
PopNetCod: A Popularity-based Caching Policy for
Network Coding enabled Named Data Networking

Jonnahtan Saltarin∗, Torsten Braun∗, Eirina Bourtsoulatze† and Nikolaos Thomos‡
∗University of Bern, Bern, Switzerland

†Imperial College London, London, United Kingdom
‡University of Essex, Colchester, United Kingdom

saltarinj@gmail.com, braun@inf.unibe.ch, e.bourtsoulatze@imperial.ac.uk, nthomos@essex.ac.uk

Abstract—In this paper, we propose PopNetCod, a popularity-
based caching policy for network coding enabled Named Data
Networking. PopNetCod is a distributed caching policy, in which
each router measures the local popularity of the content objects
by analyzing the requests that it receives. It then uses this
information to decide which Data packets to cache or evict from
its content store. Since network coding is used, partial caching of
content objects is supported, which facilitates the management of
the content store. The routers decide the Data packets that they
cache or evict in an online manner when they receive requests for
Data packets. This allows the most popular Data packets to be
cached closer to the network edges. The evaluation of PopNetCod
shows an improved cache-hit rate compared to the widely used
Leave Copy Everywhere placement policy and the Least Recently
Used eviction policy. The improved cache-hit rate helps the clients
to achieve higher goodput, while it also reduces the load on the
source servers.

I. INTRODUCTION

Data intensive applications, e.g., video streaming, software
updates, etc., are the major sources of data traffic in the Internet,
and their predominance is expected to further increase in the
near future [1]. Moreover, nowadays Internet users are more
concerned about what data they request, rather than where that
data is located. To address the increased data traffic and the
shift in interest from location to data, technologies like Content
Delivery Networks (CDN) have been proposed. However, these
solutions cannot fully exploit the network resources and deal
effectively with the increasing amount of data traffic, since
they work on top of the current Internet architecture, which is
based on host-to-host communication. To address this issue, the
Named Data Networking (NDN) architecture [2], [3] has been
proposed, which replaces the addresses of the communicating
hosts (i.e., IP addresses) with the name of the data being
communicated. In the NDN architecture, clients request data
by sending an Interest that contains the name of the requested
data. Any network node that receives the Interest and holds
a copy of the requested data can satisfy it by sending a Data
packet back to the client.

Two of the main advantages that the NDN architecture
has over the traditional host-to-host architectures are: (i)
the inherent use of in-network caching, and (ii) the built-
in support for multipath communications. The pervasive in-
network caching concept proposed by NDN reduces the number
of hops that Interests and Data packets need to travel in the
network. This reduces the delay perceived by the application

retrieving the requested data. However, having caches in all
the routers is not always necessary to yield the full benefits
that caching brings to the data delivery process. Previous
works [4]–[6] have shown that enabling caches only at the
edge of the network may achieve performance improvements
similar to those obtained when every router is equipped with a
cache. Furthermore, NDN provides natural multipath support
by allowing clients to distribute the Interests that they need to
send to retrieve content objects over all their network interfaces
(e.g., LTE, Wi-Fi), which enables the applications to better use
the clients’ network resources. However, in the presence of
multiple clients and/or multiple data sources, the optimal use
of multiple paths requires the nodes to coordinate where they
forward each Interest in order to reduce the number of Data
packet transmissions and the network load.

To optimally exploit the benefits brought by in-network
caching and multipath communication, previous works [7], [8]
had proposed the use of network coding [9]. In a network
coding enabled NDN architecture, the network routers code
Data packets by combining the Data packets available at their
caches prior to forwarding them. The use of network coding (i)
increases Data packet diversity in the network, hence, the use
of in-network caches is optimized, and (ii) in multi-client and
multi-source scenarios it removes the need for coordinating the
faces where the nodes forward each Interest, which enables
efficient multipath communication. Although there are works
that consider the use of network coding in NDN, they do not
consider that caching capacity is limited [7], [8], [10], [11] or
they assume that a centralized node coordinates the caching
decisions [12], [13], which is unrealistic or difficult to deploy.

In this paper, our goal is to develop a distributed caching
policy that preserves the benefits that network coding brings
to NDN for the realistic case when the caches have limited
capacity. We propose PopNetCod, a popularity-based caching
policy for network coding enabled NDN architectures. PopNet-
Cod is a caching policy in which routers distributedly estimate
the popularity of the content objects based on the received
Interest. Based on this information, each router decides which
Data packets to insert or evict from its cache. The decision to
cache a particular Data packet is taken before the Data packet
arrives at the router, i.e., while processing the corresponding
Interest. Since the first routers to process Interests in their
path to the source are the edge routers, this helps to cache the

most popular Data packets closer to the network edges, which
reduces the data delivery delay [4]–[6]. To avoid caching the
same Data packet in multiple routers over the same path, routers
communicate the Data packets that they decide to cache by
setting a binary flag in the Interests to be forwarded upstream.
This increases the Data packet diversity in the caches. When
the cache of a router is full and a Data packet should be cached,
the router decides which Data packet should be evicted from
its cache based on the popularity information.

We implement the proposed caching policy on top of
ndnSIM [14], based on the NetCodNDN codebase [8], [10].
We evaluate the performance of PopNetCod in a Netflix-like
video streaming scenario, designed using parameters available
in the literature [15]–[17]. In comparison with a caching policy
that uses the NDN’s default Leave Copy Everywhere (LCE)
placement policy and the Least Recently Used (LRU) eviction
policy, PopNetCod achieves a higher cache-hit rate, which
translates into higher video quality at the clients and reduced
load at the sources.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of the related works. Section III
describes the system architecture. Section IV introduces the
problem of caching in network coding enabled NDN for
data intensive applications. Then, Section V presents our
caching policy, PopNetCod. A practical implementation of
the PopNetCod caching policy is described in Section VI.
Section VII presents the evaluation of the PopNetCod caching
policy.

