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1 INTRODUCTION

ABSTRACT

Likelihood-free inference provides a framework for performing rigorous Bayesian inference
using only forward simulations, properly accounting for all physical and observational effects
that can be successfully included in the simulations. The key challenge for likelihood-free
applications in cosmology, where simulation is typically expensive, is developing methods
that can achieve high-fidelity posterior inference with as few simulations as possible. Density-
estimation likelihood-free inference (DELFI) methods turn inference into a density estimation
task on a set of simulated data-parameter pairs, and give orders of magnitude improvements
over traditional Approximate Bayesian Computation approaches to likelihood-free inference.
In this paper we use neural density estimators (NDEs) to learn the likelihood function from
a set of simulated datasets, with active learning to adaptively acquire simulations in the most
relevant regions of parameter space on-the-fly. We demonstrate the approach on a number
of cosmological case studies, showing that for typical problems high-fidelity posterior infer-
ence can be achieved with just O(10°) simulations or fewer. In addition to enabling efficient
simulation-based inference, for simple problems where the form of the likelihood is known,
DELFI offers a fast alternative to MCMC sampling, giving orders of magnitude speed-up in
some cases. Finally, we introduce pyDELFI — a flexible public implementation of DELFI with
NDEs and active learning — available at https://github.com/justinalsing/pydelfi.
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Likelihood-free inference (LFI) is emerging as a new paradigm
for performing Bayesian inference under very complex generative
models, using only forward simulations. This approach has great
appeal for cosmological data analysis, since all effects that can be
incorporated into forward simulations can be accounted for exactly
in the inference pipeline, without having to resort to approximate
calibrations and likelihood assumptions that may lead to biased
inferences and/or mis-stated uncertainties.

The main challenge for likelihood-free applications in cos-
mology, where simulation is expensive, has been developing meth-
ods that can give high-fidelity posterior inference from a feasibly
small number of forward simulations. Traditional approaches to
likelihood-free inference have been based on Approximate Bayesian
Computation (ABC), which involves (variants on) drawing pa-
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ing/rejecting the parameters based on whether the simulated data
fall within some e-ball around the observed data (see Lintusaari
et al. 2017 for a review). Whilst ABC has enabled a number of ap-
plications in astronomy and cosmology (Schafer & Freeman 2012;
Cameron & Pettitt 2012; Weyant et al. 2013; Robin et al. 2014;
Lin & Kilbinger 2015; Hahn et al. 2017; Kacprzak et al. 2017;
Carassou et al. 2017; Davies et al. 2017; Ishida et al. 2015; Akeret
etal. 2015; Jennings et al. 2016), ABC methods generally require a
vast number of simulations, scaling exponentially with the number
of model parameters, making them unfeasible when simulation is
even modestly expensive.

Density-estimation likelihood-free inference (DELFI; Bonassi
et al. 2011; Fan et al. 2013; Papamakarios & Murray 2016; Lueck-
mann et al. 2017; Papamakarios et al. 2018; Lueckmann et al. 2018;
Alsing et al. 2018b) aims to train a flexible density estimator for the
target posterior from a set of simulated data-parameter pairs, and
can yield high-fidelity posterior inference from orders-of-magnitude
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fewer simulations than traditional ABC-based methods. In this pa-
per we introduce PYDELFI — a general purpose implementation of
density-estimation likelihood-free inference using neural density
estimators (NDEs) to learn the sampling distribution of the data as
a function of the model parameters, employing active learning to
adaptively run simulations in the most relevant regions of parameter
space on-the-fly (based on Papamakarios et al. 2018; Lueckmann
et al. 2018). We show that with NDEs and active learning, high-
fidelity posteriors can be obtained for typical cosmological inference
tasks from just a few thousand forward simulations. This opens up
new possibilities for likelihood-free applications in cosmology.
The structure of this paper is as follows: In §2 we review
density-estimation likelihood-free inference methods using neural
density estimators and adaptive acquisition of simulations with ac-
tive learning. In §3 we review data compression schemes for accel-
erating likelihood-free inference; approximate score-compression,
deep network parameter estimators, and information maximizing
neural networks (IMNN; Charnock et al. 2018). In §4 we introduce
PYDELFI, briefly outlining the implementation details and features
of the code. Tutorials and documentation for the code can be found
at https://github.com/justinalsing/pydelfi. In §5-7 we
validate and demonstrate the performance of the PYDELFI approach
on some simple case studies from cosmology: analysis of the JLA
supernova data (Betoule et al. 2014) (against a known likelihood
for validation), tomographic cosmic shear pseudo-Cy analysis, and
inference of the HI ionization rate around z ~ 6 from high-redshift
Lyman-« forests. We conclude with some discussion in §8.

2 DENSITY ESTIMATION LIKELIHOOD-FREE
INFERENCE

In this section we provide a pedagogical review of density-
estimation likelihood-free inference (§2.2) with neural density esti-
mators (§2.3-2.4) and active learning to adaptively acquire simula-
tions on-the-fly (§2.6). The methodology described in this section
is based on Papamakarios & Murray (2016), Papamakarios et al.
(2018), Lueckmann et al. (2018) and Alsing et al. (2018b).

2.1 Bayesian parameter inference with and without
likelihoods

We begin with a brief review of Bayesian parameter inference to
introduce the semantics and notation used throughout the rest of the
paper.

The central object of any parameter inference task — whether
Bayesian or frequentist —is the sampling distribution of hypothetical
data d given the model M and parameters 6, p(d|6, M). Here,
the generative model M encodes some specification of how the
data were generated in nature, covering the physics associated with
both the underlying signal (eg., the cosmological and astrophysical
processes governing the observable) and measurement process (eg.,
observational sampling, instrumental noise and artefacts, etc).

With the sampling distribution p(d|6, M) specified, Bayesian
parameter inference proceeds by fixing d to the values of the ob-
served data d,,, and targets the posterior density p(6|d,, M) (using
Bayes’ theorem):

p(do |6, M) p(6IM)
pldo| M)

Here, p(d, |0, M) is the likelihood function (the sampling distribu-
tion evaluated at the observed data, as a function of the parameters),

p(Bldo, M) =

)

p(B| M) is the prior distribution encoding any information/beliefs
about the parameter values prior to making observations d,,, and the
evidence p(d,| M) is just a normalization constant for the purposes
of parameter inference (but is useful for model selection tasks).

In the standard Bayesian inference paradigm, the posterior
density is typically then explored using Markov Chain Monte Carlo
(MCMC) sampling, variational inference, or other Bayesian com-
putation methods (see eg., Gelman et al. 2013 for a review). These
“traditional" methods ubiquitously rely on being able to compute
the likelihood function p(d, |6, M), for a given d,, and 6.

However, for complicated generative models, the sampling dis-
tribution of the data — and hence the likelihood function — may be
intractable in practice. In these situations, even though the like-
lihood is intractable, we are still able to forward simulate!, ie.,
generate realizations of the observations d given model parame-
ters 6. Likelihood-free inference methods rely only on our ability
to perform forward simulations in order to explore the posterior,
bypassing the need to ever compute the likelihood function directly.
This class of methods has great appeal, since it allows us to perform
inference under very complex forward models, unfettered by the
need to be able to write down a tractable likelihood function.

As we will see in §3, likelihood-free methods typically benefit
from compressing large data vectors down to a small number of
informative summary statistics t. Throughout the text we use d to
denote an uncompressed data vector and t to denote a vector of
compressed data summaries. We write as though data are always
compressed to some summaries t for likelihood-free inference, al-
though this need not always be the case if the data are already
low-dimensional (relative to the number of simulations that can be
performed — see §3 for discussion). We often use “data" and “data
summaries" interchangeably in the text, being explicit where nec-
essary to avoid confusion. Observed rather than hypothetical data
or summaries are indicated by d,, and t,, respectively.

2.2 DELFI, three ways

Density-estimation likelihood free inference turns inference into a
density estimation task on a set of simulated parameter-data (sum-
mary) pairs {0, t}. There are principally three ways to approach this
density-estimation inference task (shown schematically in Figure

1):

(1) Fit a model to the joint density p(6,t), then obtain the
posterior by evaluating the joint density at the observed data t,,
p(0|t) « p(f,t =t,) (Alsing et al. 2018b).

(2) Fit a model to the conditional density p(6|t), then obtain the
posterior by evaluating at the observed data t,. (Papamakarios &
Murray 2016; Lueckmann et al. 2017).

(3) Fit a model to the conditional density p(t|@), obtain the like-
lihood by evaluating at the observed data t,, and multiply by the
prior to get the posterior p(0|t,) « p(t,|60) x p(6) (Papamakarios
et al. 2018; Lueckmann et al. 2018).

