Functional programming on the GRIP multiprocessor

Simon L Peyton Jones, Chris Clack, Jon Salkild, Mark Hardie

University College London, UK

Abstract

Most MIMD computer architectures can be classified as
tightly-coupled or loosely-coupled, depending on the
relative latencies seen by a processor accessing different
parts of its address space.

By adding microprogrammable functionality to the
memory units, we have developed a MIMD computer
architecture which explores the middle region of this
spectrum. This has resulted in an unusual and flexible
bus-based multiprocessor, which we are using as a base
for our research in parallel functional programming
languages.

In this paper we introduce parallel functional
programming, and describe the architecture of the GRIP
multiprocessor.

1. PARALLEL FUNCTIONAL
PROGRAMMING

Building a parallel MIMD computer is not a trivial task,
but programming it is often more complex still.
Functional programming languages provide a
particularly promising line of attack, since their freedom
from side effects greatly relieves the constraints on
parallel program execution. A functional program is
executed by evaluating an expression, and several sub-
expressions may be evaluated concurrently. For
example, in the expression

(3+4) * (sqrt 24)

the addition can take place concurrently with the square
root. Thus the hope offered by functional languages is
that parallel execution of functional programs, through
concurrent evaluation of sub-expressions, may be
possible without adding any new language constructs or
detailed program tuning.

If taken without qualification this statement is rather
misleading, since it seems to promise "parallelism
without tears", whereas in fact co-operation never comes
for free. We can, however, take the statement as
highlighting an opportunity.

The idea of concurrent execution of programs without
adding new language constructs is not new. The
FORTRAN compiler for the Cray-1 is designed to spot
vectorisable sections of programs written in (almost)
ordinary FORTRAN. However, the effective use of the
Cray relies on the programmer writing his program in
such a way that the compiler can spot that it is
vectorisable. Furthermore, high performance is an
extremely delicate property of programs, and easily
destroyed by seemingly innocuous modifications.

We hope that in the case of functional languages the
parallelism is less delicate and more general, so that the
programmer’s task is made easier. First, therefore, we
will discuss the task of writing parallel functional
programs. After this we describe the architecture of
GRIP, a multiprocessor designed to execute parallel
functional programs.

1.1 Writing parallel functional programs

It is tempting to believe that an arbitrary functional
program would run much faster on a parallel graph
reduction machine. This comforting belief is quite
erroneous; many functional programs are essentially
sequential. 1 For example, an insertion sort program
cannot insert the next element into the result until the
previous insertion has completed (or at least partly
completed). It is simply unreasonable to expect any old
functional program to run fast on a parallel machine.

In order to achieve good parallel performance the
program must contain algorithmic parallelism. One of
the most obvious forms of algorithmic parallelism is
exhibited by divide and conquer algorithms, which
divide the task at hand into two or more independent
sub-tasks, solve these independently, and then combine
the results to solve the original task. A standard example
of such an algorithm is quicksort, which splits the set to
be sorted into two subsets which can be sorted
independently. Other examples include any kind of
search algorithm (which covers many Aurtificial
Intelligence applications) and large numerical

117

computations. Experiments confirm that substantial
parallelism is obtainable. 21

It is therefore still the program designer’s responsibility
to create an algorithm which will divide the task at hand
into reasonably independent sub-tasks. It is
unreasonable to expect the machine to do this
automatically, since it may involve major algorithmic
changes (such as changing insertion sort to quicksort).

1.2 Writing parallel programs is easier in a
functional language

Why not program in a conventional language which
supports multiple tasks, such as Ada? There are a
number of ways in which writing a parallel program in a
functional language is superior to this:

(i) In conventional languages the division of the
problem into separate tasks is static and fixed. A
task is conceived as a relatively large unit, and
tasks generally cannot be created and deleted
dynamically. There will be relatively few tasks,
and the programmer must clearly identify all of
them in his design.

In a functional language the parallelism can be
dynamic, and there is no static division of the
problem into tasks. Instead, the programmer
designs an algorithm whose inherent parallelism
will enable concurrent reduction to take place at
different places in the graph. The "grain" of
parallelism is therefore smaller and more
dynamically adaptable as the computation
proceeds.

(ii)) In conventional languages the tasks communicate
with each other by sending messages or making
specially protected subroutine calls to each other.
The programmer has to design synchronisation
and communication protocols between tasks so
that they cooperate correctly and achieve mutual
exclusion where necessary. It is up to the
programmer to ensure that these communication
protocols are correct, and failure to do so can
result in a transient malfunction of the program.

