
A novel residual graph convolution deep learning 

model for short-term network-based traffic 

forecasting 

 

Abstract: Short-term traffic forecasting on large street networks is significant in 

transportation and urban management, such as real-time route guidance and congestion 

alleviation. Nevertheless, it is very challenging to obtain high prediction accuracy with 

reasonable computational cost due to the complex spatial dependency on the traffic network 

and the time-varying traffic patterns. To address these issues, this paper develops a residual 

graph convolution long short-term memory (RGC-LSTM) model for spatial-temporal data 

forecasting considering the network topology. This model integrates a new graph convolution 

operator for spatial modelling on networks and a residual LSTM structure for temporal 

modelling considering multiple periodicities. The proposed model has few parameters, low 

computational complexity, and a fast convergence rate. The framework is evaluated on both 

the 10-min traffic speed data from Shanghai, China and the 5-min Caltrans Performance 

Measurement System (PeMS) traffic flow data. Experiments show the advantages of the 

proposed approach over various state-of-the-art baselines, as well as consistent performance 

across different datasets. 
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1 Introduction 

Short-term traffic forecasting, e.g. traffic speed, flow and occupancy, aims to leverage 

historical traffic information to predict traffic conditions ahead of time, usually less than 15 

minutes (Vlahogianni et al., 2014).  Reliable, accurate and real-time prediction of spatio-

temporal traffic data is significant for intelligent transportation systems, urban management, 

public safety, and even economic development (Weisbrod et al., 2003; Vlahogianni et al., 

2014). For example, commercial transportation service providers, such as Google Map and 

Uber, require traffic data to provide online route guidance to save travellers’ time. In 

addition, advanced intelligent traffic systems rely on traffic data to develop robust and smart 

traffic control strategies to alleviate congestion, which potentially helps to increase the 

number of jobs available and the productivity of urban areas.  

Existing short-term traffic prediction models can be categorised into two types: 

statistical models and machine learning algorithms. A representative family of statistical 

models is the autoregressive integrated moving average (ARIMA) (Shu et al., 2003) and its 

diverse variants, including space-time ARIMA (Ding et al., 2011), dynamic space-time 

ARIMA (Min et al., 2009), and localised space-time ARIMA (Cheng et al., 2014). Other 

statistical models extensively used in short-term traffic forecasting include the hidden 

Markov model (Yu et al., 2003), Bayesian network (Sun et al., 2006), Kalman filter model 

(Guo et al., 2014), and the vector autoregressive model (Chen et al., 2016). An alternative 

modelling approach uses machine learning algorithms, such as k-nearest neighbour (Cai et 

al., 2016), support vector regression (Castro-Neto et al., 2009; Haworth et al., 2014; Feng et 

al., 2018), and neural networks (Dia, 2001; Vlahogianni et al., 2007; Wei and Chen, 2012; 

Kumar et al., 2013). However, the statistical models usually suffer from high computational 

complexity due to parameter inference. The classical machine learning models are shallow in 



architecture, which limits the forecasting accuracy and reliability, due to the stochastic and 

nonlinear nature of traffic variables, especially in citywide traffic networks (Cui et al., 2018).  

Lately, deep learning (DL), a state-of-the-art machine learning technique, has drawn 

great attention to complex spatial-temporal data modelling (Shaw et al., 2016; Zhang and 

Cheng, 2019a). Classical DL techniques have been used for traffic forecasting, including 

recurrent neural network (RNN) (Van Lint et al., 2002), long-short term memory (LSTM) 

(Tian and Pan, 2015), and stacked autoencoder network (Lv et al., 2015). While these models 

learn the implicit temporal relations of the data, the spatial dependency cannot be modelled 

explicitly. To take full advantage of the spatial dependency, Zhang et al. (2016) divided the 

traffic network onto grids and mapped traffic condition into grids as an image. The 

convolutional neural network (CNN) was then fed with sequential images as input to extract 

spatio-temporal features. It was widely successful in citywide traffic forecasting because 

CNN contains parameter sharing scheme to model spatial dependency in a large area with a 

small number of trainable parameters. Inspired by this initial work, many hybrid frameworks 

have been proposed. For instance, the combination of CNN, which captures spatial 

dependency and RNN/LSTM, which captures temporal dependency have recently become 

favoured approaches (Yu et al., 2017b; Zhao et al., 2017; Ren et al., 2019a). Similar works 

can also be found in the literature (Ke et al., 2017; Chen et al., 2018; Cheng et al., 2018; Liao 

et al., 2018; Liu et al., 2018a; Yao et al., 2018). 

However, all the above-mentioned DL methods are based on two-dimensional grids, 

overlooking the topology of the underlying traffic network, since the classical CNN only 

works on regular Euclidean spaces, but not network-structured data. It has been suggested 

that network-based traffic forecasting is more reasonable and useful for several reasons 

(Cheng et al., 2012; Li and Shahabi, 2018; Zhang and Cheng, 2019b).  First, the grid-based 

representation may not capture the correct spatio-temporal dependency of traffic data. For 



example, two road segments in different directions of a road, although close in Euclid space, 

can have significantly different traffic conditions due to the network topology. Previous work 

has demonstrated the spatio-temporal autocorrelation of traffic data on transportation 

networks (Cheng et al., 2012). In addition, many potential applications rely on network-based 

traffic forecasting, such as route planning. These reasons highlight why the network-based 

method may provide superior traffic forecasting. 

Recently, researchers have attempted to use DL for network-based traffic prediction. 

Studies have utilised a spectral graph convolution proposed by Defferrard et al. (2016)  to 

extract spatial features from graph-structured data, along with employing other DL structures,  

such as RNN, to forecast traffic variables (Yu et al., 2017a; Lin et al., 2018; Zhang et al., 

2019). However, the spectral graph convolution required the Chebyshev approximation to 

efficiently model high-order spatial dependency, which probably decreased the accuracy of 

spatial modelling. To overcome this issue, Cui et al. (2018) proposed a high-order graph 

convolutional LSTM model, which preserved the topology information via a weighted 

adjacency matrix of the traffic network. However, the spatial dependency captured by the 

weighted adjacency matrix was manually specified using the distance between locations 

rather than being adaptively learned by the model. Furthermore, the LSTM structure was hard 

to train, especially on large road networks. A similar issue exists in the gated graph RNN 

proposed by Wang et al. (2018), and it overlooked the multiple periodicities of traffic data for 

accurate temporal dependency modelling. Very recently, Ren et al. (2019b) utilised the 

adjacency relationship between road segments to construct a locally-connected deep network 

for road traffic forecasting. This model was powerful at preserving the topology information, 

but the number of trainable parameters linearly increased with the number of road segments, 

which limited the scalability of the model on large-scale traffic networks. 



