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Summary 

Background: Frontotemporal dementia (FTD) is a heterogenous neurodegenerative disorder with around a third being accounted for by 

mutations in GRN, MAPT, and C9orf72. We aimed to complement previous phenotypic studies with a comprehensive worldwide study 

of age at onset (AAO), age at death (AAD), and disease duration (DD).  

Methods: Data on sex, clinical phenotype, AAO, AAD and DD for patients with pathogenic mutations in the GRN and MAPT genes and 

pathological expansions in the C9orf72 gene were collected through the FTD Prevention Initiative, a collaborative group of natural history 

genetic FTD cohort studies, as well as through published papers, between 1st January 2015 and 1st July 2017. We used mixed effects models 

to explore differences in AAO, AAD and DD between genetic groups and individual mutations as well across generations and by sex and 

clinical phenotype. We also performed a correlation of individual’s AAO and AAD with the AAO and AAD of their parents and the 

average within other members of the same family. Lastly, we used mixed effects models to investigate the extent to which variability in 

AAO and AAD could be accounted by family membership and the specific mutation carried.  

Findings: Data was available from 3403 symptomatic individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 

with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean 

AAO/AAD was 49.5 (10.0)/58.5 (11.3) years for the MAPT group, 58.2 (9.8)/65.3 (10.9) for C9orf72 and 61.3 (8.8)/ 68.8 (9.7) for GRN. Mean 

DD was 6.4 (4.9) years for the C9orf72 group, 7.1 (3.9) for GRN and 9.3 (6.4) for MAPT. Individual AAO and AAD was significantly 

correlated with both parental AAO and AAD and mean family AAO and AAD in all three groups, but with a much stronger correlation 

in MAPT (r=0.63/0.69 for mean family AAO and AAD, and 0.45/0.58 for parental) than in either C9orf72 (0.36/0.40, 0.32/0.38) or GRN 

(0.18/0.32, 0.22/0.22). Modelling showed that the variability in AAO and AAD was explained in part by the specific mutation (48% for 

AAO, 61% for AAD), and more so by family membership (66% for AAO, 74% for AAD) in the MAPT group. In the GRN group, variability 

was only accounted for by the specific mutation by 2% for AAO, 9% for AAD, and by family membership by 14% for AAO, 20% for AAD, 

whilst in the C9orf72 group variability was only accounted for by family membership by 17% for AAO and 19% for AAD. 

Interpretation: Whilst estimation of AAO will be an important factor in future presymptomatic therapeutic trials, this study suggests that 

data from other members of the family will only be helpful in such an estimate for the MAPT group. Further work in identifying both 

genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates. 

Funding: UK Medical Research Council, National Institute for Health Research, and Alzheimer’s Society. 
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Introduction 1 

Frontotemporal dementia (FTD) is a clinically, genetically and pathologically heterogeneous 2 

neurodegenerative disease1. The most common clinical subtypes are behavioural variant FTD (bvFTD), 3 

presenting with changes in personality and executive dysfunction, and primary progressive aphasia 4 

(PPA), in which people develop impairment of language processing. Three forms of PPA are described 5 

– semantic (svPPA), nonfluent/agrammatic (nfvPPA), and logopenic (lvPPA) variants – although up to 6 

20% of people do not fit criteria for any variant (PPA-not otherwise specified, PPA-NOS)2. Both bvFTD 7 

and PPA overlap with amyotrophic lateral sclerosis (ALS), and the atypical parkinsonian syndromes, 8 

corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP)1.  9 

 10 

Around a third of FTD is genetic3, with mutations in multiple genes shown to be causative of FTD. 11 

However, the majority of the heritability of FTD is accounted for by mutations in three genes: 12 

progranulin (GRN), microtubule-associated protein tau (MAPT) and chromosome 9 open reading 13 

frame 72 (C9orf72). Whilst much has been learned over the last decade about the clinical features of 14 

these genetic forms of FTD most studies exploring age at symptom onset and duration have been 15 

relatively small and geographically restricted4-6. In particular, although individual case series suggest 16 

that such phenotypic characteristics can be quite variable, no studies have systematically investigated 17 

these factors across all of the different genetic groups and the different mutations found within the 18 

groups. As the era of clinical trials in presymptomatic mutation carriers approaches, a better 19 

understanding of the variability in onset and duration will be important. 20 

 21 

In this study, we therefore aimed to analyse phenotypic characteristics of the main three forms of 22 

autosomal dominant FTD including ages at onset and death and disease duration in a large cohort of 23 

individuals from across the world, examining the effect of mutation type and family membership on 24 

these factors. 25 

 26 
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Methods 1 

Study design 2 

Data were collected through centres that are part of the FTD Prevention Initiative (FPI), a group 3 

connecting natural history cohort studies of genetic FTD: the Genetic Frontotemporal Dementia 4 

Initiative (GENFI)7, Advancing Research and Treatment for Frontotemporal Lobar Degeneration 5 

