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and non-zero parameters. The paper also gives conditions under which PML reduces the asymptotic 
mean-square estimation error of any continuously differentiable function of the model’s parameters.  The 
paper describes a method for computing PML estimates and presents the results of Monte Carlo 
experiments that illustrate their performance.  It also presents the results of PML estimation of a random 
coefficients logit model of choice among brands of butter and margarine in the British groceries market. 
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USING PENALIZED LIKELIHOOD TO SELECT PARAMETERS IN A RANDOM 
COEFFICIENTS A MULTINOMIAL LOGIT MODEL 

 
1.  INTRODUCTION 

 The multinomial logit model with random coefficients is widely used in demand modeling, 

empirical industrial organization, marketing, and transport economics.  See, for example, Train (2009); 

Keane and Wasi (2013); and Ackerberg, Benkard, Berry, and Pakes (2007).  Random coefficients enable 

taste or utility function parameters to vary among individuals in ways that are not explained by the 

variables available in the data.  Random coefficients also enable the model to approximate any discrete 

choice model arbitrarily well (McFadden and Train 2000).  This paper is concerned with estimating a 

random coefficients logit model in which the distribution of each coefficient is characterized by finitely 

many parameters, for example the mean and variance.  Some of these parameters may be zero.  The paper 

describes a penalized likelihood method for selecting and estimating the non-zero parameters.  

 In applied research, the objects of interest in a discrete choice model, such as market shares, the 

value of travel time, and elasticities, are smooth functions of the parameters.  Some parameters, such as 

the mean coefficient of a price, may also be objects of interest.  The mean square estimation errors of 

objects of interest often can be reduced by identifying and dropping from the model parameters whose 

values equal zero.  Thus, for example, if the variance of the coefficient of a certain variable in a random 

coefficients logit model is zero, then the mean-square estimation errors of market shares and other objects 

of interest often can be reduced by treating that coefficient as a non-stochastic constant.  In applications, it 

is not known a priori which parameters are zero.  This paper gives conditions under which, 

asymptotically, penalized maximum likelihood (PML) estimation with the adaptive LASSO (AL) penalty 

function distinguishes correctly between zero and non-zero parameters, thereby often reducing the 

asymptotic mean-square estimation errors of non-zero parameters and other objects of interest in applied 

research.1  We also show that the PML estimates of non-zero parameters are 1/2n− -consistent and 

asymptotically normally distributed, where n  is the size of the estimation sample.  The estimates of the 

non-zero parameters have the same asymptotic normal distribution that they would have if it were known 

a priori which parameters are zero and non-zero, the parameters whose values are zero were dropped 

from the model, and the non-zero parameters were estimated by maximum likelihood.  This property is 

called oracle efficiency.  We illustrate the numerical performance of our PML method with the results of 

                                                      
1  The adaptive LASSO has certain computational advantages, including convexity of its penalty function, 
but the theoretical results of this paper can be obtained with other, non-convex penalty functions such as 
the SCAD, bridge, and minimax concave penalties.  The theoretical results can also be extended to treat 
models with parameters that are close to but not necessarily equal to zero.  See Horowitz and Huang 
(2013).  
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Monte Carlo experiments and an empirical application to choice among brands of butter and margarine in 

the British groceries market.  

 Penalization can also improve the finite-sample properties of parameter estimates in high-

dimensional models when many of the parameter values are zero.  In such cases, maximum likelihood 

(ML) estimates can have large finite-sample biases, thereby causing estimates of elasticities and other 

objects of substantive interest to be inaccurate.  We find  in our Monte Carlo experiments that the finite-

sample biases of PML parameter estimates are lower, and the estimates of quantities such as elasticities 

are more accurate.  

 A further benefit of penalization is improvement in numerical accuracy.  Penalized estimation 

with a suitable penalty function can yield parameter estimates that are true zeroes, often within a few 

iterations of the numerical algorithm.  This is important in high-dimensional random coefficients logit 

models.  Estimation of these models requires high-dimensional numerical integration.  Dropping variance 

parameters that are zero and treating the associated coefficients as fixed reduces the dimension of the 

integral as well as the dimension of the parameter vector, thereby increasing the numerical accuracy with 

which the non-zero parameters are estimated.  Knittel and Metaxoglu (2014) explore the numerical 

accuracy and consequences of numerical inaccuracy in estimation of random coefficients logit models. 

 This paper makes the following main contributions. 

1. It shows that with probability approaching 1 as n →∞ , PML estimation with the AL penalty 

function distinguishes correctly between zero and non-zero parameters in a random 

coefficients logit model.  The estimates of the non-zero parameters are oracle efficient. 

2. It gives conditions under which, if one or more parameters equal zero, PML estimation with 

the AL penalty function reduces the asymptotic mean-square errors of the estimates of non-

zero parameters and often reduces the asymptotic mean square estimation error of any 

continuously differentiable function of the model’s parameters, including predicted market 

shares and elasticities.   

3. It describes a method for computing the PML estimates of a random coefficients logit model 

with the AL penalty function. 

4. It presents the results of Monte Carlo experiments that illustrate the numerical performance of  

PML estimation of a random coefficients logit model with the AL penalty function. 

5. It presents the results of PML estimation of a random coefficients logit model of choice 

among brands of butter and margarine in the British groceries market. 

