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Abstract

In modern probabilistic machine learning, Gaussian process models have provided
both powerful and principled ways to approach a series of challenging problems.
Nonetheless, their applicability can be significantly limited by cases where the
number of training data points is large, something very typical in many modern
machine learning applications. An additional restriction can be imposed when the
posterior distribution is intractable due to non-Gaussian likelihoods used. Despite
the fact that these two limitations have been efficiently addressed over the last
decade, applications of Gaussian process models under extreme regimes where
the number of the training data points and the dimensionality of both input and
output space is extremely large have not appeared in literature so far. This thesis
is focused on this kind of applications of Gaussian processes where supervised tasks
such as multi-class and multi-label classification are considered.

We start by discussing the main mathematical tools required in order to success-
fully cope with the large scale of the datasets. Those include a variational inference
framework, suitably tailored for Gaussian processes. Furthermore, in our attempt
to alleviate the computational burden, we introduce a new parametrization for the
variational distribution while a representation trick for reducing storage require-
ments for large input dimensions is also discussed.

A methodology is then presented which is based on this variational inference frame-
work and a computationally efficient bound on the softmax function that allows
the use of Gaussian processes for multi-class classification problems that involve
arbitrarily large number of classes. A series of experiments test and compare the
performance of this methodology with other methods.

Finally, we move to the more general multi-label classification task and we develop
a method, also relied on the same variational inference framework, which can deal
with datasets involving hundreds of thousands data points, input dimensions and
labels. The effectiveness of our method is supported by experiments on several
real-world multi-label datasets.



Impact Statement

The work presented in this thesis has a potential impact on both academic and
industrial communities. In academia for example, our work revises the popular
belief that Gaussian process models cannot be used for inference over large-scale
datasets in the Big Data era. We show that the opposite is not just achievable but
we can attain very promising performance by harnessing the power and flexibility
of non-parametric models such as Gaussian processes. The domain of applications
of our work involves supervised learning tasks, such as multi-class and multi-label
classification which play a dominant role in many real-world scenarios.

Both of those supervised tasks find a large number of applications that are not
restricted to traditional machine learning problems, such as text or image classifi-
cation, speech recognition, and they can be useful to other scientific fields such as
Biology (DNA expression microarray, DNA Sequence Classification) and in general
any other scientific discipline that tries to classify any kind of objects into a finite,
potentially large, set of classes. More importantly, the fact that our developed
methodologies are able to scale well over the number of classes makes it appealing
in a time that large amounts of data need to be analysed. To make the notion of
the size of the datasets more clear, we note that one of the datasets used in this
thesis to test both the performance and scalability of our methods consists of more
than 190,000 data points, associated with a set of more than 200,000 classes while
each of those data points are described by almost 782,000 different features. This
clearly indicates the suitability of our proposed methodologies for a regime where
extreme dimensions dominate. It should be also emphasised that all the proposed
methodologies are accompanied with contemporary software which is employed
by a large number of people in the machine learning community, and therefore
rendering their deployment much easier.

Regarding applications of our work in industry, a large number of multi-national
companies use multi-label classification algorithms as part of their recommenda-
tion systems that involve a huge number of labels. The most known examples of
those companies are Netflix, Amazon, Youtube, and Spotify for product recom-
mendation. Other large companies that focus on social media platforms such as
Facebook or Twitter also make extensive use of these kind of algorithms. Hence,
our propounded methodology could be applied to all those real-world scenarios
since it is suitably designed for applications of that nature.
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Notation and acronyms

We present here the main notation and we describe a number of acronyms used
over the course of this thesis.

Symbol Explanation

, an equality that acts as a definition

∼ distributed according to; e.g. x ∼ N (µ, σ2)

∇f partial derivatives (w.r.t. f)

0k a k-dimensional vector of all 0’s

1k a k-dimensional vector of all 1’s

I(·) the indicator function that gives 1 if the condition in the
parentheses is satisfied otherwise 0

E or Eq[g(x)] expectation; expectation of g(x) when the probability density
function ofthe distribution of x is given by q(x)

fV a vector of GP function values evaluated at all points of the
finite set V

X the index set of a function and the domain of a Gaussian
process

f vector of GP latent function values, f = (f(x1), ..., f(xN))>

GP Gaussian Process: f ∼ GP (m(x),k(x,x′)), the function f is
distributed as a Gaussian Process with mean function m(x)
and covariance function k(x,x′)

K number of classes (or labels) in a multi-class (or multi-label)
classification problem

N number of training instances

N and N∗ number of training and test cases respectively

D dimension of input space X
R dimensionality of the subspace used for the inducing inputs

M number of inducing points

i
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k(x(i),x(j)) the kernel (or covariance) function evaluated at x(i) and x(j)

KX N×N matrix k(X,X), the covariance between training points

KXZ N ×M matrix k(X,Z), the cross-covariance matrix between
training points and inducing inputs

KZX the transpose of KXZ

KZ M ×M matrix k(Z,Z), the covariance between inducing in-
puts

log(t) natural logarithm (base e)

σ(t) logistic function, σ(t) = 1/(1 + e−t)

m(x) the mean function of a Gaussian process

0 a zero mean function; m(x) = 0, ∀x ∈ X
N (µ,Σ) or
N (x|µ,Σ)

(the variable x has a) Gaussian (Normal) distribution with
mean vector µ and covariance matrix Σ

p(x) = N (x|µ,Σ) p(x) is the probability density function of a Gaussian distri-
bution with mean vector µ and covariance matrix Σ

N the set of natural numbers

O big Oh; for functions f and g on N, we write f(n) = O(g(n))

if the ratio f(n)
g(n)

remains bounded as n→∞

y|x and p(y|x) conditional random variable y given x and its probability(density)

φ(x) feature map of input x (or input set X)

Φ(z) cumulative unit Gaussian: Φ(z) = 1√
2π

∫ z
−∞ e

−t2

2 dt

Sk(f1, · · · , fK) the Softmax function: Sk(f1, · · · , fK) = efk∑K
`=1 e

f`

R the set of real numbers

σ2
f variance of the signal

σ2
n noise variance

Φ factor loadings matrix

θ vector of hyperparameters (parameters of the covariance func-
tion)

X input space and also the index set for the stochastic process

X N × D matrix of the training inputs {x(i)}Ni=1: the design
matrix

Y N ×K matrix of the training binary label vectors {y(i)}Ni=1:
the label matrix
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x(i) the ith training input

x
(i)
d the dth coordinate of the ith training input x(i)

Z M ×D matrix of the inducing inputs

u the GP function values evaluated at the inducing inputs Z;
the inducing variables

up the inducing variables for the pth Gaussian process

tr(A) trace of a (square) matrix A

|A| determinant of a matrix A

‖x‖ Euclidean norm of vector x, i.e.
√∑

i x
2
i

x> the transpose of vector x

U a universe of stocks

FP full parametrization of the the variational distribution using
O(M2) variational parameters (see also Section 2.4)

PP parsimonious parametrization of the the variational distribu-
tion using O(M) variational parameters (see also Section 2.4)

OvsE-p the One-versus-Each method described in Section 3.5 where
each variational densities qk is parametrized by the parsimo-
nious scheme we introduced in Section 2.4 (see also Section
3.7)

OvsE-f same method as above, however, each variational density qk
is parametrized by O(M2) parameters (see also Section 3.7)

OvsE-p-sh the One-versus-Each method with PP of the variational dis-
tributions, however the set of inducing inputs Z is shared
across all classes while the hyperparameters set is different
for each of them (see also Section 3.7)

OvsE-f-sh the One-versus-Each method is combined with the FP of the
variational distributions now. Both the set of inducing inputs
Z and hyperparameters are common for all classes (see also
Section 3.7)

RM-p a multi-class classification that uses the robustmax function
accompanied with the PP. (see also Section 3.7)

RM-f a multi-class classification that uses the robustmax function
accompanied with the FP (see also Section 3.7)

ard a multi-label classification method based on MLGP model
that uses a ARD kernel where the full inducing inputs ma-
trix Z is optimized with each row unit-normalized, a FP is
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employed and everything is implemented by Tensorflow (see
also Section 4.5.2)

ard-un a multi-label classification method based on MLGP model
that uses a ARD kernel where the full inducing inputs matrix
Z is optimized while each row is not unit-normalized, a FP is
employed and everything is implemented by Tensorflow (see
also Section 4.5.2)

ard-s a multi-label classification method based on MLGP model
that uses a ARD kernel where the subspace inducing inputs
matrix A is optimized but the basis matrix X̃ is precomputed
and kept fixed, the rows of the matrix product AX̃ are unit-
normalized,a FP is employed and everything is implemented
by Tensorflow (see also Section 4.5.2)

ard-s-b a multi-label classification method based on MLGP model
that uses a ARD kernel where both the subspace inducing
inputs matrix A and the basis matrix X̃ are optimized, the
rows of the matrix product AX̃ are unit-normalized,a FP is
employed and everything is implemented by Tensorflow (see
also Section 4.5.2)

ard-s-ag a multi-label classification method based on MLGP model
that uses a ARD kernel where the subspace inducing inputs
matrix A is optimized but the basis matrix X̃ is precomputed
and kept fixed, the rows of the matrix product AX̃ are unit-
normalized,a FP is employed and everything is implemented
by Autograd (see also Section 4.5.2)

ard-s-pp-ag a multi-label classification method based on MLGP model
that uses a ARD kernel where both the subspace inducing
inputs matrix A and the basis matrix X̃ are kept fixed, a PP
is employed and everything is implemented by Autograd (see
also Section 4.5.2)

ard-s-fx-pp-ag a multi-label classification method based on MLGP model
that uses a ARD kernel where both the subspace inducing
inputs matrix A and the basis matrix X̃ are kept fixed, a PP
is employed and everything is implemented by Autograd (see
also Section 4.5.2)
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Chapter 1

Introduction

This chapter aims to present a brief introduction to Gaussian processes as an
inference model in conjunction with a description of the extreme multi-label clas-
sification problem. More specifically, in Section 1.1 we define the mathematical
tool that constitutes the bedrock of all the theoretical results presented in this
thesis, namely the Gaussian process, in tandem with a discussion of some of their
interesting properties. Section 1.1.2 offers a brief overview of the methods used
to solve multi-class classification tasks based on Gaussian process models, high-
lighting at the same time the most crucial obstacles. Continuing, Section 1.2.1
is devoted to the description of the state-of-the-art algorithms used, in order to
deal with multi-label classification problems that are notoriously known for their
extremely large scale which is also used as a baseline comparison for our proposed
method in Chapter 4. Finally, we provide an overview of the chapters presented
in this thesis.

1.1 Gaussian processes as an inference model

1.1.1 An overview

Gaussian processes (GPs) play a prominent role in the field of machine learning
(Rasmussen and Williams, 2006) while their first appearance dates back almost
a century ago in the seminal work of Kolmogoroff (1941) and Wiener (1949) for
time series prediction. They have been extensively used in myriad of problems,
spanning the full spectrum of the field, such as supervised learning (Rasmussen
and Williams, 2006), unsupervised learning (Lawrence, 2004), and reinforcement
learning (Engel et al., 2005) where details about the three fundamental classes of
machine learning can be found in several textbooks, such as MacKay (2003) or
Murphy (2012). This thesis is concerned with the use of GPs on supervised tasks,
which are those that involve learning a mapping from inputs to outputs given a
dataset of input-output pairs, and then use that mapping to predict outputs from

2
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new inputs. More specifically, our primary interest lies in classification problems
where the outputs are categorical in contrast to regression, which are continuous.

In general, a GP is a special instance of the more general class of stochastic pro-
cesses (Papoulis and Pillai, 2002) and as such they can be considered as a distri-
bution over functions. This is a natural extension of the multivariate Gaussian
distribution by considering infinite-dimensional vectors roughly speaking. Before
we give the formal definition of the GP we establish some minimal notation. We
start by considering an arbitrary function f that maps an index set X to the set
of real numbers R, i.e. f : X → R; however, this is not restrictive and it can be
extended to Rn. For the index set, no limitation is imposed and it can be finite,
countable or uncountable set. Moreover, f ∈ RX denotes the set of all values of f
evaluated at all points of X , meaning that f can be conceived as a vector where
its dimensionality is defined by the cardinality of X which can be either finite or
infinite. Nonetheless, the case of X ⊆ RD will be of interest for the rest of this
thesis where D is the number of dimensions of the input space.

We say that f is distributed according to a Gaussian process with mean function
m : X → R and covariance or kernel function k : X × X → R, if and only if for
any finite set X ⊂ X of size |X| = N , we have

fX ∼ N (mX , KX), (1.1)

where the N -dimensional random vector fX comprised by the function values eval-
uated at all points X, is normally distributed. The mean vector of this Gaussian
distribution is mX ∈ RN which consists of the values of m(·) evaluated at all points
in X. The covariance matrix KX ∈ RN×N is similarly calculated via the kernel
function k(·, ·) where the element at the ith row and jth column of KX is computed
by k(x(i),x(j)) , Cov(f(x(i)), f(x(j))) and written as [KX ]ij. The above definition
is succinctly denoted as

f ∼ GP(m(x),k(x,x′)). (1.2)

The above definition implies that a GP can be fully specified by its mean and kernel
function. We should also note here that assuming another set U ⊂ X ⊂ X , then
the moments of the normally distributed random vector fU , apart from referring
to the mean and kernel function for their computation, can be also retrieved by
just marginalizing out the random vector fX\U , where X \U is the usual difference
of set U and X. This property is generally known as consistency of the marginal
distributions of the stochastic process and it is linked with the Kolmogorov’s ex-
tension theorem (Billingsley, 2008) for stochastic processes.

Additionally, the kernel function plays a crucial role in the nature of the “sam-
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pled”1 functions by the GP since it controls the smoothness of the random func-
tions f . Moreover, k(·, ·) has to be such that it always produces symmetric and
positive-definite matricesKX which can be only achieved in the case of a symmetric
positive-definite kernel k(x,x′), i.e.

1. k(x,x′) = k(x′,x), x,x′ ∈ X

2.
∫
f(x)k(x,x′)f(x′)dµ(x)dµ(x′) > 0, ∀f ∈ L2(X , µ)

where µ denotes the Lebesgue measure and L2(X , µ) is the function-space of all
square-integrable real functions under the measure µ where their domain is X .
The kernel function is usually parametrized by a vector of parameters θ, called
hyperparameters, and they control the kernel’s properties as we discuss later.

There is a large variety of kernel functions with different properties and they can
be loosely classified into two main categories, stationary and non-stationary kernel
functions. Stationary kernels can be written as a function of x−x′, which implies
invariance to translations in the input space. Probably the most representative
examples of such kernels are the squared exponential class of kernel functions. Most
of the material presented here about kernels is based on Chapter 4 of Rasmussen
and Williams (2006), thus the reader is referred there for a more detailed discussion
about other stationary kernels that are closely related to squared exponential class,
such as the Matérn class or the rational quadratic kernel function (Section 4.2.1
in Rasmussen and Williams (2006)).

Stationary kernels:

A common attribute of the stationary covariance functions is that they can be all
written as functions of a (scaled) distance measure r between inputs x and x′,
where

r2(x,x′) , r2 = (x− x′)>W (x− x′), (1.3)

and W is a symmetric matrix. Maybe the most known class of stationary kernels
is the squared exponential class that includes kernels of the following form

k(x,x′) , k(r) = σ2
f exp

(
−r

2

2

)
, (1.4)

where σf > 0, and θ = (σf , {W})> is a vector containing all the hyperparameters.
In this thesis, we consider two choices for the matrix W ,

1Apparently we cannot sample a vector of infinite dimensions but it is enough to sample from
a finite subset of X for investigating the properties of the stochastic process as the definition
suggests.
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W1 = wI, W2 = diag(w), (1.5)

where w is D-dimensional vector with positive values, w > 0, and the operator
diag(u) returns a D×D diagonal matrix with values u. The distance measure W1

gives rise to the common Euclidean distance and the isotropic2 squared exponential
(SE) kernel where the value of w, also known as inverse characteristic lengthscale,
explains, loosely speaking, how far we need to move (along any axis) in input space
such that the function values become uncorrelated, thus controlling the smoothness
of the sampled functions. However, using W2 as distance measure, then we deploy
different (inverse) lengthscales w1, · · · , wD for each input dimension, leading to au-
tomatic relevance determination (ARD) (Neal, 1995), since a value of wd close to
zero indicates that the covariance is almost independent of the input for the dth in-
put dimension. Therefore, we call this (anisotropic) kernel ARD. Notice that both
of those distance measures assume an independence between input dimensions.
This can be remedied by introducing a full covariance matrix W which is able to
capture correlation among input dimensions, however, in that case we would need
to store and learn extra D(D+1)

2
hyperparameters which could be computationally

prohibitive for large dimensions; this is the case for the input dimensionality of all
datasets used in this thesis. The main characteristic of this class of kernels is that
its kernel functions are all infinitely mean-square differentiable3 rendering them
very smooth. There is also a direct connection of the smoothness of a kernel with
the rate of decay of its eigenvalues based on Mercer’s kernel decomposition theo-
rem (Mercer, 1909), where more details can be found in Section 4.3 in Rasmussen
and Williams (2006). The main motivation of deploying the SE class of kernels in
this thesis is mostly their wide-spread applicability within the Gaussian process
community which provides us comparable results despite the fact that its strong
smoothness assumptions could be considered unnatural in real-world problems.

Another instance of a well-known class of stationary kernels is the Matérn class
which is parametrized by a positive scalar ν that controls the smoothness of the
generated functions. These functions are k times differentiable (in the mean-square
sense) if and only if ν > k. A few examples of the Matérn family for half-integer
values of ν (the kernels are reduced to simpler formulas in that cases) are given
below

2Meaning that the kernel is a function of the euclidean norm of τ , and thus invariant to both
translations and rotations.

3See Papoulis and Pillai (2002) for a formal definition of mean-square differentiability.
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kν=1/2(r) = σ2
f exp (−r) (1.6)

kν=3/2(r) = σ2
f (1 +

√
3r) exp

(
−
√

3r
)

(1.7)

kν=5/2(r) = σ2
f (1 +

√
5r +

1

3
(
√

5r)2) exp
(
−
√

5r
)

(1.8)

The kernel in Eq. (1.6) is also called the exponential covariance function and it
is only employed in this chapter to demonstrate qualitative differences over other
kernels as they are showed in Fig. 1.1; a GP prior on functions with the SE kernel
(bottom panel) and with the exponential kernel which in that one dimensional case
is an instance of the known Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein,
1930) which is closely related with the Brownian motion (Brown, 1828; Einstein,
1905). In this figure we can also notice in practice how kernel’s choice affects the
smoothness of the sampled functions as the exponential kernel is only mean-square
continuous (Papoulis and Pillai, 2002) but not mean-square differentiable leading
to “rougher” generated functions as we also see in Fig. 1.1. We can see that by
taking ν → inf the Matérn kernels converge to the squared exponential justifying
in that way the infinitely-differentiability of the functions generated by the latter
kernel.

Non-stationary kernels:

Regarding non-stationary kernels, one of the most known classes is the dot-product
class where kernels are written as

k(x,x′) = (x>Wx′)p, (1.9)

with p being a positive integer. In this thesis, we consider the case of the linear
kernel (p = 1) with W1 = I and W2 = diag(w). There are fundamental differences
between the dot-product class and the SE class, which are not limited to station-
arity. One of the most important ones is the degenerate kernels produced by the
former class, i.e. kernels with finite non-zero eigenvalues. This also means that
dot-product kernels can be written as finite expansion of basis functions in contrast
to SE kernels that can be seen as infinite expansion of basis functions. For example,
the isotropic SE kernel can be seen as a Bayesian linear regression model with an
infinite number of basis functions (Rasmussen and Williams, 2006). Further, sta-
tionary kernels can be represented by the Fourier transform of a positive measure,
which such a representation is guaranteed by the Bochner’s theorem (Stein, 2012),
providing useful information regarding the smoothness of the stochastic process
based on its spectral density (Rasmussen and Williams, 2006).
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Figure 1.1: Four sample functions generated by (a) an exponential kernel and (b)
a isotropic SE kernel, with w = σf = 1 for both cases. The sample functions are
generated by using 3000 equally-distanced points in the interval [−5, 5].
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1.1.2 Gaussian processes for regression and multi-class clas-
sification

Having defined what a GP is, we can now move to its description as an inference
model for supervised tasks. Since stochastic processes define distributions over
infinite objects and they obey the consistence rule of the marginals we discussed
before, they can be used as priors for introducing a Bayesian framework for infer-
ence. This can be done by assuming the same finite set X with N elements from
the previous section and a vector y ∈ RN where each entry is associated with an
entry of X, i.e. the output data and then applying Bayes’ theorem as follows,

p(fX |y) =
p(y|fX)p(fX)

p(y)
. (1.10)

Here, p(fX |y) is the posterior density, p(y|fX) is the likelihood which is conditional
to fX , p(fX) is the prior which is given by (1.1) while the denominator is the
marginal likelihood p(y) ,

∫
p(y|fX)p(fX)dfX

4.

This framework is the core idea of Bayesian nonparametric models which extends
the notion of traditional models that are parametrized by a finite parameter space,
providing in that way additional flexibility since model complexity relies directly on
the size of the dataset used. For a more detailed discussion about the subject the
reader is referred to Hjort et al. (2010); Ghahramani (2013). Gaussian processes
are an example of this kind of models, which can be used as discriminative models,
aiming to find a mapping between input and output data. We can now introduce
how inference is performed for the case of regression.

Regression

Consider a dataset with N D-dimensional input points {x(i)}Ni=1 = X ∈ RN×D and
the corresponding continuous responses {yi}Ni=1 = y ∈ RN . In Gaussian process
regression, we assume that the responses yi have been produced by a latent function
f(·) evaluated at inputs x(i), i.e. f(x(i)) , fi, and those latent function values have
been corrupted by an additional independent Gaussian noise,

yi , y(x(i)) = fi + ε (1.11)

where ε ∼ N (0, σ2
n). Using now a GP with a zero mean function5 and a kernel

4The description we provide here for the stochastic processes as priors is not completely
accurate, and one has to refer to measure-theoretic tools to define Bayes’ theorem for infinite
dimensional models. Schervish (2012) provides a good introduction to this matter.

5The choice of a zero mean function can be justified by the fact that the prior knowledge
about f can be captured by using only the kernel function and its hyperparameters θ. It also
leads to simpler linear algebra operations.
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function k(·, ·) as a prior over the function f(·), we can obtain the densities that
comprise Eq. (1.10) as follows,

p(y|fX) =
N∏
i=1

N (yi|fi, σ2
n), (1.12)

p(fX) = N (fX |0, KX), (1.13)

p(y) = N (y|0, KX + σ2
nI), (1.14)

p(fX |y) = N (fX |KX(KX + σ2
nI)−1y, KX −KX(KX + σ2

nI)−1KX). (1.15)

where I is the identity matrix with the appropriate dimensionality. We see that
all densities have a closed form solution which stems from the conjugacy relation
between the prior (1.13) and the likelihood (1.12). The marginal likelihood (1.14)
and the posterior (1.15) are derived by using marginalization properties of the
normal distribution (see Appendix A.1). Moreover, by assuming an extra set of

N∗ points U = {x(i)
∗ }N

∗
i=1, we can impose a distribution over the latent values fU

by averaging out fX using the posterior information of (1.15), i.e.

p(fU |y) =

∫
p(fU |fX)p(fX |y)dfX

= N (fU |KUX(KX + σ2
nI)−1y, KUX −KUX(KX + σ2

nI)−1KXU) (1.16)

where KUX is the N∗×N cross-covariance matrix between U and X. In that way,
we can generate samples or deploy the mean vector, as it is more common, of this
predictive density in (1.16) and use it as predictions for the latent function values
evaluated at U . Therefore, the whole procedure requires O(N3) computational
time due to the matrix inversion of KX + σ2

nI.

It should be also mentioned that during the whole prediction process we indirectly
imply that the kernel hyperparamters θ are kept fixed. This means that we need
a selection mechanism that allows us to choose their values in a principled way.
The most common approach is based on a point estimation setting where the log
marginal likelihood p(y) is maximized as a function of θ (Williams and Rasmussen,
1996) which is also known as “Emprical Bayes” or “Type-II maximum likelihood”.
There is also the more general approach that entails a Bayesian treatment over
the hyperparameters where a prior has to be imposed over them (Williams and
Rasmussen, 1996; Hensman et al., 2015a) leading to extra intractability and one
has to refer to Markov Chain Monte Carlo (MCMC) based methods (Hastings,
1970; Gelfand and Smith, 1990).

Finally, we provide an example of Gaussian process regression where the unknown
function form is f(x) = 0.1x2 sin(6x) + 0.1 (x cos(5x) + exp(cos(x))) and the ob-
served values are contaminated by zero-mean Gaussian noise with variance equal
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to 0.001. We use N = 10 data points and N∗ = 1000 test points while the used ker-
nel here is an SE kernel. The kernel hyperparameters are optimized by employing
type-II maximum likelihood. Fig. 1.2 shows how the smooth posterior samples,
due to the use of the SE kernel, pass through the data points (black dots) after
maximization of the log marginal likelihood while we can also notice that the pos-
terior variances of the predictions close to the data points are considerable reduced
comparing to more distant test points.

Multi-class classification

Multi-class classification in a GP framework is very similar with GP regression with
one major difference, the output responses yi are discrete numbers representing K
distinct classes, which forces us to refer to non-Gaussian likelihoods to model the
data while we also need to use K independent GPs instead of one as in regression.
More formally, assume the design matrix X as in the regression case and the
response vector y where each element yi ∈ {1, · · · , K} , i = 1, · · · , N . The

probability of yi given the latent vector f (i) = (f
(i)
1 , · · · , f (i)

K ) is defined as

p(yi|f (i)) =
ef

(i)
yi∑K

k=1 e
f
(i)
k

, Sk(f (i)), (1.17)

where f
(i)
k is the function value of the kth GP evaluated at xi and Sk(f (i)) is

generally known as the softmax function. Hence, the likelihood is written as

p(y|{fkX}Kk=1) =
N∏
i=1

p(yi|f (i)), (1.18)

where fkX succinctly denotes the N -dimensional real vector consists of the kth

GP’s function values evaluated at all training data points. We can notice the
likelihood does not have a conjugacy relation with the NK-dimensional Gaussian
prior p({fkX}Kk=1) used, leading therefore to an intractable posterior p({fkX}Kk=1|y).
This intractability does not let us compute probabilistic predictions for a novel
data point x(∗) that requires the evaluation of the following integral

p(y∗ = k|y) =

∫
Sk(f (∗))p(f (∗)|y)df (∗), (1.19)

since the computation of (1.19) involves the calculation of p(f (∗)|y) which is given
by another integral,

p(f (∗)|y) =

∫
p(f (∗)|{fkX}Kk=1)p({fkX}Kk=1|y)df1X · · · dfKX , (1.20)
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Figure 1.2: An example of GP regression using an SE kernel as presented in
Section 1.1.2. Panel (a) shows sample functions from the prior GP using ini-
tial hyperparameters w = 1, σ2

f = 0.05, σ2
n = 10−8 while the log marginal likeli-

hood value is log(p(y)) = −61.53. Panel (b) shows the mean posterior function
(black line) functions from the posterior GP using the optimized hyperparame-
ters w = 2.7, σ2

f = 0.26 and σn = 4.1 × 10−10 from type-II maximum likelihood
while the optimized value of log p(y) is −7.44. The blue line corresponds to the
true latent function f(x) = 0.1x2 sin(6x) + 0.1 (x cos(5x) + exp(cos(x))). The blue
coloured areas indicate the 95% confidence intervals of each of the posterior mean
values while the black dots are the ten data points used for training. Panel (c)
shows sample functions (colourful lines) from the posterior GP using the opti-
mized hyperparameters as in (b). The sample functions are generated by using
1000 equally-distanced points in the interval [−3, 3].



12 Introduction

where it relies on the intractable posterior. For this reason, many methods have
been proposed in the past to deal with this intractability by introducing some
kind of approximation to the posterior. Such methods can be found in the work
of Williams and Barber (1998) where Laplace’s approximation (Azevedo-Filho
and Shachter, 1994) is utilized to approximate the posterior of the latent values,
Hernández-Lobato et al. (2011) where Expectation Propagation (Minka, 2001) is
used this time and in the work of Hensman et al. (2015b,a) where a variational
inference (see Chapter 2) approach of the problem is introduced. All those methods
require O(KN3) computational time when no sparsity assumptions are considered.
Moreover, a more recent work (Milios et al., 2018) attempts to deal with the non-
conjugacy relation between prior and likelihood by solving a GP regression where
outputs are the logarithms of the discrete classes. Nonetheless, all of those methods
have in common that they scale linearly with respect to the number of classes
K. This can be prohibitive in cases where K is extremely large, rendering those
methods impractical. In this thesis, we cope with this hindrance by presenting a
methodology in Chapter 3 which uses a computationally efficient lower bound on
the likelihood that allows us to reduce complexity and consider arbitrarily large
K.

1.1.3 The main challenges of using GP priors and how to
address them

Before we move to the next section, we would like to review and highlight the two
main challenges that arise by employing Gaussian processes as priors. The first
one that we also see in Section 1.1.2, has to do with the adverse O(N3) scaling
with the number of training data points that emerges from the need to compute
densities like in (1.12), (1.13), (1.14), and (1.15) that require the calculation of the
inverse and the determinant of the matrices KX or KX+σ2

nI. In general, we cannot
avoid that cubic complexity O(N3). For datasets that consist of up to 5000 data
points this is not prohibitive, nevertheless, datasets in modern machine learning
significantly surpass this number, and thus, we need to refer to approximation
methods of the exact posterior. Nevertheless, there is a number of cases in the
literature that circumvent the problem of solving large linear systems of the form
(KX + σ2

nI)x = y by making use of fast matrix-vector multiplication (Shen et al.,
2006; Morariu et al., 2009), which solves the linear system by deploying conjugate
gradients with S � N iterations, giving as time complexity O(SN2) while a
more recent method (Cutajar et al., 2016) based on pre-conditioned conjugate
gradients is used for approximating solutions of linear systems with applications
to Gaussian process regression. Additionally, when the kernel matrix KX has some
structure, the matrix-vector multiplication methods can offer considerable speed-
up and scalability. For example, methods exploiting the Kronecker structure of a
tensor product kernel with form k(x,x′) =

∏D
d=1 k(xd, x

′
d), which allows us to write
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KX = K1⊗· · ·⊗KD and reduce the eigen-decomposition of KX to O(DN1+1/D) for
D > 1. The exploitation of the Toeplitz structure of a kernel matrix constructed by
evenly spaced one dimensional points is also examined in Cunningham et al. (2008)
which gives time complexityON logN . A more general method, not limited to grid
inputs as the previous Kronecker and Toeplitz methods, is the structured kernel
interpolation in Wilson and Nickisch (2015) which considers M inducing inputs
(see Chapter 2) and scales as O(N +DM1+1/D). We note here that kernels as the
SE (or ARD) kernel can be written as a tensor product as the above kernel function,
however we do not exploit this fact in our work here and we leave it for future work.
Finally, Melkumyan and Ramos (2009) consider a sparse representation of KX by
imposing a distance threshold to r(x,x′), where the deduced kernel is known as
compactly supported kernel, in order to build a sparse kernel matrix that can be
used to train the GP model in time O(αN3) where 0 < α < 1 is a parameters that
depends on the sparsity of the approximated kernel matrix.

