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Abstract 

Mitochondria control vitally important functions in cells, including energy production, cell 

signalling and regulation of cell death. Considering this, any alteration in mitochondrial 

metabolism would lead to cellular dysfunction and development of a disease. Large proportion of 

disorders associated with mitochondria are induced by mutations or chemical inhibition of the 

mitochondrial complex I – the entry point to the electron transport chain. Subunits of the enzyme 

NADH: ubiquinone oxidoreductase, are encoded by both nuclear and mitochondrial DNA and 

mutations in these genes lead to cardio and muscular pathologies and diseases of the central 

nervous system.  Despite such a clear involvement of complex I deficiency in numerous disorders, 

the molecular and cellular mechanisms leading to the development of pathology are not very 

clear. In this review we summarise how lack of activity of complex I could differentially change 

mitochondrial and cellular functions and how these changes could lead to a pathology, following 

discrete routes. 
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Introduction 

Mitochondria are distinguishable from the other numerous cellular organelles by their 

functional importance, which includes control over energy metabolism, involvement in cell 

signalling and cell death mechanisms and, not last, by the presence of a separate mitochondrial 

genome, which consists of multiple copies of circular mitochondrial DNA (mtDNA). 

Mitochondrial biogenesis is controlled by both: nuclear DNA and mitochondrial genome. Each 

circle of mtDNA encodes 13 protein subunits of the electron transport chain, including subunits 

of complex I, III and complex IV. 

Despite the fact that mitochondria contain multiple enzymes and exert a variety of functions, 

most of them are dependent on, or interconnected with, the electron transport chain and 

mitochondrial membrane potential (ΔΨm), which is controlled by mitochondrial respiration. 

Four protein complexes located in the inner membrane of mitochondria form the electron 

transport chain, three of them (complex I, III and IV) using the free energy from redox reactions 

to translocate protons across the inner mitochondrial membrane to generate ΔΨm, which is 

then used as a motive force for the F0-F1-ATP synthetase to generate ATP in the process of 

oxidative phosphorylation (1). Maintenance of transmembrane mitochondrial potential is 

vitally important for all cells, as complete depolarisation which may be induced by a number 

of factors, including opening of the permeability transition pore (PTP), lead to the release of 

pro-apoptotic proteins and is followed by cell death (2). ΔΨm is also crucial for mitochondrial 

calcium uptake (3) and generation of reactive oxygen species in physiology and pathology (4, 

5). All of this renders the proper function of the mitochondrial electron transport chain to be 

essential factor for multiple processes in the cell.  

The major entry point of mitochondrial respiratory chain is the NADH:ubiquinone 

oxidoreductase or complex I. This is the only enzyme of ETC which catalyses the oxidation of 
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matrix NADH (and transfers 4H+ per NADH) and is the major donor of electrons for the whole 

respiratory chain (6). Alternative electron donors – complex II or other ubiquinone-reducing 

enzymes, such as the electron transfer through the flavoprotein–ubiquinone oxidoreductase 

(ETF–QO), glycerol-3-phosphate dehydrogenase (GPDH) and dihydroorotate dehydrogenase 

which enters the ETC at complex III, in the absence of complex I activity have significantly 

reduced efficiency to the respiratory chain (7).  

NADH:ubiquinone reductase reaction is reversible, and thus, in vitro, during reverse electron 

transfer, complex I can carry electrons upstream from ubiquinol for NAD+ reduction at the 

expense of proton-motive force (6, 8). Based on this ability of complex I it was suggested that 

reverse flux of electrons could be the main trigger for ROS production in pathology (8, 9). 

Complex I consists of two domains: hydrophilic, with a shifted into the matrix (containing all 

redox centres of this enzyme) and hydrophobic, located in the membrane (10, 11). Moreover, 

complex I is sensitive to partial oxygen pressure changes and this feature renders it to be one 

of the major players in the response to hypoxic challenges (12). Seven components of the 

complex I (MTND1, 2, 3, 4, 4L, 5, 6) are encoded by mtDNA the rest of subunits by nuclear 

DNA (13). 

 Complex I is important to both mitochondrial function and cellular homeostasis. Hence 

complex I deficiency is found in, and potentially underlies the pathology of many 

mitochondrial disorders (13, 14). Although molecular or chemical alteration of the complex I 

should simply modify, or inhibit the function of ETC, the cellular mechanism of pathologies 

which lead to various diseases is not very clear. In this review we are discussing the changes 

in mitochondrial and cellular function, induced by complex I deficiencies.  

