THIS PAGE LEFT INTENTIONALLY BLANK

A Common Graphical Form

David Parrott *
Department of Computer Science, University College London
London, England.
Chris Clack
Department of Computer Science, University College London
London, England.

30th April 1991

Abstract

We present the Common Graphical Form, a low level, abstract machine independent
structure which provides a basis for implementing graph reduction on distributed proces-
sors. A key feature of the structure is its ability to model disparate abstract machines in
a uniform manner; this enables us to experiment with different abstract machines with-
out having to recode major parts of the run-time system for each additional machine.
Because we are dealing with a uniform data structure it is possible to build a suite of
performance measurement tools to examine interprocessor data-flow and to apply these
tools to different abstract machines in order to make relative comparisons between them
at run-time. As a bonus to our design brief we exploit the unifying characteristics of
the Common Graphical Form by using it as an intermediate language at compile-time.

1 Introduction

Graph reduction is a well established method for executing lazy, higher order, functional
programs on sequential architectures and a number of abstract machines have been designed
to execute programs using this technique (e.g. [1]). Recent research has been directed
towards graph reduction on parallel architectures, adapting existing abstract machines to
cope with the added complexities (e.g. [2]) and building new computational models with
parallelism as a primary design factor ([3]).

Some study has been made towards theoretically comparing abstract machine designs
[4, 5]. The research concentrates on the mathematical equivalence of abstract reduction
mechanisms but does not encompass the wider environmental issues such as suspending
and resuming tasks and the effects due to the way program state is represented in different
machines. Our research programme includes the practical comparison of the behaviour of
parallel abstract machines and, in this paper, we present the development of a data structure
which greatly simplifies the experimental process. Much of the overhead experienced by dis-
tributed parallel architectures is due to interprocessor communication, hence the structure
is designed to standardise the mechanisms for performing and measuring run-time commu-
nication, irrespective of the abstract machine employed.

Parallel architectures are amazingly diverse, ranging from tightly coupled, shared mem-
ory systems (e.g. the BBN Butterfly) to loosely coupled, distributed memory systems (e.g.
the Intel iPSC). Understanding why abstract machines behave as they do in given circum-
stances should be an important factor influencing the choice or design of an abstract machine

*Supported by a SERC research studentship

225

for a particular environment. We shall be concentrating on distributed memory architec-
tures which rely on message passing for interprocessor communications but the techniques
described will also be applicable to those shared memory architectures which use some
form of message passing. The data structure is based on the lambda calculus, common to
most modern abstract reduction mechanisms, and is a graphical expression of functional
programs, hence it is called the Common Graphical Form (or CGF).

The primary use for CGF is to encapsulate programs at run-time in an abstract machine
independent manner. However, because it identifies the common ground between various
classes of abstract machine, we can also use the structure at other stages of implementation
where there is a need for low level functional program description. For example, CGF can be
used as a low-level intermediate language at compile-time. We shall discuss this secondary
issue in the latter sections of the paper but it is worth noting at this point the existence of
the dual modes of operation and to realise that they are distinct.

1.1 Machine Comparisons

It is possible to compare the raw performance statistics of abstract machines and to state
which takes the least amount of time to execute a particular program [6, 7]. Unfortunately,
this does not provide sufficient information to say why one machine runs faster than an-
other. Also, distributed processing systems often communicate over data networks and so
a degree of non-determinism is introduced due to network loadings, bottlenecks, and the
reliability of the communications hardware. Non-determinism reduces the consistency of
real-time measurements and makes it difficult to glean useful information. It is therefore
more informative to monitor directly the internal workings of the abstract machines in order
to investigate the effects of the host environment on the machines’ efficiency. This provides
a rationale for a machine’s performance statistics and so helps to make predictions about
how the machine would fare if the environment were altered.

Comparing the internal operations of different abstract machines is difficult because
each machine uses its own, unique, data structures to denote programs. If the number of
reductions is used as the performance metric then we have to account for the fact that there
may be significant variation in the amount of work done by a single reduction (this can also
be dependent on the way a program is compiled [6]). Moreover, the relationship between
similar instructions on different machines may not be linear (e.g. instructions to select the
next redex, and those to build graph structures).

We turn to parallel processing in order to speed up program execution, thence success
depends heavily on the ability of a number of processing elements to cooperate efficiently. We
believe, therefore, that interprocessor communication is an important factor when measuring
distributed abstract machine behaviour and we use it as a basis for our study. A method
of standardising interprocessor communications is required; CGF fulfils this requirement,
making it possible to construct a monitoring and measurement package that can cope with
all of the abstract machines likely to be studied. If CGF is properly designed then it will
not be necessary to rebuild the mechanisms for each new abstract machine.