II. RELATED WORK

Caching policies are needed to deal with caches that have
limited capacity. Caching policies decide which Data packets
are placed into the cache (placement), as well as which data
packets are evicted from the cache when the cache is full
and a new Data packet should be cached (eviction). There
are placement algorithms that consider content popularity to
decide which Data packets routers allow in their caches [18]–
[21]. Specifically, VIP [18] is a framework for joint Interest
forwarding and Data packet caching. This scheme uses a
“virtual control plane” that operates on the Interest rate and
a “real plane” which handles Interests and Data packets. It
is shown that the design of joint algorithms for routing and
caching is important for NDN. Thus, this scheme proposes
distributed control algorithms that operate in the virtual control
plane with the aim of increasing the number of Interests
satisfied by in-network caches. PopCaching [19] is a popularity-
based caching policy in which the popularity is computed
online, without the need for a training phase. This makes
PopCaching robust in dynamic popularity settings. However,
PopCaching is designed for caching systems with a single cache
in the path, while in this paper we are interested in networks of
caches. WAVE [20] is a placement algorithm that determines the
number of Data packets that should be cached for a given file
with the help of an access counter. The number of Data packets
to cache increases exponentially with the value of the access
counter. The main idea of WAVE, which partially caches a

content object according to the local popularity, is also adopted
by the caching policy that we propose in this paper. However,
WAVE does not facilitate edge caching, since the most popular
data is cached closer to the source and slowly moves towards
the edges as the number of requests increase. Progressive [21]
is another partial caching algorithm, which exploits the content
popularity to decide how many Data packets should be cached
for each name prefix. The cache placement decision is taken
when the Interests are received, which helps to cache the most
popular content at the network edge. However, this approach
lacks an eviction algorithm, and hence it cannot be deployed
when the cache capacity is limited.

None of the approaches above consider the use of network
coding [9], and all are evaluated in single-path scenarios.
Given the benefits that network coding brings to multipath
communications in NDN [7], [8], [10], [11], some approaches
have been proposed to improve the benefits of caching in
network coding enabled NDN architectures [12], [13], [22].
NCCAM [12] and NCCM [13] propose optimal solutions to the
problem of efficiently caching in network coding enabled NDN.
However, both approaches need a central entity that is aware
of the network topology and the Interests, which does not scale
well with the number of network nodes. CodingCache [22]
is an eviction policy in which routers, before evicting a Data
packet, apply network coding to the Data packet by means
of combining it with other Data packets with the same name
prefix that will remain in the cache. Due to the increased Data
packet diversity in the network, the cache-hit rate is improved.
However, in CodingCache Interest aggregation and Interest
pipelining are problematic, limiting the benefits that network
coding brings to the NDN architecture.

III. OVERVIEW OF NETWORK CODING ENABLED NDN

A. Data Model

We consider a set of content objects P that is made available
by a content provider to a set of end users. Each content object
is uniquely identified by a name n. Clients use this name to
request that particular content object. Each content object is
divided into a set of Data packets Pn, such that the size of
each Data packet does not exceed the Maximum Transmission
Unit (MTU) of the network. The set of Data packets Pn that
compose a content object is divided into smaller sets of Data
packets, which are known as generations [23]. The size of
each generation g is a design parameter chosen to enable
network coding at scale. The set of Data packets that form
the generation g is denoted as P̂n,g and a network coded Data
packet belonging to generation g is represented by p̂n,g .

B. Router Model

The routers have three main tables: a Content Store (CS),
where they cache Data packets to reply to future Interests, a
Pending Interest Table (PIT), where they keep track of the
Interests that have been received and forwarded, to know
where to send the Data packets backward to the clients, and a
Forwarding Information Base (FIB), which associates upstream
faces with name prefixes, to route the Interests towards the

sources. In order to enable the use of caching policies in the
NetCodNDN architecture, we extend its design by adding a
new module called Content Store Manager (CSM). The CSM
manages the content store by enforcing a determined caching
policy.

Whenever a router receives an Interest în,g, it first verifies
if it can reply to this Interest with the Data packets available
in the CS. The router replies to the Interest if it is able to
generate a network coded Data packet that has high probability
of being innovative when forwarded on the path where the
Interest arrived, i.e., if the generated Data packet is linearly
independent with respect to all the Data packets that have been
sent over the face where the Interest arrived. In this case, the
router generates a new Data packet by randomly combining the
Data packets in its CS and then sends it downstream over the
face where the Interest arrived. Otherwise, the router forwards
the Interest to its upstream neighbors to receive a new Data
packet that enables it to satisfy this Interest. However, if the
router has already forwarded one or multiple Interests with the
same name prefix (n, g) and it expects to receive enough Data
packets to reply to all the pending Interests stored in the PIT,
the router simply aggregates this Interest in the PIT, and waits
for enough innovative Data packets to arrive before replying
to the Interest.

Whenever a router receives a Data packet p̂n,g, it first
determines if the Data packet is innovative or not. A Data
packet p̂n,g is innovative if it is linearly independent with
respect to all the Data packets in the CS of the router, i.e.,
if it increases the rank of P̂rn,g. Non-innovative Data packets
are discarded. If the Data packet p̂n,g is innovative, the router
sends the Data packet to the CSM, which decides to cache
it or not according to the caching policy. Finally, the router
generates a new network coded Data packet and sends it over
every face that has a pending Interest to be satisfied.

C. Content Store Model

The Content Store (CS) is a temporary storage space in
which a router r can cache Data packets that it has received
and considers useful to reply to future Interests. The maximum
number of Data packets that can be cached in the CS is given
by M , while the set of Data packets that are cached in the CS
is denoted as P̂r. Thus, |P̂r| ≤M .

