
Interacting Hierarchical Dynamic Networks

Peter Meltzer1,2 and Peter J. Bentley1,2

1University College London, London, UK
2Braintree Ltd, Gower Street, London UK

p.meltzer@cs.ucl.ac.uk

Abstract

In this work we present IHDNs: an original model of compu-
tation for the simulation of interacting, dynamic, multi-scale
systems. We show that a novel message passing mechanism
that operates across layers of abstraction in hierarchical dy-
namic networks is effective in expressing the complex depen-
dencies of living systems. Using a conventional computa-
tional model of cell evolution in cancerous tumour growth
for comparison, we demonstrate the validity of IHDNs in
emulating the behaviour of life-like systems, as well as the
additional capabilities in enabling Neo4j Cypher pattern-
matching queries, demonstrated here in the analysis of evo-
lutionary cell heritage.

Introduction
Hierarchy is overwhelmingly evident in every aspect of life,
emerging in any imaginable circumstance as a direct con-
sequence of evolution. Simple structural hierarchies can
be seen in everything from the organisation of the stars to
object-oriented programs. However, in biological contexts,
the hierarchies that emerge are often dynamic, and involve
complex dependencies between components that do not ex-
ist at the same scales.

A typical example of dynamic hierarchy is that of pro-
teins, cells, and biological organisms. In this case, the build-
ing blocks (proteins) have a direct impact on the behaviour
of the higher order entities (cells and higher still, organisms),
but higher order functions equally have an impact on the
configuration of the building blocks (Lenaerts et al., 2002).

Moreover, interactions between the lower order entities
may also affect the entity indirectly, and its composition
may change. For example, it is the interaction of partic-
ular proteins that facilitate the protein aggregation mecha-
nism by which the neuronal degeneration of Huntingdon’s
disease is caused (Gonzalez and Kann, 2012). These inter-
actions within and between biological hierarchical networks
make them highly dynamic, potentially changing every part
of themselves from the organisation to the functioning of the
components.

Due to their abundance in nature, the utility in simulating
complex dynamic networks cannot be overstated; with mod-

elling applications in medicine, biology, macro-economics,
and other ecological sciences. However, capturing the com-
plexities of interacting multi-scale systems that are able to
change their internal configurations and behaviours dynam-
ically in a computational model is not a trivial task.

In this paper we propose an original, graph-based model
of computation for the simulation of Interacting Hierarchi-
cal Dynamic Networks (IHDNs), where the representation
of components of different scales combined with a novel
cross-layer message passing system enables the simulation
of complex adaptive systems across any scales of abstrac-
tion.

In order to present the proposed model, first we review
relevant literature. Then after presenting the concepts and
architecture of the model, we demonstrate its ability to emu-
late the behaviour of living systems with the simulation and
analysis of tumour growth in a dynamic evolving cell net-
work. We verify our results against an existing model of
this phenomenon (Araujo, 2013), that has also been used to
test another unconventional model of computation (Sakel-
lariou and Bentley, 2015), then we show the advantages of
the model for deeper analysis. Finally, we present our con-
clusions.

Source code for both the computational platform and
the demonstrated aneuploid tumour growth simulation are
available for reference at github.com/meltzerpete/
ihdn.

Background
The modelling of complex dynamic systems has employed
the use of many solutions; including Agent-Based Models
(ABMs) (Gilbert, 2004), and more recently Dynamic Net-
works (Sayama, 2007). In this section we review a sample
of these solutions.

Although emerging from the object-oriented program-
ming paradigm, ABMs have many parallels with Cellular
Automata (CAs), which have also been used to model com-
plex systems (Batty et al., 1999; Webster and Malcolm,
2008). ABMs have been particularly popular in modelling
complex social systems in order to observe emergent and

github.com/meltzerpete/ihdn
github.com/meltzerpete/ihdn

collective behaviours (Axelrod, 1997).
The modelling methodology for ABMs typically begins

with (deductive) observations of real world phenomena in
order to derive agent state update rules. With the agents’
update rules defined, simulations can be executed wherein
(inductive) analysis of emergent properties can be made.
Consequently, Axelrod (1997) and Epstein (1999) argue that
ABMs offer a distinct “third” scientific method i.e. genera-
tive science.

In more recent years, Multi-Agent Systems have been de-
veloped (Ahmed et al., 2006), and ABMs have been com-
bined with Reinforcement Learning (Arel et al., 2010), in
which agents’ policy functions are optimised to minimize
the distance between simulated and real-world observed
data. In an attempt to better capture the inherent hierarchy in
naturally occurring complex systems, models such as (Bor-
tot et al., 2017) and (Yao and Van de Peer, 2017) define lay-
ers for hierarchical organisation of agents. However, these
models only allow for a finite number of layers and config-
urations; and hence, as with ABMs in general, are restricted
in their representation of dynamic systems.