In view of the above models, the main challenges of network-based traffic prediction 

using DL are summarised into three points. (1) For spatial modelling, it is hard to explicitly 

model the spatial dependency considering the complex network topology.  (2) For temporal 

modelling, classical RNN-based structures, including LSTM, are difficult to train. Moreover, 

extremely long temporal dependency is difficult to model, such as daily/weekly periodicities, 

and weekday/weekend traffic patterns. (3) The scalability of DL models for spatio-temporal 

traffic forecasting on large-scale networks has become a big concern. A more efficient DL 

structure with a small number of trainable parameters should be explored for fast training 

convergence required for practical applications. 

To overcome these issues, this paper aims to model the complex spatio-temporal 

dependency of network-structured data rather than grid-structured data. A traffic network is 

modelled as a graph and a residual graph convolution LSTM (RGC-LSTM) is developed to 

capture the network-based spatial dependency and time-varying traffic patterns for traffic 

forecasting. It uses a few parameters, has low computational cost, and a fast convergence 

rate.  

The RGC-LSTM is developed by integrating a novel graph convolution operator with 

a residual LSTM structure. First, the graph convolution operates on the weighted adjacency 

matrix of the graph and employ a parameter sharing scheme to learn localised spatial 

dependency considering the topology of the traffic network. The trainable parameters in the 

graph convolution operator are independent of the traffic network size and the computational 

complexity is just proportional to the number of graph edges. Second, the residual LSTM is 

utilised to model temporal dependency considering multiple periodicities and 

weekday/weekend patterns, which extracts temporal features via a deep structure with a fast 

convergence rate. The adopting parameter sharing scheme of the graph convolution 

substantially reduces the number of training parameters and the deep structure of the residual 



LSTM greatly accelerates the convergence. The integration addresses the issue of scalability 

for city-wide forecasting. All of the above are the theoretical contributions of this work. In 

addition, from an empirical perspective, we evaluate our model using a traffic speed dataset 

on urban arterials and a traffic flow dataset on freeways. Experiments show the proposed 

model outperforms various state-of-the-art traffic prediction baselines across different 

datasets.  

The remainder of this paper is organised as follows. Section 2 elaborates on the 

proposed methods. Section 3 presents the case study using two large real datasets to validate 

the capability of the model. Section 4 provides an explicit discussion of the effectiveness and 

robustness of the proposed model. Finally, Section 5 summarises the conclusions and 

directions for further research. 

2 Methodology 

This section elaborates on the proposed RGC-LSTM model for short-term network-based 

traffic forecasting. The problem can be formulated as learning a mapping function �(⋅) which 

uses historical traffic observations as the input features (denoted as ��) to estimate the traffic 

conditions at the next time t given the topology � of the traffic network, written as: 

 �� = �(��; �) (1) 

In the following subsections, the traffic network is represented as a graph, which preserves 

the network topology information. Next, the proposed graph convolution operator and the 

residual LSTM are illustrated to model temporal and spatial dependencies, respectively. 

Finally, the RGC-LSTM is constructed by integrating the two components for spatial-

temporal data forecasting.  



2.1 Traffic Network as a Graph 

This paper represents a traffic network as a graph � = (�, �) with self-loops, where � is a set 

of prediction locations with |�| = �, and  is a set of edges including the self-loops. The 

self-loops indicate that the future traffic condition at a specific location is self-affected by its 

historical observations. The links between any two different nodes indicate the two locations 

are adjacent, implying that the traffic condition of a location is affected by the traffic 

condition of nearby locations.  

2.2 Graph Convolution for Spatial Dependency Modelling  

Spatial dependency modelling on graphs is challenging due to the complex graph topology. 

Borrowing the idea of parameter sharing from CNN, this article proposes a graph convolution 

operator, which acts on the weighted adjacency matrix of a graph for efficient spatial 

dependency modelling with low computational complexity and a few trainable parameters. 

Details are given below. 

2.2.1 Weighted Adjacency Matrix 

Spatial dependency modelling on a graph relies on the topology captured by the 

adjacency matrix. However, the spatial dependency of traffic conditions between different 

locations may vary across the entire graph. This paper proposes to use a weighted adjacency 

matrix � ∈ ℝ�×� to capture the heterogeneous spatial correlations, so that parameter sharing 

can be further adopted for adaptive spatial modelling on graphs.  

The weight of a graph edge is defined by calculating the temporal correlation 

coefficient using histroical traffic observations. To calculate the coefficient, we first use the 

Min-Max method to rescale the observations at each location into the same range [0, 1]. This 

is because the maximum traffic observations (e.g., flow or speed) on a road is restricted by its 

physical characteristics (e.g., capacity or speed limit). Suppose �� =
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� � represents a time series, where ���

�  is the traffic condition 

of the i-th location (1 ≤ � ≤ �) measured during time interval t (0 ≤ � < �) on day d 

(0 ≤ � < �). The traffic data after min-max scaling is written as: 
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where ����
�  and ����

�  are the maximum and minimum observations of the i-th location, 

respectively.  

Second, the daily periodicity is removed from the traffic time series using z-score 

transformation, because it may result in strong temporal autocorrelation which amplifies the 

temporal similarity between locations (Yang et al., 2017). The z-score normalisation is: 
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where �̅�
�  and �̅�

� are the means of normalised time series ��� = �����
� , ⋯ , ����

� � and ��� =

�����
�

, ⋯ , ����
�

�, respectively. The weighted adjacency matrix of the graph is then defined as: 

 ��� = �
�����, ����    if (�, �) is an edge

0                               otherwise
 (5) 

The matrix takes full advantage of the temporal trending of the traffic variables. It helps to 

make the spatial dependency more localised than the plain adjacent matrix, i.e., a graph node 

has more similar traffic conditions with its neighbouring nodes connected by an edge with 



larger weights. Hence, graph convolution can operate on it by adopting a parameter sharing 

scheme. 