Data packets in the CS are organized in CS entries. Each CS
entry contains a set of network coded Data packets, P̂rn,g , that
belong to the same generation g. Since the CS has a limited
capacity of M Data packets, then

∑
n,g |P̂rn,g| ≤M . The Data

packets that compose a CS entry are stored in a matrix P̂rn,g ,
where each row is a vector p̂n,g that represents the network
coded Data packet p̂n,g .

Router r generates a network coded Data packet p̂n,g by
randomly combining the Data packets P̂rn,g in its CS. Thus,

p̂n,g =
∑|P̂r

n,g|
j=1 aj · p̂(j)

n,g, where aj is a randomly selected
coding coefficient and p̂

(j)
n,g is the jth Data packet in P̂rn,g .

Additionally to the matrix P̂rn,g , each CS entry also stores a
counter σfn,g for each face f of router r. This counter measures

the number of Data packets generated by applying network
coding to the Data packets stored in matrix P̂rn,g that have
already been sent over face f , i.e., it measures the amount
of information from matrix P̂rn,g that has been transmitted
from router r to its neighboring node connected over face f .
The counter σfn,g is used to compute the number of network
coded Data packets with name prefix (n, g) that the router
can generate with the Data packets cached in its CS and have
high probability of being innovative to its neighboring node
connected over face f . This number is denoted as ξfn,g and is
computed as follows:

ξfn,g = rank(P̂rn,g)− σfn,g . (1)

When a Data packet with name prefix (n, g) is evicted from
the CS of router r, the amount of information in the matrix
P̂rn,g is reduced by 1. Correspondingly, the value of σfn,g is
decreased by 1 for all faces.

IV. CACHING IN NETWORK CODING ENABLED NDN

Whenever a router r receives an Interest în,g over face f , it
either (i) replies with a Data packet p̂n,g, if it can generate a
network coded Data packet that has high probability of being
innovative to its neighboring node connected over face f , i.e.,
ξfn,g > 0, or, otherwise, (ii) forwards the Interest în,g upstream.

If at time t router r receives the Interest în,g , a cache-hit is
defined as:

hfn,g(t) =

{
1, if ξfn,g > 0

0, otherwise.
(2)

Let us now assume that during a time period [t, t+T] router
r receives a set of Interests I(t, T). The cache-hit rate during
this time period is defined as follows:

H(t, T) =
1

T

t+T∑
t′=t

hfn,g(t
′). (3)

The overall cache-hit rate seen by router r at time t can be
computed as follows:

H(t) = lim
T→∞

H(t, T) = lim
T→∞

1

T

t+T∑
t′=t

hfn,g(t
′). (4)

To make optimal use of the limited CS capacity, the objective
of each router is to maximize the number of Interests that it can
satisfy with the Data packets available in its CS, i.e., maximize
its overall cache-hit rate. Achieving a high cache-hit rate at
the routers is beneficial for both clients and sources. For the
sources, an increased cache-hit rate reduces their processing
load and bandwidth needs, since the number of Interests that
they receive is reduced. For the clients, the delivery delay is
reduced, since the Interests are satisfied with Data packets
cached at routers closer to them.

It is clear from (2), (3), and (4) that in order to maximize
the overall cache-hit rate, routers should maintain the value
of ξfn,g high enough so that most of the Interests received can
be satisfied with the Data packets in their CS. However, since
in this paper we consider that the routers’ CS have limited

Popularity of (n,g)

9:30AM 9:31AM 9:32AM 9:33AM 9:34AM 9:35AM

t t+Tt-τ

Received Interests Expected Interests

Fig. 1. Popularity prediction for the name prefix (n, g).

capacity, it is unfeasible for a router to cache all the Data
packets that it receives [7], [8], [10], [11]. Optimal solutions
to this issue have been proposed in previous works [12], [13],
which consider a central controller that knows the network
topology and is aware of all the Interests received by the routers.
However, these solutions do not scale well with the size of
the network, since they require a high number of signaling
messages and a powerful enough controller. Hence, in this work
we consider that each router decides online and independently
from other routers if a Data packet should be cached or not,
and which Data packet should be evicted from the CS when it
is full. This is achieved by using a distributed caching policy π
that maximizes the overall cache-hit rate H(t) of each router,

max
π

H(t). (5)

The optimal caching policy π predicts which Interests will
be received in the future, so that the router caches the Data
packets that will be useful to satisfy those Interests.

V. THE POPNETCOD CACHING POLICY

In this section, we present our popularity-based caching
policy for network coding enabled NDN, called PopNetCod.
To increase the overall cache-hit rate, the PopNetCod caching
policy exploits real-time data popularity measurements to
determine the number of Data packets that each router should
cache for each name prefix. In order to determine which Data
packets to cache in and/or evict from the CS, such that the
overall cache-hit rate is maximized, PopNetCod performs the
following steps. First, it measures the popularity of the different
name prefixes contained in the Interests that pass through it.
Then, it uses this popularity to predict the Interests that it will
receive. Finally, it uses this prediction to determine in an online
manner the Data packets that should be cached and the ones
that should be evicted from the CS.