In a parallel functional program, the
communication and synchronisation between
concurrent activities is handled entirely
transparently.

(iii) The tasking structure of conventional languages
adds a layer of considerable complexity to the
programmer’s model of what is going on. If it is
hard to reason about a sequential program, it is
even harder to reason about a multi-tasking
program, because the programmer has to bear in
mind all the possible time orderings in which
execution might take place. The behaviour of the
program should be independent of the scheduling
of the tasks, but it is up to the programmer to
ensure that this is the case. Sadly, programming
errors frequently have the effect of destroying
determinacy, which can make such errors very
hard to track down.

There are no extra language constructs required to
write parallel functional programs. The result of
the program is guaranteed to be independent of the
way in which execution is scheduled, though this
scheduling may have a strong impact on
efficiency. Thus it is no harder to reason about a
parallel functional program than a sequential one.

To summarise, the programmer does not have to design a
static task structure, guarantee mutual exclusion and
synchronisation, or establish communication protocols
between tasks. This frees him or her for the creative
activity of designing a parallel algorithm.

Naturally, since many of the resource-management and
scheduling decisions are now made by the system rather
than the programmer, a parallel functional program will
probably be less efficient than (for example) an
equivalent Occam solution. This is not a new situation;
we routinely accept a performance penalty for writing in
a high-level language instead of assembly code.
Nevertheless, this performance loss and, more seriously,
the difficulty of predicting and reasoning about
performance, are probably the major shortcomings of
parallel functional languages.

Recent developments have been encouraging. Compilers
for functional languages are now available for sequential
machines which execute programs with performance
broadly comparable to compiled Pascal. 34 This
technology is now being transferred to parallel machines.

2. EXECUTING FUNCTIONAL
PROGRAMS BY GRAPH
REDUCTION

Functional programs are executed on GRIP using a

118

technique called graph reduction. In this section we
offer a brief introduction to graph reduction. A complete
treatment can be found in Peyton Jones.

Consider the following functional program:

let f x = (x+1)*(x-1)
in f4

The "let" defines a function "f" of a single argument "x",
which computes "(x+1)*(x-1)". The program executes
by evaluating "f 4", that is the function "f" applied to 4.
We can think of the program like this:

RN

where the "@" stands for function application. Applying
"f" to 4 gives

/

7N

™

7N

We may now execute the addition and the subtraction
simultaneously, giving

RN

Finally we can execute the multiplication, to give the
result

15

From this simple example we can see that:

(i) Executing a functional program consists of
evaluating an expression.

(i) A functional program has a natural representation
as a tree. As execution proceeds the tree will
develop into a graph, because sharing is
introduced when function arguments are used
more than once in the body of the function.

(iii) Evaluation proceeds by means of a sequence of
simple steps, called reductions. Each reduction
performs a local transformation of the graph
(hence the term graph reduction).

(iv) Reductions may safely take place simultaneously
at different sites in the graph, since they cannot
interfere with each other.

v) Al communication between processors
performing concurrent reductions is implicit,
mediated by the graph. No explicit
communication between processors is required.

(vi) Evaluation is complete when there are no further
reducible expressions.

Graph reduction provides us with a simple and powerful
execution model, that can form the basis of a parallel
implementation. The GRIP (Graph Reduction In
Parallel) multiprocessor is designed to execute functional
programs by performing graph reductions concurrently,
exactly as described above. The details of the
generation, administration, execution, and
synchronisation of concurrent computation are, however,
beyond the scope of this paper (see the final chapter of
Peyton Jones, S or Clack and Peyton Jones 6 for more
details).

3. GRIP SYSTEM ARCHITECTURE
AND PACKAGING

We now turn our attention to the GRIP machine, which
has been designed to execute functional programs in
parallel. Whilst GRIP was designed for a specific
purpose, its architecture has turned out to be quite
general, and another group is already engaged in
mounting a parallel dialect of Prolog on the same
hardware.

Most recent work on MIMD computer architectures has
focussed on one of the following areas:
o Cache coherence in tightly-coupled bus architectures.

o Finding ways of achieving a high degree of locality
in a loosely-coupled system.

o Extensible networks for connecting components
together.

119

The GRIP machine explores a different part of the
design space, by adding micro-programmable
functionality to the memory units.