Option 3 — learning the sampling distribution of the data as
a function of the parameters — has some key advantages over the
other two approaches. Firstly, by learning the sampling distribution
of the data conditional on the parameters, it does not matter how

! Note that forward simulating a data realization d given parameters 6 under
some model M is equivalent to drawing a sample from the implicit sampling
distribution p(d|@, M). This can be done even when the sampling density
itself is intractable.
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Figure 1. Schematic for the three ways of performing density-estimation likelihood-free inference from a set of simulated data (summary) parameter pairs
{t,0}: (1) learn a flexible parametric model for the joint density p(0, t), (2) learn a flexible parametric model for the conditional density p(0|t) (as a function
of t), (3) learn a flexible parametric model for the conditional p(t|@) (as a function of 6). In each case, the goal is to learn the (conditional) density in the
relevant region of parameter space, and take a slice at the observed data (summaries) to yield the target posterior or likelihood.

the parameters for running forward simulations were chosen. This
gives complete freedom as to how simulations are acquired, so any
schemes for adaptively acquiring simulations in the most relevant
parts of parameter space can be employed without complication (see
§2.6). In contrast, for options 1 and 2, parameters must either be
drawn from the prior, or else drawn from some proposal density ()
and the resulting learned target density subsequently re-weighted by
p(8)/q(0). This re-weighting step can result in instabilities during
training, or high variance importance weights (and low effective
sample sizes) after sampling, or both (see Papamakarios et al. 2018
for discussion). By learning the likelihood function rather than the
posterior, it is also more straightforward to explore different prior
assumptions a posteriori without similar importance re-weighting
issues.

Secondly, for applications where data are compressed to a
small number of highly informative summaries, these will often
tend to be asymptotically Gaussian, so for many problems the sam-
pling distribution of the data summaries may be well-captured by
a relatively simple density model (eg., a Gaussian mixture with a
modest number of mixture components, or similar), even when the
posterior (option 2) or joint distribution (option 1) is complicated.

In light of these considerations, we suggest implementing
DELFI by learning the sampling distribution of the data (sum-
maries) as a function of the model parameters as a sensible default
approach2. With this choice made, DELFI can be broadly summa-
rized as follows:

(1) Run simulations at different parameter values @ to obtain
simulated parameter-data pairs {6, t},

2 However, we note that option 1 comes with its own unique advantage
in that it provides an analytical estimate of the Bayesian evidence for free,
provided an analytically integratable joint-density parameterization such as
a Gaussian mixture is used (Alsing et al. 2018b). This may be preferred when
the evidence is the primary target. Note the evidence estimated this way will
be with respect to the compressed summaries, rather than the un-compressed
data vector.
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(ii) Fit a parametric conditional density estimator p(t|@;w) to
the simulations {6, t},

(iii) Evaluate the estimated conditional density at the observed
data t,, to obtain the (learned) likelihood function p(t,|6; w).

An efficient algorithm for performing DELFI must then address
three key questions:

(i) How do we parameterize the conditional density estimator
p(t|@; w) in a sensible way?

(ii) How do we run simulations in the most relevant parts of
parameter space for the ultimate target, p(t,|6; w), to best use the
available resources?

(iii) If the uncompressed data vector d is high-dimensional, how
can we compress it effectively to some small set of informative sum-
maries d — t to reduce the dimensionality of the density-estimation
task, and hence reduce the number of simulations required?

In this paper we use neural density estimators (NDEs) as a flexible
and efficient conditional density estimation framework for DELFI
(based on Papamakarios & Murray 2016; Papamakarios et al. 2018;
Lueckmann et al. 2018), employing ensembles of networks (with
different initializations and architectures) to give robustness against
small training sets and architecture choice. We give an overview of
NDEs and network ensembles in §2.3 and 2.4.

For efficient acquisition of simulations, we use active learning,
allowing the NDEs to call the simulator to run new simulations
on-the-fly, based on the current likelihood-surface approximation.
We discuss active learning strategies in §2.6.

We review key data compression schemes for accelerating
DELFI in §3 (approximate-score compression, and deep network
compression schemes).

2.3 Neural density estimators

Neural density estimators (NDEs) provide flexible parametric mod-
els for conditional probability densities p(t|@; w), parameterized by
neural networks with weights w, which can be trained on a set of
simulated data-parameter pairs {t, 6}.
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In this section we review two classes of NDEs that have proven
useful in the context of likelihood-free inference: mixture density
networks (MDNSs; Bishop 1994) and masked autoregressive flows
(MAFs; Papamakarios et al. 2017). Note this section assumes basic
background knowledge of neural networks — see eg., Bishop (2006)
for a comprehensive review.

2.3.1 Mixture Density Networks (MDN)

Mixture density networks constitute a class of models for the con-
ditional density p(t|@; w) where the distribution for t at any given 6
is given by a mixture model, and the relative weights and properties
of the mixture components are all free functions of @, parameter-
ized by a neural network with weights w. For example, a Gaussian
mixture density network> defines the following conditional density
estimator,

ne

PUGW) = 3 (O W)N [ €]y (0: W), Cpc = Z(60;W)EL (05 w) .
k=1
o)

ie., an n, component Gaussian mixture model where the compo-
nent weights {r (0; w)}, means {p; (6; w)}, and covariance factors®
{Zr(0;w)} are all functions of # parameterized by a neural network
with weights w.

The MDN model is shown schematically in Figure 2; the net-
work takes in parameters 6 and outputs the means, weights and
covariances of the mixture model for p(t|@) corresponding to that
input 6. The MDN network architecture typically has a number of
intermediate dense hidden layers with some non-linear activation
function (eg., tanh). In the output layer, the output nodes corre-
sponding to the means have linear activations, as do the off-diagonal
elements of the covariance matrices, whilst the diagonal covariance
elements are passed through an exponential activation to ensure pos-
itive definiteness, and the mixture component weights are passed
through a softmax activation® to ensure they are positive and sum
to unity.

Note that a mixture density network parameterization of p(t|6)
with a single Gaussian component defines a Gaussian likelihood
where the mean and covariance are functions of the parameters —
a common approximate likelihood used in many cosmological data
analysis problems. Adding additional components immediately re-
sults in a more flexible density estimator and hence likelihood as-
sumptions; Gaussian mixtures can represent any smooth probability
density (given enough components).

2.3.2  Masked Autoencoders for Density Estimation (MADE)

Any probability density can be factorized as a product of one-
dimension conditionals via applications of the chain rule:

dim(t)

ptle) = || pliltri1,0). 3)

i=1

3 We will henceforth take MDN to mean Gaussian MDN (although other
mixture models may be useful in certain situations).

4 To avoid redundancy from the positive-definiteness of the covariance
matrices, it is practical if the neural network parameterizes only the (upper
triangular) Cholesky factors of the component covariances.

5 Softmax: x — exp(x)/Z exp(x; ).

Neural autoregressive density estimators construct parametric den-
sities for this set of one-dimensional conditionals, where the pa-
rameters of each of the conditionals are parameterized as a neural
network (Uria et al. 2016). For example, one could model each
conditional p(t;|t;.;_1, @) as a Gaussian whose mean and variance
are free functions of (t;.;_1, 8), parameterized by a neural network.
Gaussian Masked Autoencoders for Density Estimation (MADE:s;
Germain et al. 2015), depicted in Figure 3, do precisely this: the
means and variances of each conditional density are parameterized
by the neural network, where crucially the weights of the neural
network layers are masked in such a way that the output nodes for
p(ti|t1.i—1, @) only depend on (t|.;_1, @) (ie., the autoregressive prop-
erty is preserved). See Germain et al. (2015) for details of how to
construct the binary network weight mask. As with MDNs, the hid-
den layers of the MADE have some non-linear activation functions
(eg., tanh), whilst the output nodes associated with the conditional
means have linear activation, and the output nodes associated with
the variances have exponential activations (ensuring positivity).

By learning the means and variances of the autoregressive
conditionals, a MADE can be thought of as learning the transform
of the random variate t back to the unit normal:

t|0 — u(t, 6; w) ~ N(0,I),
110 — u; = (t; — pi(ty.i-1,0; W) /o (ty.i—1, 0; W), )

where w are the (masked) weights of the neural network. The para-
metric density estimator for a MADE is hence given by,

p(tlo;w) = [ | plailtrzi1, 0;w)
i

= N [u(t, 8; w)|0,1I] x

ou(t,0;w) }
at

dim(t)
= Nu(t.0:w[0.1]x [ ] oi(t.6:w). 5)
i=1
MADEs can be made more expressive by replacing the simple
Gaussian autoregressive conditionals with something more flexible,
such as a mixtures of normals (or other densities).

2.3.3  Masked Autoregressive flows (MAF)

Single MADE density estimators have two key limitations. Firstly,
they are sensitive to the order of the factorization in Eq. (3);
some densities may have simple (eg., unimodal) conditionals in
one factorization-order, but not in another, and this is typically not
known a priori (see Papamakarios et al. 2017 for an illustration).
Secondly, the assumption of simple (eg., Gaussian) conditionals
may be overly restrictive.

Masked Autoregressive Flows (MAF; Papamakarios et al.
2017) address both of these limitations by constructing a stack of
MADEs, where the output u of each MADE is taken as input for
the next, with random re-ordering of the chain-rule factorization be-
tween each MADE. With multiple stacked MADEs and re-ordering,
MAFs constitute very flexible neural autoregressive density esti-
mators suitable for likelihood-free inference (Papamakarios et al.
2018). MAFs then define the following conditional density estima-
tor:

(10 w) = [ | pleilrrzioi, 65 w)
i

Nmades dlm(t)

[] orwosw, ©)

n=1 i=1

= N [u(t, 8; w)|0,1I] x
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Figure 2. Schematic of the Mixture Density Network parameterization of the conditional density p(t|@). The means, weights and covariances of a Gaussian
mixture model for p(t|@) are free functions of the parameters 6, parameterized by the weights, w, of the neural network. The neural network takes 6 as input

and outputs the parameters of the mixture model for those parameters.

where u is the output from the final MADE.

