal and longitudinal data
may still be collected after the event or alternatively the event may be recurrent. For
example, in psychiatry trials the event may be time until return to drug use. In this instance,
after the event (return to drug use) information may still be collected. Different methodology

may be required to analyse such data (Mazroui et al., 2012, Kim et al., 2012, Liu et al., 2004).
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The frailtyPack routine described earlier can be used to implement a joint model of

longitudinal continuous outcomes and recurrent events.

Additionally, | only considered frequentist methods for the joint modelling of time-to-event
and longitudinal outcomes, however, Bayesian methods have been proposed by Faucett and
Thomas (1996), Ibrahim et al. (2010) and Wang and Taylor (2001). These Bayesian methods
also use a proportional hazards model for the survival model, however, a different
longitudinal model is used. Bayesian methods may be modelled in R using JMBayes (Zhang

et al., 2016a) which uses OpenBUGS or WinBUGS (Lawrence Gould et al., 2015).

7.8 Conclusions

Joint models can be used to link time-to-event outcomes with continuous outcomes and
could provide better more accurate estimates of the effect of the intervention. The time-to-
event and continuous outcomes may be analysed using a survival model and a longitudinal
model, respectively, and these models can be linked. The bias in the estimators for the time-

to-event outcome is reduced when using the joint models.
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Chapter 8

Discussion, guidance and conclusions

The work in this thesis was primarily motivated by the difficulties raised by clinicians working
on RCTs in the field of psychiatry. | have experienced first-hand, when designing trials,that
clinicians can find it challenging to select a single primary outcome that encompasses all
aspects of the health condition they are investigating. As a consequence, several outcomes

are often chosen as the primary outcomes.

There are numerous approaches available to analyse RCTs with multiple outcomes. Previous
work suggested that multivariate methods may produce more precise and accurate
estimates of intervention effects when compared to univariate methods (Pituch et al., 2016,
Snijders and Bosker, 2012). However, the extent of these benefits and the scenarios in which
these benefits may be realised was not known. Additionally, there was a lack of guidance
regarding which approach should be used to calculate the required sample size for an RCT
when there are multiple primary outcomes. As a result, the overarching aim of this thesis
was to understand which methodologies should be used to calculate the required sample

size and to perform the analysis of an RCT that has multiple primary outcomes.
The specific objectives were to:

1. Investigate the frequency that multiple primary outcomes are recorded and analysed in
published RCTs, and to investigate which methods are used for the sample size
calculation and analysis of these trials.

2. Investigate which of the relevant adjustment methods should be used to control the
FWER when analysing correlated primary outcomes.

3. Investigate which of the relevant methods should be used to analyse multiple primary

outcomes and to determine the scenarios in which the methods should be used.

In the remainder of this chapter, | provide a brief summary of my findings, followed by
recommendations on which methods should be used. Finally, | review possible areas for

further research and present my overall conclusions.
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8.1 Summary of thesis and findings

In Chapter 2, | provided a concise summary of the background and key concepts that are
required when discussing multiple outcomes. | introduced the concept of ‘alternative
outcomes’ and ‘co-primary outcomes’ and explained that the work in this thesis focuses on
alternative outcomes. This is when the main clinical objective of a trial is formulated in terms
of investigating the effect of the intervention on several primary outcomes, and the objective
is met if at least one analysis produces statistically significant results. Following this, |
provided the definitions of the familywise error rate (FWER) and disjunctive power. Both of
these concepts need to be considered when selecting the method to analyse multiple
primary outcomes. | then went on to discuss missing data theory. Almost all RCTs have
outcomes that have missing values (Bell et al., 2014) and if the missing data are ignored or
incorrectly handled then the conclusions drawn from the data could be incorrect (Carpenter
and Kenward, 2007). One approach that | discussed to handle missing data was the use of

multiple imputation.

| reviewed relevant methodologies that have been commonly used or recommended for use
in the statistical analysis of multiple primary outcomes. | discussed some of the
disadvantages of using global test statistics (including the necessity to have balanced data
across the outcomes) and using factorisation modelling (including the lack of guidance on
how to use this model for more than two outcomes). | observed that the multivariate
multilevel model is rarely used in clinical trials. However, it is used in other areas of research
and could be easily applied to clinical trials. | explained why the multivariate multilevel model
and the latent variable model are my preferred methods amongst those discussed. Briefly,
both these methods can handle continuous outcomes, binary outcomes or a combination of
the two types. In addition, the number of observations does not need to be balanced across

outcomes and the methods can easily be extended to handle more than two outcomes.

In Chapter 3, | reviewed RCTs that were published in high impact neurology and psychiatry
journals. The review showed that multiple outcomes were commonly used but are often
inadequately analysed. The majority of trials analysed outcomes separately without any
adjustment for multiple comparisons. When adjustment methods were implemented, only
the most basic methods were used. The Bonferroni approach was the most commonly used
method, although the Holm, Hochberg and Siddk methods were also used. This review
highlighted that multiple outcomes are being used in RCTs but guidance is needed regarding

which methods should be used for the sample size calculation and analysis.
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This leads on to Chapter 4 which investigated methodologies to control the FWER when
analysing correlated multiple outcomes. One approach is to adjust the p-values from each
statistical test used to investigate the effect of the intervention or alternatively the
significance level used in the comparisons. When analysing multiple correlated outcomes, |
recommend that either the Hommel or Hochberg method is used, assuming that the
distributional assumptions are met. | highlighted that the sample size requirement to achieve
the desired disjunctive power may be smaller than that required to achieve the desired
marginal power. The choice between whether to specify a disjunctive or marginal power

should depend on the clinical objective.

In Chapter 5, | evaluated multivariate methods for the analysis of multiple primary outcomes
in clinical trials. | performed a simulation study to investigate the differences between the
preferred multivariate methods and the standard univariate approach, with and without
multiple imputation. The work focused on continuous outcomes, binary outcomes and a
combination of the two types. My simulation results suggest that the power to detect an
intervention effect may be increased by using multivariate multilevel models, rather than by
analysing each outcome separately. However, | found that the power gains were small in all
but the most extreme scenarios. The largest gains were observed when there was strong
correlation between the outcomes and high levels of missing data. My findings are consistent
with the results presented in Pituch et al. (2016) and Snijders and Bosker (2012). Additionally,
the multivariate multilevel model does not require any prior imputation of missing data. The
multivariate multilevel model is also flexible allowing both shared intervention effects and

individual intervention effects to be estimated.

The work was extended in Chapter 6 to consider data which are missing not at random
(MNAR). Under MNAR, parameter estimation from the observed data alone is typically
biased. | investigated whether the multivariate multilevel model could reduce the bias in the
estimated intervention effect when the missing data mechanism is MNAR. As expected, no
reduction in terms of bias were made when there was no correlation between the outcomes.
A notable reduction in bias for both the multivariate multilevel model and the multiple
imputation approach occurred when there was moderate to high pairwise correlation

between the outcomes.

In Chapter 7, | considered methods to analyse time-to-event outcomes alongside continuous
outcomes. Joint models can be used to link time-to-event outcomes with continuous

outcomes and these models may provide better estimates of the intervention effect
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compared to analysing the outcomes separately. The simulation results showed that when
the outcomes are analysed separately, parameter estimation for the time-to-event outcome
is typically biased. The bias is reduced when using joint models. The largest reduction of bias
in the estimates were observed when there was a strong association between the time-to-

event and continuous outcomes.

8.2 Recommendations for reporting

In Chapter 3, | reviewed published randomised controlled trials. When extracting the
information required for the review, | noted that key information was missing from some of
the papers. For example, in some papers it was unclear which, if any, of the outcomes were
deemed primary. As a result, | have made the following recommendations regarding the

reporting of results of a clinical trial.

Once the authors have specified the methods for the sample size calculation and analysis,
the protocol and journal article should be written in sufficient detail to ensure the reader is
fully aware of the methods used. As advised by the current ICH guidelines, the trial objectives
should be clearly stated (Phillips and Haudiquet, 2003). Furthermore, the authors should
ensure that they have specified the primary and secondary outcomes, methods of
measurements and time points of interest at the start of the trial (WHO, 2012). The
documentation of the pre-specified outcomes is encouraged by the CONSORT checklist
(Schulz et al., 2010). The sample size calculation should be based on all the primary outcomes
(Chan et al., 2013). Authors should report the sample size calculation and state which of the
outcomes are used in its calculation to ensure that the reader is aware of how the trial is

powered.

With regards to multiplicity arising from multiple outcomes, CONSORT state that “authors
should exercise special care when evaluating the results of trials with multiple comparisons”
(Schulz et al., 2010). | recommend that the chosen method to maintain the FWER at the
desired level is reported and justification for the choice provided. If the RCT is viewed as
confirmatory, the ICH E9 guidelines state that any aspects of multiplicity should be identified
in the protocol; adjustment should always be considered and the details of any adjusting
method, or an explanation of why an adjustment is not thought to be necessary, should be
set out in the analysis plan (Phillips and Haudiquet, 2003). The abstract should be clear,
transparent, and sufficiently detailed (Hopewell et al., 2008), as explained in the CONSORT
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statement. This is because readers often base their assessment of the trial on the
information provided in the abstract. It is important that the abstract is an accurate record

of the trial and is not in any way ambiguous or misleading.

There is no general consensus regarding the importance of secondary outcomes; they can
be viewed as supportive evidence or as a basis for additional claims. If secondary outcomes
are viewed as supportive evidence then statistical adjustments may not be required (Pocock,
1997). Appropriate caution should be exercised when interpreting their results. One option
to ensure that secondary outcomes are given less emphasis would be to present estimates
of the intervention effect for them with the corresponding confidence intervals, rather than
the p-values. This would give information about the level of precision and whether the
confidence level included a clinically important intervention effect. If the secondary
outcomes are used for additional claims then multiplicity needs to be accounted for when
analysing these outcomes too (Committee for Proprietary Medicinal Products, 2002). For
example, further confirmatory statistical testing on secondary variables can be performed
using a further hierarchical order for the secondary variables (Committee for Proprietary

Medicinal Products, 2002).

8.3 Implementation of the recommended methods when analysing

multiple outcomes

The sample size calculation for any clinical trial should reflect the clinical aims of the trial. If
multiple primary outcomes are used then this should be reflected in the calculation. When
calculating the required sample size for an RCT with multiple primary outcomes, |
recommend that the Bonferroni method is used to account for multiplicity. To implement
the Bonferroni method in the sample size calculation, any standard package may be used.
For example, in Stata the power command may be used or in R the samplesize command
may be used. The significance level would need to be adjusted according to the Bonferroni

method.

During the analysis stage | recommend that either the Hochberg or Hommel method is used
to control the FWER. To implement the Hochberg or Hommel p-value adjustment method, |
recommend using the R package p.adjust. The Hochberg method may be implemented in
Stata using the multproc command. There is no inbuilt function in Stata to use the Hommel
method. However, if this method is desired, | would recommend that the user performs the

analysis in their chosen software and copies the p-values into R for adjustment.
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To analyse multiple continuous outcomes, multiple binary outcomes or a combination of the
two, | recommend that the multivariate multilevel model is used. The multivariate multilevel
model may be implemented using the statistical software package MLwiN (Rabash et al.,
2009). MLwiN can be used via R and Stata using the R2ZMIwiN (Zhang et al., 2016b) and
runMLwiN (Leckie and Charlton, 2013) packages, respectively. Details of how the
multivariate multilevel model can be implemented in Stata and R are provided in

Appendix 7.

To analyse a time-to-event outcome and a continuous outcome, | suggest that a joint model
is used. In particular, | recommend that a correlated random effects model is used which

may be implemented using the JoineR package in R.

8.4 Limitations and future work

Based on my review of published trials, | focused on the simpler methods to control the
FWER. However, there are other more advanced methods available in the literature. For
example, to control the FWER, graphical methods (Bretz et al., 2011, Bretz et al., 2009) or
Dunnett’s methods (Dunnett, 1955) may be used. The step-down Dunnett method and step-
up Dunnett method require complicated, iterative procedures that have not been
implemented in any statistical software (Blakesley et al., 2009). | therefore felt that the other
methods were more relevant for the comparison. The graphical methods may be used to
evaluate outcomes that have a pre-specified hierarchy (Bretz et al., 2009, Bretz et al., 2011).
Graphical models may also be used when the analysis plan is complex due to splitting of the
overall alpha among the outcomes. The graphical models are particularly useful if there is a
desire to have a ‘second chance’ for an outcome that was not statistically significant at the
initially assigned outcome-specific alpha. Outcomes that were not statistically significant
initially receive ‘pass-along’ alpha from a different outcome that was statistically significant

at the initially assigned alpha (Food and Drug Administration, 2017).

In the review of published RCTs, | observed that the majority of papers that analysed multiple
primary outcomes specified two primary outcomes and very few papers used more than four
outcomes. Consequently, in this thesis, | focused on providing recommendations for
analysing two to four outcomes. However, in other areas of research such as genetic studies
the number of outcomes being analysed maybe more than this. Further work is required to

investigate which methods should be used when analysing a larger number of outcomes.
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The focus of this work was on multiple primary outcomes, however, similar issues regarding
multiplicity will also arise when analysing multiple intervention groups (Freidlin et al., 2008,
Baron et al., 2013) or multiple patient populations (Brookes et al., 2001). Further work is
required to see which methods would be best suited to analyse the data accounting for

multiplicity in these scenarios.

| have not considered the Bayesian framework in this thesis. When a Bayesian framework is
used, external evidence may be included in all aspects of an RCT, including the design,
analysis and interpretation (Spiegelhalter et al., 2004). As a consequence, the Bayesian
approach may be viewed as more efficient as it is able to make use of all available evidence
rather than restricting the analysis to just the new data collected. Additionally, the Bayesian
framework is valuable as it can provide a more flexible approach to the analysis that can be
adapted to each trial (Spiegelhalter et al., 2004). In this work, | have often assumed that the
outcomes are normally distributed, either directly or via a latent variable. In a Bayesian
analysis, more complicated models can be used. This may be required when analysing health
economic data, which often includes skewed cost data and utility values which lie between

zero and one.

8.5 Conclusions

In this thesis, | addressed the need for a review and evaluation of how multiple outcomes
are analysed in published randomised controlled trials. | also addressed the need for a
comparison between univariate and relevant multivariate methods for the analysis of clinical
trials. The multivariate multilevel model can be used to analyse clinical trials with multiple
primary outcomes, which are correlated, to produce a more accurate estimate of the

intervention effects.
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ABSTRACT

Objectives: To review how multiple primary outcomes are currently considered in the analysis of randomised
controlled trials. We briefly describe the methods available to safeguard the inferences and to raise awareness
of the potential problems caused by multiple outcomes.
Methods/design: We reviewed randomised controlled trials (RCTs) in neurology and psychiatry disease areas, as
these frequently analyse multiple outcomes. We reviewed all published RCTs from July 2011 to June 2014 inclu-
sive in the following high impact journals: The New England Journal of Medicine, The Lancet, The American Jour-
nal of Psychiatry, JAMA Psychiatry, The Lancet Neurology and Neurology. We examined the information
presented in the abstract and the methods used for sample size calculation and statistical analysis. We recorded
the number of primary outcomes, the methods used to account for multiple primary outcomes, the number of
outcomes discussed in the abstract and the number of outcomes used in the sample size calculation.
Results: Of the 209 RCTs that we identified, 60 (29%) analysed multiple primary outcomes. Of these, 45 (75%) did
not adjust for multiplicity in their analyses. Had multiplicity been addressed, some of the trial conclusions would
have changed. Of the 15 (25%) trials which accounted for multiplicity, Bonferroni's correction was the most com-
monly used method.
Conclusions: Our review shows that trials with multiple primary outcomes are common. However, appropriate
steps are not usually taken in most of the analyses to safeguard the inferences against multiplicity. Authors
should state their chosen primary outcomes clearly and justify their methods of analysis.

© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.cct.2015.07.016
1551-7144/0© 2015 Elsevier Inc. All rights reserved.

153



Appendix 1

154



Appendix 1

155



Appendix 1

156



Appendix 1

157



Appendix 2

Appendix 2

Papers included in review of published
neurology and psychiatry randomised
controlled trials

Below are the references for the 209 trials in the review of recently published randomised controlled
trials (Chapter 3)

1. ADELSON, P. D., WISNIEWSKI, S. R., BECA, J., BROWN, S. D., BELL, M., MUIZELAAR, J. P.,
OKADA, P., BEERS, S. R., BALASUBRAMANI, G. K. & HIRTZ, D. 2013. Comparison of
hypothermia and normothermia after severe traumatic brain injury in children (Cool Kids): a
phase 3, randomised controlled trial. The Lancet Neurology.

2. AL-CHALABI, A., ALLEN, C., COUNSELL, C., FARRIN, A., DICKIE, B., KELLY, J., LEIGH, P.,
MURPHY, C., PAYAN, C. & REYNOLDS, G. 2013. Lithium in patients with amyotrophic lateral
sclerosis (LICALS): A phase 3 multicentre, randomised, double-blind, placebo-controlled
trial. The Lancet Neurology, 12, 339-345.

3. ALEGRIA, M., CARSON, N., FLORES, M., LI, X., SHI, P., LESSIOS, A. S., POLO, A., ALLEN, M.,
FIERRO, M. & INTERIAN, A. 2014. Activation, self-management, engagement, and retention
in behavioural health care: a randomized clinical trial of the DECIDE intervention. JAMA
psychiatry.

4. ALLEN, R. P., CHEN, C., GARCIA-BORREGUERO, D., POLO, O., DUBRAVA, S., MICELI, J.,
KNAPP, L. & WINKELMAN, J. W. 2014. Comparison of pregabalin with pramipexole for
restless legs syndrome. New England Journal of Medicine, 370, 621-631.

5. ALLSOP, D.J., COPELAND, J., LINTZERIS, N., DUNLOP, A. J., MONTEBELLO, M., SADLER, C.,
RIVAS, G. R., HOLLAND, R. M., MUHLEISEN, P. & NORBERG, M. M. 2014. Nabiximols as an
Agonist Replacement Therapy During Cannabis Withdrawal: A Randomized Clinical Trial.
JAMA psychiatry, 71, 281-291.

6. ALTINBAS, A., VAN ZANDVOORT, M., VAN DEN BERG, E., JONGEN, L., ALGRA, A., MOLL, F.,
NEDERKOORN, P., MALI, W., BONATI, L. & BROWN, M. 2011. Cognition after carotid
endarterectomy or stenting A randomized comparison. Neurology, 77, 1084-1090.

7. ANDERSON, C. S., HEELEY, E., HUANG, Y., WANG, J., STAPF, C., DELCOURT, C., LINDLEY, R.,
ROBINSON, T., LAVADOS, P. & NEAL, B. 2013. Rapid blood-pressure lowering in patients
with acute intracerebral haemorrhage. New England Journal of Medicine, 368, 2355-2365.

8. ANTON, R. F., MYRICK, H., WRIGHT, T. M., LATHAM, P. K., BAROS, A. M., WAID, L. R. &
RANDALL, P. K. 2011. Gabapentin combined with naltrexone for the treatment of alcohol
dependence. American Journal of Psychiatry, 168, 709-717.

9. BAMELIS, L. L., EVERS, S. M., SPINHOVEN, P. & ARNTZ, A. 2014. Results of a multicentre
randomized controlled trial of the clinical effectiveness of Schema Therapy for personality
disorders. American Journal of Psychiatry, 171, 305-322.

10. BANERIEE, S., HELLIER, J., DEWEY, M., ROMEO, R., BALLARD, C., BALDWIN, R., BENTHAM, P.,
FOX, C., HOLMES, C. & KATONA, C. 2011. Sertraline or mirtazapine for depression in
dementia (HTA-SADD): a randomised, multicentre, double-blind, placebo-controlled trial.
The Lancet, 378, 403-411.

11. BARLOW, A., MULLANY, B., NEAULT, N., COMPTON, S., CARTER, A., HASTINGS, R., BILLY, T.,
COHO-MESCAL, V., LORENZO, S. & WALKUP, J. T. 2013. Effect of a paraprofessional home-

158



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Appendix 2

visiting intervention on American Indian teen mothers’ and infants’ behavioural risks: A
randomized controlled trial. American Journal of Psychiatry, 170, 83-93.

BASS, J. K., ANNAN, J., MCIVOR MURRAY, S., KAYSEN, D., GRIFFITHS, S., CETINOGLU, T.,
WACHTER, K., MURRAY, L. K. & BOLTON, P. A. 2013. Controlled trial of psychotherapy for
Congolese survivors of sexual violence. New England Journal of Medicine, 368, 2182-2191.
BAULAC, M., BRODIE, M. J., PATTEN, A., SEGIETH, J. & GIORGI, L. 2012. Efficacy and
tolerability of zonisamide versus controlled-release carbamazepine for newly diagnosed
partial epilepsy: a phase 3, randomised, double-blind, non-inferiority trial. The Lancet
Neurology, 11, 579-588.

BEARDSLEE, W. R., BRENT, D. A., WEERSING, V. R., CLARKE, G. N., PORTA, G., HOLLON, S. D,,
GLADSTONE, T. R., GALLOP, R., LYNCH, F. L. & IYTENGAR, S. 2013. Prevention of depression in
at-risk adolescents: Longer-term effects. JAMA psychiatry, 70, 1161-1170.

BENAVENTE, O., COFFEY, C., CONWIT, R., HART, R., MCCLURE, L., PEARCE, L., PERGOLA, P.,
SZYCHOWSKI, J. & GROUP, S. S. 2013. Blood-pressure targets in patients with recent lacunar
stroke: the SPS3 randomised trial. Lancet, 382, 507.

BENAVENTE, O. R., HART, R. G., MCCLURE, L. A., SZYCHOWSKI, J. M., COFFEY, C. S., PEARCE,
L. A. & INVESTIGATORS, S. 2012. Effects of clopidogrel added to aspirin in patients with
recent lacunar stroke. N Engl J Med, 367, 817-25.

BOWEN, S., WITKIEWITZ, K., CLIFASEFI, S. L., GROW, J., CHAWLA, N., HSU, S. H., CARROLL, H.
A., HARROP, E., COLLINS, S. E. & LUSTYK, M. K. 2014. Relative Efficacy of Mindfulness-Based
Relapse Prevention, Standard Relapse Prevention, and Treatment as Usual for Substance
Use Disorders: A Randomized Clinical Trial. JAMA psychiatry.

BOWIE, C. R., MCGURK, S. R., MAUSBACH, B., PATTERSON, T. L. & HARVEY, P. D. 2012.
Combined cognitive remediation and functional skills training for schizophrenia: effects on
cognition, functional competence, and real-world behavior. American Journal of Psychiatry,
169, 710-718.

