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Abstract

If we view functions as processes, then their re-
sources are their arguments, supplied through ap-
plication, and used by the function to produce a
result. In this paper, we define resource use for
functions, based on the syntactic notion of needed
redexes from [BKKS86]. We introduce a variant
of neededness, tail-neededness, and define packets
of needed descendants of redexes in order to mea-
sure the degree of neededness. These results are
generalised to produce a semantic characterisa-
tion of the resource use properties of functions, us-
ing a term-model. By means of the Curry-Howard
isomorphism, we apply these ideas to proof trees
of propositions in Intuitionistic Logic to demon-
strate that propositions, i.e. types, can be used
to express the usage properties of functions. A
resource-aware type system capable of inferring
such types for A-terms is presented.

1 Introduction

Despite the many advances made in the imple-
mentation of lazy functional languages, static pro-
gram analysis remains an important topic as re-
searchers seek to match the conceptual advan-
tages in programming with adequate run-time per-
formance. The goal of static analysis is to provide
information about expected program behaviour
which can be used within a compiler to translate
the program into a more optimal form.

There are two principal methodologies and many
methods of static analysis. The two methodolo-
gies are Abstract Interpretation [AH87] and Type
Inference [Jen92] [Bur92]. Among the methods
of analysis, Strictness Analysis [CPJ85] [BHAS86]
and variations on compile-time garbage collection
[Blo89] [Hug91] [Arg91] have received most atten-
tion, for their advantages with regard to increased
parallelism and store-use optimisation. (Chapter
4 of [Hug91] contains a useful taxonomy of the
field.)

Analysis by type inference is split into two
camps: type inference over abstract domains [Jen91]
[KM89]; and resource-aware type systems [Wri92]
[Bak92] [Bie92], inspired by Linear Logic [Gir87]
[GSS92], with which our work is directly concerned.
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(There also exist type systems for languages based
on Linear Logic; see [Lin92] [Wad91] [Mac91].)

The aim of our resource-aware type system
is to uncover the structural rules of the system
of logic underlying type inference which are re-
sponsible for sharing and discarding of resources.
In the context of the A-calculus, resources are
function arguments, and in the context of types,
they are hypotheses to typing judgements and,
by implication, the source types of function types.
Our type system has an important advantage over
analyses based on Abstract Interpretation, and al-
lied type inference systems. The abstract domains
of such analyses are defined with reference to spe-
cific optimisation methods, so that, for example,
different analyses must be made to obtain strict-
ness and sharing information. Our type system,
however, by focusing on the usage made of values
from domains, rather than the structure of the
domains themselves, provides information about
program behaviour independent of the optimisa-
tion to be performed. The information provided
by the type system presented in this paper could
potentially subsume analyses for strictness, shar-
ing and single-threading of data structures.

This paper’s contribution is to define resource-
use in the A-calculus, based on a syntactic notion
of needed redexes from [BKKS86], and to show,
using a term-model, that our definition of usage
properly characterises the resource use of the se-
mantic functions denoted by A-terms. Further-
more, we show that types can be used to express
resource use properties of functions by demon-
strating an equivalent definition of usage at the
level of proofs of types. We conclude with a brief
presentation of a resource-aware type inference
system. The syntax of this system closely resem-
bles that of [Wri92] [Bak92] [Bie92], but this paper
offers key insights into its semantics.

2 Background

We recount some of the basic tenets of the A-
calculus necessary to an understanding of this pa-
per.
The set A of A-terms is defined inductively by

x€EA
MNEA= (MN)EA
MceA=AxMcA



i.e. A-terms are formed from variables, applica-
tions of terms and abstractions created by binding
a variable over a term.

A term (Ax.M)N is a redez. The result of con-
tracting such a redex is M[x :=N], in which N is
substituted for all free occurrences of x in M (tech-
nical details regarding renaming of variables are
omitted here). A term is in normal-form (nf) if it
contains no redexes. The leftmost redex in a term
is a head redex if it is only preceded by As and
bound variables; for example, PR in Ax.(PR)M. A
term is in head-normal form (hnf) if the head sub-
term does not contain a redex; for example Ax.y M
is in head-normal form. Reduction describes a se-
quence of one or more contractions and is rep-
resented by —»g. Leftmost reduction describes a
reduction sequence in which only leftmost redexes
are contracted; head reduction is similarly de-
fined. Conversionis an equivalence relation based
on reduction, and is represented by =g. We will
denote the nf of a term M by M,; (similarly for
hnf).