The peripheral advantages gained by using CGF are also applicable to shared memory
systems. For instance, it is possible to build a standard set of tools to manipulate the
data structure without committing the techniques to any specific abstract machine. The
unification of communication measurement facilities made possible by the data structure is
also relevant to a shared memory architecture, although it is of greatest utility when the
primary method of interprocessor communications is message passing.

1.2 Organisation of the Paper

The remaining sections of this paper are organised as follows. Section 2 examines the depic-
tion of functional programs at the lowest, abstract machine level. Using this as a starting

226

point, we consider what is desired of a Common Graphical Form. Section 3 contains a
complete description of CGF for use at run-time, giving justifications for the design deci-
sions taken. Section 4 deals with the secondary use of CGF as a compile-time intermediate
language, examining higher level characterisations of functional programs and presenting a
full textual representation for the structure. Section 5 gives examples of uses for CGF and,
finally, section 6 concludes with CGF’s achievements.

2 Representing Functional Programs

CGF’s primary goal is to describe lazy, higher order, functional programs at run-time in a
manner that is not dependent on any one abstract machine so that interprocessor communi-
cations can be normalised.! To achieve this it is necessary to discover (a) the fundamental
properties that are common to the many abstract models and (b) what information needs to
be passed between remote processors. We shall examine both low and high level structures
to obtain a complete picture. In this section we concentrate on the low level structures
employed by some well documented abstract machines.

Graphs, Code, and Stacks

Implementations of lazy, higher order, functional languages typically have three distinct uses
of memory:

heap space in which to build graphical structures,
code memory in which to place (abstract) machine code sequences, and

stacks on which evaluation is controlled (or, given that the result is not to be shared, the
stack may be used by some compiled abstract machines to perform evaluation without
having to access the heap).

Higher order functions and laziness call for a mechanism to implement suspensions; laziness
also implies the ability to share the results of computations. The suspension mechanism
is usually expressed using a closure which is described by a pair: (function, environment).
This is precisely what every abstract machine needs to build. Both closures and shared
values demand a more flexible storage medium than a stack, so a heap is required. The type
of information stored in the heap is of consequence to CGF’s design so a detailed study is
made in the following sections.

2.1 Graphs

Table 1 lists a number of abstract machines, showing the tuples which make up the graphical
run-time information on which each machine operates. The table contains a fairly small
sample of abstract machines but it should be apparent that a trend is becoming established.
The terminology varies from tuple to tuple (it is based on the sources referenced in the
second column of the table), hence some explanation is necessary before we continue.
Function, code, and codeptr all reference some (abstract) machine code whilst Field; and
head reference a graphical (i.e. interpretive) function definition. Fields, tail, item, and arg
are either unboxed data items or pointers, and Lal George’s env is simply a collection of
arguments (equivalent to arg*). Tim’s frameptr is also a pointer to an environment but with
a subtle difference: a Tim frame contains (codeptr, frameptr) pairs instead of single values
or pointers. This is isomorphic to the (code, arg*) arrangement [15], as demonstrated in

!Note that CGF does not preclude the use of efficient, internal abstract machine representations (see
section 5.1).

227

Machine Reference Node Description
E}F—)i\l/ll(:sl??ne 8] (function, arg*, tag)
Spineless

Tagless [9] (function, arg*)
G-Machine

Tim [10] ({codeptr, frameptr)*)

(v, G)-machine 2] (tag, code, link, arg*, tempspace)
Lal George

Abstract [11] (tag, code, waitcount, notechain, env)
Machine

Flagship Eg% (tag, item*)
G-machine [1] (tag, field;, fields)
Four-stroke

Reduction [14] (tag, head, tail)

Engine

* indicates zero or more

Table 1: Some examples of graphical data.

figure 1 (just slide each function reference, f,,, from the head of a vector application node,
backwards along the arrow pointing to the node, and pair it with the pointer), so no special
data structure is required to build Tim’s heap.

The other items in the tuples in table 1 are house-keeping information of one sort or
another and these will be dealt with in due course. (There will be yet further house-keeping
overheads depending upon specific implementation details; again, this will be dealt with
later.)

The reason for the similarities between the abstract machines’ data structures is that
all are realisations of closures, thus if CGF is to be abstract machine independent then a
general purpose closure mechanism must be defined. A closure is a function and a set of
arguments which form an environment. Conveniently, a vector application node satisfies
the basic format of a function applied to a variable number of arguments, which just leaves
the problem of describing a (possibly hierarchical) environment. This issue is tackled in
section 3.2.1.