2.2.2 A Novel Graph Convolution Operator 

To capture the localised spatial dependency on graphs, a K-order graph convolution 

operator ∗� is defined as the multiplication of a input � = (��, ⋯ , ��) ∈ ℝ� (i.e., a scalar for 

every node) with a polynomial graph filter �� operating on the weighted adjacency matrix, 

formulated as: 

 

� = � ∗� � = ��(�)� 

= ����� + ����� + ⋯ + ��������� = � ����

���

���

� 

(6) 

where � = (��, ⋯ , ��) denotes the outputs at each node, �� is the k-th power of the weight 

matrix � and �� is an identity matrix of the same dimension as �. K is the order of the 

graph filter ��, also referred to as kernel size and � = (��, ⋯ , ����) ∈ ℝ� is a vector of 

trainable parameters. 

The proposed graph convolution operator can be easily interpreted from the vertex 

domain. According to the property of the weight matrix �, ��(�, �) = ���
(�)

= 0 when the 

distance of the shortest path between nodes i and j (i.e., the minimum number of edges 

comprising any path connecting i and j) is greater than K. Thus, the output � at the i-th vertex 

after the graph convolution operation (i.e., the i-th row of � in Eq. (6)) is:  
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(7) 

where ���
(�)

 is the entry of  �� at location [�, �]. ��
�, termed the k-order neighbourhood of 

node �, is the set of nodes connected to node � by the shortest path of � edges. �(�, �) is 

referred to as a k-hop local neighbourhood of node �, which denotes the set of nodes 

connected to node � by the shortest path of � or fewer edges. The above notations are further 

illustrated in Fig 1. In addition, �̅��
(�)

= ∑ ��
���
��� ���

(�)
 (0 ≤ � ≤ � − 1 and � ∈ ��

�), is the 

coefficient used to multiply the input values at the n-order adjacent neighbour node � of node 

�. Thus, the output at node � is a linear combination of the inputs at nodes within the (K-1)-

hop local neighbourhood of node �.  

 

Fig 1. A graphical illustration of the notations in Eq. (7). For instance, �(�, 1) contains all 

yellow and blues nodes (i.e., zero- and first-order neighbours). 

 

The proposed graph convolution operation with different Ks can be visualised using a 

network structure, as shown in Fig 2. A K-order graph convolution equivalently captures the 



spatial correlations between any node i and its k-order (0 ≤ � ≤ � − 1) adjacent neighbours. 

In addition, although all nodes share the trainable parameters ��, ⋯ , ���� in the graph 

convolution, the coefficient �̅��
(�)

 in the linear combination of any node � is different, since the 

weighted adjacency matrix captures the heterogeneity of the spatial dependency. Due to 

parameter sharing, the number of learnable parameters in the proposed graph convolution 

operation is notably reduced to �(�), which is independent of the number of edges or nodes 

in the graph.  

However, the computational complexity of ��� is up to �(��), because �� 

becomes dense as k increases. To reduce the computational cost, we propose to calculate the 

higher-order weight matrix recursively. Denoting ��� = ��� ∈ ℝ�, we first calculate the 

��� using sparse matrix multiplication. As � a is always a sparse matrix, the computational 

complexity of  ���  is only �(|�|), which is the number of non-zero elements in �.  To 

calculate the ���, instead of directly calculating ��, we use ��� to compute the ���, 

namely ��� =  ����. As � is sparse and ��� is a N-dimensional vector, the computational 

complexity of  ����  is still  �(|�|). In this way, we can recursively calculate the ��� =

��� = ������ and the computational cost won’t increase with the order k increasing, as 

������ can be efficiently implemented as a product of a sparse matrix with a dense vector. .  

Thus, the total computational complexity of a K-order graph convolution operation is 

�(�|�|) ≪ �(��), i.e., linear in the number of edges in the graph. 



 

Fig 2. Graph convolution operation using graph filters with kernel size K can access 

neighbour nodes at most at K-1 hops. Nodes 4 and 7 are taken as examples to show that the 

parameter sharing scheme (in the third-column plots, arrow lines with the same colour share 

the learnable parameter) for spatial dependency modelling while the weighted adjacency 

captures the spatial heterogeneity. 

2.3 Residual LSTM for Temporal Dependency Modelling 

This paper utilises an LSTM-based structure to model temporal dependency. 

Traditional LSTM-based temporal dependency modelling has two issues. First, traffic data 

exhibit multiple periodicities and different patterns on weekday/weekends, which is difficult 

for LSTM structure to model. Second, training of LSTM becomes difficult as the depth of the 

DL model increases. To tackle these issues, we propose a new method of temporal feature 

construction to capture multiple traffic periodicities and patterns and we also introduce a 

residual LSTM structure to speed up the convergence of model training.  

2.3.1 Temporal Feature Construction 

Studies have shown that traffic has near-term, daily and weekly periodicities (Wu and Tan, 

2016). In addition, weekend traffic patterns are quite distinct from those on weekdays. This 



article proposes to integrate near-term, daily, and weekly temporal features as the input for 

temporal dependency modelling. To distinguish weekday and weekend traffic patterns, we 

also propose a new way to take account into the day of the week when constructing the daily 

feature. 

Concretely, at a prediction time t, the near-term features refer to the historical traffic 

data observed during time [� − �, � − 1], denoted as [����, ������, ⋯ , ����], where �� =

[��
�, ��

�, ⋯ , ��
�]� ∈ ℝ�×� are the observations of the N prediction locations at time interval i 

and ��
�
 is the traffic condition at the j-th location. The length of the near-term feature S is 

termed the time-window. 