Contributions 1 and 2 above extend results of Fan and Li (2001) and Zou (2006) as well as the very 

large literature on penalized estimation of high-dimensional models.  Fan, Lv, and Qi (2011), Horowitz 

(2015), and Bühlmann and van de Geer (2011) review and provide references to that literature.  
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Contribution 3 provides a new method to carry out PML computation that avoids the need for maximizing 

a non-smooth objective function and permits the use of recent advances in algorithms for solving 

constrained optimization problems. 

The remainder of this paper is organized as follows.  Section 2 describes the random coefficients logit 

model that we consider, PML with the AL penalty function, asymptotic properties of the parameter 

estimates, and asymptotic properties of smooth functions of the PML parameter estimates. Section 3 

describes our method for computing the PML parameter estimates.  Section 4 presents the results of the 

Monte Carlo experiments.  Section 5 presents the application to choice among brands of butter and 

margarine, and Section 6 presents conclusions.  The appendix presents the proofs of this paper’s 

theoretical results.   

2. THE MODEL AND ADAPTIVE LASSO ESTIMATION 

Section 2.1 describes the random coefficients logit model and the penalized maximum likelihood 

estimation procedure that we use.  Section 2.2 presents asymptotic distributional properties of the PML 

parameter estimates and functions of the estimates. 

2.1 The Model and Estimation Procedure 

Let each of n  individuals choose among J  exhaustive and mutually exclusive alternatives.  Let 
KX ∈  denote the vector of the model’s observed covariates, and let ijX  denote the value of X  for 

individual i  and alternative j  ( 1,..., )j J= .  The indirect utility of alternative j  to individual i  

( 1,..., )i n=  is 

 ( )ij i ij ijU Xβ ε ν′ ′= + + , 

where ijν  is a random variable with the Type I extreme value distribution, ijν  and i jν ′ ′  are independent of 

one another if i i′≠  or j j′≠ , β  is a 1K ×  vector of constant coefficients, and iε  is a 1K ×  vector of 

unobserved random variables that have means of 0 and are independently and identically distributed 

among individuals.  In this paper, we assume that ~ (0 , )i KNε Σ  for each 1,...,i n= , where 0K  is a K -

vector of zeroes and Σ  is a positive-semidefinite K K×  matrix.  However, the paper’s theoretical results 

hold with other distributions.  Let ( ;0 , )Kφ ξ Σ  denote the probability density function of the (0 , )KN Σ  

distribution evaluated at the point ξ .  Then the probability that individual i  chooses alternative j  is  
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(2.1) 1

1

exp[( ) ]
( , ; ,..., ) ( ;0 , )

exp[( ) ]

ij
ij i iJ KJ

ik
k

X
X X d

X

β ε
π β φ ε ε

β ε
=

 
 ′ ′+ Σ = Σ 
 ′ ′+ 
 

∫
∑

.  

Let CC′Σ =  denote the Cholesky factorization of Σ , ~ (0 , )K K KN Iε × , and Kφ  denote the (0 , )K K KN I ×  

probability density function.  The standard Cholesky factorization applies to full rank matrices.  However, 

when ( )rank r KΣ = < , there is a unique Cholesky factorization with K r−  zeroes along the diagonal of 

C .  Therefore (2.1) can be written as 

(2.2) 1

1

exp[( ) ]
( , ; ,..., ) ( )

exp[( ) ]

ij
ij i iJ KJ

ik
k

C X
C X X d

C X

β ε
π β φ ε ε

β ε
=

 
 ′ ′ ′+ =  
 ′ ′ ′+  

∫
∑



 



. 

The integral in (2.2) reduces to an r dimensional integral when r K<  . 

 Define the choice indicator  

1 if individual  chooses alternative 
0 otherwiseij

i j
d 

= 


 

Let { , : 1,..., ; 1,..., }ij ijd X i n j J= =  be the observed choice indicators and covariates of an independent 

random sample of n  individuals.  Define ( , )vec Cθ β=  and dim( )L θ= . The log-likelihood function for 

estimating θ  is 

 1
1 1

log ( ) log ( ; ,..., )
n J

ij ij i iJ
i j

L d X Xθ π θ
= =

=∑∑ .  

Define the maximum likelihood estimator2 

 arg max log ( )L
θ

θ θ= .  

The penalized log-likelihood function that we treat here is 

(2.3) 1
1 1 1

log ( ) log ( ; ,..., ) | |
n J L

P ij ij i iJ n
i j

L d X X wθ π θ λ θ
= = =

= −∑∑ ∑  



, 

                                                      
2  There are multiple values of θ  that maximize log ( )L θ .  All give equal values of the maximum.  Under 
Assumption 1 below, there is exactly one θ  that maximizes log ( )L θ  and for which the diagonal 
elements of C  are non-negative.  Define θ  to be this maximizer.  Arguments like those used to prove 
Theorem 4.1.1 of Amemiya (1985) show that θ  is consistent.  It is also the unique MLE subject to the 
constraint that the diagonal elements of C  are non-negative. 
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where 0nλ >  is a constant whose value may depend on n  and the w


’s are non-negative weights.  

Penalized maximum likelihood estimation with the adaptive LASSO penalty function consists of the 

following two steps. 

 Step 1:  Let θ  be a 1/2n− -consistent estimator of 0θ , possibly but not necessarily θ .  Depending 

on how θ  is obtained, some of its components may be zero.  Define weights 

 
1/ | |  if 0

0 if 0.
w

θ θ

θ

 ≠= 
=

 





 





  

 Step 2:  Let *θ  be a 1L×  vector whose  ’th component is zero if 0θ =


  and whose remaining 

components are unspecified.  Let *
1( , ,..., )ij i iJX Xπ θ  be the probability that individual i  chooses 

alternative j  when the parameter value is *θ .  The second-step penalized log-likelihood function is 

(2.4) * * *
1

1 1 1
log ( ) log ( ; ,..., ) | |

n J L

P ij ij i iJ n
i j

L d X X wθ π θ λ θ
= = =

= −∑∑ ∑  



 . 