BOXER, A. L., KNOPMAN, D. S., KAUFER, D. I., GROSSMAN, M., ONYIKE, C., GRAF-RADFORD,
N., MENDEZ, M., KERWIN, D., LERNER, A. & WU, C.-K. 2013. Memantine in patients with
frontotemporal lobar degeneration: a multicentre, randomised, double-blind, placebo-
controlled trial. The Lancet Neurology, 12, 149-156.

BOYER, L., DOUSSET, A., ROUSSEL, P., DOSSETTO, N., CAMMILLERI, S., PIANO, V., KHALFA,
S., MUNDLER, O., DONNET, A. & GUEDJ, E. 2014. rTMS in fibromyalgia A randomized trial
evaluating QoL and its brain metabolic substrate. Neurology, 82, 1231-1238.

BRODERICK, J. P., PALESCH, Y. Y., DEMCHUK, A. M., YEATTS, S. D., KHATRI, P., HILL, M. D.,
JAUCH, E. C., JOVIN, T. G., YAN, B. & SILVER, F. L. 2013. Endovascular therapy after
intravenous t-PA versus t-PA alone for stroke. New England Journal of Medicine, 368, 893-
903.

BURNS, T., RUGKASA, J.,, MOLODYNSKI, A., DAWSON, J., YEELES, K., VAZQUEZ-MONTES, M.,
VOYSEY, M., SINCLAIR, J. & PRIEBE, S. 2013. Community treatment orders for patients with
psychosis (OCTET): a randomised controlled trial. The Lancet, 381, 1627-1633.

CALABRESI, P. A., RADUE, E.-W., GOODIN, D., JEFFERY, D., RAMMOHAN, K. W., REDER, A. T.,
VOLLMER, T., AGIUS, M. A., KAPPQOS, L. & STITES, T. 2014. Safety and efficacy of fingolimod
in patients with relapsing-remitting multiple sclerosis (FREEDOMS Il): a double-blind,
randomised, placebo-controlled, phase 3 trial. The Lancet Neurology, 13, 545-556.
CAMPBELL, A. N., NUNES, E. V., MATTHEWS, A. G., STITZER, M., MIELE, G. M., POLSKY, D.,
TURRIGIANO, E., WALTERS, S., MCCLURE, E. A., KYLE, T. L., WAHLE, A., VAN VELDHUISEN, P.,
GOLDMAN, B., BABCOCK, D., STABILE, P. Q., WINHUSEN, T. & GHITZA, U. E. 2014. Internet-
delivered treatment for substance abuse: a multisite randomized controlled trial. Am J
Psychiatry, 171, 683-90.

CARDENAS, D. D., NIESHOFF, E. C., SUDA, K., GOTO, S.-l., SANIN, L., KANEKO, T., SPORN, J.,
PARSONS, B., SOULSBY, M. & YANG, R. 2013. A randomized trial of pregabalin in patients
with neuropathic pain due to spinal cord injury. Neurology, 80, 533-539.

159



Appendix 2

160

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

CARROLL, J. D., SAVER, J. L., THALER, D. E., SMALLING, R. W., BERRY, S., MACDONALD, L. A,,
MARKS, D. S. & TIRSCHWELL, D. L. 2013. Closure of patent foramen ovale versus medical
therapy after cryptogenic stroke. New England Journal of Medicine, 368, 1092-1100.
CARROLL, K. M., KILUK, B. D., NICH, C., GORDON, M. A., PORTNOY, G. A., MARINO, D. R. &
BALL, S. A. 2014. Computer-assisted delivery of cognitive-behavioral therapy: efficacy and
durability of CBT4CBT among cocaine-dependent individuals maintained on methadone.
American Journal of Psychiatry, 171, 436-444.

CHANCELLOR, M. B., PATEL, V., LENG, W. W., SHENOT, P. J., LAM, W., GLOBE, D. R, LOEB, A.
L. & CHAPPLE, C. R. 2013. OnabotulinumtoxinA improves quality of life in patients with
neurogenic detrusor overactivity. Neurology, 81, 841-848.

CHATTERIEE, S., NAIK, S., JOHN, S., DABHOLKAR, H., BALAJI, M., KOSCHORKE, M.,
VARGHESE, M., THARA, R., WEISS, H. A. & WILLIAMS, P. 2014. Effectiveness of a
community-based intervention for people with schizophrenia and their caregivers in India
(COPSI): a randomised controlled trial. The Lancet, 383, 1385-1394.

CHESNUT, R. M., TEMKIN, N., CARNEY, N., DIKMEN, S., RONDINA, C., VIDETTA, W., PETRONI,
G., LUJAN, S., PRIDGEON, J. & BARBER, J. 2012. A trial of intracranial-pressure monitoring in
traumatic brain injury. New England Journal of Medicine, 367, 2471-2481.

CHIARAVALLQOTI, N. D., MOORE, N. B., NIKELSHPUR, O. M. & DELUCA, J. 2013. An RCT to
treat learning impairment in multiple sclerosis The MEMREHAB trial. Neurology, 81, 2066-
2072.

CICCONE, A., VALVASSORI, L., NICHELATTI, M., SGOIFO, A., PONZIO, M., STERZI, R. &
BOCCARDI, E. 2013. Endovascular treatment for acute ischemic stroke. New England Journal
of Medicine, 368, 904-913.

CINCIRIPINI, P. M., ROBINSON, J. D., KARAM-HAGE, M., MINNIX, J. A., LAM, C., VERSACE, F.,
BROWN, V. L., ENGELMANN, J. M. & WETTER, D. W. 2013. Effects of varenicline and
bupropion sustained-release use plus intensive smoking cessation counseling on prolonged
abstinence from smoking and on depression, negative affect, and other symptoms of
nicotine withdrawal. JAMA Psychiatry, 70, 522-33.

COELHO, T., MAIA, L. F., DA SILVA, A. M., CRUZ, M. W., PLANTE-BORDENEUVE, V., LOZERON,
P., SUHR, O. B., CAMPISTOL, J. M., CONCEI(;AO, I. M. & SCHMIDT, H. H.-J. 2012. Tafamidis
for transthyretin familial amyloid polyneuropathy A randomized, controlled trial.
Neurology, 79, 785-792.

COHEN, J. A., COLES, A. J., ARNOLD, D. L., CONFAVREUX, C., FOX, E. J., HARTUNG, H.-P.,
HAVRDOVA, E., SELMAJ, K. W., WEINER, H. L. & FISHER, E. 2012. Alemtuzumab versus
interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple
sclerosis: a randomised controlled phase 3 trial. The Lancet, 380, 1819-1828.

COLES, A. J.,, TWYMAN, C. L., ARNOLD, D. L., COHEN, J. A.,, CONFAVREUX, C., FOX, E. J.,
HARTUNG, H.-P., HAVRDOVA, E., SELMAJ, K. W. & WEINER, H. L. 2012. Alemtuzumab for
patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised
controlled phase 3 trial. The Lancet, 380, 1829-1839.

COLFAX, G. N., SANTOS, G.-M., DAS, M., SANTOS, D. M., MATHESON, T., GASPER, J.,
SHOPTAW, S. & VITTINGHOFF, E. 2011. Mirtazapine to reduce methamphetamine use: a
randomized controlled trial. Archives of general psychiatry, 68, 1168.

COMI, G., DE STEFANO, N., FREEDMAN, M. S., BARKHOF, F., POLMAN, C. H., UITDEHAAG, B.
M., CASSET-SEMANAZ, F., HENNESSY, B., MORAGA, M. S. & ROCAK, S. 2012a. Comparison of
two dosing frequencies of subcutaneous interferon beta-1a in patients with a first clinical
demyelinating event suggestive of multiple sclerosis (REFLEX): a phase 3 randomised
controlled trial. The Lancet Neurology, 11, 33-41.

COMI, G., JEFFERY, D., KAPPOS, L., MONTALBAN, X., BOYKO, A., ROCCA, M. A. & FILIPPI, M.
2012b. Placebo-controlled trial of oral laquinimod for multiple sclerosis. New England
Journal of Medicine, 366, 1000-1009.

CONFAVREUX, C., O'CONNOR, P., COMI, G., FREEDMAN, M. S., MILLER, A. E., OLSSON, T. P,,
WOLINSKY, J. S., BAGULHO, T., DELHAY, J.-L. & DUKOVIC, D. 2014. Oral teriflunomide for



41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Appendix 2

patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-
controlled, phase 3 trial. The Lancet Neurology, 13, 247-256.

CONROD, P. J., O’LEARY-BARRETT, M., NEWTON, N., TOPPER, L., CASTELLANOS-RYAN, N.,
MACKIE, C. & GIRARD, A. 2013. Effectiveness of a selective, personality-targeted prevention
program for adolescent alcohol use and misuse: a cluster randomized controlled trial. JAMA
psychiatry, 70, 334-342.

CREEMERS, H., VELDINK, J. H., GRUPSTRA, H., NOLLET, F., BEELEN, A. & VAN DEN BERG, L. H.
2014. Cluster RCT of case management on patients' quality of life and caregiver strain in
ALS. Neurology, 82, 23-31.

CUDKOWICZ, M. E., VAN DEN BERG, L. H., SHEFNER, J. M., MITSUMOTO, H., MORA, J. S.,
LUDOLPH, A., HARDIMAN, O., BOZIK, M. E., INGERSOLL, E. W. & ARCHIBALD, D. 2013.
Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER):
a randomised, double-blind, phase 3 trial. The Lancet Neurology, 12, 1059-1067.
CUMMINGS, J., ISAACSON, S., MILLS, R., WILLIAMS, H., CHI-BURRIS, K., CORBETT, A., DHALL,
R. & BALLARD, C. 2014. Pimavanserin for patients with Parkinson's disease psychosis: a
randomised, placebo-controlled phase 3 trial. The Lancet, 383, 533-540.

DAUVILLIERS, Y., BASSETTI, C., LAMMERS, G. J., ARNULF, I., MAYER, G., RODENBECK, A.,
LEHERT, P., DING, C.-L., LECOMTE, J.-M. & SCHWARTZ, J.-C. 2013. Pitolisant versus placebo
or modafinil in patients with narcolepsy: a double-blind, randomised trial. The Lancet
Neurology, 12, 1068-1075.

DAVALOS, A., ALVAREZ-SABIN, J., CASTILLO, J., DIEZ-TEJEDOR, E., FERRO, J., MARTINEZ-VILA,
E., SERENA, J., SEGURA, T., CRUZ, V. T. & MASJUAN, J. 2012. Citicoline in the treatment of
acute ischaemic stroke: an international, randomised, multicentre, placebo-controlled
study (ICTUS trial). The Lancet, 380, 349-357.

DE YEBENES, J. G., LANDWEHRMEYER, B., SQUITIERI, F., REILMANN, R., ROSSER, A., BARKER,
R. A., SAFT, C., MAGNET, M. K., SWORD, A. & REMBRATT, A.2011. Pridopidine for the
treatment of motor function in patients with Huntington's disease (MermaiHD): a phase 3,
randomised, double-blind, placebo-controlled trial. The Lancet Neurology, 10, 1049-1057.
DEVANAND, D., MINTZER, J., SCHULTZ, S. K., ANDREWS, H. F., SULTZER, D. L., DE LA PENA,
D., GUPTA, S., COLON, S., SCHIMMING, C. & PELTON, G. H. 2012. Relapse risk after
discontinuation of risperidone in Alzheimer's disease. New England Journal of Medicine,
367, 1497-1507.

DLUGOS, D., SHINNAR, S., CNAAN, A., HU, F., MOSHE, S., MIZRAHI, E., MASUR, D., SOGAWA,
Y., LE PICHON, J. & LEVINE, C. 2013. Pretreatment EEG in childhood absence epilepsy
Associations with attention and treatment outcome. Neurology, 81, 150-156.

DOBKIN, R. D., MENZA, M., ALLEN, L. A., GARA, M. A,, MARK, M. H., TIU, J., BIENFAIT, K. L. &
FRIEDMAN, J. 2011. Cognitive behavior therapy for depression in Parkinson’s disease: A
randomized controlled trial. The American journal of psychiatry, 168, 1066.

DOODY, R. S., RAMAN, R., FARLOW, M., IWATSUBO, T., VELLAS, B., JOFFE, S., KIEBURTZ, K.,
HE, F., SUN, X. & THOMAS, R. G. 2013. A phase 3 trial of semagacestat for treatment of
Alzheimer's disease. New England Journal of Medicine, 369, 341-350.

DOODY, R. S., THOMAS, R. G., FARLOW, M., IWATSUBO, T., VELLAS, B., JOFFE, S., KIEBURTZ,
K., RAMAN, R., SUN, X. & AISEN, P. S. 2014. Phase 3 trials of solanezumab for mild-to-
moderate Alzheimer's disease. New England Journal of Medicine, 370, 311-321.

DRAKE, R. E., FREY, W., BOND, G. R., GOLDMAN, H. H., SALKEVER, D., MILLER, A., MOORE, T.
A., RILEY, J., KARAKUS, M. & MILFORT, R. 2013. Assisting Social Security Disability Insurance
beneficiaries with schizophrenia, bipolar disorder, or major depression in returning to work.
American Journal of Psychiatry, 170, 1433-1441.

DRIESSEN, E., VAN, H. L., DON, F. J,, PEEN, J., KOOL, S., WESTRA, D., HENDRIKSEN, M.,
SCHOEVERS, R. A., CUIJPERS, P. & TWISK, J. W. 2013. The efficacy of cognitive-behavioral
therapy and psychodynamic therapy in the outpatient treatment of major depression: a
randomized clinical trial. American Journal of Psychiatry, 170, 1041-1050.

161



Appendix 2

162

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

DRUSS, B. G., JI, X., GLICK, G. & SILKE, A. 2014. Randomized trial of an electronic personal
health record for patients with serious mental illnesses. American Journal of Psychiatry,
171, 360-368.

EDERLE, J., DAVAGNANAM, I., VAN DER WORP, H. B., VENABLES, G. S., LYRER, P. A.,
FEATHERSTONE, R. L., BROWN, M. M. & JAGER, H. R. 2013. Effect of white-matter lesions
on the risk of periprocedural stroke after carotid artery stenting versus endarterectomy in
the International Carotid Stenting Study (ICSS): a prespecified analysis of data from a
randomised trial. The Lancet Neurology, 12, 866-872.

EDWARDS, J. D., HAUSER, R. A., O'CONNOR, M. L., VALDES, E. G., ZESIEWICZ, T. A. & UG, E.
Y. 2013. Randomized trial of cognitive speed of processing training in Parkinson disease.
Neurology, 81, 1284-1290.

EHLERS, A., HACKMANN, A., GREY, N., WILD, J., LINESS, S., ALBERT, I., DEALE, A., STOTT, R. &
CLARK, D. M. 2014. A randomized controlled trial of 7-day intensive and standard weekly
cognitive therapy for PTSD and emotion-focused supportive therapy. American Journal of
Psychiatry, 171, 294-304.

ESCOLAR, D., HACHE, L., CLEMENS, P., CNAAN, A., MCDONALD, C., VISWANATHAN, V.,
KORNBERG, A., BERTORINI, T., NEVO, Y. & LOTZE, T. 2011. Randomized, blinded trial of
weekend vs daily prednisone in Duchenne muscular dystrophy. Neurology, 77, 444-452.
ESCOLAR, D., ZIMMERMAN, A., BERTORINI, T., CLEMENS, P., CONNOLLY, A., MESA, L.,
GORNI, K., KORNBERG, A., KOLSKI, H. & KUNTZ, N. 2012. Pentoxifylline as a rescue
treatment for DMD A randomized double-blind clinical trial. Neurology, 78, 904-913.
ESSOCK, S. M., SCHOOLER, N. R., STROUP, T. S., MCEVOQY, J. P., ROJAS, I., JACKSON, C. &
COVELL, N. H. 2011. Effectiveness of switching from antipsychotic polypharmacy to
monotherapy. American Journal of Psychiatry, 168, 702-708.

FEDER, G., DAVIES, R. A., BAIRD, K., DUNNE, D., ELDRIDGE, S., GRIFFITHS, C., GREGORY, A.,
HOWELL, A., JOHNSON, M. & RAMSAY, J. 2011. Identification and Referral to Improve
Safety (IRIS) of women experiencing domestic violence with a primary care training and
support programme: a cluster randomised controlled trial. The Lancet, 378, 1788-1795.
FORSTER, A., DICKERSON, J., YOUNG, J., PATEL, A., KALRA, L., NIXON, J., SMITHARD, D.,
KNAPP, M., HOLLOWAY, I. & ANWAR, S. 2014. A structured training programme for
caregivers of inpatients after stroke (TRACS): a cluster randomised controlled trial and cost-
effectiveness analysis. The Lancet, 382, 2069-2076.

FORTNEY, J. C., PYNE, J. M., MOUDEN, S. B., MITTAL, D., HUDSON, T. J., SCHROEDER, G. W.,
WILLIAMS, D. K., BYNUM, C. A., MATTOX, R. & ROST, K. M. 2013. Practice-based versus
telemedicine-based collaborative care for depression in rural federally qualified health
centers: a pragmatic randomized comparative effectiveness trial. American Journal of
Psychiatry, 170, 414-425.

FOX, R. J., MILLER, D. H., PHILLIPS, J. T., HUTCHINSON, M., HAVRDOVA, E., KITA, M., YANG,
M., RAGHUPATHI, K., NOVAS, M. & SWEETSER, M. T. 2012. Placebo-controlled phase 3
study of oral BG-12 or glatiramer in multiple sclerosis. New England Journal of Medicine,
367, 1087-1097.

FREE, C., KNIGHT, R., ROBERTSON, S., WHITTAKER, R., EDWARDS, P., ZHOU, W., RODGERS,
A., CAIRNS, J., KENWARD, M. G. & ROBERTS, I. 2011. Smoking cessation support delivered
via mobile phone text messaging (txt2stop): a single-blind, randomised trial. The Lancet,
378, 49-55.

FREEDMAN, M., BAR-OR, A., OGER, J., TRABOULSEE, A., PATRY, D., YOUNG, C., OLSSON, T.,
LI, D., HARTUNG, H.-P. & KRANTZ, M. 2011. A phase lll study evaluating the efficacy and
safety of MBP8298 in secondary progressive MS. Neurology, 77, 1551-1560.

FREEMAN, J., SAPYTA, J., GARCIA, A., COMPTON, S., KHANNA, M., FLESSNER, C.,
FITZGERALD, D., MAURO, C., DINGFELDER, R. & BENITO, K. 2014. Family-Based Treatment of
Early Childhood Obsessive-Compulsive Disorder: The Pediatric Obsessive-Compulsive
Disorder Treatment Study for Young Children (POTS Jr)-A Randomized Clinical Trial. JAMA
psychiatry.



69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Appendix 2

FRENCH, J. A., KRAUSS, G. L., BITON, V., SQUILLACOTE, D., YANG, H., LAURENZA, A., KUMAR,
D., ROGAWSKI, M. A., CAMPANILLE, V. & FLORIDIA, J. 2012. Adjunctive perampanel for
refractory partial-onset seizures Randomized phase Il study 304. Neurology, 79, 589-596.
FRIEDMAN, B. W., GARBER, L., YOON, A., SOLORZANO, C., WOLLOWITZ, A., ESSES, D., BIUUR,
P. E. & GALLAGHER, E. J. 2014. Randomized trial of IV valproate vs metoclopramide vs
ketorolac for acute migraine. Neurology, 82, 976-983.

FRITZ, D., BROUWER, M. C. & VAN DE BEEK, D. 2012. Dexamethasone and long-term
survival in bacterial meningitis. Neurology, 79, 2177-2179.

GELLER, B., LUBY, J. L., JOSHI, P., WAGNER, K. D., EMSLIE, G., WALKUP, J. T., AXELSON, D. A,,
BOLHOFNER, K., ROBB, A. & WOLF, D. V. 2012. A randomized controlled trial of risperidone,
lithium, or divalproex sodium for initial treatment of bipolar I disorder, manic or mixed
phase, in children and adolescents. Archives of general psychiatry, archgenpsychiatry.
2011.1508 v1.

GIACINO, J. T., WHYTE, J., BAGIELLA, E., KALMAR, K., CHILDS, N., KHADEMI, A., EIFERT, B.,
LONG, D., KATZ, D. |. & CHO, S. 2012. Placebo-controlled trial of amantadine for severe
traumatic brain injury. New England Journal of Medicine, 366, 819-826.

GIESEN-BLOO, J., VAN DYCK, R., SPINHOVEN, P., VAN TILBURG, W., DIRKSEN, C., VAN
ASSELT, T., KREMERS, I., NADORT, M. & ARNTZ, A. 2006. Outpatient psychotherapy for
borderline personality disorder: randomized trial of schema-focused therapy vs
transference-focused psychotherapy. Archives of general psychiatry, 63, 649-658.
GINSBERG, M. D., PALESCH, Y. Y., HILL, M. D., MARTIN, R. H., MQY, C. S., BARSAN, W. G,,
WALDMAN, B. D., TAMARIZ, D. & RYCKBORST, K. J. 2013. High-dose albumin treatment for
acute ischaemic stroke (ALIAS) part 2: a randomised, double-blind, phase 3, placebo-
controlled trial. The Lancet Neurology, 12, 1049-1058.

GOLD, R., GIOVANNONI, G., SELMAJ, K., HAVRDOVA, E., MONTALBAN, X., RADUE, E.-W.,
STEFOSKI, D., ROBINSON, R., RIESTER, K. & RANA, J. 2013. Daclizumab high-yield process in
relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-
controlled trial. The Lancet, 381, 2167-2175.

GOLD, R., KAPPOS, L., ARNOLD, D. L., BAR-OR, A., GIOVANNONI, G., SELMAJ, K.,
TORNATORE, C., SWEETSER, M. T., YANG, M. & SHEIKH, S. I. 2012. Placebo-controlled phase
3 study of oral BG-12 for relapsing multiple sclerosis. New England Journal of Medicine,
367, 1098-1107.

GOLDIN, P. R., ZIV, M., JAZAIERI, H., HAHN, K., HEIMBERG, R. & GROSS, J. J. 2013. Impact of
cognitive behavioral therapy for social anxiety disorder on the neural dynamics of cognitive
reappraisal of negative self-beliefs: randomized clinical trial. JAMA psychiatry, 70, 1048-
1056.

GRANT, P. M., HUH, G. A,, PERIVOLIOQTIS, D., STOLAR, N. M. & BECK, A. T. 2012. Randomized
trial to evaluate the efficacy of cognitive therapy for low-functioning patients with
schizophrenia. Archives of general psychiatry, 69, 121.