Next, the daily feature of a specific prediction time on a weekday/weekend, denoted 

as ��,� , is the historical traffic condition observed at the same time on the last 

weekday/weekend. For example, as shown in Fig 3, to predict the traffic at 12:00 pm on 

Monday, we use the historical observation at the same time interval on the last Friday, not 

Sunday, as the daily features. To predict Saturday traffic flow at 12: 00 pm, the historical 

traffic data at the same time on the last Sunday serves as the daily feature. For any other day 

of week, the historical observation at the same time on the previous day is used as the daily 

feature. This method is visualised in Fig 3 using the curve arrows below the X-axis.  

In addition, the weekly feature ��,� is the historical traffic flow at the same time on 

the same day of the last week. In this way, the temporal features as input for temporal 

dependency modelling is rewritten as: 

 �� = ���,�, ��,�, ����, ⋯ , ����� =

⎣
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⎢
⎢
⎡
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� ����
� ⋯ ����

�
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where ��,�
�

 and ��,�
�

 denote the daily and weekly periodic features, respectively. Each �� is 

referred to as a graph signal.  



 

Fig 3. Examples of input feature construction. Historical observations labelled by markers 

with the same colour are used as the features to predict the traffic flow at the chosen 

prediction time.  

2.3.2 Residual LSTM 

Classical LSTM is capable and robust for sequential data modelling. With an input � =

���, ��, ⋯ , ������, a classical LSTM generates a sequence of output denoted as � =

�ℎ�, ℎ�, ⋯ , ℎ����� as an estimation of the actual value � = ���, ��, ⋯ , ������, where �� is 

referred to as time-step. LSTM can be unrolled like a chain consisting of �� LSTM units, as 

shown in Fig 4. One of the most popular classical LSTM units (Graves, 2013) is formulated 

as: 

 

�� = �(����� + ���ℎ��� + ��� ⊙ ���� + ��) 

�� = ������� + ���ℎ��� + ��� ⊙ ���� + ��� 

�� = �� ⊙ ���� + �� ⊙ tanh(����� + ���ℎ��� + ��) 

�� = �(����� + ���ℎ��� + ��� ⊙ �� + ��) 

ℎ� = �� ⊙ tanh(��) 

(9) 

where  �(�) =
�

����� is the sigmoid function, ⊙ is the pointwise product, and tanh( �) =

(������)

(������)
 is the activation function. The vector variables �� ∈ ℝ��, ℎ� ∈ [−1,1]��  and �� ∈

ℝ��  represent the unit input, output, and internal states at time step t, respectively. ��, 

referred to as the number of hidden units, refers to the dimension of the ‘hidden state’ of the 



LSTM layer. In addition,  ��, �� , and �� ∈ [0,1]��  are the input, forget, and output gate, 

which determine whether passing a new input, blocking the current state, and letting the 

current state affect the output at each time step, respectively. The weights ��•
∈ ℝ��×��, 

��•
∈ ℝ��×��, ��•

∈ ℝ�� and the four biases �• ∈ ℝ�� are the intercept parameters of the 

unit.  

However, the classical structure of LSTM leads to a difficult and slow training 

process. A residual LSTM is used to speed up convergence in order to decrease training time. 

The residual learning was first developed for CNN models (He et al., 2016) to address 

gradient degradation issues and accelerate the convergence of the model training process. 

Assuming the input and the output are of the same dimension, instead of learning a direct 

mapping �(∙) from the input � to the output �, i.e., � = �(�), a residual model learns a 

residual function ����(∙) satisfying  

 � = ����(�) + � (10) 

where ����(∙) fits the residual part � − � (the difference between the observed value and the 

actual value), and the second term � in Eq. (10) is termed an identity mapping. This paper 

implements the residual learning on LSTM by adding an identity mapping via a shortcut from 

the input to the output in each LSTM unit. The inner structure of a residual LSTM unit is 

visualised in Fig 4 (B) and the shortcut for identity mapping is highlighted by the red arrow. 

A residual LSTM unit has the same first four formulas of  ��, ��, ��, and ��, as defined in Eq. 

(9) but the last formula for ℎ� is rewritten as: 

 ℎ� = �� ⊙ tanh(��) + �������� (11) 

where ������ ∈ ℝ��×�� is used to match the dimensions of  ℎ� and  ��. Essentially, a residual 

LSTM unit is a classical LSTM unit with identity mapping. The output of a classical LSTM 

unit formulated as �� ⊙ tanh(��) serves as the residual function ����(∙), and �������� serves 

as an identity mapping, which directly passes the linear projection of the input �� to the 



output via the shortcut. This change implies that a residual LSTM unit learns a residual 

function with reference to the unit input.  

 

Fig 4. (A) A chain-like unrolled residual LSTM. (B) The inner structure of a residual LSTM 

unit, which has one more shortcut path (highlight in red) for identity mapping than classical 

LSTM unit. 

2.4 RGC-LSTM Network 

To model the spatial-temporal dependencies of network-based data, a spatial-temporal deep 

learning framework is developed by stacking multiple RGC-LSTM layers and a fully-

connected layer to form a deep structure, as shown in Fig 5. Each RGC-LSTM layer 

integrates the residual LSTM and the proposed graph convolution operations.  

In each RGC-LSTM layer, the proposed graph convolution is used to make the 

residual LSTM suitable for graph-structured data in order to automatically extract the spatial-

temporal features with a fast convergence rate. To do so, the multiplications in the residual 

LSTM are replaced with the graph convolution operation ∗ � defined in Eq. (6). Suppose that 

the input of the l-th RGC-LSTM layer is a sequence of graph signals denoted as �� =



���
� , ��

� , ⋯ �����
� � with ��

� ∈ ℝ�, where �� is the number of time steps and N is the number of 

graph nodes. In this paper, �� equals the total length of the input near-term, daily, and weekly 

temporal sequence, i.e., �� = � + 2. An RGC-LSTM layer generates a sequence output 

denoted as �� = �ℎ�
� , ℎ�

� , ⋯ ℎ����
� �. The formulation of an RGC-LSTM unit at the time-step t 

(0 ≤ � ≤ �� − 1) in the l-th layer is: 
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where �� is the order of the graph convolution, ��•
� ∈ ℝ��×��

�
 and ��•

� ∈ ℝ��×��
�
 are 

learnable parameters, ��
�  is the number of graph filters in the l-th layer (also referred to as the 

number of hidden units), and ℎ� ∈ ℝ�×��
�
 is the output at time-step t. 

