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Introduction
The eye provides a unique opportunity for direct 
observation of an extension of the central nervous 
system (CNS) through the clear optical media of 
the eye, consisting of the cornea, aqueous 
humour, lens and vitreous body. This has earned 
its title of ‘window to the brain’. The ability to 
study the retina in vivo with noninvasive tech-
niques brings with it the possibility of finding 
novel biomarkers and surrogate endpoints with 
which to diagnose and monitor neurological con-
ditions. There are clear benefits of this approach 
over pathological diagnosis, not requiring the risk 
of neurosurgery, the removal of potentially impor-
tant neurones, or postmortem diagnoses. In com-
parison to brain imaging, retinal imaging holds 
two key advantages: the lack of ionising radiation 
and the direct visualization and cellular resolution 
that is achievable,1 with or without the use of con-
trast agents. However, the biological plausibility 

between correlates and disease must also be 
explored if the retina is to have a use as a surro-
gate marker in diseases of the CNS.2,3

Discovering biomarkers or ‘surrogate markers’ 
that predict future clinical outcomes in neurode-
generative conditions may provide a window of 
opportunity in which to start treatment early prior 
to secondary degenerative processes taking hold 
in response to a variety of initial triggers.4 Given 
the poor ability of the human CNS to regenerate, 
minimising cell loss is likely to equate to better 
long-term outcomes.5

What is common to many neurodegenerative CNS 
disorders is the difficulty in early detection and a 
delay in diagnosis.6 As well as the lack of specificity 
of symptoms, cognitive function testing has inher-
ent issues of repeatability,7 with day-to-day fluctu-
ation sometimes being a key disease characteristic.8 
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In comparison, objective retinal biomarkers offer 
good repeatability and reproducibility.9,10 The ease 
of retinal imaging coupled with its ability to moni-
tor specific cell populations through time in the 
same individual are attractive prospects.

This review provides an update on retinal find-
ings, correlates, and staging of patients with neu-
rodegenerative conditions. A variety of studies are 
covered, including those attempting to show an 
association with retinal biomarkers and disease 
severity, duration and functional loss. Validation 
of these biomarkers is crucial to enable their use as 
surrogates in research trials and clinical practice.

Alzheimer’s disease
Alzheimer’s disease (AD) is the most common 
cause of dementia (60–70%) in which there is a 
long ‘preclinical’ phase,11 with pathological fea-
tures thought to appear years prior to symp-
toms.12 Diagnostic delay of AD has detrimental 
effects on efficacy of pharmacological treatments 
as well as wider ranging social and economic 
effects.13–15 Often manifesting in mild, nonspe-
cific cognitive and psychological disturbances, 
early disease is often challenging to differentiate 
from the ‘normal’ ageing process. Similarly, con-
comitant ocular and systemic neurodegenerative 
and cardiovascular conditions that may contrib-
ute to retinal nerve fibre layer (RNFL) thinning 
such as glaucoma and microvascular ischaemia 
become more prevalent as age increases. These 
confounders are challenging to identify and rarely 
controlled for.

Only 8% of patients with mild cognitive impair-
ment (MCI) have been shown to progress to 
AD.16,17 Biomarkers have been introduced into 
the clinical criteria for AD,18 including detection 
of amyloid-beta and tau deposition using positron 
emission tomography (PET) imaging and cere-
brospinal fluid (CSF) sampling,19–23 as well as 
detection of neuronal injury using fluorodeoxy-
glucose (FDG)-PET and single photon emission 
computed tomography (SPECT) imaging.19 
However, methods to image individual cells and 
distinct populations of cells are still lacking.

Pathological studies
AD is macroscopically characterised by loss of 
brain volume, with heterogenous patterns of 
atrophy seen in the medial temporal lobes, 

paralimbic, temporal and parietal cortices on 
structural mag-netic resonance imaging (MRI).24,25 
Microscopically, characteristic amyloid-beta 
plaques in the brain parenchyma, and hyperphos-
phorylation of tau proteins forming neurofibrillary 
tangles lead to neuronal and synaptic degenera-
tion, most commonly attributed to abnormal pro-
cessing of the amyloid precursor protein (APP).6,26

Visual abnormalities in AD are often detectable 
early in the disease, and therefore provide the 
rationale behind retinal biomarkers in early AD. 
Deficits can be found in visual acuity,27 colour  
and motion perception,28 contrast sensitivity and 
visual fields.29–31 Pathological studies attempt to 
explain this, demonstrating diffuse axonal degen-
eration with retinal ganglion cell (RGC) and 
RNFL loss post mortem.32–35 Disruption of circa-
dian rhythm has been proposed to be due to the 
loss of melanopsin RGCs, with reduced numbers 
and abnormal morphology in AD.36 Despite mul-
tiple transgenic models of AD demonstrating 
amyloid-beta plaques and tau accumulations,37,38 
human evidence for these in the retina remain 
controversial, with amyloid-beta plaques reported 
to be present and absent when compared with 
age-matched controls,37–40 with explanations 
offered including different assays or methods of 
tissue preparation.40 Although hyperphosphoryl-
ated tau protein has been detected in the retinas of 
patients with AD,41 the characteristic aggregates 
have not.32,40 Evidently, it is still unclear as to 
whether AD changes seen in the eye are as a pri-
mary or secondary consequence of amyloid-beta.

In an AD mouse model (APPSWE/PS1ΔE9) intra-
venous curcumin was used to demonstrate retinal 
amyloid-beta plaques, verified with immunohisto-
chemistry, and their accumulation with disease 
progression.38 Curcumin is a polyphenol found in 
turmeric (Curcuma longa) and is an attractive, 
inherently fluorescent, diagnostic agent as it is also 
a novel neuroprotective treatment under investiga-
tion.42,43 Supporting amyloid-beta accumulation in 
the AD retina, proof-of-concept data has demon-
strated retinal amyloid curcumin visualisation, 
with a 2.1-fold increase in AD patients versus age-
matched controls (p = 0.0031).44 Hyperspectral 
imaging (HSI) microscopy is a novel imaging tech-
nique that has shown promise by analysing the 
‘spectral signature’ reflected from the retina, report-
ing amyloid-beta deposition in postmortem retinal 
samples and in vivo animal studies.45 This latter 
study also claimed to have detected amyloid-beta 
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plaques in mice retinas prior to plaque develop-
ment in the brain, critical for early diagnosis.

OCT in AD
Optical coherence tomography (OCT) is a rapid, 
noninvasive, reliable and reproducible imaging 
tool using near-infrared light to form cross-sec-
tional images of the retina and optic disc.46,47 Axial 
resolutions of up to 5–7 microns enable individual 
retinal layers to be studied using the principles of 
interferometry (Figure 1).48 AD findings of atro-
phy in the anterior visual pathways post mortem 
have been associated with OCT evidence of RNFL 
thinning around the optic nerve (peripapillary 
RNFL, pRNFL) (Figure 2).32 This effect in AD 
has been noted around the optic disc globally,49–72 
but also to have a preponderance in superior and 
inferiorperipapillary sectors,49,50,52–55,57–59,61–69,71–75 
and, to a lesser extent, in the nasal and temporal 
sectors also (Table 1).52,55,56,58,62,64–66,71,72,74,75 In 
contrast, a smaller proportion of studies deny find-
ing this association.76–79 Many of these studies 
have been included in meta-analyses supporting 
RNFL thinning in AD.80,81 Rate of RNFL thin-
ning also appears greater in AD compared with 
‘normal’ ageing over a 12-month period, especially 
in the inferior quadrant, and in parallel with cogni-
tive decline,54 thus suggesting the rate of pRNFL 
thinning could function as a potential surrogate 
marker in itself, as has been proposed in glau-
coma.82 Furthermore, the inferior pRNFL sector 
has been proposed as the most sensitive for detect-
ing cognitive decline in AD.68,83 These patterns 
have also been functionally correlated to pattern 
electroretinogram (ERG) abnormalities72,75,84 and 
visual function tests.50 The challenge will be to 
separate pathological progression from RNFL 

thinning due to ageing alone.85 RNFL thinning has 
been reported to correlate with scores of cognitive 
function53–55,86; however, this not supported by 

Figure 1.  A spectral domain OCT cross-sectional macula scan of the retinal layers.
BM, Bruch’s membrane; GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner plexiform layer; OCT, optical 
coherence tomography; ONL, outer nuclear layer; OPL, outer plexiform layer; PR IS/OS, photoreceptor inner segment/outer 
segment; RNFL, retinal nerve fibre layer; RPE, retinal pigment epithelium.