Models are used to provide a semantics of the
A-calculus. In this paper, we will require only
the very simplest model, the term-model. This is
defined as a triple < D,.,[ ] >, in which Dis a
non-empty set of convertibility classes of terms,
formed by

D = {Mu e A}

(M] = {N|N=4M}
and - is a binary operator of type D x D — D,
and [ ] maps A-terms to D in the context of an
environment p assigning values of D to variables.

The term-model is essentially trivial, being a
reflection simply of the syntax of A-terms [HS86],
but is useful to our purpose, as our definition of
usage begins syntactically. A term-model is also
useful in that it is the canonical model for proofs
of soundness and completeness of type systems.

In the latter part of this paper, we will re-
fer to the implicative fragment of Intuitionistic
Logic (IL). This is essentially Curry’s system of F-
Deducibility [Hin83] with Structural rules for Ex-
change, Contraction and Weakening of hypothe-
ses. The presentation will use sequents in the form

T'to

where T' is understood to be an unordered set or
base of hypotheses a,f3,...; I is meant to repre-
sent deduction; and o is the proposition deduced
from the base of hypotheses. IL is presented in
Appendix A.

3 Neededness and usage in the )-calculus

In this section, we define a semantics of resource
use for functions represented by terms in the A-
calculus. Owur aim is a model of the A-calculus
which will enable us to analyse the use that func-
tions make of their resources, i.e. their arguments.

We begin with a syntactic description of use in
terms of needed redexes in A-terms. Building on
the work of [BKKS86], we define a new form of
neededness, tail-neededness, and introduce pack-
ets of needed descendants of a redex in order to

measure the degree to which that redex is needed.
We show that this syntactic description of need-
edness can be the basis of a semantic definition
by construction of a term model.

Following on from this, we define a small, ab-
stract domain of uses based on ranges of sizes of
packets of needed descendants of redexes, which
can be used to characterise functions according to
their argument use.

3.1 Neededness in the A-calculus

Neededness and head-neededness are defined us-
ing a notion of descendantto determine which re-
dexes within a term are contracted during the re-
duction of the term.

Definition 3.1 (Definition 2.4 of [BKKS86]) The
descendants of a sub-term N in M, after the reduc-
tion M — M’, are those sub-terms of M that can
be traced back to N. If N = x, then the descen-
dants of N in M are occurrences of x in M. IfN
= (Ax.E) or (E1 E2), then the descendants of N
inM are those sub-terms with the same outermost
pair of brackets as N. (A more precise definition
can be made using labels, for which see [Klo80] or

[Bar84].)
Definition 3.2 (Definition 3.1 of [BKKS86]) IfR

i3 a redez in M, then

o R is needed in M if every reduction sequence
of M to nf reduces a descendant of R.

e R is head-needed in M if every reduction se-
gquence of M to hnf reduces a descendant of
R.

For example, in the term

Ax.Ay.Ix(Ky(Iy))

the redex I x is needed and head-needed, while
the redex (K y (I y)) is needed but not head-needed.
(This is Example 3.2 of [BKKS86].)

A corollary of the definitions of neededness
and head-neededness is that every head-needed
redex is also needed, since every reduction to nf
contains a reduction to hnf [BKKS86]. What about
those redexes that are needed but not head-needed?
We will see later on that such redexes are im-
portant to our defining usage in the presence of
higher-order functions, and hence we introduce a
new definition to characterise them.

Definition 3.3 IfR is a redez in M then R is tail-
needed in M iff R is needed but not head-needed in
M

Lemma 3.1 Let R be a tail-needed redez in M.
Then R occurs as an argument term, or as a sub-
term of an argument term, to a higher-order, i.e.
function-valued, variable in M.

Proof 3.1 By the definitions of head normal-form
and tail-neededness, R is not in the head-position
of M.