We can think of almost any parallel reduction machine
as a variation of the scheme shown in Figure 1. The
Processing Elements (PEs) are conventional von
Neumann processors, possessing some private memory.
The Intelligent Memory Units (IMUs) hold the graph.

Processing Processing Processing
Element Element Element
Communications medium
Intelligent Intelligent Intelligent
Memory Memory Memory
Unit Unit Unit

Figure 1. Physical structure of a parallel graph
reduction machine

This rather bland-looking diagram actually covers a wide
spectrum of machine architectures. The two major axes
along which variations are possible are:

¢ The topology of the communications network.

o The intelligence of the IMUs.

We now discuss these issues and the decisions we have
taken for GRIP.

3.1 The communications medium

In GRIP we have decided to give up extensibility in
return for a dramatically improved cost/performance
ratio by using a bus as the interconnection medium. The
low-level machine architecture is largely centred on the
requirement to reduce the bandwidth required from the
bus, so as to allow a reasonable number of processors
and memories to be connected to it.

The bus architecture is described in more detail below,
and is based around the IEEE P896 Futurebus standard.

3.2 The intelligence of the IMUs

The amount of intelligence contained in the IMUs has a
radical effect on the architecture. The extremes of the
spectrum are:

e The IMUs provide only the ability to perform read
and write operations to the graph. This results in a
classical tightly-coupled system, where the graph is
held in global memory, and every access to the graph
by a PE requires use of the communications medium.

e The IMUs contain a processor, each sufficiently
intelligent to perform graph reduction unaided. The
PEs are now vestigial, since they have nothing left to
do, and can be discarded altogether.

This results in a collection of processor/memory
units connected by a communications medium,
which is a classical loosely-coupled system. It is
much cheaper for an IMU to access a graph node
held in its own local memory than to use the
communications medium to access remote nodes.

Though it is seldom pointed out, there is a continuous
spectrum of possible architectures between these two
extremes. To move from one extreme to the other we
may imagine migrating functionality from the PEs into
the IMUs.

To the extent that we can be sure of achieving locality of
reference, it is desirable to move towards the loosely-
coupled end of the spectrum, and to put local processing
power in each memory unit. Since small chunks of
computation are quite likely to be local, we have chosen
to migrate a certain amount of functionality into the
memories, by providing them with a microprogrammable
processor optimised for data movement and pointer
manipulation. This processor is programmed to support
a range of structured graph-oriented operations, which
replace the unstructured word-oriented read/write
operations provided by conventional memories.

Since the IMUs service one operation at a time, they also
provide a convenient locus of indivisibility to achieve the
locking and synchronisation required by any parallel
machine.

The main disadvantage of IMUs is that they make it
impossible to use the bus-watching cache controllers that
have seen such rapid development in the last few years.

120

These controllers are fundamentally based on the
conventional READ/WRITE memory access protocol,
and it would be difficult or impossible to adapt them to
handle IMUs. It is not at all clear whether the
advantages of intelligence in the memories outweighs the
disadvantage of not having bus-watching caches, so we
regard GRIP as an experiment in this area. One
advantage we do have is that our design can be extended
to use a more extensible communications network.

Thus, from an architectural point of view, GRIP’s most
unusual feature is that it occupies an intermediate point
on the closely-coupled/loosely-coupled spectrum.
Indeed, depending on the sophistication of the microcode
in the IMUs, a range of positions on the spectrum is
possible. The IMUs are described in more detail below.

3.3 The Processing Elements

The PEs are Motorola 68020 microprocessors, together
with a floating point coprocessor, and as much private
memory as we could fit without requiring the
microprocessor’s bus to be buffered (128k bytes at
present, 1M bytes shortly). In this way, we have
capitalised on the extraordinarily dense and cheap
functionality provided by microprocessors.

3.4 Packaging

At first we planned to build PEs and IMUs on separate
boards, so that we could "mix and match" to find the
right ratio between their relative numbers. Subsequently,
we realised that the scarcest resource was bus slots, and
we should strive to maximise the functionality attached
to each bus slot by combining PEs and an IMU on a
single board.

It did not seem reasonable or possible to fit more than
one IMU on each board, but the PEs are so simple that
we are able to fit four of them on each board. Each of
these components is connected to the Bus Interface
Processor (BIP), which manages their communication
with each other and with the bus.