Nevertheless, probably the most known way of dealing with the cubic complexity
of the GP training in the last decade is via the so called sparse approximations
which aim to build a generative probabilistic model by approximating either the
prior (Quiñonero-Candela and Rasmussen, 2005a; Smola and Bartlett, 2001) or the
posterior of the process (Titsias, 2009; Cao et al., 2013; Liu et al., 2018; Hensman
et al., 2015b; Matthews, 2017; Hensman et al., 2015a) (see Chapter 2) for a more
detailed discussion. We note that all these methods are heavily relied on the
notion of the Nyström approximation (Gittens and Mahoney, 2016) which leads to
O(NM2) in general where an extra complexity reduction to O(M3) is achieved by
deploying data sub-sampling with variational inference techniques (Liu et al., 2018;
Hensman et al., 2015b; Matthews, 2017; Hensman et al., 2015a). Alternatively,
there are efficient approximations which are based on the sparsification of the
spectrum of a stationary Gaussian process using M spectral frequencies. These
methods (QuiÃ±onero-Candela et al., 2010; Tan et al., 2016; Gal and Turner,
2015; Hensman et al., 2017; Hoang et al., 2017) scale either as O(NM2) or O(M3)
depending on the use of a sub-sampling technique of the training data points in the
same manner as the sparse approximations methods that achieve same scalability.

The second challenge which is discussed in Section 1.1.2, concerns the absence of
a closed form solution for the posterior density p(fX |y) when the likelihood is not
Gaussian. Again, there is a significant amount of work on this matter such as
in Flaxman et al. (2015); Sheth et al. (2015); Hensman et al. (2015a,b); Nickisch
and Rasmussen (2008); Wenzel et al. (2019); Hernández-Lobato and Hernández-
Lobato (2016a); Ruiz et al. (2018); Chai (2012); Fröhlich et al. (2013); Hensman
et al. (2017) where in some cases the sparse approximations are utilized to achieve
scalability. As we shall see in Chapter 2, those two difficulties can be addressed
effectively by making use of the theory of variational inference.
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1.2 Extreme multi-label classification

In this section we slightly divert from our main discussion about Gaussian process
models and we proceed to the description of another subcategory of supervised
learning, namely Multi-label Learning (MLL), which is the main topic of interest
in Chapter 4.

MLL is concerned with the problem of finding a function gML that maps inputs
x ∈ X ⊆ RD to a subset of the label set {1, · · · , K} consisting of K classes,
i.e. gML : X → 2{1,··· ,K}, where 2{1,··· ,K} is the usual power set of {1, · · · , K}.
Label associations for x can be also written as a K-dimensional binary vector
y ∈ {−1, 1}K where the kth of y, yk = 1 if class k is annotated to x. Clearly, MLL
can be considered as a generalization of multi-class learning where x is labelled by
only one class and the learning function is gMC : X → {1, · · · , K}. Many times the
target function gML, given an input data x(∗), returns a K-dimensional probability
vector f (∗) where its kth entry f

(∗)
k indicates how probable the label class k is to be

associated by this input data. A large number of methods have been developed
over the last few years aiming to learn this function gML in a way that allows
the exploitation of inter-label correlations (Tsoumakas and Zhang, 2009), given a
dataset {x(i),y(i)}Ni=1 = (X, Y ) where X ∈ RN×D and Y ∈ {−1, 1}N×K , by using
different approaches. Moreover, there is a consensus in the community (Gibaja
and Ventura, 2015) that all the MML methods can be classified based on these
approaches into two main families of methods, namely problem transformation
methods and algorithm adaptation methods (Tsoumakas and Zhang, 2009). Meth-
ods in the former family transform the multi-label problem to a binary (Read et al.,
2009; Boutell et al., 2004) or multi-class classification task (Tsoumakas and Vla-
havas, 2007) while methods in the latter family extend common machine learning
algorithms suitable for multi-class classification to be able to cope with multi-label
data directly (Clare and King, 2001; Elisseeff and Weston, 2002; Ghamrawi and
McCallum, 2005; Zaragoza et al., 2011; Zhang and Zhou, 2013). A good intro-
duction on the subject of multi-label classification can be found in the work of
Tsoumakas and Katakis (2007), Zhang and Zhou (2013), and Gibaja and Ventura
(2015) where a review of the recent advances in the field is also provided.

Here, we focus our discussion to methods that attempt to deal with the MLL task
under extreme settings where the number of training data points N , the feature
dimensionality D and the label dimensionality K can be hundreds of thousands or
even millions. This task is generally known in the machine learning community as
the Extreme Multi-label Learning (XML) and there is a significant amount of work
in the field (Hsu et al., 2009; Weston et al., 2011; Chen and Lin, 2012; Kapoor
et al., 2012; Weston et al., 2013; Agrawal et al., 2013; Cisse et al., 2013; Lin et al.,
2014; Prabhu and Varma, 2014a; Yu et al., 2014; Bhatia et al., 2015; Mineiro and
Karampatziakis, 2015; Jain et al., 2016; Jasinska et al., 2016; Yen et al., 2016;
Xu et al., 2016; Babbar and Schölkopf, 2017; Liu et al., 2017; Niculescu-Mizil and
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Abbasnejad, 2017; Si et al., 2017; Tagami, 2017; Yen et al., 2017; Prabhu et al.,
2018a,b; Siblini et al., 2018; Yen et al., 2018; Zhang et al., 2018). One of the main
attributes of the datasets used for XML is that both input and label space present
sparsity, otherwise it would be infeasible to store datasets such as the WikiLSHTC
(see Section 4.5.1 of Chapter 4) which consists of N = 1778351 input data points
with D = 1617899 features each. Moreover, most of those datasets are highly
imbalanced, having just a few positive labels per data point (Section 4.5.1 while
each label has just a few hundreds data points on average.

All the developed methods for XML can be broadly divided into three main cat-
egories depending on the approach they choose to solve the problem in a scalable
manner. These are the Embedding-based methods , Tree-based methods, and 1-
vs-All -based methods. There is also an extra “pseudo-category” which contains
“hybrid” methods that combines attributes of the main categories. A short de-
scription for each category follows.

Embedding-based

The main idea of those approaches is to reduce the label dimensionality by pro-
jecting the label vectors y(i) onto a lower K̃-dimensional linear subspace where
K̃ � K, as z(i) = Uyi with U ∈ RK̃×K assuming that the label matrix Y is
low-rank. After, a set of regressors V ∈ RK̃×D are learnt from the dataset such
that z(i) ≈ V x(i). Finally, prediction of a novel point x(∗) can be either achieved
by a decompression matrix U ′ ∈ RK×K̃ that returns the projected label vectors
to their original space(Hsu et al., 2009; Cisse et al., 2013; Bi and Kwok, 2013;
Chen and Lin, 2012; Weston et al., 2011; Yu et al., 2014; Lin et al., 2014; Mineiro
and Karampatziakis, 2015; Xu et al., 2016) or by means of the k-nearest neigh-
bour algorithm in the embedded space (Bhatia et al., 2015; Tagami, 2017). These
methods, except SLEEC (Bhatia et al., 2015), are considered obsolete in the field
of XML the last 3 years, since they require large training/prediction times, high
memory needs and they exhibit poor predictive performance.

Tree-based

Methods of this category based on the construction of decision trees (Agrawal et al.,
2013) that partition the input space based on some criterion that is recursively
optimized to finally give a tree-structure (Agrawal et al., 2013; Jain et al., 2016;
Jasinska et al., 2016; Prabhu et al., 2018a; Prabhu and Varma, 2014a; Si et al.,
2017). These methods are often characterized by low training and prediction
times but large model sizes (in terms of memory footprint) and inferior predictive
performance (Prabhu et al., 2018b).

1-vs-All-based

The last category can be considered as a subset of the problem transformation
class. Here, as the name suggests, one binary classifier is learnt for each of the K
labels. These methods (Babbar and Schölkopf, 2017; Liu et al., 2017; Niculescu-
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Mizil and Abbasnejad, 2017; Weston et al., 2013; Yen et al., 2016, 2017) are de-
scribed by their high prediction accuracies and low model sizes. Nonetheless, the
fact that they have to train one classifier per label renders them slow in terms of
training and prediction time.

Finally, we mention that the only hybrid method that combines the advantages of
the tree and 1-vs-all based methods is Parabel (Prabhu et al., 2018b) which is one
of the state-of-the-art methods in XML.

1.2.1 Performance evaluation metric

In contrast to traditional supervised tasks like multi-class classification, perfor-
mance evaluation in multi-label learning cannot be achieved by conventional met-
rics such as accuracy, area under the ROC curve, etc. due to the more complicated
nature of the problem that involves multiple labels simultaneously. Thus, one has
to resort to different metrics suitably for multi-label problems. An overview of
those metrics is offered in Zhang and Zhou (2013) where they are categorized into
two groups, example-based and label-based metrics. The first group involves met-
rics that independently measure the performance on each test sample and then
return the mean value of the performances of all test samples in the test set while
the second group is concerned with the performance evaluation of each class label
separately. In this thesis we focus our attention to a specific example-based metric.

As we mentioned previously, extreme multi-label classification datasets are de-
scribed by positive label sparsity that associates just a few positive labels to each
data point. This means that it is crucial for our learnt function gML to be able
to accurately predict the few positive labels per data point instead of the colossal
number of the negative labels. In other words, the indices of the larger values of
the score vector f should correspond to the associated positive class labels. For
this reason, assuming a test set {x(i),y(i)}N∗i=1, the prediction accuracy of a XML
method is evaluated using the precision at k ∈ {1, · · · , K} metric (Agrawal et al.,
2013; Hsu et al., 2009; Kapoor et al., 2012; Weston et al., 2011; Yu et al., 2014;
Bhatia et al., 2015) which is defined as

P@k =
1

N∗

N∗∑
i=1

1

k

∑
c∈rankk(f (i))

y
(i)
c + 1

2
, (1.21)

where f (i) = gML(x(i)) ∈ RK is the predicted score vector, rankk(·) is the rank
function which returns a set of k indices that correspond to the largest values of
an input vector, and y

(i)
c is the cth element of the ith ground truth label vector

y(i). This metric counts the percentage of correct predictions in the top-k positive
predictions. This metric is the most widely used one in the XML field which is
motivated by real world applications such as tagging and recommendation systems
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where only the precision of the top recommendations matters (Bhatia et al., 2015).
We extensively employ it in Section of 4.5.3 of Chapter 4 to evaluate performance
of our proposed model.

1.2.2 The chosen XML methods

In this section we provide a short description of four XML algorithms which are
used as comparison baselines for experiments conducted in Chapter 4. The reasons
of their choice are discussed in 4.5.3 and can be summarized by the fact that
those methods (i) attain high predictive performance, (ii) belong to at least one
of the three aforementioned XML classes of methods, and (iii) provide predictive
performance results in terms of P@k via the XML repository (Repository, 2010),
for all the datasets used for experiments in Chapter 4. These methods are the
SLEEC, FastXML, PFastreXML, and the PD-Sparse method.

SLEEC (Bhatia et al., 2015) : This is an embedding-based method which creates
an ensemble of multi-label classifier in the following way. First the initial dataset
X is partitioned into a specific number of clusters and then for each cluster embed-
dings zi are learnt by regressors V , in a manner that allows capturing inter-label
correlations by preserving the pairwise distances between only the closest label
vectors. Prediction of a novel point is achieved by utilization of the k-nearest
neighbour classifier, to find the cluster that this point is closer to and then use the
appropriate embeddings to predict the label vector. The authors, to make their
results robust against the high-dimensional input spaces, use an ensmble of these
XML classifiers.

FastXML (Prabhu and Varma, 2014b): The main idea of this tree-based method
is to learn a hierarchy over the input space motivated by the observation that
just a small number of positive labels are found in regions of the input space.
This hierarchy is learnt by optimizing a ranking loss function called normalized
Discounted Cumulative Gain (nDCG) (Yu et al., 2014) that leads to leaf nodes
that consist of constant classifiers. Therefore prediction can achieved by traversing
this tree-like hierarchy and then taking into account solely the positive label in
this region of the input space.

PFastreXML (Jain et al., 2016): The second tree-based method in our list.
PFastreXML shares the same philosophy of FastXML and it was developed to
improve tail label prediction, i.e. labels that do not appear frequently in training
data set and thus their prediction is more challenging than frequently occurring
ones. PFastreXML achieves that by optimizing a variant ranking loss function
from FastXML’s nDCG, suitable for this purpose.

PD-Sparse (Yen et al., 2016): The final method belongs to the 1-vs-All category
and as such builds K binary classifiers. These classifiers are obtained by solving
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a primal-dual sparse problem where the well-known SVM margin-maximizing loss
with l1-l2 penalties is maximized. The whole idea exploits the sparsity of both the
primal and the dual while storing issues due to large variable arrays are solved by
referring to hash-tables.

1.3 Thesis overview

As we discuss in the previous sections, applying Gaussian process models in prac-
tice can be proven challenging due to the adverse computational complexity O(N3)
and the absence of closed form solutions of the posterior and the marginal den-
sities. This is a common scenario for multi-class tasks that involve non-Gaussian
likelihoods. Nevertheless, none of the previous works on multi-class classification
using Gaussian processes takes into account the cases where the number of classes
is particularly large. Moreover, the use of Gaussian process models on the more
general multi-label classification problems, has not been investigated so far. This
thesis is concerned with addressing those two tasks by focusing on instances with
extremely large dimensions. More specifically,

• Chapter 2 provides all the mathematical background needed for developing
the methods in the coming chapters. It introduces the concepts of variational
inference and how these are applied to Gaussian process models to attain
scalable inference, mostly based on the work of Titsias (2009) and Hensman
et al. (2015b). Furthermore, two new techniques are also presented in this
chapter that the first technique involves a parsimonious representation of the
variational distribution while the second one shows how we can reduce the
burden of high dimensional input data.

• Chapter 3 is devoted to multi-class classification with Gaussian processes.
It discusses a computationally effective way to deal with arbitrarily large
number of classes based on a lower bound on the softmax likelihood as it is
presented in Titsias (2016). This is combined by the variational framework
suitable for Gaussian processes of Chapter 2 to give a new scalable method
over the number of both data points and classes. Motivated by this method,
a methodology that allows to approach regression tasks using multi-class
classification algorithms is also introduced.

• Chapter 4 is concerned with the deployment of Gaussian process models on
multi-label classification problems. A highly scalable method is developed
that can successfully cope with extremely large number of training instances,
input dimensions, and labels at the same time. The method is tested with a
number of challenging datasets that involve such dimensions.
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All the chapters have been written in a way that permits each of them to be read
independently. Finally, we conclude and discuss some future research directions in
5.



Chapter 2

Variational inference for sparse
Gaussian processes

2.1 Introduction

This chapter is focused on the presentation of the general ideas of the Variational
Inference (VI) theory, mainly applied to sparse Gaussian Process models which
are most relevant for the rest of this thesis. Most of the notions of VI can be
found in several well-written introductions to VI such as Jordan et al. (1999) or
related tutorials (Fox and Roberts, 2012). Finally, the reader is also referred to
the excellent review of VI in Blei et al. (2017).

VI tries to tackle one of the most fundamental problems of modern statistics which
is the approximation of probability densities that are computationally difficult (or
even infeasible) to be calculated. These kind of probability densities are ubiqui-
tous in Bayesian models where their posterior most of the times cannot be found
analytically and thus, we have recourse to approximation or sampling strategies.
VI is exactly this approximation strategy and it is employed as an alternative to
Markov Chain Monte Carlo (MCMC) (Hastings, 1970; Gelfand and Smith, 1990)
sampling to approximate posterior densities for Bayesian models while both of
those methods emerged from the field of statistical physics. In general, VI consti-
tutes a good surrogate of MCMC methods when our primary concern is to obtain
fast results for datasets with large number of instances or more complex models
(Blei et al., 2017), and we are willing to sacrifice some approximation precision at
the same time.

The general problem can be mathematically formulated as follows. Assuming that
we have a vector of N observations y ∈ RN and their corresponding latent variables
f , then their joint density is written as

p(y, f) = p(y|f)p(f), (2.1)

20
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where p(f) and p(y|f) represent the prior density over the latent variables and the
data likelihood, respectively. In the Bayesian paradigm, we would like to be able
to compute the posterior density

p(f |y) =
p(y|f)p(f)

p(y)
. (2.2)

We denote the posterior distribution with density p(f |y) as P̃ . Generally in this
chapter we denote distributions with capital Latin letters and densities with lower-
case Latin letters. The computation intractability of the posterior density many
times stems from the denominator term of 2.2. This denominator is the marginal
likelihood of the observations or evidence and works as a normalization constant
for the true posterior. Its calculation is derived by marginalizing out the latent
variables f from the joint density, i.e.

p(y) =

∫
p(y, f)df . (2.3)

In contrast to an MCMC algorithm that uses sampling, where in the limit its
random samples coincide with samples from the true posterior, VI refers to opti-
mization for finding an approximation of the posterior. This is achieved by positing
a family of tractable distributions over the latent variables Q and then looking for
a distribution Q∗ that is as similar as possible to the exact posterior P̃ . This sim-
ilarity measure is given by the Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951) and the optimal variational distribution Q∗ is calculated by solving
the following optimization problem,

Q∗ = argmin
Q∈Q

KL[Q || P̃ ]. (2.4)

Therefore, the variational distribution Q∗ can be employed as a proxy of the poste-
rior. For notational convenience, we omit the latent variables of the distributions
in order to emphasize that the minimization is over the distributions. Later in the
chapter, we change the notation slightly regarding the approximation densities to
increase readability. We should also note that the minimization in Eq. 2.4 is gen-
erally over infinite-dimensional objects, such as continuous densities and thus, we
need to use1 tools of the Calculus of Variations (Gelfand et al., 2000). Hence the
term “variational inference”.

Regarding the rest of the chapter, Section 2.2.1 presents how the optimization of
2.4 is achieved in practice and what factorization assumptions are usually taken.
Moreover, Section 2.3 introduces the concept of sparse Gaussian processes and how

1Although, in practice, the choice of a specific parametric variational family Q makes the use
of Calculus of Variations unnecessary.
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it is combined with the theory of VI. Finally, two methods are described in Sections
2.4 and 2.5, which constitute some of the novelties of this thesis and allow sparse
Gaussian Process models under a VI framework to scale well in extreme conditions
of large number of data instances and input dimensionality.

2.2 The evidence lower bound and tractable vari-

ational families Q

2.2.1 The evidence lower bound

In essence, having defined the family of approximation distributions Q for the
intractable true posterior P̃ , VI aims to find the “closest” distribution Q∗ in that
family to P̃ , where “closeness” is defined in terms of the KL-divergence to the
exact posterior; hence, inference amounts to the optimization task in 2.4, as we
saw previously. Moreover, the difficulty of that optimization is inextricably linked
to the complexity of the chosen variational family Q. On the other hand, the
intractability of P̃ we mentioned before, can stem from at least three different
scenarios. The first one, which is maybe the most common, is the case where
an analytic expression of P̃ is unavailable due to the non-closed form solution
of the marginal likelihood in 2.3. This in Bayesian Inference amounts to a non-
conjugate relation between prior and data likelihood densities. Secondly, there
are examples where intractability means that evaluating P̃ is provably a NP-hard
problem as is the case for undirected graphical models. Finally, a closed-form
solution may be available for P̃ and other relevant expectations of interest whereas
their computation can be achieved in polynomial time. Nonetheless, the exponent
of the polynomial may be high enough to render those computations infeasible in
practice. This is exactly the case of the Gaussian Process regression with Gaussian
likelihood which requires O(N3) computational time and cannot scale for large
datasets. For the rest of the chapter, we assume that the posterior p(f |y) and
marginal likelihood p(y) are intractable in contrast to the joint density p(y, f)
which is computable. This setting is familiar from the previous chapter when we
tried to use GP models for multi-class classification problems in Section 1.1.2.

We re-write now the optimization problem in 2.4, using the densities q(f) for
the variational distributions Q in Q since the optimization problem is equivalent.
Therefore, we have

q∗(f) = argmin
q(f)∈Q

KL[q(f) || p(f |y)], (2.5)

where KL[q(f) || p(f |y)] , KL[Q || P̃ ], i.e. we denote the Kullback-Leibler di-
vergence between two distributions using their corresponding densities instead of
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the distributions themselves. We follow this notation for the Kullback-Leibler di-
vergence between two distributions for the rest of the thesis. This optimization
problem cannot be solved in practice since it involves the computation of the log
marginal likelihood p(y) in Eq. 2.3 which is the very reason we refer to VI. This
is because we can expand the KL term in 2.5 as

KL[q(f) || p(f |y)] = E[log q(f)]− E[log p(f |y)] (2.6)

= E[log q(f)]− E[log p(f ,y)] + log p(y), (2.7)

where all expectations are taken with respect to the variational density q(f). The
presence of log p(y) on the right-hand side of (2.7) is exactly why we cannot directly
minimize the KL-divergence; however, using the non-negativeness property of KL-
divergence we can impose a lower bound on the log evidence written as

KL[q(f) || p(f |y)] ≥ 0

⇐⇒ log p(y) ≥ E[log p(f ,y)]− E[log q(f)]

⇐⇒ log p(y) ≥ E[log p(y|f)]−KL[q(f) ||p(f)] = F . (2.8)

Therefore, the minimization problem of 2.7 is equivalent to maximization of the
quantity F which sometimes referred as the evidence lower bound or ELBO. Notice
that in this formulation, all the terms of F are computable.

For completeness, we would also like to add that the above description is the
simplest (vanilla) case of the variational inference paradigm. There are more so-
phisticated methods based on variational inference, such as collapsed variational
inference (Teh et al., 2007, 2008) (CVB) and stochastic variational inference (SVI)
(Hoffman et al., 2013). The former technique considers marginalizing out some
of the hidden variables which leads to lower dimensional posterior while a tighter
lower bound on log marginal likelihood is emerged. Typical examples of its suc-
cessful deployment is over latent Dirichlet allocation models (Blei et al., 2003). Re-
garding SVI, the main idea is to use stochastic optimization (Robbins and Monro,
1951) to maximize F , by following noisy estimates of the natural gradients (Amari,
1998) where the noise is due to data subsampling. This allows us to deal with large
datasets effectively while natural gradients effectively lead to better (and usually
faster) optima than the vanilla approach.

As we shall see later, SVI plays a crucial role to the development of a scalable
framework for GP models. However, SVI heavily relies its success on the fact that
natural gradients are taken into account since ordinary gradients of the variational
parameters with respect to F do not point to the direction that achieves the max-
imum change in KL divergence as natural gradients do. This is due to the nature
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of the optimization which is over a Riemannian manifold (Amari, 1982) and not
over the Euclidean space that the variational parameters lie in. In this thesis, we
should make clear from the beginning that we do not take into account this fact
to the optimization of the ELBO in chapters 3 and 4, although the optimization
algorithms that we use, such as Adam (Kingma and Ba, 2014), provides an ap-
proximation of the natural gradients2. Nevertheless, we leave the incorporation of
natural gradients for future work (see Chapter 5).

2.2.2 Tractable variational families Q

The derivation of F allows us to approximate the marginal likelihood in a tractable
way. However, the determination of the variational family Q is of paramount
importance for that endeavour. For this reason, factorization assumptions are
imposed on the densities q(f) of the members of Q. More specifically, the density
of the variational distribution over an N -dimensional Euclidean space is factorized
into a product of densities by partitioning that space with |E| sub-groups and
expressing q(f) as

q(f) =
∏
e∈E

q(fe). (2.9)

This kind of family of factorized variational distributions is generally known as
the mean-field variational family (Wainwright et al., 2008) and it has been widely-
used for a large number of VI problems. Despite its simplicity and computability,
the factorized nature of 2.9 fails to capture any correlations between variables
that belong to different sub-groups in E , something that may not be true for the
exact posterior and thus, imposing limitations in some cases. These limitations
can be overcome by using structured variational inference (Saul and Jordan, 1996;
Barber and Wiegerinck, 1999) or mixture of variational densities (Bishop et al.,
1998); nevertheless, better approximation results come at a computational cost.
Moreover, mean-field-based inference often leads to underestimated values for the
true marginal variance which is a direct consequence of the KL divergence from
the variational distribution to the posterior in Eq. (2.6) (Blei et al., 2017; Fox and
Roberts, 2012).

Apart from the factorization assumptions, another way to achieve tractability in
the context of VI is to posit a specific parametric family of variational distri-
butions in Q which are easily computable. The most common choice of such a
parametric family is the exponential one (Kupperman et al., 1958) which is the
most famous one in the VI literature. For instance, let the latent variables f follow

2More accurately Adam approximates the Fisher information matrix, which gives curvature
information in the Riemannian space, by a diagonal matrix.
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a N -dimensional Gaussian distribution with zero mean vector and covariance K,
i.e.

p(f) = N (0N , K), (2.10)

where the likelihood term factorizes as p(y|f) =
∏N

i=1 p(yi|fi) with yi, fi being
the ith element of vectors y and f respectively. The case of choosing Q to be
the family of multivariate Gaussian distribution is of particular relevance in this
thesis. Under these assumptions about the Gaussian latent model 2.10 and Q, we
can write the KL divergence using Eq. 2.8 as

KL[q(f) || p(f |y)] = KL[q(f) ||p(f)]−

[
N∑
i=1

∫
q(fi) log p(yi|fi)dfi

]
+ log p(y).

(2.11)

The whole computation of the KL-divergence in (2.11) scales as O(N3) due to
the computation (see Appendix A.2) of the KL-divergence term between two mul-
tivariate normal distributions KL[q(f)||p(f)]. Additionally, each one-dimensional
integral on the right-hand side of (2.11) can be efficiently calculated using Gauss-
Hermite quadrature (Liu and Pierce, 1994) under the marginal variational density
q(fi). Note that the cubic complexity of (2.11) renders this family of distributions
Q intractable in practice; however, Section 2.3 presents a principled way to deal
with that problem in the context of Gaussian processes. Apart from the com-
putational issues, another pertinent question is how the variational density q(f)
(which is a multivariate normal distribution) is parametrized. The naive way re-
quires O(N2) parameters as result of the total number of parameters we need to
parametrize its covariance matrix. Nonetheless, Opper and Archambeau (2009)
showed that we can achieve the same approximation performance as the naive
parametrization by just using O(N) parameters in total. We make extensive use
of this idea through this PhD thesis, beginning by Section 2.4. Finally, it is worth
mentioning that this kind of variational family Q can be more flexible and accurate
than the mean-field approach we described before since it is possible to capture
correlations between the posterior latent values.

2.3 Sparse Gaussian processes in a variational

inference framework

2.3.1 General sparse Gaussian process methods

Sparse Gaussian Process theory was developed to cope with the computationally
expensive full GP Inference which in the general case scales as O(N3). There
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is a voluminous literature over the sparse Gaussian process framework where a
comprehending overview over a large number of methods based on that framework
is given by Quiñonero-Candela and Rasmussen (2005b). The main idea is the
consistency of the Gaussian process, as discussed in Section 1.1 of Chapter 1, in
conjunction with conditional independence assumptions over an approximation
on GP prior. More specifically, Quiñonero-Candela and Rasmussen (2005b) start
their discussion by using the exact GP prior,

p(f (∗), f) =

∫
p(f (∗), f |u)p(u)du, (2.12)

where the function values f ∈ RN and f (∗) ∈ RN∗ are given by a zero-mean
GP f ∼ GP(0,k(x(i),x(j)), evaluated at a training set X ∈ RN×D and test set
X∗ ∈ RN∗×D of D-dimensional data points, respectively. Then, the prior p(f (∗), f)
is approximated by density g(f (∗), f)) as

p(f (∗), f) ≈ g(f (∗), f) =

∫
g(f (∗)|u)g(f |u)p(u)du, (2.13)

where the extra latent function values u come from the same GP evaluated at
M (potentially different from the training points) data points Z ∈ RM×D. By
using different choices of g(f (∗)|u) and g(f |u) but having the same conditional in-
dependence assumption of f and f (∗) given u, several sparse Gaussian methods
have emerged (Smola and Bartlett, 2001; Seeger et al., 2003; Snelson and Ghahra-
mani, 2006). All those methods attain to reduce time complexity from O(N3)
to O(NM2) due to this conditional independence assumption, where M � N .
The latent function values u are usually called inducing variables while the cor-
responding points Z, where those values are evaluated at, are called inducing in-
puts/points. The name derives from the property of u to connect the two disjoint
sets of variables f and f (∗); thus, inducing the dependencies between training and
test variables as it is pointed out in Quiñonero-Candela and Rasmussen (2005b).

An additional challenge for the sparse Gaussian process framework stems from
the fact that we need somehow to choose the M values of the inducing inputs
in order to approximate the true posterior in a computationally cheap way. A
naive choice would be to randomly pick M points from the training dataset. More
sophisticated methods, based on greedy optimization, have been developed that
choose a subset of points from the training dataset using various selection crite-
ria (Smola and Schölkopf, 2000; Lawrence et al., 2002; Smola and Bartlett, 2001;
Seeger et al., 2003; Keerthi and Chu, 2006). Nevertheless, those methods involve
the exact or approximate solution of a difficult combinatoric problem while opti-
mizing the continuous values of kernel hyperparameters at the same time. This
can impose additional problems as discussed by Snelson and Ghahramani (2006).
Those problems were solved temporarily by the Fully Independent Training Con-
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ditional (FITC) method of Snelson and Ghahramani who introduced a model
approximation method that optimizes a modified version of the true marginal like-
lihood of the model over both hyperparameters and inducing inputs. This modified
marginal likelihood derived by a specific independence assumptions that lead to
computational tractability but results showed that this modification was prone to
overfitting behaviour when the number of inducing inputs increased, although this
increase did not always improve the posterior approximation.

Nonetheless, as we shall see in next section, Titsias (2009) overcame these issues
of overfitting and absence of a mathematically rigorous method for posterior ap-
proximation by introducing a coherent variational inference framework for sparse
Gaussian processes.

2.3.2 The variational inference framework for sparse Gaus-
sian processes

As we discussed in the previous section, most of the methods relied on Sparse Gaus-
sian process approximation had a number of limitations due to several reasons like
(1) computationally challenging combinatoric optimization, (2) overffiting issues,
and (3) lack of a similarity measure between the exact and approximated model.
Nevertheless, in 2009, Titsias in his pioneering work (Titsias, 2009) managed to
address these obstacles by presenting a rigorous way of minimizing a similarity
measure between the true and the approximated model. More specifically, he
considered the augmented GP posterior

P̂ , p(f ,u|y) =
p(y, f ,u)

p(y)

=
p(y|f)p(f |u)p(u)

p(y)

=
p(y|f)p(f |u)p(u)∫
p(y|f)p(f |u)p(u)dfdu

, (2.14)

where the M -dimensional random vector u represents the inducing variables in a
similar manner as explained in the previous section. Subsequently, having chosen
a variational distribution with density q̂(f ,u), he minimized the KL-divergence
between the augmented posterior P̂ and that distribution ,

KL[q̂(f ,u) || p(f ,u|y)], (2.15)

where the ˆ symbol over the variational densities indicates use of the augmented
model. Further, the chosen variational family Q includes variational distributions
with factorized densities of the form
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q̂(f ,u) = p(f |u)q̂(u), (2.16)

where q̂(u) is a M -dimensional Gaussian distribution parametrized by a mean vec-
tor and a covariance matrix where its parametrization is thoroughly discussed in
Section 2.4. The required computational time for each optimization step of (2.15)
is O(NM2), similar to all the previously introduced sparse GP methods. The KL
term in (2.15) allows us to choose both the kernel hyperparameters and the in-
ducing inputs Z by minimizing it over them similarly as Snelson and Ghahramani
(2006) via continuous optimization. However, as Bauer et al. (2016) mentions, the
most serious drawbacks of FITC include overfitting, failing to improve approxi-
mation after increasing the number of inducing inputs and inability to recover the
true posterior. Titsias’ objective function is able to circumvent overfitting since
inducing inputs Z are now treated as variational parameters instead of kernel hy-
perparameters as in FITC. Moreover, minimizing the KL-divergence between the
variational and the true posterior GP provides a rigorous approximation method
where the increase of the number of inducing inputs M provably gives a lower
KL-divergence (Titsias, 2009; Bauer et al., 2016; Matthews, 2017), bringing the
variational GP ”closer” to the exact posterior. In the special case that we match
the positions of the inducing inputs with those of the training dataset, i.e. Z = X,
(2.15) coincides with the KL-diverence term in (2.5). These attributes constituted
the variational sparse Gaussian process framework highly important for dealing
with the adverse computational scaling required by full GP inference, leading to
new research routes (Titsias and Lawrence, 2010; Damianou et al., 2012; Hensman
et al., 2013; Damianou and Lawrence, 2013; Hensman et al., 2015b,a).