2.3.4  Training neural density estimators

To fit a neural density estimator to a set of simulated samples {6, t},
we want to find the weights of the neural network that minimize
the Kullback-Leibler divergence between the parametric density
estimator p(t|@; w) and the target p*(t|6):

D’ 1) = [ o) (’%) dt @

Since we do not have access to the target density, only samples from
it {t, 8}, we take the (negative log) loss function to be a sum over
the training samples:

N, samples

“InUWHO.) =~ > Inp(t;]6;; w), @®)

i=1

ie., a Monte Carlo estimate of the KL-divergence (up to an additive
w-independent constant), which is equivalent to the negative log-
likelihood of the simulated data {t, 8} under the conditional density
estimator p(t|@; w). Note that the sum in Eq. (8) approximates Eq.
(7), because the simulated data t (for their respective @) in the
training set {t, 6} are drawn from the target p*(t|@) implicitly defined
by the simulator.

For (Gaussian) MDN conditional density estimators, the loss
is hence given by:

~InUWH{6,6}) = = D" In " re(6i:W)N [t | i (63 W), Z4 (63 w)]

i k=1
©)
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For MAF conditional density estimators, the loss is given by:
~InUW|{6,t}) = — Z In N (u(t;,0;; w)| 0,1)
i

Nmades dim(t)
+ Z Z Ino))(t;, 0;;w).

n=1 m=1

10)

The neural density estimators are then trained in the usual way
by minimizing the negative log-loss with respect to the network
weights, or inferring a posterior density over the weights given the
training data (and some network weight prior).

Over-fitting can be mitigated by any of the standard regular-
ization methods used for neural networks, such as early-stopping
or dropout. Early-stopping splits the training data into a training
and validation set, and terminates training when the loss ceases to
improve for the validation set. Dropout masks some subset of the
hidden units, chosen at random, at each training iteration (Srivastava
etal. 2014). Further regularization can be achieved using ensembles
of networks, or Bayesian networks, as described in the next section.

2.4 Bayesian networks, deep ensembles and stacked density
estimators

Whilst training sufficiently complex NDEs on sufficiently large
training sets provides a robust approach to likelihood-free inference
in practice (Papamakarios & Murray 2016; Papamakarios et al.
2018), some simple sophistications can improve robustness to the
choice of network architecture and small training sets (ie., when
simulation is expensive).

Training individual NDEs (by minimizing the log-loss) on
small training sets runs the risk of finding single local minima
that may not best represent the training data. Furthermore, it may
be difficult to choose an appropriate NDE network architecture
for the problem at hand a priori; there is a trade-off to be made
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Masked Autoencoder for Density Estimation (MADE)
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Figure 3. Schematic of the conditional Gaussian Masked Autoencoder for Density Estimation (MADE) parameterization of the conditional density p(t|0).
The means and variances of the autoregressive conditionals are parameterized by the neural network, with the hidden layers carefully masked to ensure the
autoregressive properties are satisfied. A masked autoregressive flow (MAF) is a stack of MADEs, where the output of each MADE is fed as input to the next,

and the order of the autoregressive factorization is changed between MADEs.

between ensuring sufficient model complexity to fit the unknown
data distribution, whilst avoiding over-fitting.

One simple resolution is to train an ensemble of NDEs (Laksh-
minarayanan et al. 2017; Lueckmann et al. 2018) {p (t|@; w)}, with
arange of network architectures (and initializations). This ensemble
can then be used to form a stacked density estimator for the learned
likelihood-surface by stacking the individual trained NDEs,

NNDEs

plO;w) = " Bo paltf;w), (in

a=1

where the weights 3, are given by the relative likelihoods for each
NDE, or their cross-validation scores (Smyth & Wolpert 1998,
1999). Stacked density estimators constructed this way are found to
outperform a single best density estimator chosen from an ensemble
of fits (Smyth & Wolpert 1998, 1999), and stacking ensembles of
trained neural networks is common practice in machine learning for
improving predictive accuracy.

As well as increasing robustness in the small training-set
regime and against architecture choice, training ensembles of NDEs
also allows for straightforward estimation of the uncertainty in the
learned likelihood surface (ie., the weighted variance of the NDEs in
the ensemble). This can be exploited in active learning schemes that
use the uncertainty in the current likelihood-surface approximation
to decide where to run new simulations, as described below.

A second approach to making neural networks robust in the
small training-set regime is to train the networks in a Bayesian con-
text, inferring a posterior distribution for the network weights given
the training data, p(w|{t,0}) (see eg., Burden & Winkler 2008).
This helps to regularize the networks in two ways; firstly, it allows
us to put a prior over the network weights, eg., imposing some sparse
regularization. Secondly, the inferred network-weight posterior can
be used to define an expectation value of the network output, and
also to assess uncertainty in the network output that can be exploited

in active learning schemes, in a similar spirit to ensembles of net-
works. Bayesian networks are reported to be robust to over-fitting
and remove the need for additional over-fitting mitigation strategies.

Bayesian networks have the appeal over network ensembles
that they allow the user to control the regularization in an inter-
pretable way through the prior, and provide principled uncertainties
and expectation values for the network outputs. Ensembles on the
other hand have the advantage that they are trivial to implement; op-
timizing an ensemble of networks is typically simpler and cheaper
in practice than inferring the posterior over the weights for a single
network (although fast approximate inference schemes such as vari-
ational inference help). Ensembles also make easy work of model
averaging over different network architectures, which is more dif-
ficult (although still possible) in the Bayesian framework. Recent
developments in Bayesian inference and subsequent marginaliza-
tion over network architectures may prove useful in this context
(Higson et al. 2018; Dikov et al. 2019).

2.5 Pre-training neural density estimators for likelihood-free
inference

The weights of the neural density estimators are typically given
random initializations by default. However, for some likelihood-
free inference applications we may have an approximation for the
sampling distribution j(t|@) available. In these cases, one can pre-
train the NDEs by regressing them to the approximate p(t|6) before
showing them any simulations, from which they can subsequently
morph quickly towards the target when fed even a small number of
simulations.

In practice this can be achieved as follows: generate a pre-
training set {6, t, p} by drawing parameters 6 from the prior p(),
then drawing t from pj(t|@) and evaluating j(6,t). The NDEs can
then be regressed to the approximate p(t|@) by minimizing the loss

MNRAS 000, 1-20 (2017)
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function:

Nsamples
SnUWHO.) =~ Y7 Inp(tlow) ~Inpile).  (12)
i=1

where the sum is over the pre-training set {0, t, p}. Similarly to Eq.
(8), this loss represents a Monte Carlo estimate of the KL-divergence
between the pre-training target p(t|@) and the NDE conditional
density p(t|@; w). After this pre-training step, the pre-training data
is discarded and the NDE:s trained on simulations in the usual way.

In particular, when using approximate-score or IMNN com-
pression, the compressed summaries can be cast into pseudo
maximum-likelihood estimators through a simple shift and re-
scaling (Alsing & Wandelt 2018b):

t— 0, +F 't 13)

This hints at a natural first guess for their sampling distribution:
Gaussian estimators for the parameters, with covariance F~'. In
these cases, before running any simulations one can regress the
NDE:s to j5(t|@) = N(t|6, F~!). This initializes the NDEs to a rough
(linear Gaussian) approximation of the target density. We call this
initialization scheme Fisher pre-training.

In a similar spirit, for applications of DELFI where cheap but
approximate simulations are available, the NDEs can be pre-trained
on the approximate simulations first to give good starting points,
before discarding the approximate sims and training on the full
simulations in the usual way.

2.6 Adaptive acquisition of simulations with active learning

When performing likelihood-free inference in situations where for-
ward simulation is expensive, the goal is to achieve the highest
fidelity posterior inference with the fewest simulations possible.
We therefore want to preferentially run simulations in the most in-
teresting regions of the parameter space, which are not known a
priori. Active learning allows the neural density estimators to call
the simulator independently during training, automatically decid-
ing on-the-fly where the best parameters to run new simulations are
based on their current state of knowledge/ignorance of the target
posterior. Here we present two key active learning approaches for
adaptive acquisition of simulations for DELFI: sequential neural
likelihood (based on Papamakarios et al. 2018), and Bayesian opti-
mization style acquisition rules (based on Lueckmann et al. 2018).

2.6.1 Active learning with Sequential Neural Likelihood (SNL)

The Sequential Neural Likelihood (SNL; Papamakarios et al. 2018)
approach runs simulations in a series of batches, where the param-
eters for each batch of new simulations are drawn from a proposal
density based on the current posterior approximation, and the NDEs
are re-trained after each new simulation batch. This way, the algo-
rithm adaptively learns the most relevant parts of the parameter
space to run new simulations and hence improve the ongoing pos-
terior inference.

How to define an optimal proposal density based on the cur-
rent posterior approximation is an open question. Papamakarios
et al. (2018) used the current posterior approximation directly as
their proposal for new simulations, which is a natural choice. An
alternative is to use the geometric mean of the prior and the current
posterior approximation as the proposal density, inspired by optimal
proposal schemes for sequential Approximate Bayesian Computa-
tion (Alsing et al. 2018a); this has the nice property that it better
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samples the tails of the distribution, and may hence give more robust
convergence there (we find this to be the case in experiments).