Any remaining data such as further tags and dynamic links (see section 5.1.2) can be
packaged as extra information with respect to the minimal closure definition. The extras do
not effect the semantics of the graph but merely carry state information as required by the
abstract machine. Separating semantically relevant data from overheads in this way allows
a more accurate interpretation of the interprocessor communications to be made.

2.2 Code

A naive scheme for program loading may dictate that every compiled function definition is
loaded onto every processing element before execution commences (e.g. see [16]). This is
clearly undesirable for large programs because a great deal of time and memory is wasted
by duplicating code that will never be executed. An intelligent program loader, however,
might partition the program code so that it is divided amongst the processing elements in
the same manner that a graph is divided between the processors of an interpretive graph
reduction engine. In this scenario, code sequences must be transferred between remote pro-
cessing elements when tasks are migrated and hence a special addressing mode is required to
uniquely name the sequences. By exploiting this addressing mode further, CGF can be used

228

Vector application nodes Tim Frames
eval(o) eval(fi, »)
Alele]s for o] fsr ¢] 1o o
fa | oo « o
fz | oo oo
fo | oo .o

Figure 1: Tim’s frames and vector applications are isomorphic.

by the loader itself for initial program distribution, again saving effort when experimenting
with new abstract machines because the loader remains essentially unchanged from machine
to machine.

Apart from insisting that separate code sequences are distinguishable, no structure is
imposed on the code and no meaning is attributed to it. Each sequence may contain native
machine code destined for a specific piece of hardware, abstract machine code that will
be interpreted by an abstract machine, or some hybrid, depending upon the experimental
whims of the implementer.

2.3 Stacks

Stacks are used extensively by abstract machines when evaluating programs. A stack is
an efficient tool for expression evaluation and is an efficient medium for evaluating local,
unshared, temporary values which do not incur heap updates [8, 9]. The terms local and
temporary may give the misleading impression that it will not be necessary to move stacked
information between non-local processors. There are cases, however, when stack based
information will need to be moved—for example, state information required to resume a
suspended task may reside on the stack; if the task is migrated then the stacked data must
also be migrated. Passing arguments to a remote function may also benefit from the ability
to transmit a segment of local stack. Therefore the tools for interprocessor communication
are designed to cater for the transference of stacked data but, because stacks are an abstract
machine mechanism and not a natural part of a program graph, no references are made to
stacked items from the graph and hence no extension to the CGF addressing modes is
necessary.

3 A Description of CGF for use at Run-Time

In this section we describe the Common Graphical Form as a mechanism for encapsulating
functional programs at run-time. A program is represented in Common Graphical Form

229

arity: addressg address,,

Figure 2: A node in Common Graphical Form.

EXP

3: [INTx ’ ’ @

0: [INT+[(1,1) [(1,2)| @ 0:|INT/[(1,1) |(1,3)| B

Figure 3: CGF structure for EXP = Az y z. (z + y) x (x/2)

by a collection of vector application nodes. Figure 2 presents an illustration of a node;
the arity coefficient indicates the number of variables bound by the node, P is a label, ID
is a unique identifier depicting the abstract address of the node, and address is one of the
addressing modes described in section 3.2 below—the addressing modes are the singularly
most important feature of CGF.

Identifiers and labels serve two distinct diagrammatic purposes: identifiers are fixed to
their respective nodes, but labels may move from one node to another. This will be useful
when we perform transformations on CGF (e.g. note the label movement in figure 6).

3.1 CGF’s Relation to the Lambda Calculus

CGF is based on the typed lambda calculus, augmented with a number of primitive functions
and constants. Mechanisms for bound variable abstraction, function application, and beta
reduction are provided and thus CGF is computationally complete. CGF also provides for
explicit expression-sharing (which can be used to implement named functions) and for the
definition of recursive functions by the use of cyclic graph structures.

User functions are defined by assigning an arity to an expression node, the expression can
then be applied to some arguments in the usual way. Nodes with zero arity are employed
to portray bracketed sub-expressions. For example, the lambda expression A\xyz. (z +
y) X (z/z) requires three nodes (see figure 3), each containing an operator applied to two
arguments. The top node applies the multiplication operator to each of the two (zero arity)
sub-expressions.

3.2 Addressing Modes

We provide a fixed number of addressing modes to describe various entities. It is a straight-
forward exercise to perform case analysis (or pattern matching) over the addressing modes
in order to process the information within a node. The following sections describe the
addressing modes in detail.

3.2.1 Bound variables

In [17] de Bruijn shows that variables bound within lambda expressions can be fully de-
scribed by a pair of integers which provide access to environments. We use a modified
version of his scheme, written (d,i), to reference the ith bound variable belonging to the

230

node which occurs d bindings beyond the reference. (Binding levels are illustrated by fol-
lowing pointers backwards, counting the number of non-zero arity nodes visited.) We refer
to the (d,7) construction as a de Bruijn address (Cousineau et al use a similar technique to
overcome naming problems in their Categorical Abstract Machine [18]).