Despite the previously discussed benefits of Titsias’ method, it still scaled as
O(NM2) which can be prohibitive for large number of training instances N . This
limitation was solved a few years later by Hensman et al. (2013) where they made
use of the idea of SVI. SVI has been extensively used to achieve scalable Bayesian
inference for large datasets where its main idea relies on the fact that the variational
parameters can be efficiently updated using stochastic but unbiased estimates of
the ELBO’s gradient on a mini-batch/subset of training points. Hensman et al.
re-introduced Titsias’ approximation framework in an suitable manner that allows
considering mini-batches; hence, paving the way for performing SVI and reduc-
ing the computational complexity from O(NM2) to O(|Xb|M2), where Xb is a
mini-batch of training data points with size |Xb| � N .

Finally, we would like to add that the minimization of the augmented KL-divergence
in (2.15) is not the same as the minimization of the KL[q(f) ||p(f |y)] (see Section
2.2) as Titsias originally mistakenly claimed in Titsias (2009). Actually, the aug-
mented KL-divergence is an upper bound of the unaugmented one as Matthews
et al. (2016) showed using measure-theoretic tools. Nonetheless, in practice, the
augmented model gives sufficiently good results and has been proven successful
in a large number of sparse GP-based applications. Finally, the derivation steps
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of this section with its methodology constitutes the foundations of the methods
described in the coming Chapters 3 and 4.

2.4 Two potential parametrizations for q̂(u)

In the last few years, after the introduction of the coherent variational frame-
work for sparse Gaussian Processes from Titsias (2009), the dominant way to
parametrize the densities of variational distribution q̂(u), assuming that q̂(u) =

N (u|m, S), was via M(M+3)
2

free variational parameters, since m ∈ RM and
S = LL> where L is an M ×M lower triangular matrix. This parametrization
effectively ensures the positive definiteness of the variational covariance matrix S
while it is closely related to the Cholesky decomposition of the positive definite
matrix S. Nonetheless, the uniqueness of the Cholesky decomposition stems from
the fact that its diagonal entries are strictly positive, something that is not true
for this parametrization. In practice though, we can sacrifice uniqueness for un-
constrained optimization without any loss of performance as it is pointed out in
Matthews (2017).

In Section 2.2.2 with the Gaussian latent model, we saw that without any aug-
mentation assumptions, the KL-divergence term can be written as in (2.11). The
computation of the augmented KL-divergence in 2.15 gives a very similar form,

KL[q̂(f ,u) ||p(f ,u|y)] = Eq̂(f ,u)[log q̂(f ,u)]− Eq̂(f ,u)[log p(y, f ,u)] + log p(y)

= KL[q̂(u) ||p(u)]−

[
N∑
i=1

∫
q̂(fi) log p(yi|fi)dfi

]
+ log p(y),

(2.17)

where q̂(fi) =
∫
p(fi|u)q̂(u)du and the final equation (2.17) is obtained by com-

bining (2.6) and (2.14). Therefore, the ELBO we wish to maximize is written
as

F(m, S) =
N∑
i=1

Eq̂(u)
[
logG(y(i),u)

]
−KL[q̂(u)||p(u)], (2.18)

where the data term logG(y(i),u) = Eq̂(f (i)|u)[log p(y(i),u)] while the kernel hyper-
parameters and the inducing inputs Z are considered to be fixed in this section
for notational simplicity. Notice that the variational and prior distributions are
multivariate normal over u, rendering the computation of their KL divergence an-
alytically feasible (see Appendix A.2 ), scaling as O(M3). Such a parametrization
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has appeared several times in literature, such as in Titsias and Lázaro-Gredilla
(2014); Damianou and Lawrence (2013); Hensman et al. (2015b); Salimbeni and
Deisenroth (2017), and to the best of our knowledge, there is no other different form
of parametrization in sparse GPs literature. Ii this parametrization, which we call
”Full” and denote by ”FP”, the q̂(f), induced by the q̂(u) = N (u|m, S = LL>),
is q̂(f) = N (f |mf ,Sf ) where

mf = QXZm, (2.19)

Sf = KX −QXZKZX +RXZR
>
XZ , (2.20)

where KZ is the M ×M kernel matrix evaluated at the inducing inputs Z, KXZ ∈
RN×M is the cross-covariance matrix between training and inducing inputs with
KZX = K>XZ and KX is the corresponding N × N kernel matrix of the training
inputs. Further, we have the matrices QXZ = KXZK

−1
Z ∈ RN×M and RXZ =

QXZL ∈ RN×M . For the derivation of (2.19) and (2.20), we use known multivariate
Gaussian formulas presented in Appendix A.1. The FP leads to the following result
for the KL term in (2.18),

KL[q̂(u)||p(u)] =

∫
q̂(u) log

q̂(u)

p(u)
du

=
1

2

(
mTK−1Z m + tr

(
K−1Z S

)
+ log |KZ | − log |S| −M

)
. (2.21)

Moreover, the marginal q̂(f (i)) in the expectations of the first data term in (2.18)
becomes q̂(f (i)) = N (f (i)|m(i), s(i)) wherem(i) is the ith element of theN -dimensional
vector mf in(2.19) and s(i) is the ith element of the the main diagonal of Sf in
(2.20) as well.

Nonetheless, FP depends on the optimization of O(M2) parameters which could
be restrictive for larger numbers of inducing inputs. Moreover, the use of FP in-
troduces a strong dependence between (m,S) and the kernel matrix KZ from the
prior p(u) which could lead to slow convergence3. To expose this dependence, we
follow the derivation steps of Opper and Archambeau (2009) to find the maximum
of F . This is achieved by using m = KZµ and S = (K−1Z + Λ−1)−1 for some
M -dimensional vector µ and some full M × M (non-diagonal) positive definite
matrix Λ associated with the second derivatives of the first data term in the above
bound. The form of m and S suggests a parametrization of q̂(u) in terms of
(µ,Λ) in order to take advantage of the preconditioning with the kernel matrix
KZ . Nonetheless, this can still lead to slow optimization because the full Λ ma-
trix requires optimizing over O(M2) parameters. Therefore, here we propose to

3However, as we shall see in Chapters 3 and 4, experimental results present the exact opposite
behaviour.
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simplify this parametrization by replacing Λ with a diagonal covariance matrix Σ
leading to the parametrization

m = KZµ, S = (K−1Z + Σ−1)−1 = KZ −KZ(KZ + Σ)−1KZ , (2.22)

where µ ∈ RM is a real-valued vector of tunable variational parameters and Σ is
a diagonal positive definite matrix (i.e. with each diagonal element restricted to
be non-negative) parametrized by M additional variational parameters. Hence,
overall q̂(u) is parametrized by 2M variational parameters while all the remaining
structure comes from a careful preconditioning with the model kernel matrix KZ .
We call the above parametrization as parsimonious one or PP in short. This kind
of parametrization has been used before for full (i.e. non-sparse) GPs in Opper
and Archambeau (2009); Damianou et al. (2011) in order to parametrize a full
q̂(f), and it was motivated by the stationary conditions satisfied by the optimal
q∗(f) in a full GP variational approximation Opper and Archambeau (2009) where
at maximum the covariance is (K−1X + Σ−1)−1 with Σ being a diagonal positive
definite matrix and KX the N ×N kernel matrix evaluated at the training inputs
X. In our sparse GP setting the the moments of the N dimensional multivariate
Gaussian q̂(f) this time are given by

mf = KXZµ, (2.23)

Sf = KX −KXZ(KZ + Σ)−1KZX . (2.24)

This parametrization can recover the optimal q∗(f) when we place the inducing
inputs on the training inputs, i.e. when Z = X. This property is rigorously proved
in Section 4.4.6 of Chapter 4 in a slightly different framework. In other cases the
restricted covariance in q̂(f) is not be able to match exactly the optimal one of
q∗(f), but still in practice it tends to be very flexible especially when we optimize
over the inducing inputs Z so that a posteriori f is well reconstructed by u.

Furthermore, the above parametrization of q̂(u) in (2.22) leads to a numerically
stable and simplified form of the lower bound. Specifically, the KL divergence
term in (2.18) reduces to

KL[q̂(u)||p(u)] =
1

2

(
µ>KZµ− tr

(
(KZ + Σ)−1KZ

)
+ log |KZ + Σ| − log |Σ|

)
,

(2.25)

while for each marginal q̂(f (i)) = N (f (i)|m(i), s(i)), this time its moments m(i), s(i)

are given by mf and Sf in (2.23) and (2.24), respectively, in a similar manner as FP.
Therefore, the overall bound in (2.18) obtains a quite simplified and numerically
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stable form because of the cancellation of all inverses and determinants of KZ . At
each optimization the only matrix we need to decompose using Cholesky is KZ+Σ,
which is in an already numerically stable form due to the inflation of the diagonal of
KZ with Σ. In a practical implementation we can constrain the diagonal variational
parameters of Σ to be larger than a small value (typically 10−6) to ensure numerical
stability throughout optimization. The two described parametrizations are studied
in depth in Chapters 3 and 4 regarding the convergence rate and predictive power
of the methods that use those parametrizations.

2.5 Subspace inducing inputs

Despite the voluminous literature on sparse GP methods, none of them consider
the dimensionality of the input space D when expressing time complexities and
somehow D is assumed to be small or of the order of M . Only Quiñonero-Candela
and Rasmussen (2005b) mention the required complexity for computing the gra-
dients of (2.18) with respect to the inducing input matrix Z is O(DNM2) (in
Section 9). Since D appears in the lower bound only through the computation of
the covariance matrix KZ and the cross covariance matrix KXbZ , where Xb is a
mini-batch of size |Xb| ∼ O(M), the time complexity with respect to D is clearly
O(DM2) since evaluating any standard kernel function on each pair of instances
scales as O(D). Thus, each optimization step of the bound in (2.18) actually
scales overall as O(DM2 +M3) and when D is larger than M the term O(DM2)
dominates. For instance, in a dataset as MNIST (see Chapters 3 and 4) where
D = 784 and M = 500 the optimization of the bound will roughly be of order
O(M3), while in other datasets with even slightly larger D, such as the CIFAR-10
dataset where D = 3072, the term O(DM2) dominates; hence, resulting in slower
training. Extremely large input dimesionality is typical in many applications of
multi-label learning (Prabhu and Varma, 2014a) and in many cases can be larger
than one million features, such as the WikiLSHTC dataset (Partalas et al., 2015)
used in Chapter 4 where D = 1617899.

Learning the inducing inputs Z (as opposed to fixing them to a subset of training
instances) is rather crucial in order to obtain good approximations, as was initially
observed in GP regression (Titsias, 2009) but also more recently in non-Gaussian
likelihoods such as in GP classification (Hensman et al., 2015b; Hernández-Lobato
and Hernández-Lobato, 2016a). By optimizing over Z we are reducing the KL
divergence between the approximate posterior and the exact posterior process
(Matthews et al., 2016; Titsias, 2009) in a way that both the likelihood p(y|f) and
the kernel function are taken into account. The benefit from optimizing Z can
be even more profound in high dimensions where simple heuristics such as placing
Z in a grid or setting it using clustering could be non-applicable or sub-optimal.
Nevertheless, free-form gradient-based optimization over Z in high dimensions is
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challenging since at each step it requires computing gradients overDM parameters,
and clearly when D is very large this becomes very expensive. To cope with this,
we propose to restrict the gradient-based optimization over Z in a data-informed
lower dimensional manifold or subspace.

Our key idea is to represent Z through the use of a precomputed basis so as the
optimizable parameters in Z reduce from O(DM) to O(RM) where R � D (or
R ∼ O(M)) and the overall computations scale as O(M2R) (or O(M3)). We
firstly consider the case of a linear kernel function k(x′,x) = x′>x. Suppose we

have precomputed a basis of R vectors stored as separate rows in matrix X̃ ∈
RR×D. For instance, X̃ can be obtained either by clustering the rows of X or
by applying a matrix decomposition technique. In all our experiments in Section
4.5 of Chapter 4 where the proposed method is applied, we construct X̃ using
singular value decomposition, i.e. by computing the R right-singular vectors that
correspond to the R largest singular values of X using the efficient subset singular-
value decomposition (SVDs) algorithm Baglama and Reichel (2005). We then
parametrize Z as

Z = AX̃, (2.26)

where A ∈ RM×R is a real-valued matrix of tunable/variational parameters. This
allows to construct Z so that each individual inducing input zi ∈ RD is a linear
combination of the basis vectors in X̃ and where the weights in this combination
are given by the i-th row of A. At each optimization step of the lower bound we
need to compute the square kernel matrix KZ and the cross kernel matrix KXbZ .
We can compute KZ as follows

KL
Z = ZZ> = AX̃X̃>A> = AKX̃A

>, (2.27)

where crucially the R×R matrix KX̃ can be precomputed and stored before the
optimization starts, i.e. while such computation requires O(DM2) time it needs
to be performed only once. Then, any subsequent computation of KZ and its
gradient wrt A costs O(RM2). Similarly, the computation of the cross covariance
matrix KXbZ reduces to

KL
XbZ

= XbZ
> = (XbX̃

>)A> = KXbX̃
A>, (2.28)

where again the computation of KXbX̃
can be done only once beforehand, i.e. by

pre-computing the whole N × R matrix KXX̃ and then selecting for any mini-
batch the corresponding block. Note also that for many datasets, as the majority
of the multi-label classification datasets with extreme input dimensionality, X is a
sparse matrix and therefore instead of keeping the full matrix KXX̃ in memory, we

could alternatively perform the matrix multiplication XbX̃
> at each mini-batch
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optimization step with low computational cost by taking advantage of the sparsity
of Xb. Thus, given that |Xb| ∼ O(M) the computation of KXbZ and its gradients
scales as O(RM2).

This representation trick can be also applied to any non-linear kernels, leaving the
computational time exactly the same as in (2.27) and (2.28) since we only need
to compute the euclidean distances between inputs. Therefore, by evaluating the
M ×M matrix DZ as

DZ = DGZ1>M + 1MDG>Z − 2KL
Z , (2.29)

where DGZ ∈ RM includes the elements of the main diagonal of KL
Z , and 1M is

an M -dimensional column vector containing ones, we can easily build the kernel
matrix KZ . Similarly, the cross covariance matrix between a mini-batch of inputs
Xb and Z can be computed using the |Xb| ×M matrix DXZ , defined as,

DXZ = DGXb
1>M + 1|Xb|DG>Z − 2KL

XbZ
(2.30)

with DGXb
∈ R|Xb| being the main diagonal of the matrix XbX

>
b .

The matrix A can be initialized by the M centroids given by k-means with M
clusters over the matrix US ∈ RN×R where U ∈ RN×R contains as columns the
left-singular vectors of X and S ∈ RR×R is a diagonal matrix with the R largest
singular values of X. Notice that both U and S are obtained by the singular-value
decomposition of X, such that US ≈ X, when we construct the basis X̃. Moreover,
in the case of using SVD, we can extra speed-up computations by the fact that
KX̃ is equal to the R-dimensional identity matrix due to the orthonormalization
property of the eigenvectors collected in V .



Chapter 3

One-versus-Each Multi-class
Classification
using Gaussian Processes

3.1 Introduction

Having already discussed in Section 1.1.2 the challenges of applying Gaussian pro-
cess models to multi-class classification tasks, such as non-conjugate likelihood
intractability and scalability issues, and then discussing in Chapter 2 how those
challenges can be addressed by a variational inference framework suitably tailored
for sparse GPs (Section 2.3.2), in this chapter we introduce a scalable way to per-
form multi-class classification with Gaussian Processes using Variational Inference
for arbitrarily large number of both classes and data points. The idea is based
on an approximation of the softmax representation as it was presented in Titsias
(2016). After that, there is an introduction to various methods that combine the
two parametrizations discussed in Section 2.4 of Chapter 2 with different likeli-
hoods. Lastly, a number of experiments on both real-world and synthetic datasets
demonstrate the different attributes of each method and provide an insightful com-
parison with other baselines.

3.2 The One-vs-Each lower bound

on the softmax

We start our discussion by introducing the derived lower bound and some of its
properties as presented in Titsias (2016), since it involves the bedrock of the deriva-
tion of our multi-class method. More specifically, Titsias (2016) based on the
observation that for any αk ∈ R≥0 with k = 1, · · · , K the following inequality
holds,

35
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1 +
K∑
k=1

αk ≤
K∏
k=1

(1 + αk), (3.1)

derived a lower bound on the softmax function.

Let us first define the softmax function S : {1, · · · , K} × RK → [0, 1] as

Sk(f1, · · · , fK) =
efk∑K
`=1 e

f`
, (3.2)

where f1, · · · , fK ∈ R are the score functions values and k ∈ {1, · · · , K}. This
is the multi-class generalization of the logit likelihood and it can be also seen as
a mapping from RK to the (K − 1)-simplex, i.e. it defines how probable is the
class k to happen, denoted by p(k) = Sk(f1, · · · , fK) (see also Section 1.1.2 for an
introduction to multi-class classification using the softmax function as likelihood).
Hence, combining 3.1 and 3.2, we have the following lower bound

p(k) ≥
∏
`6=k

σ(fk − f`), (3.3)

where σ(t) = 1/(1 + e−t) , the sigmoid function. Clearly, the above bound pro-
vides a computationally efficient way to approximate (3.2), since the presence of
the product factorization circumvents the need of computing the cumbersome nor-
malizing constant of softmax. Assume now a training dataset D = {x(i), y(i)}Ni=1 =
(X,y) where X ∈ RN×D is the design matrix containing the D-dimensional feature
vector x(i) at its ith and y is a N -dimensional discrete response vector where its
ith entry y(i) ∈ {1, · · ·K} labels the feature vector x(i). The log likelihood of the
data takes the following form,

log
N∏
i=1

p(y(i)) =
K∑
k=1

Nk log p(y(i)), (3.4)

where Nk denotes the number of observations belonging in class k. If we now
replace the score values f1, · · · , fK with parametrized1 score functions fk(x

(i); wk)
indexed by x(i) and parametrized by a D-dimensional real vector of weights wk (
e.g. fk(x) = w>k x ), having as goal to obtain the optimal parameters by optimizing
the likelihood, (3.4) can be written as

log
N∏
i=1

p(y(i)) =
N∑
i=1

[
fyi(xi; wyi)− log

(
K∑
k=1

efk(xi;wk)

)]
. (3.5)

1Later we generalize the notion of parametrized score functions using the Gaussian process
framework.
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We can notice that (3.5) can cope with large number of training data points via a
stochastic optimization scheme. Nevertheless, large number of classesK can render
the optimization procedure infeasible since we need to compute the normalization
constant at each optimization step. Fortunately, the inequality in (3.1) lets us
obtain a lower bound on the log likelihood which can effectively deal with both
large number of data points and classes. Thus, we have

log
N∏
i=1

p(y(i)) ≥ log
N∏
i=1

∏
`6=yi

1

1 + efm(xi;w`)−fyi (xi;wyi )

= −
N∑
i=1

∑
`6=yi

log
(
1 + ef`(xi;w`)−fyi (xi;wyi )

)
, (3.6)

where the new bound is now a double summation over both data points and labels
which paves the way for a doubly stochastic approximation scheme. Notice also
that each term in the sum depends on the pairwise score difference f`(xi; w`) −
fyi(xi; wyi). Last but not least, Titsias (2016) demonstrated the superiority of that
lower bound when compared to the Bouchard’s bound Bouchard (2007), another
bound on softmax in (3.2), which was employed for multi-class classification by
applying variational inference. Additionally, he provided compelling evidence that
the former bound achieves better performance than the latter one in practice while
the latter cannot achieve scalability of the magnitude of the former.

Having derived the lower bound of Titsias and justified its usefulness, we are now
ready to move from the parametrized score functions fk(xi; wk) to general functions
fk(·), where the use of the Gaussian process framework emerges naturally. This
generalization of Titsias’ work is one of our main contributions in this thesis.

3.3 From Parametric to non-parametric score func-

tions

In order to deal with distributions on infinite-dimensional objects, like arbitrary
functions fk, we introduce K (zero-mean) GP priors, one for each class, fk ∼
GP

(
0,k

(
x(i),x(j)

))
where k

(
x(i),x(j)

)
is a common2 kernel function parametrized

by a vector of hyperparameters θ although for notational simplicity, we omit in-
cluding it in the notation. We also denote by fk ∈ RN , the N -dimensional vector
including all the function values of fk(x) evaluated at all training inputs X, while
f (i) ∈ RK denotes all the function values of each fk(·) evaluated at data point x(i).
The full vector fk follows the Gaussian prior

2We can easily define different kernels for each class or a common kernel with different hyper-
parameters for each class. We avoid it in our definitions just to keep the notation uncluttered.
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p(fk) = N (fk|0, KX), (3.7)

where KX is the N × N covariance matrix, evaluated at the training inputs X
defined in previous section. In GP multi-class, we parametrize each likelihood
term p(y(i)|f (i)) following the definition we gave in 3.2, i.e.

p(y(i)|f (i)) =
ef

(i)
k∑K

m=1 e
f
(i)
m

. (3.8)

The joint density of observed class labels (given their inputs) and the latent func-
tion values is given by

p(y, f1, . . . , fK) =

(
n∏
i=1

p(y(i)|f (i))

)
K∏
k=1

p(fk). (3.9)

An equivalent way to write this joint density is to re-arrange the product over the
likelihood factors based on the class labels, so that

p(y, f1, . . . , fK) =
K∏
k=1

[(∏
i∈Nk

p(k|f (i))

)
p(fk)

]
, (3.10)

where Nk = {i|yi = k} indicates the subset of data points that belong to kth class.
Eq. (3.10) implies that we could train the model by stochastic mini-batch training
over classes (since the log of the joint would be written as a sum over labels) in
the same manner as it has been proposed in Hoffman et al. (2013). Unfortunately,
as we pointed out in Section 3.2, this cannot be realized in practice due to the
softmax individual likelihood factors p(k|f (i)) that couple the latent values f (n)

across all K classes. This is where the One-versus-each bound in (3.1) comes into
play and help us to overcome softmax’s computational impediment. In the next
two sections, we develop a stochastic variational inference framework that can deal
with both very large number of classes (see section 3.4) and very large number of
data points (see section 3.5).

3.4 Scalable variational inference over class

labels

The first ingredient of our method is the one-vs-each bound on the softmax given
by (3.1)
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p(y(i)|f (i)) ≥
∏
6̀=y(i)

σ
(
f
(i)

y(i)
− f (i)

`

)
, p̃(y(i)|f (i)). (3.11)

As we shall see shortly, this lower bound allows us to introduce what we call
stochastic partial class updates where the variational parameters of just two (or
very few) classes can be updated in a single stochastic optimization step. If we
plug in the above lower bound in (3.10) we obtain

K∏
k=1

[(∏
i∈Nk

∏
`6=k

σ(f
(i)
k − f

(i)
` )

)
p(fk)

]
=

K∏
k=1

[∏
6̀=k

(∏
i∈Nk

σ(f
(i)
k − f

(i)
` )

)
p(fk)

]
, (3.12)

where crucially we have re-arranged the order of the products
∏

n∈Nk
and

∏
`6=k.

This bound has a product form that could lead to scalable training over classes.
At this point, we introduce a variational distribution, based on the mean-field
variational family (see Section 2.2.2 of Chapter 2) with density given by

Q =
K∏
k=1

q(fk), (3.13)

where each factor q(fk) is a N -dimensional multivariate Gaussian. We omit to
specify the parametrization of each q(fk) since it would not affect the derivation
process of the the lower bound that we present. Similar to Section 2.2.1 of Chapter
2, we would like to approximate the true posterior

P̃ = p({fk}Kk=1|y), (3.14)

by the variational density Q in (3.13), where {fk}Kk=1 concisely denotes NK random

variables. This can be achieved by minimizing the KL-divergence KL[Q || P̃ ],
which leads to a lower bound on the log marginal likelihood p(y), as we showed
in Chapter 2, Section 2.2.1, and combined with the re-arrangement trick in (3.12)
takes the following form

EQ

log

∏K
k=1

[∏
6̀=k

(∏
i∈Nk

σ(f
(i)
k − f

(i)
` )
)
p(fk)

]
∏K

k=1 q(fk)


=

K∑
k=1

∑
` 6=k

∑
i∈Nk

EQ
[
log σ(f

(i)
k − f

(i)
` )
]
−

K∑
k=1

EQ
[
log

q(fk)

p(fk)

]
. (3.15)
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Notice this bound is a looser bound than the usual ELBO on p(y) since it involves
the One-vs-Each approximation on the data likelihood p(y(i)|f (i)). Since each Q is
given by (3.13), each term in the single sum simplifies to become an expectation
over fk,

EQ
[
log

q(fk)

p(fk)

]
= Eq(fk)

[
log

q(fk)

p(fk)

]
, (3.16)

which is precisely the KL divergence KL[q(fk)||p(fk)]. Regarding each ith term in
the first nested sum, we first observe that

log σ(f
(i)
k − f

(i)
` ) = − log(1 + e−(f

(i)
k −f

(i)
` )), (3.17)

where each f
(i)
k ∀k, is a scalar random variable that under Q follows the univariate

Gaussian distribution

q(f
(i)
k ) = N (f

(i)
k | m

(i)
k , s

(i)
k ). (3.18)

For computing all the moments of this normal distribution we can refer to Ap-
pendix A.1. Since we only care for the difference f

(i)
k−` = f

(i)
k −f

(i)
` , the variational

density takes the following form q(f
(i)
k−`) = N (f

(i)
k−` | m

(i)
k −m

(i)
` , s

(i)
k + s

(i)
` ), where

only four scalars are needed to define it. The whole data reconstruction term in
(3.15) simplifies to

−
K∑
k=1

∑
` 6=k

∑
i∈Nk

E
q(f

(i)
k−`)

[
log(1 + e−f

(i)
k−`)
]
. (3.19)

Plugging now (3.16) and (3.19) in (3.15) gives us the final lower bound

−
K∑
k=1

[∑
6̀=k

∑
i∈Nk

E
q(f

(i)
k−`)

[log(1 + e−f
(i)
k−`)] + KL[q(fk)||p(fk)]

]
. (3.20)

A stochastic unbiased estimate of the lower bound (3.20) can be obtained by
randomly sub-sampling one class k ∈ {1, . . . , K} and a remaining class ` ∈
{1, . . . , K}\{k} so that

−K

[
(K − 1)

∑
i∈Nk

E
q(f

(i)
k−`)

[log(1 + e−f
(i)
k−`)] + KL[q(fk)||p(fk)]

]
, (3.21)

is an unbiased stochastic estimate of (3.20). This has the interesting property
that depends solely on the variational factors q(fk) and q(f`) associated with two
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different classes. Thus, a stochastic gradient ascent step only requires comput-
ing and updating these two factors. Furthermore, it is worth mentioning that

the expected value E
q(f

(i)
k−`)

[
log
(

1 + e−f
(i)
k−`

)]
in the summation of (3.21) can be

accurately approximated using Gauss-Hermite quadrature (Liu and Pierce, 1994)
since the expectation is a univariate integral which is much easier than the high
dimensional integrals encountered in non-conjugate marginal likelihoods. Another
way to approximate such integrals and their gradients would be by using unbi-
ased stochastic estimates, e.g. a naive Monte Carlo estimate that samples from
q(f

(i)
k−`) as suggested in Titsias and Lázaro-Gredilla (2011). In practice though,

we found that Gauss-Hermite quadrature performs well, so we adhered to that
approximation method.

It is straightforward to extend the above stochastic estimate to include more sam-
ples, e.g. from the set of remaining classes, or use importance sampling to reduce
variance in class imbalanced problems; however, we did not conduct any research
on that direction in this thesis. Finally, every time that a computation of (3.21)
and its gradients is required, we have to encounter the adverse O(N3) scaling.
Given that burden, in the next section, we present a scalable way to deal with it
effectively.

3.4.1 Partial class updates in a point estimation setting

Partial class updates can be also applied in a simple point estimate setting, such as
regularized/penalized maximum likelihood. Specifically, considering the paramet-
ric score functions introduced in section 3.3, let the functions fk(x) be not random
but parametrized according to fk(x) = wT

kφ(x) where φ(x) is a fixed determin-
istic feature vector (e.g. in the simplest case φ(x) = x), and wk are class-specific
parameters. Each wk is assigned a prior, e.g. log p(wk) = −λ

2
||wk||2+const. By us-

ing the one-vs-each lower bound on the softmax likelihood we obtain the following
lower bound on the regularized log likelihood

−
K∑
k=1

[∑
6̀=k

∑
i∈Nk

log(1 + e−(wk−w`)
Tφ(xi)) +

λ

2
||wk||2

]
. (3.22)

An unbiased stochastic estimate can be obtained by sub-sampling one class k and
a remaining class ` exactly as done previously. Further, it is also possible to sub-
sample mini-batches of training instances, i.e. to pick Bk ⊆ Nk so that Bk is a
subset of data all belonging to the subsampled class k, and then construct the
unbiased estimate
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−K

[
(K − 1)|Nk|
|Bk|

∑
i∈Bk

log
(

1 + e−(wk−w`)
Tφ(xi)

)
+
λ

2
||wk||2

]
. (3.23)

This leads to a partial class stochastic step, where only two parameter vectors
(wk,w`) are updated in a single gradient ascent iteration. 3.23 is exactly the
method used for the experiments in Titsias (2016) and we refer to this as OvsE-
lin method in the next of this chapter. The implementation of the above scheme
is straightforward.