(ARTFL), Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS) and the 6 

Dominantly Inherited Non-Alzheimer’s Dementias (DINAD) studies. These research studies account 7 

for the majority of centres investigating genetic FTD in Europe and Eastern Canada (GENFI), USA and 8 

Western Canada (ARTFL/LEFFTDS) and Australia (DINAD). In total, 33 centres across the world 9 

provided data for participants that included genetic group, individual mutation (for the GRN and 10 

MAPT groups), sex, clinical phenotype, age at symptom onset (AAO, defined by the onset of 11 

progressive behavioural, cognitive, or motor symptoms reported either by an informant, usually a 12 

family member, or for non-behavioural symptoms by the patient themselves), age at death (AAD), and 13 

relationship to other family members. Local ethics committees at each of the sites approved the study 14 

and data from participants was provided through informed consent. We also reviewed publications 15 

cited in the Alzheimer Disease & Frontotemporal Dementia Mutation Database 16 

(www.molgen.ua.ac.be/FTDmutations), and supplemented this by a detailed search of PubMed for 17 

other publications with AAO, AAD or disease duration (DD) data in people with genetic FTD: this 18 

identified 308 journal articles. To avoid potential double reporting, sites were asked to provide a list of 19 

publications relevant to their dataset. These were then manually examined for possible duplicates, 20 

which were removed where identified.  21 

 22 

We aimed to include all pathogenic mutations in the GRN, MAPT and C9orf72 genes within the study. 23 

78 GRN and 45 MAPT pathogenic mutations were found in the Alzheimer Disease & Frontotemporal 24 

Dementia Mutation Database. From the PubMed search we discovered 35 GRN and 18 MAPT variants 25 

not included in the database, and centres in the study provided data additionally on another 17 GRN 26 
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and 4 MAPT variants (appendix p 2). C9orf72 families with intermediate length expansions were not 1 

included in the study. 2 

 3 

Statistical Analysis 4 

All statistical analyses were performed using Stata (v.14 or later). Numbers and percentages with each 5 

mutation were calculated by geography and clinical phenotype. A chi-squared test was used to 6 

compare sex distribution in each of the genetic groups. Means and standard deviations for AAO, AAD, 7 

and DD were calculated in each genetic group and in the most common mutations in the MAPT and 8 

GRN groups (defined as those with the greatest number of individuals in the study). Mixed effects 9 

models were used to examine differences in AAO, AAD and DD: i) between genetic groups (GRN, 10 

MAPT and C9orf72), ii) between the common mutations in the GRN and MAPT groups, iii) between an 11 

earlier and later generation of family members in all genetic groups, iv) between male and female sex 12 

within each genetic group, and v) between the main clinical phenotypes within each genetic group. 13 

Analyses took account of relatedness by including family membership as a random effect. To explore 14 

the relationship between a) an individual’s AAO (or AAD) and the AAO (or AAD) of their affected 15 

parent, and b) an individual’s AAO (or AAD) and the average AAO (or AAD) of other members of the 16 

same family the Pearson correlation coefficient was calculated. Lastly, we also used mixed effects 17 

models to explore the extent to which variability in AAO and AAD were explained by family membership 18 

(exploring variability both within and between families) and the specific mutation carried (in GRN and 19 

MAPT groups only). Detailed statistical methods are shown in appendix pp 15-19. 20 

	21 

Role of the funding source  22 

The funders of the study had no role in study design, data collection, data analysis, data interpretation, 23 

or writing of the report. The corresponding author has full access to all data in the study and had final 24 

responsibility for the decision to submit for publication. 25 

 26 
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Results 1 

The combined dataset consisted of 3403 symptomatic individuals from 1492 families with data on one 2 

or more of AAO, AAD, DD and clinical phenotype (Tables 1 and 2): 1433 with C9orf72 expansions (755 3 

families), 791 with MAPT mutations (254 families), and 1179 with GRN mutations (483 families).   4 

 5 

In total 130 GRN mutations and 67 MAPT mutations were included in the study (appendix pp 5-10). 6 

The commonest GRN mutations were T272fs (201 individuals, 95 families), R493X (55 individuals, 22 7 

families), IVS7-1G>A (50 individuals, 18 families), C31fs (47 individuals, 10 families), G35fs (42 8 

individuals, 10 families) and A9D (37 individuals, 4 families). The commonest MAPT mutations were: 9 

P301L (234 individuals, 59 families), IVS10+16C>T (149 individuals, 48 families), R406W (67 10 

individuals, 9 families) and N279K (44 individuals, 17 families). 11 

 12 

Globally, the most prevalent genetic group was the C9orf72 expansion carriers (42.1% of all 13 

individuals), then GRN mutation carriers (34.6%), with MAPT mutation carriers the least common 14 

group (23.2%) (Figure 1). However, there was geographical variability with a different spread of 15 

frequencies amongst the three genetic groups in certain countries: GRN mutation carriers were more 16 

common than the other groups particularly in Italy (66% of total), and to a lesser extent in Spain (49%); 17 

and MAPT mutations were found more frequently in some countries than others e.g. Netherlands (40%) 18 

and parts of the US e.g. West Coast (47%). See appendix pp 20-23 for more details. 19 