Mammalian complex I-disease causing mutations 
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One third of the mitochondrial diseases are caused by mutations in the nuclear or mitochondrial 

DNA, encoding subunits of complex I (15). Despite the fact that all of these mutations on 

molecular level lead to the same endpoint effect– a defective respiration and coupled oxidative 

phosphorylation, they cause a wide variety of diseases - e.g. Leigh syndrome (16-18), 

leukoencephalomyelopathy (19, 20), cardiomyopathy (21, 22), Parkinson’s and Alzheimer’s 

diseases (23-26), infantile myoclonic epilepsy (16, 27), mitochondrial encephalomyopathy, 

lactic acidosis and stroke-like episodes syndrome - MELAS (28, 29), Leber hereditary optic 

atrophy (30, 31), to name a few. Importantly, chemical inhibition of complex I by various 

toxins, which specifically inhibit complex I, induce neurodegenerative conditions, including 

Parkinson’s disease (32, 33). A strong correlation between the types of mutation with the 

development of certain type of diseases hasn’t been possible, mainly because of the fact that 

the same point mutation could cause several types of symptomatically clearly distinguishable 

clinical phenotypes, e.g. replacement of the Arg340 in the MT-ND4 subunit can cause Leigh 

syndrome in one patient and Leber hereditary optic atrophy in another (11). Furthermore, 

another major driver of pathogenicity is the copy number of mtDNA, which differs in various 

patients. 

ATP deprivation as a trigger of pathogenesis in Complex I mutations 

Mutations of mtDNA or nuclear DNA which encode complex I are associated with a wide 

spectrum of pathologies, primarily affecting CNS and muscle function – tissues and cells with 

highest energy demand. However, a number of studies suggested that the main trigger for cell 

death in complex I-related pathology is not ATP deprivation (34). One of the possible 

explanations of this could be that the type of cellular models which investigators used for their 

studies – are mostly easily accessible human cell lines, such as lymphocytes or fibroblasts 

which have a significantly lower energy consumption rate than neurons or cardiomyocytes. 

Thus, metabolic signatures of the fibroblasts from patients with MELAS/ Leigh overlap 
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syndrome are indistinguishable, but iPSC generated from these fibroblasts show significant 

difference in their levels of pyruvate, malic acid, palmitic acid, stearic acid, and lactic acid. 

Interestingly this metabolomic signature was only seen in the undifferentiated state of iPSCs 

and was lost upon differentiation, thus pointing towards another energy demanding process 

which may enhance pathology (35). Deletion of complex I subunit NDUFS4 significantly 

modulates cellular differentiation in stem cells (36). Changes in mitochondrial metabolism in 

the development of progressive supranuclear palsy pathology is crucial for adipocytes 

formation from mesenchymal stem cells (37) suggesting importance of overall metabolism and 

ATP in the process of differentiation. It should be noted that in iPSC-derived neuronal MELAS 

model, neurons remove their complex I in the time of differentiation via PINK1/Parkin related 

mitophagy (38) that also suggests another spectrum of complex I pathology, characteristic for 

the time of differentiation (Figure 1). 

However, very often even iPSC- or stem cells-derived neurons does not possess all functional 

activity which is typical for neurons. Mutations in genes affecting complex I are recognised in 

patients with epilepsy, but the mechanisms which lead to seizure activity and cell death in these 

mutations remain unclear.  Epilepsy due to hyperexcitability is highly energy dependent 

process (39), but seizure-like activity (as a frequent calcium oscillations) could not be induced 

in iPSC or stem cells derived neurons or other cell types in the same way as it could be done 

in primary neuronal cultures due to lower functionality of glutamate receptors. However, this 

process could be mimicked in fibroblasts by the step-like increase in concentrations of 

electrogenic calcium ionophores, which lead to oscillatory Ca2+ signals in fibroblasts, or by 

repeatable release of Ca2+ from caged compound using flash photolysis (40). Importantly, this 

method indicates that intracellular Ca2+ levels cannot be compensated in complex I mutated 

fibroblasts during extensive periods of hyperexcitability due to an energetic collapse (cellular 

ATP depletion) that could not be seen under resting conditions (40). Fumonisin B1,  a 
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mycotoxin, involved in neurological conditions that specifically inhibits complex I (41), lead 

to metabolic collapse in low magnesium seizure models and increased percentage of seizure-

induced cell death (42). Specific inhibitor of complex I rotenone is also used in combination 

with astrocyte-targeting drugs to induce seizures (43).   

Effect of complex I deficiency on mitochondrial respiration and ΔΨm 

Mutations/deficiency in complex I expectably lead to a complete or partial inhibition of the 

activity of this enzyme, as supported constantly in the literature. Complex I enzymatic activity 

essays require minimal amount of biological sample and are widely used in experiments with 

patient’s tissue (44). Changes in respiratory activity can also be easily detected with a number 

of methods including oxygen consumption, measurements in isolated mitochondria or in whole 

cells of different nature (45-47). Complex I-dependent respiration can be assessed in cells with 

mitochondrial mutations by measurement of mitochondrial pool of NADH (48, 49).  