A. Popularity Prediction

The popularity prediction in PopNetCod is based on the fact
that the rate λfn,g(t) at which Interests for a particular content
object arrive at a router r over face f at time t tends to vary
smoothly, as shown in Fig. 1. Thus, router r can predict the
rate of the Interests that it will receive in the near future by
observing the Interests that it recently received. Let us denote
Ifn,g(τ, t) as the set of Interests for the name prefix (n, g) that
router r has received over face f in the past period [t− τ, t],

where t is the current time and τ is the observation period.
Let us also denote If (τ, t) as the total set of Interests for all
name prefixes received over face f during the period [t− τ, t].
Using the sets Ifn,g(τ, t) and If (τ, t), router r can compute
the average Interest rate for the name prefix (n, g) over face
f as follows:

λfn,g(τ, t) =
|Ifn,g(τ, t)|
|If (τ, t)|

, (6)

Note that since the average Interest rate does not vary
abruptly, the average Interest rate λfn,g(τ, t) of the recent
period [t − τ, t] will be very close to that expected in the
near future, i.e., in the period [t, t+ T] where T is the length
of the prediction period. Thus, λfn,g(τ, t) = λfn,g(t, T), which
hereafter we denote as λfn,g(t). The PopNetCod caching policy
uses λfn,g(t) to predict the number of Interests with name prefix
(n, g) that will be received over face f in the near future, and
hence, to allocate more storage space in the CS to Data packets
with higher cache-hit probability.

In order to prepare the CS for the Interests that the router
may receive, the PopNetCod caching policy maps the received
Interest rate to the capacity of the CS, such that name prefixes
with high rate are allocated more space in the CS. The number
of network coded Data packets with name prefix (n, g) that the
router should cache in its CS at time t to satisfy the Interests
expected over face f is denoted as Mf

n,g(t) and computed as:

Mf
n,g(t) =

{
λfn,g(t) ·M, if λfn,g(t) ·M < |P̂n,g|
|P̂n,g|, otherwise.

(7)

B. PopNetCod Placement

In the PopNetCod caching policy, the placement decision is
taken following the reception of an Interest. Whenever a router
decides to cache the Data packet that is expected as a reply
to the received Interest, it sets a flag on the Interest signaling
upstream routers about its decision. In the case of a set flag, the
upstream nodes do not consider this Interest for caching. Since
the edge routers (i.e., the routers that are directly connected
to the clients) are the first ones that have the possibility to
decide whether they will cache a Data packet, the PopNetCod
caching policy naturally enables edge caching. This is inline
with recent works [4]–[6] arguing that most of the gains from
caching in NDN networks come from edge caches, and thus,
it is natural to cache the most popular content at edge routers.

Whenever a router receives an Interest în,g over face ft at
time t, the PopNetCod caching policy follows the next steps
to decide if the Data packet p̂n,g should be cached. First, it
uses popularity prediction to compute Mf

n,g(t), i.e., the total
number of Data packets that it aims to cache for name prefix
(n, g), as defined in (7). Then, it computes the number of Data
packets that it should cache in order to satisfy the expected
Interests as:

δfn,g(t) = Mf
n,g(t)− ξfn,g(t) ∀f ∈ F . (8)

Finally, the caching policy decides to cache the Data packet
p̂n,g that is expected as reply to the received Interest if the

average number of Data packets needed by all the faces is
greater than 0. However, it should be noted that the Data
packet p̂n,g will not be useful to the node connected over the
downstream face ft over which the Interest arrived. This is
because when the Data packet p̂n,g arrives at the router, it is
sent to face ft in order to satisfy the received Interest. Then,
replying with the same Data packet to a subsequent Interest
received over the same face ft does not add any innovative
information, i.e., the Data packet is considered as duplicated.
Instead, the expected Data packet p̂n,g is potentially useful for
all the nodes connected over all the other downstream faces of
the router. For this reason, the average number of Data packets
needed is measured only over the downstream faces different
to the one over which the Interest arrived. It is computed as:

∆+
n,g(t) =

1

|Fr| − 1

∑
f∈F
f 6=ft

δfn,g(t) > 0, (9)

where Fr denotes the downstream faces of router r.

C. PopNetCod Eviction

The steps followed by the PopNetCod caching policy to
decide how many Data packets with name prefix (n, g) can
be evicted from the router’s CS are the following. Similarly
to the placement case, first, the caching policy uses popularity
prediction to compute Mf

n,g(t), i.e., the number of Data packets
that it aims to cache for name prefix (n, g). Then, it computes
the number of Data packets that it can evict from its CS and
still satisfy the expected Interests as:

δ̃fn,g(t) = rank(P̂rn,g)−Mf
n,g(t)∀f ∈ F . (10)

Finally, the number of Data packets the router can evict from
a particular name prefix (n, g) is computed as the minimum
number of Data packets that it can evict over all the faces:

∆−n,g(t) = min
f∈F

δ̃fn,g(t). (11)

VI. PRACTICAL IMPLEMENTATION OF POPNETCOD

In this section, we describe a practical implementation of the
PopNetCod caching policy in the NetCodNDN architecture [10].
First, we describe the signaling between routers, which is used
to prevent routers of the same path to cache duplicate Data
packets. Next, we present the Interest processing algorithm,
where placement decisions are made. Finally, we describe the
Data packet processing algorithm for placement enforcement,
eviction decision, and eviction enforcement.

A. Signaling Between Routers

The PopNetCod caching policy is distributed and requires
very limited signaling between routers. The only signaling that
exists between routers to implement the PopNetCod caching
policy is a binary flag added to the Interest and Data packets
that is used to inform neighbor routers that an expected Data
packet will be cached or that a received Data packet has been
cached. Distributed caching policy decisions help to keep the
complexity of the system low and to make our system scalable
to a large number of routers.

Each Interest în,g carries a flag CachingDown, which is
set to 1 by a router when it decides to cache the Data packet
p̂n,g that is expected to come as reply to the Interest. This
flag informs upstream routers that another router downstream
has already decided to cache the Data packet that is expected
to come as reply to this Interest. The routers receiving an
Interest with the CachingDown flag set to 1 do not consider
to cache the Data packet that is expected to come as reply to
this Interest, therefore reducing the number of duplicated Data
packets in the path and the processing load in the nodes.