GRAY, K. M., CARPENTER, M. J., BAKER, N. L., DESANTIS, S. M., KRYWAY, E., HARTWELL, K. J.,
MCRAE-CLARK, A. L. & BRADY, K. T. 2012. A double-blind randomized controlled trial of N-
acetylcysteine in cannabis-dependent adolescents. American Journal of Psychiatry, 169,
805-812.

GUSTAFSON, D. H., MCTAVISH, F. M., CHIH, M.-Y., ATWOOD, A. K., JOHNSON, R. A., BOYLE,
M. G., LEVY, M. S., DRISCOLL, H., CHISHOLM, S. M. & DILLENBURG, L. 2014. A smartphone
application to support recovery from alcoholism: a randomized clinical trial. JAMA
psychiatry.

HANNEY, M., PRASHER, V., WILLIAMS, N., JONES, E. L., AARSLAND, D., CORBETT, A.,
LAWRENCE, D., YU, L.-M., TYRER, S. & FRANCIS, P. T. 2012. Memantine for dementia in
adults older than 40 years with Down's syndrome (MEADOWS): a randomised, double-
blind, placebo-controlled trial. The Lancet, 379, 528-536.

163



Appendix 2

164

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

HATTA, K., KISHI, Y., WADA, K., TAKEUCHI, T., ODAWARA, T., USUI, C. & NAKAMURA, H.
2014. Preventive effects of ramelteon on delirium: a randomized placebo-controlled trial.
JAMA psychiatry, 71, 397-403.

HAUSER, R. A., HSU, A, KELL, S., ESPAY, A. J., SETHI, K., STACY, M., ONDO, W., O'CONNELL,
M. & GUPTA, S. 2013. Extended-release carbidopa-levodopa (IPX066) compared with
immediate-release carbidopa-levodopa in patients with Parkinson's disease and motor
fluctuations: a phase 3 randomised, double-blind trial. The Lancet Neurology.

HENDERSON, V., JOHN, J. S., HODIS, H., KONO, N., MCCLEARY, C., FRANKE, A. & MACK, W.
2012. Long-term soy isoflavone supplementation and cognition in women A randomized,
controlled trial. Neurology, 78, 1841-1848.

HERZOG, A. G., FOWLER, K. M., SMITHSON, S. D., KALAYJIAN, L. A., HECK, C. N., SPERLING,
M. R., LIPORACE, J. D., HARDEN, C. L., DWORETZKY, B. A., PENNELL, P. B. & MASSARO, J. M.
2012. Progesterone vs placebo therapy for women with epilepsy: A randomized clinical
trial. Neurology, 78, 1959-66.

HOFMANN, S. G., SMITS, J. A., ROSENFIELD, D., SIMON, N., OTTO, M. W., MEURET, A. E.,
MARQUES, L., FANG, A., TART, C. & POLLACK, M. H. 2013. D-Cycloserine as an augmentation
strategy with cognitive-behavioral therapy for social anxiety disorder. American Journal of
Psychiatry, 170, 751-758.

HOLLANDER, E., SOORYA, L., CHAPLIN, W., ANAGNOSTOU, E., TAYLOR, B. P., FERRETTI, C. J,,
WASSERMAN, S., SWANSON, E. & SETTIPANI, C. 2012. A double-blind placebo-controlled
trial of fluoxetine for repetitive behaviors and global severity in adult autism spectrum
disorders. American Journal of Psychiatry, 169, 292-299.

HONG, L. E., THAKER, G. K., MCMAHON, R. P., SUMMERFELT, A., RACHBEISEL, J., FULLER, R.
L., WONODI, I., BUCHANAN, R. W., MYERS, C. & HEISHMAN, S. J. 2011. Effects of moderate-
dose treatment with varenicline on neurobiological and cognitive biomarkers in smokers
and nonsmokers with schizophrenia or schizoaffective disorder. Archives of general
psychiatry, 68, 1195-1206.

HOWARD, R., MCSHANE, R., LINDESAY, J., RITCHIE, C., BALDWIN, A., BARBER, R., BURNS, A,,
DENING, T., FINDLAY, D. & HOLMES, C. 2012. Donepezil and memantine for moderate-to-
severe Alzheimer's disease. New England Journal of Medicine, 366, 893-903.

JARRETT, R. B., MINHAJUDDIN, A., GERSHENFELD, H., FRIEDMAN, E. S. & THASE, M. E. 2013.
Preventing depressive relapse and recurrence in higher-risk cognitive therapy responders: a
randomized trial of continuation phase cognitive therapy, fluoxetine, or matched pill
placebo. JAMA psychiatry, 70, 1152-1160.

JARSKOG, L. F., HAMER, R. M., CATELLIER, D. J., STEWART, D. D., LAVANGE, L., RAY, N.,
GOLDEN, L. H., LIEBERMAN, J. A. & STROUP, T. S. 2013. Metformin for weight loss and
metabolic control in overweight outpatients with schizophrenia and schizoaffective
disorder. American Journal of Psychiatry, 170, 1032-1040.

JOHNSON, B. A,, AIT-DAOUD, N., WANG, X.-Q., PENBERTHY, J. K., JAVORS, M. A,,
SENEVIRATNE, C. & LIU, L. 2013. Topiramate for the treatment of cocaine addiction: a
randomized clinical trial. JAMA psychiatry, 70, 1338-1346.

JUTTLER, E., UNTERBERG, A., WOITZIK, J., BOSEL, J., AMIRI, H., SAKOWITZ, O. W., GONDAN,
M., SCHILLER, P., LIMPRECHT, R. & LUNTZ, S. 2014. Hemicraniectomy in older patients with
extensive middle-cerebral-artery stroke. New England Journal of Medicine, 370, 1091-1100.
KATON, W., RUSSO, J., LIN, E. H., SCHMITTDIEL, J., CIECHANOWSKI, P., LUDMAN, E.,
PETERSON, D., YOUNG, B. & VON KORFF, M. 2012. Cost-effectiveness of a multicondition
collaborative care intervention: a randomized controlled trial. Archives of general
psychiatry, 69, 506-514.

KIDWELL, C. S., JAHAN, R., GORNBEIN, J., ALGER, J. R., NENOV, V., AJANI, Z., FENG, L.,
MEYER, B. C., OLSON, S. & SCHWAMM, L. H. 2013. A trial of imaging selection and
endovascular treatment for ischemic stroke. New England Journal of Medicine, 368, 914-
923.



Appendix 2

97. KIM, J.-S., OH, S.-Y., LEE, S.-H., KANG, J.-H., KIM, D., JEONG, S.-H., CHOI, K.-D., MOON, I.-S.,
KIM, B.-K. & OH, H. 2012a. Randomized clinical trial for apogeotropic horizontal canal
benign paroxysmal positional vertigo. Neurology, 78, 159-166.

98. KIM, J. S., OH, S.-Y., LEE, S.-H., KANG, J. H., KIM, D. U., JEONG, S.-H., CHOI, K.-D., MOON, I.
S., KIM, B. K. & KIM, H. J. 2012b. Randomized clinical trial for geotropic horizontal canal
benign paroxysmal positional vertigo. Neurology, 79, 700-707.

99. KIM, S., KIM, H., KNOPMAN, D., DE VRIES, R., DAMSCHRODER, L. & APPELBAUM, P. 2011.
Effect of public deliberation on attitudes toward surrogate consent for dementia research.
Neurology, 77, 2097-2104.

100.KLAMROTH-MARGANSKA, V., BLANCO, J., CAMPEN, K., CURT, A., DIETZ, V., ETTLIN, T,
FELDER, M., FELLINGHAUER, B., GUIDALI, M. & KOLLMAR, A. 2014. Three-dimensional, task-
specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised
trial. The Lancet Neurology, 13, 159-166.

101.KOPELOWICZ, A., ZARATE, R., WALLACE, C. J., LIBERMAN, R. P., LOPEZ, S. R. & MINTZ, J.
2012. The ability of multifamily groups to improve treatment adherence in Mexican
Americans with schizophrenia. Archives of general psychiatry, 69, 265-273.

102.KRANZLER, H. R., COVAULT, J., FEINN, R., ARMELI, S., TENNEN, H., ARIAS, A. J., GELERNTER,
J., POND, T., ONCKEN, C. & KAMPMAN, K. M. 2014. Topiramate treatment for heavy
drinkers: moderation by a GRIK1 polymorphism. American Journal of Psychiatry, 171, 445-
452,

103.KRAUSS, G., SERRATOSA, J., VILLANUEVA, V., ENDZINIENE, M., HONG, Z., FRENCH, J., YANG,
H., SQUILLACOTE, D., EDWARDS, H. & ZHU, J. 2012. Randomized phase Il study 306
Adjunctive perampanel for refractory partial-onset seizures. Neurology, 78, 1408-1415.

104.KRUPITSKY, E., ZVARTAU, E., BLOKHINA, E., VERBITSKAYA, E., WAHLGREN, V., TSOY-
PODOSENIN, M., BUSHARA, N., BURAKOV, A., MASALOV, D. & ROMANOVA, T. 2012.
Randomized trial of long-acting sustained-release naltrexone implant vs oral naltrexone or
placebo for preventing relapse to opioid dependence. Archives of general psychiatry, 69,
973.

105.KWAN, P., BRODIE, M. J., KALVIAINEN, R., YURKEWICZ, L., WEAVER, J. & KNAPP, L. E. 2011.
Efficacy and safety of pregabalin versus lamotrigine in patients with newly diagnosed partial
seizures: a phase 3, double-blind, randomised, parallel-group trial. The Lancet Neurology,
10, 881-890.

106.LANE, H.-Y,, LIN, C.-H., GREEN, M. F., HELLEMANN, G., HUANG, C.-C., CHEN, P.-W., TUN, R,
CHANG, Y.-C. & TSAI, G. E. 2013. Add-on treatment of benzoate for schizophrenia: a
randomized, double-blind, placebo-controlled trial of d-amino acid oxidase inhibitor. JAMA
psychiatry, 70, 1267-1275.

107.LAUNER, L. J., MILLER, M. E., WILLIAMSON, J. D., LAZAR, R. M., GERSTEIN, H. C., MURRAY, A.
M., SULLIVAN, M., HOROWITZ, K. R., DING, J. & MARCOVINA, S. 2011. Effects of intensive
glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD
MIND): a randomised open-label substudy. The Lancet Neurology, 10, 969-977.

108.LEGER, J.-M., VIALA, K., NICOLAS, G., CREANGE, A., VALLAT, J.-M., POUGET, J., CLAVELOU,
P., VIAL, C., STECK, A. & MUSSET, L. 2013. Placebo-controlled trial of rituximab in IgM anti-
myelin—associated glycoprotein neuropathy. Neurology, 80, 2217-2225.

109.LEICHSENRING, F., SALZER, S., BEUTEL, M. E., HERPERTZ, S., HILLER, W., HOYER, J., HUESING,
J., JORASCHKY, P., NOLTING, B. & POEHLMANN, K. 2013. Psychodynamic therapy and
cognitive-behavioral therapy in social anxiety disorder: a multicenter randomized controlled
trial. American Journal of Psychiatry, 170, 759-767.

110.LEIST, T. P., COMI, G., CREE, B. A., COYLE, P. K., FREEDMAN, M. S., HARTUNG, H.-P.,
VERMERSCH, P., CASSET-SEMANAZ, F. & SCARAMOZZA, M. 2014. Effect of oral cladribine on
time to conversion to clinically definite multiple sclerosis in patients with a first
demyelinating event (ORACLE MS): a phase 3 randomised trial. The Lancet Neurology, 13,
257-267.

165



Appendix 2

111.LEONTIJEVAS, R., GERRITSEN, D. L., SMALBRUGGE, M., TEERENSTRA, S., VERNOOIJ-DASSEN,
M. J. & KOOPMANS, R. T. 2013. A structural multidisciplinary approach to depression
management in nursing-home residents: a multicentre, stepped-wedge cluster-randomised
trial. The Lancet, 381, 2255-2264.

112.LEWITT, P. A., HAUSER, R. A., LU, M., NICHOLAS, A. P., WEINER, W., COPPARD, N.,
LEINONEN, M. & SAVOLA, J.-M. 2012. Randomized clinical trial of fipamezole for dyskinesia
in Parkinson disease (FJORD study). Neurology, 79, 163-169.

113.Ll, F.,, HARMER, P., FITZGERALD, K., ECKSTROM, E., STOCK, R., GALVER, J., MADDALOZZO, G.
& BATYA, S. S. 2012. Tai chi and postural stability in patients with Parkinson's disease. New
England Journal of Medicine, 366, 511-519.

114.LOEBEL, A., CUCCHIARO, J., SILVA, R., KROGER, H., HSU, J., SARMA, K. & SACHS, G. 2014a.
Lurasidone monotherapy in the treatment of bipolar | depression: a randomized, double-
blind, placebo-controlled study. American Journal of Psychiatry, 171, 160-168.

115.LOEBEL, A., CUCCHIARO, J., SILVA, R., KROGER, H., SARMA, K., XU, J. & CALABRESE, J. R.
2014b. Lurasidone as adjunctive therapy with lithium or valproate for the treatment of
bipolar | depression: a randomized, double-blind, placebo-controlled study. American
Journal of Psychiatry, 171, 169-177.

116.LOVERA, J. F., KIM, E., HERIZA, E., FITZPATRICK, M., HUNZIKER, J., TURNER, A. P., ADAMS, J.,
STOVER, T., SANGEORZAN, A. & SLOAN, A. 2012. Ginkgo biloba does not improve cognitive
function in MS A randomized placebo-controlled trial. Neurology, 79, 1278-1284.

117.MACDONALD, R. L., HIGASHIDA, R. T., KELLER, E., MAYER, S. A.,, MOLYNEUX, A., RAABE, A.,
VAJKOCZY, P., WANKE, I., BACH, D. & FREY, A. 2011. Clazosentan, an endothelin receptor
antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical
clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). The
Lancet Neurology, 10, 618-625.

118. MANCONI, M., FERRI, R., ZUCCONI, M., CLEMENS, S., GIAROLLI, L., BOTTASINI, V. & FERINI-
STRAMBI, L. 2011. Preferential D2 or preferential D3 dopamine agonists in restless legs
syndrome. Neurology, 77, 110-117.

119.MARSHALL, R. S., FESTA, J. R., CHEUNG, Y.-K., PAVOL, M. A., DERDEYN, C. P., CLARKE, W. R.,
VIDEEN, T. O., GRUBB, R. L., SLANE, K. & POWERS, W. J. 2014. Randomized Evaluation of
Carotid Occlusion and Neurocognition (RECON) trial Main results. Neurology, 82, 744-751.

120.MASUR, D., SHINNAR, S., CNAAN, A., SHINNAR, R. C., CLARK, P., WANG, J., WEISS, E. F.,
HIRTZ, D. G. & GLAUSER, T. A. 2013. Pretreatment cognitive deficits and intervention effects
on attention in childhood absence epilepsy. Neurology, 81, 1572-1580.

121.MCDONELL, M. G., SREBNIK, D., ANGELO, F., MCPHERSON, S., LOWE, J. M., SUGAR, A,,
SHORT, R. A,, ROLL, J. M. & RIES, R. K. 2013. Randomized controlled trial of contingency
management for stimulant use in community mental health patients with serious mental
illness. American Journal of Psychiatry, 170, 94-101.

122.MCGRATH, C. L., KELLEY, M. E., HOLTZHEIMER, P. E., DUNLOP, B. W., CRAIGHEAD, W. E.,
FRANCO, A. R., CRADDOCK, R. C. & MAYBERG, H. S. 2013. Toward a neuroimaging
treatment selection biomarker for major depressive disorder. JAMA psychiatry, 70, 821-
829.

123.MEES, S. M. D., ALGRA, A., VANDERTOP, W. P., VAN KOOTEN, F., KUIJSTEN, H. A., BOITEN, J.,
VAN OOSTENBRUGGE, R. J., SALMAN, R. A.-S., LAVADOS, P. M. & RINKEL, G. J. 2012.
Magnesium for aneurysmal subarachnoid haemorrhage (MASH-2): a randomised placebo-
controlled trial. The Lancet, 380, 44-49.

124.MEIER, B., KALESAN, B., MATTLE, H. P., KHATTAB, A. A., HILDICK-SMITH, D., DUDEK, D.,
ANDERSEN, G., IBRAHIM, R., SCHULER, G. & WALTON, A.S. 2013. Percutaneous closure of
patent foramen ovale in cryptogenic embolism. New England Journal of Medicine, 368,
1083-1091.

125.MELTZER, H. Y., CUCCHIARDO, J., SILVA, R., OGASA, M., PHILLIPS, D., XU, J., KALALI, A. H.,
SCHWEIZER, E., PIKALOV, A. & LOEBEL, A. 2011. Lurasidone in the treatment of

166



Appendix 2

schizophrenia: a randomized, double-blind, placebo-and olanzapine-controlled study.
American Journal of Psychiatry, 168, 957-967.

126.MENG, R., ASMARO, K., MENG, L., LIU, Y., MA, C,, XI, C,, LI, G., REN, C,, LUQ, Y. & LING, F.
2012. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial
stenosis. Neurology, 79, 1853-1861.

127.MICHELSON, D., SNYDER, E., PARADIS, E., CHENGAN-LIU, M., SNAVELY, D. B., HUTZELMANN,
J., WALSH, J. K., KRYSTAL, A. D., BENCA, R. M. & COHN, M. 2014. Safety and efficacy of
suvorexant during 1-year treatment of insomnia with subsequent abrupt treatment
discontinuation: a phase 3 randomised, double-blind, placebo-controlled trial. The Lancet
Neurology, 13, 461-471.

128.MIDDLETON, S., MCELDUFF, P., WARD, J., GRIMSHAW, J. M., DALE, S., D'ESTE, C., DRURY, P.,
GRIFFITHS, R., CHEUNG, N. W. & QUINN, C. 2011. Implementation of evidence-based
treatment protocols to manage fever, hyperglycaemia, and swallowing dysfunction in acute
stroke (QASC): a cluster randomised controlled trial. The Lancet, 378, 1699-1706.

129.MIKLOWITZ, D. J., SCHNECK, C. D., GEORGE, E. L., TAYLOR, D. O., SUGAR, C. A., BIRMAHER,
B., KOWATCH, R. A., DELBELLO, M. P. & AXELSON, D. A. 2014. Pharmacotherapy and family-
focused treatment for adolescents with bipolar | and Il disorders: a 2-year randomized trial.
American Journal of Psychiatry, 171, 658-667.

130.MOREAU, C., DELVAL, A., DEFEBVRE, L., DUJARDIN, K., DUHAMEL, A., PETYT, G.,
VUILLAUME, I., CORVOL, J.-C., BREFEL-COURBON, C. & ORY-MAGNE, F. 2012.
Methylphenidate for gait hypokinesia and freezing in patients with Parkinson's disease
undergoing subthalamic stimulation: a multicentre, parallel, randomised, placebo-
controlled trial. The Lancet Neurology, 11, 589-596.

131.MURROUGH, J. W., IOSIFESCU, D. V., CHANG, L. C., ALJURDI, R. K., GREEN, C. E., PEREZ, A.
M., IQBAL, S., PILLEMER, S., FOULKES, A. & SHAH, A. 2013. Antidepressant efficacy of
ketamine in treatment-resistant major depression: a two-site randomized controlled trial.
American Journal of Psychiatry, 170, 1134-1142.

132.NAKASUJJA, N., MIYAHARA, S., EVANS, S., LEE, A., MUSISI, S., KATABIRA, E., ROBERTSON, K.,
RONALD, A., CLIFFORD, D. B. & SACKTOR, N. 2013. Randomized trial of minocycline in the
treatment of HIV-associated cognitive impairment. Neurology, 80, 196-202.

133.NG, Y., CONRY, J., DRUMMOND, R., STOLLE, J. & WEINBERG, M. 2011. Randomized, phase IlI
study results of clobazam in Lennox-Gastaut syndrome. Neurology, 77, 1473-1481.

134.NIERENBERG, A. A., FRIEDMAN, E. S., BOWDEN, C. L., SYLVIA, L. G., THASE, M. E., KETTER, T.,
OSTACHER, M. J., LEON, A. C., REILLY-HARRINGTON, N. & IOSIFESCU, D. V. 2013. Lithium
Treatment Moderate-Dose Use Study (LITMUS) for bipolar disorder: a randomized
comparative effectiveness trial of optimized personalized treatment with and without
lithium. American Journal of Psychiatry, 170, 102-110.

135.NOBILE-ORAZIO, E., COCITO, D., JANN, S., UNCINI, A., BEGHI, E., MESSINA, P., ANTONINI, G.,
FAZIO, R., GALLIA, F. & SCHENONE, A. 2012. Intravenous immunoglobulin versus
intravenous methylprednisolone for chronic inflammatory demyelinating
polyradiculoneuropathy: a randomised controlled trial. The Lancet Neurology, 11, 493-502.

136.NOGUEIRA, R. G., LUTSEP, H. L., GUPTA, R., JOVIN, T. G., ALBERS, G. W., WALKER, G. A,,
LIEBESKIND, D. S. & SMITH, W. S. 2012. Trevo versus Merci retrievers for thrombectomy
revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a
randomised trial. The Lancet, 380, 1231-1240.

137.0'CONNOR, P., WOLINSKY, J. S., CONFAVREUX, C., COMI, G., KAPPOS, L., OLSSON, T. P,
BENZERDIJEB, H., TRUFFINET, P., WANG, L. & MILLER, A. 2011. Randomized trial of oral
teriflunomide for relapsing multiple sclerosis. New England Journal of Medicine, 365, 1293-
1303.

138.0DEKERKEN, V. J., VAN LAAR, T., STAAL, M. J., MOSCH, A., HOFFMANN, C. F., NIUSSEN, P. C,,
BEUTE, G. N., VAN VUGT, J. P., LENDERS, M. W. & CONTARINO, M. F. 2013. Subthalamic
nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's
disease (NSTAPS study): a randomised controlled trial. The Lancet Neurology, 12, 37-44.

167



Appendix 2

168

139.0KUN, M. S., GALLO, B. V., MANDYBUR, G., JAGID, J., FOOTE, K. D., REVILLA, F. J.,
ALTERMAN, R., JANKOVIC, J., SIMPSON, R. & JUNN, F. 2012. Subthalamic deep brain
stimulation with a constant-current device in Parkinson's disease: an open-label
randomised controlled trial. The Lancet Neurology, 11, 140-149.