2.6.2 Active learning with Bayesian optimization

A second approach is to use Bayesian-optimization style acquisi-
tion rules for running new simulations (Lueckmann et al. 2018).
In this scheme, the next simulation is run at the parameters that
maximize some deterministic acquisition function A(), that en-
codes a trade-off between relevance (ie., being in a region of high
posterior-density), and uncertainty in current learned posterior-
density-surface. This active learning approach requires two ingredi-
ents: (1) some way of quantifying uncertainty in the current learned
posterior surface, and (2) some carefully chosen acquisition rule.

Training an ensemble of NDEs (as described in §2.4) provides
a straightforward estimate of the variance of the learned likelihood
surface (the weighted variance of the NDEs in the ensemble), as
do Bayesian networks (the variance of the network output under
the network weight posterior). Defining an optimal acquisition rule
poses a more challenging problem. A simple, pragmatic acquisition
rule is just the current variance of the estimated posterior density
(Lueckmann et al. 2018). This has the appeal that it is cheap and
simple to compute, but has the disadvantage that it does not attempt
to quantify the expected improvement in the density estimator after
running a new simulation in any principled way. Jarvenpidi et al.
(2018) try to address this by taking a more formal decision theo-
retic approach: minimizing the expected integrated variance of the
approximate posterior, under a new simulation draw. Whilst this
is clearly a better-motivated acquisition rule, it can be computa-
tionally cumbersome in practice since it involves optimizing over
high-dimensional (parameter-space) integrals.

One might expect well-chosen deterministic acquisition rules
(Bayesian optimization) to be more efficient than stochastically
drawing new simulation parameters from an adaptive proposal
(SNL). However, Durkan et al. (2018) reported that the two ap-
proaches gave broadly similar performance in a number of case
studies in the context of DELFI. Furthermore, optimal simultane-
ous selection of multiple candidate points for Bayesian optimization
style active learning (which is essential to leverage parallel simula-
tion runs) provides additional challenges. These are active areas of
research.

2.7 Global versus local emulators

For parameter inference tasks where the data have been observed
in advance of the analysis, the target is the likelihood function
p(dops|0). In this situation, active learning helps us to selectively
run simulations in the most relevant parts of parameter space to
learn the target accurately. However, in some scenarios we may run
many “experiments” that generate independent realizations of data
d from the same data generating process, and we want to analyze
those data as they are taken. In these situations, it is desirable to
abandon active learning and build a global emulator for p(d|@) over
the full prior volume, that can then be used to analyze any subsequent
data d as they are observed. A typical example of this situation is
event reconstruction for dark matter direct detection (eg., Simola
et al. 2018): every time an event occurs it generates some data d
(the response of the detectors to the event), and we want to infer
the characteristics of the event (position, energy, etc) from those
data. Having a pre-trained global emulator for p(d|@) would allow
posterior inference from any event data d to be obtained rapidly, as
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the events are observed. DELFI provides a natural framework for
building global emulators for data sampling distributions for these
scenarios.

3 DATA COMPRESSION

Whether data compression is required for performing DELFI or not
depends critically on the the size of the data vector relative to the
number of simulations that can be feasibly performed, given that one
needs enough simulations to learn the sampling distribution of the
data (summaries) as a function of the parameters, over the relevant
parameter-space volume. For problems with modest dimensional
data-vectors, or larger data vectors but where simulation is cheap,
DELFI may be performed directly on the data without further com-
pression. However, for large datasets with expensive simulations it is
clearly advantageous to compress the data down to a small number
of informative summary statistics, so that the density-estimation task
need only be performed on the low-dimensional data-summaries.

In this section we review two key approaches to compressing
N data down to p summaries — one per parameter — whilst aiming
to retain as much information about the parameters as possible:
approximate score-compression, and data compression with deep
neural networks.

3.1 Approximate score-compression

When the likelihood function is known, the score function t =
Vgln p(d|) yields compression of N data down to p summaries,
one per parameter, such that the Fisher information of the data is
preserved (provided the gradient is taken close to the true parame-
ters, Alsing & Wandelt 2018b; Alsing et al. 2018b). For Gaussian
data where the model depends on the parameters either through the
mean or the covariance, score-compression is equivalent to MOPED
(Heavens et al. 2000) or the optimal quadratic estimator (Tegmark
et al. 1997), respectively.

For likelihood-free applications, the likelihood-function is ob-
viously not known a priori, but the idea of score-compression can
still provide a guiding hand for defining compressed data sum-
maries. For many problems, whilst an exact likelihood is not known,
an approximate (eg. Gaussian) likelihood may still be used for defin-
ing approximate score-compressed summaries, the only cost of the
approximation being some loss of information. If no obvious like-
lihood approximation presents itself and the data space is not too
large, one can learn the conditional density p(d|€) from simulations
in the neighborhood of some fiducial parameters .. (with an NDE),
and use that to define an approximate score function. As a third
approach, the score-function may be regressed directly from simu-
lations in a likelihood-free manner using neural networks (Brehmer
et al. 2018a,b,c).

3.1.1 Nuisance hardened approximate score-compression

For problems with p interesting parameters € and m additional
nuisance parameters 7, Alsing & Wandelt (2018a) (building on
Zablocki & Dodelson 2016) showed that it is possible to find n “nui-
sance hardened" score-compressed summaries (one per interesting
parameter) that are insensitive-by-design to the nuisance parame-
ters. This can be achieved through a simple projection involving
the Fisher matrix (Zablocki & Dodelson 2016; Alsing & Wandelt

2018a),
to = tg — FopFppty. (14)

where tg = Vgln p(d|6), t;; = VyIn p(d|@), the Fisher information
matrix is given by F = —(V(a’,l)V{a,n)lnp(dW)}, and tg € RP are
the nuisance hardened summaries.

In the context of likelihood-free inference, because the score-
compression and hence the nuisance parameter projection is approx-
imate, the nuisance parameters should still be varied in the forward
simulations to correctly capture any residual nuisance-sensitivity of
the hardened summaries and give self-consistent nuisance marginal-
ized posteriors (see Alsing & Wandelt 2018a for details).

The ability to project nuisance parameters in this way has pro-
found implications for likelihood-free cosmology: the complexity
of the inference task (and hence number of simulations required)
now only depends on the number of interesting parameters6, which
for cosmological applications is typically relatively small (< 10).

3.2 Deep neural network data compression and information
maximizing networks

An emerging trend in cosmology is to find cosmological parameter
estimators from complex data sets by training deep neural networks
to regress parameters from data simulations (Ravanbakhsh et al.
2016; Gupta et al. 2018; Ribli et al. 2018; Fluri et al. 2018a; Gillet
etal. 2018). The resulting trained networks can be viewed as radical
data compression schemes, summarizing large data sets down to a
set of parameter estimators whose sampling distributions (and hence
likelihood functions) are unknown. These neural network parameter
estimators can be straightforwardly used as data summaries in a
subsequent likelihood-free analysis. However, they typically require
a large number of simulations spanning the full (relevant) parameter
volume in order to train.

Combining the ideas of deep network and score compression,
Information Maximizing Neural Networks (IMNN; Charnock et al.
2018) parameterize the data compression function t(d) : RNV — RP
as a neural network, training the network on a set of forward sim-
ulations such that the retained Fisher information content of the
compressed summaries is maximized (see Charnock et al. 2018 for
details). This tends towards optimal non-linear compression when
provided with a sufficiently flexible architecture and representa-
tive simulations’. IMNNs have some advantages over other deep
network parameter estimators. Firstly, they take fewer simulations
to train, only requiring simulations around some fiducial param-
eters rather than spanning the full parameter volume. Secondly,
by construction they implicitly Gaussianize the compressed sum-
maries (and provide pseudo-maximum likelihood estimators from
the transformed likelihood). This means that in a subsequent DELFI
analysis, a relatively simple conditional density estimator may be
used, requiring fewer simulations to converge. Thirdly, IMNNs also
provide an estimated Fisher matrix that is useful for initializing den-
sity estimators for DELFI (see §4.2.3), and also for projecting out
any nuisance parameters in the compression using Eq. (14).

Other novel deep network compression schemes train networks

6 Since DELFI involves learning p(t|6), and when using nuisance hardened
summary statistics, t € R and @ € R irrespective of the presence or
number of additional nuisance parameters in the problem.

7 Asymptotic optimality is only expected for unimodal likelihoods and
taking an expansion point close to the maximum-likelihood; this can be
iterated if required.
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to find data summaries based on their ability to distinguish (via
classification) between different models (Merten et al. 2018). This
is an active area of research.

3.3 Considerations for cosmological data analysis: two-step
data compression

Itis standard practice in cosmology to compress large data sets down
to some set of informative summary statistics, motivated by knowl-
edge of the underlying physics of the problem. For example, surveys
are often compressed down to power spectra or higher order n-point
statistics, supernovae lightcurves and spectra are compressed down
to point estimates for their apparent magnitudes and redshifts, etc.
Whilst massive data compression using the score or deep networks
is, in principle, possible at the level of the raw data, we anticipate
that applications of likelihood-free inference in cosmology will typ-
ically first construct a number of “first level summaries" (eg., the
usual n-point statistics etc), and then perform a second massive
compression step on those summaries (Alsing et al. 2018b).