[PEO| [PEl| [PE2| |PE3| [IMU|

[Internal Bus J

Bus Interface Processor

|

’ Futurebus interface logic ‘

[
< FUTUREBUS >

Figure 2. A GRIP board

Figure 2 gives a block diagram of a GRIP board. This
(large) single board is then replicated as often as desired,
up to a maximum of 21 on a half-metre Futurebus.

An added bonus of this architecture is that
communication between a PE and its local on-board
IMU is faster than communication with a remote IMU,
and saves precious bus bandwidth. The design is not
predicated on achieving such locality, but if locality can
be achieved it will improve the performance
significantly.

3.5 A generic architecture

We designed GRIP specifically to support functional
languages, but the machine has in fact turned out to be
very general. Through its IMUs, GRIP provides good
support for any parallel system with memory-intensive
operations, and a separate project is already under way at
the University of Essex to mount an OR-parallel dialect
of Prolog on the GRIP hardware. 7

3.6 Host interfaces

Since GRIP is a research machine, we are not concerned
with very high bandwidth input/output. GRIP is attached
to a Unix host which provides all the file storage and
input/output required. A 16-bit parallel DMA channel
from the host is attatched to an off-board extension of
one of the PEs.

121

This host (an Orion) provides the development
environment for all GRIP’s firmware and software. In
addition, each GRIP board is provided with a low-
bandwidth 8-bit parallel diagnostics bus, which connects
to a custom interface in the Orion. Through this bus all
the hardware components on each board can be
individually booted up and tested from diagnostic
software running in the Orion.

4. BUS ARCHITECTURE AND
PROTOCOLS

In order to use the available bus bandwidth as efficiently
as possible, we chose to use a packet-switched bus
protocol. This in turn led us to design a packet-
switching bus interface, called the Bus Interface
Processor (BIP). We now explain the reasons for this
choice, and describe the protocol and BIP architecture.

4.1 Packet switching

When using a conventional (circuit-switched) bus
protocol, a processor that wishes to read a remote
memory location first acquires the bus, then applies the
address of the memory location, waits the access time of
the memory, and finally reads the data off the bus.
During the memory latency, the bus is not in active use,
but cannot be used by any other processor. This latency
may be relatively long, especially if the memory is
intelligent.

In GRIP, therefore, the PE sends an instruction packet to
the IMU, containing details of the operation the PE
wishes to be performed, and then relinquishes the bus.
While the IMU is processing the packet, the bus is free
for other use. When the IMU has completed the
operation, it sends a reply packet back to the originating
PE.

PE-to-PE, IMU-to-PE and IMU-to-IMU communication
is also catered for.

Arbitration for the bus takes place concurrently with data
transfer, so when the bus is heavily loaded, very little
extra delay is imposed by arbitration. Packet-switching
also uses the bus in an efficient block-transfer mode.

4.2 Packet format

A packet contains one or more words, subject to some
fixed maximum size (currently 256 words). Each word
contains 33 data bits, and one "last-word" bit, which is

used to identify the last word of the packet; the packet
length is thereby defined implicitly.

The first word of a packet, called the address word,
contains routing information, and is interpreted by the
BIP; subsequent words are simply transferred without
interpretation. In particular, the address word contains
the following fields:

Board Address 5 bits

PE Address 2 bits
Opcode 5 bits
Other info 21 bits

The Board Address uniquely identifies the destination
board. If the Opcode is zero, then the destination is a
PE, and the PE Address identifies it; otherwise, the
destination is the (unique) IMU on the destination board,
and the PE address identifies the sending PE. On arrival
at the destination board, the BIP automatically replaces
the Board Address field with the board address of the
sending board (which is known to all boards during data
transfers).

The effect of these conventions is that it is particularly
simple for an IMU to construct the address word of its
reply to a PE, because the address word of an incoming
request already contains the Board Address and PE
Address fields of the sender.

The Other Info field is not interpreted by the BIP, but is
used in PE-to-IMU transfers to indicate the address of
the cell to be operated on; the Opcode indicates the

operation to be performed. The packet format is
depicted in the Figure 3.

Bit 33 32 31 30 26 25 21 20 0

I | PEAddr | Opcode | Board Address | Other Info

1 First data word

0 Last data word

Figure 3. Packet format
4.3 The Bus Interface Processor

The BIP acts as a "Post Office" for the packet-switching
system. It contains a fast buffer memory area which
contains packets in transit, in which packets must be
built before they are sent, and from which they may be
read on receipt. The buffer memory is currently 8k
words of 34 bits.