 20 

Although bvFTD was the most common diagnosis in each group, phenotypic variability was seen 21 

across the different mutations (Table 2). See appendix pp 24-32 for more details 22 

 23 

Both the C9orf72 and MAPT groups contained approximately equal numbers of men and women (52% 24 

and 49% male respectively) (Table 1, appendix pp 33-34). However, the GRN group had a significant 25 
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overrepresentation of women (58% female, 42% male), compared with both the C9orf72 group (p<0.001) 1 

and the MAPT group (p=0.002). 2 

 3 

The mean AAO was youngest for the MAPT group, 49.5 (standard deviation 10.0) years, significantly 4 

younger than both of the other groups (p<0.001 for each comparison), followed by the C9orf72 group, 5 

58.2 (9.8) years, which was also significantly younger than the GRN group (p<0.001), 61.3 (8.8) years 6 

(Table 1, appendix p 35-36). However, there was a wide range of AAO within each of the genetic groups 7 

(Figure 2, appendix p 36), from the 20’s to the 90’s in the GRN and C9orf72 groups, and from 17 to the 8 

80’s in the MAPT group. Cumulative probability curves for symptom onset in each of the genetic 9 

groups are shown in Figure 3a (and data shown in appendix p 39). 10 

 11 

A wide range of AAO was also seen in individual GRN and MAPT mutations (appendix pp 6-10). We 12 

plotted cumulative probability curves for symptom onset for the most common GRN (Figure 3b) and 13 

MAPT (Figure 3c) mutations (appendix p 39). Whilst these largely overlapped for the GRN mutations 14 

(and without any significant difference between groups: R493X mean (standard deviation) 60.2 (8.9) 15 

years, C31fs 60.3 (8.2), IVS7-1G>A 60.5 (7.9), G35fs 61.2 (10.9), A9D 62.1 (10.6), T272fs 62.7 (8.9)), there 16 

was a significant difference in the MAPT mutations with an earlier onset in the N279K mutation group 17 

(43.8 (6.7) years) in comparison to the other groups (p<0.005 for all comparisons), followed by 18 

IVS10+16C>T (50.9 (6.1)), P301L (53.0 (7.4)) and R406W (55.4 (7.5)) (appendix p 40).  19 

 20 

The generational analysis showed a significantly younger AAO in the second (later) generation than 21 

the first (earlier generation) in all three groups: GRN generation 1: mean (standard deviation) 65.5 (9.1), 22 

generation 2: 60.7 (8.9), p<0.001; C9orf72 generation 1: 62.3 (10.9) years, generation 2: 56.7 (11.0), p<0.001; 23 

MAPT generation 1: 51.4 (9.5), generation 2: 49.6 (10.0), p=0.011 (appendix pp 41-43). 24 

 25 
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No significant difference in AAO was seen between males and females in the MAPT group (appendix 1 

p 44). However, there was a significantly older age at onset in females in the GRN group (61.8 (9.2) 2 

years, compared with 60.5 (8.3) years in males, p=0.019), as well as in the C9orf72 group (58.9 (9.6) years 3 

in females, compared with 57.7 (10.0) years in males, p=0.041).  4 

 5 

No major differences in AAO were seen between C9orf72-bvFTD (56.7 (9.0)), C9orf72-ALS (57.0 (9.0)), 6 

C9orf72-FTD-ALS (57.8 (8.3)) or C9orf72-PPA (59.7 (7.4)) (appendix pp 45-46). However, C9orf72 7 

expansion carriers with a diagnosis of Alzheimer’s disease (AD) had a significantly older AAO than 8 

the other groups (65.1 (10.6)) (p<0.001 for all comparisons except C9orf72-PPA vs C9orf72-AD, p=0.010). 9 

Similarly, there was no significant difference in AAO between GRN-bvFTD (59.6 (8.1)), GRN-PPA (60.2 10 

(7.7)), and GRN-CBS (57.7 (7.3)) but those with GRN-AD had a significantly older AAO (66.4 (8.1)) than 11 

the other groups (p<0.001 for all comparisons). In the MAPT group there was no significant difference 12 

in AAO between those with MAPT-bvFTD (50.5 (9.0)) and MAPT-PPA (52.4 (12.0)) but those with 13 

MAPT-AD (56.7 (11.1)) had a significantly older AAO than those with MAPT-bvFTD (p=0.001), MAPT-14 

PPA (p=0.013) and MAPT-CBS/PSP (44.9 (7.8), p<0.001). Furthermore, the MAPT-CBS/PSP had a 15 

significantly younger onset than the other groups (p=0.013 vs MAPT-bvFTD, p=0.037 vs MAPT-PPA). 16 