Note that all de Bruijn addresses in a lambda lifted program are of the form (1,7)
because variables must be bound by the innermost, non-zero arity node. There is no reason
to suppose that all abstract machines will use lambda lifting however (e.g. [4]), so the full
power of de Bruijn addressing is retained.

3.2.2 Inter-node references

To build a graph structure using CGF we must be able to make arbitrary references to nodes.
Three addressing modes are provided for this purpose:

Abstract addresses are borrowed from [19] where graphs are described textually: each
line of text symbolizes a unique node in the graph so that line numbers can be used
to address the nodes. This abstracts away from machine level addressing and is ideal
when graph segments are packaged up for interprocessor communication.

Real addresses are machine level pointers that identify memory locations within the con-
crete address space of the local processing element. (When graphs are migrated from
one processor to another, some real addresses will be translated into remote addresses
and others will become abstract addresses.)

Remote addresses refer to memory locations in remote address spaces. Hughes notes that
remote pointers are rare in comparison to local pointers [20] and so by separating local
and remote addressing into two distinct modes it is possible to build local indirections
to remote addresses. Under non-strict evaluation, an indirection is followed only when
a normal form is required, hence remote addresses are only ever encountered when a
value must be obtained from a remote processing element.

Diagrammatically, a reference to a node may be shown (a) by an arrow physically pointing
to the node, (b) by an identifier (which may be numeric), or (¢) by a label. The graph to
which a label, P, or an identifier, |, refers may be written P or |, respectively.

3.2.3 Data objects

A single addressing mode is used to describe all data objects so that case analysis is not
unduly slow. Structured data is built using boxed nodes and in the unevaluated state
it is represented by the application of a constructor function to the requisite number of
arguments. No constraints are placed on the range of structured data types available because
new structures can be introduced by adding extra constructor primitives.

Data objects may or may not need to carry further information to distinguish different
data types—this is dependent upon the underlying implementation. CGF possesses an ex-
plicit type mechanism for those implementations which need to perform type checking at
run-time (a description of this mechanism is given in section 4.4) but it is not mandatory
and need not be used when types are implied by context such as in strongly typed systems.
Primitive functions are considered to be data, and may either be distinguished by context
(i.e. by function application) or may be given a special tag. The choice of which primitive
functions to employ is left to the discretion of the implementer.

4 A Description of CGF for use at Compile-Time

In this section we look at one way in which we can extend the compass of CGF beyond its use
at run-time by demonstrating that, in order to satisfy those abstract machines which require

231

abstract
ML genorator [machine J—wf APetract
U« code
FLIC °
°
Miranda| °
i FLIC
FLIC FLIC 4 COF > machine
. CGF
: °
°
Haskell °
Haskell U bstract
FLIC optimiser abstrac Abstract
graph machine

Figure 4: CGF can be used for compilation in conjunction with FLIC to provide a route
from many high level languages to many abstract machines.

tagged data items at run-time, we have inadvertently developed a low level mechanism that
can be used to implement FLIC at compile-time. CGF is thus promoted to the status of
an intermediate language. Firstly, we consider CGF’s relationship with FLIC and other
intermediate languages to get an idea of where CGF fits into the overall framework. Then
we present a textual description of CGF which is amenable to transmission using electronic
mail, that can be used to inspect intermediate stages of compilation, and which is easily
interpreted by parts of the compiler built using a functional programming language.

4.1 The Functional Language Intermediate Code

FLIC [21] was designed to sit one level below the high level programming languages to
provide a reference point for compilers, allowing standardised mechanisms such as source to
source compilation modules. Modularity implies that techniques can be freely exchanged
and new languages can be easily accommodated. FLIC’s design incorporates a powerful
set of primitive functions which are capable of expressing many functional constructions,
including complex data structures.

CGF is a low level tool, designed primarily to cope with run-time and communications
demands. Nevertheless, FLIC’s family of primitives are a powerful compile-time asset and
so we have adopted them as our primitive function set for compilation purposes. Therefore,
CGF can provide a compile-time facility similar to FLIC but at a lower level.

FLIC programs retain much of the flavour of the lambda calculus; they are textually
concise, are human readable, and are amenable to straightforward pretty-print formatting.
CGF programs are less readable than the equivalent FLIC versions and textually less con-
cise (see, for example, section 4.4) but, just as FLIC removes syntactic sugaring such as
list comprehensions, CGF does much the same with syntax such as arbitrarily nested let
and letrec definitions which complicate parsing and concrete representation. CGF’s low
level structure is well suited to rapid compilation because, in addition to maintaining a
level of abstraction above the underlying abstract machine, it imposes little or no parsing
overhead. This may be significant when there are many stages of compilation (for example,
approximately 25 passes are claimed for the LML compiler [22]).