122

This buffer memory is divided into a number of fixed-
size packet frames, whose size is a power of two. The
memory can then be addressed by supplying a packet
address as the most significant address bits, and a sub-
packet address as the least significant address bits. There
is a (strap-configurable) trade-off between the number of
packet frames and their size, but the hardware imposes a
limit of 8-bit packet and sub-packet addresses (hence the
packet size limit of 256 words).

The BIP also manages an input queue of packets for each
PE and the IMU, a queue of packets awaiting
transmission over the bus, and a free stack containing
empty packet frames. These queues contain packet
addresses (not the packet data), which are used to
address the packet data held in the buffer memory.
Figure 4 gives a block diagram of the BIP organisation:

Sub-packet address

i

ucuc

ucue
LS address bits)

ueue
MU Queue |
NDA Q
NDB O MS address bits)

:

BUFFER MEMORY|

ree Stac

i

emporar

Internal Data Bus
Figure 4. BIP block diagram

This organisation confers a number of advantages:

(

—
~

When the board acquires the bus, any packets
awaiting transmission can be sent out using the
Futurebus’s ~ fast two-edge block-transfer
handshake protocol, without the intervention of
PEs or IMU.

(i) If several packets are awaiting transmission
(possibly to different destinations), they can be
sent out end-to-end, thus amortising the cost of
obtaining bus mastership.

(iii) If a PE is sending a packet to the IMU on the same
board, or indeed to another PE on the same board,
the BIP can simply transfer the packet (address)
into the appropriate input queue. The PE sees a
single uniform interface.

(iv) Packet addresses can be transferred from one
queue to another in the same cycle as they are
being used to address the buffer memory. Thus,
for example, to send a one-word packet, a PE
performs a single memory write cycle to

1. claim a buffer from the Free Stack,
2. load the data into it, and

3. transfer it into the destination queue.

(v) There is considerable scope for ingenuity. For
example, the BIP/IMU interface has a small state
machine which prefetches the next word which the
IMU will require. If the IMU’s input queue is
empty, this state machine falls into a "mouth-
open" state. When the word it is waiting for is
loaded into the BIP’s buffer memory by (for
example) the Futurebus receive logic, the state
machine spots this fact, and loads the BIP/IMU
interface latch with the data word as it goes by.
This avoids the latency which would be caused if
instead the IMU subsequently acquired BIP
mastership and fetched the word out. This sort of
thing is only possible because of the un-specialised
nature of the internal bus.

There are a few complications. Firstly, when
transmitting packets over the Futurebus, the destination
board may not have an empty packet frame in which to
store the incoming data. In this case, it signals this fact
to the source board, which transfers the packet address
into the Resend Queue, instead of onto the Free Stack as
would be the case for a successful transfer. The Send
and Resend Queues swap roles when the send queue has
been emptied - hence the titles "SendA" and "SendB" in
the diagram.

Secondly, a PE may build a packet in stages, using a
number of separate BIP cycles. The Temporary Store
provides a place for the packet address to reside while
the packet is being built.

Thirdly, the queues must be genuine FIFOs, not stacks,
so that the system is guaranteed to maintain the order of
packets sent from any particular sender to any particular
recipient. This ensures that if a PE, for example, sends
out several packets before receiving any of their replies,
it can work out which reply corresponds to which of the
packets it sent. The Free Stack has no such constraints,
and a stack is cheaper to implement than a queue.

123

4.4 BIP implementation

The BIP is implemented as a fully asynchronous module,
built largely out of PALs. It incorporates an
asynchronous arbiter to allocate BIP mastership, and
uses a simple Go/Done protocol to handshake with the
current master.

The Futurebus interface logic, which handles the
transmission and reception of packets over the
Futurebus, is implemented as two separate asynchronous
state machines, which act independently as BIP bus
masters. Transmission of data over the bus is pipelined,
so that one word can be transmitted over the bus while
the next word is simultaneously fetched from the BIP.

S. INTELLIGENT MEMORY UNIT
ARCHITECTURE

The Intelligent Memory Unit is a microprogrammable
engine designed specifically for high-performance data
manipulation operations on dynamic RAM. In this
section we outline the internal architecture of the IMU
and the model of the graph which it supports.

5.1 Data representation

The IMUs hold the graph, which consists of an
unordered collection of nodes. Each node is represented
by one or more cells, each of which occupies a
contiguous area of RAM in the IMU.