Figure 2.  An SD-OCT pRNFL scan of the right eye of 
a patient who has had ON, demonstrating temporal 
pRNFL thinning. Red sectors indicate those outside 
normal limits.
pRNFL, peripapillary retinal nerve fibre layer; ON, optic 
neuritis; SD-OCT, spectral domain optical coherence 
tomography.
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Table 1.  A summary of studies reporting sector analysis of peripapillary RNFL changes in Alzheimer’s 
disease, mild cognitive impairment (MCI) and Parkinson’s disease. Effect size has been calculated as mean 
percentage difference in average RNFL thickness per sector in disease verus healthy controls.

Alzheimer’s disease OCT 
type

Global Superior Temporal Inferior Nasal 

Study ST SN IT IN  

Ascaso65,b TD 45.4% 49.8% 28.6% 44.3% 53.1%

Bambo62 SD 12.1% 70.1% 5.3% 10.4% 15.8%

Cheung63 SD 4.0% 7.1% 0.6% 5.5% –0.6%

Choi55 SD 7.5% 11.2% 3.3% 5.3% 12.5%

Cunha53 SD 9.4% 9.6% 8.3% 14.6% 4.5%

Cunha52 SD 11.8% 18.0% 10.5% 10.6% 12.4% 10.1% 8.4%

Eraslan61 SD 8.3% 12.3% 8.4% a 5.5% 5.9% a

Gao58 SD 13.7% 14.1% 16.6% 16.0% 5.2%

Garcia-Martin56 SD 3.7% 3.2% 5.5% 6.1% 5.7% 1.6% 0.7%

Gharbiya79 SD –0.9% 1.2% –3.9% –2.3% –1.6%

Gunes64 SD 24.2% 19.5% 18.5% 29.2% 23.1%

Iseri71 TD 25.6% 19.6% 10.8% 31.4% 40.6%

Kesler68 TD 10.7% 10.5% 9.4% 14.3% 13.4%

Kirbas67 SD 14.3% 32.0% 4.0% 1.9% 1.3%

Kromer74 SD a a a a a a a

Kwon73 SD 4.7% 7.7% 3.9% –0.1% 2.9%

La Morgia57 SD 7.6% 11.5% 3.1% 4.9% 10.9%

Larrossa66 SD 3.0% 4.0% 5.1% 5.6% 2.6%

Liu59 SD 8.8% 9.0% 10.8% 10.4% 21.6%

Moschos75,b TD a 10.5% 12.9% 16.0% 11.4%e

Parisi72 TD 50.7% 36.8% 77.2% 39.5% 59.8%

Pillai77 SD –4.1% –1.1% –4.5% –5.1% –8.0%

Polo50 SD 7.0% 8.0% 5.9% 8.8% 3.6%

Trebbastoni54 SD 0.9% 3.3% –1.4% –1.0% 2.9%

MCI - Study OCT 
type

Global Superior Temporal Inferior Nasal

Ascaso 2014 TD 17.3% 23.8% 11.2%d 19.2% 12%

Cheung 2015 SD 1.3% 2.3% 0.6% 1.9% –1.2%

Gao 2015 SD 6.5% 8.6% 11.4% 3.0% 1.7%

 (Continued)
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MCI - Study OCT 
type

Global Superior Temporal Inferior Nasal

Kesler 2011 TD 9.4% 8.2% 5.5% 12.6% 14.8%

Liu 2015 TD 4.9% 3.4% 5.4% 4.4% 6.7%

Pillai 2016 SD –5.3% –3.1% –7.0% –7.4% –4.2%

Parkinson’s Disease OCT 
type

Global Superior Temporal Inferior Nasal

Study ST SN IT IN  

Aaker87 SD 0.0% 3.0% –3.8% 4.1% 0.0% 0.0% –2.7%

Albrecht88 SD 1.8% 3.7% 1.1% –0.4% –2.1%

Altintaş89 TD 14.8% 10.1% 1.4% 12.2% 26.8%

Archibald90,b TD –4.6% –9.4% 1.5% 1.6% –13.4%

Aydin91 SD 6.9% 7.4% 8.4% 2.7% 2.7% 8.1% 5.6%

Bittersohl92 SD 0.4% 1.3% –1.1% 1.5% 6.1% –1.1% –0.1%

Garcia-Martin93 SD 2.2% 2.2% 6.9% 1.5% 0.9%

Inzelberg94 TD a –3.8% 22.0% 26.0% 16.7%

Jiménez95 TD 17.4% 7.7% 6.4% 6.9% 10.7%

Kirbas96 SD 14.5% 2.3% 12.8% 1.8% 0.0%

La Morgia97 TD 5.2% 4.4% 10.6% 3.0% 5.3%

Matlach98 SD 5.4% 8.3% 2.5% 3.4% 2.8%

Moschos99 TD 7.5% 3.0% 12.2% 10.2% 5.5%

Moschos100 SD 8.8% 4.8% 14.6% 2.5% 5.2%

Pillai77 SD –3.7% –3.8% –0.2% –2.9% –8.6%

Rohani101 SD 11.8% 14.6% 9.2% 13.9% 8.4%

Satue102 SD 7.1% 7.0% 5.9% 7.0% 0.3%

Sen103 SD 8.0% 3.2% a 11.0% a

Sengupta104 SD 19.5% 26.1% 5.9% 28.9% 32.4% 8.9% 11.2%

Tsironi105 TD –0.1% 4.6% –2.2% –1.2% –2.8%

Visser106 SD 1.1% –0.9% 11.4% 7.6% –1.5%

aData not available.
bMean of right and left eyes.
cSignificance data missing
dOD significant only
eOS significant only
Grey shading indicates statistical significance as chosen by each study investigator.
IT, inferotemporal; IN, inferonasal; SD, spectral domain; TD, time domain; ST, superotemporal, SN, superonasal.

Table 1.  (Continued)
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other studies,64 possibly affected by mental fluctu-
ation and disease heterogeneity. Retinal correlates 
and patient-related endpoints such as quality-of-
life (QoL) scores are still to be assessed in a holistic 
manner.