Different in their approach, Dynamic Networks have been
applied to modelling complex phenomena found in epi-
demics (Gross et al., 2006), social networks (Funk et al.,
2010), and neuroscience (Pearlmutter and Houghton, 2009).
However, these applications are typically concerned with
either the changing states of fixed topology networks (of
which conventional Artificial Neural Networks are a prime
example), or the changing properties of a network based on
topological transformations alone.

Contrary to this, (Sayama, 2007) provides a frame-
work for the uniform representation of state-topology co-
evolution via graph-rewritings, with a demonstration of au-
tomated rule discovery using real-world observed network
evolution data (Sayama et al., 2013). However, as a conse-
quence of decoupling the representation of entities and their
behaviours, these models do not achieve the same expres-
siveness of ABMs in describing the effects of small changes
in individual systems on the dynamics of the whole (Bent-
ley, 2009).

Interacting Hierarchical Dynamic Networks
The Model of Computation
The single component of computation in IHDNs is the sys-
tem (Figure 1). As in a property graph, a system S may have
a set of any number of labels LS , and a set of any number of
properties PS in the form of key value pairs. In addition, a
system may optionally be given a vote function FS

V , a filter
vector IS , and a vote vector V S . An ordered set of all pos-
sible system functions F is shared by all systems, with |F |
denoting the total number of defined functions.

The system may have a set of any number of child sys-
tems CS = {CS

1 , C
S
2 , ...} and (excluding ROOT systems)

Figure 1: The abstract IHDN system model.

Figure 2: (A) Systems may have multiple parent systems, and user
defined relationships may exist between systems of the same or
different scales. (B) A deepClone operation on system S recur-
sively copies contained systems, while membership in higher order
entities is inherited. (C) The system S performs a transfer op-
eration on S3 to the system T .

will have always at least one parent system PS . Relation-
ships indicating compositional hierarchy are labelled with
the CONTAINS relationship type, while any other user de-
fined relationship types may exist between any pair of sys-
tems. Typical operations for topology mutation include
deepClone and transfer (Figure 2).

Computation (here the update of system state - internal

reduce votes
from child
systems

YES

system is
INACTIVE?

NO

sum of
combined filter

> 0 ?

for each child
system:

recursive call

perform
function

select function
according to probability

distribution

combine system filter
with parent filter

(element-wise product)

using defined
voteFunction

using default
voteFunction

NO

YES

NO

YES

system has defined
voteFunction?

system is
ROOT? STOP YES

return
default vote

STOP

system is
ROOT?

START

YES

return voteNO

NO

Pass down combined filter

Collect child votes

Figure 3: Recursive compute algorithm executed at each ROOT sys-
tem once per iteration.

and/or structural), then proceeds via a depth-first traversal
over the CONTAINS relationships initiated at every ROOT
system (in a random order), once per iteration. The traversal
facilitates a message passing system that enables systems to
influence the selected actions of others at different levels in
the hierarchy.

When each system is selected to perform an action, the
functions are selected from F probabilistically, according to
the messages received by that system. There are two types of
message passed between systems in the hierarchy: filters are
passed down the tree; and votes are passed upwards. The el-
ements of both the filter and vote vectors correspond directly
to the functions of F .

To select a function for a system S to perform, the filter
vector from the current parent system IP and the set of vote
vectors V CS

are both considered. As filters are passed down
the tree, they are combined with the element-wise product,
enabling a system to set any chosen function’s probability of
selection to 0 regardless of the received votes and filters of
lower level systems. Equally filters may introduce an overall
bias to be applied to the received votes and to hierarchically

bias the actions of lower constituent systems. The default
behaviour is to reduce V CS

with addition to give

V S = V CS
1 + V CS

2 + · · ·+ V CS
n

to then calculate the element-wise product V S � IP . The
result is a vector of length |F |, which is used as a probability
distribution relative to the sum of its elements to select with
bias the function f ∈ F to perform.

While the default behaviour is to combine child systems’
votes with addition, and adding the system’s own vote before
passing the vote up the tree, the votes may be intercepted and
reduced differently, or even completely discarded by defin-
ing a new vote function for any chosen types of system.

Figure 3 provides an outline of the recursive compute
function, and demonstrates the order in which filters and
votes are combined and how they are passed up and down
the tree.