The IMU can be programmed to support nodes of either
fixed or variable size. If the node size is variable, then
the programmer can choose to represent a node using a
linked structure of fixed-size cells, or using a single
variable-sized cell. There are many storage management
and garbage collection issues here, but the point is that
the IMU is sufficiently programmable to allow these
trade-offs to be explored.

For the GRIP prototype we have chosen to use fixed-size
nodes and cells. To give a more concrete idea of what
the IMU is designed to do, we now give the details of
this prototype representation. However, it should be
emphasised that the representation is largely
microprogrammed, so that much of the rest of this
section describes firmware decisions rather than
hardware constraints.

In the prototype representation, each cell contains some
tag bits and two fields - a head field and a tail field (see
Figure 5). A field contains

(i) either
a. apointer, or
b. a full 32-bit atomic data object.

(i) a "pointer-bit", to distinguish one from the other.

Bit 39 33 32 31 0
Tag P Head field
Tag P Tail field

(P is the pointer-bit)
Figure 5. GRIP prototype cell representation

The cell is stored in two contiguous 40-bit words, each
word containing a 33-bit field, and 7 tag bits. The tag
information is split between the head and the tail, but
since it will be treated as distinct sub-fields (garbage
collection mark bits, reference count, cell type, etc), this
does not seem to be a problem.

The hardware treats the top S5 tag bits (bits 35-39)
specially by allowing them to control 32-way jumps.

This allows very fast run-time case-analysis of cell types.

A pointer field is represented as follows:

Bit 32 31 26 25 21 20 0
‘ 1 ‘ Flags ‘Boa.rd Address‘ Cell Address ‘

This representation is built into the hardware, which has
to manipulate pointers directly. The 5-bit Board Address
identifies the IMU which holds the cell, and the Cell
Address identifies the cell within an IMU. This provides
a 64M-cell address space (equivalent to 640M bytes).

The Flags field can be used for any purpose. For
example, one bit could be used for a unique reference bit
85 one could be used to indicate that the graph pointed to
was already evaluated; and so on. Like the top five bits
of the word, the Flag bits can also be used to drive 32-
way jumps, allowing fast case-analysis of the Flags field
of pointers.

5.2 Data path

The requirement for rapid data movement has led us to
design a rather unusual data path. Conventional
microprogrammable machines usually consist of a dual-
ported register file driving a two-input ALU, whose
output is fed back into the register file, thus placing the
(slow) ALU on the critical path. We have instead based

124

the data path around a specially-programmed data
multiplexer, built out of PALs, which provides two 40-
bit registered outputs. Figure 6 gives the block diagram
of the data path.

From BIP

4096
Constant (from JMUX) registers

JJ

Main data multiplexor
(20 PAL32VXI10 in 2 bit slices)

(40 bits)
M register G register
Data In Multiplexed
(40 bits) Addresss

(11 bits)

Dynamic RAM
(up to 4M words of 40 bits)

Data Out

To BIP

Figure 6. IMU data path

Taking the ALU off the critical path has allowed us to
design to a cycle time of 64ns, and the two output ports
of the main multiplexer are extremely useful in
overlapping memory operations with other data
manipulation. We call the cycle time of the data section
a tick, to distinguish it from the control section (which
cycles at half the speed).

In any tick, the M and G registers can independently be
loaded from any of the 5 inputs, or from each other. In
addition, a variety of masking operations are available,
using a mask stored in the register bank to control the

merge of M or G with one of the inputs.

The register bank consists of 4k 40-bit registers, one of
which may be read or written in any tick (but not both).
This single-port nature has sometimes turned out to be an
awkward constraint in microprogramming, but board
area and speed preclude dual-porting them. A large
number of registers are provided, because they are often
used to hold long constants, thus allowing an 8-bit
register address in the instruction to translate to a 40-bit
constant.

The "Constant" input is actually driven by a 4-input 5-bit
multiplexer (the J mux), whose output is replicated 8
times to cover 40 bits. Using a merge instruction under a
mask from a register, a contiguous field of up to 5 bits
can thus be inserted in any position in M or G. One
input to the J mux is driven by a 5-bit constant field in
the microinstruction; the other three select tag or flag
fields in G and the dynamic memory output.

The 32-bit ALU is built out of two quad-2901 parts, and
contains a dual-ported bank of 64 registers internally. It
is relatively slow, and is cycled at half the speed of the
rest of the data section. Its single input port reflects its
lack of importance in the design, and it is up to the
programmer to maintain data stable on this port through
both ticks of an ALU cycle.