OCT imaging of the macula and posterior pole 
also allows for further examination of retinal cell 
populations (Figure 3), of which the inner layers, 
including the RNFL, ganglion cell layer (GCL) 
and inner plexiform layer (IPL), are of most cur-
rent interest in neurodegeneration. GCIPL (gan-
glion cells and inner plexiform layers combined) 
thinning has been observed by multiple studies 
in AD,49,51,53,55,56,61,63,66,76,107 with some studies 
showing diagnostic superiority when compared 
with pRNFL changes.63 Changes in both macular 
volume and GCIPL thickness have been found 
to correlate with mini mental state examination 
(MMSE) scores (average GCIPL r = 0.487, 
p = 0.003).51,71 Extended-depth imaging (EDI) 
using OCT has been used to consistently report 
choroidal thinning to be associated with AD, fur-
ther hypothesising that cerebrovascular disease 
and hypoperfusion may play a common role in 
CNS and chorioretinal atrophy.79,108–110 Further-
more, these findings have also been also associ-
ated with MMSE scores.109

The risk of AD rises from 1 to 2% per year in the 
normal population to 10–15% in those classified 
with MCI.111 Therefore, RNFL has been assessed 
as a correlate with long-term prognosis. Global 
differences in pRNFL in mCI versus healthy 

controls have been reported in several studies 
(Table 1),49,51,59,60,65,68,70 and specifically inferior, 
superior, and even temporal sectors.49,58,59,68 To 
differentiate stable MCI and those progressing to 
AD, several peripapillary and macular parame-
ters correlate with risk of progression to AD 
including temporal RNFL thickness and global 
GCIPL thickness.55 Rate of decay in RNFL 
thickness has also been reported to be greater in 
AD than MCI.49 Evidence suggesting retinal cor-
relates can predict future AD in ‘healthy’ indi-
viduals, similar to CSF amyloid-beta levels is 
limited,112–114 with confirmatory studies required. 
Clearly, differentiating AD and non-AD cogni-
tive decline using OCT parameters will present 
challenges given the correlations with cognitive 
decline in general.115

Other retinal imaging in AD
Retinal oximetry is a metabolic imaging tech-
nique that estimates the oxygen saturation of hae-
moglobin in retinal arterioles and venules. Most 
widely studied in ischaemic diabetic retinopathy 
and vascular occlusions, some studies have shown 
a potential role in AD. Higher arteriolar and 
venular oxygen saturations in moderate AD com-
pared with healthy individuals116 has been 
reported; however, the absence in early disease 
limits early diagnosis potential. Uptake of this 
technique into clinical practice has been limited 
thus far due to poor disease specificity and the 
unclear mechanism behind this correlate. 
Arteriolar and venous pulsations have also been 

Figure 3.  Ganglion cell layer thickness maps from a segmented SD-OCT scan of the macula from the right 
eye of a healthy (left) and ON (right) patient. The segmented GCL is selected in this example, demonstrating 
superior loss of ganglion cells and corresponding thinning.
GCL, ganglion cell layer; ON, optic neuritis; SD-OCT, spectral domain optical coherence tomography.
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shown to correlate with amyloid-beta imaging in 
the brain, with increased arteriolar amplitudes 
and decreased venous amplitudes correlating  
with neocortical 18F-florbetaben (FBB)-positron 
emission tomographic amyloid imaging.76 Optic 
disc colour has been proposed as a biomarker in 
AD, with pallor suggested as an indicator of 
axonal loss. Although significantly correlated with 
AD (p < 0.003), the diagnostic prowess and 
dynamic range of this technique are still to be 
fully revealed.62 The likely poor disease specificity 
may limit its potential in diagnosis.

The role of OCT angiography in CNS conditions 
is still being explored,117 with the foveal avascular 
zone (FAZ), retinal vascular density and inner 
foveal thickness shown to differ in AD,118 while 
other parameters such as outer retinal and choroi-
dal flow-rates have not.119 This requires further 
studies to corroborate these results.

An emerging imaging biomarker for clinical  
trials is DARC (detection of apoptosing retinal 
cells).120 Using confocal scanning light micros-
copy, this technique utilizes intravenous fluores-
cent annexin-A5 binding to phosphatidylserine 
on the cell membrane in early apoptosis. The 
Phase I trial primarily confirmed safety and toler-
ability, and also observed differences between 
glaucomatous and healthy eyes.121 Given the sim-
ilar loss of retinal ganglion cells in AD, there is 
potential for the technique in early diagnosis of 
AD. A phase II trial has been completed with the 
results yet to be published, including a cohort of 
people with Down syndrome, known to display 
similar amyloid-beta deposition to that in AD.122 
The lack of consistent findings of human retinal 
plaque deposition leaves open the hypotheses of 
secondary neurodegeneration in AD. Many other 
genetic risk factors identified in AD may also be 
contributing, distinct from amyloid precursor 
protein and apolipoprotein E.123

Parkinson’s disease
Parkinson’s disease (PD) is a neurodegenerative 
condition causing rigidity, tremor and bradykin-
esia.124 In addition, cognitive, autonomic and 
visual functioning can be affected.125 Its patho-
logical hallmark is intraneuronal aggregation of 
α-synuclein, which in the substantia nigra leads 
to loss of dopaminergic neurones and the extra 
pyramidal symptoms.126 Postmortem evidence 
has similar features in the retinas of PD patients, 

including reduced dopamine content and α-
synuclein accumulation,127 specifically the inner 
nuclear layer (INL), inner plexiform layer and 
the ganglion cell layer.128 Combining biomarkers 
is the current approach to diagnosing PD, inte-
grating brain imaging (SPECT), PET and MRI 
with genetic and biochemical biomarkers.129 
Retinal imaging could emerge as a possible bio-
marker that has the potential to add another 
dimension to this matrix. In its investigation, 
careful consideration is yet to be given to control-
ling confounding ocular and systemic conditions 
more commonly found in older people, that may 
also affect RNFL thickness.

OCT tomography in PD
RNFL thinning in PD has been studied compre-
hensively by many researchers (Table 1), with 
many reporting pRNFL thinning. The frequency 
of this finding is noticeably less common than in 
AD (see Table 1), with a different peripapillary 
distribution. Significant thinning in global, supe-
rior, inferior, nasal and temporal pRNFL have 
been observed. 89,91,93–97,99–104,106,119 In contrast, 
several studies have reported no significant dif-
ferences.77,87,88,90,92,105 A total of 13 case-control 
studies were included in a meta-analysis,  
supporting pRNFL thinning in all four quad-
rants (WMD = 25.76, 95% CI: 28.99–22.53, 
p = 0.0005).130 Reports concerning laterality 
have been conflicting, with one study observing 
a post hoc association between superior quadrant 
pRNFL thinning in eyes ipsilateral to the side 
most affected by bradykinesia.98 However previ-
ous work has shown the contrary97. Foveal con-
tour has also been studied, characterising the 
breadth and depth of the foveal pit. Superior/
inferior sloping was found to be the most shal-
lowed in PD, with an error rate of around 34% 
at detecting PD from healthy controls.131 
Interocular asymmetry of foveal contour has also 
been proposed as a feature of PD.132

As with pRNFL findings, results of macular OCT 
segmentation have been inconsistent at demon-
strating differences between PD patients and 
healthy age-matched controls, concluding both 
significant and nonsignificant differences between 
groups.87,89,98,133–137 To our knowledge, all studies 
examining both pRNFL and mRNFL thickness 
in PD have had a similar conclusion with both 
parameters, be this either no difference or a sig-
nificant difference.87,89,134–137 This may indicate 
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similar sensitivity of pRNFL and mRNFL OCT 
scanning as a biomarker in PD, or indicate a cor-
relation of these two parameters with disease 
severity. Conflicting results are likely due to vari-
ability in disease severity between study popula-
tions, and the challenges in its quantification. 
Given that studies examining RNFL thinning in 
different stages of disease indicate progression 
towards global thinning across all sectors, any dis-
ease specificity may be found only in the order or 
rate at which they are affected (Table 1).