Since Interests for network coded data do not request
particular Data packets, but rather any network coded Data
packet with the requested name prefix, the routers need a way
to know that a Data packet has been already cached by another
router, so that they avoid caching duplicated Data packets.
For this reason, each Data packet p̂n,g has a flag CachedUp,
which is set to 1 by a router when it caches this Data packet in
its CS. This flag informs the downstream routers that another
router has already cached this Data packet. A router receiving
a network coded Data packet with the flag set to 1 does not
consider it for caching. Instead, it waits for another Data packet
with the same name prefix that has not been cached upstream.
This ensures that a Data packet is cached by only one router
on its way to the client.

B. Status Information at Routers

Each router implementing the PopNetCod caching policy
should store information that assists to identify the Data packets
that should be cached or evicted. In particular, the router
needs to keep the Recently received Interests information
to compute the popularity prediction. Moreover, since the
placement decision takes place when the Interest is received,
the router needs to remember the Names to be cached, such
that the selected Data packets are cached when they arrive.
Finally, since the popularity information can vary over time,
the routers should keep a list with the Names to consider for
eviction, which is used when they decide about eviction. Below,
we describe the data structures used to store this information.
• Recently received Interests — The router maintains a list

Lf for each face f of the router, where it stores the names of
the Interests If (τ, t) received over face f during the period
[τ, t]. The parameter τ controls how much into the past is
observed by the router to compute the popularity prediction.
Together with the name prefix, each element in Lf also stores
the time ti at which the Interest was received, such that it can
be removed from Lf at time ti + τ .
• Names to be cached — The router maintains a table A,

where it stores the name prefixes (i.e., the content object name
appended with the generation ID) and the number of the Data
packets that should be cached. When the router receives an
Interest în,g and the PopNetCod caching policy decides that
the network coded Data packet that is expected as reply should
be cached, the router adds its name prefix (n, g) to the list
A. Then, whenever a network coded Data packet arrives, the
router looks for the name prefix of the Data packet in the list
A. If it finds a match, it caches the Data packet.

PopNetCod CSM

Recently received Interests (L)

Query CS

Update Popularity

Names to consider for eviction (E)

Names to be cached (A)

Content Store

Placement

UpstreamDownstream

Forwarder

Fig. 2. Access to the CS and the Status Information during the Interest
processing in a CSM configured with the PopNetCod caching policy.

Algorithm 1 Interest processing at the CSM

Require: în,g , f
1: t← current time
2: if Flag CachingDown in în,g is set to 1 then
3: if ξfn,g > 0 then (̂in,g can be satisfied from the CS)
4: Generate a Data packet p̂n,g from the CS
5: Return p̂n,g
6: else
7: Return în,g
8: end if
9: else

10: Add (n, g) to Lf

11: if ξfn,g > 0 then (̂in,g can be satisfied from the CS)
12: Generate a Data packet p̂n,g from the CS
13: Return p̂n,g
14: else if în,g will be aggregated by the PIT then
15: Return în,g
16: else
17: Update L. (Algorithm 2)
18: if ∆+

n,g(t) > 0 then (p̂n,g should be cached)
19: Insert (n, g) into A
20: Set the flag CachingDown of în,g to 1
21: Return în,g
22: else
23: Return în,g
24: end if
25: end if
26: end if

• Names to consider for eviction — The router also
maintains a queue E, where it stores the name prefixes of
the CS entries that can be considered for Data packet eviction.
When a name prefix (n, g) is removed from the list Lf , the
popularity of this name prefix decreases, i.e., it is a good
candidate to consider for eviction. Thus, each time a name
prefix is removed from Lf , it is added to E.

C. Interest Processing

As depicted in Fig. 2, when a CSM configured with the
PopNetCod caching policy receives an Interest în,g from
downstream, it (i) determines if the Interest can be replied from
the CS. Then, if the CSM could not reply to the Interest with

Algorithm 2 Update L

1: for all f ∈ Fr do
2: for all expired entries (nl, gl) in Lf do
3: Remove (nl, gl) from Lf

4: Add (nl, gl) to E
5: end for
6: end for

the content of its CS, it (ii) updates the popularity information,
and, (iii) determines if the Data packet that is expected as reply
to this Interest should be cached. The CSM should provide the
NetCodNDN forwarder with either a Data packet that should
be sent as reply to the Interest, or an Interest that should be
forwarded upstream. Below we describe the details of this
procedure, which is summarized in Algorithm 1.

After receiving an Interest în,g , the CSM first checks the flag
CachingDown to see if any previous node downstream in the
path has decided to cache the Data packet that is expected as
reply to this Interest (lines 2 to 8). If the flag CachingDown
is set to 1, then the CSM only checks its CS to determine if
the Interest can be satisfied from the CS. If this is possible,
i.e., if ξfn,g is greater than 0, it generates a network coded
Data packet from the CS and provides it to the NetCodNDN
forwarder, which sends it over face f . If the Interest can not
be satisfied from the CS, the CSM provides the same Interest
to the NetCodNDN forwarder, which forwards it upstream.

If the flag CachingDown is set to 0, the CSM first inserts
name (n, g) of the Interest into the list Lf (line 10). Then,
the CSM checks if it can satisfy the Interest with the content
of the CS (lines 11 to 13). If this is possible, i.e., if ξfn,g is
greater than 0, it generates a network coded Data packet from
the CS and provides it to the NetCodNDN forwarder which
sends it over face f . Otherwise, the node needs to forward the
Interest to its neighbor nodes. If the router does not send the
Interest upstream, but aggregates it in the PIT with a previously
received Interest, the CSM does not need to do anything else
and provides the Interest to the NetCodNDN forwarder, which
aggregates it (line 15). If the Interest will not be aggregated,
then the CSM determines if it will cache the Data packet with
name prefix (n, g) that is expected as reply to this Interest, by
computing ∆−n,g(t) using Eq. (9).