 17 

The average AAD was youngest for MAPT mutation carriers, 58.5 (11.3) years, followed by C9orf72 18 

expansion carriers, 65.3 (10.9) years and oldest in GRN mutation carriers 68.8 (9.7) years (Table 1; 19 

p<0.001 for each comparison). AAD was variable within genetic groups (Table 1, Figure 2), and within 20 

individual mutations (appendix pp 6-10, 37). 21 

 22 

As with AAO, there were no significant differences in AAD between males and females in the MAPT 23 

group (appendix p 44), but a significant difference in both the GRN (69.4 (10.2) females, 67.8 (8.8) males, 24 

p=0.029) and C9orf72 groups (66.1 (11.0) females, 64.6 (10.8) males, p=0.034). 25 

 26 



 13 

As with AAO, those with a diagnosis of AD in all groups had a significantly older AAD than all of the 1 

other groups (appendix pp 45-46). In the C9orf72 group there was a significantly younger AAD in 2 

C9orf72-ALS group (59.2 (9.7)) compared to C9orf72-FTD-ALS (62.1 (8.9), p=0.014) and C9orf72-bvFTD 3 

(64.6 (9.0), p<0.001), and in turn a younger AAD in C9orf72-FTD-ALS compared to C9orf72-bvFTD 4 

(p=0.014). In the MAPT group there was also a significantly younger AAD in MAPT-CBS/PSP (52.8 5 

(8.9)) compared with MAPT-bvFTD (60.6 (9.9)), p=0.030. 6 

 7 

The average DD was shortest for C9orf72 expansion carriers, 6.4 (4.9) years, followed by GRN mutation 8 

carriers, 7.1 (3.9) and then MAPT mutation carriers, 9.3 (6.4) (Table 1; p≤0.001 for each comparison). 9 

However, within each genetic group there were a number of people who survived for many decades 10 

(Table 1, Figure 2, appendix p 38) – the longest surviving person lived 27 years from symptom onset in 11 

the GRN group, 36 years in the C9orf72 group and 45 years in the MAPT group. 12 

 13 

Although there was variability within individual mutations (appendix pp 6-10, 38) mean DD was 14 

similar across the GRN group except for a significantly longer DD in A9D mutation carriers when 15 

compared with the majority of other common mutations (appendix p 40). There was greater variability 16 

in the mean DD across the MAPT group and in a subanalysis of MAPT mutation carriers separated by 17 

their functional consequences and underlying pathology into five groups, the exon 11-13 with paired 18 

helical filament (PHF)-tau pathology group (i.e. V337M and R406W mutations, group 5: appendix pp 19 

47-48) had a significantly longer disease duration, 17.6 (11.8) years compared with the other groups: 20 

group 1 (exons 1,2 and 9): 8.3 (7.3), group 2 (exon/intron 10 affecting splicing): 9.3 (5.3), group 3 (exon 21 

10 not affecting splicing): 7.9 (4.0), and group 4 (exons 11-13 with non-PHF-tau pathology): 7.8 (5.3) 22 

(p<0.005 for each comparison with group 1). 23 

 24 

There were no significant differences in DD between males and females in any of the groups (appendix 25 

p 44). 26 
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 1 

There were no phenotypic differences in DD in the GRN group (GRN-bvFTD 7.1 (3.7), GRN-PPA 6.5 2 

(2.8), GRN-AD 7.8 (4.9), GRN-CBS 8.2 (5.7)). In the MAPT group however, the MAPT-CBS/PSP group 3 

(7.2 (4.0)) had a trend to a shorter DD than the MAPT-bvFTD 10.2 (6.2) (p=0.072), and MAPT-AD 10.2 4 

(6.2) (p=0.078) groups but not the MAPT-PPA 9.1 (4.1) (p=0.140) group. The C9orf72-ALS group had a 5 

significantly shorter duration (2.9 (2.8)) than other groups (p<0.001 for all comparisons), with C9orf72-6 

FTD-ALS (5.0 (4.2)) also having a shorter DD than C9orf72-bvFTD (7.8 (4.4), p<0.001), C9orf72-PPA (7.5 7 

(4.8), p=0.002) and C9orf72-AD (10.4 (4.9), p<0.001) (appendix p 45-46). 8 

 9 

Individual AAO significantly correlated with both parental AAO and mean family AAO in all three 10 

genetic groups (p<0.001) (Figure 4), although in each group a similar or stronger correlation was seen 11 

with mean family AAO than with parental AAO. The strength of the correlation varied across the 12 

genetic groups, stronger in the MAPT group (r=0.63 mean family AAO, r = 0.45 parental AAO) than in 13 

the C9orf72 group (r=0.36 mean family AAO, r = 0.32 parental AAO), and weakest in the GRN groups 14 

(r=0.18 mean family AAO, r = 0.22 parental AAO). 15 

 16 

As with AAO, individual AAD significantly correlated with both parental AAD and mean family AAD 17 

in all three genetic groups (p<0.001). A similar pattern arose across the three genetic groups with the 18 

strongest correlation in the MAPT group (r=0.69 mean family AAD, r = 0.58 parental AAD) than in the 19 