140.0LANOW, C. W., KIEBURTZ, K., ODIN, P., ESPAY, A. J., STANDAERT, D. G., FERNANDEZ, H. H.,
VANAGUNAS, A., OTHMAN, A. A., WIDNELL, K. L. & ROBIESON, W. Z. 2014. Continuous
intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced
Parkinson's disease: a randomised, controlled, double-blind, double-dummy study. The
Lancet Neurology, 13, 141-149.

141.0NDO, W., KENNEY, C., SULLIVAN, K., DAVIDSON, A., HUNTER, C., JAHAN, |., MCCOMBS, A.,
MILLER, A. & ZESIEWICZ, T. 2012. Placebo-controlled trial of lubiprostone for constipation
associated with Parkinson disease. Neurology, 78, 1650-1654.

142.0QUENDO, M. A., GALFALVY, H. C., CURRIER, D., GRUNEBAUM, M. F., SHER, L., SULLIVAN,
G. M., BURKE, A. K., HARKAVY-FRIEDMAN, J., SUBLETTE, M. E. & PARSEY, R. V. 2011.
Treatment of suicide attempters with bipolar disorder: a randomized clinical trial comparing
lithium and valproate in the prevention of suicidal behavior. American journal of psychiatry,
168, 1050-1056.

143.0RY-MAGNE, F., CORVOL, J.-C., AZULAY, J.-P., BONNET, A.-M., BREFEL-COURBON, C.,
DAMIER, P., DELLAPINA, E., DESTEE, A., DURIF, F. & GALITZKY, M. 2014. Withdrawing
amantadine in dyskinetic patients with Parkinson disease The AMANDYSK trial. Neurology,
82, 300-307.

144.0SYPUK, T. L., TCHETGEN, E. J. T., ACEVEDO-GARCIA, D., EARLS, F. J., LINCOLN, A., SCHMIDT,
N. M. & GLYMOUR, M. M. 2012. Differential mental health effects of neighborhood
relocation among youth in vulnerable families: results from a randomized trial. Archives of
general psychiatry, 69, 1284-1294.

145.PAPAKOSTAS, G. ., SHELTON, R. C., ZAJECKA, J. M., ETEMAD, B., RICKELS, K., CLAIN, A.,
BAER, L., DALTON, E. D., SACCO, G. R. & SCHOENFELD, D. 2012. L-methylfolate as adjunctive
therapy for SSRI-resistant major depression: results of two randomized, double-blind,
parallel-sequential trials. American Journal of Psychiatry, 169, 1267-1274.

146.PLEWNIA, C., VONTHEIN, R., WASSERKA, B., ARFELLER, C., NAUMANN, A., SCHRAVEN, S. &
PLONTKE, S. 2012. Treatment of chronic tinnitus with theta burst stimulation A randomized
controlled trial. Neurology, 78, 1628-1634.

147.POEWE, W., RASCOL, O., BARONE, P., HAUSER, R., MIZUNO, Y., HAAKSMA, M., SALIN, L.,
JUHEL, N. & SCHAPIRA, A. 2011. Extended-release pramipexole in early Parkinson disease A
33-week randomized controlled trial. Neurology, 77, 759-766.

148.POLLACK, M. H., VAN AMERINGEN, M., SIMON, N. M., WORTHINGTON, J. W., HOGE, E. A,,
KESHAVIAH, A. & STEIN, M. B. 2014. A double-blind randomized controlled trial of
augmentation and switch strategies for refractory social anxiety disorder. American Journal
of Psychiatry, 171, 44-53.

149.POSTUMA, R. B., LANG, A. E., MUNHOZ, R. P., CHARLAND, K., PELLETIER, A., MOSCOVICH,
M., FILLA, L., ZANATTA, D., ROMENETS, S. R. & ALTMAN, R. 2012. Caffeine for treatment of
Parkinson disease A randomized controlled trial. Neurology, 79, 651-658.

150.POULSEN, S., LUNN, S., DANIEL, S. I., FOLKE, S., MATHIESEN, B. B., KATZNELSON, H. &
FAIRBURN, C. G. 2014. A randomized controlled trial of psychoanalytic psychotherapy or
cognitive-behavioral therapy for bulimia nervosa. American Journal of Psychiatry, 171, 109-
116.

151.RAMOS, V. F. M. L., PAINE, R. W., THIRUGNANASAMBANDAM, N., SHIROTA, Y., HAMADA,
M. & UGAWA, Y. 2013. Supplementary motor area stimulation for Parkinson disease: A
randomized controlled study. Neurology, 81, 1881-1882.

152.RASKIND, M. A., PETERSON, K., WILLIAMS, T., HOFF, D. J., HART, K., HOLMES, H., HOMAS,
D., HILL, J., DANIELS, C. & CALOHAN, J. 2013. A trial of prazosin for combat trauma PTSD
with nightmares in active-duty soldiers returned from Iraq and Afghanistan. American
Journal of Psychiatry, 170, 1003-1010.



Appendix 2

153.RAZ, L., JAYACHANDRAN, M., TOSAKULWONG, N., LESNICK, T. G., WILLE, S. M., MURPHY, M.
C., SENJEM, M. L., GUNTER, J. L., VEMURI, P. & JACK, C. R. 2013. Thrombogenic
microvesicles and white matter hyperintensities in postmenopausal women. Neurology, 80,
911-918.

154.RICHARD, I., MCDERMOTT, M., KURLAN, R., LYNESS, J., COMO, P., PEARSON, N., FACTOR, S.,
JUNCOS, J., RAMOS, C. S. & BRODSKY, M. 2012. A randomized, double-blind, placebo-
controlled trial of antidepressants in Parkinson disease. Neurology, 78, 1229-1236.

155.RISTORI, G., ROMANDO, S., CANNONI, S., VISCONTI, A., TINELLI, E., MENDOZZI, L., CECCONI,
P., LANZILLO, R., QUARANTELLI, M. & BUTTINELLI, C. 2014. Effects of Bacille Calmette-
Guérin after the first demyelinating event in the CNS. Neurology, 82, 41-48.

156.ROFFMAN, J. L., LAMBERTI, J. S., ACHTYES, E., MACKLIN, E. A., GALENDEZ, G. C., RAEKE, L.
H., SILVERSTEIN, N. J., SMOLLER, J. W., HILL, M. & GOFF, D. C. 2013. Randomized
multicenter investigation of folate plus vitamin B12 supplementation in schizophrenia.
JAMA psychiatry, 70, 481-489.

157.ROSE, J. E. & BEHM, F. M. 2013. Adapting smoking cessation treatment according to initial
response to precessation nicotine patch. American Journal of Psychiatry, 170, 860-867.

158.R0OSS, R. G., HUNTER, S. K., MCCARTHY, L., BEULER, J., HUTCHISON, A. K., WAGNER, B. D.,
LEONARD, S., STEVENS, K. E. & FREEDMAN, R. 2013. Perinatal choline effects on neonatal
pathophysiology related to later schizophrenia risk. American Journal of Psychiatry, 170,
290-298.

159.ROTHBAUM, B. O., PRICE, M., JOVANOVIC, T., NORRHOLM, S. D., GERARDI, M., DUNLOP, B.,
DAVIS, M., BRADLEY, B., DUNCAN, E. J. & RIZZO, A. 2014. A Randomized, double-blind
evaluation of d-cycloserine or alprazolam combined with virtual reality exposure therapy
for posttraumatic stress disorder in Iraq and Afghanistan war veterans. American Journal of
Psychiatry, 171, 640-648.

160.RUSH, A. J., TRIVEDI, M. H., STEWART, J. W., NIERENBERG, A. A., FAVA, M., KURIAN, B. T.,
WARDEN, D., MORRIS, D. W., LUTHER, J. F. & HUSAIN, M. M. 2011. Combining Medications
to Enhance Depression Outcomes (CO-MED): acute and long-term outcomes of a single-
blind randomized study. American Journal of Psychiatry, 168, 689-701.

161.SACKTOR, N., MIYAHARA, S., DENG, L., EVANS, S., SCHIFITTO, G., COHEN, B., PAUL, R,,
ROBERTSON, K., JAROCKI, B. & SCARSI, K. 2011. Minocycline treatment for HIV-associated
cognitive impairment Results from a randomized trial. Neurology, 77, 1135-1142.

162.SALLOWAY, S., SPERLING, R., FOX, N. C., BLENNOW, K., KLUNK, W., RASKIND, M., SABBAGH,
M., HONIG, L. S., PORSTEINSSON, A. P. & FERRIS, S. 2014. Two phase 3 trials of
bapineuzumab in mild-to-moderate Alzheimer's disease. New England Journal of Medicine,
370, 322-333.

163.SANDERCOCK, P., WARDLAW, J. M., LINDLEY, R. I., DENNIS, M., COHEN, G., MURRAY, G.,
INNES, K., VENABLES, G., CZLONKOWSKA, A. & KOBAYASHI, A. 2012. The benefits and harms
of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of
acute ischaemic stroke (the third international stroke trial [IST-3]): a randomised controlled
trial. Lancet, 379, 2352-2363.

164.SANO, M., BELL, K., GALASKO, D., GALVIN, J., THOMAS, R., VAN DYCK, C. & AISEN, P. 2011. A
randomized, double-blind, placebo-controlled trial of simvastatin to treat Alzheimer
disease. Neurology, 77, 556-563.

165.SAVER, J. L., JAHAN, R., LEVY, E. I, JOVIN, T. G., BAXTER, B., NOGUEIRA, R. G., CLARK, W.,
BUDZIK, R. & ZAIDAT, O. 0. 2012. Solitaire flow restoration device versus the Merci
Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group,
non-inferiority trial. The Lancet, 380, 1241-1249.

166.SCHAPIRA, A., BARONE, P., HAUSER, R., MIZUNO, Y., RASCOL, O., BUSSE, M., SALIN, L.,
JUHEL, N. & POEWE, W. 2011. Extended-release pramipexole in advanced Parkinson disease
A randomized controlled trial. Neurology, 77, 767-774.

167.SCHAPIRA, A. H., MCDERMOTT, M. P., BARONE, P., COMELLA, C. L., ALBRECHT, S., HSU, H.
H., MASSEY, D. H., MIZUNO, Y., POEWE, W. & RASCOL, 0. 2013. Pramipexole in patients

169



Appendix 2

with early Parkinson's disease (PROUD): a randomised delayed-start trial. The Lancet
Neurology, 12, 747-755.

168.SCHNEIER, F. R., NERIA, Y., PAVLICOVA, M., HEMBREE, E., SUH, E. J., AMSEL, L. &
MARSHALL, R. D. 2012. Combined prolonged exposure therapy and paroxetine for PTSD
related to the World Trade Center attack: a randomized controlled trial. American Journal
of Psychiatry, 169, 80-88.

169.SCHUEPBACH, W., RAU, J., KNUDSEN, K., VOLKMANN, J., KRACK, P., TIMMERMANN, L.,
HALBIG, T., HESEKAMP, H., NAVARRO, S. & MEIER, N. 2013. Neurostimulation for
Parkinson's disease with early motor complications. New England Journal of Medicine, 368,
610-622.

170.SCOTT, P. A., MEURER, W. J., FREDERIKSEN, S. M., KALBFLEISCH, J. D., XU, Z., HAAN, M. N,,
SILBERGLEIT, R. & MORGENSTERN, L. B. 2012. A multilevel intervention to increase
community hospital use of alteplase for acute stroke (INSTINCT): a cluster-randomised
controlled trial. The Lancet Neurology.

171.SHALEV, A. Y., ANKRI, Y., ISRAELI-SHALEV, Y., PELEG, T., ADESSKY, R. & FREEDMAN, S. 2012.
Prevention of posttraumatic stress disorder by early treatment: results from the Jerusalem
Trauma Outreach And Prevention study. Archives of general psychiatry, 69, 166-176.

172.SHARPE, M., WALKER, J., WILLIAMS, C., STONE, J., CAVANAGH, J., MURRAY, G., BUTCHER, I.,
DUNCAN, R., SMITH, S. & CARSON, A. 2011. Guided self-help for functional (psychogenic)
symptoms A randomized controlled efficacy trial. Neurology, 77, 564-572.

173.SIGMON, S. C., DUNN, K. E., SAULSGIVER, K., PATRICK, M. E., BADGER, G. J., HEIL, S. H.,
BROOKLYN, J. R. & HIGGINS, S. T. 2013. A randomized, double-blind evaluation of
buprenorphine taper duration in primary prescription opioid abusers. JAMA psychiatry, 70,
1347-1354.

174.SILBERGLEIT, R., DURKALSKI, V., LOWENSTEIN, D., CONWIT, R., PANCIOLI, A., PALESCH, Y. &
BARSAN, W. 2012. Intramuscular versus intravenous therapy for prehospital status
epilepticus. New England Journal of Medicine, 366, 591-600.

175.SILBERSTEIN, S., DODICK, D., LINDBLAD, A., HOLROYD, K., HARRINGTON, M., MATHEW, N. &
HIRTZ, D. 2012. Randomized, placebo-controlled trial of propranolol added to topiramate in
chronic migraine. Neurology, 78, 976-984.

176.SILVER, B., ZAMAN, I. F., ASHRAF, K., MAJED, Y., NORWOOD, E. M., SCHUH, L. A., SMITH, B.
J., SMITH, R. E. & SCHULTZ, L. R. 2012. A randomized trial of decision-making in
asymptomatic carotid stenosis. Neurology, 78, 315-21.

177.SIMPSON, H. B., FOA, E. B., LIEBOWITZ, M. R., HUPPERT, J. D., CAHILL, S., MAHER, M. J.,
MCLEAN, C. P., BENDER, J., MARCUS, S. M. & WILLIAMS, M. T. 2013. Cognitive-behavioral
therapy vs risperidone for augmenting serotonin reuptake inhibitors in obsessive-
compulsive disorder: a randomized clinical trial. JAMA psychiatry, 70, 1190-1199.

178.SMYKE, A. T., ZEANAH, C. H., GLEASON, M. M., DRURY, S. S., FOX, N. A., NELSON, C. A. &
GUTHRIE, D. 2012. A randomized controlled trial comparing foster care and institutional
care for children with signs of reactive attachment disorder. American Journal of Psychiatry,
169, 508-514.

179.SOMOZA, E. C., WINSHIP, D., GORODETZKY, C. W., LEWIS, D., CIRAULO, D. A., GALLOWAY, G.
P., SEGAL, S. D., SHEEHAN, M., ROACHE, J. D., BICKEL, W. K., JASINSKI, D., WATSON, D. W.,
MILLER, S. R., SOMOZA, P. & WINHUSEN, T. 2013. A multisite, double-blind, placebo-
controlled clinical trial to evaluate the safety and efficacy of vigabatrin for treating cocaine
dependence. JAMA Psychiatry, 70, 630-7.

180.SORENSEN, P. S., LYCKE, J., ERALINNA, J.-P., EDLAND, A., WU, X., FREDERIKSEN, J. L.,
OTURAI, A., MALMESTROM, C., STENAGER, E. & SELLEBJERG, F. 2011. Simvastatin as add-on
therapy to interferon beta-1a for relapsing-remitting multiple sclerosis (SIMCOMBIN study):
a placebo-controlled randomised phase 4 trial. The Lancet Neurology, 10, 691-701.

181.SORMANI, M., LI, D., BRUZZI, P., STUBINSKI, B., CORNELISSE, P., ROCAK, S. & DE STEFANO,
N. 2011. Combined MRI lesions and relapses as a surrogate for disability in multiple
sclerosis. Neurology, 77, 1684-1690.

170



Appendix 2

182.SOROND, F. A., HURWITZ, S., SALAT, D. H., GREVE, D. N. & FISHER, N. D. 2013.
Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older
people. Neurology, 81, 904-909.

183.STANGIER, U., HILLING, C., HEIDENREICH, T., RISCH, A. K., BAROCKA, A., SCHLOSSER, R.,
KRONFELD, K., RUCKES, C., BERGER, H. & ROSCHKE, J. 2013. Maintenance Cognitive-
Behavioral Therapy and Manualized Psychoeducation in the Treatment of Recurrent
Depression: A Multicenter Prospective Randomized Controlled Trial. American Journal of
Psychiatry, 170, 624-632.

184.STANGIER, U., SCHRAMM, E., HEIDENREICH, T., BERGER, M. & CLARK, D. M. 2011. Cognitive
therapy vs interpersonal psychotherapy in social anxiety disorder: a randomized controlled
trial. Archives of general psychiatry, 68, 692.

185.STROUP, T. S., MCEVOQY, J. P., RING, K. D., HAMER, R. H., LAVANGE, L. M., SWARTZ, M. S.,
ROSENHECK, R. A., PERKINS, D. O., NUSSBAUM, A. M. & LIEBERMAN, J. A. 2011. A
randomized trial examining the effectiveness of switching from olanzapine, quetiapine, or
risperidone to aripiprazole to reduce metabolic risk: comparison of antipsychotics for
metabolic problems (CAMP). American Journal of Psychiatry, 168, 947-956.

186.STURKENBOOM, I. H., GRAFF, M. J., HENDRIKS, J., VEENHUIZEN, Y., MUNNEKE, M., BLOEM,
B. R. & DER SANDEN, M. W. 2014. Efficacy of occupational therapy for patients with
Parkinson's disease: a randomised controlled trial. The Lancet Neurology, 13, 557-566.

187.TARIOT, P. N., SCHNEIDER, L. S., CUMMINGS, J., THOMAS, R. G., RAMAN, R., JAKIMOVICH, L.
J., LOY, R., BARTOCCI, B., FLEISHER, A. & ISMAIL, M. S. 2011. Chronic divalproex sodium to
attenuate agitation and clinical progression of Alzheimer disease. Archives of General
Psychiatry, 68, 853.

188.THORNICROFT, G., FARRELLY, S., SZMUKLER, G., BIRCHWOOD, M., WAHEED, W., FLACH, C,,
BARRETT, B., BYFORD, S., HENDERSON, C. & SUTHERBY, K. 2013. Clinical outcomes of joint
crisis plans to reduce compulsory treatment for people with psychosis: a randomised
controlled trial. The Lancet, 381, 1634-1641.

189.TORRENT, C., DEL MAR BONNIN, C., MARTINEZ-ARAN, A., VALLE, J., AMANN, B. L.,
GONZALEZ-PINTO, A., CRESPO, J. M., IBANEZ, A., GARCIA-PORTILLA, M. P. & TABARES-
SEISDEDOS, R. 2013. Efficacy of functional remediation in bipolar disorder: a multicenter
randomized controlled study. American Journal of Psychiatry, 170, 852-859.

190.TRENKWALDER, C., BENES, H., GROTE, L., GARCIA-BORREGUERO, D., HOGL, B., HOPP, M.,
BOSSE, B., OKSCHE, A., REIMER, K. & WINKELMANN, J. 2013. Prolonged release oxycodone—
naloxone for treatment of severe restless legs syndrome after failure of previous treatment:
a double-blind, randomised, placebo-controlled trial with an open-label extension. The
Lancet Neurology, 12, 1141-1150.

191.TYRER, P., COOPER, S., SALKOVSKIS, P., TYRER, H., CRAWFORD, M., BYFORD, S., DUPONT, S.,
FINNIS, S., GREEN, J. & MCLAREN, E. 2014. Clinical and cost-effectiveness of cognitive
behaviour therapy for health anxiety in medical patients: a multicentre randomised
controlled trial. The Lancet, 383, 219-225.

192.UNDERWOOD, M., LAMB, S. E., ELDRIDGE, S., SHEEHAN, B., SLOWTHER, A.-M., SPENCER, A.,
THOROGOOD, M., ATHERTON, N., BREMNER, S. A. & DEVINE, A. 2013. Exercise for
depression in elderly residents of care homes: a cluster-randomised controlled trial. The
Lancet, 382, 41-49.

193.VAN DER VAART, T., PLASSCHAERT, E., RIETMAN, A. B., RENARD, M., OOSTENBRINK, R.,
VOGELS, A., DE WIT, M.-C. Y., DESCHEEMAEKER, M.-J., VERGOUWE, Y. & CATSMAN-
BERREVOETS, C. E. 2013. Simvastatin for cognitive deficits and behavioural problems in
patients with neurofibromatosis type 1 (NF1-SIMCODA): a randomised, placebo-controlled
trial. The Lancet Neurology, 12, 1076-1083.

194.VELLAS, B., COLEY, N., OUSSET, P.-J., BERRUT, G., DARTIGUES, J.-F., DUBOIS, B.,
GRANDIJEAN, H., PASQUIER, F., PIETTE, F. & ROBERT, P. 2012. Long-term use of standardised
ginkgo biloba extract for the prevention of Alzheimer's disease (GuidAge): a randomised
placebo-controlled trial. The Lancet Neurology.

171



Appendix 2

195.VITIELLO, B., ELLIOTT, G. R., SWANSON, J. M., ARNOLD, L. E., HECHTMAN, L., ABIKOFF, H.,
MOLINA, B. S., WELLS, K., WIGAL, T. & JENSEN, P. S. 2012. Blood pressure and heart rate
over 10 years in the multimodal treatment study of children with ADHD. American Journal
of Psychiatry, 169, 167-177.

196.VOLKMANN, J., WOLTERS, A., KUPSCH, A., MULLER, J., KUHN, A. A., SCHNEIDER, G.-H.,
POEWE, W., HERING, S., EISNER, W. & MULLER, J.-U. 2012. Pallidal deep brain stimulation in
patients with primary generalised or segmental dystonia: 5-year follow-up of a randomised
trial. The Lancet Neurology.

197.WANG, Y., WANG, Y., ZHAO, X, LIU, L., WANG, D., WANG, C., WANG, C,, LI, H., MENG, X. &
CUI, L. 2013. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack.
New England Journal of Medicine, 369, 11-19.

198.WEAVER, F. M., FOLLETT, K. A., STERN, M., LUO, P., HARRIS, C. L., HUR, K., MARKS, W. J.,
ROTHLIND, J., SAGHER, O. & MOQY, C. 2012. Randomized trial of deep brain stimulation for
Parkinson disease Thirty-six-month outcomes. Neurology, 79, 55-65.

199.WEISS, R. D., POTTER, J. S., FIELLIN, D. A., BYRNE, M., CONNERY, H. S., DICKINSON, W.,
GARDIN, J., GRIFFIN, M. L., GOUREVITCH, M. N. & HALLER, D. L. 2011. Adjunctive counseling
during brief and extended buprenorphine-naloxone treatment for prescription opioid
dependence: a 2-phase randomized controlled trial. Archives of General Psychiatry,
archgenpsychiatry. 2011.121 v1.