 

Fig 5. The structure of the proposed RGC-LSTM network. 



There are two advantages of the integration. First, it can extract the spatial and 

temporal features simultaneously, not sequentially. Second, since the proposed graph 

convolution is a liner operator, this integration can introduce nonlinearity into the model in 

both spatial and temporal domains due to the nonlinear activation function �. Thus, the model 

can capture the complex spatial-temporal dependency modelling on graphs. 

The proposed RGC-LSTM network is then a stack of ℒ RGC-LSTM layers and a 

fully-connected layer. Supposing the prediction time point is ��, the formulation of the RGC-

LSTM architecture for spatial-temporal short-term traffic prediction is: 

 �ℎ��,�
ℒ , ℎ��,�

ℒ , ℎ����
ℒ , ⋯ , ℎ����

ℒ � = ℱℒ ⋯ ℱ�ℱ� ����,�, ���,�, �����, ⋯ , ������ (13) 

 ����
= �� ⋅ �ℎ����

ℒ �
�

+ �� (14) 

In Eq. (13), ℱ� (1 ≤ � ≤ ℒ) denotes the i-th RGC-LSTM layer, and 

�ℎ��,�
ℒ , ℎ��,�

ℒ , ℎ����
ℒ , ⋯ , ℎ����

ℒ � ∈ ℝ��×�×��
ℒ
 is the output of the ℒ-th RGC-LSTM layer. Eq. 

(14) represents the fully-connected layer with trainable parameters �� ∈ ℝ��
ℒ
 and  �� ∈ ℝ, to 

yield the estimated network traffic condition ����
∈ ℝ�. 

3 Case Study 

3.1 Experiment Settings 

3.1.1 Dataset and Pre-Processing 

Two open traffic datasets are used in this case study to validate the proposed model, as 

follows: 

 Shanghai traffic speed (SHSpeed) data (Wang et al., 2018): this dataset contains a 10-

min traffic speed data from 156 urban road segments in the central area of Shanghai 

(Fig 6 (a)), China, collected from April 1, 2015 to April 30, 2015. 



 Caltrans Performance Measurement System (PeMS) data: This dataset contains 5-min 

traffic flow provided by PeMS, collected from January 1, 2015 to May 31, 2015 by 

1681 loop detectors at the mainline of the freeways in Los Angeles (District 7), 

California, USA, as shown in Fig 6 (b).  

 

Fig 6. Two study areas. (a) An urban road network with 156 segments (zoom in upper right) 

in the central area of Shanghai, China. (b) The distribution of the 1681 loop detectors on the 

mainline of the freeways in District 7, California, USA. An area is selected to zoom in on to 

show the graph constructed by considering the adjacency relationship between detectors. 

To construct the graph, each urban road segment in the first case and each traffic 

detector in the second case are treated as a graph node, separately. The graph topology is 

determined by the adjacency relationship between segments/detectors. Next, the two raw 

traffic datasets are scaled by segment/detector using the Min-Max method into the range [0, 

1]. The input is a sequence of S near-term features, one daily, and one weekly feature, as 

defined in Eq. (8)). After constructing the input sequences, each dataset is divided into 

training, validation and testing parts, as detailed as in Table 1. The validation data are not 

used to train the model but to measure the model’s predictive performance during the training 

process. Thus, we can only save the model's variables only if the performance is improved to 



avoid overfitting the network to the training data, which weakens its generalisation to unseen 

data.  

Table 1. Data division for model training, validation and testing. 

Dataset Total days Training data (day)  Validation data (day) Testing data (day) 

SHSpeed 23 16 2 5 

PeMS 144 100 14 30 

3.1.2 Evaluation Metrics 

The real traffic data (ground truth) are denoted as (��, ⋯ ��) and the predicted values are 

denoted as (��
′ , ⋯ ��

′ ). Three metrics are used to evaluate the prediction performance, namely 

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute 

Percentage Error (MAPE). The definitions are as follows: 

 RMSE = �
1

�
���� − ��

′�
�

�

���

 (16) 

 MAE =
1

�
���� − ��

′ �

�

���

 (17) 

 MAPE =
1

�
� �

�� − ��
′

��
�

�

���

× 100% (18) 

RMSE and MAE are used to evaluate the overall absolute prediction accuracy while MAPE 

is employed to measure the relative error. 

3.2 Determine the Optimal RGC-LSTM Configuration 

Three hyperparameters of the proposed RGC-LSTM network should be specified, including 

the number of RGC-LSTM layers ℒ, the number of hidden units in each RGC-LSTM layer, 

and the time-window �. Here, the number of hidden units corresponds to the number of graph 

filters. The grid search method is employed to determine the best parameter settings by 

changing one of the parameters while keeping the others unchanged. In this experiment, we 



choose the number of layers ℒ from 1 to 4, the number of hidden units from [4, 8, 16, 32], the 

order K from 1 to 5, and the time-window S from 1 to 5. To simplify this process, we use the 

same number of hidden units in each layer, and only change the graph convolution operator 

order K of the first layer while the others remain to be one. 

During the training process, the mean square error is utilised as the loss function and 

variables are optimised by the Adam optimiser (Kingma and Ba, 2014). The learning rate is 

exponentially decayed from 0.15 at a rate of 0.96 per 50 steps. To ensure convergence, the 

number of training epochs and batch size are given in Table 2. After performing the grid 

search, the optimal configurations used in the two prediction tasks are presented in Table 2.  

More concrete discussions on the sensitivity analysis of the hyperparameters are provided in 

section 4.2. 

Table 2. The training setting and the optimal configuration of the RGC-LSTM in the two 

forecasting tasks. 

Dataset Training epochs Batch size Layers Hidden units Time window S Order K 

SHSpeed 50 24 2 [16, 16] 4 2 

PeMS 25 72 2 [8, 8] 3 3 

 

3.3 Model Comparison 

3.3.1 Baselines 

The proposed RGC-LSTM is compared with six baseline models. Brief descriptions of the six 

benchmarks are given below. 

 ARIMA: Autoregressive integrated moving average model (Box and Pierce, 1970), 

which is widely used for time series prediction.  