In order to obtain an accurate value of ∆−n,g(t), the CSM first
updates the popularity information, removing all the expired
elements from Lf and adding their name prefix to the list
E of name prefixes to be considered for eviction (line 17).
This procedure is summarized in Algorithm 2. Then, the CSM
computes the value of ∆+

n,g(t). If ∆+
n,g(t) > 0, it means

that the Data packet should be cached. In this case, the
CSM inserts name prefix (n, g) into the list A, sets the flag
CachingDown on the Interest în,g to 1 and, finally, provides
the modified Interest to the NetCodNDN forwarder, which
forwards it upstream (lines 18 to 21). If ∆+

n,g(t) ≤ 0, then the
CSM provides the same Interest to the NetCodNDN forwarder,
which forwards it upstream (line 23).

PopNetCod CSM

Recently received Interests (L)

Query A

Update Popularity

Names to be cached (A)

Content Store

Replacement

DownstreamUpstream

Names to consider for eviction (E)

Insert in CS

Generate Data packet

Forwarder

Fig. 3. Access to the CS and the Status Information during the Data packet
processing in a CSM configured with the PopNetCod caching policy.

Algorithm 3 Data packet processing at the CSM
Require: p̂n,g

1: if Flag CachingUp in p̂n,g is set to 1 then
2: Return p̂n,g
3: else if (n, g) /∈ A then
4: Return p̂n,g
5: else
6: Update A
7: if |Pr| == M then (The CS is full)
8: Update L (Algorithm 2)
9: while |Pr| == M do

10: Select an element (ne, ge) from E
11: if ∆−ne,ge(t) > 0 then
12: Evict ∆−ne,ge(t) Data packets with name prefix

(ne, ge) from the CS
13: end if
14: end while
15: end if
16: Insert p̂n,g into the CS
17: Generate a Data packet p̂∗n,g from the CS
18: Set the flag CachingDown of p̂∗n,g to 1
19: Return p̂∗n,g
20: end if

D. Data Packet Processing

As depicted in Fig. 3, when a CSM configured with the
PopNetCod caching policy receives a network coded Data
packet p̂n,g from upstream, it (i) determines if the Data packet
should be cached in the CS, by consulting A. If the Data
packet should be cached, the CSM ensures that there is enough
free space in the CS, (ii) updating the popularity information
and (iii) executing the cache replacement procedure if needed.
Finally, the CSM (iv) inserts the received Data packet into the
CS, and (v) generates a new network coded Data packet that
should be forwarded downstream. This procedure is detailed
below and summarized in Algorithm 3.

After receiving a Data packet p̂n,g, the CSM first checks
the flag CachedUp to determine if any router upstream has
already cached this Data packet. If the flag CachedUp has

been set to 1, then, the CSM understands that another router
upstream has already cached this Data packet. In this case, the
CSM returns the Data packet to the NetCodNDN forwarder,
which replies to any matching pending Interest (line 1).

When the flag CachedUp is set to 0, then the CSM first
verifies if any entry in A matches name prefix (n, g). If there
is no matching entry, the CSM returns the Data packet to the
NetCodNDN forwarder (line 3). If there is a match, the Data
packet should be cached, and A is updated by increasing the
counter of the matching entry by one (line 6). However, if
the CS is full, the CSM first needs to release some space in
the CS (lines 7 to 15). To evict Data packets, the CSM goes
through the list E, each time selecting a name prefix (ne, ge)
and computing the number of Data packets that can be evicted
for the name prefix using Eq. (11). If this number is greater
than 0, then the CSM evicts the corresponding number of Data
packets from the CS and interrupts the scan of the list. Note
that, since the cached Data packets are network coded, the
CSM does not need to decide which particular Data packets
from the CS entry P̂n,g it should evict from the CS, but it can
select randomly network coded Data packets from the CS entry
and evict them. After evicting at least one Data packet, the
CSM caches the received Data packet p̂n,g. Then, the router
generates a new Data packet p̂∗n,g by applying network coding
to the cached Data packets with name prefix (n, g). Since the
new Data packet p̂∗n,g contains the cached Data packet p̂n,g,
the router sets the flag CachedUp of p̂∗n,g to 1. Finally, the
CSM provides Data packet p̂∗n,g to the NetCodNDN forwarder,
which uses it to reply to pending Interests with name prefix
(n, g).

VII. EVALUATION

In this section, we evaluate the performance of the PopNet-
Cod caching policy in an adaptive video streaming architecture
based on NetCodNDN [10]. First, we describe the evaluation
setup. Then, we present the caching policies with which we
compare the PopNetCod caching policy. Finally, we show the
performance evaluation results.

A. Evaluation Setup

We consider a layered topology consisting of 1 source, 123
clients, and 45 routers connecting the clients and the sources.
The routers are arranged in a two-tier topology, with 10 routers
directly connected to the source and 35 edge routers directly
connected to the clients. The links connecting the routers
between them and the links connecting the routers to the source
have a bandwidth of 20Mbps. The bandwidth of the links
connecting the clients to the routers follow a normal distribution,
with mean 4Mbps and standard deviation 1.5. These values are
chosen based on the Netflix ISP Speed Index [17]. Each client
is connected with two routers, considering that nowadays most
end-user devices have multiple interfaces, e.g., LTE, Wi-Fi.