The second-step parameter estimator is 

 
*

*ˆ arg max log ( )PL
θ

θ θ= , 

where maximization is over the non-zero components of *θ .  Thus, θ̂  is the 1L×  vector obtained by 

setting any parameters estimated to be 0 in the first stage equal to 0 in the ijπ ’s, the penalty function, and 

θ̂ ; and maximizing the penalized log-likelihood function (2.4) over the remaining parameters.  

Asymptotic distributional properties of θ̂  and functions of θ̂  are described in Section 2.2. 

 2.2  Asymptotic Properties θ̂  

 This section describes asymptotic distributional properties of the second-step PML estimator θ̂  

and smooth functions of θ̂ .  We assume that θ θ=  and let 0θ  denote the true but unknown value of θ .  

Make the assumption 

Assumption 1: (i) 0θ  is uniquely identified.  (ii) 1/2
0( )n θ θ−  converges in distribution as n →∞  

to a random variable  with mean 0 and covariance matrix Ω .  

Let jkC  ( 1,...,k j= ) denote the components of C  in the row containing jjC .  It is easy to show 

that if 0jjC =  for some 1,...,j K= , then 0log ( ) / 0jkL Cθ∂ ∂ = .  Therefore, Ω  can be written in the 

partitioned form 
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 11 0
0 0
Ω 

Ω =  
 

,  

where 11Ω  is the submatrix of Ω  corresponding to components of β  and components C  in rows for 

which 0jjC ≠ .  We make 

 Assumption 1(iii):  11Ω  is non-singular. 
Let 0kθ  denote the k ’th component of 0θ .  Any parameter 0kθ  may be zero or non-zero. Let 

0A  denote the set of non-zero parameters.  Its complement 0A  is the set of parameters whose values are 

zero.  Let k̂θ  denote the k ’th component of θ̂ .   

 Assumption 2:  As n →∞ , nλ →∞  and 1/2 0nn λ− → . 

 Define 
0 0 0 0{ : }A k k Aθ θ θ= ∈ , 

0 0 0 0{ : }k kA Aθ θ θ= ∈ , 
0 0 0

ˆ ˆ{ : }A k k Aθ θ θ= ∈ , and 

0 0 0
ˆ ˆ{ : }k kA Aθ θ θ= ∈ .  Let 

0Aθ  be the unpenalized ML estimator of 
0Aθ in model (2.1) when one correctly 

fixes 
0Aθ  equal to the zero vector.   

 Assumption 3:  As n →∞ , 
0 0 0

1/2 ( ) (0, )d
A A An Nθ θ− → Ω  for some non-singular covariance 

matrix 
0AΩ .   

Amemiya (1985), among many others, gives primitive conditions for assumption 3. 

Let ( )g θ  ( Lθ ∈ ) be a continuously differentiable function.  The PML estimate of 0( )g θ  is 

ˆ( )g θ .  The unpenalized ML estimate is ( )g θ .  Let ˆ[ ( )]AMSE g θ  and [ ( )]AMSE g θ , respectively, 

denote the asymptotic mean square errors (AMSE’s) of ˆ( )g θ  and ( )g θ  as estimators of 0( )g θ .  Let 

1
11fullI −= Ω  denote the information matrix of the version of model (2.2) (that is 2

0log ( ) /E L θ θ θ ′− ∂ ∂ ∂ ) 

that is obtained by setting 0jkC =  ( 1,...,k j= ) deterministically if 0jjC = .  Partition fullI  as  

 11 12

12 22
full

I I
I

I I
 

=  ′ 
, 

where 
0 0

1 2
11 0[ log ( ) / ]A AI E n L θ θ θ− ′= − ∂ ∂ ∂  is the submatrix of fullI  corresponding to 

0Aθ , 

0 0

1 2
22 0[ log ( ) / ]A AI E n L θ θ θ− ′= − ∂ ∂ ∂  is the submatrix of fullI  corresponding to components of 

0Aθ  other 

than components jkC  for which 0jjC = , and 
0 0

1 2
12 0[ log ( ) / ]A AI E n L θ θ θ− ′= − ∂ ∂ ∂  is the submatrix of 

fullI  corresponding to the covariance of the estimators of 
0Aθ  and the components of 

0Aθ  just described.  
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Let 
0AΩ  denote the submatrix of 1

fullI −  corresponding to the components of 
0Aθ   The following theorem 

gives the main theoretical result of this paper. 

 Theorem 2.1:  Let assumptions 1-3 hold.  As n →∞   

(i) 0 0
ˆ( 0  such that ) 1k kP k Aθ θ= ∀ ∈ →   

(ii) 
0 0 0

1/2 ˆ( ) (0, )d
A A An Nθ θ− → Ω  

(iii) If 0A  is non-empty, then 
0 0A AΩ −Ω  is positive semidefinite and positive definite if 12I  

has full rank. 

(iv) If 0A  is non-empty, then ˆ[ ( )] [ ( )]AMSE g AMSE gθ θ≥ . 