[m]



We could adopt head-neededness as the basis of
our definition of usage, in which case a function
would be said to use its argument if all redexes
substituted for the argument variable were head-
needed. In essence, this is strictness analysis, as
noted by Barendregt [BKKS86]. (This is in fact
the semantic basis of the work by Wright in de-
veloping analysis of strictness by type inference
[Wri92].)

However, a more interesting question is how
often an argument is used; for example, is it used
only once, more than once, or not at all. Answers
to this question provide more detailed information
about the computational behaviour of a function,
consequently allowing us to perform more inter-
esting optimisations in our implementation than
simple strictness analysis.

If we ask how often a redex is needed in the
reduction of a term to nf, then we are really ask-
ing how many of its descendants are needed. For
example, in the term

(Af.Ax.£(£fx))R

where R = SKK, two descendants of R will occur as
needed redexes in the leftmost reduction to nf.
To capture this idea of the number of times a
redex may be needed, we introduce the notion of
packets.

Definition 3.4 LetR be a needed redez inM. Then
the packet of R will be the set of descendants of R
that are contracted in the leftmost reduction of M
to Mpy. The size of the packet of R, denoted by
|R|, is the number of descendants of R that occur
as needed redezes.

For the example above, using integers as labels
for descendants, the reduction sequence to nf is

(Af.Ax.f (£ x) (SKK)
Ax.(SKK)?! ((sKK)? x)
Ax.I ((SKK)? x)
Ax.(SKK)? x

Ax.Ix

Ax.x

TANTARTARNTANN

In this case, the packet of (SKK) = {(SKK)i, (SKK)2}
and |(SKK)| = 2.

It is possible that reduction orders other than
leftmost reduction could contract fewer descen-
dants of the needed redex. In the example above,
an applicative reduction order, in which the re-
dex (SKK) is contracted on the first step would
yield a set of descendants contracted on the path
to nf of size 1. In other words, packets do not
necessarily provide a true picture of the degree of
neededness for redexes over all possible reduction
paths; in fact, the most we can say is that, by
definition of neededness, if a packet is non-empty
on the leftmost path then it will be non-empty on
all possible reduction paths. Packets of needed
descendants are a reliable assessment of the de-
gree of neededness, however, in the sense that for
all terms possessing a normal form, packets mea-
sure how often a term is needed along a reduction
path guaranteed to terminate and find the normal
form.

Definition 3.5 LetR be a needed redez in M. The
head packet of R is the set of descendants that are
contracted in the head reduction of M to Mpngs. The
tail packet is the set of descendants contracted in
the leftmost reduction of Mhny to Mpy. The sizes
of the head and tail packets of R will be denoted
by |R|, and |R|,, respectively.

Notation 3.1 Say |R| € MR to denote the size of
the packet of R in the reduction of MR to nf by
leftmost reduction. Similarly for |R|, and |R|,.

So far, we have assumed that reduction se-
quences terminate, i.e. that terms have a normal
form. But what if this is not the case? In so far
as packet sizes are concerned, we note only that
for non-terminating reduction sequences, packets
are undefined, i.e. |[R| = L.

We finish this discussion of neededness and de-
scendants by looking at two properties of packets
that will be useful in our later discussion of usage.
The first concerns the merger of packets of a redex
in the case where descendants of the redex occur
in the sub-terms of an application MN, and the sec-
ond demonstrates the effect of the neededness of
a redex on a redex sub-term.

Lemma 3.2 Let M = PQ and let R be a redez in
Q. Given |R| € Q and |Q| € M, then

Rl em=|8l€qxlaem

Proof 3.2 Obvious
]

Lemma 3.3 LetM = PQ. Let there be descendants
of a redez R in P and in Q. Then

|R|€M=[R|€P+(|R| €Q*[Q] €M)

Proof 3.3 By Definition 3.4 and Lemma 3.2
[m]

3.2 Neededness and term models

As an extension to the work in Section 3.1, we now
look at neededness and packetsin a term model of
the A-calculus (see [Bar84] [HS86] for discussions
of models of the A-calculus).

Results from [BKKS86] show that (head-) need-

edness is a persistent property. In particular, if a
redex R is needed in MR, then it is needed in MR
for all M=5M’.

Lemma 3.4 (Lemma 3.11 of [BKKS86]) IfF =g
F', then R (head-)needed in FR = R (head- )needed
in F'R.