Whilst this initial compression to some first-level summary
statistics may seem unnecessary (and potentially lossy), it comes
with some advantages over massively compressing maps (or raw
data) directly. Even sophisticated simulations may represent incom-
plete descriptions of the true generative data model, limited by
computational resources, incomplete knowledge of the instrument
or hard-to-simulate non-linear physics, etc. The first level compres-
sion step allows us to use only aspects of the data that we expect
to be well-modelled by the approximate simulations. For example,
problems involving an N-body step might resort to approxima-
tions such as cora (Tassev et al. 2013), which are only accurate
for certain statistics and on certain scales. For cosmic microwave
background analyses, noise simulations are typically expensive and
approximations may be employed; cross-correlations between de-
tector frequencies may be well-modelled, whereas the auto-power
spectra may be less reliable.

On the other hand, applying flexible deep network compres-
sion schemes to the raw data offers the opportunity to learn highly
informative data summaries that are not captured by standard cos-
mological estimators. However, this comes with the risk of learning
features/approximations in the simulations that do not well-describe
the data, and should therefore only be used (cautiously) for very
high-fidelity simulators.

4 PYDELFI: A PUBLIC CODE FOR DENSITY
ESTIMATION LIKELIHOOD-FREE INFERENCE

In this section we introduce pYDELFI — a flexible public code for
performing density-estimation likelihood-free inference with NDEs
and active learning. We briefly outline some of the implementa-
tion details and key features of the code here, referring the reader
to https://github.com/justinalsing/pydelfi for tutorials
and documentation.

4.1 Overview

Performing density-estimation likelihood-free inference with py-
DELFI proceeds as follows:

(1) Specity the architectures — number of layers, hidden units,
and activation functions — for an ensemble of neural density esti-
mators (MDNs, MADEs, MAFs, or a combination of the three).
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(2) Specify a simulator () function that takes in parameters
and returns a simulated data vector.

(3) If data compression is required, specify a compres-
sor() function that takes in a data vector and returns a vector
of compressed summaries. This could be an implementation of
approximate-score compression, a trained deep network parameter
estimator, information-maximizing network, or otherwise.

(4) Provide the observed data vector and run PYDELFI using
either the sequential neural likelihood or Bayesian optimization
active learning methods, to learn the likelihood function. These
are implemented as described in Algorithms 1 and 2 respectively.
Simulation batches are run in parallel with MPI as standard, and the
user has control over the number of simulations to run per round,
the number of rounds to run, and the network training scheme (see
below). The result is a callable likelihood function that improves
during each round of new simulations and network training.

Alternatively, if a suite of simulations has been run beforehand
(spanning the relevant parameter volume), these can be fed straight
into pyDpELFI and the ensemble of NDEs is trained on those (without
exploiting the active learning strategies). For more optimal use of
resources, however, it is advantageous to provide pYDELFI with a
callable simulator so that it can exploit active learning to decide
where to run simulations on-the-fly.

In the following sections we give brief details of the neural net-
work implementation, initialization and training schemes (§4.2), ac-
tive learning strategies (§4.3) and data compression options (§4.4).

Algorithm 1 Schematic outline of DELFI with the sequential neural
likelihood method. In the description below, p represents the current
posterior approximation, 7 denotes the prior, and t, denotes the
observed data summaries.

/I Create ensemble of NDEs:

NDEs = NDEs(chosen network architectures)

/I (fisher pre-training happens here if desired)

/I Choose initial proposal density q(o)(G):
q(O)(()) = chosen initial proposal

//SNL: run sims in batches with adaptive proposal
for nin 0 : nyounds do
for i in 0 : npyen do
0; — q" (o)
d; « simulator(d|6;)
t; = t(d;)
{t, O}Lraining —t,0;
/l train NDEs, update proposal after each round
train(NDEs, {t, 6 }training)

g (9) = \p(0[to)n(6)

4.2 Neural network implementation and training
4.2.1 Training and mitigating over-fitting

All neural networks are implemented in TENSORFLOW (Abadi et al.
2015). As a default, we train the neural networks using the stochas-
tic gradient optimizer apam (Kingma & Ba 2014), with a default
batch-size of one tenth of the training set at each training cycle
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Algorithm 2 Schematic outline of DELFI with Bayesian optimiza-
tion. In the description below, p represents the current posterior
approximation, and A denotes the acquisition function, and t,, de-
notes the observed data summaries.

/l Create ensemble of NDEs:

NDEs = NDEs(chosen network architectures)

// Choose acquisition rule A(@|NDEs):
A(@|NDEs) = chosen acquisition rule

/I (fisher pre-training happens here if desired)

//run initial batch of sims with proposal q(o)(O)
for i in 1 : njyj,) do

0; ~ 49(0)

d; ~ simulator(d|6;)

t; = t(d;)

{t g}training —t;, 0;

/l train the NDEs
train(NDEs, {t, o}training)

/I Bayesian optimization acquisition rounds: run
sims in batches at the optimal acquisition point
for nin 1 : nyoungs do
6,, = argmax A(6|NDEs)
for i in 1 : npyecp do
d; « simulator(d|6;,)
t; = t(d;)
{t, a}training —t;, Oy
/l train NDEs
train(NDEs, {t, 8 }raining)

and a learning rate of 0.001. Over-fitting is mitigated using early-
stopping; during each training cycle, some fraction of the train-
ing set is set aside for validation (default 10%), and training is
terminated when the validation-loss does not improve after some
user-specified threshold number of epochs (default 20). Learning
rates, cross-validation fractions and early-stopping thresholds can
be easily controlled by the user. The use of ensembles of networks
provides additional protection against over-fitting.

4.2.2 Ensembles and stacking

The learned likelihood function is constructed by stacking the NDEs
in the ensemble, trained with early-stopping to avoid over-fitting,
weighted by their relative cross-validation losses.

4.2.3 Initialization: pre-training

As described in §4.2.3, in cases where an approximate sampling
distribution p(t|@) is available, this can be exploited to pre-train
the NDEs to sensible starting points from which they can quickly
morph to the target when subsequently fed a small number of sim-
ulations. This pre-training step can be straightforwardly performed
in pYDELFI by feeding in a pre-training dataset of parameter-data
summary-log density triplets {0, t,In p} (cf §4.2.3), generated (by
the user) from the prior and approximate sampling distribution.
If the data summaries are pseudo maximum-likelihood estimators
(from either score or IMNN compression) and a Fisher matrix is

provided, The pre-training data are discarded after the initialization
of the NDEs, before training on simulations in the usual way.

If no good approximate starting point is available, the network
weights are initialized randomly by default.

4.3 Active learning
4.3.1 Sequential neural likelihood

We implement SNL as outlined in Algorithm 1. The user can specify
an initial proposal for running the first batch of simulations. After
each round of training, we draw new parameters for simulating from
an updated proposal, g(6) = /p(0|t,)7(@) — the geometric mean of
the prior 7 and the current posterior approximation p (inspired by
Alsing et al. 2018a).

During each simulation acquisition batch, simulations are run
in parallel with MPI. The number of simulations per batch is chosen
by the user.

4.3.2  Bayesian optimization

We implement active learning with Bayesian optimization as de-
scribed in Algorithm 2. The implemented acquisition function is
the estimated posterior variance, calculated from the ensemble of
NDEs; bespoke acquisition functions can be implemented by the
user if needed.

Whilst simulations can be acquired one-by-one in this set-up,
where parallel computing is available it is typically desirable to run
many simulations concurrently. Therefore, pYDELFI runs batches of
simulations in parallel (with MPI) at each derived acquisition point
as default.

4.4 Data compression

PYDELFI comes with classes for approximate-score compression for
common exponential family data-distributions. Where expectation
values, covariances, derivatives, etc., need to be estimated from
forward simulations, these are run in parallel with MPI as standard,
otherwise pre-computed or analytical approximations can be fed
in. For IMNN compression, a public implementation is available at
https://github.com/tomcharnock/IMNN.

PYDELFI has the flexibility to take any (or no) compression
scheme; bespoke compression schemes can be straightforwardly
defined by the user and fed into PYDELFI.

5 CASE STUDY I (VALIDATION): JLA SUPERNOVAE
ANALYSIS

Supernova data analysis is an interesting opportunity for likelihood-
free methods, since the data are impacted by a number of systematic
biases and selection effects that need to be carefully accounted for to
obtain robust cosmological parameter constraints. Whilst progress
has been made recently in developing Bayesian hierarchical models
(BHMs) that attempt to carefully treat these effects (Mandel et al.
2009; March et al. 2011; Rubin et al. 2015; Shariff et al. 2016;
Roberts et al. 2017; Hinton et al. 2018), likelihood-free methods
have the advantage that the forward model complexity is unfet-
tered by practical limitations of implementing and sampling high-
dimensional BHMs.

As a validation test, we perform a simple analysis of the JLA
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data (Betoule et al. 2014) under assumptions that allow us to com-
pare against an exact known likelihood. The set-up is identical to
Alsing et al. (2018b), which we review briefly below.

5.1 JLA data and model

The JLA sample is comprised of 740 type la supernovae with es-
timated apparent magnitudes mpg, redshifts z, color at maximum-
brightness C and stretch X; parameters. We take the data vec-
tor to be the vector of estimated apparent magnitudes d =
(n%llg, n%lzg, .. .,rhél ), where uncertainties in z, C and X; are implic-
itly accounted for in the covariance matrix (see Betoule et al. 2014,
also Figure 4).