Moreover, activity of mitochondrial respiration and complex I activity not always reflect for 

mitochondrial depolarisation. Thus, the value of ΔΨm in cells with complex I mutations is 

highly dependent on the medium and supplements which were used for cell maintenance (50), 

thus in the majority of  cell lines with complex I deficiency ΔΨm is decreased (46, 51) (Figure 

1). Partial inhibition of complex I in neurons with complex I mutations can be overcompensated 

by reversal of the activity of F0-F1-ATPase, which pumps H+ to restore mitochondrial 

membrane potential and leads to an increased ΔΨm (48). However, this process cannot 

compensate completely due to limited glycolytic activity in neurons. Altered mitochondrial 

activity and ATP levels, and thus viability of cells with complex I deficiency (Leigh syndrome), 

could be restored by membrane-permeable pro-drugs for complex II substrate, succinate (52).  

Complex I deficiency and ROS production  
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High ΔΨm in neurons with mutated complex I lead to excessive mitochondrial ROS 

production, an oxidative stress followed by cell death, which could be prevented by the use of 

antioxidants (48). Although mitochondrial complex I is believed to be one of the producers of 

superoxide and H2O2 in mitochondria (53), deficiency in complex I induces massive increase 

of ROS production, dependent or independent of ΔΨm (54) (Scheme 1). One of the possible 

explanation of this is the reverse electron transfer from complex II to inactive or impaired 

complex I and it is shown to be more prominent in neurons than fibroblasts or astrocytes (9, 

55). In cardiac cells, ischaemic accumulation of succinate enhances reperfusion injury by 

reverse electron transfer to inhibited complex I (56). However, antioxidant strategy was not 

confirmed to be protective in patients with complex I deficiency.  

Complex I deficiency and mitochondrial calcium  

Mitochondrial membrane potential controls mitochondrial calcium uptake, and Ca2+ is 

activator of mitochondrial dehydrogenases including the NADH dehydrogenase of complex I 

(3, 57). Lower ΔΨm in cells with complex I mutations significantly reduces mitochondrial 

calcium uptake in various cellular models (49). On the same time complex I and II are shown 

to be important for mitochondrial calcium homeostasis (58). However, specific reduction in 

mitochondrial Ca2+ transients has been shown to stimulate autophagy in human fibroblasts with 

complex I mutations (59). Respiratory complex I dysfunction due to mitochondrial DNA 

mutations shifts the voltage threshold for opening of the permeability transition pore towards 

resting levels which then also become reduced by lower mitochondrial calcium in these cells 

(60) (Scheme 1). 

Role of complex I dysfunction in Parkinson’s disease 

Featuring role for mitochondria, and in particular, the involvement of  complex I in the 

development of Parkinson’s disease has been observed in different cellular models, while it has 
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been confirmed on the basis of effects of mitochondrial toxins and complex I mutations (26). 

Histopathological characteristic of Parkinson’s disease is the occurrence of Lewy bodies, 

which is formed by the misfolded protein α-synuclein, which is toxic in oligomeric form. 

Interestingly, several groups demonstrated that oligomeric α-synuclein is inhibiting complex I 

(61-63). Importantly, application of oligomeric α-synuclein to neurons with complex I 

mutation did not show any further inhibition of mitochondrial function in contrast to control 

and did not enhance cell death that suggest importance of complex I in α-synuclein pathology 

in Parkinson’s disease (25).  

Perspectives  

i) Field importance Complex I deficiency, whether genetic or acquired, can cause a 

range of diseases. Understanding how complex I deficiency damages cells could 

lead to the development of new therapeutic strategies.   

ii) Summary of current thinking Recent progress in iPSC and stem cell technology 

has been proven helpful to the development of cellular models of human tissue from 

patients. It significantly improved our understanding of why complex I mutations 

induce pathology in specific tissues. This cellular models are based mainly on either 

the energy collapse and the oxidative stress features of complex I pathology.  

iii) Future directions Further progress in this area could be expected using better 

cellular and animal models in a near future. A novel knowledge which could 

complete our understanding of complex I would be the unravelling of the exact 

function of the complex I subunits which up to now remain unknown.     
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Figure 1. Complex I deficiency results in cellular pathology. Complex I 

alterations/mutations lead to inhibition of respiration, decrease in ATP level, ROS production 

increase and abnormal metabolism,  that lead to lipid peroxidation (LP) and reduction in GSH 

level. Slower mitochondrial calcium efflux results in pathologically elevated level of Ca2+ in 

mitochondria, and taken together with all the former events open the mitochondrial 

permeability transition pore and leads to cell death.   
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