200.WEISZ, J. R., CHORPITA, B. F., PALINKAS, L. A., SCHOENWALD, S. K., MIRANDA, J., BEARMAN,
S. K., DALEIDEN, E. L., UGUETO, A. M., HO, A. & MARTIN, J. 2012. Testing standard and
modular designs for psychotherapy treating depression, anxiety, and conduct problems in
youth: A randomized effectiveness trial. Archives of general psychiatry, 69, 274-282.

201.WEST, R., ZATONSKI, W., CEDZYNSKA, M., LEWANDOWSKA, D., PAZIK, J., AVEYARD, P. &
STAPLETON, J. 2011. Placebo-controlled trial of cytisine for smoking cessation. New England
Journal of Medicine, 365, 1193-1200.

202.WETHERELL, J. L., PETKUS, A. J., WHITE, K. S., NGUYEN, H., KORNBLITH, S., ANDREESCU, C.,
ZISOOK, S. & LENZE, E. J. 2013. Antidepressant medication augmented with cognitive-
behavioral therapy for generalized anxiety disorder in older adults. American Journal of
Psychiatry, 170, 782-789.

203.WILES, N., THOMAS, L., ABEL, A., RIDGWAY, N., TURNER, N., CAMPBELL, J., GARLAND, A.,
HOLLINGHURST, S., JERROM, B. & KESSLER, D. 2013. Cognitive behavioural therapy as an
adjunct to pharmacotherapy for primary care based patients with treatment resistant
depression: results of the CoBalT randomised controlled trial. The Lancet, 381, 375-384.

204.WILHELM, S., PETERSON, A. L., PIACENTINI, J., WOODS, D. W., DECKERSBACH, T.,
SUKHODOLSKY, D. G., CHANG, S., LIU, H., DZIURA, J. & WALKUP, J. T. 2012. Randomized trial
of behavior therapy for adults with Tourette syndrome. Archives of general psychiatry, 69,
795-803.

205.WU, R.-R., JIN, H., GAO, K., TWAMLEY, E. W., OU, J.-J., SHAO, P., WANG, J., GUO, X.-F.,
DAVIS, J. M. & CHAN, P. K. 2012. Metformin for treatment of antipsychotic-induced
amenorrhea and weight gain in women with first-episode schizophrenia: a double-blind,
randomized, placebo-controlled study. American Journal of Psychiatry, 169, 813-821.

206.ZAJICEK, J., BALL, S., WRIGHT, D., VICKERY, J., NUNN, A., MILLER, D., CANO, M. G.,
MCMANUS, D., MALLIK, S. & HOBART, J. 2013. Effect of dronabinol on progression in
progressive multiple sclerosis (CUPID): a randomised, placebo-controlled trial. The Lancet
Neurology, 12, 857-865.

207.ZIMMERMANN, R., GSCHWANDTNER, U., BENZ, N., HATZ, F., SCHINDLER, C., TAUB, E. &
FUHR, P. 2014. Cognitive training in Parkinson disease Cognition-specific vs nonspecific
computer training. Neurology, 82, 1219-1226.

208.ZINKSTOK, S. M. & ROOQS, Y. B. 2012. Early administration of aspirin in patients treated with
alteplase for acute ischaemic stroke: a randomised controlled trial. The Lancet, 380, 731-
737.

172



Appendix 2

209.ZIPFEL, S., WILD, B., GROR, G., FRIEDERICH, H.-C., TEUFEL, M., SCHELLBERG, D., GIEL, K. E.,
DE ZWAAN, M., DINKEL, A. & HERPERTZ, S. 2014. Focal psychodynamic therapy, cognitive
behaviour therapy, and optimised treatment as usual in outpatients with anorexia nervosa
(ANTOP study): randomised controlled trial. The Lancet, 383, 127-137.

173



Appendix 3

Appendix 3

Published manuscript of methods to adjust
for multiple comparisons

174



Appendix 3

Vickerstaff et al. BMIC Medical Research Methodology (2019) 19:129 .
https://doi.org/10.1186/s12874-019-0754-4 BMC M Edl{ﬁgltﬁggeo?org

RESEARCH ARTICLE Open Access

Check for
updates

Methods to adjust for multiple comparisons
in the analysis and sample size calculation
of randomised controlled trials with
multiple primary outcomes

Victoria Vickerstaff'?"®, Rumana Z. Omar® and Gareth Ambler?

Abstract

Background: Multiple primary outcomes may be specified in randomised controlled trials (RCTs). When analysing
multiple outcomes it's important to control the family wise error rate (FWER). A popular approach to do this is to
adjust the p-values corresponding to each statistical test used to investigate the intervention effects by using the
Bonferroni correction. It's also important to consider the power of the trial to detect true intervention effects. In the
context of multiple outcomes, depending on the clinical objective, the power can be defined as: disjunctive power’,
the probability of detecting at least one true intervention effect across all the outcomes or ‘marginal power’ the
probability of finding a true intervention effect on a nominated outcome.

We provide practical recommendations on which method may be used to adjust for multiple comparisons in the
sample size calculation and the analysis of RCTs with multiple primary outcomes. We also discuss the implications
on the sample size for obtaining 90% disjunctive power and 90% marginal power.

Methods: We use simulation studies to investigate the disjunctive power, marginal power and FWER obtained
after applying Bonferroni, Holm, Hochberg, Dubey/Armitage-Parmar and Stepdown-minP adjustment methods.
Different simulation scenarios were constructed by varying the number of outcomes, degree of correlation
between the outcomes, intervention effect sizes and proportion of missing data.

Results: The Bonferroni and Holm methods provide the same disjunctive power. The Hochberg and Hommel
methods provide power gains for the analysis, albeit small, in comparison to the Bonferroni method. The
Stepdown-minP procedure performs well for complete data. However, it removes participants with missing values
prior to the analysis resulting in a loss of power when there are missing data. The sample size requirement to
achieve the desired disjunctive power may be smaller than that required to achieve the desired marginal

power. The choice between whether to specify a disjunctive or marginal power should depend on the clincial
objective.

Keywords: Multiple comparison methods, Multiple outcome, Sample size, Statistical analysis, Randomised
controlled trials

* Correspondence: v.vickerstaff@ucl.ac.uk

'Marie Curie Palliative Care Research Department, Division of Psychiatry,
University College London, Gower Street, London WCTE 6BT, UK
“Department of Statistical Science, University College London, Gower Street,
London WCTE 6BT, UK

© The Author(s). 2019, corrected publication 2019. Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

175



Appendix 3

Vickerstaff et al. BMC Medical Research Methodology (2019) 19:129

Background

Multiple primary outcomes may be specified in a ran-
domised controlled trial (RCT) when it is not possible
to use a single outcome to fully characterise the effect
of an intervention on a disease process [1-3]. The
use of multiple primary outcomes (or ‘endpoints’) is
becoming increasingly common in RCTs. For ex-
ample, a third of neurology and psychiatry trials use
multiple primary outcomes [4]. Data on two primary
outcomes (abstinence and time to dropout from treat-
ment) were collected in a trial evaluating the effect-
iveness of a behavioural intervention for substance
abuse [5] and data on four primary outcomes were
collected in a trial evaluating a multidisciplinary inter-
vention in patients following a stroke [6]. Typically,
these outcomes are correlated and often one or more
of the outcomes has missing values.

Typically multiple statistical tests are performed to
investigate the effectiveness of the intervention on
each outcome. If two outcomes are analysed inde-
pendently of each other at the nominal significance
level of 0.05, then the probability of finding at least
one false positive significant results increases to
0.098. This probability is known as the familywise
error rate, ‘FWER. One approach to control the
FWER to its desired level is to adjust the p-values
corresponding to each statistical test used to investi-
gate the intervention effects. Many adjustments have
been proposed including the Bonferroni [7], Holm
[8], Hochberg [9], Hommel [10] and Dubey/Armitage-
Parmar [11] methods. Once the p-values have been
adjusted, they can be compared to the nominal
significance level. For example in the trial on sub-
stance abuse [5], two unadjusted p-values: 0.010,0.002
were reported. If the Bonferroni method was used,
the p-values could have been adjusted to 0.020, 0.004
and compared to the significance level a of 0.05.
Alternatively, the significance level could be adjusted
(to 0.05/2=0.025 in this example) and compared to
the unadjusted p-values.

In clinical trials, it is also important to consider the
power of the tests to detect an intervention effect. In the
context of multiple outcomes, the power of the study
can be defined in a number of ways depending on the
clinical objective of the trial: i) ‘disjunctive power; ii)
‘conjunctive power’ or iii) ‘marginal power’ [12].

The disjunctive power (or minimal power [13]) is
the probability of finding at least one true interven-
tion effect across all of the outcomes [12, 14]. The
conjunctive power (or maximal power [13]) is the
probability of finding a true intervention effect on all
outcomes [14]. It may be noted that the disjunctive
and conjunctive power have previously been referred
to as ‘multiple’ and ‘complete’ power respectively [13].
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The marginal (or individual) power is the probability
of finding a true intervention effect on a particular
outcome and is calculated separately for each out-
come. When the clinical objective is to detect an
intervention effect for at least one of the outcomes
the disjunctive power and marginal power are recom-
mended whereas the conjunctive power is recom-
mended when the clinical objective is to detect an
intervention effect on all the outcomes [12, 14]. In
this paper, we are focusing on the former clinical ob-
jective and therefore we focus on disjunctive and
marginal power.

The power requirements of a trial should match the
clinical objective which needs to be pre-specified when
designing the study and the sample size calculation
should be performed accordingly. In current practice,
the sample size calculations for trials often focus on the
marginal power for each outcome. An approach that has
been recommended and is often used in trials is to cal-
culate the sample size separately for each of the primary
outcomes by applying a Bonferroni correction to adjust
the significance level [15]. The largest value of the sam-
ple size is then considered as the final sample size for
the trial [16].

Missing outcome data are common in RCTs [17]
which will inevitably reduce the power and efficiency of
the study [18] which may result in failure to detect true
intervention effects as statistically significant.

When using multiple primary outcomes, there is lim-
ited guidance as to which method(s) should be used to
take account of multiplicity in the sample size calcula-
tion and during the statistical analysis.

Some studies have compared a selection of methods
which adjust p-values to account for multiplicity to
handle multiple outcomes in trials. Sankoh, Huque
and Dubey [11] compare a selection of adjustment
methods for statistical analysis in terms of FWER but
they do not evaluate the methods with respect to the
power obtained. Blakesley et al. discuss both FWER
and power requirements for selected methods for a
large number of outcomes with varying degrees of
correlation [19]. Lafaye de Micheaux provide formulae
to calculate the power and sample size for multiple
outcomes [20] which require several assumptions to
be made about the outcomes, including normality and
whether the covariance matrix between the outcomes
is known or not. They discuss global testing proce-
dures, including the Hotelling T?> method. None of
these studies have investigated the adjustment
methods in the presence of missing data.

There is limited literature discussing the sample size
requirements for clinical trials with multiple primary
outcomes where the clinical objective is to detect an
intervention effect for at least one of the outcomes.
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Dmitrienko, Tamhane and Bretz [14] and Senn and
Bretz [13] provide some discussion regarding the
sample size in the context of multiple outcomes.
However, neither discuss sample size in the context
of which adjustment method should be used and they
do not provide a comparative table depending on the
type of desired power to show implications on the re-
quired sample sizes.

In this paper, we compare easy to use methods to
adjust p-values in terms of FWER and power, when
investigating two, three and four outcomes in pres-
ence of complete outcome data and outcome data
with missing values. We also consider a range of cor-
relations between the outcomes. We consider both
marginal and disjunctive power. Based on our find-
ings, we provide practical recommendations on the
adjustment methods which could be used for the
sample size calculation and analysis of RCTs with
multiple primary outcome. We also present tables
showing the implications of using the marginal and
disjunctive power on the required sample size for a
trial under different scenarios.

Methods

We assume that we have a two-arm trial in which there
are M primary outcomes. We are interested in testing
the null hypotheses H; (=1, ..., M) that there is no
intervention effect on the nominated outcomes. The test
statistics ¢; are used to test the null hypotheses H;
Further suppose that there is an overall null hypothesis
H(M) = m?’i 1H j. Under this overall hypothesis, the joint
test statistic (£, ..., £3;) has a M-variate distribution. We
denote p; as the marginal, unadjusted p-values obtained
from the appropriate statistical test associated with
analysing each outcome separately in a univariate frame-
work. For example, when analysing continuous out-
comes, an unpaired Student’s t-test may be used or
when analysing binary outcomes a Chi-squared test may
be used to investigate the intervention. To control the
FWER a correction method is then applied to the un-
adjusted p-values (p;). We compare the following com-
monly used adjustment methods in this paper: Sidak,
Bonferroni, Holm, Hochberg and Hommel. In addition,
we consider the Dubey/Armitage-Parmar (D/AP) adjust-
ment and Stepdown minP resampling procedure which
take account of the pairwise correlation between the
outcomes.

The method proposed by Sidak is defined as p,si =1-

(1-p j)M. Equivalently, the significance level could be ad-

justed to aSi= 1-(1-a)"™, where « is the unadjusted
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significance level. Under the assumption that the out-
comes are independent, the adjustment can be derived
as
P(no Type I error on 1 test) = l—aSI,

M

—P(no Type I error on M tests) = (l—as i) ,
- M
—P(atleast one Type I error on M tests) = 1—(1—01S i) =a.

The Bonferroni method is the most common approach
to account for multiplicity due to its simplicity. In this
method, the unadjusted p-values p; are multiplied by the
number of primary outcome. The Dubey/Armitage-Par-
mar (D/AP) is an ad-hoc method based on the Siddk
method, which takes into account the correlation be-
adj
; j
— 1—(1—p/-)g(") where g(j) = M' =" *D and mean p(j) is
the mean correlation between the /” outcome and the
remaining M - 1 outcomes. When using this method in
the analysis of multiple outcomes, the mean correlation
may be estimated from the data. There has been little
theoretical work to assess the performance of this ap-
proach [11].One of the nice properties of the D/AP pro-
cedure, which may have contributed to its development,
is that when the average of the correlation coefficients is
zero, the D/AP adjustment is according to the Bonfer-
roni test, and when the average correlation coefficient is
one, the D/AP adjusted and the unadjusted p-values are
the same. The Holm method [8] involves a step-down
method, whereby the unadjusted p-values are ordered
from smallest p( to largest p(r) and each unadjusted p-
value is adjusted as p{iy"" = (M-k + 1) p), where k=1,
..M is the rank of the corresponding p-value. Then
starting with the most significant p-value (smallest p-
value), each adjusted p-value is compared to the nominal
significance level, until a p-value greater than the signifi-
cance level is observed after which the method stops
[21]. The Hochberg step-up method [9] is similar to the
Holm step-down method but works in the other direc-
tion. For this method, the unadjusted p-values are
ranked from largest p(;) to smallest p(,s and adjusted as
pg(‘fh = (M~k +1) p, - Starting with the least signifi-
cant p-value (largest p-value), each adjusted p-value is
compared to the pre-specified significance level, until a
p-value lower than the significance level is observed after
which the method stops [21]. Contrary to the Sidik
based approaches, this is a semiparametric method
meaning the FWER is only controlled when the joint
distribution of the hypotheses test statistics is known,
most commonly multivariate normal [22]. The Hommel
method [10] is another data-driven stepwise method.

tween the outcomes [11]. The adjusted p-value is p
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Dmitrienko, Tamhane and Bretz [14] and Senn and
Bretz [13] provide some discussion regarding the
sample size in the context of multiple outcomes.
However, neither discuss sample size in the context
of which adjustment method should be used and they
do not provide a comparative table depending on the
type of desired power to show implications on the re-
quired sample sizes.

In this paper, we compare easy to use methods to
adjust p-values in terms of FWER and power, when
investigating two, three and four outcomes in pres-
ence of complete outcome data and outcome data
with missing values. We also consider a range of cor-
relations between the outcomes. We consider both
marginal and disjunctive power. Based on our find-
ings, we provide practical recommendations on the
adjustment methods which could be used for the
sample size calculation and analysis of RCTs with
multiple primary outcome. We also present tables
showing the implications of using the marginal and
disjunctive power on the required sample size for a
trial under different scenarios.

Methods

We assume that we have a two-arm trial in which there
are M primary outcomes. We are interested in testing
the null hypotheses H; (j=1, ..., M) that there is no
intervention effect on the nominated outcomes. The test
statistics #; are used to test the null hypotheses H;
Further suppose that there is an overall null hypothesis
H(M) = ﬁj\i 1H ;. Under this overall hypothesis, the joint
test statistic (¢, ..., £3;) has a M-variate distribution. We
denote p; as the marginal, unadjusted p-values obtained
from the appropriate statistical test associated with
analysing each outcome separately in a univariate frame-
work. For example, when analysing continuous out-
comes, an unpaired Student’s t-test may be used or
when analysing binary outcomes a Chi-squared test may
be used to investigate the intervention. To control the
FWER a correction method is then applied to the un-
adjusted p-values (p;). We compare the following com-
monly used adjustment methods in this paper: Sidak,
Bonferroni, Holm, Hochberg and Hommel. In addition,
we consider the Dubey/Armitage-Parmar (D/AP) adjust-
ment and Stepdown minP resampling procedure which
take account of the pairwise correlation between the
outcomes.

The method proposed by Sidak is defined as plsi =1-

(1-p 1-)M. Equivalently, the significance level could be ad-

justed to aSt= 1-(1-a)"™, where « is the unadjusted
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significance level. Under the assumption that the out-
comes are independent, the adjustment can be derived
as
P(no Type I error on 1 test) = l—aSi,

M

—P(no Type I error on M tests) = (1—0(51) ,
M

—P(atleast one Type I error on M tests) = l—(l—as i) =a.

The Bonferroni method is the most common approach
to account for multiplicity due to its simplicity. In this
method, the unadjusted p-values p; are multiplied by the
number of primary outcome. The Dubey/Armitage-Par-
mar (D/AP) is an ad-hoc method based on the Sidak
method, which takes into account the correlation be-
5
= 1—(1—p1)g<’) where g(j) = M* =" PD and mean p(j) is
the mean correlation between the j outcome and the
remaining M - 1 outcomes. When using this method in
the analysis of multiple outcomes, the mean correlation
may be estimated from the data. There has been little
theoretical work to assess the performance of this ap-
proach [11].0ne of the nice properties of the D/AP pro-
cedure, which may have contributed to its development,
is that when the average of the correlation coefficients is
zero, the D/AP adjustment is according to the Bonfer-
roni test, and when the average correlation coefficient is
one, the D/AP adjusted and the unadjusted p-values are
the same. The Holm method [8] involves a step-down
method, whereby the unadjusted p-values are ordered
from smallest p(;) to largest p(,) and each unadjusted p-
value is adjusted as (k‘;l"‘ = (M~k +1) p), where k=1,
..M is the rank of the corresponding p-value. Then
starting with the most significant p-value (smallest p-
value), each adjusted p-value is compared to the nominal
significance level, until a p-value greater than the signifi-
cance level is observed after which the method stops
[21]. The Hochberg step-up method [9] is similar to the
Holm step-down method but works in the other direc-
tion. For this method, the unadjusted p-values are
ranked from largest p(;) to smallest p(s) and adjusted as
pg(‘fh = (M-k+1) P(r) - Starting with the least signifi-
cant p-value (largest p-value), each adjusted p-value is
compared to the pre-specified significance level, until a
p-value lower than the significance level is observed after
which the method stops [21]. Contrary to the Sidak
based approaches, this is a semiparametric method
meaning the FWER is only controlled when the joint
distribution of the hypotheses test statistics is known,
most commonly multivariate normal [22]. The Hommel
method [10] is another data-driven stepwise method.

tween the outcomes [11]. The adjusted p-value is p
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For this method, the unadjusted p-values are ranked
from largest p(y) to smallest p). Then let / be the lar-
gest integer for which p_, 5 >j7“ orallj=1,...0 If no
such j exists then all outcomes can be deemed statisti-
cally significant; otherwise, all outcomes with p;<$ may

be deemed statistically significant, where j=1, ..., M; i=
1,..., M. To control the FWER, the Hommel method re-
quires that the joint distribution of the overall hypoth-
esis test statistic is known.

Another step-down method to adjust p-values is the
‘Stepdown minP’ procedure [23, 24]. Unlike the previous
methods, it does not make any assumptions regarding the
distribution of the joint test statistic. Instead it attempts to
approximate the true joint distribution by using a resam-
pling approach. This method takes into account the correl-
ation structure between the outcomes and therefore may
yield more powerful tests compared to the other adjust-
ment methods [25]. The Stepdown minP adjusted p-values
are calculated as follows: 1) calculate the observed test sta-
tistics using the observed data set; 2) resample the data with
replacement within each intervention group to obtain boot-
strap resamples, compute the resampled test statistics for
each resampled data set and construct the reference distri-
bution using the centred and/or scaled resampled test sta-
tistics; 3) calculate the critical value of a level a test based
on the upper a percentile of the reference distribution, or
obtain the raw p-values by computing the proportion of
bootstrapped test statistics that are as extreme or more ex-
treme than the observed test statistic [26]. That is, the Step-
down minP adjusted p-value for the /* outcome is defined
as [24, 26] P;"mp = maxg1,..;{ Pr(( min_g .y p;<pi
| H(M))}, where py is the unadjusted p-value for the k"
outcome, p; is the unadjusted p-value for the I outcome
=k, ..., M), and H(M) is the overall null hypothesis.

Although, the resampling based methods have previ-
ously been recommended for clinical trials with multiple
outcomes they are not widely used in practice [25]. The
Stepdown minP has been shown to perform well when
compared to other resampling procedures [26] and was
therefore investigated in this paper.