C9orf72 group (r=0.40 mean family AAD, r = 0.38 parental AAD), and weakest in the GRN groups (r=0.32 20 

mean family AAD, r = 0.22 parental AAD). 21 

 22 

There were significant differences between the three mutation carrier groups in the inter-family and 23 

intra-family AAO variability (both p<0.001, appendix p 49). Family membership explained 66% (95% 24 

confidence intervals: 56-75%) of the variability in AAO in MAPT mutation carriers but only 14 (9-22)% 25 

in GRN mutation carriers, and 17 (11-26)% of the variability in C9orf72 expansion carriers. 26 
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 1 

There was a significant difference between the GRN and MAPT groups in the between mutation 2 

variability in AAO (p<0.001): for the GRN group only 2% (95% confidence intervals: 0-10%) of the 3 

variability in AAO was explained by the specific mutation, whilst for the MAPT group 48 (35-62)% of 4 

the variability in AAO was explained by the specific mutation.  5 

 6 

As with AAO, there were significant differences between the three genetic groups in the inter-family 7 

and intra-family AAD variability (both p<0.001, appendix p 49). Family membership explained 74% 8 

(95% confidence intervals: 65-82%) of the variability in AAD in MAPT mutation carriers but only 20 9 

(12-30)% in GRN mutation carriers, and 19 (12-29)% of the variability in C9orf72 expansion carriers. 10 

 11 

Also as with AAO, there was a significant difference between the GRN and MAPT groups in the 12 

between mutation variability in AAD (p<0.001): for the GRN group only 9% (95% confidence intervals: 13 

3-21%) of the variability in AAD was explained by the specific mutation, whilst for the MAPT group 61 14 

(47-73)% of the variability in AAD was explained by the specific mutation.  15 

 16 

Discussion  17 

We report the largest dataset of age at onset, age at death and disease duration in genetic FTD to date, 18 

incorporating data from across the world, in all the three main genetic groups, and all reported 19 

mutations within the GRN and MAPT mutation groups. The study provides evidence that an 20 

individual’s age at symptom onset and death in genetic FTD varies by sex and phenotype and is 21 

modulated by both family membership and the individual mutation carried, with the strongest effect 22 

of these factors in MAPT mutation carriers. Our findings extend the knowledge gained from prior 23 

smaller studies in several key areas of interest to future clinical trial design of preventive therapies. 24 

 25 
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The study provides further evidence that genetic FTD is a disorder that can occur throughout adult life, 1 

with onset ranging from as young as the late teens through to the 90’s. Although we did not account 2 

for unaffected mutation carriers in the analysis, the findings are also consistent with previous studies 3 

showing age-related penetrance in the GRN8 and C9orf729 groups, with people developing symptoms 4 

into their 90’s. There is a leftwards shift in the penetrance curve in MAPT carriers to a younger age, but 5 

nonetheless the oldest AAO in this group was 82. Whilst usually considered a fully penetrant disorder, 6 

there may well be occasional incomplete penetrance in some MAPT families (cf. previous descriptions 7 

in L315R10, V363I11,12, G389R13), which may be age-related. 8 

 9 

Investigation of individual mutations within GRN reveals few differences between them in terms of 10 

AAO, AAD or DD. This is consistent with the underlying pathophysiological mechanism of 11 

progranulin haploinsufficiency being the same in the majority of mutations14,15. In contrast, there were 12 

much larger differences between individual MAPT mutations, with the mean onset in the N279K 13 

mutation group 12 years earlier than in the R406W mutation group. Along with the V337M mutation, 14 

R406W has a distinct pathological form compared with the other MAPT mutations, with the presence 15 

of PHF-tau similar to that seen in Alzheimer’s disease; this group has a significantly longer disease 16 

duration than the other mutations, as previously described in single case reports16. 17 

 18 

The generational analysis revealed significant differences in all groups, consistent with previous 19 

studies4,17, with an earlier AAO in later generations. This finding has been variably interpreted: in 20 

C9orf72 carriers one group has suggested that this is evidence of genetic anticipation17. However, 21 

another group interpreted this data as likely to be related to later generations recognizing the disease 22 

earlier because of increased familiarity with symptoms, and being more likely to be alert to the presence 23 

of such symptoms due to their awareness of being at-risk4. At a molecular level it has been shown that 24 

whilst C9orf72 expansions may be dynamic, they can both expand and contract across generations17, 25 

and, furthermore, there is no clear evidence for a relationship between AAO and expansion length, 26 



 17 

with contradictory evidence of both a positive correlation in some studies18-20 and inverse correlation in 1 

another21. Evidence against anticipation being an explanation for the finding of earlier AAO in later 2 

generations also comes from the similar result in the GRN (found in another study as well4) and MAPT 3 

groups: these mutations are stable and do not change molecularly across generations i.e. there is no 4 

plausible mechanism for anticipation in GRN or MAPT mutations.  5 

 6 

Few studies have compared whether AAO, AAD or DD vary by clinical phenotype within genetic 7 

groups. In this study, those with a diagnosis of AD within each group had a significantly older onset. 8 