 SVR: Support Vector Regression. The penalty parameter C and epsilon of the SVR 

are set to be 1 and 0.01, respectively. 



 LSTM: A single layer LSTM models the temporal dependencies but not spatial 

relationships between locations. 

 CNN: A CNN-based model proposed by Ma et al. (2017), which transforms the 

network traffic data into a two-dimensional image whose horizontal axis represents 

the prediction time and the vertical axis represents locations. Predictions are made by 

performing convolutions on the image.  

 STGCN: A spatial-temporal graph convolutional network proposed by Yu et al. 

(2017a). Temporal features are extracted via gated convolution layers and spatial 

features are captured by graph convolution using the Laplacian matrix and its 

Chebyshev approximation for higher-order spatial dependency modelling.   

 GC-LSTM: A multi-layer graph convolution LSTM model without residual learning 

short path. The parameter settings are the same as the proposed model except for the 

residual learning structure. 

In the paper, the experiment environment is a workstation with 40 CPU cores 

(Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20 GHz (2 processors)), 256 GB RAM and one 

GPU (NVIDIA Quadro K2200). The ARIMA, SVR, and LSTM are implemented using 

Python 3.5.3 with package ‘statsmodels’, ‘scikit-learn’, and Keras with the TensorFlow 

backend, respectively. The RGC-LSTM model and the variant GC-LSTM are programmed 

using the same Python version and TensorFlow 1.2 (Abadi et al., 2016) with GPU support.  

3.3.2 Comparison Results 

Table 3 presents the performance comparison of the different algorithms. Overall, the 

proposed model outperforms the six baselines in terms of the three metrics in both prediction 

tasks. Compared to the optimal baseline, the RMSE, MAE, and MAPE of the proposed model 

are lower by 22.84%, 15.13% and 18.92%, respectively, on the SHSpeed data, and are 



reduced by 10.97%, 12.67% and 33.99% respectively, on the PeMS data. In both cases, the 

MAPE is around 9%, which illustrates the consistent performance of the proposed model. 

Table 3. Evaluation of the different models for the two traffic forecasting tasks 

Dataset Metrics ARIMA SVR LSTM CNN STGCN GC-LSTM Ours 

SHSpeed 

RMSE 4.55 4.36 3.37 3.81 3.12 2.89 2.23 

MAE 3.27 3.09 2.42 2.73 2.23 2.18 1.85 

MAPE (%) 16.9 15.67 12.68 13.37 11.74 11.36 9.21 

PeMS 

RMSE 73.35 53.18 39.51 41.94 38.55 35.29 31.42 

MAE 57.63 37.13 29.49 31.88 28.42 24.71 21.58 

MAPE (%) 52.35 16.16 20.00 23.62 18.20 13.65 9.01 

 

Concretely, it shows the simple statistic model ARIMA and the traditional machine 

learning model SVR perform worst. Among the deep learning models, LSTM only 

concentrates on temporal dynamic modelling while CNN mainly focuses on extracting 

features from the spatial domain. Overall, the former performs slightly better than the latter, 

which likely indicates that the temporal dependency modelling plays a more important role 

than the spatial dependency modelling in traffic forecasting. Another possible reason is that 

the CNN-based model proposed by Ma et al. (2017) is incapable of modelling the precise 

spatial relations regarding the complex network topology. However, when modelling the 

temporal and spatial dependency on graphs simultaneously, the last three graph-based spatial-

temporal models perform better than LSTM and CNN. 

In addition, STGCN is inferior to the last two LSTM-based models, probably because 

the LSTM is more powerful than the single gated structure in modelling the temporal 

dependency and dynamics of sequential data. In addition, STGCN utilises the Chebyshev 

approximation to reduce the computational complexity when modelling higher-order 

adjacency, which could decrease the precision of the spatial dependency modelling. The 

proposed model also outperforms its variant GC-LSTM, which validates the significance of 

the residual learning structure. To further highlight the advantage of the residual structure, the 



validation loss and the accumulated training time of the GC-LSTM and the proposed model 

on PeMS data are illustrated in Fig 7. It shows the convergence of RGC-LSTM is faster than 

GC-LSTM and RGC-LSTM achieves a lower loss. In terms of training time, our model is 

slightly slower than GC-LSTM due to the identity mapping.  

 

Fig 7. Training process comparison of GC-LSTM and RGC-LSTM network on PeMS data. 

The training loss is the RMSE. The accumulated runtime was drawn by the dashed line. 

Fig 8 shows the boxplots of the RMSEs, MAEs and MAPEs produced by different 

models in the two cases. The prediction errors are calculated by road segment/traffic detector. 

It can be seen that the proposed model has the lowest outlier value in comparison with other 

baselines. In addition, it also demonstrates the advantage of the proposed model in terms of 

the maximum, minimum, and the median of prediction errors. Thus, the proposed model 

produces lower errors and has more stable performance than the baselines. 

To further validate the significance of the accuracy improvement, a paired t-test is 

employed, referring to (Liu et al., 2018b). The null hypothesis for the two-sided paired t-test 

is that there is no difference between the prediction errors of the proposed RGC-LSTM and 

the benchmark, whereas the alternative hypothesis is that there is a significant difference. If 

the p-value is smaller than 0.05, the null hypothesis could be rejected. For brevity, this paper 



only presents the results of the t-test on RMSEs by road segments/detectors in Table 4. The 

negative t-statistics demonstrate that the prediction errors of the proposed model are 

significantly smaller than that of the benchmarks. The significant difference also holds in 

terms of MAE and MAPE in both tasks. 