Parts (i) and (ii) of Theorem 2.1 state that PML estimation with the AL penalty function distinguishes 

correctly between zero and non-zero parameters with probability approaching 1 as n →∞ .  Part (ii) states 

that the PML estimates of the non-zero parameters are oracle efficient.  That is, they have the same 

asymptotic normal distribution that they would have if it were known which parameters in model (2.1) are 

zero and non-zero, the parameters whose values are zero were dropped from the model, and the non-zero 

parameters were estimated by maximum likelihood.  Part(iii) implies that that if one or more parameters 

are zero and 12I  has full rank, then PML estimation with the AL penalty function reduces the asymptotic 

mean-square estimation errors of the model’s non-zero parameters.  Part (iv) states that the asymptotic 

mean square error of the unpenalized ML estimate of 0( )g θ  is at least as large as the asymptotic mean 

square error of the PML estimate.  Section 4 gives examples in which the mean square error of ( )g θ  is 

much greater than the mean square error of ˆ( )g θ .  Asymptotic inference about 0( )g θ  based on PML 

estimation can be carried out by applying the delta method to ˆ( )g θ .  

3.  COMPUTATION 

 Maximizing log ( )PL θ  presents several computational problems.  There may be more than one 

local maximum of log ( )PL θ , the penalty function in log ( )PL θ  is not differentiable at all values of θ , 

and log ( )PL θ  includes high-dimensional integrals that must be evaluated numerically.  We deal with the 

first of these problems by maximizing log ( )PL θ  repeatedly using a different initial value of θ  each time.   

We deal with the second by reformulating the optimization problem to one of maximizing a 

differentiable objective function subject to linear constraints.  To do this, write θ θ θ+ −= − , where θ +  
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and θ −  are 1L×  vectors whose components are non-negative.  Then maximizing log ( )PL θ  in (2.3) is 

equivalent to solving the problem  

(3.1) 1
, , 1 1 1

maximize : log ( ; ,..., ) ( )
n J L

ij ij i iJ n
i j

d X X w
θ θ θ

π θ λ θ θ
+ −

+ −

= = =

− +∑∑ ∑   



  

subject to 

 
, 0,

θ θ θ

θ θ

+ −

+ −

= −

≥
  

where the last inequality holds component by component.  This formulation avoids the need to maximize 

a non-smooth objective function and permits exploitation of advances in methods for solution of 

constrained optimization problems. 

 There is a large econometric literature on numerical methods for evaluating high-dimensional 

integrals.  See, for example, McFadden (1989); McFadden and Ruud (1994); Geweke, Keane, and Runkle 

(1994); Hajivassiliou, McFadden, and Ruud (1996); Geweke and Keane (2001), and Train (2009).  

Available methods include Gaussian integration procedures, pseudo Monte Carlo procedures, quasi 

Monte Carlo procedures, and Markov chain Monte Carlo (MCMC) methods.  More recently, Heiss and 

Winschel (2008), Skrainka and Judd (2011), and Knittel and Metaxoglou (2014) have suggested that 

sparse grid integration methods produce accurate approximations at low cost.  To focus on the 

performance of the PML method, we have used a simple pseudo Monte Carlo integration method based 

on either 500 or 1500 draws from a normal random number generator. 

 We computed the solution to problem (3.1) by using a sequential quadratic programming 

algorithm for constrained optimization from the NAG Fortran Library (The Numerical Algorithms Group, 

Oxford U.K., www.nag.com).  The algorithm is based on NPOPT, which is part of the SNOPT package 

described by Gill, Murray, and Saunders (2005).   

4.  MONTE CARLO EXPERIMENTS 

 This section reports the results of a Monte Carlo investigation of the numerical performance of 

the PML method.  We used two designs.  One is based on a small, hypothetical model.  The other is based 

on data from the U.K. market for butter and margarine.   

 4.1  Design 1:  A Hypothetical Model   

 This design consists of a model with 5J =  alternatives in the choice set and 20K =  covariates.  

The random coefficients are independent of one another, so their covariance matrix is diagonal.  The 

means and variances of the coefficients are as follows: 
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k   Mean ( )kβ   Variance ( )kVar ε   

1 2k≤ ≤   1 1 

3 5k≤ ≤   1 0 

6 20k≤ ≤   0 0 

 

Thus, there are two non-zero random coefficients, three non-zero coefficients that are not random, and 15 

non-random coefficients whose values are zero.  The covariates are independently distributed as (0,1)N . 

The sample size is 1000n = .  

 We carried out PML estimation with 300 simulated datasets and chose the penalty parameter nλ  

to minimize the Bayes Information Criterion (BIC) using the computational procedure described in the 

next paragraph.  Wang, Li, and Tsai (2007) and Wang, Li, and Leng (2009) give conditions under which 

penalized estimation of a linear model is model-selection consistent when the penalty parameter is chosen 

by the BIC.  The theoretical properties of the BIC for PML estimation have not been studied.  We used a 

pseudo Monte Carlo numerical integration procedure with antithetic variates with 500 draws from a 10-

dimensional random number generator.  We assumed that only 10 covariates, including the first 5, have 

potentially non-zero variances.  Therefore, 30 parameters were estimated.   

We chose nλ  by solving (2.3) for the two steps of the adaptive LASSO procedure using each 

point in a rectangular grid of values of nλ .  There were 5 grid points for step one of the adaptive LASSO 

procedure, 10 points for step 2, and 50 points in total.  The values of the step 1 points ranged from 410−  

to 310− .  The values of the step 2 points ranged from 410−  to 210− .  The logarithms of the values in each 

dimension of the grid were equally spaced.  We report results for the grid point of nλ  values that 

minimizes the BIC in step 2. 