Whilst there is a potential that those with a true amnestic presentation of genetic FTD do present at an 9 

older age (and that there is an underlying biological explanation for this), it is more likely that this is 10 

related to the misdiagnosis of those with an older onset dementia as AD. In the MAPT group those with 11 

an atypical parkinsonian syndrome had a younger AAO and AAD and shorter DD than other groups 12 

– this was not entirely driven by the presence of specific mutation as the phenotype was seen across 13 

multiple mutations (e.g. only 13% of this group had the N279K mutation, which as discussed above has 14 

an earlier mean AAO). In the C9orf72 group the presence of ALS was associated with a shorter DD 15 

(with pure ALS shorter than combined FTD-ALS), as previously reported22. Previous studies have 16 

compared an all ‘FTD’ group with ALS in C9orf72 carriers and found an earlier onset in the ALS group9. 17 

In the cohort studied here, combining ‘cognitive’ presentations of C9orf72 expansions also finds a 18 

significantly earlier onset in the ALS group (mean 57.0, standard deviation 9.0, versus cognitive C9orf72 19 

group 58.6 (10.2) (adjusted mean difference -1.8, 95% confidence intervals -3.4, -0.2, p=0.024)), but this 20 

is in part driven by the ‘AD’ group, and no differences were found between the ALS group and either 21 

the bvFTD or PPA groups individually. 22 

 23 

Individual AAO (and AAD) were significantly correlated with both parental AAO (and AAD) and 24 

mean family AAO (and AAD) in all three genetic groups. However, there was a stronger correlation in 25 

the MAPT group compared with the other two groups, similar to that found in familial AD23. Modelling 26 



 18 

revealed that the variability in AAO and AAD for MAPT mutation carriers was explained in part by 1 

the specific mutation (48% for AAO, 61% for AAD), and more so by family membership (66% for AAO, 2 

74% for AAD). Unlike the other genetic groups, in MAPT mutation carriers, prediction of likely AAO 3 

(and AAD) is therefore highly related to the presence of the MAPT mutation itself. Other genetic or 4 

environmental factors affecting AAO and AAD in MAPT mutation carriers have not yet been well 5 

studied24.  6 

 7 

Despite being statistically significant, the correlation coefficient was only 0.18/0.22 for the mean 8 

family/parental AAO comparison with individual AAO in GRN carriers (and 0.32/0.22 for AAD). 9 

Modelling revealed that the variability in AAO and AAD for GRN mutation carriers was not accounted 10 

for particularly by either the individual mutation (2% for AAO, 9% for AAD), or family membership 11 

(14% for AAO, 20% for AAD). This is consistent with previous reports of large variability within 12 

families (and specific mutations), even within the same generation25-27. Genetic factors affecting AAO 13 

include polymorphisms in TMEM106B28,29, and potentially also PRNP30, but multiple studies now 14 

suggest that environmental factors related to an altered neuroinflammatory response may also be 15 

important31-34.  16 

 17 

The C9orf72 group sits between the GRN and MAPT groups in terms of the strength of correlation of 18 

individual AAO and AAD with mean family/parental AAO and AAD (0.36/0.32 for AAO, 0.40/0.38 for 19 

AAD). However, similar to GRN mutations, modelling revealed that the variability in AAO and AAD 20 

was not accounted for particularly by family membership (17% for AAO, 19% for AAD). Whilst there 21 

is conflicting evidence about whether expansion length is relevant18-21, recent studies have identified 22 

DNA methylation21,35-36 and a locus on chromosome 637 as important factors in AAO, AAD and DD in 23 

C9orf72 expansion carriers. 24 

 25 

See appendix pp 49-50 for further discussion of potential modifiers of AAO and AAD in genetic FTD.  26 
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 1 

The study is limited by its focus on mainly retrospective data collection, with AAO recorded as the age 2 

at which an individual was determined to have progressive cognitive, behavioural or motor symptoms, 3 

and as such our data may be confounded by factors such as individual differences in interpreting 4 

symptom onset. This is a major issue in FTD, with objective measures of symptom onset lacking. A 5 

‘grey’ zone in proximity to symptom onset exists where subtle cognitive and behavioural deficits are 6 

present7, but have not yet been identified by the patient themselves or family members as symptoms. 7 

Work within the FPI aims to identify such ‘proximity markers’, which will be important for future 8 

stratification in disease trials, particularly, as identified in this study, for GRN and C9orf72 mutation 9 

carriers where prediction by age itself is poor. 10 

 11 

Another limitation of the study is that we did not record data on known mutation carriers who did not 12 

develop symptoms of FTD. This is particularly important when assessing age-related penetrance in the 13 