 

Fig 8 Comparison of forecast errors for each model on the PeMS data 

Table 4. Two-side paired t-test results of the two traffic forecasting tasks  

Dataset Comparison t-statistics p-value If significant 

SHSpeed 

Ours vs. ARIMA -40.00 1.38e-83 Yes 

Ours vs. SVR -33.01 5.16e-72 Yes 

Ours vs. LSTM -15.38 5.23e-33 Yes 

Ours vs. CNN -29.78 4.99e-66 Yes 

Ours vs. STGCN -8.48 1.57e-14 Yes 

Ours vs. GC-LSTM -5.34 3.24e-7 Yes 

PeMS 

Ours vs. ARIMA -99.74 0.0 Yes 

Ours vs. SVR -108.45 0.0 Yes 

Ours vs. LSTM -48.22 2.79e-319 Yes 

Ours vs. CNN -53.32 0.0 Yes 

Ours vs. STGCN -79.00 0.0 Yes 

Ours vs. GC-LSTM -44.91 4.58e-290 Yes 

 



3.3.3 Graphical analysis 

For a more concrete and direct comparison of the prediction performance, a road 

segment from the SHSpeed data and two typical detectors with low and high traffic flow in 

the PeMS dataset are selected to present the comparison of the forecasting results and the 

prediction errors, as shown in Fig 9. For clarity, only one-week of PeMS data from Monday 

to Sunday are visualised as an example. In each subfigure, the upper plot is the predicted 

traffic speed/flow of the seven different algorithms and the ground truth, while the lower plot 

presents the prediction errors deviated from the ground truth.   

 



Fig 9. Comparison of traffic forecasting and prediction errors of road/detectors. (a) Traffic 

speed prediction of road segment 74 (b) Detector 1216 with low traffic flow. (c) Detector 

1352 with high traffic flow. 

 

It is shown the performance of the ARIMA and SVR vary greatly under different 

traffic conditions, because the parameters of ARIMA or SVR could not be manually tuned 

for each road/detector. This notably decreases the performance of ARIMAs and SVRs. 

Alternatively, the predicted traffic flow of deep learning models matches all traffic conditions 

quite well. Among all algorithms, RGC-LSTM can track the ground truth more promptly and 

its prediction is the closet to the ground truth. RGC-LSTM also predicts the peaks more 

correctly than the other baselines. In addition, by incorporating daily and weekly periodic 

features, the proposed model can accommodate both weekday and weekend traffic patterns. 

Hence, the proposed framework is effective and promising for traffic forecasting in practice. 

4 Discussion 

4.1 Prediction Error Analysis  

In this section, we explore the distributions of the prediction errors of the RGC-LSTM 

in space and time.  This analysis helps to further evaluate the performance of the proposed 

model. 

4.1.1 Prediction Error Distributions in Space 

The MAPE is selected as a representative metric for the assessment of the spatial 

distribution of prediction errors. Fig 10 displays the spatial distributions of MAPE by road 

segments in the SHSpeed data and by detectors in the PeMS data. In Fig 10 (a), all MAPEs 

are lower than 25% and 96.15% of road segments had MAPEs less than 15%. There are two 

segments of MAPE higher than 20%, located at the border of the study area. This could be 



because the spatially adjacent neighbours are not entirely included in the study area, which 

implies the importance of spatial dependency modelling.  

According to Fig 10 (b), all MAPEs of detectors are lower than 30% and those with 

MAPE values less than 15% account for 95.24% of all detectors. In addition, larger MAPE 

values often occur at detectors with low traffic flow, which are mainly deployed on the 

freeways away from the central area. Contrarily, most of the detectors deployed on very 

crowded freeways have MAPEs of less than 10%. In practice, considering that the predictions 

may be used to disperse traffic, alleviate congestion, or detect crowd flows to avoid 

catastrophic stampedes for public safety, the proposed method is promising in practical 

applications. 

 

Fig 10. Spatial distribution of MAPE. (a) MAPE by road segments in SHSpeed traffic speed 

forecasting; (b) MAPE by detectors in PeMS traffic flow prediction. The colour of each 

segment/detector indicates the level of MAPE, and the size of each detector in (b) implies the 

level of average traffic flow. The histogram of MAPE by segment/detector is also presented 

in the two plots. 

4.1.2 Prediction Error Distributions in Time 

Fig 11 displays the distribution of the RMSE, MAE, and MAPE by the time of day on 

the SHSpeed and the PeMS data. In Fig (a)-(c) and (e)-(g), it shows the absolute errors, i.e., 

RMSEs and MAEs, vary with the average traffic speed/traffic flow. This is because both 



MAE and RMSE consider only the magnitude of the deviations of predicted values from the 

observed values. 

Alternatively, MAPE (i.e., relative errors) provides a better sense of prediction 

accuracy, as the errors examine the percentage deviations from the observations. According 

to Fig 11 (d) and (h), the most interesting finding is that the MAPE values during the daytime 

(i.e., rush hours 9:00-19:00) are lower than at night (i.e. off-peak hours). Thus, the proposed 

model generates better predictions in low traffic speed or high traffic flow situations (likely 

indicating congestions) than in high traffic speed or low traffic flow situations (usually 

indicating normal traffic conditions). In real-world applications, the forecast of traffic is more 

important and needed during peak-hours. For example, an accurate and reliable forecast of 

the traffic congestions with low speed and high flow can be used for real-time navigation to 

avoid delays. Hence, it can be said that the proposed method could be used to manage traffic 

proactively. 

 



Fig 11. The distributions of the average observations, RMSE, MAE, and MAPE by time of 

day on SHSpeed data (subplots (a)-(d)) and PeMS data (subplots (e)-(h)). The red line 

represents the mean of the errors. 

 

Fig 12 visualises the prediction error distributions over the testing days in the two 

prediction tasks. Although there exist several outliers, the variations of the three metrics by 

day are very small.  The prediction performance of the proposed model is quite stable both on 

weekdays and on weekends.  

 

 

Fig 12. RMSE, MAE, and MAPE distributions over 5 testing days of SHSpeed data (subplots 

(a)-(c)) and over 30 testing days of PeMS data (subplots (d)-(f)). The red line represents the 

mean of the errors. 

4.2 Sensitivity Analysis 

In this section, a sensitivity analysis is conducted on several hyperparameters of the proposed 

model. First, a detailed discussion on the number of layers of RGC-LSTM is given. 

Additionally, from a spatial perspective, the influence of the order K of the graph convolution 

operator is analysed to reveal the influence of spatial span for spatial dependency modelling 

in short-term traffic forecasting. The impact of the time-window S, daily and weekly 



temporal features are then investigated in regard to the prediction performance in the 

temporal domain.  

