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a b s t r a c t

Given the huge advances in tomographic imaging capability in recent years, image analysis has
become a powerful means of measuring transport and structural properties of porous materials.
One of the most important material characteristics is the tortuosity, which is difficult to measure
experimentally. We present pytrax: (tortuosity from random axial movements) a simple and efficient
random walk method implemented in python to calculate the average tortuosity and orthogonal
directional tortuosity components of an image. The code works for both two and three-dimensional
images and completes a statistically significant number of walks in parallel for large images in a few
minutes using a standard desktop computer. By comparison, a Lattice Boltzmann or finite element
simulation on similar sized images can take several hours.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current Code version 0.1.2
Permanent link to code / repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX-D-18-00011
Legal Code License MIT
Code Versioning system used git
Software Code Language used python
Compilation requirements, Operating environments & dependencies The Anaconda python distribution is recommended which provides all dependencies. In

addition porespy is recommended for use of export function and image generation
https://github.com/PMEAL/porespy. Both packages can be found on pip

If available Link to developer documentation / manual http://pytrax.readthedocs.io/en/latest/
Support email for questions t.g.tranter@gmail.com

1. Motivation and significance

The study of transport in porous media cuts across a vast range
of disciplines: from medicine, biology and the earth sciences
to electrochemistry and microfluidics. All of these applications
wish to know the transport properties of the porous structures,
as these dictate some aspect of the final performance. There
have been a wide range of experimental techniques applied to
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obtain this information, but they are often quite challenging to
implement, particularly for thin or nanoscale materials found
in many modern devices (i.e. electrodes). The advent of ubiq-
uitous X-ray tomography equipment has changed this dynamic
immensely. It is now possible to obtain a tomographic image of
a material in a matter of hours (or seconds at a synchrotron),
with resolutions as small as 30 nm per voxel. With such images
available it becomes possible to probe the transport properties
of materials by conducting direct numerical simulations using
tools such as the Lattice Boltzmann method (LBM) directly on
the images. Alternatively images can be used as the basis for
constructing a mesh representation of the material and using a
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finite element, or finite volume method. These approaches solve
the Navier–Stokes (NS) equations in discretized form, or in the
case of LBM Hermitian form, and depending on the size of the
domain and resolution of the mesh/image, may take hours or
even weeks to solve if the problem is transient. The growing
prominence and increasing resolution of tomographic scanning
devices now means that with increasing amounts of data, the
analysis of the images produced actually presents a significant
bottle-neck to the overall scientific process.

Along with porosity, which is trivial to calculate from an im-
age, tortuosity is an important parameter for predicting transport
behaviour in porous media and is often used in constitutive rela-
tions [1]. Ideally, we like to imagine that tortuosity is a material
property that indicates the connectivity, and general shape of the
void space. One definition of tortuosity is ‘‘the increased path
length taken by flow through porous media due to obstacles’’.
However, the observed increase depends on the type of flow.
Pressure driven hydraulic flow is more impeded by the presence
of small pores compared with diffusive flow due to the no-slip
condition at walls, giving rise to different values of tortuosity
depending on the transport mechanism at play, thus a general
definition is lacking [2]. Efforts to find relations between tor-
tuosity and porosity exist, such as the classic [3]: τ 2

= ε−1/2

and many other examples [1] have been made, but no generally
applicable relation exists due to the wide variety of geometrical
configurations found across porous media. The diffusive tortuos-
ity is generally the most widely applicable definition [4] and it
has been shown that this property can be calculated simply using
random walks [5,6].

The present work outlines a framework to address the prob-
lem of calculating tortuosity from an image. Comparisons to
diffusive flow can be made as the randomness of the walk is
intended to simulate Brownian motion and the tortuosity should
be thought of as the ratio of diffusivity in free space to the
diffusivity in the porous media [5]. For a simple walk with equal
and unbiased probability of movement in any direction, the mean
square displacement of the walkers follows a Gaussian distri-
bution. It can be shown that the one-dimensional PDF for the
location of a walker after time t is given by [7,8]:

p(x, t) =
1

√
4πDt

exp
(

−x2

4Dt

)
(1)

This is the fundamental solution of the diffusion equation
where D is the diffusion coefficient. Furthermore, the mean square
displacement (MSD) is shown to be:

MSD = E
(
X2
t

)
=

∫
∞

−∞

x2p (x, t) dx = 2Dt (2)

This generalizes in N dimensions to [8]:

E
(
R2
t

)
=

∫
∞

−∞

|x|2 p (x, t) dx

=

∫
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(x21 + · · · + x2N )p (x, t) dx1 . . . dxN = 2NDt (3)

Therefore, the contributions of movements in each direction
sum together and the MSD can be decomposed into N Axial
Square Displacements (ASD):

ASDi = E
(
X2
i,t

)
=

∫
∞

−∞

x2i p (xi, t) dx = 2Dit (4)

Therefore, given the general definition of tortuosity as the ratio
of MSD in free space and porous media [5] and the fact that MSD
increases linearly and directly proportional to time in open space.