GRN and C9orf72 groups, although we did identify people into their 90’s developing symptoms of FTD 14 

in both of these groups. Attainment of data from long-living mutation carriers will be important to 15 

better understand modifiers of AAO, and this is more likely in large, well-characterized longitudinal 16 

cohort studies such as those in the FPI. 17 

  18 

Whilst many of the centres saw patients and families with all phenotypes of FTD, ALS and movement 19 

disorders within their clinics, the focus on genetic FTD within the study may have led to an 20 

underrepresentation of ALS or parkinsonian disorders. However, many of the families had members 21 

with multiple different phenotypes (including cognitive, behavioural and motor), and there were few 22 

families with only a single phenotype, suggesting the data in the study is unlikely to lead to a major 23 

discrepancy in phenotypic frequency. 24 

 25 
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Lastly, we did not have any data on TMEM106B genotype nor on other genetic modifiers, in order to 1 

investigate their effect further. However, such data, along with a variety of environmental and lifestyle 2 

factors, is now being collected within the FPI and will be able to be combined in future studies to further 3 

investigate the effects of these modifiers.   4 

 5 

In summary, we show that MAPT mutation carriers are associated with a younger AAO and AAD than 6 

the other groups, with the observed variance largely accounted for by family membership and the 7 

specific mutation carried. GRN mutation carriers have the weakest association of individual AAO/AAD 8 

with other members of the family, and the majority of the observed variance in AAO/AAD is accounted 9 

for by neither family membership nor mutation. However there was a sex effect, with increased 10 

prevalence and older age at onset in women, probably driven by the age-related penetrance seen in 11 

GRN mutation carriers. C9orf72 expansions are the most common cause of genetic FTD across the 12 

world. Phenotypic differences in DD exist, with the presence of ALS leading to a shortened DD. Like 13 

GRN, little of the variance in AAO/AAD is accounted for by family membership with other genetic and 14 

environmental factors likely to be involved.  15 

 16 

This study highlights the strength of collaborative studies in rare diseases, bringing together data from 17 

across the world to better understand genetic FTD, and providing important data relevant to future 18 

trial design. The prospective cohort studies within the FPI will hopefully be able to provide more 19 

solutions to some of the unanswered questions over the forthcoming years. 20 



 21 

Panel: Research in context 

 

Evidence before this study 

We searched Pubmed for articles on genetic frontotemporal dementia (FTD) up to Jul 1, 2017, using the following 

terms: “frontotemporal dementia AND genetics”, “progranulin OR GRN”, “tau OR MAPT” and “chromosome 9 

open reading frame 72 OR C9orf72”, focusing on those studies that reported age at symptom onset (AAO), age at 

death (AAD) or disease duration (DD) of symptomatic individuals. Evidence from group studies and individual 

case series suggested that the AAO, AAD and DD were highly variable across the FTD-causing genes. Age-related 

penetrance was described in both GRN and C9orf72 mutation carriers with MAPT mutations usually being fully 

penetrant. A generational difference in AAO was found with an earlier onset in more recent generations in GRN 

and C9orf72 mutation carriers. Interpretation of this finding differed in the two studies, with one interpreting the 

result in the C9orf72 group as evidence of anticipation, but the other arguing that this was unlikely given the similar 

result in GRN mutation carriers, where there is no molecular basis for anticipation. Phenotypic differences in AAO 

have not been studied in detail, but one study showed a shorter disease duration (DD) in people with an ALS 

diagnosis in the C9orf72 group, and another study showed an earlier AAO in this group. No studies were found 

which had systematically investigated AAO, AAD or DD across all the different genetic groups and the different 

mutations found within the groups. 

 

Added value of this study 

This is the largest international study to date investigating individual AAO, AAD and DD in genetic FTD, 

incorporating data from across the world, across all the three main genetic groups (C9orf72, GRN, MAPT) and all 

mutations within the GRN and MAPT groups. The study provides important evidence about the factors underlying 

AAO, AAD and DD in the different groups, showing that only in the MAPT mutation group are AAO (and AAD) 

highly correlated with both parental AAO (and AAD) and mean family AAO (and AAD), with variability in AAO 

(and AAD) explained in part by the specific mutation, and more so by family membership. Such correlations are 

lower in the other two groups, with the specific mutation in the GRN group and family membership in both GRN 

and C9orf72 groups only accounting for a small percentage of the variability in AAO and AAD. This is the first 

time that such key differences between genetic FTD groups have been shown. 
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Implications of all the available evidence 

Optimal therapeutic trial design will be important in genetic FTD and in particular, many trials will aim to include 

presymptomatic mutation carriers who are expected to be in proximity to symptom onset. The evidence here 

suggests that only in MAPT mutation carriers will data from other family members be helpful in estimating the 

individual time from symptom onset. Further work is needed to understand the variability in the other groups, 

and it is likely that other proximity markers either individually or in combination will be required to refine the 

estimation of time to onset in those with GRN or C9orf72 mutations. In the meantime, the current data will allow 

clinicians and family members a better understanding of the individual risk of likely symptom onset and time to 

death in each genetic group and within individual mutations. 
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Table 1. Patient demographics and mean age at onset, age at death and disease duration in each 

of the mutation groups. For gender differences, p values from a chi-squared test are shown. For 

age at onset, age at death and disease duration the last column shows the adjusted mean 

difference (natural log values for disease duration), 95% confidence interval in parentheses, and 

p-value when groups are compared with mixed effects models. 