The time required to compute the PML estimates depends on the number of grid points used for 

selection of the penalty parameters by the BIC.  For Design 1, the time is trivial.  For Design 2, which is 

discussed in detail in Section 4.2, we found the PML and ML computation times in the Monte Carlo 

experiment to be related by 

1 2(0.96 0.46 )PML MLt n n t≈ + , 

where PMLt  and MLt , respectively, are the PML and ML computation times, and 1n  and 2n , respectively, 

are the numbers of grid points used to select the first- and second-step penalty parameters.  The first stage 

of the adaptive LASSO procedure has approximately the same computation time as unpenalized ML.  The 

second stage has approximately 46% of the computation time of the unpenalized ML.  This is because the 

first stage provides a good set of initial parameter values and sets many equal to zero, thereby reducing 
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the number of iterations required for convergence of the algorithm described in Section 3.  Given values 

of the penalty parameters, the combined computation time of the two stages of adaptive LASSO 

estimation is about 42% longer than the computation time of  unpenalized ML estimation. 

We investigated the sensitivity of the mean-square errors (MSEs) of the PML estimates to 

variations in the values of the penalty parameters around the values selected by the BIC.  We found that 

increasing the values by 20% had little effect on the MSE’s, but decreasing the values by 20% caused 

large increases in the MSE’s.  We obtained similar results in the Monte Carlo experiment reported in 

Section 4.2.  We conclude that the BIC selects the penalty parameters satisfactorily but do not claim that 

the BIC makes selections that are optimal in any sense. 

 The results of the experiment are shown in Table 1.  The average number of non-zero parameters 

in the model estimated by PML is 7.22, compared to 30 potentially non-zero parameters in the full model.  

With probability 1, unconstrained maximum likelihood estimation cannot yield estimates of zero, so 

unconstrained maximum likelihood estimation gives 30 non-zero parameter estimates.  The MSE’s of the 

PML estimates of the means of the non-zero slope coefficients (the non-zero kβ ’s) are all less than 33% 

and often less than 10% of the MSE’s of the unconstrained ML estimates.  The MSE’s of the PML 

estimates of the standard deviations are approximately 10% of the MSE’s of the unconstrained maximum 

likelihood estimates.  In summary, PML selects a smaller model and gives estimates of important 

parameters with much smaller mean-square errors than does unconstrained maximum likelihood 

estimation. 

 4.2  Design 2:  Butter and Margarine 

 This design is based on data about the U.K. market for butter and margarine.  The data were 

obtained by the research company Kantar and used by Griffith, Nesheim, and O’Connell (2015).  The 

data contain information on 10,102 households that shopped at supermarkets in the U.K.  The data 

include demographic characteristics of each household (e.g., household size, age, employment status, and 

average weekly grocery expenditure), product characteristics (e.g., brand, package size, and saturated fat 

content), and consumer purchase choices.  On each shopping trip, each consumer chose either not to buy 

any product or to buy one of 47 products available in the market.  Thus, the number of options in each 

consumer’s choice set is 48J = . 

 The Kantar data contain 50K =  covariates, including product fixed effects.  Thus, the choice 

model of equation (2.2) contains 99 parameters.  There are 49 mean parameters (the components of β  in 

(2.2)) and 50 variance parameters.  The mean parameter for the outside option of no purchase is 

normalized to be zero.  In the Monte Carlo experiment, we set the parameters equal to the penalized 

maximum likelihood estimates obtained from a random sample of 5000 observations from the Kantar 
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data.  The resulting model (the “true model”) has 37 non-zero mean parameters and four non-zero random 

coefficient variance parameters.  The remaining 58 parameters of the true model are zero.  We used this 

model to simulate the product choices of 5000 hypothetical households.  We used the simulated choice 

data to estimate the choice model’s 99 parameters using unpenalized ML, PML, and the oracle ML 

(maximum likelihood estimation of only the 41 non-zero parameters of the true model and the remaining 

parameters set equal to zero).  We used 1500 antithetic variate draws from a multivariate normal random 

number generator to compute the numerical integral. 

 Table 2 summarizes results of 300 Monte Carlo replications of the foregoing simulation 

procedure.  Columns 3-5 show the MSEs of the estimates of the non-zero parameters of the true model 

using each estimation method.  The parameter 1β  is the mean price coefficient in the model.  The MSEs 

of the PML estimates of 40 of the 41 parameters are significantly smaller than those of the unpenalized 

ML estimates and closer to the MSEs of the oracle ML estimates.  The MSEs of the PML estimates of 27 

parameters are less than 10% of the unpenalized ML estimates.  The MSEs of 8 PML estimates are 10%-

20% less than the unpenalized MSEs, and the MSEs of 5 PML estimates are 21%-47% less than the 

unpenalized MSEs.  For example, the MSE of the PML estimate of 1β  is 0.114 compared to 1.50 for the 

unpenalized ML estimate and 0.104 for the oracle ML estimate.  The mean number of non-zero 

parameters in the selected model is 31.8, and 90 percent of the replications select a model with 29-37 non-

zero parameters.  The coefficient of the price variable is non-zero in all replications. 