We define the axial tortuosity component in each orthogonal
direction (i) as follows:

τi =
t
N

1
E

(
X2
i,t

) (5)

where the factor t/N comes from the fact that each axial move-
ment is independent and the probability of moving in any di-
rection is equal. In other words, the direction of travel for each
walker is restricted to the orthogonal axes and the approximate
time spent travelling along each axis is equal.

The main motivation behind this work is to provide a simple
and efficient method for calculating the tortuosity of an image
using random walks in a highly parallelized way. This is achieved
by calculating the reciprocal of the slope of the MSD and ASD vs.
time which would be unity in open space.

The reasons behind the emphasis on simplicity and efficiency
are two-fold and address the needs of two different target audi-
ences: The first group are experimentalists that are interested in
analysis of the image data that they collect and who may not be
coding specialists; writing the package in python keeps the code
readable and easily distributable. The other target audience are
computationally focused scientists who may be looking for a good
starting point to adapt the code. As we have already mentioned,
random walks have been used for a variety of different purposes.
We provide an ‘off-the-shelf’ solution for quick image analysis
on massive datasets that provides the mean tortuosity and axial
tortuosity which is very useful for anisotropic media. The pytrax
package is a small code-base and has much in-line documentation
with implementation of vectorized array indexing and parallel
processing making it perfect for extensible use.

2. Software description

The RandomWalk class contains less than 650 lines of code,
over half of which is comprised of comments and methods to
export or show the data in various formats. The main python
package used is Numpy [9], which along with Scipy [10] forms the
number one tool for scientific computing in python. This is pri-
marily because these packages implement highly efficient C-code
behind the scenes, providing that the function calls make use of
vectorization. The algorithm parallelizes very well for increasing
numbers of walkers as each walk can be entirely computed in
a concurrent fashion as the individual walker movements are
independent of any other. For analysis of large images, it is better
to increase the number of walkers rather than the number of
time steps as the simulation will complete more quickly and the
results will be similar.

2.1. Random walk rules

A thresholded image of dimension (nd) is required to run the
program which should be of integer format, the package assumes
that 0 represents the solid space and 1 represents the pore space
accessible to the walkers. A designated number of walkers (nw)
are given randomly assigned starting coordinates inside the pore
space by default but can be set to have the same or different
starting positions. It is better to start them in different places
to probe the whole image in fewer steps. Then a designated
number of steps (nt) are taken by each walker in parallel. It is
assumed that all walkers travel at the same speed and that time is
discrete, although it would be fairly simple to record continuous
time-steps.

Rules govern the completion of each step: It is assumed that
walkers may not enter the solid phase, although for certain simu-
lations this could be possible for example intra-diffusion through
multiple fluid phases, adsorption, heat transfer, abstract phase
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Fig. 1. Open Space (a) all walkers, (b) longest walk, (c) mean and axial square displacement vs time with movement in each axis equal and tau = 1.
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Table 1
Simulation parameters for each example.
Example Number of walkers Number of time steps

Open space 10,000 10,000
Sierpinski carpet 1,000,000 2500
Tau 1000 20,000
Cylinder packs 10,000 10,000

space exploration to name a few. Walkers are considered to
move from unit cell (pixel/voxel) centre to adjacent cell centre
in one time step and may only move in orthogonal directions.
Diagonal movement involving more than one axis would compli-
cate the axial tortuosity calculation and studies using the Lattice
Boltzmann method to simulate diffusion have found that or-
thogonal movement is sufficient to produce results with good
accuracy [11]. A walker that at time t is adjacent to a solid unit
and whose random movement would take it into the solid phase
will be returned to its original position at the next step. A walker
effectively travels half a unit cell, is reflected, and travels back
again when hitting a solid.