 

 GRN MAPT C9orf72  

N 1179 791 1433  

Sex (male, N [%]) 490 [42%] 386 [49%] 742 [52%] MAPT vs GRN, 0.002 

C9orf72 vs GRN, <0.001 

C9orf72 vs MAPT, 0.178 

Number of families 483 254 755  

Age at onset (years) 

N 967 609 1076 MAPT vs GRN -11.8 (-13.0, -10.6), <0.001 

C9orf72 vs GRN -2.8 (-3.8, -1.9), <0.001 

C9orf72 vs MAPT 9.0 (7.8, 10.1), <0.001 

Mean (SD) 61.3 (8.8) 49.5 (10.0) 58.2 (9.8) 

Range (min-max) 25-90 17-82 20-91 

Age at death (years) 

N 656 485 839 MAPT vs GRN -10.7 (-12.3, -9.1), <0.001 

C9orf72 vs GRN -3.5 (-4.9, -2.2), <0.001 

C9orf72 vs MAPT 7.2 (5.7, 8.6), <0.001 

Mean (SD) 68.8 (9.7) 58.5 (11.3) 65.3 (10.9) 

Range (min-max) 42-98 24-93 26-97 

Disease duration (years) 

N 548 394 618 MAPT vs GRN 0.18 (0.08, 0.29), 0.001 

C9orf72 vs GRN -0.26 (-0.35, -0.17), <0.001 

C9orf72 vs MAPT -0.44 (-0.54, -0.34), <0.001 

Mean (SD) 7.1 (3.9) 9.3 (6.4) 6.4 (4.9) 

Range (min-max) 0-27 0-45 0-36 
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Table 2. Primary clinical diagnosis for each mutation group. Diagnoses within the frontotemporal 

dementia (FTD) spectrum include behavioural variant FTD (bvFTD), the primary progressive aphasia 

(PPA) subtypes [nfv = nonfluent variant, sv = semantic variant, lv = logopenic variant, PPA-NOS = PPA 

not otherwise specified i.e. does not meet criteria for a specific subtype], FTD with amyotrophic lateral 

sclerosis (ALS), ALS, corticobasal syndrome (CBS) and progressive supranuclear palsy – Richardson’s 

syndrome (PSP). Diagnoses outside the FTD spectrum include Alzheimer’s disease (AD), Huntington’s 

disease (HD), Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB), VaD (vascular dementia) 

and a dementia diagnosis not otherwise specific (Dementia-NOS).  

 

 GRN MAPT C9orf72 

Diagnoses within the FTD spectrum 

bvFTD 446 (38%) 354 (45%) 450 (31%) 

nfvPPA 107 (9%) 14 (2%) 26 (2%) 

svPPA 13 (1%) 14 (2%) 13 (1%) 

lvPPA 4 (<1%) 0 (<1%) 3 (<1%) 

PPA-NOS 36 (3%) 2 (<1%) 4 (<1%) 

FTD-ALS 7 (1%) 2 (<1%) 157 (11%) 

ALS 7 (1%) 1 (<1%) 276 (19%) 

CBS 47 (4%) 14 (2%) 2 (<1%) 

PSP 0 (0%) 33 (4%) 1 (<1%) 

Diagnoses outside of the FTD spectrum 

AD 97 (8%) 24 (3%) 84 (6%) 

HD 0 (0%) 1 (<1%) 4 (<1%) 

PD 16 (1%) 39 (5%) 15 (1%) 

DLB 4 (<1%) 1 (<1%) 5 (<1%) 

VaD 9 (1%) 1 (<1%) 7 (<1%) 

Dementia-NOS 361 (31%) 274 (35%) 362 (25%) 

Other 25 (2%) 17 (2%) 24 (2%) 
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Figure legends: 

Figure 1. Map showing countries with data included in the study (shown in dark turquoise). 

Individual centres are represented by a red dot on the map. Pie charts show relative frequency of 

each of the three genetic groups within a geographical area (yellow, C9orf72, pink GRN, blue MAPT); 

the number in the centre of the pie chart represents the number of cases included within that area. 

 

Figure 2. Violin plots of median and interquartile range of ages at onset (AAO) and death (AAD) 

for each of the three genetic groups. 

 

Figure 3. Cumulative probability of symptom onset in a) each individual genetic group, and in 

the common b) GRN and c) MAPT mutations. Note that data includes only cases who have become 

symptomatic and does not account for non-symptomatic family members. 

 

Figure 4. Correlation of individual ages at onset with A) parental age at onset and B) mean 

familial age at onset for GRN, MAPT, and C9orf72 genetic groups. Pearson’s correlation coefficient 

is shown on each graph.  