3.5 Scalable variational inference over data points

To deal with extreme number of training data we consider the variational inference
method based on inducing variables as described in Chapter 2, section 2.3.2, we
use similar derivation steps as Titsias (2009), Hoffman et al. (2013), and Hensman
et al. (2015b) to achieve that. More specifically, for each latent function, we
introduce a vector uk ∈ RM of inducing variables. We assume a separate set of
inducing inputs Zk ∈ RM×D for each class k where M is the number of inducing
inputs per class so that

p(uk) = N (uk|0, KZk
), (3.24)

and KZk
is the M ×M kernel matrix obtained by evaluating the kernel function

at the inducing inputs Zk. By expanding now the joint density with the inducing
variables we have

K∏
k=1

[(∏
i∈Nk

p(k|f (i))

)
p(fk|uk)p(uk)

]
, (3.25)

where p(fk|uk) is the standard conditional GP prior and can be derived by using
the Gaussian identity described in A.1. Thus, we have

p(fk|uk) = N
(
fk|KXZk

K−1Zk
uk, KX −KXZk

K−1Zk
KZkX

)
, (3.26)

where KXZk
is the cross-covariance matrix between the training inputs X and

the inducing inputs Zk and KZkX = KT
XZk

. For notational convenience we write
f = {fk}Kk=1 and u = {uk}Kk=1. By employing now as density of the variational
distribution the following
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Q̂(f ,u) =
K∏
k=1

p(fk|uk)q̂(uk), (3.27)

where p(fk|uk) is the conditional GP prior and q̂(uk) is the density ofM -dimensional
Gaussian variational distribution over the inducing variables for class k, a bound
on the p(y) can be also derived using the same arguments as in previous section.
Notice that we added a ˆ symbol over each augmented distribution to differentiate
them with original distributions of the previous section. We keep this notation
through the rest of this chapter. The augmented posterior is now written as

P̂ (f ,u) = p({fk,uk}Kk=1|y). (3.28)

The minimization of KL[Q̂ || P̂ ] gives a similar lower bound as in (3.20), but
the KL-divergence terms are this time between q̂(uk) and p(uk) and the marginal
means and variances are calculated given the information of the inducing variables.
More specifically, the corresponding lower bound now is

EQ̂

log

∏K
k=1

[∏
` 6=k

(∏
i∈Nk

σ(f
(i)
k − f

(i)
` )
)
p(fk|uk)p(uk)

]
∏K

k=1 p(fk|uk)q̂(uk)


=

K∑
k=1

∑
6̀=k

∑
i∈Nk

EQ̂
[
log σ(f

(i)
k − f

(i)
` )
]
−

K∑
k=1

EQ̂

[
log

q̂(uk)

p(uk)

]
, (3.29)

which can be further written, using the same derivation steps of the previous
section, as

−
K∑
k=1

[∑
6̀=k

∑
i∈Nk

E
q̂(f

(i)
k−`)

[log(1 + e−f
(i)
k−`)] + KL[q̂(uk)||p(uk)]

]
. (3.30)

Despite its resemblance with (3.20), a different process must be followed in order
to calculate the marginal means and variances of the one-dimensional Gaussian
distributions q̂(f

(i)
k−`) in (3.30). We firstly need to marginalize out the inducing

variables for class k, i.e.

q̂(fk) =

∫
p(fk|uk)q̂(uk)duk, (3.31)

where this integral is analytically tractable due to a common-used Gaussian iden-
tity (A.1). Thus, the density of marginal variational distribution is q̂(f

(i)
k ) is Gaus-

sian so we have to calculate its scalar mean and variance. As usual, in order to
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compute its moments we need to predefine the form of the variational parametriza-
tion. For instance, given a FP, the density of the variational distribution of class
k is written as,

q̂(uk) = N (uk|mk, Sk = LkL
>
k ). (3.32)

where Lk is a M ×M lower triangular matrix. Therefore, each m
(i)
k and s

(i)
k are

given by

m
(i)
k = Qx(i)Zk

mk, (3.33)

s
(i)
k = k(x(i),x(i))−Qx(i)Zk

k(Zk,x
(i)) +Rx(i)Zk

R>x(i)Zk
, (3.34)

where Qx(i)Zk
= k(x(i), Zk)K

−1
Zk

and Rx(i)Zk
= Qx(i)Zk

Lk while equations (3.33) and
(3.34) are derived using a known Gaussian formula that can be found in A.1. The
defined parametrization allows us also to calculate the KL terms in (3.30), which
can be obtained by,

KL[q̂(uk) || p(uk)] =

∫
q̂(uk) log

q̂(uk)

p(uk)
duk

=
1

2

(
m>kK

−1
Zk

mk + tr
(
K−1Zk

Sk
)

+ log |KZk
| − log |Sk| −M

)
. (3.35)

Using the same arguments, we can derive the corresponding quantities of interest
for the PP as we similarly did in equations (2.23) and (2.24) (see Section 2.4 of
Chapter 2 for a more detailed discussion). We would like to mention that the PP
combined with the factorized variational density Q̂ can recover the covariance ma-
trix of the optimal variational distribution as described in Opper and Archambeau
(2009) and discussed in Chapter 2, Section 2.4. We do not provide the proof here
as it is given in the next Chapter in Section 4.4.6 in the more general multi-label
framework.

Having derived all the required quantities for the computation of the bound, we
can now demonstrate the corresponding unbiased stochastic estimate of (3.30) in
order to render computations feasible in cases of large-scale datasets. That is

−K

[
(K − 1)|Nk|
|Bk|

∑
i∈Bk

E
q̂(f

(i)
k−`)

[log(1 + e−f
(i)
k−`)] + KL[q̂(uk)||p(uk)]

]
. (3.36)

Hence, the whole derivation steps led us to a quantity in (3.36) that can be fully
scalable in terms of both number of class and data points since it is up to us to



45
One-versus-Each Multi-class Classification

using Gaussian Processes

predefine the (i) number of inducing inputs, (ii) the size of the mini-batch, and
(iii) the number of the sub-sampled classes. The computational complexity of this
method is discussed thoroughly in Section 3.7 later.

Having maximized the bound 3.36, we can use both the optimized hyperparameters
and variational parameters to make predictions on hold out data. For instance, if
we consider a single novel data point x(∗), the predictive distribution of y(∗) = k,
for some k ∈ {1, · · ·K} can be approximated by

p̃(y(∗) = k|y) ≈
∫
p̃(y(∗) = k|f (∗))q̂(f (∗))df (∗), (3.37)

where, as before, the K-dimensional vector f (∗) corresponds to the latent function
values of each class evaluated at x(∗) and the variational density q̂(f (∗)) is calculated
by marginalizing out the inducing variables u of Q̂ in (3.27), i.e.

q̂(f (∗)) =

∫
Q̂(f ,u)du. (3.38)

Despite the fact that the above integral has a closed form solution (see A.1), the
integral in (3.37) is not analytically tractable so we approximate it by Monte Carlo
integration where we draw samples3 from the K-dimensional isotropic Normal dis-
tribution where its mean vector and covariance matrix can be computed by using
equations (3.33) and (3.34) for the FP while the case of PP is similarly derived
as in Section 2.4. As we shall see later, the described One-vs-Each approximation
with GPs can achieve very promising results given its approximation nature.

3.6 Another surrogate for softmax

Another choice of modelling p(y(i)|f (i)), instead of the softmax function in 3.8, is
through the robust max function (Girolami and Rogers (2006); Hernández-Lobato
et al. (2011); Kim and Ghahramani (2003)) which gives the following likelihood,

p(y(i)|f (i)) =

{
1− ε, if y(i) = argmaxk f (i)

ε
K−1 , otherwise.

(3.39)

This likelihood translates as choosing class y(i) with probability 1− ε if the max-
imum value of the K-dimensional score vector f (i) is achieved at its y(i)-th entry.
If not then with probability ε, we choose randomly one of the remaining K − 1
classes. The parameter ε can be seen as a robustness threshold to outliers.

3In all experiments later, we draw no more than 1000 samples.
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Firstly we need to adjust this likelihood in the variational sparse GP framework
we presented before. Following the same derivation steps as in Sections 3.4 and
3.5, we find that the ELBO can be expressed as

N∑
i=1

∫
q̂(fi) log p(yi|fi)dfi −

K∑
k=1

KL[q̂(uk) ||p(fk)], (3.40)

where the variational density Q̂ is identical with (3.27). The main reason that
makes the robust max function appealing is the fact that all the one-dimensional
variational expectations with respect to q̂(fi) that appear in (3.40) can be easily
computed by one dimensional quadrature and the standard normal cumulative dis-
tribution function. Finally, as Girolami and Rogers (2006) argue, the multinomial
probit behaviour can be guaranteed by adding extra Gaussian noise to the latent
functions.

Once again, when it comes to predicting a new test point we need to approximate
the same integral as in (3.37). Nevertheless, we can omit employing Monte Carlo
integration since there is a more algorithmically elegant way to compute this quan-
tity as it is presented in Hernández-Lobato et al. (2011), where the K-dimensional
integral can be reduced to an one-dimensional integral. Thus, we have

p(y(∗) = k|y) =

∫
p(y(∗) = k|f (∗))q(f (∗))df (∗)

= (1− ε) EN (f
(∗)
k )|m(∗)

k ,s
(∗)
k )

∏
`6=k

Φ

f (∗)
k −m

(∗)
`√

s
(∗)
`

 , (3.41)

where Φ(·) is the standard normal cumulative distribution function and m
(∗)
l , s

(∗)
l

with l ∈ {1, · · ·K} are the variational means and variances, respectively, of each
class l. Similarly, as discussed in 3.4, all the moments can be computed exactly,
given the chosen variational distribution parametrization (see also Chapter 2 Sec-
tion 2.4). The final one-dimensional integral is now able to be effectively approxi-
mated by Gauss-Hermite quadrature.

This likelihood has been successfully applied to multi-class classification on a Vari-
ational Sparse Gaussian Processes framework (Matthews, 2017; Hensman et al.,
2015a) and thus, as we shall see in the Experiments Section later, it is our main
baseline comparison with our proposed One-versus-Each method of Section 3.5.
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3.7 A collection of multi-class classification meth-

ods

Having derived previously (Section 3.5) an approximation method for multi-class
classification and introducing an alternative way to parametrize the variational
density q̂(u) (Section 2.4), we are able to “generate” six different multi-class clas-
sification methods that they are probed meticulously in Section 3.8. All those six
methods have emerged by combining two different likelihoods, the robustmax and
One-vs-Each one, with the two variational density’s parametrizations while two of
methods have also considered the case of a shared set of inducing inputs across all
K different classes. We present now the following methods:

OvsE-p: This is the One-versus-Each method described in Section 3.5 where each
variational density qk is parametrized by the parsimonious scheme we introduced
in Section 2.4.

OvsE-f: Same method as above; however, each variational density qk is parametrized
by O(M2) parameters.

OvsE-p-sh: Here we use the One-versus-Each method with PP of the variational
distributions. Nevertheless the set of inducing inputs Z is shared across all classes
while the hyperparameters set is different for each of them.

OvsE-f-sh: The One-versus-Each method is combined with the FP of the varia-
tional distributions now. Both the set of inducing inputs Z and hyperparameters
are common for all classes.

RM-p: This is where we use the robustmax function accompanied with the PP. In
the robustmax case, we always use shared inducing inputs and hyperparameters
as well. This is a combination of our work and Matthews (2017); Hensman et al.
(2015a).

RM-f: Lastly, the robustmax function is used in tandem with the FP as it was
introduced in Matthews (2017); Hensman et al. (2015a).

As we mentioned before, all of the above methods are employed on a Variational
Inference framework suitably designed for Sparse Gaussian Process models. Thus,
we can apply the theory presented in Chapter 2, Section 2.4 to each of the methods
for evaluating their time complexity needed for each optimization step of their
corresponding lower bounds (and their derivatives). More specifically, for the
One-vs-Each based methods (i.e. OvsE-p, OvsE-f, OvsE-p-sh, and OvsE-f-
sh) we need to perform two Cholesky decompositions, one for the randomly chosen
class k and one for the other class ` on the corresponding kernel matrices KZk

and
KZ`

, consequently, which scales as O(M3). This is enough for computing the KL
term KL[q(uk)||p(uk)]. For calculating the one-dimensional integrals due to the
expectation terms in (3.30), we only need to compute the marginal mean and
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Method Time Complexity Storage

OvsE-p O(M3 + |B|M2) O(KMD)
OvsE-f O(M3 + |B|M2) O(KM2 +KMD)

OvsE-p-sh O(M3 + |B|M2) O(KM +MD)
OvsE-f-sh O(M3 + |B|M2) O(KM2 +MD)

RM-p O(KM3 +K|B|M2) O(KM +MD)
RM-f O(M3 +K|B|M2) O(KM2 +MD)

Table 3.1: Time complexity and storage requirements for each of the described
methods in Section 3.7. M is the number of inducing inputs, K the number of
classes, and |B| the mini-batch size.

variance evaluated at each data point x(i), and then just apply Gauss-Hermite
quadrature using a few4 Gauss Hermite quadrature points. This can be done in
O(M3), therefore, for equally sized mini-batches across all classes, i.e. |B| = |Bk|,
∀ k, we needO(M3+|B|M2). By choosing a mini-batch size such that |B| ∼ O(M),
the overall time complexity scales as O(M3).

With a similar argument, but using different mathematical expressions, we can
show that the time complexity appears in RM-f is O(M3+K|B|M2). Notice now,
that we need to compute the marginal means and variances for all K Gaussian
process instead of just two as before, for a specific data point x(i). This is a
direct consequence of abandoning the One-vs-Each approximation in favour of the
exact5 likelihood. Essentially, this means that in case of large number of classes,
the term K|B|M2 dominates and renders the method computationally prohibitive,
unless we dramatically reduce the mini-batch size which inevitably increases the
variance of the stochastic estimates of ELBO. Nevertheless, the RM-p method
is the one that scales the worst since it requires O(KM3 + K|B|M2). The main
culprit of this adverse computational time is the sparse parametrization of the
variational distribution since K Cholesky decompositions are calculated this time
for computing the ELBO. All the computational time complexities of the methods
accompanied by their corresponding space complexities are summarized in Table
3.1. Lastly, we would like to mention here that an extra bias term bk ∈ R is added
to each of the K latent functions to increase model’s flexibility for all the above
methods and they are treated as variational parameters during the optimization
of the lower bound.

4Practically, in all experiments we found that a number of ten Gauss Hermite quadrature
points suffices to approximate those integrals accurately

5Exact in the sense that we do not need to perform any approximation for computing it.
However it does not coincide with the exact likelihood of One-vs-Each which of course is softmax.
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3.8 Experiments

3.8.1 Datasets

We carry out experiments on a world-dataset which has been widely used in the
machine learning field, the MNIST dataset LeCun et al. (1998). The MNIST
dataset has been employed in several classification models, LeCun et al. (1998);
Keysers et al. (2007); Romanuke (2016), providing us useful comparisons for a
high-dimensional6 dataset. This is the main reason we deploy it here for our
experiments. Finally, a 2-dimensional synthetic dataset was also employed for em-
phasizing the superiority of the non-parametric (Section 3.3) over the parametric
(Section 3.4.1) One-vs-Each method.

Regarding the datasets, MNIST consists of 28× 28 grey scale images depicting a
digit from zero to nine. It is split in the standard training and test datasets, with
60000 and 10000 data points respectively. Further, to make classification feasible,
we deskewed the images of MNIST as it is typical for this dataset (LeCun et al.,
1998). Finally, the synthetic data is highly non-linear dataset in 2 dimensions.
More specifically, to generate the dataset, we considered 5 different classes where
the data points of each class lies in the circumference of the corresponding circle
of a given radius. We also add independent noise for each of the data points. Each
class has in total 1500 data points where 1000 of them are used for training and
the rest of them for testing performance.

Finally, we would like to mention that all the experiments are conducted by em-
ploying our own implementation for any Gaussian-Process-based model. This was
coded up from scratch in Python, combined with the open-source software library,
Tensorflow (Abadi et al., 2016), due to its highly efficient automatic differentiation
tools and optimizers as well. Moreover, many parts of the code have been based on
the excellent work of the highly-efficient Tensorflow-based python package, GPflow
(Matthews et al., 2017). A code snippet based on Tensorflow that implements the
lower bound in (3.36) using the PP can be found in C.2 of Appendix.

3.8.2 Synthetic data

A depiction of the described dataset can be found in Figure 3.1. For this dataset,
we test the OvsE-lin and OvsE-p methods, and then we evaluate their perfor-
mance.

Unsurprisingly, the point estimation method utterly fails on this dataset, giving
an extremely high error rate of 67.76%; even greater than just predicting the class
labels randomly. On the other hand, the non-parametric case manages to achieve

6We shall see that the perspective of a high dimensional dataset we espouse in this chapter
is way different than the one in Chapter 4.
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Figure 3.1: The Synthetic dataset from Section 3.8.2.
.



51
One-versus-Each Multi-class Classification

using Gaussian Processes

0 250 500 750 1000 1250 1500 1750 2000
Epochs

10

20

30

40

50

60

70

80

90

Er
ro
r r
at
e(
%
)

Figure 3.2: Evolution of the error rate throughout epochs for the synthetic dataset
in Section 3.8.2. The blue line corresponds to non-parametric score functions while
the red one to linear score functions.

.

7.08% error rate by using a Squared Exponential kernel. We run both of the
methods for 2000 epochs and we plot the evolution of the error rate as a function
of the number of epochs in Fig. 3.2. Apparently, this demonstrates the importance
of our proposed generalization into the space of the non-parametric functions which
allows to adjust the flexibility of the model via the kernel function’s choice, and as
we shall see in next sections, its usefulness when applied on real-world datasets.

3.8.3 Multi-class Classification using MNIST

Due to its high popularity, MNIST provides us several results from different meth-
ods to compare it. Nonetheless, we mostly focus on comparing the One-versus-
Each method (OvsE) with the robustmax function described in Section 3.6 which
has been proven highly effective in the past few years.

For all the experiments here, we employ the SE kernel (Eq. (1.4) of Chapter 1)
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Method OvsE-p OvsE-f OvsE-p-sh OvsE-f-sh RM-p RM-f

Error Rate 3.68 3.28 6.8 4.04 3.9 2.6
nlpd 0.1377 0.1128 0.2295 0.3578 0.1192 0.081

Time 63.72 97.65 53.60 86.42 220.5 141.1
Memory 1.834 2.378 1.365 1.546 1.902 2.162

Table 3.2: Error rate (%) (given by (3.42)) and average negative log predictive
density (nlpd) (given by (3.43)) for six different methods using M = 100 inducing
inputs. Training time (seconds/epoch) and memory footprint in gigabytes (GB)
are also reported for the same six methods, however M = 1000 used for those cases.
The first four methods (left to right) methods are all relied on the methodology of
Section 3.5 and their differences lie in the parametrization choice, as discussed in
2.4, and the shared or separate set of inducing inputs used. The last two methods,
RM-p and RM-f, are based on the robustmax likelihood of Section 3.6 and the
two different parametrizations where for both cases all classes share a common
set of inducing inputs Z. Therefore we have method (i) OvsE-p where each class
has its own set of inducing inputs Zk and the parsimonious parametrization (PP)
is used, (ii) OvsE-f where each class has its own set of inducing inputs Zk and
the full parametrization (FP) is used, (iii) OvsE-p-sh where all classes share a
common set of inducing inputs Z and the PP is used, (iv) OvsE-f-sh where all
classes share a common set of inducing inputs Z and the FP is used, (v) RM-p
where the PP is used, and (vi) RM-f where the FP used. For all those methods
a SE kernel is employed (with single lengthscale).

with a single lengthscale for all input dimensions. The reason we prefer this kernel
instead of some other, more flexible kernel (e.g. ARD as defined in Eq. (1.4) of
Chapter 1 using Λ2 as distance measure), is to allow similar comparisons with other
GP-based methods that have reported results for this Dataset. Consequently, we
dot not expect to achieve the highest possible performance on this non-linear high
dimensional dataset, since the curse of dimensionality (Marimont and Shapiro,
1979) renders the euclidean distances in those spaces extremely similar, making
the supervised learning task more challenging. For robustmax-based methods
RM-p and RM-f, we set the outlier threshold ε equals to 10−3, as it is suggested
in Hensman et al. (2015a).

Regarding experimental set-ups for all the previously described methods, we chose
M = 100 inducing inputs and mini-batches of size 1000 (i.e. |B| = |Bk| = 1000,
∀ k). Moreover, the number of epochs for the OvsE-p, OvsE-p-sh, and OvsE-f-
sh was set equal to 10000 while for RM-p and RM-f, 100. This difference of the
number of epochs is justified by the fact that One-vs-Each methods are based on
the lower bound in (3.36), where the first sum is over classes, while in the robust
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max methods’ lower bound, the first sum runs over data points (see (2.18)) which
are much larger in number than K. Further, in order to reduce the stochastic
effect of the methods on the reported results and facilitate comparisons, we choose
to initialize the variational parameters and hyperparameters as well, with identical
values for all the reported methods, while at the same time, we seed the random
generator with the same value. We employ the Adam optimizer (Kingma and
Ba, 2014) for all the optimization problems in this Section since we found to be
successful in practice. Finally, for running all the aforementioned methods, a local
machine with 16 GB RAM and an Intel i7-4720HQ CPU @ 2.6GHz was used.

Table 3.2 shows the corresponding error rates and average negative log predictive
density (nlpd) for each of the methods, where their values are computed by

error rate =
1

N∗

N∗∑
t=1

I(y(t) 6= ŷ(t)), (3.42)

nlpd =
1

N∗

N∗∑
t=1

p(y(t)|y), (3.43)

where N∗ denotes the number of the test data points and I(·) is the indicator
function while y(t) and ŷ(t) are the ground truth and predicted class label, re-
spectively. RM-f is able to achieve the lowest error while the OvsE-p-sh the
highest. Although, unsurprisingly, it is RM-f that has the lowest nlpd again, the
largest value comes from the OvsE-f-sh indicating that we could have methods
that have low error rates but relatively higher nlpd due to the predictive variance.
We can also notice that the PP always achieves inferior performance than its full
counterpart, regardless the choice of the likelihood. Nevertheless, our propounded
One-vs-Each method is proved to be very competitive comparing to the RM-based
methods, leading to similar results, in terms of both error rate and nlpd. This is
a promising result since it provides us a Bayesian principled way to successfully
address classification problems where the number of both classes and data points is
extremely large. The only potential drawback of the One-vs-Each methods is that
their performance is highly connected with different sets of inducing inputs per
class. Admittedly, we see a performance deterioration for the OvsE-p-sh where
there is a shared set of inducing inputs across classes. This could be restricting in
cases where the number of classes is large since we would need O(KMD) param-
eters for the inducing inputs storage7. Nevertheless, if we opt for a FP combined
with shared Z, then the error is much closer to OvsE-p and OvsE-f, although
we might need to be more conservative with increasing the number of the inducing
inputs M , since O(KM2) storage is required to parametrize all the variational
distributions.

7Here we ignore the computational effect of the input dimensionality. Nonetheless, it can be
proven burdensome in cases where D � 1000 and it is in detail in Chapter 4.
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Method Inital values OvsE-p OvsE-f RM-p RM-f

` 10.0 22.422 52.977 43.103 54.585
σ2
f 1.0 1.3992 2.4214 11.079 0.1359

Table 3.3: Values of the initial and optimized hyperparameters of the SE kernel for
each method in Table 3.2. Those values correspond to the methods used M = 100
in Table 3.2.

We also consider both computational time and memory footprint for all the afore-
mentioned methods where the results are also demonstrated in Table 3.2. In this
case, we increase the number of the inducing inputs to M = 1000 in order to have
a better understanding of the results. We run each of the methods for 60 itera-
tions which corresponds to one complete scan (one epoch) of the training dataset
in the case of the non-One-vs-Each methods and batches of 1000 data points. As
it is expected from the complexity analysis in Table 3.1, the most computation-
ally demanding method is RM-p, since for each optimization step the stochastic
computation of ELBO with its corresponding unbiased estimates of its gradients,
requires O(KM3 + |B|M2). We can also notice how the memory footprint varies
across the methods, providing us an insightful way to discern the scalability/perfor-
mance trade-off that emerges with the use for each of those methods. By observing
the memory footprints, it is worth mentioning at this point, the high performance
we obtain by using Tensorflow in our implementation. This can be observed by
investigating the memory requirements of OvsE-f. Admittedly, it does not re-
quire more than 2.378 GB memory space in RAM for computing the value of the
objective function and then temporarily storing its derivatives for updating all the
parameters, despite the fact that the number of all the variational parameters we
need to optimize here is 12855000. This is clearly an optimization task that is
not encountered frequently in Bayesian frameworks and it is more reminiscent of
training very large neural networks.

In spite of initializing all the methods with same values for their correspond-
ing hyperparameters8, the optimized hyperparameters are much different for each
method. For instance, the RM-p’s optimized kernel variance is found to be more
than 100 times larger than RM-f’s, while, on the other hand, its corresponding
length-scale is smaller than RM-f’s one. A similar behaviour is also observed be-
tween OvsE-p and OvsE-f. However, their optimized variances does not exhibit
so large differences as before.

Next, we present how the inducing inputs Z move from their initialized positions
to the optimized ones. The very nature of the dataset allows us to visualize in-
ducing inputs as pictures and observe their connection with the optimized ones.

8And variational parameters as well, when that was feasible.
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Method Reference

Linear classifier LeCun et al. (1998)
OvsE-lin Titsias (2016)

GP Latent Variable Model Gal et al. (2014)
1-Nearest Neighbour Wilder (1998)

OvsE-f this work
GP Classifier RBF kernel 1 (SVI) Dezfouli and Bonilla (2015)
GP Classifier RBF kernel 2 (SVI) Hensman et al. (2015a)
GP Classifier ARD kernel (EP) Hernández-Lobato et al. (2016b)

RM-f this work
SVM RBF kernel LeCun et al. (1998)
Convolutional GP Van der Wilk et al. (2017)

Deep convolutional network Ciresan et al. (2011)

Table 3.4: References for the methods used in Table 3.5. SVI stands for Stochastic
Variational Inference and EP for Expectation-Propagation.

This has been investigated in Hensman et al. (2015a) and Hensman et al. (2015b),
where they have showed that the positions of the optimized inducing inputs tend
to approach the classification decision boundary. We also confirm that behaviour
for all the used methods here. Figures 3.7 , 3.8 , and 3.9 show 2 different induc-
ing inputs, before and after optimization, for 3 different pairs of methods, namely
OvsE-p vs OvsE-f, OvsE-p-sh vs OvsE-f-sh, and RM-p vs RM-f, respec-
tively. The inducing inputs of each pair are initialized by k-means clustering. In
the case of the OvsE-p-OvsE-f pair, we run k-means 10 different times, one for
each class, using as data points for each clustering only those that belong in the
corresponding class. As we can see, regardless the choice of the method, inducing
inputs move away from their initialized values, heading towards the classification
boundary. For example, in Fig. 3.7 both OvsE-p and OvsE-f are initialized with
same k-means center that looks like a three. Nevertheless, after optimization, the
inducing input optimized by OvsE-p bears similarities with a six, an eight and a
five, while for the OvsE-f case it resembles both a nine and a five digit.

We continue by showing a diversified collection of methods are applied on MNIST,
providing both references and error rates in tables 3.4 and 3.5, respectively. For
both methods OvsE-f and RM-f, we use again the isotropic Squared Exponential
kernel, but this time we dramatically increase the number of inducing inputs to
M = 3000. To the best of our knowledge, this is the first time that a Sparse
Gaussian Process model is trained with that number of inducing inputs. For
instance, we note that OvsE-f, which is the most memory demanding method,
needed no more than 11 GB to run, meaning that a standard desktop machine
could be employed. Nevertheless, due to the large time budget we offered for
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those two experiments, they run on an Intel Xeon Processor E5-2667 v3 server.
Regarding the error rates of table 3.5, the convolutional network, as expected,
achieves the best possible performance9 of all methods. It is encouraging that
RM-f, with a simple kernel function as the SE, managed to be the second most
competitive GP-based method. Even our proposed method OvsE-f, performs
relatively well, given its approximating nature, having an error rate very close to
other Sparse GP models like Dezfouli and Bonilla (2015).

Last but not least, we provide experimental evidence in favour of our choice of
using Adam throughout all the experiments. More specifically, we test four of
the most popular algorithms for stochastic optimization, namely, Adam (Kingma
and Ba, 2014), RMSProp (Hinton et al., 2012), Adagrad (Duchi et al., 2011), and
Adadelta (Zeiler, 2012). All of the four algorithms are employed to optimize the
ELBO for the RM-f while we set the M = 20, |B| = 5000, and epochs = 200. We
also perform a grid-search for the learning rate parameter of each algorithm, using
the following set of values, {0.1, 0.05, 0.01, 0.005, 0.001}. All the initial variational
parameters and the kernel hyperparameters values are common when we run each
of the algorithms. Adam and RMSProp appear to have almost similar performance
while Adadelta does not have competitive results, despite its successful use in the
past for similar models (Hensman et al., 2015b). Further, our experiments show
that Adam is more robust than the other algorithms with respect to different
learning rate values.

3.9 Conclusion

In this chapter we try to address the scalability issues that emerge in multi-class
classification problems using Gaussian Process models, in terms of both number of
training data points and classes. Driven by the One-versus-Each approximation of
Titsias (2016), we extend this idea by generalizing the parametrized score functions
to arbitrary random functions via Gaussian process priors and then inspired by
Hoffman et al. (2013) and Hensman et al. (2015b) this gives birth to a new scalable
method that can efficiently cope with both arbitrarily large number of classes and
data. This extension incorporates the flexibility provided by Gaussian processes
and it is verified by Section 3.8 which shows the superiority over linear score
functions used in Titsias (2016). Moreover, we see that our proposed method is
able to attain predictive performance similar to other GP-based methods in the
literature despite its approximating nature (Section 3.8.3), even though slightly
lower. Regarding the two parametrizations, our proposed PP and the conventional
FP, we observe that in general, methods that utilize the FP are able to achieve
better performance than those that use the PP. Therefore there is a trade off

9To be precise, the lowest ever achieved error rate on MNIST is 0.23 in Cireşan et al. (2012).
However, there is an extra preprocessing step for width normalization of the pictures, something
that is not present in the last reported method of table 3.4.
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Method Error rate (%)

Linear classifier 12.0
OvsE-lin 7.4

GP Latent Variable Model 5.95
1-Nearest Neighbour 3.09

OvsE-f 2.9
GP Classifier RBF kernel 1 (SVI) 2.51
GP Classifier RBF kernel 2 (SVI) 1.96
GP Classifier ARD kernel (EP) 1.80

RM-f 1.63
SVM RBF kernel 1.4
Convolutional GP 1.17

Deep convolutional network 0.35

Table 3.5: A summary of several methods, both GP-based and others, with their
corresponding error rates for the MNIST dataset. Some of the results can be found
at Lecun’s website (LeCun, 2019).

Algorithm Optimal learning rate Error rate

AdaDelta 0.05 14.0
AdaGrad 0.05 5.41
RMSProp 0.005 4.93
Adam 0.001 4.89

Table 3.6: Performance comparison using different algorithms for optimization of
RM-f and their corresponding optimal learning rate.
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Figure 3.3: Error rates for the OvsE-p as a function of the number of inducing
inputs M . The red vertical line indicates the error rate of using linear score
functions, as described in Section 3.4.1 and Titsias (2016).
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Figure 3.4: (a) Error rates per epoch comparison between OvsE-p and OvsE-f
and (b) Evolution of the lower bound per iteration between OvsE-p and OvsE-f.
Red color indicates use of OvsE-p, while blue color use of OvsE-f.



60
One-versus-Each Multi-class Classification

using Gaussian Processes

0 250 500 750 1000 1250 1500 1750 2000
Epochs

0

5

10

15

20

25

30

35

40

Er
ro
r r
at
e(
%
)

(a)

0 2500 5000 7500 10000 12500 15000 17500 20000
Iterations

−140000

−120000

−100000

−80000

−60000

−40000

−20000

Lo
we

r b
ou

nd

(b)

Figure 3.5: (a) Error rates per epoch comparison between OvsE-p-sh and OvsE-
f-sh and (b) Evolution of the lower bound per iteration between OvsE-p and
OvsE-f. Red color indicates use of OvsE-p-sh, while blue color use of OvsE-f-
sh.
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Figure 3.6: (a) Error rates per epoch comparison between RM-p and RM-f and
(b) Evolution of the lower bound per iteration between RM-p and RM-f. Red
color indicates use of RM-p, while blue color use of RM-f.
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Figure 3.7: Visualization of the inducing inputs. Each row corresponds to different
inducing point. Left: Initialized inducing input with a k-means center. Center:
Optimized inducing point by using OvsE-p. Right: Optimized inducing point by
using OvsE-f.
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Figure 3.8: Visualization of the inducing inputs. Each row corresponds to different
inducing point. Left: Initialized inducing input with a k-means center. Center:
Optimized inducing point by using OvsE-p-sh. Right: Optimized inducing point
by using OvsE-f-sh.
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Figure 3.9: Visualization of the inducing inputs. Each row corresponds to different
inducing point. Left: Initialized inducing input with a k-means center. Center:
Optimized inducing point by using RM-p. Right: Optimized inducing point by
using RM-f.
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between number of variational parameters and model’s flexibility. Finally, we
show that Gaussian process approximation methods have inferior performance
than neural networks; however, we run the method of Hensman et al. (2015b)
with a large number of inducing inputs using our own implementation and we
achieve the highest ever reported accuracy for a GP-based method using a simple
SE kernel with a single lenghtscale for the MNIST dataset.



Chapter 4

Extreme Multi-label Inference
using Gaussian Processes

4.1 Introduction

This chapter is mainly focused on introducing a scalable way of employing Gaus-
sian Process models on multi-label classification problems. It is discussed how
multi-output GP models can be transformed to a suitable multi-label classifica-
tion scheme and different perspectives of scalability issues are addressed. The
proposed methodology is thoroughly tested on a number of both small and large-
scale datasets where some of them involve more than (i) 16×105 input dimensions,
(ii) 17× 105 number of data instances, and (iii) 3× 105 number of labels.