Establishing the role of OCT in assessing the rate 
of progression associated with functional decline is 
important. This may provide prognostic informa-
tion for patients and surrogacy for therapies in 
clinical trials. A 5-year prospective longitudinal 
trial has been completed using OCT imaging and 
functional testing in order to investigate several 
aspects of this paradigm.134 OCT demonstrated 
increased rates of RNFL thinning over supero
temporal and temporal peripapillary sectors, and 
in seven of the nine macular zones in PD. 
Furthermore, moderate correlations were found 
between low contrast visual acuity, superotempo-
ral and inferotemporal pRNFL sector thinning 
and symptom severity.138 Mild association between 
superotemporal pRNFL thinning and progression 
of Parkinsonian symptoms was seen in the PD 
group (r = –0.389, p = 0.028), suggesting OCT 
progression could play a role in predicting func-
tional and visual outcomes, and possibly even ben-
efits gained from treatment in a clinical trial setting. 
However logistic regression revealed no parame-
ters of visual function that were able to predict 
symptomatic decline. Confounding these studies 
are the difficulties encountered with testing visual 
function in patients with advanced dementia.

RNFL thinning on OCT imaging has also been 
correlated with retinal function and dopaminergic 
activity in the substantia nigra using, microperim-
etry and PET/MRI imaging.139 RNFL thinning 
in the temporal and inferior foveal zones was 
observed in PD when compared with healthy  
age-matched controls. Retinal thinning in certain 
sectors was also found to correlate with macular 
sensitivity and dopaminergic loss in the substantia 
nigra. The hypothesis that a pathologic connec-
tion exists between retinal and nigral dopaminer-
gic cells could raise useful biomarkers in trials of 
neuroprotective treatment strategies. Similarly, 
there is a partial treatment effect with l-DOPA on 
recovering contrast sensitivity in PD patients.140 

A further study has suggested dopaminergic treat-
ment effect is visible in retinal changes; however, 
this is only in the absence of a significant differ-
ence between untreated, and treated patients who 
have more severe disease.103

Disease-specific OCT biomarkers still remain to 
be found, with some studies failing to show any 
differences between RNFL characteristics in dif-
ferent dementia types.77 The predilection for 
temporal RGC loss in PD correlates with the pap-
illomacular bundle and parvocellular pathway, 
which is distinct from that reported in AD, where 
the RGCs in the magnocellular pathways are 
commonly seen to be preferentially affected.141 
Selective thinning of the photoreceptor layer in 
vivo has also been reported in PD as has general-
ised retinal thinning,133,136,142 to accompany simi-
lar postmortem evidence in humans and animal 
models.127,143 Considering the dopaminergic input 
to photoreceptors in the retina, trans-synaptic 
degeneration may explain this observation, prefer-
entially noted to affect blue cones.144,145 Less dra-
matic RNFL thinning in PD may be explained by 
the reduced number of RGCs with dopaminergic 
inputs.146 The more varied OCT findings in PD 
compared with AD reflect the wider variety of phe-
notypes contained in the PD spectrum, in which 
various diseases display Parkinsonian-like traits.147 
The observation that mutations in genes such as 
LRRK2 and those encoding α-synuclein and tau 
can cause varying clinical syndromes does not  
support a purely pathogenetic disease process or 
primary retinal pathology, but implicates environ-
mental factors as supported by associations seen 
with heavy metal exposure and other environmen-
tal toxins.148,149

Combining structural and functional biomarkers 
is likely to increase diagnostic yield in PD using 
the retina. For example, parafoveal thickness and 
contrast sensitivity provided an area under the 
receiver-operator characteristic (AUROC) curve 
of 0.784, improving to 0.844 with the addition of 
visual evoked potentials.150 The reliance on non-
imaging parameters may also become necessary 
in advanced disease due to tremor precluding the 
acquisition of high-quality images.

Multiple sclerosis
Multiple sclerosis (MS) is an autoimmune demy-
elinating disorder of the CNS.151 Approximately 
2 million people are affected worldwide, making it 
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one of the most common causes of nontraumatic 
neurological disability affecting young adults.152 
Demyelination leads to neuro-axonal loss causing 
progressive neurological disability and functional 
decline.153

Multiple clinical features affecting motor, sensory, 
visual or autonomic pathways exist, commonly 
presenting in the third or fourth decades with a 
female predominance. MS may be categorised 
according to the timing and pattern of disease.154 
The commonest type is relapsing-remitting 
(RRMS, 85%), in which 18% evolve to secondary-
progressive disease (SPMS); 15% exhibit progres-
sive disease at onset, with or without relapses.155,156

Ophthalmic involvement is a frequent cause of 
disability encompassing optic neuritis (ON), 
uveitis, internuclear ophthalmoplegia (INO) and 
nystagmus. Half of patients will experience ON 
over the disease course.157,158 It is the presenting 
feature in 30% of cases, manifested as retrobulbar 
pain on eye movement, proceeding to visual loss 
and dyschromatopsia. Recovery is often incom-
plete due to demyelination and axonal loss.159,160 
Timely recognition of atypical causes of ON can 
prevent irreversible visual loss or side effects by 
inappropriate usage of drug therapy.161 OCT has 
proven useful for diagnosis and monitoring of 
ON longitudinally.162 Functional connectivity 
by adaptive reorganisation in the visual system 
occurs following ON.163

In combination with clinical evaluation, several 
clinical and paraclinical biomarkers inform the MS 
diagnostic process. Oligoclonal bands in the CSF 
are an indicator of CNS immune activity, and 
MRI detects inflammation and atrophy within the 
brain and spinal cord.160 The revised McDonald 
diagnostic criteria have a high degree of sensitivity 
and specificity in early disease.164–167

OCT in multiple sclerosis
Numerous studies have shown that MS sufferers 
display neurodegenerative and inflammatory 
signs in the retina, mirroring those of the CNS 
seen on MRI.164 OCT quantification of RNFL 
thickness in MS was first described in 1999.168 
Subsequent reports have been made of RNFL 
thickness and other OCT biomarkers with and 
without ON versus healthy controls.168–171 
Unmyelinated RGC axons within the RNFL 

provide an objective indicator of axonal loss in the 
retina, and potentially the CNS globally. The 
presence of blood vessels contributes to 13% of 
RNFL thickness, altering the reliability of meas-
urements, especially in severe thinning.172

RNFL thickness is reduced in ON and MS 
patients compared with healthy controls (Figure 
2). This is seen using OCT in eyes with prior 
ON,171,173–187 particularly temporally and inferi-
orly.176,177,188 The majority of studies also identi-
fied reduced pRNFL thickness in MS patients 
without prior history of ON (MS-NON), although 
to a lesser extent.189 Temporal preponderance 
may be explained by the presence of the large 
papillo-macula bundle containing a high density 
of parvocellular axons appearing to be most sus-
ceptible to oxidative stress.190 Increased RNFL 
thinning in ON is associated with incomplete vis-
ual recovery.191 Few studies, however, report 
RNFL thinning after ON to be similar in affected 
and unaffected eyes.192 RNFL thickness is also a 
biomarker for MRI-estimated whole brain atro-
phy in MS patients.193,194

RNFL thinning in the absence of ON suggests 
underlying CNS disease activity. RNFL thickness 
was inversely related to optic radiation lesion vol-
ume in patients with MS, and CIS patients 
including those without previous ON.195 RNFL 
thinning may therefore be related to ON-related 
retrograde degeneration due to damage propagat-
ing backwards from the site of injury.196 It may be 
either trans-synaptic via the lateral geniculate 
nucleus for posterior visual pathway lesions, or 
direct retrograde degeneration, beginning at the 
ganglion cell axons (RNFL), progressing to GCL 
cell bodies and finally IPL dendrites.186 Wallerian 
or anterograde degeneration has also been pro-
posed, due to pathology in the retinal layers lead-
ing to RNFL thinning.197 Animal studies have 
suggested this may not play a major role in MS 
pathogenesis however.198

The GCIPL thickness is often measured together 
due to low contrast differences of OCT images. 
GCIPL comprises RGC cell bodies and retinal 
astrocytes. As the highest density of RGCs is at 
the macula, GCIPL is regularly measured as 
perifoveal volume in cubic millimetres.199 
Thinning of the IPL and GCL has been reported 
in isolated episodes of ON in clinically isolated 
syndrome183 (Figure 3).
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Macula volume measures the size of axons and 
their associated ganglion cell bodies, with studies 
demonstrating reduction compared with age-
matched controls in both MS-NON and MS-ON 
eyes.182,199,200 However, other studies have 
reported conflicting results,201 suggesting incon-
sistencies in disease duration and severity amongst 
study cohorts.