 We also computed the own-price elasticities of the 47 products (excluding no-purchase option) in 

each Monte Carlo replication.  The MSE’s of 33 of the 47 elasticity estimates obtained by PML were less 

than the MSE’s of the corresponding elasticity estimates obtained by unpenalized ML.  The median ratio 

of the MSEs of the unpenalized ML and PML elasticity estimates is 1.49.  That is the median value of 

(MSE of ML estimates)/(MSE of PML estimates) is 1.49.  The median ratio of the MSEs of the PML and 

oracle ML elasticity estimates is 0.995.  Thus, the PML elasticity estimates, like the PML parameter 

estimates, are more accurate than the estimates obtained from unpenalized ML and close to the oracle 

estimates. 

 The biases of the ML coefficient and elasticity estimates are larger than the biases of the 

corresponding PML estimates.  This is illustrated by Figures 1 and 2, which are histograms of the 

empirical distributions of estimates obtained through Monte Carlo replication.  Figure 1 shows the 

differences between the ML (blue) and PML (orange) estimates of the price coefficient and true value of 

this coefficient.  Figure 2 shows the differences between the ML (blue) and PML (orange) estimates of 

own price elasticities and true values.  The figures show that the unpenalized ML estimates have large 

biases and are highly variable.  The difference between the ML estimates and true value of the price 

coefficient has a mode at -1.12, compared to a mode of -0.35 for the PML estimates.  The difference 
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between the ML estimates and true values of the own-price elasticity has a mode at 0.68, compared to -

0.52 for the PML estimates.  The locations of these modes are finite-sample effects.  The asymptotic 

distributions of the ML and PML estimates are both centered at zero.  The reduction of finite-sample bias 

through PML is due to the reduction in the number of non-zero parameters that must be estimated.  This 

is an important advantage of PML. 

 To illustrate the performance of PML in policy analysis, we used the PML, unpenalized ML, and 

oracle estimates to evaluate effects of a 20% value added tax (VAT) on butter and margarine.  Currently, 

food purchases in the UK are exempt from the VAT.  The VAT increases the prices of butter and 

margarine, which reduces demand for these products, consumer welfare, and revenues from the sale of 

butter and margarine.  We computed four resulting economic effects.  The first is the reduction in 

consumer welfare as measured by the compensating income variation for the VAT.  The second is the 

reduction in revenues to sellers of butter and margarine.  The third is tax revenues resulting from the 

VAT.  The fourth is the changes in the market shares of the products.  We assumed that the pre-tax prices 

of butter, margarine, and any substitute products remain unchanged. 

 We now describe how we computed the foregoing effects.  Let notax
jX  denote the values of the 

explanatory variables for product j  in model (2.2) before the VAT and tax
jX  denote the values of the 

same variables after the prices of butter and margarine have been increased by 20%.  Let jp  denote the 

before-VAT price of product j , τ  denote the tax rate, and (1 )tax
j jp pτ= +  denote the price after the 

VAT has been imposed.  Denote the mean and random component of the coefficient of price in (2.2) by 

1β  and 1 11Cε , respectively.  The consumer compensating variation for the tax increase is (Small and 

Rosen 1981) 

 

47 47
5000

0 0

1 1 111

log exp( ) log exp( )
( , ) ( )

notax tax
ij ijj j

i

C X C X
CV C d

C

β ε β ε
β φ ε ε

β ε
= =

=

   ′ ′ ′ ′+ − +      =
+

∑ ∑
∑ ∫

 

 



. 

The change in revenues is  

 
47 5000

1 1
[ ( , ; ) ( , ; )]tax notax

j ij j ij j
j i

R p X Xπ β π β
= =

∆ = Σ − Σ∑∑ . 

The change in the market share of product j  is 

 
5000

1
[ ( , ; ) ( , ; )]tax notax

j ij j ij j
i

S X Xπ β π β
=

∆ = Σ − Σ∑ . 
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R∆  is the change the revenues of sellers after remitting tax revenues of taxRτ  to the government and, 

therefore, does not include the factor 1 τ+ .  The sums are over the 47 products and 5000 individuals in 

the experiment.   

 Table 3 shows the MSEs of the estimated effects of the VAT.  The table shows the MSEs of the 

estimated change in median market share, not the MSEs of the estimated changes in the shares of 

individual products.  The MSEs of the unpenalized ML and PML estimates of the compensating variation 

are similar.  The MSEs of the PML estimates of the change in revenues to sellers (in pounds per trip per 

individual), tax revenues, and change in median market share are smaller than the MSEs of the 

unpenalized ML estimates of these quantities and closer to the oracle estimates. 

5.  EMPIRICAL APPLICATION 

 This section summarizes the results of applying the PML and unpenalized ML methods to the full 

Kantar data set that is described in the first paragraph of Section 4.2.  We compare the own price 

elasticities obtained with the two methods and the results of the tax experiment described in Section 4.2.  

As is explained in the second paragraph of Section 4.2, the model has 99 parameters, including 49 means 

of the random slope coefficients and 50 standard deviations.  All of the unpenalized parameter estimates 

are non-zero, and the empirical Hessian matrix has full rank.  Only 35 of the penalized estimates are non-

zero, including 31 slope coefficients and 4 standard deviation parameters.   

 Table 4 shows summary statistics for own price elasticities.  On average the PML and 

unpenalized ML elasticity estimates are similar in magnitude, but the PML estimates are less dispersed. 

 Table 5 shows summary statistics for changes in market shares and product revenues in (in units 

of pounds per shopping trip per individual) the tax experiment.  The mean change in market share is zero 

because the sum of the shares must equal one.  The PML estimate of the change in market shares is more 

dispersed than the unpenalized ML estimate.  The means and standard deviations of the PML and 

unpenalized ML estimates of the change in revenues are roughly equal.   