CGF is designed with efficient machine readability in mind and so does not necessar-
ily replace FLIC; it is, however, complementary. Just as FLIC provides a focal point for
high level languages, CGF is able to provide a similar focus for compiler backends. Fig-
ure 4 demonstrates how CGF fits into the compilation scheme—note that source to source
transformations can occur at either the FLIC or CGF stages.

An important feature of FLIC is its ability to annotate programs in order to influence

232

the compiler’s decisions (although not influencing the semantics of the program). CGF’s
extras field is ideal for implementing FLIC annotations because, like the annotations, it is
designed to hold information which is not directly related to program semantics. Program
transformations performed at the CGF level can then either take annotations into account
given code to interpret the fields correctly, or they can simply ignore them, naivly carrying
them through to the next stage of compilation. (Some further work may be needed in this
area to decide how best to maintain annotations when non-trivial transformations cause the
program to be altered significantly.)

4.2 Another Graphical Language: GCODE

The functional language project at Birmingham and Warwick universities found it necessary
to create a standard, printable format for representing graphs which they called GCODE
[19]. The underlying mechanism is a binary graph but the representation is reasonably high
level—for example, the original variable names are retained from the source as an aid to
debugging. The standard is very tightly defined as it is intended for a specific environment
and, more importantly, it does not attempt to address the problems of distributing graphs
across separate address spaces.

This differs from CGF’s design brief which requires a more general purpose mechanism.
CGF is consequently more flexible at compile-time (i.e. conversion from GCODE to CGF
is simple, but not vice versa) and is more powerful at run-time, catering for interprocessor
communications and providing low level access to function parameters. CGF’s abstract
addressing mode (section 3.2.2) was inspired by one of the techniques described in [19].

4.3 DACTL

CGF differs from the DACTL intermediate language [23] because the latter is designed
to encompass a range of declarative programming styles and so describes programs at a
higher level of abstraction; low level issues are ignored. Our objective was to develop an
intermediate language that could be used to describe programs at the abstract machine
level, i.e. in terms of memory cells. For example, DACTL utilises local naming to describe
sharing whereas CGF describes a graph exactly, using its abstract addressing mode to build
shared nodes and cycles.

It is clear then that the objectives of the two formats are quite different. DACTL provides
a metric for reasoning about different programming styles while, by limiting its scope to the
applicative programming style, CGF provides the facility to measure and reason about the
low level functionality of different abstract machines.

4.4 Representing CGF Textually

CGF is ideally suited to internal low level representations within a run-time system or a
compiler but it is sometimes necessary to build a textual version so that the code may be
inspected manually and so that it can be read in a straightforward manner by compiler
modules written in a functional language. The following textual representation is simple
and efficient to parse.

Each vector application node is represented by a single line of text terminated with
a newline character. The first entry specifies the number of cells and is followed by a
textual description for each cell. The arity of the node is given next, followed lastly by
any (implementation specific) eztra information. Addressing modes are specified by a two
character code and data types by a three character code as follows:

233

Code | Addressing mode Code | Data type

NO | no address (NULL) || INT | integer

AB abstract FLP | floating point

RE real PRM | primitive function
DA data STR | string data

DB de Bruijn CHR | character data
RT remote BLN | boolean data

Qualifiers, GN and SC, specify whether abstract addresses refer to graph nodes, or super-
combinators. The textual representation for addresses is unambiguous and so no special
delimiters are needed to separate cell definitions. Numeric and character constants are
written in ascii format and are distinguished by context. Primitive functions are given in
uppercase, e.g. CONS, TRUE, INT+, IS-NIL. The following is an example specification
(equivalent to EXP in figure 3):

Abstract address Textual description
(line number) | cells function arguments arity extras
1 3 DA PRM INT+*+ ABGN2 ABGN 3 3
2 3 DAPRMINT+ DB11 DB 12 0
3 3 DAPRMINT/ DB11 DB 13 0

5 Examples of Use

This section demonstrates some of the ways that CGF can be used both at run-time, as was
originally intended, and during compilation. The given examples currently form part of an
active programme of research in distributed implementations for functional programming

at UCL.

5.1 Implementing Run-Time Systems

The primary design aim of CGF is to simplify the creation and maintenance of a run-time
environment and to support a range of different abstract machines and system configura-
tions. The abstract machines will be of many types, including compiled and interpreted
machines, and loading and reduction strategies will demand varying degrees of interproces-
sor communication with assorted levels of granularity.