We take the expected apparent magnitudes of type Ia super-
novae to be given by (Tripp 1998),

D} (z:6)

-aX c
10pc ] aXi+p

mp = 5logy [
+ Mg + M O(Meiiar ~ 10'°Mo) - (15)
where DE is the luminosity distance (at reference 4 = 1), 8 are
the cosmological parameters (see below), @ and g are calibration
parameters for the stretch and color, and Mg and 6 M characterize
the host stellar-mass dependent reference absolute magnitude. ® is
the Heaviside function.
We assume a flat wCDM cosmology parameterized by matter
density Qp, and dark energy equation-of-state p/p = wy.

5.2 Simulations

For this validation case, simulations are just draws from the (exact)
Gaussian sampling distribution of the data, ie., drawing Gaussian
data from Eq. (16).

5.3 Data compression

For this validation case we assume the data are Gaussian,

Inpdig) = ~5(@ - u(@) €@~ p(g) - 3hICL (1)

with mean given by Eq. (15), and we assume a fixed covariance
matrix from Betoule et al. (2014) (see also Alsing et al. 2018b for
details of the covariance matrix).

For data compression, we use the score of the Gaussian likeli-
hood:

t=VoL.=Vip,C'@-p,), a7

l

where ‘+’ indicates evaluation at fiducial parameters 6. =
(0.202, —0.748, —19.04, 0.126, 2.644, —0.0525) 8

8 Found in a few iterations of the pseudo maximum-likelihood estimator,
Eq. (13).
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5.4 Priors

We assume broad Gaussian priors on the parameters 6 =
(Qm, wy, @, B, Mg, 6 M) with mean and covariance:

up = (0.3, =0.75, —19.05, 0.125, 2.6, —0.05),

042 —024 0 0 0 0
-0.24 0752 0 0 0 0
0 0 0.12 0 0 0
Cr = 0 0 0 0025 0 o | U¥
0 0 0 0 0252 0
0 0 0 0 0 0.05%

with additional hard prior boundaries on Qn € [0,0.6] and wq €
[-1.5,0].

5.5 DELFI set-up

We ran DELFI using the SNL active learning scheme as described
in §4. An ensemble of six NDEs was used: five MDNs with 1-5
Gaussian components respectively, each with two hidden layers of
50 hidden units, and a MAF containing five MADESs, each with
two hidden layers of 50 units. We use tanh activation functions
throughout.

Simulations were run in batches of 250 after an initial Fisher
pre-training step to initialize the network ensemble.

5.6 Results

Fig. 5 (inset) shows the convergence of the DELFI NDE-ensemble
as a function of the number of simulations. Convergence is achieved
after O(10%) simulations. This is a substantial improvement on the
20,000 simulation requirement reported for the same problem in
Alsing etal. (2018b). This also represents a substantial improvement
over the Bayesian optimization likelihood-free inference (BOLFI)
approach presented in Leclercq (2018). That work reported 6000
simulations were required for the same toy JLA analysis problem
(but only inferring two parameters, with the other four implicitly
marginalized over). The BOLFI approach implemented in that work
also requires much stronger assumptions about the sampling distri-
bution of the data, implicitly assuming that the data are Gaussian
with a known covariance matrix but unknown mean (although less
restrictive implementations of BOLFI are possible; Gutmann &
Corander 2016).

Fig. 5 shows the recovered DELFI posterior after 1000 simula-
tions (red), against a long-run MCMC chain for validation (black).
The DELFI and MCMC posteriors are in excellent agreement.

For this case study, pre-training the networks took ~minutes
per NDE, after which subsequent SNL training rounds took tens
of seconds per NDE (on a 3GHz Intel Core i7 processor). Since
the simulations are inexpensive in this simple case, the cost of
performing DELFI was dominated by training the networks and
sampling intermediate proposal densities.

5.7 Discussion

This simple validation case gives insight into the relative perfor-
mance of DELFI and MCMC sampling for simple problems where
the sampling distribution of the data is known, and the likelihood
can be evaluated exactly for given model parameters. In the JLA
example above, DELFI was well converged after O(10%) forward
simulations (which are of the same cost as likelihood evaluation
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Figure 4. Left: Measured apparent magnitudes (with uncertainties) against their measured redshifts for the JLA supernova sample. Right: Covariance matrix

corresponding to the observed apparent magnitudes.

for this case), while MCMC sampling typically requires one or two
orders-of-magnitude more likelihood calls to give well-converged
chains. Since training neural density estimators on small training
sets is computationally inexpensive, in the many cases where the
cost of DELFI is dominated by making draws from p(d|@) DELFI
offers a fast and accurate alternative to MCMC sampling, giving
orders of magnitude speed-up for typical ~ 6 parameter problems
with expensive likeihoods (ie., when the cost of likelihood evalua-
tions/simulations dominate over the cost of training the networks).
The number of simulations required for DELFI to converge for these
known-likelihood problems can be further reduced by training an
NDE that corresponds to the known data sampling distribution, eg.,
a Gaussian with parameter-dependent mean and fixed covariance
matrix for this particular validation case.

The performance gain of DELFI over MCMC for these known-
likelihood inference problems is due in part to the data compression
step, turning the inference task into a low-dimensional conditional
density estimation task. For unimodal likelihoods, the score pro-
vides asymptotically optimal compressed summaries and is readily
available, and application of DELFI as a replacement for MCMC
is straightforward. However, for multimodal likelihoods, more care
must be taken in defining approximately sufficient statistics for the
problem at hand.

6 CASE STUDY II: TOMOGRAPHIC COSMIC SHEAR
PSEUDO-C, ANALYSIS

Cosmic shear data are well suited to likelihood-free analyses, con-
taining a large number of effects that may be simulated (to varying
degrees) but are challenging to build into an accurate likelihood
function. Non-linear physics and baryonic feedback (Rudd et al.
2008; Harnois-Déraps et al. 2015), intrinsic alignments (Joachimi
et al. 2015), shape and photo-z measurement systematics (Massey
etal. 2012; Mandelbaum 2018; Salvato et al. 2018), image blending
(Mandelbaum 2018), reduced shear corrections (Krause & Hirata
2010), non-trivial non-Gaussian sampling distributions for common
summary statistics (Sellentin et al. 2018), the redshift-dependent
source galaxy population model (Kannawadi et al. 2018), etc., all
have the potential to bias parameter inferences if not carefully ac-
counted for. As well as promising more principled inference, LFI
may also open up the possibility to extract extra information from

non-standard lensing observables (eg., magnification Hildebrandt
et al. 2009; van Waerbeke 2010; Hildebrandt et al. 2013; Duncan
etal. 2013; Heavens et al. 2013; Alsing et al. 2015a) and non-linear
scales via, eg., peak counts (Kratochvil et al. 2010; Fluri et al.
2018b), bispectrum (Cooray & Hu 2001) etc.

For this simple demonstration, we perform cosmological pa-
rameter inference from tomographic shear pseudo-Cps for a Euclid-
like survey. We focus on the large-scales where the pseudo-Cy likeli-
hood is intractable and standard Gaussian likelihood approximations
are expected to break down.

6.1 Tomographic shear data and model

As light from distant galaxies propagates through the Universe on its
way to us, it gets gravitationally lensed by the intervening large-scale
structure, imprinting a coherent distortion on the galaxy images
observed on the sky. This coherent lensing distortion field provides
a unique probe of both the evolution of the 3D matter distribution,
and geometry of the Universe via the distance-redshift relation.
In particular, the observed shapes of galaxies are modified by the
lensing “cosmic shear" fields, with their ellipticities € picking up an
additive distortion (in the weak lensing limit):

€= €int + 7, (19)

where € is the unobserved intrinsic (unlensed) ellipticity, and y
is the additional shear due to gravitational lensing. The statistical
properties of the shear field y provide a sensitive probe of cosmology
(see eg., Kilbinger 2015 for a review).

A weak lensing survey involves measuring the shapes, redshifts
and angular positions on the sky of a large number of galaxies, which
are then used to constrain cosmological parameters by eliciting the
statistics of the cosmic shear signal in the data. We will take our data
vector to be a set of (pixelized) shear maps estimated from a lensing
survey d = (yD, 4@y with galaxies grouped into ny
tomographic redshift bins (based on their estimated redshifts). The
estimated shear in a given tomographic bin o and pixel p is taken
to be:

= > &Ny, (20)
ie(p,a)

ie., the average estimated ellipticity of the NV, ;,a) galaxies in that pixel.
The unknown intrinsic ellipticities are assumed to be zero mean
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Figure 5. 68 and 95% credible regions of the 2D projections of the inferred posteriors for the JLA supernovae analysis, from a long-run MCMC chain (black)
and DELFI from 1000 forward simulations (red). The posteriors from DELFI (after just 1000 simulations) and the long-run MCMC chain are in excellent

agreement.

random variates with standard deviation o7, giving Gaussian “shape
noise" a'l(,a) = 0 /VN@ on each pixel (in the limit of many galaxies
per pixel). The shape noise will invariably be anisotropic due to
varying number of sources per pixel, and maps will be substantially
masked due to incomplete sky coverage, masking around bright
sources in the survey etc.

Mock data for this case study are generated for a survey set-up
similar to the upcoming ESA Euclid survey (Laureijs et al. 2011)
(as described in §6.2), and are shown in Figure 6.

MNRAS 000, 1-20 (2017)

6.1.1 Tomographic shear power spectra

In this case study we will focus on extracting information from the
tomographic power spectra of the cosmic shear fields.