4.2 From multi-output GP regression to multi-

label classification

Multi-output regression using Gaussian processes has a long history. The idea of
capturing output correlations between multiple single-output GP regression mod-
els has been described in Cressie (1992) (Section 3.2.3), where a general framework
for this problem was introduced under the name co-kriging and focused on geo-
statistics applications. Since then, there is voluminous research on the subject
where it can be found in the work of Williams and Rasmussen (1996); Goovaerts
et al. (1997); Lawrence (2004); Teh et al. (2005); Boyle and Frean (2005); Alvarez
and Lawrence (2009); Álvarez et al. (2010); Titsias and Lawrence (2010); Álvarez
and Lawrence (2011); Wilson et al. (2011); Skolidis and Sanguinetti (2011); Al-
varez et al. (2012); Nguyen et al. (2014); Dai et al. (2017); Moreno-Muñoz et al.
(2018) among many others. In most of the cases, the GP-based multi-output
models produce correlated outputs by mixing a number of independent latent
Gaussian Processes. This problem is well known in geostatistics community as the

66
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linear model of coregionalization (Goovaerts et al., 1997). This kind of models has
been employed on a Bayesian framework where a prior has been imposed over the
mixing coefficients (Titsias and Lázaro-Gredilla, 2011). Further work on this direc-
tion, can be found in (Nguyen and Bonilla, 2013; Wilson et al., 2011; Alvarez and
Lawrence, 2009; Álvarez and Lawrence, 2011) where most advanced techniques are
developed which are based on input-dependent coefficients (Nguyen and Bonilla,
2013; Wilson et al., 2011) or convolving processes (Alvarez and Lawrence, 2009;
Álvarez and Lawrence, 2011), and scalability addressing methods (Nguyen et al.,
2014). Multi-output GP models have been used in an unsupervised manner for
non-linear dimensionality reduction (Lawrence, 2004; Titsias and Lawrence, 2010)
while their theory has also been applied on hierarchical models of multiple GPs
(Damianou and Lawrence, 2013).

Most of the previous work mentioned on multi-output (or multi-task) GPs has in
common that it was mainly focused on regression problems, except Teh et al. (2005)
and Skolidis and Sanguinetti (2011), without taking into account discrete or more
specifically binary outputs which demands reformulation of the likelihood. This
consideration of binary outputs leads naturally to a GP-based method for multi-
label learning where a Bernoulli or a binary regression type likelihood is required.
That is exactly what we discuss in the next section where the main model is
introduced with a factorized Bernoulli over the labels employed as likelihood to
cope with the binary nature of the task. Nevertheless, the pertinent question that
arises here is how the model would be able to capture correlations among labels?
The answer comes from applying the Semiparametric latent factor model (SLFM)
proposed by Teh et al. (2005). Note that this was the only method that was applied
to a multi-label synthetic dataset. Despite its simplicity, SLFM is suitable for
large-scale paradigms since it lets us adjusting the number of the latent Gaussian
Processes accordingly, while at the same time simple linear algebra operations are
needed for its computation which can be performed fast and efficiently.

At this point we would like to add that there is one more recently published work
(Moreno-Muñoz et al., 2018) that became aware to us during the writing of this
thesis, and it can be seen as a generalization of our proposed model in Section 4.3.
The model introduced in Moreno-Muñoz et al. (2018) is able to consider outputs
than can take both discrete and continuous values at the same time. However,
this work is not concerned with large-scale datasets and its associated publicly
available code1 is not suitable to cope with datasets of the scale we use here.

4.3 The Multi-Label GP Factor Model

We start our discussion by introducing, as usual, a training datasetD = {x(i),y(i)}Ni=1

where each x(i) ∈ RD is the input vector while y(i) ∈ {−1, 1}K is now the binary

1https://github.com/pmorenoz/HetMOGP
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vector that corresponds to the class labels assigned to x(i), such that yk = 1 indi-
cates presence of the k-th label while yk = −1 indicates absence. We collectively
denote all input vectors by X ∈ RN×D and the binary labels by Y ∈ {−1, 1}N×K
so that rows of these matrices store respective data points. We wish to model
these data using a flexible probabilistic model that captures the correlation be-
tween different labels. As it was presented previously, a multi-label extension of
the SLFM is considered which combines a linear latent variable model with GPs.
Specifically, SLFM is a general-purpose multi-output GP model Teh et al. (2005);
Álvarez and Lawrence (2011); Alvarez et al. (2012) that uses a small number of
P latent GPs (factors) to generate the K outputs through a linear mapping. The
full hierarchical model for generating the training examples is,

hp ∼ GP(0,k(x(i),x(j))), p = 1, . . . , P, (4.1)

f (i) = Φh(i) + b, i = 1, . . . , N, (4.2)

y(i) ∼ p(y(i)|h(i)) =
K∏
k=1

σ(y
(i)
k f

(i)
k ), i = 1, . . . , N, (4.3)

where hp denotes a latent function drawn from a GP with zero-mean and kernel
function k(x(i),x(j)) that depends on kernel hyperparameters θ (although θ is sup-
pressed throughout to keep the notation uncluttered). We refer to that model as
the Multi-Label GP Factor Model (MLGPF). Apparently, we could consider dif-
ferent kernels kp(x

(i),x(j)) with different sets of hyperparameters θp for each of the
latent Gaussian Processes, however, this would increase both computational time
and storage requirements without providing any significant performance improve-
ment in practice and thus, we omit its use. Further, h(i) = (h

(i)
1 , . . . , h

(i)
P )> ∈ RP

denotes the vector of all function values evaluated at input x(i), i.e. h
(i)
p , hp(x

(i)),
while the parameters Φ ∈ RK×P and b ∈ RK correspond to the factor load-
ings matrix and the bias vector of the linear mapping, respectively. By using
these parameters, the latent vector h(i) is deterministically mapped into f (i) =
(f

(i)
1 , . . . , f

(i)
K )> ∈ RK , such that each

f
(i)
k =

P∑
p=1

φkph
(i)
p + bk, (4.4)

defines the so-called utility score that finally generates the k-th binary label through
a sigmoidal/Bernoulli likelihood. The utility score plays a crucial role in the pre-
diction of new label vectors as we probe in Section 4.4.5. Notice that while the
labels are conditionally independent given h(i), they become fully coupled once
these variables are integrated out, rendering in that way the model suitable for
capturing inter-label correlations. The full joint distribution is given by
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N∏
i=1

p(y(i)|h(i))
P∏
p=1

p(hp), (4.5)

where p(hp) = N (hp|0, KX) is an N -dimensional Gaussian distribution induced
by evaluating the GP prior at the training inputs X with KX denoting the kernel
or covariance matrix, [KX ]ij = k(x(i),x(j)). An equivalent way to write the above
model is by using the concept of kernels for multi-task or vector-valued functions
Bonilla et al. (2008); Álvarez and Lawrence (2011); Alvarez et al. (2012). More

precisely, observe that the utility scores f
(i)
k that directly interact with the data in

(4.4) follow a GP prior with mean given by the bias bk (that depends on the label
but not on the input) and covariance function

Cov(f
(i)
l , f

(j)
k ) = k(x(i),x(j))

P∑
p=1

φlpφkp. (4.6)

For regression problems with Gaussian likelihoods the above multi-task GP, as
we mentioned in the previous section, is known as the intrinsic correlation model
Stoyan (1996); Bonilla et al. (2008), a specific case of co-kriging in geostatistics.
For more details about multi-task GP inference and separable kernels, as the one
in (4.6), we refer the reader to Alvarez et al. (2012) for a full review. Here, we use
this model for multi-label learning where the tasks correspond to different class
labels.

Inference in the above model is very challenging since real applications in multi-
label classification involve both very large number of training instances N and very
large number of class labels K (Zhang and Zhou, 2013; Gibaja and Ventura, 2014,
2015). This forces us to resort to a scheme that combines sparse GPs with stochas-
tic variational inference (Hoffman et al., 2013) (see also Section 2.3.2 of Chapter
2) which, as we show later, scales well for both number of training instances and
labels.

4.4 Scalable Variational Inference

The approximate inference procedures derived in this section are mainly based
on the representation that uses the latent GP vectors up rather than the multi-
task kernel representation in (4.6). More specifically, Section 4.4.1, following the
theory of Chapter 2, presents a scalable way to deal with the large number of
training data points, similar with the one described in Chapter 3, Section 3.5.
The utility scores f

(i)
k are only used to simplify the computations of some final

Gaussian integrals. Section 4.4.4 shows how doubly stochastic optimization can
allow to deal simultaneously with arbitrarily large N and K, giving rise to a doubly
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stochastic optimization scheme and Section 4.4.5, finally, provides details of how
prediction of new label vectors can be achieved.

4.4.1 The augmented model

To deal with large number of training data we consider the variational sparse
GP inference framework based on inducing variables introduced by Titsias (2009)
and described in Section 2.3.2 of Chapter 2. The reader can be also referred to
Matthews et al. (2016) for a measure-theoretic derivation of this method and Bauer
et al. (2016) for a useful discussion about its properties and how it compares with
other GP sparse approximations. For each latent function hp we introduce a vector
up ∈ RM of function values of hp evaluated at inputs Z, where for simplicity we
take the inputs Z to be shared by all latent GPs. This is not restrictive at all
but the extremely dataset sizes accompanied by poor performance improvement
using different sets of inducing inputs renders the choice of shared Z practically
sound. The vector up is often referred to as inducing variables and Z as the
inducing or pseudo inputs (Quiñonero-Candela and Rasmussen, 2005a; Snelson
and Ghahramani, 2006). In the variational sparse GP method Z plays the role
of a variational parameter that can be optimized to improve the approximation.
By following Titsias (2009) we augment the joint distribution in (4.5) with the
inducing variables to obtain

n∏
i=1

p(y(i)|h(i))
P∏
p=1

p(hp|up)p(up). (4.7)

Here, p(up) = N (up|0, KZ) is the marginal GP prior over up and KZ is the M×M
kernel matrix obtained by evaluating the kernel function at Z while p(hp|up) is
the conditional GP prior which, by making use of (A.4), can be written as

p(hp|up) = N
(
hp|KXZK

−1
Z up, KX −KXZK

−1
Z KZX

)
, (4.8)

where KXZ is the cross-covariance matrix between the training inputs X and the
inducing inputs Z while KZX = K>XZ . For any value of Z this augmentation does
not change the model (e.g. the exact marginal likelihood is invariant to the value
of Z), however by applying a certain variational approximation in the space of
(hp,up) we can both reduce the time complexity and also treat Z as a variational
parameter. We would like to shortly note here that the augmentation argument
of Titsias (2009) has been thoroughly studied by Matthews et al. (2016), who
showed that, in general even if the original model does not necessarily have the
same optimal variational parameters as the augmented one, it performs well in
practice (see Section 2.3.2 of Chapter 2 for a similar discussion).
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We are now ready to introduce the density of the variational distribution for the
augmented model,

Q =
P∏
p=1

p(hp|up)q(up), (4.9)

where p(hp|up) is the conditional GP prior that appears also in the joint (4.7), while
q(up) is a the density of the M -dimensional Gaussian variational distribution over
the inducing variables for the p-th latent GP. The given choice of the density of the
variational distribution is such that allows the cancellation of the p(hp|up) of each
factor, facilitating in that way crucial computations in a straightforward manner.

At this point, for being able to continue the derivation of the lower bound in
next section, we need to choose a specific parametrization for q(up), as described
in Chapter 2, Section 2.4. This provides us with the appropriate equations for
computing the marginal means and variances needed for the evaluation of the
expectation terms in (4.28). We start with the full parametrization (FP) and then
we introduce the parsimonious parametrization (PP).

For the FP, we get

q(up) = N (up|mp, Sp), (4.10)

where up is a vector of M entries and Sp = LpL
>
p is an M ×M covariance matrix

parametrized by the M(M+1)
2

tunable parameters of the lower triangular matrix Lp.
Therefore, by combining 4.10 and a well-known Gaussian identity (A.1), we are
able to marginalize out the inducing variables of the p-th latent function from the
approximate distribution (4.9). Thus, we obtain

q(hp) =

∫
p(hp|up)q(up)dup = N (hp|mh

p , S
h
p ), (4.11)

where

mh
p = QXZmp, (4.12)

Shp = KX −QXZKZX +Rp
XZR

p>

XZ , (4.13)

and QXZ = KXZK
−1
Z and Rp

XZ = QXZLp.

On the other hand, in the case of choosing to parametrize the variational distri-
bution using the parsimonious scheme, then the pair (mp, Sp) is parametrized as
follows,
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mp = KZµp, (4.14)

Sp = (K−1Z + Σ−1p )−1 = KZ −KZ(KZ + Σp)
−1KZ , (4.15)

where the second equality of Eq. (4.15) is due to application of the Woodbury
matrix identity (Eq. (B.3) in Appendix) and Σp ∈ RM×M is a diagonal matrix
with positive entries in its main diagonal. Hence, the moments of 4.10 are now
given by

mh
p = KXZµp, (4.16)

Shp = KX −KXZ(KZ + Σp)
−1KZX . (4.17)

Having all the appropriate mathematical tools, we are now able to introduce the
complete derivation of the lower bound in the next section.

4.4.2 Derivation of the lower bound

To express the lower bound on the log marginal likelihood log p(Y ) under the
variational distribution in (4.9) we follow similar derivation steps as in Chapter 3,
Section 3.5, which is mainly based on Titsias (2009) and Hensman et al. (2015b)
work.

We start our derivation by expressing the joint density as

N∏
i=1

p(y(i)|h(i))
P∏
p=1

p(hp|up)p(up). (4.18)

Our main goal again is to approximate the true augmented posterior density P̂ ≡
p({hp,up}Pp=1|Y ) with some computationally “convenient” distribution. In other
words, we want a distribution that factorizes across the latent factors. That is
exactly the reason we defined our density of the variational distribution in (4.9)
as it is. In order to find the best possible variational parameters such that the
approximation to the true posterior is tight enough, we have to minimize the KL
divergence KL[Q||P̂ ]. As it is already presented in the Chapters 2 and 3, this task
is equivalently expressed as the maximization of the following lower bound on the
log marginal likelihood log p(Y ),
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EQ

[
log

∏N
i=1 p(y

(i)|h(i))
∏P

p=1 p(hp|up)p(up)∏P
p=1 p(hp|up)q(up)

]

=EQ

[
log

∏N
i=1 p(y

(i)|h(i))
∏P

p=1 p(up)∏P
p=1 q(up)

]

=
N∑
i=1

EQ
[
log p(y(i)|h(i))

]
−

P∑
p=1

EQ
[
log

q(up)

p(up)

]
. (4.19)

The factorized nature of Q, given by (4.9), requires only the presence of up to
compute each of the P expectations in the second sum. Therefore we can re-write
each of those terms as

EQ
[
log

q(up)

p(up)

]
= Eq(up)

[
log

q(up)

p(up)

]
, (4.20)

where the right-hand side of Eq. (4.20) can be recognised as the KL divergence
KL[q(up)||p(up)]. Shifting our attention now towards the ith likelihood term in the
first sum, we can expand log p(y(i)|h(i)) using the conditional independence of the
labels given the latent function values, which decomposes as

log p(y(i)|h(i)) =
K∑
k=1

log σ(y
(i)
k f

(i)
k ) = −

K∑
k=1

log(1 + e−y
(i)
k f

(i)
k ), (4.21)

where f
(i)
k =

∑P
p=1 φkph

(i)
p + bk is a scalar random variable. However, we have

already showed in (4.10) that the density of the marginal variational distribution
is a multivariate normal one; thus,

q(f
(i)
k ) = N (f

(i)
k |

P∑
p=1

φkpm
(i)
p + bk,

P∑
p=1

φ2
kps

(i)
p ). (4.22)

In the case of the PP the scalar mean m
(i)
p can be computed by the ith entry of mh

p

given by (4.16) and similarly, the variance s
(i)
p can be computed by the ith entry

of the main diagonal of Shp in (4.17), i.e.

m(i)
p = k(x(i), Z)µp, (4.23)

s(i)p = k(x(i),x(i))− k(x(i), Z)(KZ + Σp)
−1k(Z,x(i)), (4.24)
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while in the case of the FP, we make use of the suitable equations, (4.12) and
(4.13), for the mean and variance respectively, which gives us

m(i)
p = QiZmp, (4.25)

s(i)p = k(x(i),x(i))−QiZk(Z,x(i)) +Rp
iZR

p>

iZ . (4.26)

where QiZ and Rp
iZ are the ith row of QXZ and Rp

XZ respectively. Therefore, the

whole data reconstruction term
∑N

i=1 EQ
[
log p(y(i)|h(i))

]
simplifies to

−
N∑
i=1

K∑
k=1

E
q(f

(i)
k )

[
log(1 + e−y

(i)
k f

(i)
k )
]
. (4.27)

Finally, combining (4.20) and (4.27), we can obtain the final form of the lower
bound, which is

F = −
N∑
i=1

K∑
k=1

E
q(f

(i)
k )

[
log(1 + e−y

(i)
k f

(i)
k )
]
−

P∑
p=1

KL[q(up) || p(up)]. (4.28)

Having derived now the lower bound, we continue our discussion in next section
on how we can efficiently calculate it in a computationally scalable way, suitable
for dealing with large-scale datasets.

4.4.3 Computing the lower bound

The lower bound in (4.28) can be divided into two main quantities of interest.
These are the double-nested sum of expectations and the sum of the KL-divergence
terms. Regarding the first one, we have already seen that all the expectations are
with respect to the univariate normal distributions q(f

(i)
k ) in (4.22). Therefore,

in a similar manner as 3.4, all expectations over the likelihood terms reduce to
performing NK one-dimensional integrals under Gaussian distributions and each
such integral can be accurately approximated by Gauss-Hermite quadrature using
a few quadrature points. In practice, we make use of ten quadrature points for all
of our experiments.

Regarding the KL divergence term of the lower bound in the second line of Eq.
(4.28), its computation depends on the choice of the parametrization. Choosing a
FP, it leads to the following formula
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KLfull[q(up) || p(up)] =
1

2
m>pK

−1
Z mp +

1

2
tr
(
K−1Z Sp

)
+

1

2
log |KZ | −

1

2
log |Sp| −

M

2
. (4.29)

In a same manner, for the parsimonious parametrization we obtain

KLpars[q(up) || p(up)] =
1

2
µT
pKZµp −

1

2
tr
(
(Σp +KZ)−1KZ

)
+

1

2
log |Σp +KZ | −

1

2
log |Σp|, (4.30)

where in both cases equations (2.21) and (2.25) from Chapter 2 are utilized.

At this point, we try to elaborate the strengths and weaknesses of each of the
parametrization, when applied to the computation of the lower bound in (4.28).
Apparently, the parsimonious parametrization, as the name indicates, has the
storage advantage of the full one. This means that we only needO(PM) variational
parameters to define all the P densities q(up) of the variational distributions, in
contrast to the FP, where space complexity is one order higher, i.e. O(PM2).
This can be very useful in cases when we wish to increase the number of the latent
factors in order to boost up the flexibility of our model. Moreover, as we already
stressed in Chapter 2, Section 2.4, the parsimonious parametrization cancels all the
inverses and determinants of KZ ; thus, there is no need of computing its Cholesky
decomposition which can be unstable sometimes, contrary to the diagonal inflated
matrices KZ +Σp. That is exactly the reason why we have to add a tiny jitter (e.g.
10−6) to the main diagonal of KZ when we use the FP, otherwise the eigenvalues
of KZ can be very close to zero, rendering the optimization then infeasible. In the
case of the FP, instead of adding a fixed jitter term, we can equivalently consider
to corrupt the latent functions with extra noise where its variance can be learnt
throughout the optimization of the lower bound as a kernel hyperparameter2.

Another interesting aspect of both the parametrizations, is the fact that they
can efficiently compute the P KL-divergences, having calculated the necessary
Cholesky decompositions in advance. More accurately, using the PP and having
pre-computed the P Cholesky decompositions L̂p of each of the KZ + Σp, then
the trace term in 4.30 can be computed by using backward substitution to invert
the L̂p and then the computation is straightforward. Moreover, the other two log
determinants can be easily calculated by adding the logarithm of the values in
the main diagonal for each of the matrices L̂p and Σp. In the same fashion, the
pre-computation of the Cholesky factor L of KZ combined with the fact that we

2This is exactly the same as adding an extra White kernel to the already used one k(·, ·).
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Method Time Complexity Storage

PF O(|B|KP + |B|PM2 +M3) O(PM2 +MD)
PP O(|B|KP + |B|PM2 + PM3) O(PM +MD)

Table 4.1: Time complexity and storage requirements for the two different
parametrizations needed for optimizing (4.28). M is the number of inducing in-
puts, K the number of classes, and |B| the minibatch size. Negative subsampling
and the effect of the input dimensionality are not considered here.

only keep the lower triangular matrix Lp of each variational covariance matrix,
allows us to efficiently calculate all the remaining terms of each KL divergence.

Finally, we are ready to compute the whole bound. Assuming that we parametrize
our P variational distributions according to the FP, we need firstly to perform one
Cholesky decomposition of the matrix KZ that overall scales as O(M3) and allows
us to fully calculate the sum of the KL divergence terms in the second line in (4.28)
as we showed before. Then, with this Cholesky decomposition precomputed, for
each i-th data point we need to compute (µ

(i)
p , s

(i)
p )Pp=1, an operation that scales

as O(PM2), and subsequently calculate the K variational distributions (i.e. their
means and variances) over the utility scores in (4.22) which requires additional
O(KP ) time. Therefore, in order to compute the whole data reconstruction term
of the bound (first line in Eq. (4.28)) we need O(NKP + NPM2) time and for
the full bound we need O(NKP + NPM2 + M3) time. Given that N � M
and K � P , the terms that can dominate are either O(NKP ) or O(NPM2)
which can make the computations very expensive when the number of data in-
stances and/or labels is very large. Using the same arguments, we can find similar
computational complexity of the PP as FP; however, we need here to compute
P Cholesky decompositions, rendering the computation of the bound to scale as
O(NKP + NPM2 + PM3). As we see in the next section, those extra P − 1
Cholesky decompositions impose a practical hindrance of the PP on the lower
bound computation which is proved of vital importance in the coming experi-
ments section. All the time and space complexities of the two parametrizations
are summarized in Table 4.1.

4.4.4 Scalable Training using Stochastic Optimization

To ensure that the time complexity O(NKP + NPM2 + M3) and O(NKP +
NPM2 + PM3) for the FP and PP respectively, is reduced to O(PM3) when
it comes to very large datasets, we optimize the bound using stochastic gradient
ascent by following a similar procedure used in stochastic variational inference for
GPs Hensman et al. (2013). Given that the sum of KL divergences in (4.28) is
already within the desired complexity O(PM3), we only need to speed up the
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Method Time Complexity

Full O(|B|KP + |B|PM2 +M3 +DM2 + |B|DM)
SII O(|B|KP + |B|PM2 +M3 +RM2 + |B|RM)

SII+Basis O(|B|KP + |B|PM2 +M3 +MR2 +DM2 +DR2 + |B|DR+ |B|RM)

Method Storage

Full O(PM2 +MD)
SII O(PM2 +MR+RD)

SII+Basis O(PM2 +MR+RD)

Table 4.2: Time complexity and storage requirements for the case of optimizing
(i) Full inducing inputs Z (Full), (ii) Subspace inducing inputs with fixed X̃ (SII),

and (iii) both Subspace inducing inputs and basis X̃ (SII+Basis). M is the number
of inducing inputs, K the number of classes, and |B| the minibatch size. Negative
subsampling is not considered here.

remaining data reconstruction term. This term involves a double sum over data
instances and class labels, a setting suitable for stochastic approximation. Thus, a
straightforward procedure is to uniformly sub-sample terms in the double sum in
(4.28) which leads to an unbiased estimate of the bound and its gradients. It turns
out that we can further reduce the variance of this basic strategy by applying a
more stratified sub-sampling over class labels as discussed next.

Suppose B ⊂ {1, . . . , N} denotes the current minibatch at the tth iteration of
stochastic gradient ascent. For each i ∈ B the internal sum over class labels can
be written as

−
∑
k∈Pi

E
q(f

(i)
k )

log(1 + e−f
(i)
k )−

∑
`∈Ni

E
q(f

(i)
` )

log(1 + ef
(i)
` ), (4.31)

where Pi = {k|y(i)k = 1} is the set of present or positive labels of x(i) while Ni =

{k|y(i)k = −1} is the set of absent or negative labels such that Pi∪Ni = {1, · · · , K}.
Multi-label classification problems most of the times are characterized by a very
small size of positive labels Pi compared to the negative set which can be extremely
large (Zhang and Zhou, 2013; Gibaja and Ventura, 2014, 2015). Thus, we can
enumerate exactly the first sum and use (if needed) sub-sampling to approximate
the second sum over the negative labels. The whole process becomes somehow
similar to negative sampling used in large scale classification and for learning word
embeddings Mikolov et al. (2013). Overall, we get the following unbiased stochastic
estimate of the lower bound,
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− N

|B|
∑
i∈B

[∑
k∈Pi

E
q(f

(i)
k )

log(1 + e−f
(i)
k ) +

|Ni|
|Li|

∑
`∈Li

E
q(f

(i)
` )

log(1 + ef
(i)
` )

]

−
P∑
p=1

KL[q(up)||p(up)], (4.32)

where Li is the set of negative classes for the i-th data point. In general, the
computation of this stochastic bound scales as O(|B|(|Pi|+ |Li|)P+ |B|PM2+M3)
for the FP and O(|B|(|Pi| + |Li|)P + |B|PM2 + PM3) for the PP. Therefore, by
choosing |B| ∼ O(M) and |Pi|+ |Li| ∼ O(M2) we can ensure that the overall time
is O(PM3). Notice that the second condition is not that restrictive at all and in
many cases might not be needed. In practice, all the experiments we carry out, i.e.
use as negative sets Li the very full negative set Ni, reducing the variance coming
from the sub-sampling of the negative labels.

Although we showed that the computation of the lower bound asymptotically scales
as O(PM3) for both PP and FP, in practice, there is a considerable computational
speed up of FP over PP. This can be justified by the extra P−1 expensive Cholesky
decompositions of PP, that make the computation of the bound and its gradients
slower, which seriously limits us to use a larger number of latent factors P to
improve performance. This argument is also supported later where experiments
reveal the computational burden of PP and its inferior performance comparing to
FP.

We implemented the above stochastic bound in Python in order to jointly optimize
using stochastic gradient ascent and automatic differentiation tools. Regarding
the automatic differentiation tools, we employed both Tensorflow and Autograd
(Maclaurin et al., 2015). Autograd was used at the beginning of this PhD, since
Tensorflow was still in its infancy at that time. However, after a while, when
Tensorflow applied successfully in many machine learning models including GPs,
we switched our python implementation to Tensorflow, enabling to speed up all
the computations required for the optimization of the bound while the efficiency
of the package based on Tensors and computational graphs, allowed us to run
experiments on datasets that would be an insurmountable task in the case of
Autograd. Therefore we provide experimental results for both the packages. For a
more detailed look in the code used for the experiments for both of the packages, we
refer the reader to Appendix C. Lastly, Table 4.3 provides all the parameters that
we need to optimize the bound accompanied by their corresponding dimensionality.
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Parameters Dimensionality(in R) FP PP Full Sub Sub & Basis

Φ K × P
Mq P ×M
Σq P ×M 7 3

Lq P × M2+M
2

3 7

Z M ×D 3 7 7

A M ×R 7 3 3

X̃ R×D 7 7 3

θ kernel depending
b K

Table 4.3: Summary of the parameters to be optimized where different cases are
considered, such as parametrization of the variational distributions or subspace
inducing inputs use. Blanks indicate that the corresponding parameters are in-
dependent from the choice of the specific method while 3and 7 indicate presence
and absence, respectively, of the given scheme.

4.4.5 Prediction

Given a novel data point x(∗) we would like to make prediction over its unknown
label vector y(∗). This requires approximating the predictive distribution p(y(∗)|Y ),

p(y(∗)|Y ) ≈
∫
p(y(∗)|u(∗))q(u(∗))du(∗). (4.33)

Here, q(u(∗)) is the variational predictive posterior over the latent function values
u(∗) evaluated at x(∗). An interesting aspect of the variational sparse GP method of
Titsias (2009) is that to obtain q(u(∗)) we need to make no further approximations
since everything follows from the GP consistency property, i.e.

q(u(∗)) =
P∏
p=1

∫
p(u(∗)p |hp,up)p(hp|up)q(up)dhpdup

=
P∏
p=1

∫
p(u(∗)p |up)q(up)dup =

P∏
p=1

q(u(∗)p ). (4.34)

Here, GP consistency given by Equations (A.3) and (A.4), tractably simplifies each
integral ∫

p(u(∗)p |hp,up)p(hp|up)dhp = p(u(∗)p |up) (4.35)
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so that the obtained p(u
(∗)
p |up) is the conditional GP prior of u

(∗)
p given the inducing

variables. The final form of each univariate Gaussian q(u
(∗)
p ) has a mean and

variance given precisely by equations (4.12) and (4.13) for FP or (4.16) and (4.17),
with X replaced by x(∗). In practice, when we compute several accuracy ranking-
based scores that are often used in the literature to report multi-label classification
performance (Zhang and Zhou, 2013; Gibaja and Ventura, 2014, 2015) it suffices
to further approximate q(u(∗)) by a delta mass centred at the MAP. This reduces
the whole computation of such scores to only requiring the evaluation of the mean
utility vector f̄ (∗) = [f̄

(∗)
1 . . . f̄

(∗)
K ]> such that

f̄
(∗)
k =

P∑
p=1

φkpm
(∗)
p + bk, (4.36)

where k(x(∗), Z) is the cross covariance row vector between x(∗) and the inducing

points Z. Depending on the parametrization, we have m
(∗)
p = k(x(∗), Z)K−1Z mp

for the FP and m
(∗)
p = k(x(∗), Z)µp for PP.

Having computed the utility vector f̄ (∗), we can use it to predict the k most proba-
ble labels of the input vector x(∗) in tandem with its ranking score P@k introduced
in Section 1.2.1 of Chapter 1.

Furthermore, our probabilistic framework can capture correlations between the
different labels, a property that can be useful when we wish to predict partially
observed label vectors. More precisely, for the novel data point x(∗) assume that
we partially observe its label vector y(∗) = (y

(∗)
o ,y

(∗)
m ) so that y

(∗)
o corresponds to

the observed labels and y
(∗)
m to the missing labels. In this setting the approximate

predictive distribution over y
(∗)
m we wish to compute is

p(y(∗)
m |y(∗)

o , Y ) ≈
∫
p(y(∗)

m |u(∗))q(u(∗)|y(∗)
o )du(∗), (4.37)

where q(u(∗)|y(∗)
o ) ∝ p(y

(∗)
o |u(∗))q(u(∗)) and q(u(∗)) (given by (4.34)) acts now as

a prior in this new posterior that needs to accommodate also for the information
coming from the observed y

(∗)
o . Again to get fast estimates of ranking scores we

can rely on the MAP estimate of q(u(∗)|y(∗)
o ) that requires few gradient-based op-

timization steps to maximize over u(∗). Other more elaborate posterior estimates,
e.g. a variational approximation to q(u(∗)|y(∗)

o ), are also possible but we did not
pursue any further research on that direction.

4.4.6 Optimality of the PP

Before start discussing about the conducted experiments, we provide the proof of
the optimality of PP. Opper and Archambeau have already proved that the PP
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in the case of a single latent function is able to recover the optimal variational
distribution if we use as inducing inputs the whole design matrix X. We general-
ize this result by considering the density

∏P
p=1 q(hp) of the factorized variational

distribution. Thus, we have the following proposition,

Proposition 1. The density
∏P

p=1 q(hp) of the factorized variational distribution,
parametrized by (4.15) can recover the covariance matrix of the optimal factorized
distribution with density

∏P
p=1 q

∗(hp).