Whilst pRNFL and macula volume are the most 
common OCT markers used in MS, there has 
been increasing interest in the INL and, less so, in 
outer retinal layers. The INL contains the cell 
bodies of the horizontal, bipolar and amacrine 
cells. Thinning of the INL has been reported in 
PPMS.202 INL thickening is associated with a 
range of disorders including inflammatory disease 
activity in MS.203–205 It may also be characterised 
by microcystic macular oedema (MME),205–207 
the presence of INL cysts occurring with RNFL 
thinning.207,208 MME was previously thought to 
reflect blood–retinal barrier breakdown with or 
without microglial inflammation; however, the 
absence of leakage on angiography refutes this.209 
Impaired water or potassium homeostasis have 
also been proposed as contributing factors.207 
The most likely cause is of retrograde degenera-
tion of the inner retinal layers causing impaired 
macula fluid resorption.210 INL thickness may 
prove useful for monitoring response to immuno-
therapy in inflammatory states.211

Thickening of the outer nuclear layer (ONL) (con-
taining photoreceptor cell bodies) and photorecep-
tor layer followed by thinning has been reported in 
ON. Outer retinal dysfunction measured by ERG 
has also been reported despite normal sublayer 
thickness measurements.212–214 Transient ONL 
thickening has also been reported during the active 
phase of ON, alongside reduced RNFL and total 
macula volume.213 ONL thickening was observed 
4 months following ON, and correlates well with 
GCIPL thinning.212 From 4 to 12 months ONL 
thickness returned to baseline. Reports have also 
identified no ONL differences between MS 
patients and healthy controls, supporting presence 
of thickening in active inflammation only.186,202

Retinal vascular changes in MS
OCT angiography (OCTA) detects the motion 
of red blood cells, providing noninvasive angiog-
raphy and flow rates of the deep and superficial 

retinal plexuses, with potential in the manage-
ment of MS and other neurological disorders.215 
There is parafoveal vessel reduction in superficial 
and deep vascular plexuses in MS independent 
of ON history.216,217 This correlates with pRNFL 
and GCIPL layer thinning and also with general 
disability level, as assessed by the Extended 
Disability Status Scale (EDSS).216 A longitudinal 
study, however, showed an increase in parafoveal 
vessel density over a median follow-up period of 
1 year, particularly in patients who demonstrated 
disease stability.218 There is evidence of reduced 
flow velocity in parafoveal and optic nerve head 
vessels in eyes with prior ON, compared with 
MS-NON eyes and healthy controls.219,220 This 
may reflect the reduced metabolic demand of the 
retina due to the retinal thinning, decreased per-
fusion due to inflammation-induced endotheli-
opathy and a retinal increase of hypoxia-inducing 
factors during neurodegeneration.156 However, 
image artefacts in OCTA have been reported to 
occur frequently.221 Further studies are needed 
to improve acquisition and analysis of OCTA 
images and to assess the course of MS longitudi-
nally to identify useful disease correlates.

OCT to predict visual prognosis and MS 
subtypes
The use of OCT retinal correlates to measure the 
severity or duration of MS could prove inexpen-
sive and rapid compared with repeated MRI 
studies, and more precise than clinical evaluation. 
Active MS, as identified clinically or radiologi-
cally, is associated with accelerated RGC  
and IPL thinning, fastest in those with clinical 
relapse, gadolinium-enhancing lesions, and new 
T2 lesions simultaneously.222 The most severe 
subtypes of MS showed more marked decreases 
in RNFL and macula volume than RRMS 
cases.170,223 Longitudinal studies show progres-
sive RNFL and macula volume reductions in  
MS patients within 1 year, in particular affecting 
the mean RNFL thickness even in the absence  
of ON.224–226 Herrero’s study, which followed 
patients up over 3 years, identified increased 
RNFL loss in the superior and inferior regions.226 
After 2 years, macular GCIPL layer thinning was 
also identified. These changes were most appar-
ent in the early phase of the disease, perhaps indi-
cating a later plateau.227 Contradictory results 
using time-domain OCT to monitor RNFL thick-
ness have also been reported; however, this was 
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using inferior resolution technology.228 In patients 
with clinically isolated syndrome, OCT assess-
ment of GCIPL and pRNFL thinning are valua-
ble predictors of future MS diagnosis.229 This 
subset of patients appear to behave similarly to 
patients with radiologically isolated syndrome 
(RIS), in which there is an incidental finding of 
demyelination on MRI. These patients have 
reduced RNFL and increased INL and ONL vol-
umes, correlating with prospective disease activity 
and progression in MS.230

Studies have suggested that OCT may predict 
levels of disability associated with MS and QoL 
outcomes.231,232 RNFL thickness correlates with 
visual acuity and EDSS,200,233 with GCIPL thin-
ning also associated with low-contrast visual acu-
ity.212,213 Other studies have demonstrated thinner 
GCIPL and RNFL layers in MS patients are 
associated with worse visual functional and QoL 
assessments.186,234

Visual evoked potentials (VEP) and pattern elec-
troretinograms (PERG) are altered in MS200,235–237 
showing prolonged P(100) latencies and normal 
amplitudes. However, studies are contradictory  
as to whether VEP findings correlate with RNFL 
thickness, perhaps suggesting that RFNL loss 
detected by OCT in some cases is insufficient to 
cause functional deterioration.

A study evaluating VEPs, in particular P(100) 
latency, amplitude and waveform morphology, 
demonstrated a correlation with MS as assessed 
by the Kurtzke EDSS and whole brain atrophy 
(BPF).236 A moderate correlation between RFNL 
thickness, EDSS score and QoL (based on the 
54-item Multiple Sclerosis Quality of Life Scale 
score) was identified.177 The use of functional 
tools such as VEPs and PERG may be important 
for identifying subclinical axonal damage in the 
early stages of MS.

OCT in paediatric patients has been shown to be 
sensitive to retinal changes in clinical ON, whereas 
VEPs are useful to detect disseminated lesions in 
the visual pathway. One study demonstrated 
RNFL thinning in those with prior ON and also 
prolonged VEP latency (>109 ms) regardless of 
ON history.238

A growing body of evidence supports the value of 
OCT in monitoring MS disease progression, in 
particular, the use of RNFL thinning to predict 

QoL. Due to the lack of disease specificity, OCT 
must be used in combination with MRI and clini-
cal assessment. Combining these with VEPs and 
PERG may prove useful to link structural and 
functional change as biomarkers for axonal 
degeneration.

Neuromyelitis optica spectrum disorders
OCT has been valuable in differentiating ON and 
MS from differential diagnoses, including neuro-
myelitis optica spectrum disorders (NMOSD), 
MOG-IgG seropositive autoimmune inflamma-
tory disorders, and Susac syndrome. NMOSD 
are rare, chronic autoimmune inflammatory CNS 
diseases.239 Autoantibodies against the aqua-
porin-4 (AQP4) water channel located on astro-
cyte foot processes lead to recurrent attacks of 
ON, myelitis and brainstem syndromes.240–242 
IgG and complement deposition, reduced AQP4 
expression, astrocytopathy, neutrophil accumula-
tion and demyelination with axonal loss are the 
underlying pathogenic processes.243 NMOSD-ON 
is commonly more severe, bilateral and recurrent 
than MS-ON. Despite treatment, recovery is 
often incomplete and remission rarely occurs. 
Relapsing NMOSD accounts for approximately 
85% of cases, wherein neurologic defects fre-
quently accumulate.