4.2.1 Number of Layers 

To explore the influence of the depth of RGC-LSTM on the prediction accuracy, we change 

the number of layers ℒ from 1 to 4 while keeping the settings of other hyperparamters the 

same as given in Table 2 to test the forecasting error and runtime on both datasets. Results in 

Fig 13 show that the proposed model with two layers works best on SHSpeed data. In terms 

of PeMS data, the RMSE error continuously decreases with the increase of the number of 

layers. However, when increasing the depth of the model from 2 to 4, the accuracy 

improvement is non-significant while the runtime greatly increases. Thus, we choose the two-

layer RGC-LSTM as the optimal configuration, as a trade-off between effectiveness and 

efficiency. The trends of the prediction errors are different in the two cases. It might be 

because that the PeMS dataset covers larger areas and more complex traffic patterns than 

SHSpeed dataset. Overall, the results indicate that the best number of layers of a DL model is 

not very large in traffic prediction tasks. Similar findings can be found in (Lv et al., 2015). 

Our results further confirm this. 

 

Fig 13. RMSE and epoch runtime change with the number of layers L. 



4.2.2 Spatial Dependency Analysis 

The graph convolution filter captures the spatial dependency of the traffic flow alongside the 

network. A higher order K of the graph convolution filter indicates a wider spatial span for 

spatial dependency modelling. To evaluate the impact of the spatial span on spatial 

dependency modelling, a sensitivity analysis on the order K is presented in this section.  

According to Fig 14, it shows a larger K leads to a higher computational cost due to 

the increasing number of trainable variables in the model. The optimal K values for traffic 

speed and flow forecasting are two and three, respectively, which means the spatial span for 

spatial dependency modelling of an urban road network is smaller than that of the detector 

network. This may be because the spatial dependency between freeway detectors are stronger 

than between urban road segments. After increasing K to five, the RMSE is even larger than 

when ignoring the spatial dependency (i.e., let K=1). This is probably because too large a 

spatial span may include too much noise in the model, reducing its performance.  

  

 

Fig 14. RMSE and epoch runtime change with graph convolution order K. 

4.2.3 Temporal Dependency Analysis 

Regarding temporal dependency modelling, the influence of the number of near-term features 

is first investigated. The proposed model is trained with different time-windows while the 

other parameters remain unchanged as stated in Section 3.2. Note that increasing the time-

window does not change the number of variables in the model but increases the internal loops 



in each RGC-LSTM layer. Fig 15 displays how the RMSE and the epoch runtime change 

with an increasing time-window in the two cases. It shows that the runtime of each epoch 

approximately increases by one second and 45 seconds for each additional near-term feature 

in the two tasks. In 10-min traffic speed forecasting, the RMSE achieves the minimum when 

S is four. In 5-min traffic flow prediction, the RMSE first considerably drops from 38.91 to 

the minimum (31.42) as the time window increases. There is then a gentle fluctuation in 

RMSE from an S of three to five, but the increase in training time is notable. It might produce 

a lower RMSE if we further enlarge the time window; however, this is not cost-effective 

considering the extremely long training time.  

 

 

Fig 15. RMSE and epoch runtime change with time window S. 

 

In addition, the effectiveness of fusing multiple periodic features for traffic 

forecasting is evaluated. Taking 5-min traffic flow forecasting as an example, results are 

given in Table 5. It shows that periodic features are contributing factors for short-term traffic 

prediction. Comparing the second and third rows, a very interesting finding is that the weekly 

feature contributes slightly more than the daily feature. Previous studies have reported that 

daily traffic patterns did vary from day to day to some extent and a one-week lag should be 

considered for more stable traffic prediction (Smith et al., 2002). Our finding also verifies 



this lesson. In summary, the experiments show that fusing periodic features yields better 

prediction results. 

Table 5. Evaluate the effectiveness of fusing daily and weekly features for short-term traffic 

forecasting. 

Feature 
RMSE MAE MAPE (%) 

Daily Weekly 

Yes Yes 31.42 21.58 9.33 
No Yes 31.99 22.01 9.57 
Yes No 32.23 22.73 9.68 
No No 35.04 23.85 11.10 

5 Conclusions and Future Work 

This paper presents a spatial-temporal deep learning framework, termed RGC-LSTM, to 

forecast short-term traffic on large-scale networks. In this framework, a traffic network is 

represented as a graph � = (�, �, �) with nodes as prediction locations, and edges indicating 

the adjacency relationship. The proposed RGC-LSTM is a stacking of multiple RGC-LSTM 

layers and a fully connected layer. In each RGC-LSTM layer, spatial dependencies on 

networks are captured by the proposed graph convolution operators and temporal features are 

extracted from a residual LSTM structure. The residual learning allows the model to go 

deeper and converge faster. In addition, the number of trainable parameters in the proposed 

model is independent of the size of the traffic network, and the computational cost is only of 

�(�|�|) complexity, which is critical for the practical application of the model. 

The proposed model is evaluated on a traffic speed dataset containing 156 road 

segments in Shanghai, China and a PeMS traffic flow dataset consisting of 1681 loop 

detectors deployed in District 7, California. The experiments demonstrate that the RGC-

LSTM network is superior to many state-of-the-art baselines in terms of RMSE, MAE, and 

MAPE. The proposed model generates more accurate predictions during rush hours. We also 

discuss the spatial and temporal distribution of the prediction errors produced by RGC-LSTM 

and conduct the sensitivity analysis in space and time. It shows the performance of the 



proposed model is consistent across different datasets both in time and space. The results of 

this effort provide new insights into the spatio-temporal modelling of network-based traffic 

data. For example, the weekly periodic feature is a more important contributing factor than 

the daily periodic feature in short-term traffic forecasting. In addition, the spatial span for 

spatial dependency modelling of urban road networks must not be too large. 

However, this work still requires some improvements. First, missing data are a very 

common in many forecasting tasks, especially in the citywide traffic predictions. Future 

research should consider the missing data issues. Second, the model should be tested on other 

spatial-temporal forecasting tasks, such as road-network-based travel demand prediction, to 

further validate its effectiveness as a general framework. In addition, future research should 

further consider developing robust prediction models in the context of abnormal conditions 

(e.g., extreme weather and accidents), which is still an open problem and is attracting more 

attention. A possible way to take account these events into the DL model is via information 

fusion. 
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