Proof. This proof relies on the derivation steps provided by Opper and Archam-
beau (2009). Assume that we have the density of the factorized variational distri-
bution

P∏
p=1

q(hp), (4.38)

where q(hp) = N (hp|mh
p , S

h
p ). The variational lower bound is

−
N∑
i=1

K∑
k=1

E
q(f

(i)
k )

[log(1 + e−y
(i)
k f

(i)
k )]−

P∑
p=1

KL[q(hp)||p(hp)],

where each KL divergence term is given by

KL[q(hp)||p(hp)] =
1

2
[tr
(
K−1X (Shp + mh

pm
h>
p )
)

+ log |KX | − log |Shp | −N ]. (4.39)

Rewriting now the bound by defining the term

Vi =
K∑
k=1

E
q(f

(i)
k )

[
log(1 + e−y

(i)
k f

(i)
k )
]
, i = 1, · · · , N, (4.40)

we obtain

F = −
N∑
i=1

Vi −
P∑
p=1

KL[q(hp)||p(hp)]. (4.41)

Notice that each term Vi is a sum of K univariate Gaussian expectations with
respect to the marginal q(f

(i)
k ) = N (f

(i)
k |
∑P

p=1 φkpm
(i)
p + bk,

∑P
p=1 φ

2
kps

(i)
p ) which
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Data set D K N N∗ K

Bibtex 1836 159 4880 2515 2.40
Delicious 500 983 12920 3185 19.03
Mediamill 120 101 30993 12914 4.38
EUR-Lex 5000 3993 15539 3809 5.31
RCV1 47236 2456 623847 155962 4.79
Wiki10 101938 30938 14146 6616 18.64
AmazonCat 203882 13330 1186239 306782 5.04
Delicious-Large 782585 205443 196606 100095 75.54
WikiLSHTC 1617899 325056 1778351 587084 3.19

Table 4.4: Data sets statistics: N and N∗ are the number of the training and test
points respectively, D and K are the number of features and labels respectively,
and K is the average number of positive labels in an instance.

means that these expectations depend only on the linear combination of the P
meansm

(i)
p and the P variances s

(i)
p , i.e. the ith diagonal elements of each covariance

matrix Shp .

Therefore, by differentiating the variational lower bound with respect to each Shp
and setting it equal to zero we have for the covariance of the density of the optimal
variational distribution q∗(hp) that

∇Sh
p
F = −

N∑
i=1

∇Sh
p
Vi −

1

2
(K−1X − Shp) = 0

⇒ Shp = (K−1X + Λp)
−1, (4.42)

where Λp ∈ RN×N is a diagonal matrix with positive entries λ
(i)
p = 2 ∂Vi

∂s
(i)
p

and for

the right-hand side of the first line of the previous equation we made use of known
matrix calculus identities (see identities B.1).

We would like to also note that the above result can be similarly proven in the
case where the PP is applied to a multi-class task, as we briefly mentioned in the
previous chapter.

4.5 Experiments

Undoubtedly, the realization of this section possesses a considerable portion of
time and endeavour throughout this 4-year PhD journey. For that reason, a larger
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amount of material is provided, compared to the previous chapter, accompanied
by the corresponding discussion over the results presented. The section starts
with a brief introduction and description of each of the datasets used. Then it
continues with a significant number of results, produced by the MLGPF model,
and various comparisons with state-of-the-art methods in the field of multi-label
classification. Finally, we apply the proposed model to classification tasks using the
MNIST dataset and compare its predictive performance to that of the RobustMax
likelihood from the previous section.

4.5.1 Datasets

To test the performance of our model, we consider several datasets of different size
in terms of (a) input dimensionality D, (b) label space dimensionality K, and (c)
number of training instances N , where the vast majority of them include text data.
More specifically, we chose to use both four small-scale and large-scale datasets
where each of them is publicly available and can be found in Repository (2010)
website.

Small-scale Datasets

- Bibtex (Katakis et al., 2008): The smallest dataset in terms of training data
points. It contains metadata information for several bibtex items like paper’s
title, author’s name, etc. The final dataset includes only binary vectors.

- Delicious (Tsoumakas et al., 2008): The data has been extracted by del.icio.us
3 social bookmarking web service. Each data point of this dataset corresponds
to textual data coming form various bookmarks’ web pages where the the label
vectors indicate different tags for a specific bookmark. The input data are binary
as before.

- Mediamill (Snoek et al., 2006): This is the only dataset in our collection that
does not include text data. More precisely, it is formed by video data which are
labelled by 101 different semantic concepts. Both feature and label dimensionality
are the smallest ones across all datasets.

- EUR-Lex (Mencia and Fürnkranz, 2008): This time the data represents European
Union Law documents where each of the labels classifies every text, based on a
multilingual thesaurus. Despite its medium size in terms of training instances, this
dataset would be considered as large-scale in many other applications.

- RCV1 (Lewis et al., 2004): That is the last of the small-scale datasets. Although
its size resembles a large-scale dataset, as we observe in Table 4.4, it is justifiably
considered a small one in the XML framework. The dataset consists of newswire
stories in English language obtained by the news agency Reuters where each label
can represent a specific topic, industry or region of a given story.

3https://en.wikipedia.org/wiki/Delicious_(website)

https://en.wikipedia.org/wiki/Delicious_(website)
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Large-scale Datasets

- Wiki10 (Zubiaga, 2012): The smallest of the large-scale datasets. It includes
documents generated by various articles of the english version of Wikipedia in con-
junction with several tags for each document. The difference between this dataset
and the small-scale datasets, in terms of input and label space dimensionality, is
conspicuous.

- AmazonCat (McAuley et al., 2015): This is another textual dataset, where at
this time, documents represent reviews of Amazon products and they are mapped
to a wide range of different Amazon product categories. More than a million
documents are used for training.

- Delicious-Large (Wetzker et al., 2008): As the small-scale Delicious dataset, this
is another example of bookmarking text data retrieved from the del.icio.us web
service, however, in a much larger scale, and the second most challenging dataset
after WikiLSHTC.

- WikiLSHTC (Partalas et al., 2015): Finally, we have the largest dataset that
used in our experiments. The titanic size of the dataset stems from around two
million Wikipedia documents which are labelled based on a set of more than 3105

labels.

For summary statistics and size information of each dataset, the reader is referred
to Table 4.4. As we can observe, even the small-scale datasets could be considered
very challenging to be dealt with, let alone the large-scale ones. However, as
someone would expect for textual data, all the described datasets above, except
Mediamill, are consist of both sparse X and Y , where the most dense of them has
no more than 7% non-zero values on average. This is just a consequence of using
text data since each feature represents a word of a given dictionary that it is rare
to appear in all documents of the corpus. Therefore, data sparsity allows us to
store and handle those immerse datasets. Moreover, due to text nature of most
of the datasets, they are all normalized in order each of the training instances has
unit norm. This is very typical to text-based applications, since we are usually
interested in the similarity of two documents and not their vector length, and there
are examples in literature that normalizing the dataset does improve performance
(Baroni et al., 2014).

Having now introduced and described all the datasets, it is more easily conceived
the difficulty of our endeavour to cope with those extremely high-dimensional
spaces of both features and labels. Taking also into account that the goal is to
train a Bayesian model under these circumstances, then someone could justifi-
ably argue that the whole attempt is insuperable. Nevertheless, as we see in the
next section, the MLGPF model has not only achieved to be applied to all of the
aforementioned datasets, but most importantly, it has managed to surpass in per-
formance the majority of the state-of-the-art algorithms, rendering it, at the best
of our knowledge, the first ever, not only GP-based, but more generally, Bayesian
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method that has been successfully used to solve problems of that scale.

4.5.2 Methods

Before we start discussing about the experimental results, we need to introduce
the name abbreviation for each of the tested methods in order to make the next
section more readable and less burdensome to the reader. All of the methods
which is described here, are different combinations of kernel functions (e.g. lin-
ear, SE), variational distributions parametrization (PP or FP), implementations
(Tensorflow or Autograd) etc, however they are all based on the MLGPF model.
Therefore, we firstly present the logic of how its method’s name is derived. More
precisely we follow the name convention: ”kernel name”-”optimized subspace in-
ducing inputs”-”optimized basis”-”fixed Z”-”unnormalized Z”-”Python implemen-
tation” where Kernel name can be:

linear: A linear kernel with no hyperparameters as defined in (1.9).

linear-`: A linear kernel with D lengthscales as hyperparameters, each for every
input dimension.

se: The well-known SE kernel with a single lengthscale as hyperparameter4 as
defined in (1.4).

se-p-`: The SE kernel where in that case P different lengthscales are used, each
one for the P latent functions hp.

ard: The Automatic Relevance Determination kernel as defined in (1.4) using as
distance measure Λ2.

ard/linear: This is a method that uses as kernel function the sum of an ARD
kernel with a Linear one.

For the second field the only possible value is “s” which denotes that the method
optimizes the subspace inducing inputs while keeping the basis matrix X̃ fixed.
In case that X̃ is optimized too, then an extra b is added to the end of the
name. Furthermore, we consider the cases where the inducing inputs are kept
fixed during the optimization process, denoted by “fx”, and the inducing inputs
are normalized at each optimization step such that each of them lies in the unit
hyper-sphere, denoted by “un”. This implies that all the methods which their
names do not include the “un” string, normalize the inducing inputs each time
they are updated. Finally, when the P variational distributions are parsimoniously
parametrized and the method is implemented by the Autograd Python package
then the letters “pp” and “ag” need to used as suffix to the method’s name. To

4The reason that we do not consider the usual output variance σ2
f is the fact that it is

redundant since its role is replaced by the entries of the factor loadings matrix Φ.
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eliminate any remained confusion, we provide a few examples of methods’ names,
accompanied with a short description.

ard: this method uses an ARD kernel where the full inducing inputs matrix Z
is optimized with each row unit-normalized, a FP is employed and everything is
implemented by Tensorflow.

ard-s-ag: this method uses an ARD kernel where the subspace inducing inputs
matrix A is optimized but the basis matrix X̃ is precomputed and kept fixed,
the rows of the matrix product AX̃ are unit-normalized, a FP is deployed and
everything is implemented by Autograd.

ard-s-fx-pp-ag: this method uses an ARD kernel where both the subspace in-
ducing inputs matrix A and the basis matrix X̃ are kept fixed, a PP is employed
and everything is implemented by Autograd.

Having described all the above methods, we are ready to move to the next section
where all of them are tested on the datasets of Section 4.5.1 in order to gain
a deeper insight of their advantages and disadvantages and their performance is
compared with other baselines from the XML literature.

4.5.3 Experimental set-ups & Results

To begin with, all of our experiments run on an Intel Xeon Processor E5-2667 v3
server with 128G RAM, due to the scale of the datasets and the long time required
to train the MLGPF model on them. Moreover, to test and compare predictive
performance of different methods on a specific dataset, the precision metrics P@1,
P@3, and P@5 (see Section 1.2.1 of Chapter 1 for a detailed description and
the reason we choose this specific metric) while it is also demonstrated how well
the lower bound is optimized during the training process. Further, it should be
mentioned that choosing large size for the negative label set Li can dramatically
reduce variance in the stochastic optimization of the lower bound. Fortunately,
the computational complexity analysis of Section 4.4.4 allows us to choose Li such
that |Li| ∼ O(M2) which is not restrictive at all, and in practice, for all datasets
used in the experiments, Li is selected to be equal to the size of the full negative
set Ni. Further, we would like to make clear that we avoid to use error bars for
our P@k, k = 1, 3, 5, in many of the experiments of for two reasons. The first
one is due to the training time limitations that the scale of the datasets impose
where some of them require a few weeks training. Secondly, all the reported
performance results from other state-of-the-art methods obtained by the XML
repository (Repository, 2010) do not provide that information. Nevertheless, we
include error bars in all of the small scale datasets by running each method for
ten times using different random initializations. Finally, we define one epoch as
a complete scan of the dataset based on the minibatch used, therefore one epoch
corresponds to N

|B| iterations.
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Method linear linear-` se se-p-` ard ard/linear

P@1 57.85 61.27 59.88 58.41 62.98 62.70
P@3 34.90 37.51 36.34 34.84 38.36 38.46
P@5 25.83 27.49 26.97 26.08 28.22 28.35

Table 4.5: Results of using the MLGPF model in conjunction with different kernels
for Bibtex dataset. All the P@k metrics (Eq. (1.21)) are computed after training
our model with M = 100, P = K = 159, and epochs=50.

Various results based on Bibtex dataset

In this section we run various a number experiments on Bibtex using different
methods in order to gain a better insight of how performance of the MLGPF
varies under different used schemes. The specific dataset was chosen due to its
relatively small size (Table 4.4) and its sparse high dimensional input space which
is ubiquitous in all other datasets and thus, rendering its choice suitable for gener-
alizing our conclusions. Regarding experimental set-ups, we use M = 100 inducing
inputs and let the experiments run for 50 epochs. The reason we do not increase
further the number of inducing inputs or epochs is that we primarily focus on
the comparison of those methods and not in the achievement of the best possible
performance.

Kernels comparison

The experiments start with a thorough investigation of the effect that different
kernels have on the performance of the MLGPF model. We run the linear,
linear-`, se, se-p-`, and ard, ard/linear method. By examining Table 4.5,
it can be seen the superiority of ard/linear over the rest of the methods. It is
also conspicuous how crucial is the addition of the extra D lengthscales as kernel
hyperparamters to the overall performance of the MLGPF model regardless the
choice of the kernel. For instance, a simple linear kernel gives P@1 = 57.85%
accuracy while the same kernel, enhanced with D lengthscales, improves P@1
more than 3.4%. A similar behaviour is also observed in SE kernel. On top of that,
Fig. 4.1 (a) shows how a well-maximized lower bound leads to a better predictive
performance, revealing this positive correlation between lower bound maximization
and predictive performance. Another interesting aspect that emerges by comparing
the methods’ performance is that despite the high dimensional input spaces where
decision boundaries tend to become linearly separable, the SE kernel gives better
results than the linear one.

Subspace inducing inputs comparison

The next experiments are conducted by using ard, ard-s, and the ard-s-b
methods. In this case, we would like to check how the performance varies de-
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Figure 4.1: Performance comparison between various choices of kernels tested on
Bibtex dataset. (a) shows the evolution of the lower bound per iteration, and (b)
demonstrates how the P@1 metric varies across epochs for each kernel. Numerical
results of (b) are demonstrated in Table 4.5.
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Figure 4.2: Performance comparison between three different cases: (i) full inducing
inputs optimization (red color line), (ii) subspace inducing inputs optimization and
fixed basis (blue color line), (iii) optimization of both subspace inducing inputs
and basis (black color line). All the cases are tested on Bibtex dataset using an
ARD kernel. (a) shows the evolution of the lower bound per iteration, and (b)
demonstrates how the P@1 metric varies across epochs for each kernel.
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Method ard ard-s ard-s-b

P@1 62.98 62.07 62.35
P@3 38.36 38.09 37.68
P@5 28.22 27.98 27.79

Table 4.6: Numerical results of Fig. 4.2 (b). The performance metric Precision@k
is used (Eq. (1.21)).

Method ard ard-pp

P@1 62.98 41.39
P@3 38.36 23.21
P@5 28.22 18.02

Table 4.7: Numerical results of Fig. 4.3 (b). The performance metric Precision@k
is used (Eq. (1.21)).

pending on the choice of optimizing the inducing inputs either in their original
high-dimensional space or in lower dimensional subspace. The subspace inducing
inputs are chosen to lie in the R500 and an ARD kernel is employed for all cases.
We chose this number because more than 75% of dataset’s variance is explained
by the 500 largest singular values. The results in Table 4.6 reveal that optimizing
the subspace inducing inputs gives marginally worse performance than optimizing
Z. Moreover, the fact that we additionally optimized the basis X̃, did not lead to
better performance than keeping it fixed, on the contrary, in some cases the pre-
dictions were less accurately than ard-s . Nevertheless, we see later that trying
to choose the subspace inducing inputs dimensionality R such that R ∼ O(M)
in order the overall complexity of the bound to scale as O(PM3) (see Table 4.2),
leads to poor predictive performance. The corresponding lower bounds and P@k
, k = 1, 2, 3 as a function of iterations or epochs can be found in Fig. (a) and (b)
of 4.2.

Parametrization comparison

The question of how each of the two parametrization schemes, FP and PP behaves
for the MLGPF model naturally arises, and Table 4.7 in conjunction with Fig. 4.3
attempt to answer it. As usual, the experimental set-ups, the dataset tested,
and the kernel function are all same as the previous paragraph. Fig. (b) 4.3
shows a clear superiority of the FP over the PP. This can be also verified by the
maximization of the lower bound in Fig. (a) 4.3 where there is a wide gap between
the plots of the two methods. Overall, the only benefit of the PP over the FP
is the storage required for the variational parameters for each of the q(up), p =
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Figure 4.3: In those two plots, the performance of MLGPF model is compared
with the FP (red color line) and PP (blue color line) using an ARD kernel. (a)
shows the evolution of the lower bound, and (b) gives P@1 evolution across epochs
for each parametrization.
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Method ard-pp ard-pp-ag

P@1 41.39 1.31
P@3 23.21 1.06
P@5 18.02 1.03
time 110 648

Table 4.8: Numerical results of Fig. 4.4 (b) and running times (seconds/epoch)
for the two implementations where the number of inducing inputs this time is set
to 500. The performance metric Precision@k is used (Eq. (1.21)).

1, · · · , P . Nonetheless, we never use more than 600 inducing inputs in practice,
meaning that FP does not impose any practical restriction when it comes to storage
requirements.

Implementation comparison

As we mentioned in the previous section, the optimization of the lower bound
is achieved by a Python implementation which is either based on Autograd or
Tensorflow package. Here, we address the efficiency of each method by considering
two different implementations of the ard-pp method. As we can see in Table
4.8 and Fig. 4.4, the Autograd implementation fails dramatically in terms of
predictive performance while the corresponding lower bound is much lower than the
Tensorflow’s implementation. This is a general issue we encountered throughout
all experiments based on SE kernel and Autograd. However, the Linear kernel
works well for Autograd as we shall see in a few later in other experiments. We
speculate that this result is due to the fact that we had to code up our own
optimizer implementation (it is an RMSProp optimizer), since Autograd does not
provide any, which is not as efficient as the one provided by Tensorflow itself. This
result might also be the case of problematic initialization of the learning rate value
that we use for our experiments and better calibration might have been required.
We do not encounter this issue using the Adam optimizer of Tensorflow.

Fixed Z comparison

The fact that we treat the inducing inputs as variational parameters and we op-
timize the lower bound over them is one of the reasons we are able to achieve
much better performance than by just keep them fixed throughout the optimiza-
tion procedure. This is demonstrated in Fig. 4.5 (a) and (b), where both plots of
P@1 precision and lower bound values are significantly larger in the case of opti-
mized Z than fixed Z. The compared methods here are ard and ard-fx where
fixed matrix Z consists of M = 100 k-means centres obtained by running k-means
algorithm on the original dataset.
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Figure 4.4: Performance comparison of the MLGPF model between the Tensor-
flow (red color line) and Autograd implementation (blue color line). An ARD
kernel combined by the PP are used while M = 100. (a) shows the evolution of
the lower bound, and (b) gives the P@1 evolution across epochs for each Python
package.
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Figure 4.5: Performance comparison of the MLGPF model between optimized Z
(red color line) and fixed one (blue color line) using an ARD kernel. (a) shows
the evolution of the lower bound, and (b) gives the P@1 evolution across epochs
for each parametrization.
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P 10 20 40 80 159 200 500

M = 50 0.55 1.02 1.15 1.26 2.01 2.17 5.21
M = 100 0.75 1.12 1.92 2.62 5.14 6.42 9.43

M 10 50 100 200 400 600 800

P = 80 1.11 1.26 2.62 3.62 15.46 70.23 125.21
P = 159 1.52 2.01 5.14 3.62 20.46 79.58 363.03

Table 4.9: Training times (in minutes) of the MLGPF model for the Bibtex dataset
using several values for P and M , running for 50 epochs and deploying the ard
kernel.

Normalized Z comparison

As we noted earlier in this section, all the text-based datasets are unit-normalized
to improve model’s performance. For that reason we would like to see how different
results we would get in case we constrained the inducing inputs to lie in the
unit-hypersphere compared to those which are optimized unconstrainedly. Fig.
4.6 reveals that constraining the optimization of Z leads to considerably better
performance. The comparison is between ard and ard-un.

Effect of the number of inducing inputs M used

It is generally known (Titsias, 2009; Matthews et al., 2016) that increasing the
number of inducing inputs leads to a tighter lower bound on the log marginal
likelihood p(Y ), consequently leading to a better performance most of the times.
Fig. 4.7 verifies this relation as a function of the number of inducing points for
the case of the P@1 metric where in the top plot (a) we kept the number of latent
factors equal to 80 while in (b) P = 159. Similarly, Fig. 4.8 demonstrates the
corresponding lower bounds. For all cases the ard method was employed. An
extra illustration of those results using bar plots can be found in Fig. (a) 4.11 and
(a) 4.12.

Effect of the number of GPs P used

Another aspect that plays a significant role on the overall performance of the
MLGPF model is the number of latent factors or GPs P used to train the model.
Since P has to be defined in advance as like M , it would be important to examine
how much our model can be benefited with an increase of P . By looking carefully
Fig. 4.9, it can be concluded that using a large number of GPs leads to a better
performance and consequently better optimized lower bound. Moreover, in some
cases, it can be noticed that by using a large number of GPs, an increase of the
number of the inducing inputs gives a marginal, if any, performance improvement,
meaning that the model is flexible enough using this number of GPs. For instance,
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Figure 4.6: Performance comparison of the MLGPF model between normalized
Z (red color line) and unnormalized one (blue color line) using an ARD kernel.
(a) shows the evolution of the lower bound, and (b) gives the P@1 evolution across
epochs for each parametrization.
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Figure 4.7: Performance of MLGPF model in terms of P@1 (Eq. (1.21)) as a
function of epochs where an ard method trained on the Bibtex dataset. (a)
Assumes P = 80 and (b) P = 159 where in both cases M = 10, 50, 100, 200, 400,
800. Error bars of one standard deviation are also provided.
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Figure 4.8: Lower bound values of MLGPF model as a function of iterations
where an ard method trained on the Bibtex dataset. (a) Assumes P = 80 and
(b) P = 159 where in both cases M = 10, 50, 100, 200, 400, 800. The shaded area
around curves represents 68% confidence intervals.
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Figure 4.9: Performance of MLGPF model in terms of P@1 as a function of epochs
where an ard method trained on the Bibtex dataset. (a) Assumes M = 50 and
(b) M = 100 where in both cases P = 10, 20, 40, 80, 159, 200, 500. Error bars of
one standard deviation are also provided.
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Figure 4.10: Lower bound values of MLGPF model as a function of iterations
where an ard method trained on the Bibtex dataset. (a) Assumes M = 50 and
(b) M = 100 where in both cases P = 10, 20, 40, 80, 159, 200, 500. The shaded
area around curves represents 68% confidence intervals.
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Figure 4.11: Bar plots comparing P@1 values using several pair of values (M,P )
where an ard method trained on the Bibtex dataset and run for 50 epochs. (a)
shared P = 80, 159, and (b) shared M = 50, 100. Error bars of one standard
deviation are also provided.
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Figure 4.12: Bar plots comparing lower bound values using several pair of values
(M,P ) where an ard method trained on the Bibtex dataset and run for 50 epochs.
(a) shared P = 80, 159, and (b) shared M = 50, 100. The lower the bar plots are
the better performance is achieved by ard. Error bars of one standard deviation
are also provided.
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Method time (seconds/epoch)

linear 62
linear-` 62

se 65
se-p-` 127

ard/linear 64
ard 64

ard-pp 110
ard-pp-ag 648
ard-fx 63
ard-un 63
ard-s 62
ard-s-b 63

Table 4.10: Elapsed training time comparison between different MLGPF methods,
applied to Bibtex dataset using M = |B| = 500 and P = K = 159.

using P = 500 combined by either M = 50 or M = 100 gives approximately the
same P@1 value. This example also provides an interesting information; even if we
use more GPs than the dimensionality of label space (K = 159 for Bibtex), leading
to an over-determined factor loadings matrix Φ, the performance of the model
improves comparing to the case of using exactly P = K = 159 GPs. However, in
practice, we are rarely able to use same number of latent factors as K, let alone
more than that. Finally, it is worth stressing the importance of having an adequate
number of inducing inputs when the P is much smaller than K. This is clearly
illustrated in Fig. 4.9 for the case of P = 10 where it is observed a significant
performance boost by increasing M = 50 to M = 100, implying that for large-
scale datasets we should primarily consider setting the number of inducing inputs
as higher as possible. An extra illustration of those results using bar plots can
be found in Fig. (b) 4.11 and (b) 4.12. Table 4.9 demonstrates the training time
required for those different values of P and M used.

Time comparison

Here, we probe the training time of all the aforementioned methods, where in all
experiments we used M = |B| = 500 and P = K = 159. By choosing the same
number of inducing inputs as like minibatch size, we guarantee that the overall
complexity of computing the lower bound is O(PM3) for all methods. This can
be also verified by advising Tables 4.1 and 4.2. Nevertheless, experimental times
presenting by Table 4.10, do not demonstrate this asymptotic behaviour for the
computation of the bound. In general we see that most of the methods need al-
most 63 seconds to scan the whole dataset while this time is almost doubled in
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the case of se-p-` and ard-pp. At a first glance this result might seem peculiar
but having a closer look to those two methods we see that this time is absolutely
justifiable. More specifically, those two methods are the only ones that require the
computation of P Cholesky decompositions instead of just one as it is the case
for the rest of the methods. This means that the computational complexity is
O(PM3 + PM3) = O(2PM3). In the limit though we do not take into account
any constants so the overall complexity is O(PM3) but in practice we see how
restrictive can be this kind of constant where not only hinders fast computations
but constraints us to increase further the number of GPs P . Hence, this extra
attribute makes the use of PP less appealing when it comes to this kind of appli-
cations. Finally, the most striking feature of Table 4.10 is the computational time
needed for the ard-pp-ag. This is six times slower than the corresponding method
ard-pp implemented by Tensorflow while ard can be computed more than ten
times faster than ard-pp-ag. This is clear proof of the superiority of Tensorflow
package to efficiently compute the lower bound and its gradients comparing to
Autograd. Despite its appealing attribute of working in native Python, Autograd
fails to achieve the same performance as Tensorflow. We argue that Tensorflow’s
superiority mainly stems from the fact that it has been developed to scale well
on large scale neural-net-oriented applications based on the idea of computational
graphs. This idea is the game changer in its performance since it allows to effi-
ciently parallelize computations. To speed-up computations further, GPU support
is also provided but we did not employ it here. All those key differences make the
use of Tensorflow imperative, especially for datasets with hundred of thousands
data points, labels and features.

A closer look at the size of the optimization

As we argued previously, the optimization of all the variational parameters and ker-
nel hyperparameters of the MLGPF model, especially for the large-scale datasets,
constitutes the quintessence of this chapter. In order to make the size of that
problems more tangible to the reader, we present Table 4.11 which gives the num-
ber of parameters (in millions) we need to optimize by using the two different
parametrizations, FP and PP, and setting the method’s hyperparameters M and
P as they are used in most of the experiments later. The table shows the signif-
icant storage advantage of PP over FP. Generally, the ard-s-b (or ard-s-b-pp)
is not suitable for dealing with the extreme dimensions of those datasets since the
number of parameters needed to be optimized exceeds the corresponding num-
ber for the ard (or ard-pp). Overall, it can be now realized how large are the
optimization tasks we encounter in this chapter, where the largest one needs the
optimization of more than one billion parameters. In the next section, we provide
tangible evidence of the successful optimization of those gargantuan problems by
employing the MLGPF model.
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Dataset ard ard-s ard-s-b M P R

Bibtex 13.6 13.2 15.1 400 159 1000
Delicious 24.7 24.6 24.7 400 300 250
Mediamill 12.8 12.8 12.8 500 101 120
EUR-Lex 44.3 42.3 42.7 400 500 70

RCV1 27.5 5.1 123.2 500 30 2500
Wiki10 209.6 149.9 404.8 600 700 2000

AmazonCat 229.4 113.0 2151.9 600 550 10000
Delicious-Large 461.9 188.7 1753.9 350 700 2000

WikiLSHTC 1081.4 272.7 1081.6 500 600 500

Dataset ard-pp ard-s-pp ard-s-b-pp

Bibtex 0.9 0.6 2.4 400 159 1000
Delicious 0.7 0.6 0.8 400 300 250
Mediamill 0.2 0.2 0.2 500 101 120
EUR-Lex 4.4 2.4 2.8 400 500 70

RCV1 23.8 1.4 119.4 500 30 2500
Wiki10 83.8 24.1 279.0 600 700 2000

AmazonCat 130.5 14.2 2053.0 600 550 10000
Delicious-Large 419.2 146.0 1711.2 350 700 2000

WikiLSHTC 1006.5 197.8 1006.8 500 600 500

Table 4.11: Number of parameters (in millions) to be optimized for each dataset
using different parametrizations.
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Dataset P M epochs

Bibtex 30 500 300

Delicious 30 500 300

Mediamill 30 500 150

EUR-Lex 30 500 100

RCV1 30 500 5

Table 4.12: Parameter settings of the MLGPF model for each dataset based on
the methods preseneted in Table 4.13.

Results based on the MLGPF model

The rest of this section presents results of the MLGPF models applied to all nine
different datasets of Table 4.4, by employing different combinations of methods of
Section 4.5.2.

Parsimonious parametrization and Autograd results

The first results that we demonstrate are based on both the PP and the Autograd
implementation. All the settings of each experiment are given by Table 4.12 while
the corresponding performance results can found in Table 4.13. As you can observe,
the number of GPs used was set to 30 for all datasets due to the limitations posed
by Autograd as we discussed earlier. Performance is also poor comparing to results
where Tensorflow is used, and the discussed problem with the poor optimization
of the SE kernel is ambiguous in all tested datasets. Nevertheless, the benefits of
optimizing the inducing inputs are still conspicuous in both Table 4.13 and Figures
4.13, 4.14 where the corresponding lower bounds are depicted.

Finally, the theory of Section 4.4.5 that allows to predict a label vector under
partially observed labels is also applied. More specifically, for any test label vector
y(∗) we set the partially observed y

(∗)
o to be the first positive label (so that the

size of y
(∗)
o is always one). Then, we did predictions over the remaining missing

vector y
(∗)
m ∈ {−1, 1}K−1. Based on the framework in Section 4.4.5, we computed

the corresponding utility vector f̄ (∗) ∈ RK−1 using the MAP estimate of both
q(u(∗)) and q(u(∗)|y(∗)

o ), and performed predictions based on these two alternatives.
Notice that the method based on the MAP of q(u(∗)) predicts without taking into

account the partially observed y
(∗)
o . Table 4.15 compares the P@k scores of the

two approaches for all datasets by using the best method from Table4.13 (typically
linear-pp-ag while se-pp-ag was used only for the Mediamill dataset). It can
be seen that there is a marginal (but consistent across all datasets) improvement

in the predictive performance based on the MAP estimate of q(u(∗)|y(∗)
o ).