The PML and unpenalized ML estimates of the compensating variation for the tax increase are 

0.336 and 0.340 pounds per shopping trip, respectively. The PML and ML estimates of tax revenue, 

respectively, are 0.0867 and 0.0888 pounds per shopping trip. Thus, the PML estimates of the 

compensating variation and tax revenues are virtually identical. 

6.  CONCLUSIONS 

This paper has been concerned with estimating a random coefficients logit model in which the 

distribution of each coefficient is characterized by finitely many parameters.  Some of these parameters 

may be zero.  The paper has given conditions under which with probability approaching one as the sample 

size approaches infinity, penalized maximum likelihood (PML) estimation with the adaptive LASSO 
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(AL) penalty function distinguishes correctly between zero and non-zero parameters in a random 

coefficients logit model.  The estimates of the large parameters are oracle efficient.  If one or more 

parameters are zero, then PML estimation with the AL penalty function often reduces the asymptotic 

mean-square estimation error of any continuously differentiable function of the model’s parameters, such 

as a predicted market share.  The paper has described a method for computing the PML estimates of a 

random coefficients logit model.  It has presented the results of Monte Carlo experiments that illustrate 

the numerical performance of PML estimates.  The paper has also presented the results of PML 

estimation of a random coefficients logit model of choice among brands of butter and margarine in a 

British grocery chain.   

The Monte Carlo results show that PML estimates have lower mean-square errors and finite-

sample biases than unpenalized ML estimates with sample sizes similar to those used in marketing and 

empirical industrial organization.  PML estimation is tractable computationally, and the PML method can 

be modified easily for use in generalized method of moments estimation.  

APPENDIX  PROOF OF THEOREM 2.1 

 Parts (i) and (ii):  Let * 2
0log ( ) /fullI E L θ θ θ ′= − ∂ ∂ ∂  denote the information matrix of model 

(2.2).  Define the vector u  by 

 1/2
0 n uθ θ −= +  

for any θ .  Let 
0Aθ  be the first 0 0dim( )L A≡  components of 0θ  and 

0Aθ  be the remaining 0L L−  

components.  Order the components of u  similarly.  Define 
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Write the penalty term above as 
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If 0 0θ ≠


, then 

 1/2 1/2
0 0 0(| | | |) sgn( )pn n u uθ θ θ−+ − →
    

, 

where sgn( )v  for any scalar v  equals 1 , 1− , or 0  according to whether v  is positive, negative, or zero 

(Zou 2006).  Therefore, the terms of the penalty function corresponding to components of 
0Aθ  converge 

in probability to 0.  The terms in the penalty function corresponding to 
0Aθ  diverge to ∞  if | | 0u >



 for 

any 0 1,...,L L= + .  Therefore, if the components of u  corresponding to 
0Aθ  are non-zero, nD  is 

dominated by the penalty term, which increases without bound as n →∞ .  Arguments identical to those 

of Zou (2006, proof of Theorem 2) except with the least-squares objective function replaced by 

log ( )L θ− , show that if 0 0k Aθ ∈ , then 0
ˆ( ) 1kP Aθ ∈ → .  nD  is dominated asymptotically by 

0 0

1/2
0log ( ,0) log ( ,0)A AL n u Lθ θ−+ − , where 0u  denotes the components of u  corresponding to 

components of 
0Aθ  and the argument 0 corresponds to 

0Aθ .  Therefore, standard results for maximum 

likelihood estimates yield parts (i) and (ii).  

 Part (iii):  By definition  

 11 12

12 22
full

I I
I

I I
 

=  ′ 
. 

where 11I  is non-singular.  1
22 12 11 12I I I I−′−  is the Schur complement of 11I  and is non-singular because 

fullI  and 11I  are non-singular.  Let 
0

1( )full AI −  denote the submatrix of 1
fullI −  corresponding to the 

components of 
0Aθ .  Then 

 
0 0 0

1 1 1 1 1 1 1
11 11 12 22 12 11 12 12 11 11( ) ( )A full A AI I I I I I I I I I I− − − − − − −′ ′Ω = = + − ≥ = Ω .  

The inequality is strict if 12I  has full rank.   

 Part (iv):  Define 1
22 12 11 12S I I I I−′= − .  Then 

 
1 1 1 1 1 1

11 11 12 12 11 11 121
1 1 1

12 11
full

I I I S I I I I S
I

S I I S

− − − − − −
−

− − −

 ′+ −
=   ′− 

. 

Moreover, 

 0 0( ) ( )ˆ[ ( )] [ ( )] g gAMSE g AMSE g Aθ θθ θ
θ θ

∂ ∂
− =
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, 

where 
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1 1 1 1 1

11 12 12 11 11 12
1 1 1

12 11

I I S I I I I S
A

S I I S

− − − − −

− − −

 ′ −
=   ′− 

. 