5.3 Dynamic RAM operation

The dynamic RAM is built out of Static Column parts,
whose main control signals are Row Address Strobe
(RAS), Chip Select (CS) and Write Enable (WE). The
IMU is extremely closely-coupled to this RAM. Each
tick is divided into three sub-ticks and, for each sub-tick,
one bit in the microinstruction controls the state of RAS
and CS. The microprogram thus defines a complete
waveform for RAS and CS, with a resolution of one
sub-tick (21.3ns), which allows the programmer
complete freedom to exploit read-modify-write and
within-page fast access cycles.

This flexibility is a unique feature of the GRIP IMU. It
is also extremely simple to implement. The three RAS
control bits, for example, are loaded broadside into a
shift register at the beginning of each tick, and shifted
along every sub-tick; RAS is driven directly off one of
the shift register outputs. The CS and WE signals are
controlled in a similar way, except that only one bit is
needed for WE, because data timing constraints fix WE
inactive during the first and last sub-ticks of each tick.

A single port from the M register suffices to keep the
memory occupied:

125

(i) In the first tick the row address is supplied from
M, RAS is taken active, and simultaneously the
two halves of M are swapped over (this is another
of the operations provided by the main data
multiplexer).

(ii)) In the second tick, the column address is now
available on the output of M, and CS is taken
active.

(iii) Data is available to be read at the end of the third
tick, or data can be written, again from M.

Unless a write is taking place, RAS can be taken inactive
during the third tick, without prejudicing any read in
progress, ready to open an new cell in the next tick.
Furthermore, the data just read can be used as the
address to be accessed.

If, for example, the program is required to chase down a
chain of pointers until some simple condition is met, this
design allows the RAM to be cycled in 3 ticks (192ns),
which is rather close to the RAM’s specified minimum
of 190ns. (The termination condition can, of course, be
tested in parallel with accessing the next pointer, since
the access can always be finished tidily if the condition is
true.)

Of course, life is not always so easy, and in practice a
programmer would be lucky to achieve a 100% duty
cycle for the RAMs, but the close coupling between
program and RAM offers considerable opportunities.

The RAM is protected by parity checking only, and no
attempt at error correction is made. Refresh is carried
out transparently to the microcode, but holds up the
entire IMU while it is happening (less than 1.5% of the
IMU’s cycles are lost in this way)

5.4 Control section

The IMU control section is conventional, except that it
provides for 16-way and 32-way jumps. Figure 7 gives
its block diagram.

Mem tag G tag

Constant G flags

CCm
G2 i)
(8 bits) CC latch
Jump RAM
(5 bits)

8 bits)

I

Sequencer
(IDT49C410)

](13 bits)

Control store
(8k by 126 bits)

|

Microinstruction register

Figure 7. IMU Control Section block diagram

There is one level of pipelining; the condition code (CC)
and multi-way jump condition (J) are latched at the end
of one cycle and used for conditional branching in the
next. The sequencer is an extended 2910, with a 33-deep
subroutine stack, and a 16-bit address path.

The control section cycles every two ticks, because it
was impractical to make it cycle every tick without an
unprogrammable degree of pipelining. It is for this
reason that the control store is so wide. It contains a
cycle part, which controls the sequencing; and two other
parts of identical format, the tick part and the tock part,
which control the data section during the the two ticks of
the cycle.

The J latch output drives the least significant 5 bits of the
Jump RAM, the other 8 address bits being supplied by
the microinstruction to select a page in the Jump RAM.
The Jump RAM translates this to an 8-bit address, which
is fed to the sequencer, together with 5 further bits from
the microinstruction. This scheme allows 32-way jumps,

126

provided they all land in the same 256-instruction page.
Unconditional jumps are performed by forcing the J
latch to zeros, having preloaded the bottom location of
each Jump RAM page with the page address, so that the
Jump RAM becomes an identity function. 16-way jumps
are also provided (to save Jump RAM pages) by forcing
the most significant bit of the J latch high or low.

6. PROJECT STATUS AND FUTURE
PLANS

The first wire-wrap prototype is now completed, and is
running parallel functional programs. A printed circuit
board is in the final stages of layout, and should be
completed around the middle of 1988. Meanwhile we
have started work on a compiler for GRIP, which should
offer greatly improved performance.