For a given (flat) cosmological model and parameters, the
predicted angular power spectra between tomographic redshift bins
a and B are given by9 (Kaiser 1992, 1998; Hu 1999, 2002; Takada

9 In the Limber approximation, (Limber 1954).
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& Jain 2004; Kitching et al. 2017),

Drp= % wamw;;(x)[l+z<x>]2Pa(§;z<x)), @

with comoving distance-redshift relation y(z), matter power spec-
trum Pgs(k x), and lensing weight functions given by

’

3QmH]
2

X

wa(x) = ) (22)

XH X -
X/ dy’ ne(x")=—;
X X
where no(y)dy = pa(z)dz is the redshift distribution for galaxies
in redshift bin @. Cosmological parameters enter in both the matter
power spectrum and distance-redshift relation. We will assume a

flat ACDM cosmology with parameters 6 = (0g, Qm, Qp, A, ng).

6.2 Simulations
The simulations for this demonstration proceed as follows:

(i) Simulate a Gaussian random shear field on tomographic slices
(in healpix pixelization (Gorski et al. 2005) with ngjge = 128, fmax =
3ngige—1 = 383), with auto- and cross- power spectra corresponding
to the input cosmology € (cf., Eq. 21).

(ii) Add (anisotropic) shape noise to the healpix maps.

(iii) Apply Euclid-like mask (footprint and star-mask; Figure 6).

(iv) Compute tomographic pseudo-Cy auto- and cross- band
powers from the noisy tomographic maps.

We assume a survey set-up similar to the upcoming ESA Euclid sur-
vey (Laureijs etal. 2011): 15, 000 square degrees with a mean galaxy
number density of 77 = 30 arcmin ™2, an overall galaxy redshift dis-
tribution n(z) « z2exp [—(1.4lz/zm)]'5] with a median z,;, = 0.9,
Gaussian photo-z errors with standard deviation o, = 0.05% (1 +z),
and five tomographic bins with equal mean galaxy number density
per bin. Modes are binned into ten log-spaced bands between £ = 10
and ¢ = 383.

For the shape noise, we add zero-mean Gaussian noise to each
pixel with variance 0'3 /N, (0 , where o = 0.3 and N, is the number
of galaxies in pixel p, tomographic bin i. Galaxies are Poisson
distributed among pixels according to the mean number density per
tomographic slice to give realistic, anisotropic shape noise.

The mock data for this demonstration are simulated following
the procedure above, assuming a Planck 2018 cosmology (Aghanim
et al. 2018): og = 0.811, Qy = 0.315, Qp = 0.049, & = 0.674 and
ng = 0.965, wo = —1.03.

6.3 Data compression

We compress the noisy, masked tomographic shear maps down in
two steps. First, we compute from the maps a set of tomographic
auto- and cross- angular pseudo-C, band powers, for K £-bands and
n; tomographic bins:

& = (681,117 681,125 R éBl,nZnZ, éBz,]], D] éfBK,nz,n:) (23)
where
4 R .
Coij= p, » apalr 4)
(eBy m=—C

and {d;’l} are the E-mode spherical harmonic coefficients of the
noisy, masked, tomographic shear maps. Note that in the likelihood-
free framework, there is no need to deconvolve the mask or subtract

the noise bias from the estimated band powers; these are all taken
care of (exactly) in the forward simulations.

Secondly, we compress the tomographic band powers d as-
suming they are approximately Gaussian distributed (ie., MOPED
compression Heavens et al. 2000), giving compressed summaries:

t=VoL. = Vyu.C '@~ p), (25)

taking fiducial parameters (08, Qm, Qp, h, ng) =
(0.8,0.3,0.05,0.7,0.96) for performing the compression. We
estimate the covariance and mean by running 103 forward simula-
tions. The derivatives are estimated as a forward difference using
100 pairs of simulations per parameter, with matched random
seeds to suppress sample variance, and step sizes of 5% for
each parameter respectively. The extra simulation burden here
could easily be eliminated by using analytical models for the
mean (masked) band powers and covariance matrix in place of
Monte Carlo estimates (we use Monte Carlo estimates here for
convenience reasons only).

Note that the requirements on the accuracy of the mean, co-
variance and derivatives used for the data compression are much
less onerous than for an approximate Gaussian likelihood-based
analysis: any errors in these estimated quantities can only lead to
sub-optimality in the compression, in contrast to a likelihood-based
analysis where errors/incorrect-assumptions can bias parameter in-
ferences.

Since the pseudo-Cys are not expected to be exactly Gaussian
distributed (particularly at low £), the second compression step may
lose a small amount of information.

6.4 Priors

We assume broad independent Gaussian priors over 6 =
(08, Qm, Qy, h, ng) with means pg = (0.8,0.3,0.05,0.7,0.96), stan-
dard deviations o9 = (0.3,0.3,0.1,0.3,0.3), and hard parameter
limits og € [0.4,1.2], Qny € [0, 1], Qp € [0,0.3], & € [0.4,1], and
ns € [0.7,1.3].

6.5 DELFI set-up

We ran DELFI using the SNL active leaning scheme described in §4.
An ensemble of six NDEs was used: five MDNs with 1-5 Gaussian
components respectively, each with two hidden layers of 50 hidden
units, and a MAF containing five MADEs, each with two hidden
layers of 50 units. We use tanh activation functions throughout.

Simulations were run in batches of 200 after an initial Fisher
pre-training step to initialize the network ensemble. We note that
for this case study, the computational cost of training the NDE:s is
small compared to the cost of running simulations (which in this
case is dominated by the spherical-harmonic transforms).

6.6 Results

Figure 7 (inset) shows the convergence of the DELFI NDE-ensemble
as a function of the number of forward simulations; convergence is
achieved after O(10%) forward simulations. Figure 7 shows that the
input cosmological parameters are well recovered (within uncer-
tainties).

For this case study, pre-training the networks took ~minutes
per NDE, after which subsequent SNL training rounds took tens
of seconds per NDE (on a 3GHz Intel Core i7). Simulations took
a few seconds each, so already for these only modestly expensive

MNRAS 000, 1-20 (2017)
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Figure 6. Schematic of the mock tomographic cosmic shear data. Top: realization of Gaussian tomographic cosmic shear fields (generated for the fiducial
cosmology). The two components of the complex, spin-2 shear field are shown: y = y; + iy,. Bottom: the realized maps but with shape noise and mask
added. The shape noise levels and mask are taken for a Euclid-like survey. The maps are subsequently compressed down to a small set of summary statistics
in two steps: firstly, maps are compressed to auto- and cross- angular (E-mode) power spectra, and these power spectra are then further compressed using

approximate-score compression (§6.3).

simulations the total cost of performing DELFI was dominated by
running the simulations rather than training the neural networks.

6.7 Discussion

The forward modelling assumptions described above are the same
as those used in hierarchical modelling approaches to cosmic shear
parameter inference (Alsing et al. 2015b, 2016); even in this simple
demonstration we could make certain more principled assumptions
about the statistical model for the data than standard Gaussian-
likelihood cosmic shear analyses with relative ease. While the
Bayesian hierarchical approach samples the likelihood of the noisy
map data and infers the tomographic shear fields explicitly as a
by-product, the likelihood-free approach analyzes the compressed
data and implicitly marginalizes over the latent shear maps, target-
ing the posterior distribution of the cosmological parameters only.
In this context, the likelihood-free analysis can be viewed as a fast
alternative to sampling a full hierarchical model, with the caveat
that some information may be lost in the data compression step(s).
However, the likelihood-free framework will allow us to extend the
forward model to describe the data at the catalog or image level —
complexity that would quickly become intractable for hierarchical
modelling approaches.

In this simple demonstration we made the simplifying assump-
tions of Gaussian shear fields and considered power spectra only in
the first-level compression step. This can naturally be extended to
non-Gaussian lensing simulations, and higher-order statistics added
to the list of first-level summaries.

MNRAS 000, 1-20 (2017)

7 CASE STUDY III: IONIZING BACKGROUND FROM
HIGH-Z LYMAN-o FORESTS

The Lyman-a (Lya) forest at z ~ 6 measured from high redshift
quasar spectra probes the ionizing background and thermal state
of the intergalactic medium (IGM) around the end of the epoch of
reionization (see McQuinn 2016 for a review). At these redshifts,
the Universe is largely opaque to Lya; the forest is characterized by
narrow Lya transmission spikes corresponding to small, low den-
sity regions (Oh & Furlanetto 2005), separated by extended Gunn-
Peterson troughs (Gunn & Peterson 1965) where Lya is completely
absorbed (see Figure 8). The transmitted fraction of the quasar flux is
given by F = e” e, where the optical depth 71y, T‘O'7Ai /THr
depends on the temperature 7, gas density A, and HI ionization
rate I'yp. The statistics of the Ly transmission spikes can hence
be used to constrain the ionization rate (and thermal state), but the
likelihood function for the observed flux transmission is intractable;
likelihood-free inference is required to draw principled inferences
from these data. For a recent application of ABC in this context, see
Davies et al. (2017).

In this demonstration we will show how DELFI can be used
to infer the ionization rate 'y from observed segments of Ly« for-
est at z ~ 6, using hydrodynamical simulations to forward model
the Lya transmission. In this toy demonstration we will recover
the HI ionization rate assuming a uniform ionizing background,
fixed thermal state and consider Lye only. However, we highlight
that likelihood-free methods offer exciting new prospects for con-
straining poorly understood inhomogeneous reionization processes
and thermal histories from high-z Lya and Lyg forest observations
(Davies & Furlanetto 2016; D’Aloisio et al. 2017; Davies et al.
2017).
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Figure 7. 68 and 95% credible regions of the 2D projections of the inferred DELFI posterior after 1000 simulations, for the cosmic shear tomographic
pseudo-Cy case study. Input parameters (black crosses) are well recovered, within uncertainties.