Special consideration must be given to walkers that reach the
edge or boundary of an image. It is assumed that images are
subsections of some larger space, so upon reaching the image
boundary, the walker must not be confined within the image
boundaries or else the walks would become artificially confined
and tortuosity would be overestimated as the MSD would have
an upper limit. Confining walkers is not a faithful representation
of the transport dynamics through the material as a whole, upon
which constitutive relations are based. To address this issue, the
trajectories of the walkers passing through the boundaries are
considered to take place in reality and such walkers have their
coordinates projected into a reflected image about the boundary
along the axis of travel that produced the reflection. This is
achieved quite simply by storing a reality array which is [nw×nd]
long and is initially filled with value 1. When a walker passes
through a boundary the value in the reality array corresponding
to that walker and that axis of travel is switched to −1 and
all updates to the coordinate from further random movements
are multiplied by the reality array. The next time the walker
passes through a boundary along this particular axis, whether
it is the same or opposite side, the sign of the vector com-
ponent is switched again. The walkers can be thought of as
travelling through a tessellation of real and mirrored images and
the plot_walk_2d function in pytrax enables visualization of this
for 2D images (all examples pictured in 2D are combinations of
real and mirrored images). The same scenario happens in 3D and
each axis can be treated completely independently as movements
are restricted to happen along one axis at a time during each
step. However, for visualization in 3D the ‘export_walk’ function is
provided and the generated files ‘.vti’ for the image and a series of
‘.vtu’ for the coordinates of each walker at each time-step, may
be visualized with Paraview using particle trace filters. To save
on memory, only the original image is exported in 3D. Should a
user prefer a random walk without reflection, they can simply
pad the image with solid unit cells to prevent the walker from
ever entering the reflected domain.

Once the walks are complete, an ensemble of coordinates is
available to calculate the mean square displacement vs. time. The
tortuosity is extracted by the inverse of the slope of the mean
square displacement which is calculated with linear regression
forcing the intercept through zero. The axial tortuosity can be
calculated similarly along each axis and then by multiplying the
result by the number of axes (Tau in the figure legends refers to
this mean or axial component of tortuosity). The chosen axis for
movement is uniformly random and so over the period of thou-
sands to millions of steps the number of steps taken along each

Fig. 2. Sierpinski Carpet (a) all walkers, (b) longest walk, (c) mean and axial
square displacement vs time, with all axial movements equal and tau greater
than 1.

axis is approximately equal. The displacement along each axis will
depend on the configuration of obstacles and for paths that are
more tortuous along a particular axis the walkers will hit more
walls and travel a shorter distance. It would be entirely possible
to bias the selection of the axis and also direction of movement
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Fig. 3. Space with tau-shaped obstacles: (a) all walkers, (b) longest walk, (c)
mean and axial square displacement vs time showing some anisotropy, finite
size effects and variation from insufficient number of walkers.

along a particular axis non-uniformly to simulate effects such as

gravity or magnetic fields if the walkers are to represent charged

particles. However, this extension is left for future work.

3. Provided examples

The following section provides four examples of the random
walk to determine the components of the tortuosity, the details
of which are provided in Table 1.

3.1. Open space

The simplest example is a random walk in open space. With-
out the presence of obstacles the walkers are free to move in
any direction unimpeded and their mean square displacement
increases linearly with time as per Equation (2). The image passed
to the simulation is an integer array of ones with shape [3, 3].
Fig. 1a shows the position of all the walkers at the final time
step with a circular shape simulating radial diffusion away from
a point source. Fig. 1b shows the longest walk where the mean
square displacement is the largest coloured by time, and Fig. 1c
shows the mean square displacement and axial displacement
in both principal directions. The displacement along each axis
is equal as one would expect from an isotropic image and the
slope of the curves are all equal to unity meaning that tortuosity
(1/slope) is also unity, in agreement with theory. Note that the
image size displayed is much larger than the original because the
real and reflected domains are visualized in 2D by default.

3.2. Sierpinski carpet

The second example is a fractal image known as the Sierpinski
Carpet which was generated by calling the following function
recursively:

The resulting image is isotropic and square with edge length 34
=

81 with a repeating pattern at four length scales where central
sections are designated as solid space. The results are similar to
the open space example and shown in Fig. 2. Here the full image
with real and reflected parts is shown with the original image at
the centre. The walkers travel far enough to escape the original
image and completely traverse the neighbouring reflected images
again so a second reflection occurs along each axis at the outer
boundaries. The presence of obstacles means that the MSD in-
creases less than in the open space over time and as the paths are
more tortuous, yet still equal in each direction due to the isotropy
of the image and uniformly random starting positions.