107 Extreme Multi-label Inference using Gaussian Processes

0 1000 2000 3000

Iterations

-8

-7

-6

-5

-4

L
o

w
e

r 
B

o
u

n
d

10
4

(a)

0 2000 4000 6000
Iterations

-11

-10

-9

-8

Lo
w

er
 B

ou
nd

105

(b)

Figure 4.13: Lower bounds of (a) Bibtex and (b) Delicious. The solid lines corre-
spond to the methods that optimized the inducing points while the dashed ones
correspond to those that kept them fixed. Blue color suggests the use of linear ker-
nel while the red one the use of SE kernel. Performance results of those methods
can be found in Table 4.13.
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Figure 4.14: Lower bounds of (a) Mediamill, (b) EUR-Lex, and (c) RCV1. The
solid lines correspond to the methods that optimized the inducing points while
the dashed ones correspond to those that kept them fixed. Blue color suggests the
use of linear kernel while the red one the use of SE kernel. Performance results of
those methods can be found in Table 4.13.
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Dataset linear-fx-pp-ag linear-pp-ag se-fx-pp-ag se-pp-ag

P@1 18.01 59.56 41.03 42.27
Bibtex P@3 10.03 36.10 23.05 23.14

P@5 7.92 27.00 17.07 17.73

P@1 41.92 66.78 64.33 66.03
Delicious P@3 38.16 61.49 57.88 59.46

P@5 35.76 57.12 52.81 54.66

P@1 77.12 82.62 82.34 83.02
Mediamill P@3 61.88 64.34 65.75 66.69

P@5 42.24 49.18 50.67 51.42

P@1 67.50 77.68 - -
EUR-Lex P@3 52.18 62.30 - -

P@5 41.87 51.24 - -

P@1 31.04 80.61 - -
RCV1 P@3 24.06 64.73 - -

P@5 19.31 46.00 - -

Table 4.13: Predictive Performance of the MLGPF model for the seven multi-label
datasets. Those methods that have not reported results for a dataset are indicated
with the “-” sign. All the experimental settings of each dataset can be found in
Table 4.12.

Subspace inducing inputs results

The next experiments test the performance of the MLGPF model under the use of
subspace inducing where we keep the same parametrization and implementation as
before. The results are collectively demonstrated in Table 4.17 where lower bounds
and experimental settings are given by Figures 4.15, 4.16 and Table 4.16. We also
provide performance results for the methods linear-s-fx-pp-ag, linear-fx-pp-
ag, se-s-fx-pp-ag, and se-s-fx-pp-ag, i.e. both fixed inducing and subspace
inducing inputs while all the training times of each those methods can be found
in Table 4.19.

Once more, Autograd fails to successfully train the model when an SE kernel
is employed, apart from the case of Mediamill dataset, where the results were
competitive with those of Tensorflow based methods (see Table 4.23). However,
Linear kernel achieves much better predictive power in both cases where the full
and the subspace inputs were considered. We also observe that the subspace-
inducing-inputs based methods often attained higher P@k values than the their
full counterparts. This could be interpreted in some cases that there is much
redundancy in the full input space and it can effectively be approximated by a
lower dimensional manifold. However, when it comes to high dimensional spaces
(D > 2000), experiments showed that we cannot guarantee both competitive per-
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Datasets linear-fx-pp-ag linear-pp-ag se-fx-pp-ag se-pp-ag

Bibtex 2.96 3.17 2.93 3.10
Delicious 8.07 8.19 8.22 8.16
EUR-Lex 11.94 13.23 - -
Mediamill 18.53 18.71 18.69 18.66
RCV1 673.2 2431 - -

Table 4.14: Training times (in minutes per epoch) of the MLGPF model for all
used datasets based on the settings of Table 4.12.

Datasets q(u(∗)) q(u(∗)|y(∗)
o )

P@1 34.79 35.35
Bibtex P@3 22.00 22.65

P@5 16.45 16.88

P@1 66.19 66.37
Delicious P@3 60.81 61.10

P@5 56.19 56.39

P@1 70.25 71.17
EUR-Lex P@3 54.04 54.67

P@5 42.70 43.28

P@1 79.73 80.04
Mediamill P@3 56.40 56.63

P@5 41.34 41.64

P@1 65.96 65.99
RCV1 P@3 48.92 40.95

P@5 36.02 36.04

Table 4.15: Performance scores when predicting the partially observed label vectors
based on the MAP estimate of q(u(∗)) and q(u(∗)|y(∗)

o ). In all datasets, except
Mediamill the linear-pp-ag was used. For Mediamill, the se-pp-ag was chosen.
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Dataset P M epochs R

Bibtex 30 500 400 1000

Delicious 30 500 200 250

Mediamill 30 500 200 70

EUR-Lex 40 500 200 2500

RCV1 30 500 20 2000

AmazonCat 30 500 15 2000

Table 4.16: Parameter settings of the MLGPF model for each dataset used in
this chapter. The methods presented in Table 4.17 use those settings for their
parameters.

Dataset linear-s-pp-ag linear-pp-ag se-s-pp-ag se-pp-ag

P@1 59.31 60.20 41.89 38.68
Bibtex P@3 36.73 37.02 24.30 21.71

P@5 27.40 27.34 18.57 16.55

P@1 66.13 67.08 59.89 61.94
Delicious P@3 60.38 61.50 53.80 55.91

P@5 55.69 56.88 49.21 50.88

P@1 82.98 82.33 84.12 82.80
Mediamill P@3 65.62 65.25 67.17 66.14

P@5 51.32 51.09 53.15 52.16

P@1 79.31 78.34 66.42 64.95
EUR-Lex P@3 64.24 63.35 50.58 49.47

P@5 52.79 52.06 40.56 39.63

P@1 88.74 - 25.97 -
RCV1 P@3 71.27 - 21.85 -

P@5 51.16 - 17.13 -

P@1 85.90 - 44.11 -
AmazonCat P@3 64.98 - 27.18 -

P@5 49.88 - 21.18 -

Table 4.17: Predictive Performance of the MLGPF model for the seven multi-label
datasets. Those methods that have not reported results for a dataset are indicated
with the “-” sign. All the experimental settings of each dataset can be found in
Table 4.16
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formance and fast computations, i.e. R ∼ O(M). This is exactly the reason why
we set R = 2000 for the large-scale datasets. Otherwise, the model would have
had inferior predictive ability. At the same time, an extra burden emerges by the
increase of R which is related with storage requirements of the basis X̃. As we
discussed in Section 2.5 of Chapter 2, the basis X̃ can be computed by storing
the R singular vectors correspond to the R larger singular values of the design
matrix X, which is achieved by a simple application of the subset SVD algorithm.
However, this approach entails the problem of storing an R×D dense matrix in
memory where D is extremely large and R is needed to be as large as possible.
Thus, there is an extra constraint here, which does not let us to increase R as
well even if we were willing to sacrifice computational speed for performance. This
argument can be also verified by the long training times required for the large
datasets in Table 4.19.

Results based on the Tensorflow implementation

The final and most competitive results of this section for the multi-label datasets,
come from the methods implemented by Tensorflow. Apart from the implementa-
tion, an equally vital ingredient of the improved performance of the model should
be attributed to the employment of D extra lengthscales as hyperparameters, re-
gardless the choice of the kernel. Admittedly, it was in Section 4.5.3 where we
firstly observed the performance superiority of ard and linear-` over the rest of
the methods which did not use lengthscales for each dimension.

We firstly introduce the experimental settings of each of the datasets used in this
Section where this information is summarized in Table 4.20. As it can be seen,
Ternoflow implementation allows us to dramatically increase the number of GPs
used for our model without sacrificing significant speed or increasing considerably
the memory footprint of the methods. For instance, we manage to use even 700
GPs for training our model on the Delicious-Large dataset. On top of that, it is
preferred to parametrize the covariance matrices of the P variational distributions
using lower triangular matrices, since PP is proven to be inferior in the previous
experiments. Consequently, Table 4.23 presents the highly improved P@k values
comparing to the previous experiments where in some cases there is more than
35% improvement comparing to methods in Table 4.13. Apart from that, it is the
first time that we manage to apply our model on datasets of the scale of Delicious-
Large and WikiLSHTC which require the optimization of more than half a billion
parameters (see Table 4.11). Unfortunately, the WikiLSHTC is the only dataset
that we do not succeed to run enough epochs since it requires more than four
days to perform a full epoch for the given settings. Furthermore, several plots are
provided in Figures 4.19 and 4.20, which demonstrate the usefulness of optimizing
over the inducing inputs Z, something that has already been realized from all the
previous experiments.

Since we discussed the importance of using different lengthscales for each dimen-
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Dataset linear-s-fx-pp-ag linear-fx-pp-ag

P@1 45.12 40.31
Bibtex P@3 26.79 23.16

P@5 20.40 17.67

P@1 63.13 63.04
Delicious P@3 57.04 57.03

P@5 52.26 52.40

P@1 75.17 78.75
Mediamill P@3 58.88 62.06

P@5 45.33 47.45

P@1 70.10 70.70
EUR-Lex P@3 53.86 54.07

P@5 43.15 43.62

P@1 43.19 -
AmazonCat P@3 25.29 -

P@5 20.66 -

se-s-fx-pp-ag se-s-fx-pp-ag

P@1 37.25 36.43
Bibtex P@3 20.07 19.42

P@5 15.37 14.74

P@1 55.65 54.44
Delicious P@3 49.87 48.56

P@5 45.62 44.77

P@1 82.99 82.69
Mediamill P@3 66.22 65.85

P@5 52.26 51.72

P@1 57.23 31.32
EUR-Lex P@3 42.76 22.49

P@5 34.08 18.06

P@1 30.61 -
AmazonCat P@3 19.14 -

P@5 11.64 -

Table 4.18: Predictive Performance of the MLGPF model for five multi-label
datasets. Those methods that have not reported results for a dataset are indi-
cated with the “-” sign.
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Dataset linear-s-pp-ag linear-pp-ag se-s-pp-ag se-pp-ag

Bibtex 0.94 0.97 1.27 0.99
Delicious 2.47 2.56 2.52 2.55
Mediamill 5.96 5.70 6.64 6.0
EUR-Lex 2.83 2.72 2.75 2.72

RCV1 90.0 130.0 82.1 127.5
AmazonCat 400.7 782.1 408.2 778.8

Table 4.19: Computational time (in minutes per epoch) of the MLGPF model for
six multi-label datasets.

Dataset P M epochs

Bibtex 159 400 150

Delicious 300 400 50

Mediamill 101 500 100

EUR-Lex 500 400 250

Wiki10 700 600 170

AmazonCat 550 600 15

Delicious-Large 700 350 50

WikiLSHTC 600 500 3

Table 4.20: Parameter settings of the MLGPF model for each dataset based on
the methods preseneted in Table 4.23.
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Figure 4.15: Lower bounds of (a) Bibtex, (b) Delicious, and (c) Mediamill, (d)
EUR-Lex, (e) RCV1, and (f) AmazonCat. The solid lines correspond to the meth-
ods that optimized the inducing points while the dashed ones correspond to those
that optimized the subspace inducing points. Blue colour represents the use of
linear kernel while the red one the use of squared exponential kernel.
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Figure 4.16: Lower bounds of (a) EUR-Lex, (b) RCV1, and (c) AmazonCat. The
solid lines correspond to the methods that optimized the inducing points while
the dashed ones correspond to those that optimized the subspace inducing points.
Blue color suggests the use of linear kernel while the red one the use of squared
exponential kernel.
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Figure 4.17: Lower bounds of (a) Bibtex, (b) Delicious, and (c) Mediamill. The
solid lines correspond to the methods that kept fixed the inducing points while
the dashed ones correspond to those that kept fixed the subspace inducing points.
Blue color suggests the use of linear kernel while the red one the use of squared
exponential kernel.
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Figure 4.18: Lower bounds of (a) EUR-Lex and (b) AmazonCat. The solid lines
correspond to the methods that kept fixed the inducing points while the dashed
ones correspond to those that kept fixed the subspace inducing points. Blue color
suggests the use of linear kernel while the red one the use of squared exponential
kernel.
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Jitter value Bibtex Delicious Mediamill EUR-Lex

P@1 48.74 65.99 83.77 39.30
10−1 P@3 27.52 59.75 66.55 29.19

P@5 20.42 55.19 52.37 23.50
F -578338.58 -9307386.81 -2174238.77 -46239799.31

P@1 59.56 67.59 83.84 66.10
10−2 P@3 35.08 61.66 66.80 50.66

P@5 25.70 57.19 52.60 40.94
F -579552.89 -9298837.28 -2198666.96 -46205485.58

P@1 60.27 67.06 83.87 73.37
10−3 P@3 35.94 61.76 66.94 57.72

P@5 26.51 57.14 52.79 46.53
F -580261.52 -9300034.11 -2447467.24 -46205385.34

P@1 60.63 67.22 83.84 74.29
10−4 P@3 36.12 61.74 66.91 58.67

P@5 26.60 57.08 52.78 47.39
F -580357.94 -9300225.81 -4484085.82 -46205506.37

P@1 60.35 67.06 84.02 74.40
10−5 P@3 36.09 61.84 67.12 58.63

P@5 26.63 57.19 52.71 47.30
F -580367.92 -9300245.88 -18348238.70 -46205520.13

Table 4.21: Sensitivity analysis of the jitter term used for the FP for each small-
scale dataset. We run the ard method using the same seed for our number gener-
ator in order to remove randomness from the algorithm and allow comparisons for
a given dataset. Five different jitter values are tested, {10i}5i=1, where the first 4
rows correspond to jitter=10−1, the next 5th to 8th row corresponds to jitter=10−2

and so on. All the P@k metrics (Eq. (1.21)) and F are computed after training
our model. For all datasets we use M = 100, P = 80, and epochs=50.
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Jitter value Bibtex Delicious Mediamill EUR-Lex

P@1 60.63 67.18 84.05 74.45
10−6 P@3 36.11 61.88 66.81 58.78

P@5 26.69 57.24 52.51 47.45
F -580368.93 -9300247.89 -82464394.56 -46205521.53

P@1 60.55 67.22 83.80 74.42
10−7 P@3 36.11 61.88 66.58 58.74

P@5 26.64 57.20 52.36 47.40
F -580369.03 -9300248.09 -214513820.87 -46205521.66

P@1 60.59 67.22 83.74 74.42
10−8 P@3 36.11 61.88 66.58 58.72

P@5 26.64 57.20 52.23 47.40
F -580369.04 -9300248.11 -287236121.47 -46205521.68

P@1 60.59 67.22 83.76 74.42
10−9 P@3 36.11 61.88 66.46 58.72

P@5 26.64 57.20 52.16 47.41
F -580369.04 -9300248.12 -299410784.72 -46205521.68

P@1 60.59 67.22 83.69 74.42
10−10 P@3 36.11 61.88 66.55 58.72

P@5 26.64 57.20 52.16 47.41
F -580369.04 -9300248.12 -300721969.03 -46205521.68

Table 4.22: Sensitivity analysis of the jitter term used for the FP for each small-
scale dataset. We run the ard method using the same seed for our number gener-
ator in order to remove randomness from the algorithm and allow comparisons for
a given dataset. Five different jitter values are tested, {10i+5}5i=1, where the first 4
rows correspond to jitter=10−6, the next 5th to 8th row corresponds to jitter=10−7

and so on. All the P@k metrics (Eq. (1.21)) and F are computed after training
our model. For all datasets we use M = 100, P = 80, and epochs=50.
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Small-scale Datasets Bibtex Delicious EUR-Lex Mediamill

P@1 66.07 ± 0.09 66.72 ± 0.23 81.13 ± 0.19 83.30 ± 0.04
linear-` P@3 40.68 ± 0.11 61.09 ± 0.16 66.83 ± 0.15 66.10 ± 0.05

P@5 29.90 ± 0.04 55.94 ± 0.09 55.13 ± 0.05 51.47 ± 0.05

P@1 66.46 ± 0.12 69.02 ± 0.16 82.48 ± 0.13 84.95 ± 0.07
ard P@3 41.05 ± 0.08 63.22 ± 0.11 68.43 ± 0.06 67.90 ± 0.03

P@5 30.26 ± 0.06 58.64 ± 0.07 56.54 ± 0.04 54.17 ± 0.05

P@1 63.04 ± 0.13 66.43 ± 0.29 75.32 ± 0.17 80.27 ± 0.07
ard-fx P@3 39.27 ± 0.11 61.24 ± 0.20 62.07 ± 0.12 66.19 ± 0.05

P@5 29.11 ± 0.06 56.83 ± 0.11 51.21 ± 0.08 53.51 ± 0.06

Large-scale Datasets Wiki10 AmazonCat Delicious-Large WikiLSHTC

P@1 83.90 92.48 42.61 28.24
ard P@3 70.73 77.21 39.42 19.69

P@5 61.00 62.16 37.42 14.15

P@1 77.79 - - -
ard-fx P@3 64.23 - - -

P@5 55.35 - - -

Table 4.23: Predictive Performance of the MLGPF model for eight multi-label
(test) datasets. Those methods that have not been applied on a dataset are indi-
cated with the “-” sign. Error bars (one standard deviation) are provided for the
small-scale datasets. The experimental settings of each method can be found in
Table 4.20.

Dataset linear-` ard-fx ard

Bibtex 0.63 0.62 0.63
Delicious 2.95 3.06 2.94
Mediamill 5.09 4.12 4.35
EUR-Lex 6.12 6.65 6.13
Wiki10 - 49.2 46.1

AmazonCat - - 2072.3
Delicious-Large - - 392.7

Table 4.24: Computational time (in minutes per epoch) of the MLGPF model for
six multi-label (training) datasets corresponding to the methods. Those methods
that have not been applied on a dataset are indicated with the “-” sign.
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sion, the panel of figures in 4.21 shows the optimized values of the inverse length-
scales wd, for each dimension d, given in descending order. Higher values indicate
higher feature importance while dimensions with values close to zero do not provide
any signal to the used model. Those plots imply that there is much redundancy in
all those high-dimensional datasets that hinders the predictive performance of the
model, verifying the poor performance we saw to previous experiments. Training
times can be also found in Table 4.24

In the final part of this section, we compare the performance of our model using the
ard method, since it is the most competitive of all the others overall, with other
state-of-the-art algorithms specifically designed to cope with XML tasks. More
specifically, we choose the SLEEC Bhatia et al. (2015), PFastreXML Jain et al.
(2016), FastXML Prabhu and Varma (2014b), and the PD-Sparse Yen et al. (2016)
method (see Section 1.2.2 of Chapter 1 for a short description of the methods).
The choice of those algorithms is based on the fact that their predictive power
is higher than other methods in the XML literature, for both small and large-
scale datasets, therefore making comparisons more fair. Further, an extra reason
of that choice is that all the P@k-based results for those methods can be found
reported in Repository (2010), for almost all the datasets we use in this chapter.
Moreover, those methods span a wide range of XML algorithms categories like Em-
bedding based methods(SLEEC), tree-based methods (PFastreXML, FastXML),
and methods that based to 1-vs-All strategy (PD-Sparse) where more details about
those categories and their methods can be found in Section 1.2 of Chapter 1. It
should be also noted that known deep learning methods such as convolutional
neural networks have been succefully deployed for extreme multi-label classifica-
tion (Liu et al., 2017) leading to predictive power. Nevertheless, we do not report
their results here since they are heavily relied on GPU computations and their
performance is not as high as the aforementioned methods for the datasets used
here.

All the P@k scores for each method are collectively compared in Table 4.25 where
the the top-2 P@k scores for each dataset are in bold. Nonetheless, for further
comparisons with more methods, we refer the to tables 6 and 8 of the XML repos-
itory (Repository, 2010). All the scores indicate that our methods is not only
equally competitive with all the chosen baselines, but in some cases the MLGPF
model’s performance surpasses all the other algorithms. In some other cases, the
accuracy difference between our method and the chosen ones exceeded the 10%.
For example, in Eurlex dataset, our method gives a score P@1 = 81.44% while
FastXML could not predict better than 71.36% which is very positive for a non-
parametric model under Bayesian treatment in conjunction with those prodigious
dimensions. In general, we observe that our method performs very well when ap-
plied to small-scale datasets. Nevertheless, the MLGPF model exhibits similar
competitive performance on large-scale datasets too, attaining scores very close to
the top-1 method for each dataset. Finally, the WikiLSHTC is the only dataset
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Figure 4.19: Evolution of the lower bound for (a) Bibtex, (b) Delicious, and (c)
Mediamill. The blue line corresponds to maximization of the lower bound using
fixed inducing inputs Z, while the red one to optimized Z. The ARD kernel is
used for each dataset while all the other parameters are set as described in Table
4.20.
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Figure 4.20: Evolution of the lower bound for (a) EUR-Lex and (b) Wiki10. The
blue line corresponds to maximization of the lower bound using fixed inducing
inputs Z, while the red one to optimized Z. The ARD kernel is used for each
dataset while all the other parameters are set as described in Table 4.20.
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Figure 4.21: Values of the the optimized inverse lengthscales wd , d = 1, · · · , D
across all input dimensions, for (a) Bibtex and (b) Delicious, (c) Eurlex and (d)
Wiki10. The optimized values obtained by the ard method where its performance
is presented in Tables 4.23.

where our method fails to compete with the predictive power of the state-of-the
art methods, mainly because of the exiguous number of epochs used.

Multi-class classification results based on the MLGPF model

Having presented and discussed a multitude of experimental results produced by
the MLGPF model for a series of different multi-label datasets, we would like to
test how this model performs when we restrict the data points to be labelled by
exactly one class each time. In other words, we would like to apply the MLGPF
model to the special subcategory of multi-label classification tasks, namely the
multi-class classification. For this purpose, we make use of our familiar from the
previous chapter MNIST dataset and we compare results with those of Section
3.8.3, Chapter 3.

Initially, we set P = K = 10 while all the other parameters are kept the same as the
RM-f method in Table 3.2, i.e. M = 100, |B| = 1000 and epochs=100 where in all
cases the same SE kernel is used. Moreover, both of the available parametrization
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Dataset MLGPF SLEEC PfastreXML FastXML PD-Sparse

P@1 66.46 65.08 63.46 63.42 61.29
Bibtex P@3 41.05 39.64 39.22 39.23 35.82

P@5 30.26 28.87 29.14 28.86 25.74

P@1 69.02 67.59 67.13 69.61 51.82
Delicious P@3 63.22 61.38 62.33 64.12 44.18

P@5 58.64 56.56 58.62 59.27 38.95

P@1 84.95 87.82 83.98 84.22 81.86
Mediamill P@3 67.90 73.45 67.37 67.33 62.52

P@5 54.17 59.17 53.02 53.04 45.11

P@1 82.48 79.26 75.45 71.36 76.43
EUR-Lex P@3 68.43 64.30 62.70 59.90 60.37

P@5 56.54 52.33 52.51 50.39 49.72

P@1 83.90 85.88 83.57 83.03 -
Wiki10 P@3 70.73 72.98 68.61 67.47 -

P@5 61.00 62.70 59.10 57.76 -

P@1 92.48 90.53 91.75 93.11 90.60
AmazonCat P@3 77.21 76.33 77.97 78.20 75.14

P@5 62.16 61.52 63.68 63.41 60.69

P@1 42.61 47.85 41.72 43.07 34.37
Delicious-Large P@3 39.42 42.21 37.83 38.66 29.48

P@5 37.42 39.43 35.58 36.19 27.04

P@1 28.24 54.83 56.05 49.75 61.26
WikiLSHTC P@3 19.69 33.42 36.79 33.10 39.48

P@5 14.15 23.85 27.09 24.45 28.79

Table 4.25: Performance comparison between the MLGPF model using ard and
other state-of-the-art methods. The top-2 P@k (k = 1, 3, 5) for each dataset are
in bold. “-” sign indicates absence of reported results for a dataset.
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Figure 4.22: Evolution of the (mean) lower bound for Mediamill (first row) and
EUR-Lex (second row). Right column corresponds to linear-` method while the
left one to ard. All the other parameters are set as described in Table 4.20.
Shaded area depicts 68% confidence intervals.
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Figure 4.23: Evolution of the (mean) lower bound for Bibtex (first row) and Deli-
cious (second row). Right column corresponds to linear-` method while the left
one to ard. All the other parameters are set as described in Table 4.20. Shaded
area depicts 68% confidence intervals.
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Figure 4.24: (a) Error rates per epoch comparison between the methods se (blue
line) and se-pp (red line) of the MLGPF model, using M = 100, and RM-f
(black line). On the other hand, (b) depicts the evolution of the lower bound
per iteration between the two parametrizations of the MLGPF model and RM-f.
Colour line description is the same as (a). N = 60000 and |B| = 1000, thus each
epoch corresponds to 60 iterations.
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Error rate (%) time (sec/epoch)

P = 5 4.0 104.7
P = 10 3.1 140.6
P = 20 3.0 230.2
RM-f 2.6 141.1

Table 4.26: Error rates and computational times in seconds per epoch for the
MLGPF model using different number of GPs P in tandem with RM-f method’s
error given by Table 3.2. For all cases an SE kernel and FP are used while both
number of inducing inputs and epochs are set to 100. Nevertheless, computational
times are calculated by using M = 1000.

schemes are employed and then compared where the plots of the results can be
found in Fig. 4.24. The deficiency of the PP is one more time apparent in terms
of both lower bound values and error rates. On the other hand, the MLGPF se
method based on the FP, attains error rates very close to the optimal method RM-
f, providing in that way an efficient alternative to the RobustMax likelihood. By
observing the lower bounds in Fig. (b) 4.24, we interestingly discern that using the
MLGPF likelihood leads to higher ELBO values than the RobustMax one although
predictive performance of the former is inferior of the latter. Apart from that, we
also tested the MLGPF model using P = 5 and P = 20 in order to investigate
the potential benefits (or drawbacks) of increasing (or decreasing) the number of
GPs comparing to the number of total classes K. As Table 4.26 reveals, reducing
the number of used GPs deteriorates the performance while a slight decrease of
the error is observed when P is doubled from 10 to 20. Moreover, regarding
computational times, both RM-f and se with P = 10 are almost identical while
increasing P leads to an extra computational burden. Finally, by investigating the
behaviour of the inducing inputs Z, before and after the optimization procedure,
we obtain similar results as in Section 3.8.3 of Chapter 3, where it is observed that
the optimized inducing inputs move away from their initial values and they are
anchored in values which form the decision boundary.

4.6 Conclusion

In this chapter, we move to a more general category of classification tasks where
multiple labels can be assigned to a given data. We propose a model based on a
combination of Gaussian processes and a linear latent variable model that is scal-
able no matter how large the values of N , D, and K, whilst correlations between
labels can be captured. These attributes pave the way for applying our model to
multi-label datasets where sizes are prohibitively large for other GP-based models.
As we also notice in the previous chapter, the MLGPF model using the FP leads
to better performance than using the PP one, as all the results imply in Section
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Figure 4.25: Visualization of the inducing inputs based on the results of Fig. 4.24.
Each row corresponds to a different inducing input. Left: Initialized inducing
input with a k-means center. Center: Optimized inducing point by using the
MLGPF model with PP. Right: Optimized inducing point by using the MLGPF
model with FP.
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4.5.3. Moreover, we observe that our model is able to be trained using our Tensor-
flow implementation for extremely large datasets while its predictive performance
is competitive with other state-of-the-arts methods (Table 4.25). Nevertheless,
the main drawback of our method is the training time needed, especially for large
scale datasets, where some of them may require a few weeks training in contrast to
other state-of-the-art methods that need one or two days training at most (Bhatia
et al., 2015; Prabhu and Varma, 2014b; Jain et al., 2016; Yen et al., 2016) for
the same datasets. We should also stress the importance of using kernels that
include lengthscales for each of the input dimensions which is supported by all the
experimental results. Further to that, the methods that use subspace inducing
inputs do not seem to provide any essential advantage over those that use full
inducing inputs for the small-scale datasets while for the large-scale ones, this can
lead to significant deterioration of their predictive power. Finally, we find that our
model can be successfully used for multi-class classification tasks with predictive
performance very close to the state-of-the-art method for sparse GP models for
multi-class classification tasks (Hensman et al., 2015b).



Chapter 5

Conclusion

5.1 Contributions

In this thesis we study how multi-class and multi-label tasks can be approached by
Gaussian process models using variational inference tools in order to be able to deal
with extremely large number of training instances, labels and input dimensions.
The main contributions are briefly summarized here.

• In Chapter 2 we present a new parsimonious parametrization for the vari-
ational distribution which is able to reduce the number of variational pa-
rameters and can maintain flexibility of the model. Nonetheless, empirical
results in Chapters 3 and 4 indicate that the conventional full parametriza-
tion should be preferred since it provides better performance for the meth-
ods that use it while the more variational parameters required by the full
parametrization does not seem to be restrictive in practice. Moreover, a
representation trick of the inducing input matrix Z is introduced which is
able to reduce the number of variational parameters in cases where the input
dimensions are extremely large. Its usefulness is investigated in Chapter 4
where all the results indicate that it does not provide any essential bene-
fits for the small-scale datasets while for the large-scale ones it significantly
limits the performance of the MLGPF model.

• In Chapter 3 we develop a method that is based on the sparse Gaussian
process variational inference framework of Hensman et al. (2015b) and a
computational efficiently lower bound of Titsias (2016) on the softmax func-
tion. The method is suitable for multi-class classification problems and it
can scale well for a large number of data point and classes. The experi-
ments conducted using that method show that it can achieve performance
very close to other GP-based methods in literature despite its approximating
nature. Furthermore, using our own implementation based on Tensorflow for
the method of Hensman et al. (2015b) with a large number of inducing in-
puts, we achieve the highest reported performance for GP-models without
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convolutional assumptions. We also investigate the case where a regression
problem is transformed into a classification one and then our method is ap-
plied. This is motivated by the high scalability our method attains over the
number of classes. Nevertheless, results show that using a high number of
classes to transform the regression problem does not lead to better predictive
performance.

• Finally, in Chapter 4 we probe the use of Gaussian processes into multi-label
classification problems for the first time. More specifically, we focus on a spe-
cific category of multi-label classification tasks that involve extremely large
number of data instances, labels, and input dimensions. For instance, one of
those datasets has N = 196606 training data points, K = 205443 labels, and
D = 782585 input dimensions. For dealing with this kind of datasets, we
introduce a method that is based on a latent factor model and the variation
inference for sparse GPs framework. A series of experiments on a wide range
of multi-label datasets shows that our method achieves performance similar
and sometimes higher than other state-of-the-art algorithms for the extreme
multi-label classification task. This success is inextricably intertwined with
the Tensorflow-based code we implement. Moreover, the experiments reveal
the importance of having different lengthscales for each input dimension. We
also find that our method can be deployed to tackle multi-class classification
tasks effectively, giving predictive accuracy close to the method of Hens-
man et al. (2015b). Its main drawback is the large training time required
for the large-scale datasets comparing to other more efficient algorithms in
literature.

5.2 Future work

In Chapter 3 we obtain a stochastic unbiased estimate of (3.20) by using random
sub-sampling over the set of classes to get a class and then we randomly choose an-
other class ` from the remaining set of classes (Section 3.4). Nonetheless, we could
also investigate the performance of our model by imposing a proposal distribution
over the set of the remaining classes that favours classes with large latent function
values in order to conduct importance sampling as it is also proposed in Titsias
(2016). Moreover, we could probe the use of the subspace inducing inputs for all
the methods described in that chapter for multi-class classification for datasets
with larger input dimensions than MNIST.

Regarding the multi-label classification problems, a possible future research direc-
tion would be to combine tree structures that learn a label hierarchy with Gaussian
processes in a similar manner as it is introduced in Prabhu et al. (2018b) where
linear classifiers are used in the leaves of the trees. Furthermore, another potential
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research path would be to investigate the performance of our model on datasets
that consist of dense inputs vectors and dense label vectors as well. Nonethe-
less, we would like the number of training instances to be sufficiently large in
order to refer to variational approximation methods. For instance, applications
from cognitive neuroscience could be considered where our model would be de-
ployed to classify high-dimensional fMRI data to multiple attributes of the stimuli
(Bobadilla-Suarez et al., 2019). A further study of the potential benefits of using
more sophisticated kernel functions for these kind of problems could be also pur-
sued in the future. Additionally, there is an idea of extending our MLGPF model
to be suitable for a non-binary multi-label setting where each label can take more
than two values. Possible connections and comparisons of our model with the work
of Moreno-Muñoz et al. (2018) would be of interest to us too.