Whilst it is most commonly initially misdiag-
nosed as MS, clinical, immunological and imag-
ing studies establish NMOSD as firmly separate 
from MS, with treatment strategies for MS inef-
fective and even harmful in NMOSD.244,245 
Treatment strategies for acute relapses include 
high dose intravenous or oral steroid therapy and 
apheresis therapies, including plasma exchange 
and immunoabsorption.246 For long-term treat-
ment, immunosuppressive drugs are used in a 
stepwise approach.247

In NMOSD, ON often occurs bilaterally, fol-
lowed by severe structural retinal damage with-
out segmental predominance, and profound 
visual impairment,205,248,249 with diffuse RNFL 
thinning seen by OCT in NMOSD patients, 
when compared with idiopathic disease.250 This 
is in comparison to MS ON, where temporal 
RNFL is preferentially thinned.205,251 Nasal 
thinning of the pRNFL persists in NMOSD in 
eyes, both with and without prior ON. Temporal 
thinning of the mRNFL also persisted in 
NMOSD-ON compared with MS-ON.251
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A recent study demonstrated severe bidirectional 
degeneration in the visual pathway following 
NMOSD-ON, in particular the lateral geniculate 
nucleus volume, primary visual cortex volume 
and decreased integrity of optic radiations, com-
pared with NMOSD without ON.252 Furthermore, 
there is increased functional connectivity in the 
primary and secondary visual networks in 
NMOSD, which correlates with increased visual 
impairment and reduced structural retinal dam-
age on OCT.253

There is no consensus yet as to whether retinal 
changes occur in NMOSD without ON. Studies 
have demonstrated alterations of the optic radia-
tion, GCIPL loss, and altered foveal shape, sug-
gesting astrocytopathy in NMOSD patients.254–256 
There is evidence of reduced temporal and 
superotemporal pRNFL loss in NMOSD-NON 
(NMOSD eyes without prior ON history) eyes 
compared with MS-NON.257 It has also been 
reported that GCIPL, pRNFL, foveal thickness 
and macula volume are all reduced in NMOSD 
regardless of ON status.258 In NMOSD, GCIPL 
thinning occurs longitudinally, independent of 
ON attacks.258 This finding was, however, con-
tradicted by a small longitudinal observational 
study showing no change compared with in 
MNOSD-ON eyes.259

Clinical and histopathological studies indicate 
attack-independent lesions in the brain and spi-
nal cord in NMOSD.260 Unlike in MS, a clear 
pattern of VEPs has not yet been defined in 
NMOSD patients due to conflicting results.261 
These may be attributed to difficulties ascertain-
ing a prior history of ON, differences in OCT 
devices, or segmentation techniques. Further 
results are required to use OCT as a valuable 
diagnostic tool in NMOSD eyes without prior 
ON history.

Macula microcysts also occur more frequently in 
NMOSD (20–26% of patients) than in MS (5% 
of patients) and appear to occur exclusively in 
eyes with previous history of ON.250,262,263 MME 
is associated with RNFL and INL thinning, and 
reduced visual acuity.264

OCTA studies showed peripapillary and parafo-
veal vessel density significantly decreased in 
NMOSD eyes independent of previous ON sta-
tus.265 There is reduced microvascular density 

in superficial and deep plexuses surrounding the 
macula with increasing prior episodes of ON.266 
This density correlated with both RNFL and 
GCIPL thickness, and also with visual acuity. 
Reduced microvascular density could occur 
prior to ON and RNFL atrophy, and it corre-
lated well with visual function studies, suggest-
ing its potential use as a predictor of visual 
outcomes. Further studies might consider dif-
ferences between seropositive and seronegative 
NMOSD.267

Anti-MOG disease
In the 20–40% of patients with clinical signs of 
NMOSD but no AQP-4 antibodies,245 a subset 
will have antibodies against myelin-oligoden-
drocyte-glycoprotein (MOG). MOG is a glyco-
protein located on myelin sheath on the cell 
bodies and processes of oligodendrocytes. 
These syndromes are referred to as MOG-
encephalomyelitis and is a different clinical 
entity to NMOSD. Here, single ON episodes 
appear to cause less severe damage, although 
the high frequency of ON may result in greater 
structural damage and visual impairment.268 
Similar to MS, there may be a temporal pre-
ponderance of pRNFL thinning in MOG-IgG 
seropositive patients.269 Additionally, in paedi-
atric patients, significant RNFL reductions 
were seen in most retinal segments compared 
with MOG-negative eyes, and despite this, vis-
ual acuities were well preserved.270

Susac syndrome
Susac syndrome (SuS) is a rare condition of pre-
sumed autoimmune etiology that features a triad 
of encephalopathy, hearing loss and visual defects 
due to microangiopathic occlusions. The combi-
nation of visual deficits with neurological disease 
in predominantly young female patients can make 
it a masquerade for MS. Fluorescein angiography 
typically reveals peripheral branch retinal arterial 
occlusions.271 In SuS, there is hypoxic retinal 
destruction of the pRNFL, GCIPL, INL and 
outer plexiform layer, particularly in the temporal 
quadrant, compared with corresponding seg-
ments in RRMS retinae.272 The ONL and photo-
receptor layer are unaffected. Susac patients 
appear to show distinct sectoral patterns of retinal 
destruction, rather than the diffuse signs seen in 
RRMS.273,274
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Amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a pro-
gressive neurodegenerative disorder of upper 
and lower motor neurons in the cerebral cortex, 
brainstem and spinal cord, predictably leading 
to fatal paralysis through respiratory failure 
usually within 3–5 years of diagnosis.275,276 90% 
of cases are sporadic and 10% are familial, of 
which approximately 60% of associated genes 
have been identified.276 The exact pathogenesis 
is unclear, but an interplay of genetic and envi-
ronmental factors is suspected, inducing oxida-
tive stress, mitochondrial damage, neurofilament 
defects and defects in RNA processing.277 
Clinical presentation is typically limited to 
motor dysfunction leading to limb weakness 
and difficulties with speech, swallowing and 
breathing.

Early diagnosis is critical in ALS due to rapid dis-
ease progression. Timely introduction of treat-
ment can extend the length and QoL of patients. 
However, diagnosis is challenging due to disease 
mimics and variability in initial presentation. The 
Awaji electrodiagnostic criteria have enabled ear-
lier diagnosis in comparison to the previous gold 
standard revised El Escorial diagnostic criteria by 
evaluating the evidence of progressive lower and 
upper motor neuron dysfunction in the absence 
of other potential explanatory disease processes 
and placing equal importance on clinical and 
electrophysiological findings.278,279

Sensory abnormalities in ALS include aberra-
tions in thermal perception, presence of numb-
ness, neuropathic pain and tingling.275,280 
Although visual dysfunction is not predominant 
in ALS, extramotor features include reduced 
visual acuity and contrast sensitivity.281,282 
Furthermore, structural and functional altera-
tions in the visual system have been identified 
through VEPs and MRI in ALS patients.283,284 
Specifically, reduced grey matter volume in the 
extramotor cortex, including the occipital cor-
tex, has been identified.280

OCT in ALS
Given the genetic associations between primary 
open angle glaucoma and familial ALS,285–291  
the eye has been investigated as a course of bio-
markers. However, OCT has been limited and  
have produced contradictory results (Table 2). A 

cross-sectional study of sporadic ALS patients 
identified reduced total macula thickness com-
pared with controls.292 Further manual segmenta-
tion also revealed thinning of the RNFL and INL 
but the corresponding GCIPL was unaffected.