CGF’s structures can be optimised for run-time use and tailored for compatibility with
specific abstract machines—the specification is sufficiently flexible to enable special versions
to be constructed and still take advantage of the library of tools. Our library contains
routines to manipulate CGF’s addressing modes, utilities to measure the data-flow between
remote processing elements, programs to flatten graphs into a form suitable for transmis-
sion between processing elements and to reconstruct them at the other end, and so on.
The library utilities are expressed in terms of CGF addressing modes and require minimal
interfaces to accommodate the implementation details of the individual abstract machines.

Much careful consideration has been given to the design and we have avoided imposing
overheads that could bias measurements in favour of one abstract machine over another;
this is important because CGF will be used to make relative comparisons between machines.
Many options are left available to the implementer to make the most efficient possible use

of CGF.

5.1.1 CGF graph reduction engine

An interpretive graph reduction engine has been built which uses binary CGF nodes (i.e.
every node has two cells) as the basis for building graphs. The interpretive engine has the

234

dynamic link

FR T l arg; e arg, t1 e tm

temporaries

code pointer

Figure 5: A (v, G)-machine frame node.

advantage of simplicity, enabling experiments to be made with loading and task management
strategies without the added complications resulting from compiled graph reduction. The
simplicity of the machine allows new ideas to be rapidly prototyped and thus encourages
experimentation—measurements can be taken from compiled abstract machines once the
techniques are properly understood.

5.1.2 The (v, G)-machine

The (v, G)-machine [2] is a compiled abstract machine in which heap allocated graph nodes
are treated as stack frames, thereby simplifying task suspension and removing the overhead
of copying data between the heap and the stack. To emphasize their superior status the
nodes are referred to as frame nodes. A frame node (shown in figure 5) consists of five parts:

1. A tag which distinguishes between reducible frame nodes (those which contain a func-
tion applied to the correct number of arguments), constant applications (a function
applied to too few arguments), and constructor values (complex data items).

2. A code pointer identifying the compiled function that is to be applied to the argu-
ments.

3. A dynamic link pointing backwards to the calling frame node (and hence to the
preceding stack frame).

4. A list of arguments, arg; ...arg,, to which the function is applied.

5. Cells, t1...ty, for temporary calculations. The stack frame grows and shrinks at
run-time as items are effectively pushed onto and popped from the stack. This space
can either be allocated dynamically or, where it is possible to calculate an upper bound
on its size, can be fixed.

It is a straightforward exercise to build frame nodes in CGF: the tag and the dynamic
link are included as eztra information because they are implementation details whilst the
function, arguments, and temporaries are naturally represented by a standard CGF vector
application. If the implementation uses a fixed size temporary space then another extra
item is required to specify the size of the currently active part of the stack.

The purely interpretive facets of CGF such as de Bruijn addressing are, of course, not
required by the (v, G)-machine run-time environment but all other aspects of the format are
employed by a distributed implementation.

5.1.3 Partitioning and loading

Partitioning and loading programs onto distributed processors is a non-trivial task which
has inspired a large amount of interest (e.g. [24]) and will continue to do so as parallel and
distributed processing become ever more common. Using CGF as the underlying structure for

235

a>0:| - [{di>Lz)| - | (Lyp| - @

L 4
O: * (dl - 17m1> e <d'l - 1,.’1'Z> e <dimax - 17mimax> @
a4 imax: | - | (L) | o | (LyFimax) | @

Figure 6: Lambda lifting a sub-graph, N, which contains ¢;,,x distinct free variables.

this activity allows the production of a single, generic program partitioner/loader that can
be interfaced with a number of abstract machines. The advantages are three fold: firstly
the algorithms do not have to be re-coded when the target abstract machine is changed
and hence the corollary that improvements to the algorithms are automatically available
to every abstract machine. The third advantage is that with the data already in CGF
format, it is ready for transmission to the distributed processing elements without further
transformation.

5.2 Modular Compilation

CGF is intended to highlight and exploit the common ground in disparate abstract machines
so that we can experiment with run-time strategies and compare the effects across the
spectrum of abstract machines under test. As a consequence of being a low level common
core representation, CGF proves to be an ideal medium for source to source compilation.
The format is very close to the underlying graph structures that will be used at run-time
and as such can be manipulated with efficiency and ease.