7.1 Data and simulations

We simulate mock Ly« forest segments for a given ionization rate
I'yr using the Sherwood hydrodynamical simulation suite (Bolton
et al. 2016), as follows:

(i) Generate a random skewer through a z = 6 snapshot of a
40Mpc/h hydro-simulation box (from the Sherwood suite), ran with
a fiducial ionization rate F]fn =256-1083slatz =6 (see
Bolton et al. 2016 for details of the Sherwood simulation set-up).
The HI fraction is computed in (2048) cells along the line-of-sight,
assuming ionization equilibrium, and the resulting Lya transmission

fraction F calculated (including the effects of peculiar motions and
thermal broadening).

(ii) The transmission flux F is then re-scaled by e Ta/Thr o
impose the ionization rate we want to simulate. Note that in this
simple demonstration we are fixing the instantaneous temperature
and thermal history to their default values from the Sherwood suite,
and also neglect large-scale fluctuations in I'yy that are expected to
arise from inhomogeneous reionization.

(iii) Add zero mean Gaussian noise to the flux values, with stan-
dard deviation o = 0.01.

Mock data are generated from the above simulation pipeline with
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noisy realization
—— noiseless transmission spikes

continuum normalized flux, F
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Figure 8. Typical example of Ly« forest transmission spikes at z ~ 6 (red)
spanning comoving distance 40M pc/h, and the same forest segment with
observational noise added.

a fiducial ionization rate I';;; = 2.56 - 10713571 show in Figure 8.
The same pipeline is then used to generate forward simulations for

inferring I'yy from those data using DELFI.

7.2 Data compression

In this simple demonstration we compress the flux data-vector in
two stages: First, we compute fifty percentiles of the 2048 flux
values, from 2 to 100 in steps of 2%. This is motivated by the notion
that the most of the information about the ionization rate should be
contained in the PDF of the flux values, which can be conveniently
summarized by a set of percentiles.

We then compress the vector of percentiles down to a single
summary statistic for ['yy using an IMNN. We use a fully-connected
network with three dense layers with 128, 64 and 32 hidden units
respectively, and leaky-ReLu activation functions with activation
parameter arery = 0.01. For the training set we use 5000 sim-
ulations at the fiducial I, and an additional 5000 random-seed

HI’
matched simulation pairs with I'yy = I“;_‘H +1-10713 for the deriva-
tives!0.
7.3 Priors

We take a uniform prior I'yy € [0, 6- 10_13] s7L

7.4 DELFI set-up

We ran DELFI using the SNL active learning scheme. We use an
ensemble of five neural density estimators: five MDNs with 1—
5 Gaussian components respectively, each with two hidden layers
of 30 hidden units, and again we use tanh activations throughout.
Simulations were run in batches of 100 for the SNL scheme, after
an initial Fisher pre-training step to initialize the networks (using
on the estimated Fisher matrix from the IMNN compression).
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7.5 Results

In Figure 9 (left) shows the recovered posterior on the ionization
rate ['gy; the input value (red dashed vertical line) is well recovered.
We find the DELFI ensemble of neural density estimators converges
extremely fast in this case, after only O(102) simulations (Figure 9;
right).

8 CONCLUSIONS AND DISCUSSION

Density-estimation likelihood-free inference (DELFI) implemented
using NDEs to learn the sampling distribution of the data (sum-
maries) as a function of the model parameters, and adaptively
acquiring simulations with active learning, provides an efficient
framework for likelihood-free inference in cosmology. When com-
bined with massive data compression, high-fidelity posteriors may
be achieved from just O(103) forward simulations for typical ~ 6 pa-
rameter inference tasks. Advances in nuisance-parameter hardened
data compression mean that this expected performance may be pre-
served irrespective of the presence or number of additional nuisance
parameters that need to be marginalized over (Alsing & Wandelt
2018a). Even without data compression, DELFI with NDEs and ac-
tive learning provides a state-of-the-art framework for simulation-
based inference (although more simulations will be required for
larger, uncompressed data vectors).

We have introduced PYDELFI — a general purpose implemen-
tation of DELFI with NDEs and active learning (and data com-
pression) — available with tutorials and documentation at https:
//github.com/justinalsing/pydelfi. PYDELFI opens up new
possibilities for likelihood-free analyses of complex cosmological
data sets, using rich generative models containing physical and
observational effects that would otherwise be challenging or im-
possible to include accurately into a traditional likelihood-based
analysis.

For standard inference tasks where the form of the likelihood-
function can be assumed known, we note that PYDELFI can actually
be faster (and more accurate for given resources) than MCMC sam-
pling. By turning the inference problem into a low-dimensional
density-estimation task, DELFI effectively builds a fast neural net-
work emulator for the likelihood-function, in a similar spirit to vari-
ational inference. We have shown that this can converge quickly,
after just 0(103) simulations for typical problems, which are typ-
ically similar in cost to likelihood evaluations (for simple likeli-
hoods). Meanwhile, MCMC methods would typically require many
more likelihood calls to yield well sampled posteriors, for the same
number of model parameters. The number of simulations to attain
convergence for DELFI in these simple cases may be minimized by
using neural density estimators that correspond exactly to the form
of the known likelihood, eg., a Gaussian with parameter dependent
mean and fixed covariance matrix.

An emerging trend in cosmology is to build emulators for sum-
mary statistics for which no robust analytical model exists, such as
the non-linear matter power spectrum on small scales (Heitmann
etal. 2013), 21cm power spectrum (Schmit & Pritchard 2017; Kern

10 Note that given a hydrosimulation box, generating realizations of Ly
segments by taking skewers through the box is relatively inexpensive. We
therefore made no attempt to reduce/optimize the number of simulations
needed to train the IMNN in this case study. We leave detailed exploration
of optimal compression of Lya forsets (eg., without pre-compression to
percentiles, optimal IMNN architectures, etc) to future work.
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Figure 9. Left: Recovered posterior for the (z = 6) HI ionization rate from the high-z Lya forest, from DELFI after 300 simulations (mock data shown in
Figure 8). Right: Convergence of the DELFI NDE ensemble for the ionizing background inference task. The DELFI ensemble of NDEs converges extremely

quickly in this low-dimensional case, after only O(10?) simulations.

et al. 2017), Lyman-a power spectrum (Rogers et al. 2018; Bird
et al. 2018), weak lensing Minkowski functionals (Marques et al.
2018), and many others. DELFI has a deep connection to emula-
tion methods. Emulators in cosmology have been mostly concerned
with learning the expectation value of some summary statistics as
a function of the model parameters, which would then typically
be plugged into a standard Gaussian likelihood analysis with an
estimated covariance matrix. DELFI goes further and builds an em-
ulator for the sampling distribution of the summary statistics, as a
function of the model parameters, thereby addressing the expecta-
tion emulation and inference tasks in one go and without resorting
to restrictive or ad hoc likelihood assumptions in the inference step.

Likelihood-free inference also has a deep connection to
Bayesian hierarchical modelling (BHM) approaches to cosmolog-
ical data analysis. BHMs specify a generative model for the data,
which in turn defines a joint likelihood for the hyper-parameters
(eg., cosmological and global nuisance parameters) and some latent
variables (for example, initial potential fluctuations, true properties
and redshifts of individual objects in a survey, etc). These typically
high-dimensional likelihoods are then sampled using MCMC (or
otherwise), and inference of both the hyper-parameters and latent-
variables reported. BHMs and likelihood-free methods are of the
same spirit in that they both aim to do inference under as complete
a generative model description for the data as possible. However,
sampling high-dimensional BHMs for complex forward models is
hard and computationally intensive work, and there are often lim-
itations on how rich the implemented models can be in practice.
Here likelihood-free methods have a clear advantage over BHMs;
simulating forwards is much easier than solving the inverse problem
with MCMC sampling or otherwise, and adding extra complexity
to the forward model has virtually no impact on the difficulty of
the inference task for likelihood-free methods (other than any added
cost of running simulations). On the other hand, while likelihood-
free methods may rely on data compression to be tractable for
high-dimensional data vectors and expensive simulators, sampling
methods can target the posterior for the uncompressed data directly
and yield inferences of the latent variables as a (potentially useful)
by-product.

By relying entirely on forward simulations, the likelihood-free
approach marks a shift in the way observational cosmology is done
in practice. The scientific effort is reduced to: (1) taking data, (2)

building as faithful a forward model and simulation pipeline as pos-
sible for those data, and (3) if necessary, devising some data com-
pression scheme to reduce the number of simulations required to
achieve accurate posteriors with LFI. Activities that typically make
up a large part of traditional cosmological data analysis efforts—
constructing and calibrating intermediate estimators, building and
validating approximate likelihoods, computing accurate covariance
matrices, efc.—no longer enter into the critical path!! of scientific
reasoning (although they may still be relevant for optimal data com-
pression, but without the same onerous requirements on accuracy
as for likelihood-based methods). All critical assumptions under-
pinning the analysis are then concisely and completely summarized
by the forward model specification; this makes for robust science,
and clear and simple scientific reporting.
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