Proof 3.4 See [BKKS86]
[m]

As a consequence, if a redex R is (head-)needed in
XR, then

VY € [X] = R is needed in YR

In other words, if R is (head-)needed in XR, then
R is (head-)needed when applied to all the terms



in the convertibility class of X. To represent this,
we will write

R head-needed in [X]R

where, by [X], we understand the canonical ele-
ment of the convertibility class for X.

The preservation of neededness by B-conversion
also extends to packets, as the following lemma
and proof demonstrate.

Lemma 3.5 IfM =g N then, given a redez R,
|R| €EMR = |R| €ENR

The proof of this theorem proceeds along lines
similar to those for the proof of Lemma 3.4.

Proof 3.5 As for Proof 3.4
[m]

The persistence of head-neededness over re-
duction (Proposition 3.7 of [BKKS86]) mean that
Theorem 3.5 also applies to head packets |R|,.
Theorem 3.5 also applies, by extension, to tail
packets |R|,.

We can infer a consequence of Lemma 3.5 sim-
ilar to that which followed from Lemma 3.4, i.e.
that given some redex R, if R is (head-)needed in
XR, then

VY € [X] = |[R| € YR = |R| € XR
By an abuse of notation, we will now refer to
IR| € [X]R

This notation will also allow us to refer to |R| € d-R
for d € D in the term-model. (Again, the same
holds for head and tail packets.)

If [R] is the convertibility class for some redex
R, can we infer, modulo conversion, that, given a
term M,

VRi,R; € [R] = (|Ri| € MR;) = (|R;| € MR4)

i.e. that the same descendants of R, modulo con-
version, are needed? The answer is yes, although
we will have to modify slightly the definition of
neededness since not all the terms in the convert-
ibility class will be redexes. (For example, the
normal form of R, Ryg, is in [R], and, by definition
of normal form, cannot be contracted and hence
needed in the usual sense.)

Definition 3.6 LetR be a sub-term of M. Then

® R is a needed sub-term of M iff a descendant
of R appears as the leftmost sub-term in a
redez contracted in the leftmost reduction of
M to Mp; or a descendant of R appears in My

o R is a head-needed sub-term of M iff a descen-
dant of R appears as the leftmost sub-term in
a redez contracted in the head reduction of M
to Mpny or a descendant of R appears in the
head-position of Mpny

For example, in the term
A Ax (I £) M

I appears as a head-needed (and needed) sub-
term. In the term

Ax.f ((Ay.Az.y) N M)

ther sub-term Ay.Az.y is needed but not head-
needed.

Note that the leftmost subterm in a redex can
be the redex itself in those cases where the sub-
term is not in normal-form.

An alternative definition can be made using
the persistent labels of [Bak92], in which case
neededness of sub-terms is indicated by the pres-
ence of labels after reduction to normal-form.

A definition of tail-needed sub-terms can be
made relative to the definitions of needed and
head-needed sub-terms, as for tail-needed redexes.

We can now consider convertibility classes of
arguments R in MR, since the identification of the
descendant is unaffected by any conversions of the
term itself. In other words, we can now consider
neededness and packets for applications

[M] - [R]

We can therefore extend the notation introduced
above to refer to

leled-e

for d and e € D in the term-model D. (Again,
similarly for head and tail packets).

What interpretation can we place upon |e| €
d - e? The value of |e| is the number of times
the argument e may be needed by the function d.
The value of |e|, is the number of times that e
is definitely needed by d, while |e|, reflects only
the possibility of neededness engendered by the
presence of higher-order functions.

3.3 Usage in the )-calculus

In the previous section, we developed the means
by which we could measure the number of times a
A-term was needed during reduction. Neededness,
however, is a property of arguments to functions,
rather than of the functions themselves, as shown
by the fact that different arguments may have
differently-sized head and tail packets of needed
descendants even though the same function is ap-
plied to them. For example, Ax.x and Ax.y possess
packets of different sizes when passed to the func-
tion Af.f (f x).

In this section, therefore, we develop a defi-
nition of resource-use based on the results of the
previous section, but which describes the prop-
erties of functions independent of the values of
particular arguments. As a result, we produce a
small, abstract domain of use values which can be
used to characterise argument usage of functions.