A further study also demonstrated thinning of 
the RNFL and INL in ALS patients compared 
with healthy controls.296 Significant correlation 
was further demonstrated between retinal thick-
ness and fractional anisotropy, a measure of 
axonal density in the corticospinal tract. More 
recent studies have confirmed these findings of 
reduced RNFL thickness.293,296,297 Reduced 
ONL thickness in ALS is reported in a single 
study.298 However, earlier research contradicts 
the retinal changes seen in ALS. A study of 76 
ALS patients failed to identify any significant dif-
ference in OCT measurements of retinal sublay-
ers compared with healthy controls, nor any 
association with disease severity.295 This negative 
finding may be explained by the selection of ALS 
sufferers, with only 19.7% having ‘clinically defi-
nite’ ALS, compared with 83.3% in Ringelstein’s 
study.295 A study examining symmetry in ALS 
eyes demonstrated significant interocular differ-
ences in retinal thickness.296 This finding sug-
gests that characteristic asymmetrical CNS 
involvement is not limited to the motor system. 
This may weaken the promise of retinal thinning 
as a robust biomarker for disease.

Macula thinning has also been a recognized fea-
ture in ALS, with total macular volume reduced 
in ALS patients compared with controls.297 
Another study however, showed total macula 
volume and other sublayers were unaffected, but 
did demonstrate selective RNFL thinning in ALS 
patients compared with healthy controls.299 The 
contradictory results may be explained by cohort 
heterogeneity, including differences in diagnostic 
criteria used, and the subtype (familial versus 
sporadic) and duration of ALS. Further work 
should aim to allow comparison and consistency 
between studies.

The observed finding of RNFL thinning in 
ALS is likely to reflect extramotor axonal 
degeneration. INL thinning, however, may be 
explained by inhibitory pathophysiological 
mechanisms of neurodegeneration in ALS.300 
Bipolar, horizontal and amacrine cell bodies in 
the INL mainly mediate inhibitory circuits and 

https://journals.sagepub.com/home/taj


Therapeutic Advances in Chronic Disease 10

14	 journals.sagepub.com/home/taj

therefore may explain the thinning and degen-
eration of this layer.296

Retinal vessel pathology
Changes in skin, muscle and CNS microvascula-
ture have been reported in patients with ALS.301 
The superior or inferior temporal branch of the 
retinal artery was assessed in ALS patients with 
increased outer wall thickness found compared 
with healthy controls,298 with no differences in 
inner wall thickness or lumen diameter.

Intraretinal inclusions
Inclusions are the pathological hallmark of ALS, 
present in the spinal cord as well as certain regions 
of the brain including the frontal and temporal 

cortices, hippocampus and cerebellum.302 In ALS, 
these are predominantly ubiquinated randomly 
orientated filaments, covered with fine granules.302 
Histopathological studies have identified the pres-
ence of intraretinal inclusions in one patient and 
within the inner plexiform layers of an ALS/
dementia transgenic UBQLN2(P497H) mouse.297 
Further histopathological studies in two, related 
ALS patients with the C9orf72 mutation identified 
p62-positive, pTDP43-negative perinuclear inclu-
sions in the inner nuclear layer of the retina and 
CNS.303 These inclusions are of the type com-
monly found in the hippocampus and cerebellum 
in this form of ALS. Further colocalization sug-
gested that the majority of retinal p62-positive 
inclusions were found within cone bipolar cells as 
well as some amacrine and horizontal cells. One of 
the patients had been noted to have contrast 

Table 2.  A summary of studies reporting sector analysis of peripapillary RNFL changes in previous optic neuritis (MSON), multiple 
sclerosis without optic neuritis (MSNON), and amyotrophic lateral sclerosis (ALS). Effect size has been calculated as mean 
percentage reduction in disease versus healthy controls.

MSON - study OCT type Global Superior Temporal Inferior Nasal

Feng176 SD 34.8% 33.1% 37.5% 43.6% 37.4%

Garcia-Martin177 SD 10.1% 14.2% 20.4% 11.3% 19.7%

Khalil181 SD 33.4% 25.3% 25.4% 21.6% 29.6%

Lange182 SD 27.7% 22.2% 36.2% 27.0% 53.0%

Park184 SD 35.3% 32.4% 18.0% 36.3% 65.0%

Schneider205 SD 16.0% 13.2%b 31.6%b 12.7%b 21.3%b

MSNON - study OCT type Global Superior Temporal Inferior Nasal

Feng176 SD 10.4% 5.6% 10.2% 14.7% 10.7%

Lange182 SD 7.3% 4.6% 11.0% 8.4% 5.8%

Garcia-Martin177 SD 7.0% 11.7% 15.7% 10.1% 9.2%

ALS OCT type Global Superior Temporal Inferior Nasal

Study ST SN IT IN  

Mukherjee293,a SD 7.51 μm 11.27 μm 10.68 μm 8.17 μm –1.45 μm 2.13 μm 6.34 μm

Rohani294 SD 5.0% 9.0% –1.0% –1.0% 11.0%

Roth295 SD –2.0% –3.0% 1.0% –4.0% 0.0%

aMean of right and left eyes
bSignificance data missing
Grey shading indicates statistical significance as chosen by each study investigator.
IN, inferonasal; IT inferotemporal; SD, spectral domain; ST, superotemporal; SN, superonasal; TD, time domain.
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sensitivity impairment, which may be explained by 
cone bipolar cell involvement.

Association with disease severity and duration
There have been contrasting results supporting 
the presence and absence of correlation between 
retinal thickness (pRNFL) and disease severity as 
assessed with the ALS functional rating scale 
(ALSFRS).294–296,298 Pulmonary function tests are 
used to monitor neuromuscular involvement in 
ALS, and correlate well with survival time.304,305 
Simonett’s study showed macula RNFL thickness 
correlated with forced vital capacity (% predicted) 
and forced expiratory volume in 1 s (% pre-
dicted).299 Retinal thinning did not correlate with 
disease duration or function; however, many other 
factors are likely to affect this relationship. Disease 
duration has also been shown to correlate inversely 
with total macular thickness297; patients with dis-
ease duration longer than 40 months had signifi-
cantly decreased total macular and pRNFL 
thicknesses compared with those with shorter dis-
ease durations. Further work may help address the 
lack of a widely established method to grade dis-
ease progression in ALS. In the future, OCT 
could be incorporated alongside other clinical, 
imaging and electrodiagnostic tools to form a 
prognostic scoring system.

The underlying pathophysiology of possible reti-
nal changes in ALS remains elusive, as does the 
timeline of their onset. A primary retinal degen-
erative process involving neuronal and subse-
quent axonal degeneration causing retinal 
sublayer thinning is plausible. Given the rela-
tively small OCT differences identified, larger 
scale studies are required to further confirm 
RNFL and macula thinning, as well as examin-
ing ALS subgroups such as familial, sporadic, 
juvenile or adult-onset subtypes to identify the 
specific pattern of visual dysfunction and retinal 
correlates in these patients.

Creutzfeld-Jakob disease and prion 
diseases
Prion diseases are rare, fatal neurodegenerative 
diseases marked by long incubation periods and 
fast progression.306 Caused by PrPSc (proteinase-
resistant prion proteins), a misfolded, infectious 
and abnormal form of a cell-surface protein, prion 
diseases are marked by accumulation in the CNS. 
The term ‘prion disease’ will be used to describe 

diseases caused by PrPSc.307 The disease is charac-
terised by neuronal loss with rapid increase in glial 
cells, lack of inflammatory response and formation 
of small vacuoles in the neuropil creating a ‘spongi-
form’ appearance throughout the CNS. Patients 
can present with rapid (weeks to months) cognitive 
decline including personality changes, visual 
impairment, memory loss and neurological deficits 
correlating to affected areas in the CNS.308 Five 
types of human prion disease have been identified: 
Gerstmann-Sträussler-Scheinker syndrome 
(GSS), fatal familial insomnia (FFI), kuru, and 
Creutzfeldt-Jakob disease (CJD).