5.2.1 Program transformation

Three types of program transformation have been implemented as CGF to CGF modules;
these are lambda lifting, sharing analysis, and time-complexity analysis. Figure 6 illustrates
how neatly the lambda lifting algorithm [25] translates to CGF’s graph structure? with an
arbitrary number (= ipax) of distinct free variables (this is the most general case). The
code to lambda lift the whole graph consists of two nested depth-first graph traversals, the
outer traversal to locate free expressions and the inner traversal to transform the whole
subgraph including subsidiary nodes. Locating free variables is trivial because of the nature
of de Bruijn addresses: an address (d > 1,x) depicts a free variable and is lifted by moving
it outside the current binding, decrementing d to compensate for the reduced depth (a new
node, M, is inserted into the graph to hold the lifted variables). Existing bound variables,
(1,y), are adjusted to account for the increased number of arguments. References which
are buried many levels deep are simply bubbled upwards incrementally by the action of the
outermost depth-first search. The algorithm requires the storage overhead of just a single
marker which is used by both the inner and outer depth-first searches.

2full-laziness is achieved by modifying the algorithm slightly or by applying a second pass which recovers
full-laziness upon completion of any other graph transformations.

236

2:12] o 2:1.2] o 2:f12] o
/

0:| ¢ (1,1)

1, 1) (1, 1) 2:(12] »
= - = .

oo J21) o:f 9 f11)

13, (1, 1) 2:(1, 1)1, 2) 2:(1, 1)1, 2)

Figure 7: Lambda lifting Af g.g (Ah.h (Az.f x)) to give A\f g.g (Agh.h (Apz.px)q)) f)

Figure 7 provides a concrete example of lambda lifting using the algorithm given above.
The lambda expression Af g.g (Ah.h (Ax.f z)) contains three nested abstractions; the func-
tion variable f, which is applied at the innermost level, is free with respect to the two inner
abstractions and is bound by the outermost abstraction. T'wo successive lift operations are
needed to bubble the variable upwards, adding two extra nodes to the graph in the process.

5.2.2 Abstract machine backend

It is common for abstract machines to be specified by a set of transition rules and by a
set of compilation rules (e.g. see [2, 10]) where the latter is usually defined over a small,
convenient input language. CGF is ideal for use as input to a backend because the format so
closely resembles the small languages employed in the specifications; the task of building a
backend reduces to a simple implementation of the rules. As an example, we shall consider
some of the compilation rules given in [2] for the (v, G)-machine.

The (v, G)-machine uses supercombinators and so all de Bruijn addresses will be of the
form (1,4). Advantage can therefore be taken of the constant depth by introducing a compiler
pass which converts all de Bruijns into the form (a,i) where a is the arity of the enclosing
user function; this gives the backend direct access to arity information without having to
search the graph. The rule for compiling a parametric value, x, given an environment, p,
and a current environment depth, n, is:

Cl[z]pn =PUSH(n — p(x))
which becomes just:
C'[{a,i) Jn =PUSH(n —a+i—1)

thus reducing the environment function, p, to a closed form expression with respect to the
values given by the de Bruijn address.
Consider the compilation scheme given for compiling function definitions:

Flfar..avn=e] = Rlellrr=n,-- 20 = 1]n
which maps to:

Fln>0:[al-Tem]] = R[[o]--Tem]ln

237

The body of the function, e, is given by the application of ey to arguments e; . ..e,,. The R
scheme is responsible for compiling the application of a user function or primitive function
(which may be a constructor) to a list of arguments. This is precisely what the CGF vector
application node describes—we have just to examine the addressing mode of the function
cell, eg, to determine which R scheme case to invoke.

The other compilation schemes map just as easily onto CGF’s structures and a com-
piler backend has been constructed for the (v, G)-machine in a functional language. The
functional code to manipulate the CGF bears a very close resemblance to the original set of
compilation rules.

6 Conclusion

In this paper we have discussed two major advantages of using the Common Graphical Form:
firstly, that it has encouraged the construction of shared libraries of utilities to manipulate
functional data and, secondly, that it has provided a standard method to describe ideas
in a low level, abstract machine independent manner. At UCL, CGF is employed as part
of a distributed processing environment. It is helping to bind together various areas of
our research including the development and performance measurement of distributed run-
time strategies, the experimental comparison of abstract machines, and the construction of
compilers for executing functional languages on distributed architectures.

CGF has been an invaluable tool for rapid prototyping at many stages of our system im-
plementation, especially in constructing the compiler and its associated backends. Practice
has shown that it is far more straightforward to manipulate the low level structure of CGF
at compile time than to struggle with high level source languages, or intermediate forms
such as FLIC. The format is simple to manipulate using both imperative and functional
programming languages and so has provided the flexibility to choose whichever is most ap-
propriate for each prototyping exercise. We have imperative and functional language library
functions to translate efficiently between textual CGF and its internal representations and
these form a simple interface between the otherwise incompatible programming styles.