For the evaluation, we consider that the source offers 5
videos for streaming, each one composed of 50 video segments
with a duration of 2 seconds each, i.e., in total, each video has
a duration of 100 seconds. The video segments are available

in three different representations, Q = {480p, 720p, 1080p}
with bitrates {1750kbps, 3000kbps, 5800kbps}, respectively.
These values for the representations and bitrates are according
to the values that had been used by Netflix [15]. As presented
in Section III-A, the content objects (i.e., the video segments
in our evaluation scenario) are divided into Data packets and
generations, in order to implement network coding. In particular,
for the representations Q = {480p, 720p, 1080p}, each video
segment is divided into {359, 615, 1188} Data packets of 1250
bytes each, and {4, 7, 12} generations, respectively. Thus, in
total, the source stores 540, 500 Data packets. All the routers
are equipped with content stores able to cache between 0.9%
and 2.3% of the total Data packets available at the source.

The clients randomly choose a video to request and start the
adaptive video retrieval process at a random time during the first
5 seconds of the simulation. The network coding operations are
performed in a finite field of size 28. The clients use the dash.js
adaptation logic [24] to choose the representation that better
adapts to the current conditions, i.e., the measured goodput
and the number of buffered video segments.

B. Benchmarks

We compare the performance of our caching algorithm with
the following benchmarks:

• LCE-NoLimit — The placement policy is Leave Copy
Everywhere (LCE). We assume that the CSs of the routers
have enough space to store all the videos.
• LCE+LRU — The placement policy is LCE, while the

eviction policy is Least Recently Used (LRU), which evicts
Data packets with the least recently requested name.
• NoCache — In this setting, the routers do not have a CS,

i.e., all the Data packets should be retrieved from the source.

C. Evaluation Results

We first evaluate the average cache-hit rate at the routers. In
Fig. 4, we can see that by using the PopNetCod caching policy,
the routers achieve a higher cache-hit rate than with LCE-
LRU. This is because with PopNetCod the number of Data
packets cached for a certain name prefix increases smoothly,
according to the popularity. In comparison, with LCE+LRU
all Data packets received by the router are cached, and the
least recently used are evicted from the CS when the capacity
is exceeded. Thus, if a router receives Data packets that are
requested by a single client, the router still caches them, wasting
storage capacity that could be used to cache more popular Data
packets that are requested by multiple clients. We can also
see that the LCE+NoLimit caching policy defines an upper
bound to the cache-hit rate at the routers, since caching all the
Data packets with unlimited CS capacity represents the best
caching scenario. On the contrary, the NoCache case, where
the routers do not have CS capacity, defines a lower bound to
the cache-hit rate. Note that in our evaluation the NoCache
policy has a non-zero cache-hit rate because our measurement
of cache-hit rate also includes Interest aggregations, which is
what is being measured in this case.

The increased cache-hit rate that the PopNetCod caching
policy brings to the routers has two major consequences: (i) the
goodput at the clients increases, which enables the adaptation
logic to choose higher quality representations when bandwidth
is sufficient, and (ii) the source receives less Interests, meaning
that its processing and network load is reduced.

Let us first evaluate the impact that the increased cache-
hit rate at the routers has for the clients. In Fig. 5, it is
shown that by using PopNetCod, the clients benefit from an
increased goodput, compared to the LCE+LRU policy. This
is a consequence not only of the increased cache-hit rate in
the network, but also because PopNetCod caches the most
popular content in the network edge, which reduces the content
retrieval delay. The percentage of video segments delivered to
the clients for each of the available representations (i.e., 480p,
720p, and 1080p) with the PopNetCod and LCE+LRU caching
policies is shown in Figs. 6 and 7, respectively. We can see
that, compared to the LCE+LRU policy, with the PopNetCod
caching policy a higher percentage of video segments are
delivered in the highest representation available, i.e., 1080p.
This happens because the Data packet retrieval delay is reduced,
since more Interests are being satisfied from the routers’ content
stores, which increases the goodput measured by the clients.
The percentage of video segments delivered to the clients in
each of the available representations with the upper bound
LCE+NoLimit caching policy can be seen in Fig. 8.

Finally, we analyze the impact that the increased cache-hit
rate in the routers has for the sources by measuring the load
reduction at the source. This metric measures the percentage of
Data packets received at the clients that have not been directly
provided by the source. It is computed as 1−Nsent

S /Nrcvd
C ,

where Nsent
S denotes the total number of Data packets sent

by the source, and Nrcvd
C denotes the total number of Data

packets received by all the clients. In Fig. 9, we can see that
by using the PopNetCod caching policy, the source load is
reduced by up to 10% more than by using LCE+LRU, when
the CS size is 12.5K Data packets. Note that the load reduction
on the source in the NoCache scenario is larger than 0, even if
no Data packet is being served from the CSs. This is because
the Interest aggregation at the routers makes it possible to
serve multiple Interests with the same Data packet, reducing
the number of Data packets delivered by the source.

VIII. CONCLUSIONS

In this paper, we have presented PopNetCod, a popularity-
based caching policy for data intensive applications commu-
nicating over network coding enabled NDN. PopNetCod is a
distributed caching policy, where each router aims at increasing
its local cache-hit rate, by measuring the popularity of each
content object and using it to determine the number of Data
packets for each content object that it caches in its content store.
PopNetCod takes cache placement decisions when Interests
arrive at the routers, which naturally enables edge caching. The
evaluation of the PopNetCod caching policy is performed in a
Netflix-like video streaming scenario. The results show that, in
comparison with a caching policy that uses the LCE placement

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

0

20

40

60

80

100
C

ac
he

-h
it

ra
te

[%
]

LCE+NoLimit
LCE+LRU
PopNetCod
NoCache

Fig. 4. Average cache-hit rate in the routers.

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

2

3

4

5

6

7

A
ve

ra
ge

G
oo

dp
ut

[M
bp

s]

LCE+NoLimit
LCE+LRU
PopNetCod
NoCache

Fig. 5. Average goodput perceived by the clients.