3.3. Space with tau-shaped obstacles

The third example uses an image of the Greek symbol tau
(commonly used to denote tortuosity) which is of size [400, 400].
This example illustrates the need to pick a significant number of
walkers and time-steps. The image is also somewhat anisotropic
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Fig. 4. A selection of walkers in a random cylinder pack (a) and aligned cylinder pack (b). MSD and ASD for random alignment (c) and axial alignment (d). Random
alignment is not perfectly isotropic and so some differences are observed in ASD. Clear differences are observable for the axis with aligned cylinders and higher
tortuosity for the other two axes.

with movement left and right being slightly easier than up and
down which manifests in differing axial displacements. The fitted
linear slopes are not such a good fit to the actual displacements
which follow a non-linear curve. This is because the image has
one large pattern giving a pore size comparable to the image size
and also comparable to the length of the walks. Fig. 3(a) and (b)
show that the walkers manage to escape the original image as the
domain is reflected about each axis. However, the MSD shown
in Fig. 3(c) is not straight or smooth. Increasing the number of
walkers would smoothen the displacement curves but the non-
linearity is a feature of the walkers not fully probing all areas
of the image a significant number of times. The image is not a
typical example of a porous material but demonstrates the need
for walks to be much larger than the average pore size.

3.4. Random and aligned cylinder packs

The final example compares two images of cylinder packs with
the same porosity but different alignment to show the effect of
anisotropy on the ASD. Both images are 3003 voxels in size and
contains 100 cylinders with a radius of 10 voxels that are oriented
in an isotropic and anisotropic fashion. Fig. 4a and b show the
walker positions with tracers coloured by time step at the end of
each simulation and were visualized with Paraview [12] with data
using the export_walk function. Fig. 4c and d shows the isotropic
and anisotropic axial displacements. The cylinders in the second
case are aligned along the first principal axis and consequently
the walkers have fewer obstacles to flow and the tortuosity is
lowest along this axis. In fact there are effectively no obstacles to
flow along this axis as the cylinders are perfectly aligned with the

walker direction giving an axial tortuosity very close to one. This
demonstrates that the method does in-fact probe the porosity
independent tortuosity and not the effective tortuosity obtained
by other methods which has porosity included.

4. Performance

To demonstrate the performance of the package a run_analytics
function is provided which takes lists of the number of walkers
and time steps then iterates through all combinations in turn,
recording the simulation time. A number of parallel processes to
compute over is also accepted as an argument and walkers are
divided into batches using python’s multiprocessing module. A
3D isotropic image of segmented random noise with side length
100 is used to demonstrate the performance of the package and
the results are shown in Fig. 5 for a single process and 5 and
10 parallel processors. The simulations were performed on a
desktop computer with an Intel R⃝ Xeon R⃝ CPU with two 2.76 GHz
processors with a total of 24 cores and 72.0 GB of RAM. The
results show that the single process outperforms the parallel
processors for simulation times around 10 s and less with few
time steps as there is some overhead for setting up the process
pool. However, for longer simulations with larger numbers of
walkers typical of the simulations needed to investigate modern
tomography images, the speed up in parallel processing is worth
the overhead as simulation times are reduced by a factor roughly
proportional to the number of processors. The simulation time
also scales linearly with the size of the image as shown in Fig. 6
with an image comprising over 100 million voxels completing
10,000 steps for 10,000 walkers in less than a minute using 10
processors.
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Fig. 5. Simulation times for 1003 voxel noisy image with various numbers of walkers (nw), time steps (nt) and parallel processes. Some overhead is introduced by
running parallel processing but the benefits pay-off significantly for larger images that require longer simulations and more walkers.

Fig. 6. Simulation times for 10,000 walkers and 10,000 steps for noisy image of 0.75 porosity applied to a series of domains of increasing size (largest 7003),
computed using 10 parallel processes.

5. Conclusion

We first present pytrax the open source python package for
calculating tortuosity of images by random axial movement. The
package is light-weight, simple and efficient and will allow the
fast calculation of the tortuosity in all principle directions of large
images in just a few minutes. The method employs a discrete time
unbiased random walk which is the most simple implementation
but is written in a modular fashion to allow easy extension. The
package should allow for fast analysis of large microstructural
datasets applicable to all sciences concerned with the study of
porous media.
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