We perform a simulation study to evaluate the validity
of these methods to account for potentially correlated
multiple primary outcomes in the analysis and sample
size of RCTs. We focus on two, three and four outcomes
as a review of trials with multiple primary outcomes in
the psychiatry and neurology field found that the major-
ity of the trials had considered two primary outcomes
[4]. Additionally, it has been recommended that a trial
should have no more than four primary outcomes [27].
We estimate the family wise error rate (FWER), the dis-
junctive power to detect at least one intervention effect
and the marginal power to detect an intervention effect
on a nominated outcome in a variety of scenarios.
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Simulation study
We used the following model to simulate values for two
continuous outcomes Y; = (Y; 1,Y; 2),

Yi = ﬁo + ﬁlxi +€; (2)

where x; indicates whether the participant i received
intervention or control, 81 = ( Bi1, 12 )7 is vector of the
intervention effects for each outcome, €; are errors
which are realisations of a multivariate normal distribu-
tion €; = (€31, €32 ) ~N((Y), ( ; /1’> ), and p € {0.0,0.2,
0.4, 0.6,0.8}. The model was also extended to simulate
three and four continuous outcomes. When simulating
three and four outcomes we specified compound sym-
metry, meaning that the correlation between any pair of
outcomes is the same. We explored both uniform inter-
vention effect sizes and varying effect sizes across out-
comes. For the uniform intervention effect sizes, we
specified an effect size of 0.35 for all outcomes, that is
B1=(035,035)7 B,=(0350350.35" or B;=(0.35,
0.35,0.35,0.35) for two, three and four outcomes sce-
narios respectively. This represents a medium effect size,
which reflects the anticipated effect size in many RCTs
[28]. For the varying intervention effect sizes, we speci-
fied that B; =(0.2,0.4)", B =(0.2,0.3,0.4)" or B; = (0.1,
0.2,0.3,0.4)” for two, three and four outcomes scenarios
respectively. We also explored the effect of skewed data
by transforming the outcome data with uniform inter-
vention effect sizes to have a gamma distribution with
shape parameter=2 and a scale parameter=2. The
gamma distribution is often used to model healthcare
costs in clinical trials [29, 30] and may also be appropri-
ate for skewed clinical outcomes.

We set the sample size to 260 participants, with an
equal number of participants assigned to each arm.
This provides 80% marginal power to detect a clinic-
ally important effect size of 0.35 for each outcome,
using an unpaired Student’s t-test and the significance
level is unadjusted at 0.05. We introduced missing
data under the assumption that the data were missing
completely at random (MCAR). When simulating two
outcomes, 15 and 25% of the observations in outcome
1 and 2 are missing respectively, and on average ap-
proximately 4% of the observations would be missing
for both outcomes. When simulating three outcomes,
15% of the observations are missing in one outcome
and 25% of the observations are missing in the other
two outcomes. When simulating four outcomes, 15%
of the observations are missing in two outcomes and
25% of the observations are missing in the other two
outcomes. This proportion of missingness in out-
comes is often observed in RCTs [31-34].

ix 3
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We estimated the FWER and disjunctive power by
specifying no intervention effect (5;;=0) and an inter-
vention effect (ﬁlji 0), respectively, and calculating the
proportion of times an intervention effect was observed
on at least one of the outcomes. The marginal power
was similarly estimated but we calculated the proportion
of times an intervention effect was observed on the
nominated outcome. For each scenario we ran 10,000
simulations. The simulations were run using R version
3.4.2. The Stepdown minP procedure was implemented
using the NPC package.

We calculated the sample size based on disjunctive
power using the R package “mpe” [35] and we calculated
the sample size based on the marginal power using the
R package “samplesize” [36]. The statistical methodology
used for the sample size calculation in these packages is
described in the Additional file 1.

Results

The Bonferroni and Holm methods lead to the same
FWER and disjunctive power when analysing multiple
primary outcomes. This is because both methods adjust
the smallest p-value in the same way. Similarly, the
Hochberg and Hommel methods lead to same FWER
and disjunctive power when two primary outcomes are
analysed and differences between these methods arise
when analysing three or more outcomes.

Family wise error rate, FWER

The FWER obtained when evaluating two, three and four
outcomes are displayed in Figs. 1, 2 and 3 respectively.
Following on from the explanation above, the Holm and
Hommel methods are not displayed in Fig. 1 and the
Holm method is not displayed in Fig. 2 or 3. The results
for the varying intervention effect sizes and skewed data
are presented in the Additional file 1.

When there is correlation between the outcomes (p >
0.2), the D/AP method does not control the FWER. All
other adjustment methods control the FWER in all sce-
narios. The Stepdown minP performs well in terms of
FWER. Unlike the other methods, it maintains the error
rate at 0.05 even when the strength of the correlation be-
tween the outcomes increases. Differences between the
Bonferroni, Hochberg and Hommel methods arise when
there is moderate correlation between outcomes (p > 0.4).
The Hommel provides the FWER which is closest to 0.05,
whilst being controlled, followed by Hochberg and then
Bonferroni. Very similar results were observed when the
outcomes followed a skewed distribution, consequently
these results are presented in the Additional file 1.

Disjunctive power

Figures 1, 2 and 3 show that the disjunctive power de-
creases as the correlation between the outcomes
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increases for all approaches. We do not consider the
power obtained when using the D/AP approach due to
its poor performance in controlling the FWER. When
there is no missing data, the Stepdown minP and Hom-
mel approaches provide the highest disjunctive power.
For weak to moderate correlation (p=0.2 to 0.6) the
Hommel method has slightly more disjunctive power,
but the Stepdown minP performs better when there is
strong correlation (p = 0.8). The Stepdown minP proced-
ure gives the lowest power in the presence of missing
data. This could be attributed to the fact that it uses list-
wise deletion removing participants with at least one
missing value prior to the analysis thus resulting in a
loss of power when there is missing data. As expected
the Bonferroni method gives slightly lower power com-
pared to the other methods for complete data but con-
siderably out performs the Stepdown minP method
when there is missing data. Very similar results were
observed when the outcomes followed a skewed
distribution.

When the intervention effect sizes varied, the differ-
ences observed between the methods were less pro-
nounced. When using four outcomes with varying effect
sizes, very similar disjunctive power were observed to
that of constant effect sizes. When using the Hommel
adjustment, higher disjunctive power was observed com-
pared to the Holm and Bonferroni methods albeit by a
very minimal amount.

Marginal power

The marginal power obtained for each outcome when
using the different adjustment methods are shown in
Table 1. In terms of marginal power, the Hommel adjust-
ment was the most powerful method, followed closely
by the Hochberg method. When two independent out-
comes were analysed, a power of 76.8% was observed
after applying a Hommel correction. The power de-
creased to 76.8 and 75.2% when three and four out-
comes were analysed, respectively, after applying a
Hommel correction. As expected the Bonferroni method
was the most conservative method, providing the least
power. However, contrary to popular belief, the Bonfer-
roni method maintains similar levels of power as the
strength of correlation increases.

When analysing two outcomes the percentage of simu-
lations in which an intervention effect was observed on
neither outcome, one outcome or both outcomes are
shown in Table 2. When using the Holm method, a sta-
tistically significant intervention effect was observed on
both outcomes in 48-58% of the simulations. This re-
duced to 36-48% of the simulations when using the
Bonferroni method. As expected, when using the Hoch-
berg adjustment the same results were observed as when
using the Hommel adjustment. Compared to Holm,
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Fig. 1 The FWER (top) and disjunctive power (bottom) obtained when evaluating two continuous outcomes using a variety of methods to
control the FWER. In the left hand graphs, there are no missing data. In the right hand graphs, the missing data are missing completely at
random, with 15% missing in the first outcome and 25% missing in the second outcome (‘Missing data’). The graphs display various degrees of
correlation between the outcomes, ranging from p=0 to p=0.8. The Monte Carlo standard errors (MCSE) were similar across all methods. When
there were no missing data, the MCSE was between 0.002-0.004 for the disjunctive power and 0.002-0.004 for the FWER. In the missing data
scenario, the MCSE was between 0.002-0.003 for the disjunctive power and between 0.003-0.005 for the FWER.)

slightly higher percentages of simulations with two sta-
tistically significant intervention effects are observed
when using Hochberg and Hommel.

Sample size calculation

We recommend the Bonferroni adjustment to be used
for the sample size calculation when designing trials
with multiple correlated outcomes since it can be ap-
plied easily by adjusting the significance level and it
maintains the FWER to an acceptable level up to a cor-
relation of 0.6 between outcomes. As the Hochberg and
Hommel methods are data-driven, it is not clear how
these more powerful approaches can be incorporated
into the sample size calculation unless prior data are
available. Determination of the required sample size
using these methods may require simulation-based
approach.

In Table 3, we present the required sample sizes to ob-
tain 90% disjunctive power for trials with two outcomes
for varying degrees of correlations between the out-
comes (p=1{0.2,0.4,0.6,0.8}). For these calculations, we
specified that there is equal allocation of participants be-
tween the intervention arms. To calculate the sample
size a priori information on the degree of correlation be-
tween the outcomes is required. More details regarding
the sample size calculation are provided in [13]. For
comparison, we also present the sample size required to
obtain 90% marginal power for each outcome. For all
calculations, we have used the Bonferroni method to ac-
count for multiple comparisons. We provide the sample
sizes required to analyse two, three and four outcomes
in Tables 3, 4 and 5, respectively. In Table 5, the top line
provides an example sample size calculation for four
outcomes where there is a small standardised effect size
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Fig. 2 FWER (top) and disjunctive power (bottom) obtained when evaluating three continuous outcomes using a variety of methods to control
the FWER. In the left hand graphs, there are no missing data. In the right hand graphs, the missing data are missing completely at random, with
15% missing in one outcome and 25% missing in the other two outcomes (‘Missing data’) The graphs display various degrees of correlation
between the outcomes, ranging from p =0 to p=0.8. The Monte Carlo standard errors (MCSE) were similar across all methods. When there was
no missing data, the MCSE was between 0.001-0.004 for the disjunctive power and 0.002-0.004 for the FWER. In the missing data scenario, the
MCSE was between 0.001-0.004 for the disjunctive power and between 0.001-0.004 for the FWER

for all four outcomes (4 = 0.2). When there is weak pair-
wise correlation between all four outcomes (p = 0.2), 325
participants would be required into each arm to obtain
90% disjunctive power. As the pairwise correlation in-
creases to p =0.8 the required sample size increases to
529. The sample size required to obtain 90% marginal
for each outcome in this scenario is 716 participants per
trial arm. The number of participants required to obtain
90% marginal power is greater than the number of par-
ticipants required to obtain 90% disjunctive power. Thus
the required sample size varies considerably depending
on whether marginal or disjunctive power is used. The
smallest of the sample sizes required to obtain the de-
sired marginal power is the required sample size to
achieve 90% disjunctive power if the outcomes are per-
fectly correlated (p = 1) [37].
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Discussion

When using multiple primary outcomes in RCTs it is
important to control the FWER for confirmatory phase
III trials. One approach to do this is to adjust the p-
values produced by each statistical test for each out-
come. Additionally, some of the outcomes are likely to
have missing values, consequently this needs to be con-
sidered when choosing an appropriate method to adjust
the p-values.

Statistical analysis

We found that all methods investigated, except the
D/AP, controlled the FWER. This agrees with the re-
sults previously reported in [19]. The Stepdown minP
performed best in terms of FWER, but the R package
used to implement the method uses listwise deletion
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Fig. 3 FWER (top) and disjunctive power (bottom) obtained when evaluating four continuous outcomes using a variety of methods to control
the FWER. In the left hand graphs, there are no missing data. In the right hand graphs, the missing data are missing completely at random, with
15% missing in two outcomes and 25% missing in the other two outcomes (Missing data’). The graphs display various degrees of correlation
between the outcomes, ranging from p =0 to p=0.8. The Monte Carlo standard errors (MCSE) were similar across all methods. When there was
no missing data, the MCSE was between 0.001-0.004 for the disjunctive power and 0.002-0.004 for the FWER. In the missing data scenario, the
MCSE was between 0.001-0.004 for the disjunctive power and between 0.001-0.004 for the FWER

removing participants with at least one missing value
before the analysis resulting in a loss of power. The
validity of this approach depends on how the method
is implemented and the extent of the missing data.

We recommend that the Hommel method is used
to control FWER when the distributional assumptions
are met, as it provides slightly more disjunctive power
than the Bonferroni and Holm methods. The distribu-
tional assumption associated with the Hommel
method is not restrictive and is met in many multipli-
city problems arising in clinical trials [22]. Even when
the data followed a skewed distribution, the Hommel
method performed well, showing it may be used to
analyse a variety of outcomes, including those with a
skewed distribution.

Given the availability of the software packages to
implement the more powerful approaches, there is lit-
tle reason to use the less powerful methods, such as
Holm method. For example, the Hommel method can
easily be implemented in R or SAS. Even though it is
not currently available in Stata or SPSS, the p-values
can be copied across and adjusted in R. However, if
the assumptions cannot be met, the simpler Holm
method could be used.

When the intervention effect size varied across the
outcomes, we found that the differences in disjunctive
power between the methods were less pronounced. It
appeared that the outcome with the largest effect size
‘dominated’ the disjunctive power. When the sample
size is based on the disjunctive power, the outcomes
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Table 1 Marginal (individual) power obtained for each outcome, when analysing two (top), three (middle) or four (bottom)
continuous outcomes using a variety of methods to control the FWER

Pairwise correlation between outcomes None Bonferroni Holm Hochberg Hommel Stepdown minP
Two outcomes
0 80.9 724 785 79.2 79.2 782
02 80.6 718 778 786 786 777
04 80.0 713 766 777 777 76.7
06 80.0 710 76.0 774 774 76.7
08 80.3 713 756 774 774 77.2
Three outcomes
0 80.2 659 752 767 768 755
0.2 80.5 66.4 750 76.6 76.7 753
04 80.2 65.7 738 754 756 732
06 80.0 65.7 733 750 75.2 738
08 80.0 659 722 746 748 76.1
Four outcomes
0 80.5 62.3 732 750 75.2 727
02 804 623 726 744 748 722
04 80.6 624 72.1 741 744 722
06 80.3 62.0 70.7 73. 735 723
08 80.3 619 69.7 732 736 735

D/AP method was not examined due to the poor performance observed when exploring FWER
There was no missing data in any of the outcomes. The tables display various degrees of correlation between the outcomes, ranging from no correlation (p = 0.0)

to strong correlation (p = 0.8)

with the largest effect size would have high marginal
power, whereas the outcome with the smallest effect
size would have low marginal power — much below
the overall desired level of power. It follows that
when investigators are looking for an intervention ef-
fect for at least one outcome, it is unlikely that they
will see an intervention effect on the outcomes with
the smaller effect sizes without seeing an intervention
effect on the outcomes with the largest effect size.
Consequently, in this scenario, it may be advisable to
pick the outcome(s) with the largest effect size as the
primary outcome(s) and treat the other outcomes as
secondary outcomes, however, this decision will need
to account for the relative clinical importance of the
outcomes. Alternatively, when the intervention effect
size varies across the outcomes, investigators may
wish to consider ‘alpha spending’ in which the total
alpha (usually 0.05) is distributed or ‘spent’ across the
M analyses.

We appreciate that in practice the choice of the ad-
justment method may also depend on other factors,
such as the availability of simultaneous confidence in-
tervals and unbiased estimates. It is standard practice
to report the 95% confidence intervals alongside point
estimates and p-values. When using multiple primary

184

outcomes, it may be necessary to adjust the confi-
dence interval so that it corresponds to the p-values
adjusted for multiplicity. The confidence interval may
be easily adjusted when using Bonferroni or Holm ad-
justments, using the R function “AdjustCIs” in the
package “Mediana” [38]. However, it is not straight-
forward to adjust the confidence interval when using
the Hochberg and Hommel. Consequently, the confi-
dence intervals reported may not align with the p-
values when these adjustments are used. As stated in
the European Medical Agency (EMA) guidelines, in
this instance, the conclusions should be based on the
p-values and not the confidence intervals [3]. If confi-
dence intervals that correspond to the chosen multi-
plicity adjustment are not available or are difficult to
derive, then the EMA guidelines advise that simple
but conservative confidence intervals are used, such
as those based on Bonferroni correction [3].

The statistical analysis plan of a trial should clearly de-
scribe how the outcomes will be tested including which
adjustment method, if any, will be used [39].

Our review of trials with multiple outcomes showed
that majority of the trials analysed the outcomes separ-
ately without any adjustments for multiple comparisons
[4]. Where adjustment methods were used, only the
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Table 2 The percentage of simulations in which an intervention effect was observed for neither outcome, one outcome or both
outcomes when analysing two outcomes, using a variety of methods to control the FWER

Method Pairwise correlation between outcomes Number of outcomes an intervention effect was observed on
0 1 2
Bonferroni 0 16.1 484 355
02 186 432 382
04 206 37.7 4.7
06 234 327 439
038 263 263 475
Holm 0 16.1 356 483
02 186 310 504
04 206 264 530
06 234 220 546
038 263 16.0 57.7
Hochberg 0 15.1 356 494
02 176 310 515
04 193 264 543
06 220 220 56.0
08 24.8 16.1 59.1
Hommel 0 15.1 356 494
02 176 310 515
04 193 264 543
06 220 220 56.0
08 248 16.1 59.1
Stepdown minP 0.0 237 375 388
02 256 336 408
04 296 271 434
06 322 202 476
0.8 338 138 524

In these simulations there was missing data in the outcomes (15% in one outcome and 25% in the other outcome). The tables display various degrees of
correlation between the outcomes, ranging from no correlation (p = 0.0) to strong correlation (p = 0.8)

most basic methods were used, possibly due to their ease
of implementation. The Bonferroni method was the
most commonly used method, although the Holm and
Hochberg methods were also used. As a consequence,
we focused on relatively simple techniques in this paper.
However, more advanced approaches, such as graphical
methods to control the FWER are available and de-
scribed in Bretz et al. [40] and Bretz et al. [41] .

It is not necessary to control the FWER for all types of
trial designs, for example, for trial designs with co-
primary outcomes where all outcomes have to be de-
clared statistically significant for the intervention to be
deemed successful. The FDA guidelines state that in this
scenario no adjustment needs to be made to control the
FWER [39] and the ‘conjunctive’ power is used. We have
not evaluated the conjunctive power as it is not relevant
to the scenarios considered in this paper. The conjunc-
tive power may be substantially reduced compared to

the marginal power for each outcome [39] and is never
larger than the marginal power [13]. The conjunctive
power behaves in reverse to the disjunctive power in that
as the correlation between the outcomes increases, the
conjunctive power increases.

Additionally, multiplicity adjustments may not be ne-
cessary for early phase drug trials. However, it is gener-
ally accepted that adjustments to control the FWER are
required in confirmatory studies, that is when the goal
of the trial is the definitive proof of a predefined key hy-
pothesis for the final decision making [42].

Sample size

When designing a clinical trial, it is important to calculate
the sample size needed to detect a clinically important
intervention effect. Usually the number of participants
that can be recruited in a trial is restricted because of
ethical, cost and time implications. The sample size
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Table 3 Sample size required to obtain 90% disjunctive power and 90% marginal power when analysing two outcomes, after

applying a Bonferroni correction

Standardised effect sizes for

Sample size required to obtain 90% DISJUNCTIVE power

Sample size required to

each of the 2 outcomes Correlation between outcomes

obtain 90% MARGINAL power
for each outcome

Outcome 1 Outcome 2 0.2 04 0.6 08 Outcome 1 Outcome 2
0.2 02 402 436 475 522 622 622
0.2 03 237 251 264 274 622 278
0.2 04 145 150 154 156 622 157
0.2 05 96 98 99 100 622 101
03 03 179 194 211 232 278 278
03 04 126 135 144 152 278 157
03 05 89 93 97 99 278 101
04 04 101 109 119 131 157 157
04 05 78 84 90 96 157 101
05 05 65 70 76 84 101 101

Sample sizes provided are required per arm. A Bonferroni correction is applied for all calculations to account for the multiple comparisons

calculation for a trial is usually based on an appropriate
statistical method which will be used for the primary ana-
lysis depending on the study design and objectives. The
sample size can vary greatly depending on if the marginal
power or overall disjunctive power is used highlighting the
importance of calculating the sample size based on the
trial objective. To account for multiplicity in the sample
size calculation, we recommend that the Bonferroni ad-
justment is used. The Bonferroni adjustment can be ap-
plied easily within the sample size calculation using an
analytical formula [39] and our simulation study showed
that it maintains the FWER to an acceptable level for low
to moderate correlation between the outcomes. Addition-
ally, there is not much loss in power when using the Bon-
ferroni adjustment, compared to the other methods, in

the presence of missing data. In contrast, the other
methods investigated in this paper are data driven and
therefore it is not clear how these can be incorporated
without prior data.

One approach that has previously been used to calculate
the sample size for multiple primary outcomes, was to cal-
culate the sample size based on the individual marginal
powers for each outcome and to choose the maximum
sample size for the trial [43]. This approach guarantees ad-
equate marginal power for each individual test. However,
this approach will overestimate the number of participants
required if the investigators are interested in disjunctive
power. Moreover, it may be problematic to achieve that
sample size in trials where recruitment is a problem and
may result in trials being closed down prematurely.

Table 4 Sample size per group, assuming three outcomes, 90% disjunctive power, after applying a Bonferroni correction

Standardised effect sizes for

Sample size required to obtain 90% DISJUNCTIVE power

Sample size required to obtain

each of the 3 outcomes Correlation between outcomes

90% MARGINAL power for each

outcome
Out® 1 Out. 2 Out. 3 0.2 04 0.6 0.8 Out. 1 Out. 2 Out. 3
0.2 02 02 353 401 456 524 677 677 677
0.2 03 03 185 207 229 254 677 302 302
02 04 04 109 120 131 143 677 171 171
0.2 05 05 71 77 84 92 677 110 110
03 03 03 157 179 203 234 302 302 302
03 04 04 101 114 127 143 302 171 171
03 05 05 68 76 83 92 302 110 110
04 04 04 89 101 114 132 171 171 171
04 05 05 64 72 81 91 171 110 110
05 05 05 57 65 73 84 110 110 110

Sample sizes provided are required per arm. A Bonferroni correction is applied for all calculations to account for the multiple comparisons. Key: *Out’ Outcome
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Table 5 Sample size per group, assuming four outcomes, 90% disjunctive power, after applying a Bonferroni correction

Standardised effect sizes for each of

Sample size required to obtain 90% DISJUNCTIVE power

Sample size required to obtain 90%

the 4 outcomes Correlation between outcomes

MARGINAL power for each outcome

Out? 1 Out. 2 Out. 3 Out. 4 0.2 04 06 0.8 Out. 1 Out. 2 Out. 3 Out. 4
02 02 02 02 325 382 447 529 716 716 716 716
02 02 03 03 189 215 242 270 716 716 319 319
02 0.2 04 04 114 127 129 152 716 716 181 181
02 02 05 05 75 82 89 98 716 716 116 116
03 03 03 03 145 170 199 235 319 319 319 319
03 03 04 04 101 117 133 151 319 319 181 181
03 03 05 05 71 80 88 98 319 319 116 116
04 04 04 04 82 96 112 133 181 181 181 181
04 04 05 05 63 73 84 96 181 181 116 116
0.5 05 05 05 52 61 72 85 116 116 116 116

Sample sizes provided are required per arm. A Bonferroni correction is applied for all calculations to account for the multiple comparisons. Key: *Out’ Outcome

Finally, the sample size should be inflated to account for
the expected amount of missing data.