The mechanism for defining resource use based
on neededness and packets is relatively simple.
It is based on the observation made above that
the number of times an argument is needed may



Usage Head packet size Tail packet size

0+ 0-o0 0- o0
1+ 1-o00 0- o0
1 1 0
0 0 0
1 1 1

Table 1: Usage values as ranges of head and tail

packets
/ "
14 \
‘ 0
1 /
1

Figure 1: Domain U of usage annotations

depend upon its own value, and on Lemma 3.1.
Briefly, both observation and lemma imply that
precise information about argument use is in gen-
eral unavailable, except in special cases. These
special cases are when an argument does not de-
pend upon its own value, for example the argu-
ment f in the Church numeral

I=AAxfx

and when the tail-needed packet for the argument
is empty (again, as in the case of £ in 1).

To represent resource use in the presence of
such uncertainty then, we define usage in terms
of ranges of possible sizes of head and tail packets
of arguments. Table 1 defines use values using
such ranges, represented as sets of packet sizes,
and Figure 1 presents the use values as a domain
ordered by subset inclusion over the ranges.

To say then that a function Ax.M has, for ex-
ample, usage 14+ means that any argument sub-
stituted for x on application will have head and
tail packets of needed descendants in the range of
sizes defined for 14+. An intuitive explanation of
the points of the domain is:

0+ The argument is used 0, once or many times
by the function

14+ The argument is used at least once by the
function

1 The argument is used exactly once

0 The argument is unused

1 Undefined

Both the operators + and * defined for packets
in Section 3.1 extend to usage values, by apply-
ing them to the ranges of head and tail packets
underlying the definition of usage. For example:

141 = 14
140 = 1
(14)*0 = 0

Note that + and * over usage values are defined
in such a way as to find the least point in the U
domain of usage values that is described by the
result of applying + and * over the neededness
values in the ranges underlying the definition of
usage values.

4 Neededness and usage in proofs

Having defined a semantic basis for usage, it would
be useful to be able to deduce the use properties
of functions by means of some analysis. In this
section, we show that type inference can be used
as such an analysis, by demonstrating the facility
and expressiveness of types to represent the use
properties of functions.

Our approach shall be to consider the implica-
tive fragment of propositional Intuitionistic Logic
(IL), and develop equivalent notions of needed-
ness and usage at the level of proofs. We shall
then relate these results to types by means of the
Curry-Howard Isomorphism [How80], which iden-
tifies propositions, proofs and elimination of re-
dundant proof steps in IL with types,terms and
reduction in the typed A-calculus.

4.1 Descendants of proofs in proof normalisa-
tion

A proof P of a proposition T' o may be repre-
sented as a tree of deductions [Gir89]. Any branch
of a proof-tree representing P is itself a proof-tree,
here called a sub-proof.

In a manner equivalent to the tracing of de-
scendants in the A-calculus, we define descendants
of sub-proofs in IL.

Definition 4.1 The descendants of a sub-proofQ
whose conclusion is ' + a in a proof P whose
conclusion is A + o, after the normalisation of
the proof of P to P', are all those sub-proofs of
P' that can be traced back to Q, identified at the
level of the rule used to deduce the conclusion to
the sub-proof. (As for descendants of A-terms in
[Bar84] [Klo80], underlining or labelling may be
used to make a more precise identification.)

In the A-calculus, the number of descendants
of a term decreases or increases as it or an enclos-
ing term are substituted for occurrences of bound
variables in the contraction of higher-level redexes
during reduction.

In proof-theoretic terms, descendants of sub-
proofs involved in the elimination of a redundant
proof step, and the consequent rewriting of the
proof tree, are created or erased in an equiva-
lent manner, according to the size of the parcel



for the hypothesis [Gir89] that the sub-proof re-
places during the normalisation step. The Ax-
iom rule introduces a hypothesis with a parcel of
size 1, while Contraction and Weakening respec-
tively merge parcels into larger ones and introduce
dummy or empty parcels [Gir89]. Note that sub-
proofs are erased or discarded when substituted
for a hypothesis introduced using Weakening, i.e.
one represented by a dummy parcel.