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

0

20

40

60

80

100

Se
gm

en
ts

re
qu

es
te

d
[%

] 480p
720p
1080p

Fig. 6. Percentage of video segments delivered in
each of the representations, with PopNetCod.

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

0

20

40

60

80

100

Se
gm

en
ts

re
qu

es
te

d
[%

]

480p
720p
1080p

Fig. 7. Percentage of video segments delivered in
each of the representations, with LCE+LRU.

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

0

20

40

60

80

100

Se
gm

en
ts

re
qu

es
te

d
[%

] 480p
720p
1080p

Fig. 8. Percentage of video segments delivered in
each of the representations, with LCE+NoLimit.

5.0 7.5 10.0 12.5

CS Size [1000 x packets]

20

30

40

50

60

70

80

90

L
oa

d
re

du
ct

io
n

on
th

e
so

ur
ce

[%
]

LCE+NoLimit
LCE+LRU
PopNetCod
NoCache

Fig. 9. Load reduction in the source, measured as
the percentage of Data packets provided by caches.

policy and the LRU eviction policy, PopNetCod achieves a
higher cache-hit rate. The increased cache-hit rate reduces the
number of Interests that the source should satisfy, and also
increases the goodput seen by the clients. Thus, our caching
policy presents benefits for the content providers, by reducing
the load of its servers and hence its operative costs, and for
the end-users, who are able to watch higher quality videos.

REFERENCES

[1] “Cisco Visual Networking Index: Forecast and Methodology, 2016-2021,”
White Paper, Cisco Systems Inc., Jun. 2016.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Comp. Comm. Review, vol. 44, no. 3, pp. 66–73, Jul. 2014.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and
R. L. Braynard, “Networking named content,” in Proc. ACM CoNEXT’09,
Dec. 2009.

[4] A. Dabirmoghaddam, M. Mirzazad-Barijough, and J. J. Garcia-Luna-
Aceves, “Understanding Optimal Caching and Opportunistic Caching
at the Edge of Information-Centric Networks,” in Proc. ACM ICN’14,
2014.

[5] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the gain:
incrementally deployable ICN,” in Proc. ACM SIGCOMM’13, 2013.

[6] Y. Sun, S. K. Fayaz, Y. Guo, V. Sekar, Y. Jin, M. A. Kaafar, and S. Uhlig,
“Trace-driven analysis of ICN caching algorithms on video-on-demand
workloads,” in Proc. ACM CoNEXT’14, 2014.

[7] M.-J. Montpetit, C. Westphal, and D. Trossen, “Network coding meets
information-centric networking: an architectural case for information
dispersion through native network coding,” in Proc. ACM NoM Workshop,
Jun. 2012.

[8] J. Saltarin, E. Bourtsoulatze, N. Thomos, and T. Braun, “NetCodCCN: a
network coding approach for content-centric networks,” in Proc. IEEE
INFOCOM’16, Apr. 2016.

[9] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” IEEE Trans. Information Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[10] J. Saltarin, E. Bourtsoulatze, N. Thomos, and T. Braun, “Adaptive video
streaming with network coding enabled named data networking,” IEEE
Trans. on Multimedia, vol. 19, no. 10, Oct. 2017.

[11] A. Ramakrishnan, C. Westphal, and J. Saltarin, “Adaptive video streaming
over ccn with network coding for seamless mobility,” in Proc. IEEE
ISM’16, Dec. 2016.

[12] J. Llorca, A. Tulino, K. Guan, and D. Kilper, “Network-coded caching-
aided multicast for efficient content delivery,” in Proc. ICC’13, 2013.

[13] J. Wang, J. Ren, K. Lu, J. Wang, S. Liu, and C. Westphal, “An optimal
cache management framework for information-centric networks with
network coding,” in Proc. IFIP Networking’14, Jun. 2014, pp. 1–9.

[14] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2:
an updated NDN simulator for NS-3,” NDN, Tech. Rep. 28, Nov. 2016.

[15] A. Aaron, Z. Li, M. Manohara, J. D. Cock, and D. Ronca, “The Netflix
tech blog: Per-title encode optimization,” https://medium.com/netflix-
techblog/per-title-encode-optimization-7e99442b62a2, Dec. 2015.

[16] T. Böttger, F. Cuadrado, G. Tyson, I. Castro, and S. Uhlig, “Open connect
everywhere: a glimpse at the internet ecosystem through the lens of the
netflix cdn,” arXiv preprint arXiv:1606.05519, Jun. 2016.

[17] “The Netflix ISP Speed Index,” Netflix Inc., Dec. 2016. [Online].
Available: https://ispspeedindex.netflix.com/

[18] E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, “VIP: A Framework
for Joint Dynamic Forwarding and Caching in Named Data Networks,”
in Proc. ACM ICN’14, 2014.

[19] S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content
caching,” in Proc. IEEE INFOCOM’16, Apr. 2016.

[20] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “WAVE:
Popularity-based and collaborative in-network caching for content-
oriented networks,” in Proc. IEEE INFOCOM’13 Workshops, Mar. 2012.

[21] N. Abani, G. Farhadi, A. Ito, and M. Gerla, “Popularity-based partial
caching for information centric networks,” in Proc. MedHocNet’16, 2016.

[22] Q. Wu, Z. Li, and G. Xie, “CodingCache: multipath-aware CCN cache
with network coding,” in Proc. ACM ICN’13 Workshop, Aug. 2013.

[23] P. Chou and Y. Wu, “Network coding for the Internet and wireless
networks,” IEEE Sig. Proc. Mag., vol. 24, no. 5, pp. 77–85, Sep. 2007.

[24] C. Timmerer, M. Maiero, and B. Rainer, “Which adaptation logic? An
objective and subjective performance evaluation of http-based adaptive
media streaming systems,” arXiv preprint arXiv:1606.00341, Jun. 2016.