6.1 Languages and compilers

GRIP is designed primarily to execute functional
languages using parallel graph reduction, and all our
software development effort has gone into supporting
this aim.

As remarked earlier, a major advantage of programming
a parallel machine in a functional language is that no
language modifications are required to support
parallelism; the parallelism is implicit in the data
dependencies of the program. Nevertheless, we augment
the language with annotations, which provide hints to
the compiler about which parts of the program can be
evaluated in parallel. These annotations cannot affect
the correctness of the result produced, though they may
have a substantial effect on the execution speed. This
approach carefully separates the semantics of the
program (which concern its correctness) and its
pragmatics (which concerns its execution speed), and
this separation is a powerful aid in fighting the
complexities imposed by parallel execution. The
compiler itself also uses a technique called strictness
analysis to deduce further annotations. For many
programs this may be quite sufficient, so that no
programmer annotations are required.

We are currently using the Lazy ML language, from
Chalmers University, because we have access to the
source code of their compiler, but we expect to move to
the new Haskell language shortly. The compiler
translates the high-level language program into a
functional language intermediate code called FLIC, 10
through which we can support variety of

implementations. Our use of FLIC as an intermediate
code ensures that we can use other high-level functional
languages fairly easily, by first translating them into
FLIC.

6.2 Applications

We have made various claims about the power of
parallel functional programming, but these claims can
only be substantiated by experience. We are therefore
seeking collaborators who have a computationally-
expensive application, and who are interested in building
an experimental version of it in a parallel functional
language. They will need to be prepared to learn a new
programming style but will have the opportunity to
experience the benefits of rapid execution, on one the
world’s first powerful parallel graph reduction machines.

The sort of application we are looking for can be
characterised as follows:

o It should be computationally intensive. We believe
that highly parallel algorithms can be developed for
almost any computationally intensive problem, even
if the standard algorithms are rather sequential.

e It should not be I/O bound. Achieving high I/O
bandwith has not been the main design aim in our
machine.

Examples of possible application areas include:

e Numerical modelling (eg Monte Carlo, field
equations, finite-element analysis).

o Circuit simulation.

o Artificial intelligence.

o Expert systems.

o The higher levels of image analysis.

o Computational graphics.
We are setting up a new project, GRASP (Graph
Reduction for Application-Specific Programming), to
support this application-oriented work. As well as
providing the appropriate infrastructure tools, GRASP

will run a Technology Support Team, which will provide
training and support for the applications partners.

Anyone interested should please contact the authors.

6.3 Present funding and partners

The GRIP project is supported by the UK Alvey
Programme, and is being carried out with the
collaboration of International Computers Limited and
High Level Hardware Limited.

127

References

1.

10.

CD Clack and SL Peyton-Jones, ‘‘Generating
parallelism from strictness analysis,”’, Internal
Note 1679, Department of Computer Science,

University College London (Feb 1985).

Steven Tighe, ‘A study of the parallelism
inherent in combinator reduction’’, MCC Tech
Rep PP-140-85, Austin, Texas (Nov 1985).

Thomas Johnsson, ‘‘Efficent compilation of lazy
evaluation’’, in Proc. SIGPLAN Symposium on
Compiler Construction, Montreal (June 1984).

Jon Fairbairn and Stuart C Wray, ‘‘Code
generation techniques for functional languages’’,
Proc ACM Conference on Lisp and Functional
Programming, pp. 94-104 (Aug 1986).

Simon L Peyton-Jones, The Implementation of
Functional Programming Languages, Prentice
Hall (1987).

Chris Clack and Simon L Peyton-Jones, ‘‘The
four-stroke reduction engine,”’, pp. 220-232 in
Proc. ACM Conference on Lisp and Functional
Programming (Aug 1986).

TJ Reynolds, SA Delgado-Rannauro, ASK
Cheng, and AJ Beaumont, ‘‘BRAVE on GRIP”’,
Department of Computer Science, University of
Essex (1988).

William Stoye, Thomas Clarke, and Arthur
Norman, ‘‘Some practical methods for rapid
combinator reduction’’, pp. 159-166 in in Proc
ACM Symposium on Lisp and Functional
Programming (August 1984).

Phil Wadler, ‘‘The Haskell Language Definition
(draft)’’, Department of Computer Science,
University of Glasgow (1988).

Simon L Peyton-Jones, ‘‘FLIC - a functional
language intermediate code’’, Internal note 2048,
University College London (Feb 1987).