Study extensions and limitations

In this paper, we only explored continuous outcomes.
However, in RCTs binary outcomes or a combination of
continuous and binary outcomes may be used. For two
binary outcomes, the maximum possible pairwise correl-
ation between the outcomes will be less than one in ab-
solute magnitude [44] and therefore we would expect
similar results but with less pronounced differences be-
tween methods for the strong correlations.

Additionally, we only explored global effects, that is ei-
ther no interventions effect on any of the outcomes
(B1j=0) or an intervention effect on all the outcomes
(B1j=0). Global effects are most realistic when the
strength of the correlation between the outcomes is
moderate to strong. However, in practice a mixture of
no effects and some intervention effects may be ob-
served, especially when the strength of the correlation
between the outcomes is weak.

Conclusions

To ensure that the FWER is controlled when analysing
multiple primary outcomes in confirmatory randomised
controlled trials, we recommend that the Hommel
method is used in the analysis for optimal power, when
the distributional assumptions are met. When designing
the trial, the sample size should be calculated according to
the trial objective. When specifying multiple primary out-
comes, if considered appropriate, the disjunctive power
could be used, which has smaller sample size require-
ments compared to that when using the individual mar-
ginal powers. The Bonferroni adjustment can be used in
the sample size calculation to account for multiplicity.

Additional file

Additional file 1 Sample size calculation methodology. Varying the
effect size across outcomes. Skewed data. (DOCX 1675 kb)
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Appendix 4

Sample size calculation to obtain desired
marginal and disjunctive power

This appendix contains additional background on the methodology for the sample size
calculations described in the method section of the Chapter 4. The results described in this
section are a concise summary of the relevant results that can be found in textbooks on

sample size calculations (Machin et al., Sozu et al., 2015).

In all trials, the power requirements should match the clinical objective which should be pre-
specified when designing the study and the sample size should be performed accordingly. In
current practice sample size calculations often focus on the marginal power for each
outcome. However, we may also be interested in the disjunctive power. In this appendix, we
describe the sample size calculation required assuming that we are interested initially in

maximising the marginal power and secondly the disjunctive power.

We assume that we have a two-arm trial in which there are M primary outcomes. We are
interested in testing the null hypotheses H; (j = 1, ..., M) that there is not an intervention
effect on the corresponding outcomes. The test statistics z; are used to test the null
hypotheses H;. Further suppose that there is an overall null hypothesis Hy(M) = ﬂ?”zl H;.
Under this overall hypothesis, the joint test statistic (zy,...,Zy) has an M-variate

distribution.

A4.1 Sample size calculation for marginal power

We use the marginal power when we are interested in the power to detect an intervention
effect on a nominated outcome. The desired marginal power may be specified for each
outcome. In this case, we test the hypothesis null H; that there is not an intervention effect

on the corresponding outcome.

To estimate the sample size we used an unpaired Student’s t-test and we assumed equal
variances. Suppose we wish to detect a standardised effect size 4; , then for significance level

a, and power 1 — 3, the number of subjects per group is given by:
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where z;_q/, and z;_p are the (1 —%) and (1 — B) quantiles of the standard normal

distribution respectively. Further details on the sample size calculation based on the marginal
power can be found in the textbook ‘Sample Size Tables for Clinical Studies’ by Machin et al.
(2018). In the article, we calculated the required sample size using the R package

“samplesize”.

A4.2 Sample size calculation for disjunctive power

We use the disjunctive power when we are interested in testing the overall null hypothesis
(Ho(M)) that there is no difference between intervention groups for all M outcomes. The
overall alternative hypothesis (H,(M)) is that there is an intervention effect on at least one
of the M outcomes. We assume that the variances are known. For the standardised effect

sized;,j=1,.., M, the overall disjunctive power is

=1—-P ﬁ {Zj < Zl_g} H,(M)
j=1
o

=1-P ﬂ{zj* < ¢} Hi(M)
=1

where Z; = Z; — \/jn 4; and ¢; = zl_%—\/j_nAj and n is the number of subjects per

group. The vector of test statistics (Z7, ...,Zj*) is distributed as an m-variate normal

distribution Ny, (0, p, ) where the off diagonal element of p, is given by p//’. The disjunctive
power is calculated by using the cumulative distribution function of the m-variate normal
distribution. The sample size is the smallest integer required to achieve the desired overall
power of 1 — B at the significance level of a. Further details regarding this sample size

calculation are provided in a textbook by Sozu et al. (2015).
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In the body of the thesis, | calculated the sample size for a pre-specified disjunctive power
using the R package “mpe”, in particular | used the command “atleast.one.endpoint”. The
function can be used to computer the sample size for continuous multiple primary outcomes

where a significant difference for at least one outcome is expected.
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Appendix 5

Methods to adjust for multiple
comparisons in the analysis of randomised
controlled trials with multiple primary
outcomes which have varying effect sizes
or are skewed.

In this appendix, | examine methods to adjust for multiple comparisons in additional
scenarios. | begin by varying the effect size across the outcomes. | then simulate data that

has a skewed distribution.

A5.1 Varying the effect size across outcomes

The following results were obtained by assuming varying intervention effect sizes across
continuous outcomes. When analysing two outcomes, | specified that the intervention effect
sizes were 0.2 and 0.4 for the outcomes respectively. When analysing four outcomes, |
specified that the intervention effect sizes were 0.1, 0.2, 0.3 and 0.4 for each of the outcomes

respectively.
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Figure A5.1 Disjunctive power obtained when evaluating two continuous outcomes using
a variety of methods to control the FWER.

In the left-hand graph, there are no missing data. In the right-hand graph, the missing data
are missing completely at random, with 15% missing in the first outcome and 25% missing in
the second outcome (‘Missing data MCAR’). The graphs display various degrees of correlation
between the outcomes, range fromp = Otop = 0.8.
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Figure A5.2 Disjunctive power obtained when evaluating four continuous outcomes using
a variety of methods to control the FWER.

In the left-hand graph, there are no missing data. In the right-hand graph, the missing data
are missing completely at random, with 15% missing in two outcomes and 25% missing in
the other two outcomes (‘Missing data MCAR’). The graphs display various degrees of
correlation between the outcomes, range fromp = Otop = 0.8.
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*The Monte Carlo standard errors (MCSE) were similar for all methods. When there were no missing data, the

MCSE was between 0.002-0.004 for the disjunctive power.
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A5.2 Skewed data

| investigated the effect of skewed data by generating the outcome data (with equal
intervention effect sizes) using a gamma distribution shape parameter = 2 and scale
parameter =2. One iteration of the data are shown below to demonstrate the distribution of
the data.

Figure A4.3 One iteration of the data drawn to investigate the effect of skewed data.

Distribution of outcome 1 is shown on the left and the distribution of outcome 2 is shown on
the right.
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Figure A5.4 FWER (top) and disjunctive power (bottom) obtained when evaluating two
continuous outcomes which have a skewed distribution, using a variety of methods to
control the FWER.

In the left-hand graphs, there are no missing data. In the right-hand graphs, the missing data
are missing completely at random, with 15% missing in the first outcome and 25% missing in
the second outcome. The graphs display various degrees of correlation between the
outcomes, range fromp = Otop = 0.8.
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Appendix 6

Bias and empirical standard errors
obtained when using multivariate and
univariate approaches to analyse outcomes
and the data are MCAR and MAR

In this appendix, | provide additional simulation results to compare the multivariate
multilevel (MM) model and the latent variable (LV) model in comparison to univariate
models with and without multiple imputation (MI+UV, respectively). | investigate scenarios
which vary in types of missingness, percentage of missing data and degree of correlation

between outcomes. The results from this appendix are referred to in Chapter 5.

The figures in this section show the estimated intervention effects obtained when using the
different methods to analyse two outcomes using various scenarios. The tables that follow
show the empirical standard errors of the estimated intervention effects obtained in the

different scenarios.

In this section when discussing low level of missing data, there is 15% and 25% missing
outcome data for outcome 1 and outcome 2 respectively. For high level of missing data, there

is 30% and 50% missing outcome data for outcome 1 and outcome 2 respectively.
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Figure A6.1 Bias in estimating the intervention effects obtained when simulating two
continuous outcomes. The blue dots represent the average of the estimated intervention
effect (B) for outcome 1. The red dots represent the average of estimated intervention effect
(ﬁ) for outcome 2. The five dots (of each colour) clustered together represents different
correlation between the outcomes from 0 (left) to 0.8 (right) in increments of 0.2. Each graph
displayed has different level/type of missing data as indicated. The true intervention effect
is represented by the black horizontal line.
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Figure A6.2 Bias in estimating the intervention effects obtained when simulating two
binary outcomes. The blue dots represent the average of the estimated intervention effect
(ﬁ) for outcome 1. The red dots represent the average of estimated intervention effect (E’)
for outcome 2. The five dots (of each colour) clustered together represents different
correlation between the outcomes from 0 (left) to 0.8 (right) in increments of 0.2. Each graph
displayed has different level/type of missing data as indicated. The true intervention effect
is represented by the black horizontal line.
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Figure A6.3 Bias in estimating the intervention effects obtained when simulating two
mixed outcomes (outcome 1 is continuous and outcome 2 is binary). The blue dots
represent the average of the estimated intervention effect () for outcome 1. The red dots
represent the average of estimated intervention effect (ﬁ) for outcome 2. The five dots (of
either colour) clustered together represents different correlation between the outcomes
from O (left) to 0.8 (right) in increments of 0.2. Each graph displayed has different level/type
of missing data, as indicatd. The true intervention effect is represented by the black

horizontal line
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Table A6.1a Empirical standard error (EmpSE) of estimated intervention effect when evaluating two continuous outcomes

Type of % of missing values p EmpSE of estimated intervention EmpSE of estimated intervention
Missingness |,  for each outcome N effect on outcome 1 effect on outcome 2

Method - uv MI + UV MM uv MI + UV MM

0 0.123 - 0.123 0.123 0.124 - 0.124 0.124

0.2 0.123 - 0.123 0.123 0.124 - 0.124 0.124

Complete (0%, 0%) 04 0.125 - 0.125 0.125 0.124 - 0.124 0.124

! 0.6 0.124 - 0.124 0.124 0.123 - 0.123 0.123

0.8 0.125 - 0.125 0.128 0.124 - 0.124 0.128

0 0.134 0.137 0.134 0.134 0.145 0.153 0.145 0.145

0.2 0.134 0.135 0.134 0.134 0.143 0.145 0.142 0.142

MCAR (15%, 25%) 0.4 0.135 0.134 0.134 0.134 0.143 0.142 0.141 0.141

0.6 0.136 0.134 0.133 0.133 0.145 0.141 0.140 0.140

0.8 0.133 0.130 0.129 0.131 0.143 0.135 0.134 0.137

0 0.148 0.156 0.148 0.148 0.177 0.197 0.177 0.177

0.2 0.148 0.153 0.148 0.148 0.176 0.187 0.175 0.175

MCAR (30%, 50%) 0.4 0.148 0.148 0.147 0.147 0.177 0.175 0.171 0.171

0.6 0.149 0.147 0.146 0.146 0.175 0.168 0.165 0.165

0.8 0.147 0.143 0.141 0.142 0.175 0.157 0.154 0.155

0 0.133 0.136 0.133 0.133 0.145 0.153 0.145 0.145

0.2 0.134 0.135 0.134 0.134 0.143 0.146 0.143 0.143

MAR (15%, 25%) 04 0.136 0.136 0.135 0.135 0.143 0.142 0.141 0.141

0.6 0.134 0.132 0.132 0.132 0.143 0.139 0.138 0.138

0.8 0.135 0.132 0.132 0.133 0.144 0.136 0.135 0.137

0 0.147 0.155 0.147 0.147 0.178 0.199 0.178 0.178

0.2 0.148 0.153 0.148 0.148 0.181 0.193 0.180 0.180

MAR (30%, 50%) 0.4 0.148 0.149 0.146 0.146 0.180 0.179 0.175 0.175

0.6 0.150 0.150 0.148 0.148 0.180 0.173 0.169 0.169

0.8 0.148 0.143 0.142 0.143 0.180 0.160 0.157 0.158

Key: MM = multivariate multilevel model; UV = univariate model; Ml + UV = multiple imputation followed by univariate model; LV = Latent variable model; p * = correlation between outcomes.
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Table A6.1b Empirical standard error (EmpSE) of estimated intervention effect when evaluating two binary outcomes

Appendix 6

Type of % of missing values EmpSE of estimated intervention | EmpSE of estimated intervention
missingness |,  for each outcome |, p ¥ effect on outcome 1 effect on outcome 2
Method - uv Ml + UV MM uv Ml + UV MM
0 0.138 - 0.141 0.137 - 0.137
0.2 0.138 - 0.141 0.140 - 0.140
Complete (0%, 0%) 0.4 0.137 - 0.140 0.139 - 0.139
0.6 0.138 - 0.141 0.139 - 0.139
0.8 0.139 - 0.142 0.138 - 0.139
0 0.150 0.150 0.151 0.162 0.161 0.162
0.2 0.150 0.150 0.151 0.160 0.159 0.160
MCAR (15%, 25%) 0.4 0.150 0.149 0.151 0.159 0.158 0.158
0.6 0.150 0.149 0.150 0.160 0.157 0.157
0.8 0.149 0.147 0.148 0.161 0.153 0.155
0 0.166 0.165 0.167 0.198 0.196 0.199
0.2 0.166 0.165 0.167 0.197 0.194 0.203
MCAR (30%, 50%) 0.4 0.166 0.164 0.166 0.195 0.190 0.194
0.6 0.167 0.165 0.167 0.199 0.190 0.193
0.8 0.165 0.161 0.163 0.199 0.184 0.188
0 0.149 0.149 0.150 0.159 0.158 0.159
0.2 0.151 0.151 0.152 0.159 0.159 0.160
MAR (15%, 25%) 0.4 0.151 0.150 0.152 0.160 0.158 0.158
0.6 0.149 0.148 0.149 0.162 0.159 0.160
0.8 0.151 0.148 0.150 0.160 0.154 0.156
0 0.165 0.164 0.166 0.200 0.197 0.201
0.2 0.167 0.166 0.172 0.201 0.197 0.201
MAR (30%, 50%) 0.4 0.167 0.166 0.167 0.202 0.196 0.199
0.6 0.166 0.163 0.166 0.202 0.192 0.196
0.8 0.168 0.163 0.170 0.204 0.186 0.191

Key: MM = multivariate multilevel model; UV = univariate model; Ml + UV = multiple imputation followed by univariate model; p = correlation between outcomes.
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Table 6.1c Empirical standard error (EmpSE) of estimated intervention effect when evaluating ‘mixed’ outcomes (one continuous and one binary)

Type of % of missing values ¢ EmpSE of estimated intervention EmpSE of estimated intervention
missingness |,  for each outcome, P effect on outcome 1 effect on outcome 2
Method - uv Ml+Uv MM uv Mil+UVv MM
0 0.124 - 0.160 0.160 0.124 - 0.160 0.161
0.2 0.124 - 0.158 0.158 0.124 - 0.158 0.165
Complete

(0%, 0%) 0.4 0.125 - 0.158 0.158 0.125 - 0.158 0.186

0.6 0.122 - 0.159 0.159 0.122 - 0.159 0.272

0.8 0.124 - 0.160 0.160 0.124 - 0.160 0.504

0 0.134 0.134 0.134 0.134 0.185 0.184 0.185 0.186

0.2 0.134 0.135 0.134 0.134 0.182 0.181 0.182 0.190

MCAR (15%,25%) 0.4 0.135 0.135 0.134 0.134 0.184 0.181 0.182 0.218
0.6 0.134 0.133 0.133 0.133 0.185 0.179 0.180 0.325

0.8 0.136 0.134 0.134 0.134 0.181 0.172 0.174 0.687

0 0.150 0.150 0.150 0.150 0.224 0.221 0.225 0.228

0.2 0.148 0.149 0.148 0.148 0.226 0.221 0.226 0.237

MCAR (30%,50%) 0.4 0.148 0.148 0.147 0.147 0.226 0.218 0.222 0.275
0.6 0.148 0.146 0.146 0.146 0.225 0.211 0.216 0.389

0.8 0.149 0.145 0.145 0.146 0.228 0.203 0.210 0.553

0 0.133 0.133 0.133 0.133 0.184 0.183 0.184 0.185

(15%,25%) 0.2 0.135 0.135 0.135 0.135 0.183 0.182 0.183 0.190

MAR ’ 0.4 0.135 0.135 0.134 0.134 0.183 0.181 0.182 0.219

0.6 0.133 0.132 0.132 0.132 0.182 0.176 0.177 0.313

0.8 0.134 0.131 0.131 0.132 0.183 0.174 0.176 0.515

0 0.149 0.150 0.150 0.150 0.229 0.225 0.230 0.233

0.2 0.150 0.151 0.150 0.150 0.231 0.225 0.230 0.243

MAR (30%,50%) 0.4 0.149 0.149 0.148 0.148 0.230 0.220 0.226 0.278
0.6 0.148 0.146 0.146 0.146 0.232 0.216 0.222 0.389

0.8 0.149 0.145 0.145 0.146 0.229 0.205 0.212 0.566

Key: MM = multivariate multilevel model; UV = univariate model; Ml + UV = multiple imputation followed by univariate model; LV = Latent variable model; p = correlation between outcomes.
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Appendix 7

The implementation of the multivariate
multilevel model using Stata, R and MIwiN

This appendix contains details on how to implement the multivariate multilevel (MM) model
and latent variable model. | recommend that the software "MLwiN’ is used to implement the
MM model (Rabash et al., 2009). This software is freely available for academics through the
Bristol University website. MLwiN can be used via R and Stata using the R2MIwiN (Zhang et
al., 2016b) and runMLwiN (Leckie and Charlton, 2013) packages, respectively. Alternatively,
when analysing multiple outcomes that are all the same type (say all continuous outcomes)
the multivariate multilevel model can been implemented using a standard multilevel model.
Multilevel models can be implemented in most standard packages (e.g. using mixed in Stata

or Imer in R).

| used Stata to implement the latent variable model and therefore recommend the use of
the mixed command or GLLAMM package to implement this model depending on the

outcome type. The latent variable model could also be fitted using Proc NLMIXED in SAS.

In the sections below, | provide coding to implement the MM model using MLwiN via Stata
and R and the latent variable model in Stata. For the following coding examples | assume that
the data are in wide format, that is there is one line of data for each participant. If the data
are required in a different format, this is described in more detail below with the code. In
the examples | have a dataset called dataSim. This contains two outcomes (Y3, Y,); a variable
to label if a participant received the intervention or not (arm); and, a participant identifier

number (pid).

A7.1 Coding to implement MM model using MIwiN in Stata

In this section | explain how to analyse a dataset with two outcomes using the MM model in
Stata. | provide coding to analyse two continuous outcomes, two binary outcomes and a
mixture of outcome types (one continuous and one binary outcome). Prior to performing the
analysis, MLwiN must be installed and a variable which is kept constant at 1 must also be

created.

To begin, install the “runmlwin” package.

ssc install runmlwin
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Change the global MLwiN file path to the local file directory of MLwiN
global MLwiN path "PATH" // where PATH is the local file directory to MLwiN
gen cons = 1
To analyse two continuous outcomes, type
runmlwin (Y1 arm cons, eqg(l)) (Y2 arm cons , eqg(2)) /77
levell (pid: (cons, eg(l)) (cons, eg(2)) nopause
To analyse two binary outcomes type
runmlwin (Y1 arm cons, eg(l)) (Y2 arm cons , eq(2)) ///
levell (pid: (cons, eg(l)) (cons, eg(2))) ///
discrete(distribution (binomial binomial) ///
link (logit) denom(cons cons)) nopause

To analyse one continuous outcome and one binary outcome type

runmlwin (Y1 arm cons, eg(l)) (Y2 arm cons , eq(2)) ///
levell (pid: (cons, eqg(l)) (cons, eg(2))) ///
discrete (distribution (normal binomial) ///

link (logit) denom(cons cons)) nopause
To extract the fixed effects and the corresponding variances type
matrix b results = e(b)

matrix var results = e (V)

A7.2 MM model using MLwiN in R

In this section | explain how to analyse a dataset with two outcomes using the MM model in
R. Once again, MLwiN must be install before running this analysis. When using R, any missing

data should be entered as “NA”.

To begin, install the “R2MLwin” package.

> install.packages ("RZMLwiN")
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To analyse continuous outcomes, type

> mv.model <- runMLwiN(c(Y1l, Y2) ~ 1 + arm + (1] pid),

D=Multivariate Normal”, data=dataSim)

To analyse binary outcomes, type

> mv.model <- runMLwiN( c (probit (Y:, cons), probit(Yz, cons)) ~
1 + arm , D=c("Mixed", "Binomial", "Binomial"), data = dataSim,

estoptions = list(EstM = 1)
and to analyse one continuous and one binary outcome type

> mv.model <- runMLwiN( c(Yi, probit(Y,, cons)) ~ 1 + arm +
(1711 | pid ), D=c("Mixed", "Normal", "Binomial"), data =
dataSim)

To extract the fixed effects and the corresponding standard errors type
> mv.model@FV
> mv.model@FV.cov

When analysing binary outcomes, a logit link function may also be used. The MM model runs

quicker when using R compared to when using Stata.

A7.3 Latent variable model in Stata

In this section, | explain how to fit the latent model described by McCulloch (2008a) in Stata
using the add in GLLAMM module. To implement this model, it is necessary to convert the
data into a ‘long’ format. The following code can be used to analyse two continuous

outcomes.

findit gllamm

eq het : cons 1 cons 2
eq load: cons 1 cons 2
gllamm outcome arml arm2 cons 1 cons 2, /77

s (het) 1i(pid) eqg(load) nocons allc

Even though this coding can be used, when using the latent variable model to analyse two
continuous outcomes in Stata, it is recommended to use mixed instead of the g1 1amm.
Both methods require the same data preparation into the long format. The mixed
command runs much quicker and more accurate results are obtained (Rabe-Hesketh and
Skrondal, 2008). Under the assumption of normality for the random effects and of the

outcomes given random effects, the likelihood has a simple closed form which the mixed
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command utilises. On the other hand, gllamm uses numerical integration which is much
slower. As all the features that are available in g1 1amm are also available with the mixed
command the GLLAMM producers encourage the use of mixed instead (Rabe-Hesketh and

Skrondal, 2008).