CJD is the most common of the human prion 
diseases, accounting for over 90% of cases  
worldwide,306 including sporadic (sCJD), genetic/
familial (gCJD), iatrogenic (iCJD) and variant 
CJD (vCJD) subtypes. Although the exact cause 
is unclear, it is thought that normal brain protein 
spontaneously misfolds, developing into pri-
ons,309 with only 5–15% of cases due to gCJD 
caused by an inherited mutation (prion protein 
gene).310 Less than 1% are acquired from iCJD 
or vCJD.311,312 iCJD is spread through infected 
medical or surgical equipment, and was histori-
cally associated with growth hormone treatment; 
however, the advent of synthetic human growth 
hormones and heightened awareness have made 
iCJD very rare, reported as 1.44 cases per 1 mil-
lion people worldwide.313 vCJD results from 
infection through infected meat from cattle caus-
ing bovine spongiform encephalopathy (BSE).314

Clinical diagnosis tends to rely on evaluation of 
rapidly progressing dementia, myoclonus and 
ataxia. Changes on electroencephalogram, MRI, a 
positive 14-3-3 protein in the CSF, and tonsil and 
brain biopsies can make a ‘probable’ diagnosis, yet 
the latter procedures come with severe risks includ-
ing brain damage, seizures and bleeding (CDC cri-
teria). Several diagnostic criteria have been 
developed with the hope of allowing for earlier 
diagnosis,311,315,316 but exclude atypical features 
such as unaffected cognitive profiles.317 Visual dis-
turbances are seen in up to 30–50% of sCJD cases 
at some point during the illness.318,319 Cortical 
blindness, an early feature first described by 
Heidenhain in 1928, can occur in up to 25–50% of 
vCJD, reflecting the extent of pathology in the vis-
ual cortex.319 Blurred or dimmed vision is the most 
commonly reported visual symptom in sCJD 
(9%).320–328 Several case reports have described 
presentations of insidious and solitary visual 
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impairments removed from any other cognitive  
or neurophysiological impairment.329,330

Histopathology
Histological studies in CJD have described spongi-
form abnormalities in the RNFL coupled with loss 
of bipolar and ganglion cells, and photoreceptor 
changes.331–334 Occasionally, optic nerve abnor-
malities have been reported,331,332,335 as have nor-
mal optic nerves.336 Prions themselves have been 
discovered in the retina,307,337 specifically the cen-
tral retina sequestered to the plexiform layers in 
sCJD at low levels.337 More recently researchers 
observed prion seeding in the retina of sCJD eyes. 
Using immunohistochemistry, Orrù and col-
leagues detected prions in the majority of OPL 
and some IPL eyes of 11 patients, which coin-
cided with accumulation of synaptic prions. Real-
time quaking-induced conversion (RT-QuIC) 
assay detected prion seeds in the optic nerve, cho-
roid, lens, vitreous, extraocular muscle, sclera, all 
corneas and a general trend towards increased 
prion seeds the closer tissue was to the brain.307

Ophthalmic exam and ERG
Optic disc pallor335,338–341 and atrophy331,332,335 are 
the most common findings, although are not 
always visible until after death.332 RGC degenera-
tion has also been described and may contribute to 
optic atrophy.333 Electroretinogram (ERG) exami-
nation has found b-waves to be significantly 
decreased in late stages, correlated significantly to 
abnormalities in the outer plexiform layer of the 
retina post mortem.334,342 However, Ishikawa and 
colleagues reported one patient with visual distur-
bances and normal ERG even after CJD pro-
gressed, suggesting visual problems may occur 
without retinal involvement.343 In an animal study 
of BSE, cows inoculated with classical BSE showed 
no notable change in b-wave amplitude. Those 
inoculated with atypical high-type BSE (BSE-H) 
showed a decrease in b-wave amplitude but this 
was not statistically significant. However, signifi-
cant changes in b-wave implicit times were noted 
during the incubation period, and significantly 
prolonged in clinically ill animals compared with 
baseline.344

OCT in prion disease
OCT studies of prion diseases are limited to case 
reports due to their low incidence and high 

mortality. In a 63-year-old female with Heidenhain 
vCJD, Chin and colleagues observed paracentral 
retinal thinning in both eyes 2.5 months after cog-
nitive decline and neurophysiological symptoms 
began. This finding is consistent with thinning in 
the RNFL, ganglion cell and bipolar cell loss and 
demyelination of the optic nerve previously 
reported in histologic findings.330–332,345,346 A study 
by Greenlee and colleagues of BSE and BSE-H 
inoculated cattle described antemortem changes 
in the dorsocentral retina visible up to 11 months 
before appearance of any other signs or symptoms 
of disease. Retinal thickness of inoculated cows 
were markedly decreased at 12 and 15 months 
post inoculation compared with baseline and prior 
to signs of disease,344 a replication of findings from 
a prior study by the same group.347

Given the infectious nature of the disease, lack of 
treatment and rapid declines in cognition, early 
diagnosis could prevent unnecessary interven-
tions, and prevent transmission especially in atyp-
ical clinical presentations.330 The retina holds 
potential for studying the pathology of prion dis-
ease. Furthermore, because the retina is isolated, 
the accumulation of PRPSc may be easier to 
quantify more accurately compared with the rest 
of the CNS where dissection affects quantifica-
tion of accumulation regionally.344 It remains to 
be seen as to whether the use of retinal correlates 
can add value to the care of these patients, espe-
cially hampered by the difficulty in acquiring his-
toric data prior to the clinical onset of such a rare 
group of diseases.

Conclusion
Retinal correlates have been observed in a range of 
some of the most common neurological disorders, 
some of which are not commonly associated with 
visual symptoms. Further to those conditions dis-
cussed, retinal correlates have been found in other 
neurological diseases such as idiopathic intracra-
nial hypertension (IIH),348 chronic migraines,349–351 
and a range of psychiatric conditions.352,353 The 
majority of evidence exists in the form of cross-
sectional studies comparing disease groups and 
healthy controls; however, further work must be 
done to take advantage of the unique opportunity 
the eye provides to serially image subjects through 
time. This will enable a better understanding of the 
natural history of retinal changes in neurological 
disorders and improve our knowledge of how to 
apply these to clinical scenarios.
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Although this review is not intended to be a meta-
analysis, from observing the results of meta-analy-
ses and studies relevant to this work (Tables 1–3), 
the literature does suggest particular characteristics 
of RNFL loss in a disease-specific manner. AD 
appears to preferentially cause peripapillary loss of 
the superior and inferior fibres, in contrast to PD, 
which appears to more commonly affect temporal 
RNFL than in AD. Inconsistent findings in the 
studies examined are likely due to the variation in 
concomitant medical and ophthalmic conditions 
within and between study cohorts. Additionally, 
confounds are likely to include age, duration of dis-
ease and treatment effect. Whilst the results from 
published studies demonstrate predilections for 
certain peripapillary zones and layers of the macula, 
these differences are unlikely to provide the speci-
ficity required in order to significantly contribute to 
specific diagnoses. However, with the multiple cor-
relations seen between disease severity, treatment 
response and functional prognosis, there is suffi-
cient evidence to suggest these correlates are useful 
in the setting of disease monitoring, and potentially 
as auxiliary surrogate markers in clinical trials.
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