As a mechanism for implementing run-time systems CGF has been extremely successful.
During our continued research we expect it to save us a great deal of time and effort and to
provide useful results when measuring abstract machine behaviour.

References

[1] T. Johnsson. Efficient compilation of lazy evaluation. In Proceedings of the Conference
on Compiler Construction, pages 58—69. ACM, June 1984.

[2] L. Augustsson and T. Johnsson. Parallel graph reduction with the (v, G)-machine. In
Proceedings of FPCA Conference, pages 202-213. ACM, 19809.

[3] G. Burn. Implementing lazy functional languages on parallel architectures. In
P. Trealeven, editor, Parallel Computers (Object-Oriented, Functional, Logic), Series
in Parallel Computing, chapter 7, pages 101-139. Wiley, 1990.

[4] E. Meijer. Cleaning up the design space of function evaluating machines. Technical
report, University of Nijmegen, Dept. of Informatics, Mar. 1989.

[5] E. Meijer. A taxonomy of lazy function evaluating machines. Technical report, Univer-
sity of Nijmegen, Dept. of Informatics, June 1989.

[6] 1. Robertson. Hope+ on Flagship. In K. Davis and J. Hughes, editors, Functional
Programming Workshop, Glasgow 1989, pages 296-307. Springer Verlag: Workshops in
Computing, Aug. 1989.

238
[7]

8]

[20]

[21]

[22]

[23]

[24]

[25]

B. Goldberg and P. Hudak. Alfalfa: distributed graph reduction on a hypercube multi-
processor, volume 279 of LNCS, pages 94-113. Springer Verlag, Nov. 1986.

G. Burn, S. Peyton Jones, and J. Robson. The Spineless G-Machine. In Proceedings of
Lisp and Functional Programming Conference, pages 244-258. Snowbird, July 1988.

S. Peyton Jones and J. Salkild. The Spineless Tagless G-Machine. In Proceedings of
FPCA Conference, pages 184-201, 1989.

J. Fairbairn and S. Wray. Tim: A simple, lazy abstract machine to execute supercom-
binators. In Proceedings of FPCA Conference. ACM, Springer Verlag, 1987. LNCS
274.

L. George. An abstract machine for parallel graph reduction. In Proceedings of FPCA
Conference, pages 214228, 1989.

P. Watson and I. Watson. Evaluating functional programs on the Flagship machine.
In Proceedings of FPCA Conference, pages 80-97. ACM, Springer, 1987. LNCS 274.

I. Watson, V. Woods, P. Watson, R. Banach, M. Greenberg, and J. Sargeant.
Flagship: A parallel architecture for declarative programming. Technical Report
FS/MU/IW/017-88, Manchester Univ., Department of Comp. Sci., Mar. 1988.

C. Clack and S. Peyton Jones. The four-stroke reduction engine. In Proceedings of Lisp
and Functional Programming Conference, pages 220-232. ACM, Aug. 1986.

S. Peyton Jones. The tag is dead—Tlong live the packet. posting on fp electronic mailing
list, Oct. 1987.

P. Hudak and B. Goldberg. Experiments in diffused combinator reduction. In Sympo-
stum on Lisp and Functional Programming, pages 167-176. ACM, Aug. 1984.

N. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the church-rosser theorem. Indagationes
Mathematicae, 34:381-392, 1972.

G. Cousineau, P. Curien, and M. Mauny. The categorical abstract machine. In Pro-
ceedings of FPCA Conference, pages 50-64. ACM, Springer Verlag, 1985. LNCS 201.

M. Joy and T. Axford. A standard for a graph representation for functional programs.
ACM Sigplan Notices, 23(1):75-82, 1988. University of Birmingham Internal Report
CSR-87-1.

J. Hughes. A distributed garbage collection algorithm. In Proceedings of FPCA Con-
ference, pages 256-272. ACM, Springer Verlag, Sept. 1985. LNCS 201.

S. Peyton Jones and M. Joy. FLIC — a Functional Language Intermediate Code. Internal
Note 2048, University College London, Department of Computer Science, Aug. 1989.

L. Augustsson and T. Johnsson. The Chalmers Lazy ML compiler. The Computer
Journal, 32(2):127-141, 1989.

J. Glauert, J. Kennaway, and M. Sleep. DACTL: A computational model and compiler
target language based on graph reduction. ICL Technical Journal, 5(3), 1987.

B. Goldberg. Multiprocessor Execution of Functional Programs. PhD thesis, Graduate
School of Yale University, Apr. 1988. Research Report: YALEU/DCS/RR-618.

S. Peyton Jones. The Implementation of Functional Programming Languages. Prentice
Hall, 1987.