4.2 Neededness in proofs

We restate the main definitions of neededness from
[BKKS86] in proof-theoretic terms.

Definition 4.2 If P is a sub-proof in a proof Q,
then P is needed iff every proof normalisation of
Q to normal-form involves a normalisation of a
descendant of P.

We can also define a proof-theoretic version of
head neededness, by means of a simple transliter-
ation of the definition for A-terms.

Definition 4.3 The head sub-proof of a proof Q
is that part of the left-most branch of Q reached
by first any continuous sequence of — Intro rules
followed by any continuous sequence of —-E rules

from the root of Q.

This definition simply reflects the definition of
the head sub-term of a A-term: i.e., the leftmost
sub-term to the right of any abstractors A and
their bound variables.

Definition 4.4 A proofP is in head normal form
iff the head sub-proof of P is in normal-form.

A head-normal form for a proof is therefore
one whose left-most branch from the conclusion of
the proof also contains no redundant proof steps.

For example, the following proof is in head-
normal form

ala
- — Intro
a—a ol a
(a—=B)Fa—p ala -
— Elim
(a—B),akp I
—_———— 5 Intro
(a—=B)lFra—p
— Intro

F(a—B)—a—p

(the labels on the Axiom rules have been omit-
ted for brevity of presentation). The following
proof, however, is not in head-normal form, since
it contains the redundant proof steps — Intro;
and — Elim;:

Axiom
ala
— Intro; Axiom
Fa—a abta
Elim,
ata
— Intro Axiom
Fa—a ata
— Elim
ata
— Intro

Fa—a

— Elim

Head reduction in proof-theoretic terms, which
we will refer to as head proof normalisation or
head PN, is therefore the normalisation of a proof
to head normal-form by normalising only the left-
most branch of the proof.

Head-neededness for proofs is defined using
the concepts of head normal-form and head PN
as follows.

Definition 4.5 A sub-proofQ with conclusionT F
a of a proof P of A+ o is head-needed iff a de-
scendant of Q is normalised in the head PN of P

to head normal-form.

The related notion of tail-neededness may also
be defined for proofs.

Definition 4.6 The set of tail-needed sub-proofs
i3 the set of sub-proofs normalised in every proof
normalisation sequence from the hnf of a proof P
to nf, where the hnf has been found by a head PN

sequence.

Using the definitions of descendants, and head
and tail neededness, the definitions of head packets
and tail packets are exactly as in Section 3.1, using
proof normalisation instead of reduction.

So far, we have couched our definitions in terms
of sub-proofs which can be normalised. However,
just as neededness of redexes was generalised to
neededness of terms in the A-calculus, we can ex-
tend the proof-theoretic definition of neededness
to sub-proofs in general by means of a transliter-
ation of Definition 3.6.

4.3 Inferring usage

The previous section was essentially a restate-
ment of the results of Section 3 in proof-theoretic
terms, under the authority of the Curry-Howard
Isomorphism. Hence we can expect that a proof-
theoretic definition of usage will similarly follow
from that put forward in Section 3.3.

To denote the usage of hypotheses in a se-
quent, we introduce the following notation.

Notation 4.1 Say T',|a|; - B to represent the
use of hypothesis o i times (i € U) in the nor-
malisation of the proof of B.

In other words, |a|; denotes the fact that any
proof of the hypothesis @ will be head and tail
needed during normalisation such that its head
and tail packets will fall into the ranges specified
for iin Table 1.

The question of how to infer usage of hypothe-
ses is answered by simple induction over the struc-
ture of proofs. By tautology, the Axiom uses its
hypothesis once, i.e. we have

Axiom
|°‘|1 Fa

while the Contraction rule practices set union over
the ranges of head and tail packet sizes defining
the size of the use parcels of the two hypotheses
contracted (derived as a consequence from Lemma



3.3, represented here by addition of the use values,
ie.