The following code can be used to analyse two mixed outcomes (1 continuous outcome and
1 binary outcome):
eq het : cons 1

eq load: cons_ 1 cons 2
constraint define 2 [pidl 1l]cons 1=0.8

gllamm outcome arml arm2 cons 1 cons 2, /17
s (het) i(pid) eg(load) nocons allc constraint(2) ///
family (gauss bin) link(id probit) /77

fv (response) lv (response)

Note that in the model with mixed outcome types it is necessary to impose a restriction on
some of the variances. In the model, | have restricted that the factor variance to 0.8. For a

discussion of alternative constraints see Skrondal and Rabe-Hesketh, 2004, pp. 107-108.

Further details for g1 1amm can be found on their webpage http://www.gllamm.org.

A7.3 Other R packages

An alternative multivariate approach could be implemented using the SabreR package in R.
This package is designed to run “multivariate generalised linear mixed models”. The
outcomes can take the form of binary, ordinal, count and linear events and the different
types can be combined. Currently (June 2019) the package cannot handle missing data. This
is a downfall for the package and therefore | have not investigated it further as one main
advantage of using multivariate analysis is the fact it can handle missing data. Details about

the package can be found: http://sabre.lancs.ac.uk/model intro.html.The team at Swansea

University, lead by Prof. Damon Berridge are currently updating this software. They hope to
provide a package which can handle multiple outcomes of mixed type and allowing for

missing data. Consequently, this could be a viable option for multivariate analysis soon.
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Appendix 8

Monte Carlo standard errors of the bias of the estimated intervention

effects, empirical standard errors and coverage of the 95% confidence
intervals when data are MNAR
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Table A8.1 Monte Carlo standard errors of the estimated bias when data are missing not at random using two continuous outcomes (left) and two

binary outcomes (right)

% missing Correlation . .
between Continuous 2 outcomes Binary 2 outcomes
v outcomes |
Method - uv Ml + UV MM uv MI+UV MM

Outcome # - 1 2 1 2 1 2 1 2 1 2 1 2
0 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007
2 § 0.2 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007
o 04 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007
§ 0.6 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006 0.0007 0.0006 0.0008
0.8 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006 0.0007 0.0006 0.0007
0 0.0006 0.0006 0.0006 0.0007 0.0006 0.0006 0.0006 0.0008 0.0006 0.0008 0.0006 0.0008
g § 0.2 0.0005 0.0006 0.0005 0.0007 0.0005 0.0006 0.0006 0.0008 0.0006 0.0008 0.0006 0.0008
E :\2 0.4 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0008 0.0006 0.0008 0.0006 0.0008
= o 0.6 0.0005 0.0006 0.0005 0.0006 0.0005 0.0006 0.0006 0.0008 0.0006 0.0007 0.0006 0.0008
0.8 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0008 0.0006 0.0007 0.0006 0.0010
0 0.0006 0.0006 0.0006 0.0007 0.0006 0.0006 0.0006 0.0018 0.0006 0.0012 0.0006 0.0015
. § 0.2 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0019 0.0006 0.0012 0.0006 0.0015
;—:" :g 0.4 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0006 0.0017 0.0006 0.0012 0.0006 0.0013
o 0.6 0.0005 0.0005 0.0005 0.0006 0.0005 0.0005 0.0006 0.0017 0.0006 0.0013 0.0017 0.0012
0.8 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005 0.0006 0.0018 0.0006 0.0013 0.0006 0.0010
. 0 0.0006 0.0006 0.0007 0.0006 0.0006 0.0006 0.0008 0.0017 0.0008 0.0012 0.0008 0.0014
_C -g_ § 0.2 0.0006 0.0006 0.0007 0.0006 0.0006 0.0006 0.0008 0.0018 0.0008 0.0012 0.0008 0.0014
%” r_? ';\2 0.4 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0008 0.0016 0.0008 0.0012 0.0008 0.0013
= 0.6 0.0006 0.0005 0.0006 0.0005 0.0006 0.0005 0.0008 0.0017 0.0008 0.0012 0.0008 0.0012
© 0.8 0.0006 0.0006 0.0006 0.0005 0.0006 0.0005 0.0008 0.0019 0.0007 0.0013 0.0009 0.0012
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Table A8.2 Monte Carlo standard errors of the estimated bias when data are missing not at random using two ‘mixed’ outcomes.

% missing Correlation .
between Mixed 2 outcomes
v outcomes |,
Method > uv Ml + UV MM

Outcome # -> 1 2 1 2 1 2
0 0.0006 0.0008 0.0006 0.0008 0.0006 0.0008
> § 0.2 0.0006 0.0008 0.0006 0.0008 0.0006 0.0008
C :' 0.4 0.0006 0.0008 0.0006 0.0008 0.0006 0.0008
5 0.6 0.0006 0.0008 0.0006 0.0008 0.0006 0.0008
0.8 0.0005 0.0008 0.0005 0.0007 0.0005 0.0007
0 0.0006 0.0009 0.0006 0.0009 0.0006 0.0009
g § 0.2 0.0006 0.0009 0.0006 0.0009 0.0006 0.0009
g ;\2 0.4 0.0006 0.0009 0.0006 0.0009 0.0006 0.0009
) 0.6 0.0006 0.0009 0.0006 0.0008 0.0006 0.0008
0.8 0.0006 0.0009 0.0006 0.0008 0.0006 0.0008
0 0.0006 0.0031 0.0006 0.0013 0.0006 0.0024
. § 0.2 0.0005 0.0031 0.0005 0.0013 0.0005 0.0020
:%D § 0.4 0.0006 0.0031 0.0006 0.0014 0.0006 0.0016
o 0.6 0.0006 0.0031 0.0006 0.0014 0.0006 0.0013
0.8 0.0006 0.0030 0.0006 0.0013 0.0006 0.0010
w0 0 0.0006 0.0031 0.0006 0.0013 0.0006 0.0019
s -g_ § 0.2 0.0006 0.0031 0.0006 0.0013 0.0006 0.0019
%‘3 r_? :\2 0.4 0.0006 0.0032 0.0006 0.0013 0.0006 0.0017
= 0.6 0.0006 0.0032 0.0006 0.0013 0.0006 0.0014
© 0.8 0.0006 0.0031 0.0006 0.0013 0.0006 0.0012
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Table A8.3 Monte Carlo standard errors of the estimated bias when data are missing not at random using four continuous outcomes.

% missing Correlation
between Continuous 4 outcomes
v outcomes |,
Method > uv MI + UV MM

Outcome # > 1 2 3 4 1 2 3 4 1 2 3 4
) 0 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006
3 o 0.2 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006
§ § a 0.4 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006
$ 0.6 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006
© 0.8 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006
- 0 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006
g Q - 0.2 0.0005 0.0006 0.0007 0.0006 0.0005 0.0006 0.0007 0.0006 0.0005 0.0006 0.0006 0.0006
-qEJ § :ch) 0.4 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006
= § 0.6 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005 0.0006 0.0006
0.8 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006
© 0 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006
. 2 - 0.2 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006
%" § f? 0.4 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
§ 0.6 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0006 0.0006 0.0005 0.0005
0.8 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0006 0.0006 0.0005 0.0005
w0 § 0 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006
. -§ z < 0.2 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006
%" o :?’ :O,, 0.4 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0005 0.0006 0.0006 0.0006 0.0005
% °§ 0.6 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005
N 0.8 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0006 0.0006 0.0006 0.0005
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Table A8.4 Monte Carlo standard errors of the estimated bias when data are missing not at random using four mixed outcomes.

Appendix 8

% missing Correlation
between Mixed 4 outcomes
v outcomes |,
Method > uv MI + UV MM

Outcome # > 1 2 3 4 1 2 3 4 1 2 3 4
) 0 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008
3 . 0.2 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008
§ § a 0.4 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008
< 0.6 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0007 0.0006 0.0006 0.0007 0.0008
© 0.8 0.0005 0.0006 0.0007 0.0008 0.0005 0.0006 0.0007 0.0007 0.0005 0.0006 0.0007 0.0008
© 0 0.0006 0.0006 0.0007 0.0009 0.0006 0.0007 0.0007 0.0009 0.0006 0.0006 0.0007 0.0009
g Q - 0.2 0.0006 0.0006 0.0007 0.0009 0.0006 0.0007 0.0007 0.0009 0.0006 0.0006 0.0007 0.0009
-qEJ § :ch) 0.4 0.0006 0.0006 0.0007 0.0009 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0009
= § 0.6 0.0006 0.0006 0.0007 0.0009 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008
0.8 0.0006 0.0006 0.0007 0.0009 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0007 0.0008
© 0 0.0006 0.0005 0.0007 0.0032 0.0006 0.0006 0.0007 0.0012 0.0006 0.0006 0.0007 0.0024
. 2 - 0.2 0.0006 0.0006 0.0007 0.0033 0.0006 0.0006 0.0007 0.0012 0.0006 0.0006 0.0007 0.0026
%" § f? 0.4 0.0005 0.0006 0.0007 0.0033 0.0005 0.0006 0.0007 0.0012 0.0005 0.0005 0.0007 0.0015
§ 0.6 0.0006 0.0006 0.0007 0.0030 0.0005 0.0005 0.0007 0.0013 0.0006 0.0005 0.0007 0.0012
0.8 0.0005 0.0005 0.0007 0.0031 0.0005 0.0005 0.0007 0.0012 0.0005 0.0005 0.0007 0.0010
w0 § 0 0.0006 0.0006 0.0010 0.0032 0.0006 0.0006 0.0010 0.0012 0.0006 0.0006 0.0010 0.0020
. -g_ z < 0.2 0.0006 0.0006 0.0010 0.0032 0.0006 0.0006 0.0010 0.0012 0.0006 0.0006 0.0010 0.0018
%" r_? :?’ :O,, 0.4 0.0006 0.0006 0.0010 0.0032 0.0006 0.0006 0.0009 0.0012 0.0006 0.0006 0.0010 0.0015
% °§ 0.6 0.0006 0.0006 0.0010 0.0030 0.0006 0.0006 0.0009 0.0012 0.0006 0.0006 0.0009 0.0012
N 0.8 0.0006 0.0006 0.0010 0.0031 0.0006 0.0006 0.0009 0.0011 0.0006 0.0006 0.0009 0.0010
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Table A8.5 Empirical standard errors of the estimated intervention effect for two continuous (left) and two binary (right) outcomes.

% missing Correlation between . .
¢ outcomes & Continuous 2 outcomes Binary 2 outcomes
Method - uv Ml + UV MM uv Ml + UV MM
Outcome # > 1 2 1 2 1 2 1 2 1 2 1 2
0 0.124 0.134 0.124 0.138 0.124 0.134 | 0.137 0.151 0.137 0.150 0.137 0.151
x 0.2 0.124 0.134 0.124 0.135 0.124 0.134 | 0.140 0.151 0.140 0.151 0.140 0.152
§ g 0.4 0.125 0.134 0.125 0.134 0.125 0.133 | 0.139 0.150 0.139 0.149 0.140 0.150
° 0.6 0.124 0.134 0.124 0.131 0.124 0.130 | 0.138 0.150 0.138 0.148 0.138 0.177
0.8 0.124 0.134 0.124 0.129 0.124 0.128 | 0.139 0.151 0.139 0.146 0.139 0.149
0 0.124 0.143 0.124 0.157 0.124 0.143 | 0.138 0.171 0.138 0.170 0.138 0.171
=N 0.2 0.123 0.143 0.123 0.147 0.123 0.142 | 0.139 0.170 0.139 0.169 0.140 0.172
§ i 0.4 0.125 0.142 0.125 0.142 0.125 0.139 | 0.139 0.171 0.139 0.169 0.139 0.169
2o 0.6 0.122 0.142 0.122 0.141 0.122 0.135{0.139 0.171 0.139 0.167 0.139 0.189
0.8 0.124 0.141 0.124 0.137 0.124 0.130 | 0.138 0.170 0.138 0.162 0.139 0.214
0 0.125 0.123 0.125 0.146 0.125 0.123 | 0.139 0.397 0.139 0.261 0.140 0.337
x 0.2 0.125 0.124 0.125 0.138 0.125 0.123 | 0.138 0.415 0.137 0.264 0.138 0.325
E" § 0.4 0.124 0.123 0.124 0.127 0.124 0.122 | 0.138 0.380 0.138 0.275 0.139 0.296
© 0.6 0.122 0.122 0.122 0.124 0.122 0.119 | 0.139 0.372 0.139 0.284 0.383 0.267
0.8 0.124 0.122 0.124 0.123 0.124 0.117 | 0.138 0.395 0.138 0.301 0.139 0.235
@0 0 0.140 0.124 0.147 0.136 0.140 0.125 | 0.172 0.387 0.171 0.263 0.174 0.318
.% %\j 0.2 0.143 0.124 0.147 0.133 0.142 0.124 | 0.172 0.394 0.171 0.261 0.180 0.313
::, g 0.4 0.141 0.124 0.143 0.128 0.140 0.123 | 0.169 0.365 0.168 0.267 0.180 0.297
% @ 0.6 0.141 0.123 0.140 0.122 0.139 0.120 | 0.171 0.384 0.169 0.278 0.183 0.278
T 0.8 0.141 0.124 0.138 0.119 0.136 0.120 | 0.170 0.417 0.168 0.292 0.191 0.263
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Table A8.6 Empirical standard errors of the estimated intervention effect for two ‘mixed’ outcomes.

"\/]imissing giizzlsqt;(:n\]/between Mixed 2 outcomes

Method - uv Ml + UV MM
Outcome # - 1 2 1 2 1 2
0| 0126 0172 0126 0.171 0.126 0.172
® 02| 0124 0.172 0124 0171 0.124 0.171
§ ::': 04| 0124 0.171 0124 0.169 0.124 0.170
© 0.6 | 0.123 0.172 0123 0.168 0.123 0.169
08| 0122 0172 0.122 0.165 0.122 0.166
0 0124 019 0124 0194 0.124 0.195
£ 02| 0125 0194 0125 0.192 0.125 0.194
é ;3 04| 0124 0.19 0.124 0.192 0.124 0.191
2o 06| 0123 0197 0123 0.189 0.124 0.188
08| 0124 0198 0.124 0.180 0.124 0.180
0| 0123 0697 0.123 0.288 0.123 0.534
® 02| 0.123 0.682 0123 0.299 0.123 0.441
E" § 04| 0124 0699 0123 0.305 0.124 0.353
© 0.6 | 0.124 0.686 0.124 0313 0.124 0.286
08| 0125 0676 0.124 0.293 0.125 0.233
o 0| 0.142 0697 0.143 0285 0.143 0.415
% X 02| 0.141 0.698 0.142 0.286 0.141 0.421
?;a :Q 04| 0141 0.711 0141 0.289 0.141 0.379
%D @ 06| 0141 0719 0.141 0297 0.141 0.317
T 08] 0.143 0.692 0.143 0.287 0.143 0.269
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Table A8.7 Mean square error of the estimated bias, when exploring two continuous (left) and two binary (right) outcomes.

"\/]imissing gz;z(e)l;t;znfetween Continuous 2 outcomes Binary 2 outcomes

Method > uv MI + UV MM uv MI + UV MM
Outcome # > 1 2 1 2 1 2 1 2 1 2 1 2
0 0.015 0.018 0.015 0.019 0.015 0.018 [ 0.019 0.024 0.019 0.024 0.019 0.024
) 0.2 0.015 0.018 0.015 0.018 0.015 0.018 [ 0.020 0.024 0.020 0.024 0.020 0.024
§ 5 0.4 0.016 0.018 0.016 0.018 0.016 0.018 [ 0.019 0.024 0.019 0.023 0.020 0.024
e 0.6 0.015 0.018 0.015 0.017 0.015 0.017 [ 0.019 0.024 0.019 0.023 0.019 0.032
0.8 0.015 0.018 0.015 0.017 0.015 0.016 | 0.019 0.024 0.019 0.022 0.019 0.023
0 0.015 0.021 0.015 0.026 0.015 0.021 [ 0.019 0.050 0.019 0.050 0.019 0.051
£ 0.2 0.015 0.021 0.015 0.023 0.015 0.021 [ 0.019 0.051 0.019 0.050 0.020 0.050
% 5 0.4 0.016 0.021 0.016 0.021 0.016 0.020 [ 0.019 0.050 0.019 0.046 0.019 0.046
29 0.6 0.015 0.021 0.015 0.020 0.015 0.019 [ 0.019 0.051 0.019 0.044 0.019 0.051
0.8 0.015 0.021 0.015 0.019 0.015 0.017 | 0.019 0.050 0.019 0.036 0.019 0.055
0 0.016 0.048 0.016 0.054 0.016 0.048 [ 0.019 1.202 0.019 0.927 0.019 1.141
B 0.2 0.016 0.046 0.016 0.050 0.016 0.045 | 0.019 1.229 0.019 0.920 0.019 1.106
2 Q 0.4 0.015 0.047 0.015 0.047 0.015 0.042 | 0.019 1.193 0.019 0.892 0.019 0.975
© 0.6 0.015 0.047 0.015 0.043 0.015 0.034 [ 0.019 1.183 0.019 0.827 0.147 0.746
0.8 0.015 0.046 0.015 0.037 0.015 0.023 | 0.019 1.213 0.019 0.703 0.019 0.405
o 0 0.021 0.047 0.023 0.050 0.021 0.047 [ 0.050 1.202 0.050 0.932 0.051 1.134
% S 0.2 0.021 0.047 0.023 0.049 0.021 0.046 | 0.052 1.211 0.053 0.918 0.056 1.113
?’;» f 0.4 0.021 0.047 0.022 0.048 0.021 0.044 [ 0.051 1.182 0.054 0.898 0.058 1.036
{:’0 @ 0.6 0.021 0.047 0.022 0.044 0.021 0.038 [ 0.050 1.195 0.056 0.848 0.062 0.880
T 0.8 0.021 0.047 0.021 0.039 0.020 0.029 [ 0.051 1.245 0.063 0.774 0.077 0.648
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Table A8.8 Mean square error of the estimated bias, when exploring two mixed outcomes.

% missing Correlation between Mixed 2 outcomes
N outcomes |
Method - uv Ml + UV MM
Outcome # -> 1 2 1 2 1 2
0 0.016 0.030 0.016 0.030 0.016 0.030
X 0.2 0.015 0.031 0.015 0.030 0.015 0.030
§ 5 0.4 0.015 0.030 0.015 0.030 0.015 0.030
© 0.6 0.015 0.031 0.015 0.029 0.015 0.029
0.8 0.015 0.031 0.015 0.028 0.015 0.028
0 0.015 0.058 0.015 0.058 0.015 0.058
£ 0.2 0.016 0.058 0.016 0.056 0.016 0.057
é § 0.4 0.015 0.059 0.015 0.053 0.015 0.053
2o 0.6 0.015 0.060 0.015 0.048 0.015 0.048
0.8 0.015 0.058 0.015 0.039 0.015 0.039
0 0.015 1.725 0.015 0.920 0.015 1.439
x 0.2 0.015 1.686 0.015 0.894 0.015 1.258
E" 5 0.4 0.015 1.718 0.015 0.806 0.015 0.975
© 0.6 0.015 1.692 0.015 0.655 0.015 0.630
0.8 0.016 1.677 0.015 0.420 0.016 0.317
0 0 0.021 1711 0.021 0.881 0.021 1.259
% S 0.2 0.021 1.725 0.021 0.864 0.021 1.249
?;» f 0.4 0.021 1.742 0.022 0.799 0.022 1.081
%D @ 0.6 0.021 1.776 0.023 0.696 0.024 0.808
T 0.8 0.022 1.721 0.026 0.514 0.029 0.511
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Table A8.9 Coverage of 95% confidence intervals for the estimated intervention effects, when exploring two continuous (left) and two binary (right)
outcomes.
% missing Correlation between

ntin 2 m Binary 2 m
¢ outcomes & Continuous 2 outcomes ary 2 outcomes
Method > uv Ml + UV MM uv Ml + UV MM
Outcome # > 1 2 1 2 1 2 1 2 1 2 1 2

0 950 948 950 946 949 947 952 939 952 939 953 938
0.2 949 946 949 945 948 946 947 941 947 0941 948 939
0.4 946 947 946 945 945 945| 95.0 942 950 0942 950 939
0.6 949 949 949 946 948 948 953 942 953 943 955 941
0.8 948 951 948 945 9477 947 948 942 948 945 0948 94.0

0 949 942 0949 932 948 94.0| 9.0 857 950 855 951 853
0.2 95.2 943 952 942 951 941] 948 849 948 853 949 849
0.4 946 941 946 939 945 940 951 856 951 868 952 86.6
0.6 948 943 948 939 947 943| 9.0 850 950 877 951 875
0.8 95.1 945 951 937 950 948] 951 852 951 904 951 903

0 947 695 947 703 946 688] 952 25 952 3.6 953 2.4
0.2 948 705 948 717 947 708| 951 25 952 3.8 95.2 2.6
0.4 949 698 949 696 948 719 955 25 954 6.0 955 3.3
0.6 95.1 696 951 66.1 950 774 94.7 22 947 9.4 9438 5.7
0.8 95.0 70.2 950 63.6 949 86.2| 95.0 26 951 189 0953 187

0 943 703 96.8 79.2 942 69.5| 853 25 854 35 877 2.3
0.2 940 70.2 964 778 93.8 70.1( 845 24 84.2 3.7 86.5 2.2
0.4 943 695 0957 740 939 70.7| 84.6 21 831 46 854 2.4
0.6 941 694 944 695 936 745| 852 2.7 825 7.7 84.2 3.9
0.8 944 699 0939 669 935 819| 849 26 793 127 794 6.8

Low
0% 15%

Medium
0% 30%

High
0% 50%

High overlapping
30% 50%
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Table A8.10 Coverage of the 95% confidence intervals, when exploring two mixed outcomes.

"\/]imissing gz:z(e)l;t;znfetween Mixed 2 outcomes

Method - uv Ml + UV MM
Outcome # = 1 2 1 2 1 2
0 948 944 948 945 947 945
° 0.2 948 944 948 945 947 945
g 04| 951 944 951 945 950 94.4
~ 8 0.6 952 944 952 947 951 94.7
0.8 950 943 950 947 948 946
0 95.0 87.7 950 879 950 8738
£ 0.2 947 87.7 947 883 945 88.1
e § 04| 948 877 948 892 947 888
20 0.6 951 873 951 89.8 949 89.6
0.8 948 88.0 94.8 9256 947 922
0 948 81 948 103 947 75
< 0.2 951 88 951 127 950 8.4
% 5 0.4 949 87 949 183 949 101
e 0.6 946 86 947 30.5 948 17.4
0.8 948 82 949 531 953 359
o 0 941 88 931 116 939 7.7
& x 0.2 93.9 87 927 127 937 81
§ 5 0.4 940 87 925 161 933 87
2 A 0.6 942 84 917 237 924 125
£ 0.8 941 86 90.0 383 90.2 220
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