Finally, inspired by the encouraging results of Salimbeni et al. (2018) for sparse
Gaussian process models with non-conjugate likelihoods, we would like to study the
effect of using natural gradients in the optimization of the ELBO on the MLGPF
model.
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Álvarez, M. A. and Lawrence, N. D. (2011). Computationally efficient convolved
multiple output Gaussian processes. J. Mach. Learn. Res., 12:1459–1500.

Alvarez, M. A., Rosasco, L., Lawrence, N. D., et al. (2012). Kernels for vector-
valued functions: A review. Foundations and Trends R© in Machine Learning,
4(3):195–266.

Amari, S.-I. (1982). Differential geometry of curved exponential families-curvatures
and information loss. The Annals of Statistics, pages 357–385.

Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural compu-
tation, 10(2):251–276.

Azevedo-Filho, A. and Shachter, R. D. (1994). Laplace’s method approximations
for probabilistic inference in belief networks with continuous variables. In Un-
certainty Proceedings 1994, pages 28–36. Elsevier.

136



137 BIBLIOGRAPHY

Babbar, R. and Schölkopf, B. (2017). Dismec: Distributed sparse machines for ex-
treme multi-label classification. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining, pages 721–729. ACM.

Baglama, J. and Reichel, L. (2005). Augmented implicitly restarted lanczos bidi-
agonalization methods. SIAM Journal on Scientific Computing, 27(1):19–42.

Barber, D. and Wiegerinck, W. (1999). Tractable variational structures for ap-
proximating graphical models. In Advances in Neural Information Processing
Systems, pages 183–189.

Baroni, M., Dinu, G., and Kruszewski, G. (2014). Don’t count, predict! a system-
atic comparison of context-counting vs. context-predicting semantic vectors. In
Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages 238–247.

Bauer, M., van der Wilk, M., and Rasmussen, C. E. (2016). Understanding prob-
abilistic sparse Gaussian process approximations. In Advances in Neural Infor-
mation Processing Systems 29, pages 1533–1541. Curran Associates, Inc.

Bhatia, K., Jain, H., Kar, P., Varma, M., and Jain, P. (2015). Sparse local embed-
dings for extreme multi-label classification. In Advances in Neural Information
Processing Systems, pages 730–738.

Bi, W. and Kwok, J. (2013). Efficient multi-label classification with many labels.
In International Conference on Machine Learning, pages 405–413.

Billingsley, P. (2008). Probability and measure. John Wiley & Sons.

Bishop, C. M., Lawrence, N. D., Jaakkola, T., and Jordan, M. I. (1998). Approx-
imating posterior distributions in belief networks using mixtures. In Advances
in neural information processing systems, pages 416–422.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference:
A review for statisticians. Journal of the American Statistical Association,
112(518):859–877.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022.

Bobadilla-Suarez, S., Ahlheim, C., Mehrotra, A., Panos, A., and Love, B. C.
(2019). Measures of neural similarity. BioRxiv, page 439893.

Bonilla, E. V., Chai, K. M., and Williams, C. (2008). Multi-task Gaussian process
prediction. In Advances in neural information processing systems, pages 153–
160.



138 BIBLIOGRAPHY

Bouchard, G. (2007). Efficient bounds for the softmax function and applications
to approximate inference in hybrid models.

Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. (2004). Learning multi-label
scene classification. Pattern recognition, 37(9):1757–1771.

Boyle, P. and Frean, M. (2005). Multiple output Gaussian process regression.

Brown, R. (1828). Xxvii. a brief account of microscopical observations made in the
months of june, july and august 1827, on the particles contained in the pollen of
plants; and on the general existence of active molecules in organic and inorganic
bodies. The Philosophical Magazine, 4(21):161–173.

Cao, Y., Brubaker, M. A., Fleet, D. J., and Hertzmann, A. (2013). Efficient
optimization for sparse Gaussian process regression. In Advances in Neural
Information Processing Systems, pages 1097–1105.

Chai, K. M. A. (2012). Variational multinomial logit Gaussian process. Journal
of Machine Learning Research, 13(Jun):1745–1808.

Chen, Y.-N. and Lin, H.-T. (2012). Feature-aware label space dimension reduction
for multi-label classification. In Advances in Neural Information Processing
Systems, pages 1529–1537.
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Appendix A

Useful formulas for the
multivariate Gaussian distribution

We present here some of the Gaussian identities that we widely use throughout
this thesis.

A.1 Marginal and conditional Gaussian distribu-

tion

Let

[
f
y

]
∼ N

([
µf

µy

]
,

[
Σf Σfy

Σyf Σy

])
(A.1)

where f ∈ RDf and y ∈ RDy and cross-covariance matrix Σfy = Σ>yf ∈ RDf×Dy .
The marginals of this Gaussian distribution are given by,

p(f) =

∫
p(f ,y)dy = N (µf ,Σf ), (A.2)

p(y) =

∫
p(f ,y)df = N (µy,Σy), (A.3)

while the conditionals are

p(f |y) = N (µf + ΣfyΣ−1y (y − µy),Σf − ΣfyΣ−1y Σyf ), (A.4)

p(y|f) = N (µy + ΣyfΣ
−1
f (f − µf ),Σy − ΣyfΣ

−1
f Σfy). (A.5)
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Moreover, assuming now that f represents some latent variables while y are the
observed ones. Given an arbitrary Dy×Df matrix A, a Dy-dimensional real vector
b and the model

p(f) = N (µ,Σ), (A.6)

p(y|f) = N (Af + b,Λ), (A.7)

we can re-write Eq. (A.1) as

[
f
y

]
∼ N

([
µ

Aµ + b

]
,

[
Σ ΣA>

AΣ Λ + AΣA>

])
, (A.8)

which can be used to find the posterior p(f |y) and the marginal likelihood p(y)
using equations (A.4) and (A.3), respectively.

A.2 KL-Divergence between Normal distributions

The Kullback-Leibler divergence between two D-dimensional Gaussian distribu-
tions N (µ1,Σ1) and N (µ2,Σ2) is given by

KL[N (µ1,Σ1) || N (µ2,Σ2)] =
1

2
( (µ2 − µ1)

>Σ−12 (µ2 − µ1)

+ tr(Σ−12 Σ1) + log |Σ2| − log |Σ1| −D ) (A.9)



Appendix B

Matrix-related identities

B.1 Matrix calculus identities

We present here useful identities for matrix differentiation used in Chapter 4 to
prove Proposition 1. Let two symmetric and positive definite N × N matrices Σ
and A. The following equalities hold,

∂ log |Σ|
∂Σ

= Σ−1 (B.1)

∂ tr(AΣ)

∂Σ
= A (B.2)

B.2 The Woodbury matrix identity

For two invertible matrices, A ∈ RN×N and C ∈ RM×M , and two arbitrary matrices
U ∈ RN×M and V ∈ RM×N , the Woodbury matrix identity is given by

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 (B.3)
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Appendix C

Code Snippets

We present a few code snippets for the implementation of the ELBO for both
multi-class and multi-label classification cases using different parametrizations.
For completeness, we also provide a code snippet based on the Autograd package
which was used at the beginning of this PhD before moving to Tensorflow choice.
This will make more clear the efficiency of the Tensorflow-based code over the
Sutograd-based one. For all cases we consider here an ARD kernel is employed.

C.1 Autograd-based Python Code Snippet

The following Autograd-based code implements the bound in Eq. (4.32) for the
multi-label classification case, with Ni = Li, while the parsimonious parametriza-
tion is used. Notice that Autograd requires us to define a function that takes
as inputs the variables (”var par” in the code) that we want to find the partial
derivatives of this function with respect to them. There is also a second input
called ”args” in the code that provides other values that our function will not be
differentiated over them and they are needed for computing the funcion.

1 ’’’

2 K: number of labels

3 M: number of inducing inputs

4 P: number of GPs used

5 D: input dimensionality

6 N: number of training data points

7 S_GH: number of G-H quadrature points

8 x_new: a vector of the precomputed positions of the G-H

qudrature (usually 10- dimensional)

9 w_new: a vector of the corresponding weights of the G-H

qudrature

10 Xtr: the N x D design matrix

11 ’’’
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12

13 import autograd.numpy as np

14

15 X_dot_X_diag = np.array ((Xtr.multiply(Xtr)).sum(axis =1))

.reshape(Xtr.shape [0])

16

17

18 def objective_fun(var_par , *args):

19

20 idx_list_obj = args [0] # the batch of chosen indices

from training dataset X_tr with size "minibatch"

21 mask_labels = args [1] # a K x minibatch matrix with

{-1,1} values; "-1" indicates positive label while

"1" begatve one

22 lik_factor = args [2]

23

24 ell_sq_obj = np.exp (2.* var_par [-1,0]) # lengthscales

25

26 Phi_obj = var_par [:K, :P] # K x P

27 mu_p_mtr_obj = var_par[K:K+M, :P] # M x P

28 Sigma_p_mtr_obj = var_par[K+M:K+2*M, :P] # M x P

29 bias_obj = var_par [:K, -1]. reshape(K,1) # K x 1

30 Z_opt_obj = var_par[K+2*M:K+3*M, :D] # M x D

31

32 Z_dot_Z_np = np.dot(Z_opt_obj , Z_opt_obj.T) # M x M

33 diag_ZZ_np = np.diag(Z_dot_Z_obj) # (M, )

34 A_p = diag_ZZ_np [:, None] + diag_ZZ_tf[None , :] - 2.*

Z_dot_Z_np

35 K_mm = np.exp(-( 0.5/( ell_sq_obj) ) * A_p)

36

37 X_dot_Z_np = np.dot(Xtr[idx_list_obj ]. toarray (),

Z_opt_obj.T) # minibatch x M

38 A_k2_tmp = X_dot_X_diag[idx_list_obj ][:, None] - 2.*

X_dot_Z_np + diag_ZZ_tf

39 K_nm = np.exp(-( 0.5/( ell_sq_obj) ) * A_k2) #

minibatch x M

40

41 # KL computation

42 all_s_p_list = []

43 all_m_p_mtr_arr = np.dot(K_nm , mu_p_mtr_obj) #

minibatch x P

44 KL_div = 0.0

45 for p_prime in range(P):
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46 mu_p_prime = mu_p_mtr_obj [:, p_prime]

47 Sigma_p_prime = Sigma_p_mtr_obj [:, p_prime]

48

49 K_mmlus_Sigma_p_prime = K_mm + np.diag(

Sigma_p_prime.T)

50 L_K_mmlus_Sigma_p_prime = np_lin.cholesky(

K_mmlus_Sigma_p_prime) # M x M

51

52 invL_K_mmlus_Sigma_p_prime = sc_lin.

solve_triangular(L_K_mmlus_Sigma_p_prime , eye_M ,

lower=True)

53

54 invK_mmlus_Sigma_p_prime = np.dot(

invL_K_mmlus_Sigma_p_prime.T,

invL_K_mmlus_Sigma_p_prime) # M x M

55

56 KL_div = KL_div + 0.5 * ( np.dot( np.transpose(

mu_p_prime) , np.dot(K_mm , mu_p_prime)) - np.sum(

invK_mmlus_Sigma_p_prime*K_mm)

57 + 2*np.sum(np.log(L_K_mmlus_Sigma_p_prime[row_col ,

row_col ])) - np.sum(np.log(Sigma_p_prime)) )

58

59 y_p = sc_lin.solve_triangular(

L_K_mmlus_Sigma_p_prime , K_nm.T, lower=True) # M x

minibatch

60 all_s_p_list.append (( sf2_obj) - np.sum(y_p**2,

axis =0)) # minibatch x 1

61

62 all_s_p_arr = np.array(all_s_p_list)

63

64 # Marginal mean and variance computation

65 dot_phi = (np.dot(Phi_obj , all_m_p_mtr_arr.T) +

bias_obj)*mask_labels # K x minibatch

66 dot_phi_sqrt = np.sqrt(np.dot(Phi_obj **2, all_s_p_arr

))*mask_labels # K x minibatch

67

68 # Expectations computation

69 E_q_all = 0.0

70 for x_new_i in range(S_GH):

71 E_q_all = E_q_all + w_new[x_new_i ]*np.sum(np.

log1p(np.exp(dot_phi - x_new[x_new_i ]*

sum_dot_phi_sqrt) ))

72
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73 return lik_factor*E_q_all + KL_div

C.2 Tensorflow-based Python Code Snippet

The first code snippet demonstrates how the ELBO in Eq. (3.36) is implemented
using the Tensorflow package for the multi-class classification case. Here the par-
simonious parametrization is used.

1 ’’’

2 Multu -label Classification - One -vs-Each

3

4 ****************************************

5 *** Parsimonious Parametrization ***

6 ****************************************

7

8 K: number of classes

9 M: number of inducing inputs

10 ’’’

11

12 # Define Placeholders

13 X_batch = tf.placeholder(float_type , shape=[None , D]) #

A batch of the training input data

14 ind_k_l = tf.placeholder(tf.int32 , [2, ]) # the two

chosen classes

15 lik_factor = tf.placeholder(float_type , ()) # the

likelihood constant tha makes the stochastic

estimation unbiased

16

17 # Define constants

18 x_new_tf_2d = tf.constant(x_new[:, np.newaxis], dtype=

float_type) # x_new: the precomputed positions of

the G-H qudrature

19 w_new_tf = tf.constant(w_new , dtype=float_type) # w_new:

the weights of the G-H qudrature

20 tf_M_ones = tf.ones([M, 1], dtype=float_type)

21 eye_M_tf = tf.constant(np.eye(M), dtype=float_type)

22

23 # Define variables

24 q_mu_tf = tf.Variable (0.5*np.ones((K, M)), dtype=

float_type) # the stored variational means

25 Sigma_p_tf = tf.Variable(np.log(np.exp (.5) - 1)*np.ones

((K, M)), dtype=float_type) # the stored diagonals
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for the variational covariances

26 Z_all = tf.Variable(Z_all_0 , dtype=float_type) # a K x M

x D tensor of the stored inducing inputs for each

class

27 ells_tf = tf.Variable(np.log(np.exp (.5) - 1)*np.ones(D),

dtype=float_type) # D lengthscales

28 sigma_f = tf.Variable(np.log(np.exp (.5) - 1), dtype=

float_type) # kernel variance

29

30 # Choose the right variables

31 Z_k = Z_all[ind_k_l [0]]

32 Z_l = Z_all[ind_k_l [1]]

33 q_mu_k = q_mu_tf[ind_k_l [0]]

34 q_mu_l = q_mu_tf[ind_k_l [1]]

35 Sigma_k = Sigma_p_tf[ind_k_l [0]]

36 Sigma_l = Sigma_p_tf[ind_k_l [1]]

37

38 # Positive variables

39 Sigma_k = tf.nn.softplus(Sigma_k) + 1e-6

40 Sigma_l = tf.nn.softplus(Sigma_l) + 1e-6

41 ells_tf = tf.nn.softplus(ells_tf) + 1e-6

42 sigma_f = tf.nn.softplus(sigma_f) + 1e-6

43

44 Z_ells_T_k = tf.transpose(Z_k*ells_tf) # D x M

45 Z_ells_T_l = tf.transpose(Z_l*ells_tf) # D x M

46

47 Xb_Lambda = X_batch*ells_tf

48

49 Z_dot_Z_obj_tf_k = tf.matmul(Z_ells_T_k , Z_ells_T_k ,

transpose_a=True) # M x M

50 Z_mul_sum_obj_tf_k = tf.matrix_diag_part(

Z_dot_Z_obj_tf_k) # (M, )

51 Z_dot_Z_obj_tf_l = tf.matmul(Z_ells_T_l , Z_ells_T_l ,

transpose_a=True) # M x M

52 Z_mul_sum_obj_tf_l = tf.matrix_diag_part(

Z_dot_Z_obj_tf_l) # (M, )

53

54 A_p_tf_k = Z_mul_sum_obj_tf_k[None , :] +

Z_mul_sum_obj_tf_k [:, None] - 2.* Z_dot_Z_obj_tf_k # M

x M

55 A_p_tf_l = Z_mul_sum_obj_tf_l[None , :] +

Z_mul_sum_obj_tf_l [:, None] - 2.* Z_dot_Z_obj_tf_l # M

x M
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56

57 X_dot_Z_obj_tf_k = tf.matmul(Xb_Lambda , Z_ells_T_k) #

minibatch x M

58 X_dot_Z_obj_tf_l = tf.matmul(Xb_Lambda , Z_ells_T_l) #

minibatch x M

59

60 tmp_xxT = tf.reduce_sum(tf.square(Xb_Lambda), 1)

61

62 A_k2_k = tmp_xxT - 2.* Z_dot_X_obj_tf_k +

Z_mul_sum_obj_tf_k [:, None] # M x minibatch

63 A_k2_l = tmp_xxT - 2.* Z_dot_X_obj_tf_l +

Z_mul_sum_obj_tf_l [:, None] # M x minibatch

64

65 K_mm_k = sigma_f*tf.exp(-A_p_tf_k) # M x M

66 K_mm_l = sigma_f*tf.exp(-A_p_tf_l) # M x M

67

68 K_mn_k = sigma_f*tf.exp(-A_k2_k) # M x minibatch

69 K_mn_l = sigma_f*tf.exp(-A_k2_l) # M x minibatch

70

71 # KL computation

72 L_Kmm_Sigma_k = tf.cholesky(K_mm_k + tf.matrix_diag(

Sigma_k)) # M x M

73 invL_Kmm_k_Sigma = tf.matrix_triangular_solve(

L_Kmm_Sigma_k , eye_M_tf , lower=True) # M x M

74 invK_Z_plus_Sigma_tf = tf.matmul(invL_Kmm_k_Sigma ,

invL_Kmm_k_Sigma , transpose_a=True) # M x M

75 Lq_diag_k = tf.matrix_diag_part(L_Kmm_Sigma_k)

76

77 KL_div_tf = 0.5*( tf.reduce_sum(q_mu_k*K_mm_k*q_mu_k[:,

None])

78 - tf.reduce_sum(

invK_Z_plus_Sigma_tf*K_mm_k)

79 - tf.reduce_sum(tf.log(Sigma_k))) +

tf.reduce_sum(tf.log(Lq_diag_k))

80

81 # Marginal mean and variance computation

82 L_Kmm_Sigma_l = tf.cholesky(K_mm_l + tf.matrix_diag(

Sigma_l)) # M x M

83

84 y_k = tf.matrix_triangular_solve(L_Kmm_Sigma_k , K_mn_k ,

lower=True) # M x minibatch

85 y_l = tf.matrix_triangular_solve(L_Kmm_Sigma_l , K_mn_l ,

lower=True) # M x minibatch
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86

87 fvar_k = sigma_f - tf.reduce_sum(tf.square(y_k), axis =0)

# minibatch

88 fvar_l = sigma_f - tf.reduce_sum(tf.square(y_l), axis =0)

# minibatch

89

90 fmean = tf.matmul(K_mn_l , q_mu_l[:, None], transpose_a=

True) - tf.matmul(K_mn_k , q_mu_k[:, None],

transpose_a=True) # minibatch

91 fvar = fvar_k + fvar_l # minibatch

92

93 # Expectations computation

94 sum_dot_phi_tf = tf.squeeze(fmean) # minibatch

95 sum_dot_phi_sqrt_tf = tf.sqrt(fvar) # minibatch

96 sum_E_q_all_tf = tf.reduce_sum(w_new_tf * tf.reduce_sum(

tf.nn.softplus(sum_dot_phi_tf - x_new_tf_2d*

sum_dot_phi_sqrt_tf[None , :]), 1))

97

98 #Lower Bound

99 lower_bound = lik_factor*sum_E_q_all_tf + KL_div_tf

Moreover, the next two code snippets implement the ELBO in Eq. (4.32) for the
multi-label classification case, with Ni = Li. The parsimonious parametrization is
used for the first snippet while the second one implements the full parametrization.

1 ’’’

2 Multu -label Classification

3

4 ****************************************

5 *** Parsimonious Parametrization ***

6 ****************************************

7

8 K: number of labels

9 M: number of inducing inputs

10 P: number of GPs used

11 x_new: a vector of the precomputed positions of the G-H

qudrature (usually 10- dimensional)

12 w_new: a vector of the corresponding weights of the G-H

qudrature

13 ’’’

14

15 import numpy as np

16 import tensorflow as tf

17
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18 # Define Placeholders

19 X_batch = tf.sparse_placeholder(float_type , shape =[None ,

D]) # Sparse input tensor for a batch of training

data

20 mask_labels = tf.placeholder(float_type , [K, None]) # a

K x minibatch tensor with {-1,1} values; "-1"

indicates positive label while "1" begatve one

21 lik_factor = tf.placeholder(float_type , ()) # the

likelihood constant tha makes the stochastic

estimation unbiased

22

23 # Define constants

24 x_new_tf_3d = tf.constant(x_new[:, np.newaxis , np.

newaxis], dtype=float_type)

25 w_new_tf = tf.constant(w_new , dtype=float_type)

26 tf_P_ones_3d = tf.ones([P, 1 ,1], dtype=float_type)

27

28 # Define variables

29 Phi = tf.Variable(np.random.randn(K, P)/np.sqrt(P),

dtype=float_type) # the factor loadings matrix

30 q_mu_tf = tf.Variable (0.5*np.random.randn ((M, P)), dtype

=float_type) # variational mean vectors

31 Sigma_p = tf.Variable(np.log(np.exp(np.random.rand(K, M)

) - 1), dtype=float_type) # variational covariance

matrices

32 Z_tf = tf.Variable(A_0 , dtype=float_type) # inducing

inputs

33 bias_tf = tf.Variable(np.random.randn(K, 1)/np.sqrt(P),

dtype=float_type) # bias term

34 ells_tf = tf.Variable(np.log(np.exp (1.0) - 1)*np.ones(D)

, dtype=float_type) # lengthscales

35

36 # Tranform Variables

37 Sigma_p_tf = tf.nn.softplus(Sigma_p) + 1e-6

38 ells_tf = tf.nn.softplus(ells_tf) + 1e-6

39 Z_tf = tf.nn.l2_normalize(Z_tf , 1)

40

41 Z_tf_ells_T = tf.transpose(Z_tf*ells_tf) # D x M

42 Xb_Lambda = X_batch.__mul__(ells_tf)

43

44 Z_dot_Z_tf = tf.matmul(Z_tf_ells_T , Z_tf_ells_T ,

transpose_a=True) # M x M

45 diag_ZZ_tf = tf.matrix_diag_part(Z_dot_Z_tf) # (M, )
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46 A_p_tf = diag_ZZ_tf [:, None] + diag_ZZ_tf[None , :] - 2.*

Z_dot_Z_tf

47

48 X_dot_Z_obj_tf = tf.sparse_tensor_dense_matmul(Xb_Lambda

, Z_tf_ells_T) # minibatch x M

49 A_k2_tmp = tf.sparse_reduce_sum(tf.square(Xb_Lambda), 1)

- 2.*tf.transpose(X_dot_Z_obj_tf) # M x minibatch

50 A_k2 = tf.transpose(A_k2_tmp) + diag_ZZ_tf # minibatch x

M

51

52 K_mm = tf.exp(-A_p_tf) # M x M

53

54 K_mn = tf.exp(-A_k2) # minibatch x M

55 K_mn = tf.transpose(K_mn) # M x minibatch

56

57 # KL computation

58 K_mm_Sigma = K_mm[None , :, :] + tf.matrix_diag(

Sigma_p_tf)

59 L_Kmm_Sigma = tf.cholesky(K_mm_Sigma) # P x M x M

60 invL_Kmm_Sigma = tf.matrix_triangular_solve(L_Kmm_Sigma ,

eye_M_tf , lower=True) # P x M x M

61 invK_Z_plus_Sigma_tf = tf.matmul(invL_Kmm_Sigma ,

invL_Kmm_Sigma , transpose_a=True) # P x M x M

62 Lq_diag = tf.matrix_diag_part(L_Kmm_Sigma) # P x M

63 mahanalobis_term = tf.matmul(q_mu_tf , K_mm) # P x M

64 mahanalobis_term = mahanalobis_term*q_mu_tf

65

66 KL_tf = 0.5*( tf.reduce_sum(mahanalobis_term) - tf.

reduce_sum(invK_Z_plus_Sigma_tf*K_mm[None , :, :])

67 - tf.reduce_sum(tf.log(Sigma_p_tf)) ) + tf.

reduce_sum(tf.log(Lq_diag))

68

69 # Marginal mean and variance computation

70 fmean = tf.matmul(K_mn , q_mu_tf , transpose_a=True ,

transpose_b=True) # minibatch x P

71 y_all = tf.matrix_triangular_solve(L_Kmm_Sigma ,

tf_P_ones_3d*K_mn[None , :, :], lower=True) # P x M x

minibatch

72 fvar = 1. - tf.reduce_sum(tf.square(y_all), axis =1) # P

x minibatch

73

74 # Expectations computation

75 dot_phi_tf = (tf.matmul(Phi , fmean , transpose_b=True) +
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bias_tf)*mask_labels # K x minibatch

76 dot_phi_sqrt_tf = tf.sqrt(tf.matmul(tf.square(Phi), fvar

))*mask_labels # K x minibatch

77 dot_phi_sqrt_tf = tf.expand_dims(dot_phi_sqrt_tf , 0) # 1

x K x minibatch

78 E_q_all_tf = tf.reduce_sum(w_new_tf * tf.reduce_sum(tf.

nn.softplus(dot_phi_tf - x_new_tf_3d*dot_phi_sqrt_tf)

, [1, 2]))

79

80 #Lower Bound

81 lower_bound = lik_factor*E_q_all_tf + KL_div_tf

1 ’’’

2 Multu -label Classification

3

4 ********************************

5 *** Full Parametrization ***

6 ********************************

7

8 K: number of labels

9 M: number of inducing inputs

10 P: number of GPs used

11 x_new: a vector of the precomputed positions of the G-H

qudrature (usually 10- dimensional)

12 w_new: a vector of the corresponding weights of the G-H

qudrature

13 ’’’

14

15 import numpy as np

16 import tensorflow as tf

17

18 # Define Placeholders

19 X_batch = tf.sparse_placeholder(float_type , shape =[None ,

D]) # Sparse input tensor for a batch of training

data

20 mask_labels = tf.placeholder(float_type , [K, None]) # a

K x minibatch tensor with {-1,1} values; "-1"

indicates positive label while "1" begatve one

21 lik_factor = tf.placeholder(float_type , ()) # the

likelihood constant tha makes the stochastic

estimation unbiased

22

23 # Define constants
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24 jitter_eye_tf = tf.constant (1e-6*np.eye(M), dtype=

float_type)

25 tf_P_ones_3d = tf.ones([P, 1 ,1], dtype=float_type)

26 tf_M_ones = tf.ones([M, 1], dtype=float_type)

27 tf_P_ones_2d = tf.ones([P, 1], dtype=float_type)

28 indices_tf = tf.constant ([list(i) for i in list(zip(*np.

tril_indices(M)))], dtype=tf.int64)

29 const_PM = tf.constant(P*M, dtype=float_type)

30

31 def vec_to_tri_vector(vector):

32 return tf.scatter_nd(indices=indices_tf , shape=[M, M

], updates=vector)

33

34 # Define variables

35 Phi = tf.Variable(np.random.randn(K, P)/np.sqrt(P),

dtype=float_type) # the factor loadings matrix

36 q_mu_tf = tf.Variable (0.5*np.random.randn ((M, P)), dtype

=float_type) # variational mean vectors

37 L_vecs = tf.Variable (0.2* L_vecs_0 , dtype=float_type) #

variational covariance matrices

38 Z_tf = tf.Variable(A_0 , dtype=float_type) # inducing

inputs

39 bias_tf = tf.Variable(np.random.randn(K, 1)/np.sqrt(P),

dtype=float_type) # bias term

40 ells_tf = tf.Variable(np.log(np.exp (1.0) - 1)*np.ones(D)

, dtype=float_type) # lengthscales

41

42 # Tranform Variables

43 q_sqrt_tf = tf.map_fn(vec_to_tri_vector , L_vecs) # P x M

x M

44 ells_tf = tf.nn.softplus(ells_tf) + 1e-6

45 Z_tf = tf.nn.l2_normalize(Z_tf , 1)

46

47 Z_tf_ells_T = tf.transpose(Z_tf*ells_tf) # D x M

48 Xb_Lambda = X_batch.__mul__(ells_tf)

49

50 Z_dot_Z_tf = tf.matmul(Z_tf_ells_T , Z_tf_ells_T ,

transpose_a=True) # M x M

51 diag_ZZ_tf = tf.matrix_diag_part(Z_dot_Z_tf) # (M, )

52 A_p_tf = diag_ZZ_tf [:, None] + diag_ZZ_tf[None , :] - 2.*

Z_dot_Z_tf

53

54 X_dot_Z_obj_tf = tf.sparse_tensor_dense_matmul(Xb_Lambda
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, Z_tf_ells_T) # minibatch x M

55 A_k2_tmp = tf.sparse_reduce_sum(tf.square(Xb_Lambda), 1)

- 2.*tf.transpose(X_dot_Z_obj_tf) # M x minibatch

56 A_k2 = tf.transpose(A_k2_tmp) + diag_ZZ_tf # minibatch x

M

57

58 K_mm = tf.exp(-A_p_tf) + jitter_eye_tf # M x M

59

60 K_mn = tf.exp(-A_k2) # minibatch x M

61 K_mn = tf.transpose(K_mn) # M x minibatch

62

63 # KL computation

64 Lp = tf.cholesky(K_mm) # M x M

65 alpha = tf.matrix_triangular_solve(Lp, q_mu_tf , lower=

True) # M x P

66 Lq_diag = tf.matrix_diag_part(q_sqrt_tf) # P x M

67 Lp_full = tf_P_ones_3d*Lp[None , :, :] # P x M x M

68 LpiLq = tf.matrix_triangular_solve(Lp_full , q_sqrt_tf ,

lower=True) # M x P

69 sum_log_sqdiag_Lp = tf.reduce_sum(tf.log(tf.square(tf.

matrix_diag_part(Lp))))

70 KL_div_tf = 0.5*(P*sum_log_sqdiag_Lp + tf.reduce_sum(tf.

square(alpha)) - const_PM - tf.reduce_sum(tf.log(tf.

square(Lq_diag))) + tf.reduce_sum(tf.square(LpiLq)))

71

72 # Marginal mean and variance computation

73 A = tf.matrix_triangular_solve(Lp, K_mn , lower=True) # M

x minibatch

74 fvar = 1. - tf.reduce_sum(tf.square(A), 0) # minibatch

75 fvar = tf_P_ones_2d*fvar[None , :] # P x minibatch

76 A = tf.matrix_triangular_solve(tf.transpose(Lp), A,

lower=False) # M x minibatch

77 fmean = tf.matmul(A, q_mu_tf , transpose_a=True) #

minibatch x P - Marginal mean

78 A = tf_P_ones_3d*A[None , :, :] # P x M x minibatch

79 LTA = tf.matmul(q_sqrt_tf , A, transpose_a=True) # P x M

x minibatch

80 fvar = fvar + tf.reduce_sum(tf.square(LTA), 1) # P x

minibatch - Marginal variance

81

82 # Expectations computation

83 dot_phi_tf = (tf.matmul(Phi , fmean , transpose_b=True) +

bias_tf)*mask_labels # K x minibatch
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84 dot_phi_sqrt_tf = tf.sqrt(tf.matmul(tf.square(Phi), fvar

))*mask_labels # K x minibatch

85 dot_phi_sqrt_tf = tf.expand_dims(dot_phi_sqrt_tf , 0) # 1

x K x minibatch

86 E_q_all_tf = tf.reduce_sum(w_new * tf.reduce_sum(tf.nn.

softplus(dot_phi_tf - x_new[:, None , None]*

dot_phi_sqrt_tf), [1, 2]))

87

88 #Lower Bound

89 lower_bound = lik_factor*E_q_all_tf + KL_div_tf
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