T, |al;, |a|j FB
I‘, |a|i+j F ﬂ

Contraction

Weakening introduces parcels into the left-hand
side of the sequent of size 0. The Abstraction
rule, from a hypothesis parcel of |c|; used in the
inference of a proposition 3 creates an implica-

tion a—f. Finally, Application uses the result
of Lemma 3.2 to infer the size of the use parcels of
those hypotheses used in deducing the argument
to the implication, i.e. we have

TFa-8 Afka
T,A*+ B

Application

(where A** indicates that the use parcels of each
of the hypotheses in A are multiplied by 7). The
operations + and x are as defined for use values in
Section 3.3. Their definition ensures that the sizes
of the use parcels inferred by the Contraction and
App rules will be optimal, in the sense that the
result of + and * over use parcel sizes will be the
least point in the ¥ domain.

5 A resource-aware type system

In this section, we use the extended logic of the
previous section to develop a resource-aware type
system for the A-calculus.

The essential difference between the resource-
aware logic and the type system presented here
is that the type system has only three rules, one
for each of the forms of A-term, i.e. variables, ab-
stractions and applications. The type system is
presented in Appendix B. (Note that the opera-
tions of both 4+ and * have been extended to bases.
TUA, for example, contracts common hypotheses
between T' and A.)

In the type system, the structural rules of Con-
traction and Weakening, although not present ex-
plicitly, are subsumed into the two rules for vari-
ables and applications, Var and App, respectively.
(Exchange becomes entirely implicit in our as-
sumption of the base of a sequent as being an
unordered set.)

6 Conclusions and related work

We have demonstrated that the syntactic notion
of needed redexes can be generalised to define the
semantic property of resource use in functions.
As part of this work, we introduced a variant of
neededness, tail-neededness, and defined packets
of needed descendants, in order to measure the de-
gree to which redexes were needed. These results
were generalised within a term-model. Further
work will include looking at definitions of needed-
ness and usage that are independent of reduction
order.

We also applied neededness to proofs, to demon-
strate an equivalent definition of resource use at
the level of types. The role of the structural rules

of Contraction and Weakening in determining us-
age were discussed. We speculate that the de-
scription of the role of these rules, especially of
Contraction, together with our definition of re-
source use, may form the basis for a correspon-

dence with Intuitionistic Linear Logic [Gir87] [Abr92].

On the basis of the above results, a resource-
aware type system was briefly presented.

Related to the work described in this paper are
the resource-aware type systems of Wright [Wri92]
and Baker-Finch [Bak92]. ([WBF93] is a collab-
orative work.) Wright’s thesis develops a type
system involving a boolean algebra of function
types to capture strictness and absence. An out-
line of a type system capable of inferring precise
sharing information, where the function annota-
tions are taken from the set of Natural numbers, is
given, and this is drawn in greater detail in Baker-
Finch’s work. Unfortunately, as they point out,
any algorithm implementing this system would be
required to unify the algebraic usage expressions
that annotate function types, an unsolvable prob-
lem. The finiteness of our domain of use values
should ensure that an implementation of our work
should not be similarly afflicted.

In both works, the underlying semantic frame-
work used to demonstrate soundness and com-
pleteness of the type systems, employs the idea of
needed redexes. In [Bak92], the number of needed
descendants of a redex within a term are counted
to provide the semantics of function types and to
support the proofs of soundness and completeness
of the type system. We acknowledge the influence
of this work upon our own, in leading us to con-
sider neededness to measure usage.

Also of relevance, as mentioned in [Wri92] and
[Bak92], is the usage interval analysis in [Ses91], in
which usage intervals are defined using the values
Zero, One and Many. A usage interval gives the
lower and upper bounds within which the actual
use of a function argument may fall; for example,
the interval [Zero,One] means that a function ar-
gument may not be used but will at most be used
once. In the context of our use values, we obtain
the following equivalences

[Zero, Zero] =0
[Zero,One] = 0+
[Zero,Many] = 0+
[One, One] =1
[One, Many] = 1+
[Many, Many] = 1+

It is apparent that Sestoft’s usage intervals pro-
vide greater detail than our usage values; for ex-
ample, there is no equivalent usage value for the
interval [Zero, One], which may be interpreted as
non-strict but unshared.

Also related to our type system is Bierman’s
work [Bie92] on a type system based on Bounded
Linear Logic [GSS92], which, by appearance is
similar to our type system and those of Wright
and Baker-Finch, although the semantic basis of
Bierman’s type system is not known. (Baker-
Finch outlines an extension of his type system to
Bierman’s lattice of annotations.)
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