The matrix A  is positive semidefinite (Bekker 1988).  Q.E.D. 
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Table 1:  Results of Monte Carlo Experiments with Design 1a 

 
Parameter MSE of PML 

Estimate 
MSE of 

Unpenalized ML 
Estimate 

MSE of Oracle 
ML Estimate 

1β   0.0099 0.294 0.00910 

2β   0.0103 0.333 0.00958 

3β   0.00664 0.290 0.00596 

4β   0.00672 0.303 0.00611 

5β   0.00691 0.287 0.00654 

1σ   0.0350 0.339 0.0228 

2σ   0.0294 0.313 0.0238 
    

Average number 
of non-zero 

parameters in the 
model selected by 

PMLE 

7.22   

Average value of 
λ  in step 2 

0.00835   

 
 

a. Based on 300 Monte Carlo replications.  1σ  and 2σ , respectively, are the standard deviations of 

1ε  and 2ε .  The correct model is the model specified in design 1 with the parameter values 
specified in that design.  The model selected by PML contains the correct model if the PML 
estimates of the non-zero parameters of the correct model are not zero.  
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Table 2:  Results of Monte Carlo Experiments with Design 2b 

 
Parameter Definition of variable MSE of PML 

Estimate 
MSE of 

Unpenalized ML 
Estimate 

MSE of Oracle 
ML Estimate 

1β   Price 0.114 1.50 0.104 

2β   Index of monthly 
advertising expenditure 

0.00235 0.0285 0.00189 

3β   Square of index of 
monthly advertising 

expenditure 

0.000443 0.0506 0.000781 

4β   Dummy variable equal 
to 1 for 500 gram pack 

and 0 otherwise 

1.38 14.9 0.385 

5β   Dummy variable equal 
to 1 for 1000 gram pack 

and 0 otherwise 

12.2 33.2 6.81 

6β  5β ×Household size 0.00274 0.0461 0.00328 

7β  Grams of saturated fat 
per pack 

0.106 0.942 0.0425 

8β  Dummy variable equal 
to 1 if household size is 

2 and makes no purchase 
and 0 otherwise 

0.345 0.736 0.0189 

9β  Dummy variable equal 
to 1 if household size is 

3 and makes no purchase 
and 0 otherwise 

0.154 1.06 0.0537 

10β  Dummy variable equal 
to 1 if household size is 

4 and makes no purchase 
and 0 otherwise 

0.153 3.88 0.0328 

11β  Brand-specific constant 0.282 16.1 0.0867 

12β  Brand-specific constant 0.996 18.6 0.670 

13β  Brand-specific constant 5.18 40.5 2.11 

14β  Brand-specific constant 3.70 10.9 1.42 

15β  Brand-specific constant 1.41 68.1 0.427 

16β  Brand-specific constant 1.62 6.15 0.463 

17β  Brand-specific constant 0.147 33.4 0.0373 

18β  Brand-specific constant 1.61 23.4 0.904 

19β  Brand-specific constant 0.809 88.2 0.377 

20β  Brand-specific constant 4.09 23.6 1.21 

21β  Brand-specific constant 5.44 177 1.95 

22β  Brand-specific constant 5.62 26.0 1.75 

23β  Brand-specific constant 3.77 67.5 2.76 
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Table 2, continued 
 

24β  Brand-specific constant 4.50 34.5 1.48 

25β  Brand-specific constant 2.23 14.7 0.651 

26β  Brand-specific constant 3.93 65.5 1.514 

27β  Brand-specific constant 0.200 26.1 0.0375 

28β  Brand-specific constant 0.0890 45.5 0.0477 

29β  Brand-specific constant 0.734 8.71 0.526 

30β  Brand-specific constant 0.220 21.8 0.0512 

31β  Brand-specific constant 0.173 78.8 0.0365 

32β  Brand-specific constant 2.77 35.7 0.869 

33β  Brand-specific constant 0.567 61.3 0.211 

34β  Brand-specific constant 2.30 39.1 0.563 

35β  Brand-specific constant 3.59 196.4 1.671 

36β  Brand-specific constant 3.03 57.7 1.09 

37β  Brand-specific constant 0.626 132.0 0.234 

1σ   Standard deviation of 
coefficient of price 

0.270 1.44 0.204 

6σ   Standard deviation of 
coefficient of saturated 

fat per pack 

0.0578 1.39 0.0706 

23σ  Standard deviation of 
coefficient of a brand-

specific constant 

17.3 14.2 9.55 

38σ  Standard deviation of 
utility of no-purchase 

option for households of 
at least 5 persons 

9.10 53.9 6.68 

Average number 
of non-zero 

parameters in the 
model selected by 

PMLE 

 31.8   

Average value of 
λ  in step 2 

 0.0035   

 
 
Based on 300 Monte Carlo replications.   
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Table 3:  Mean Square Errors of Estimated Effects of the VAT in Monte Carlo Design 2 
 

Effect MSE Using 
Unpenalized ML 

MSE Using PML MSE Using Oracle 
Model 

Compensating 
Variation 

0.0150 0.0143 0.00827 

Change in Revenues to 
Sellers  

0.0259 0.0148 0.0122 

Tax Revenues 0.0188 0.0170 0.0100 
MSE of Change in 
Median Market Share 

74.08 10−×  73.74 10−×  71.08 10−×  
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TABLE 4:  SUMMARY STATISTICS FOR OWN PRICE ELASTICITIES 
 

Method Mean Elasticity Standard Deviation 
of Elasticity 

Minimum Maximum 

MLE -2.806 0.9159 -4.637 -1.422 
PMLE -2.713 0.6297 -4.447 -1.489 
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TABLE 5:  SUMMARY STATISTICS FOR CHANGES IN MARKET SHARES AND 
PRODUCT REVENUE 

 
Method Standard Deviation 

of Change in Share 
( 310−× ) 

Mean Change in 
Revenue 110−×  

Standard Deviation 
of Change in 
Revenue 310−×   

MLE 4.673 -4.859 7.320 
PMLE 5.904 -4.866 7.338 
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