Implementation
The IHDN prototype implementation used for demonstra-
tion here is written in Java and exposes a simple API for the
development of simulations on top of an embedded Neo4j
instance. If votes and filters are not specified for a given
system, the defaults of (0, 0, . . .) and (1, 1, . . .) are used
respectively, contributing no bias or restriction on function
selection. Likewise, any ROOT systems are given the default
filter of (1, 1, . . .) as their parent filter during computation.

On completion of a simulation, the graph database is
stored and can then be queried directly with Cypher1 , or
visually using any existing Neo4j compatible tools. The
demonstration that follows employs the use of the Neo4j
multi-platform desktop browser.

Tracing Cell Lineage in Simulated Aneuploid
Tumour Growth

Having presented the IHDN platform for the simulation of
dynamic hierarchical systems, we now evaluate it against
an existing biological model of cancerous tumour growth
implemented on a conventional computer (Araujo, 2013),
which was also used to test another unconventional com-
puting platform (Sakellariou and Bentley, 2015). The rest
of this section describes the simulation according to the
methodology given in (Bentley, 2009).

The simulation is concerned with role of chromosome
missegregation in cancerous tumour growth; and since can-
cer is progressive via heritable change to cells, the relevance
of tracing this change in understanding and hence treating
cancer is especially evident. Better understanding of cell lin-
eage affords greater understanding of how a particular can-
cer will progress, how susceptible it will be to treatment,
and the likely-hood of its return (Frank, 2007; Bolton et al.,
2016).

1
https://neo4j.com/cypher-graph-query-language/

https://neo4j.com/cypher-graph-query-language/

Biological Observations

During normal mitotic cell division, each chromosome is du-
plicated and the resulting set of chromosomes is segregated
equally (in a direct one to one correspondence) between the
resulting new cells. However, it is estimated for human cells
that an average of one in one hundred cell divisions spon-
taneously missegregates (Cremer et al., 2001), i.e. fails to
separate the chromosomes into two identical sets, resulting
in one cell with extra chromosomes (and hence extra copies
of the contained genes), and the other cell with fewer.

As a consequence of this phenomenon and the config-
uration of which genes are present in the gained and lost
chromosomes, cells with different properties and behaviours
arise, which can lead to the evolution of cancerous cells that
divide highly and do not die naturally.

The Model

To explain the way in which aneuploid tumours develop re-
quires four main abstractions of physical systems: the tissue,
the cell, the chromosome, and the gene. Contrary to previ-
ous implementations, here these abstractions are adopted di-
rectly (each as a tree of systems in the hierarchy), affording
an intuitive correspondence between the problem domain
and the computational model.

Components

For this particular simulation, it is necessary to model three
particular gene abstractions - the apoptosis regulatory gene
(a tumour suppressor gene that regulates cell death), the cell
division regulatory gene (an abstraction of proto-oncogenes
that promotes cell growth and progression), and the chromo-
some segregation regulatory gene (an abstraction of genes
that control the fidelity of cell division and reduce the like-
lihood of chromosome missegregation). To capture the sen-
sitivity of the cell behaviours on the initial genetic config-
urations and gene linkage (the membership of which genes
are encoded in which chromosomes), three different chro-
mosome distributions are modelled (Figure 4).

CH4CH3

Div.
Gene

Apopt.
Gene

Seg.
Gene

Distribution B

CH2CH1

Div.
Gene

Apopt.
Gene

Seg.
Gene

Distribution A

CH6CH5

Div.
Gene

Apopt.
Gene

Seg.
Gene

Distribution C

Figure 4: Three possible chromosome distributions, formed as
combinations of six unqiue chromsome configurations.

A complete list of the entities modelled in this experi-
ment can be seen in Table 1. As will be discussed below,
each physical entity is not represented by a single system,
but rather the composition of a hierarchy of systems. Thus

each physical entity (i.e. the tissue, cell, etc.) is actually rep-
resented by a tree of systems, with the corresponding system
as its root.

To simplify any analytical computation, the possible chro-
mosome configurations are labelled with CH1 to CH6 ac-
cording to the six different possible combinations (Figure 4).
Additionally, upon completion of the simulation each CELL
system is given a genome property in the form of a vector
representing the number of each type of gene that it con-
tains. However, neither the additional labels or property are
required during the computation.

Table 1: The set of all IHDN system types used in this simulation.2

IHDN System Notes
Tissue Labels: TISSUE, ROOT

Cell Labels: CELL
Properties: start, nDivs
Vote function: cellVote

Dead cell Labels: CELL, INACTIVE
Properties: start, nDivs, inactiveAt

Cell copy Labels: CELL COPY, INACTIVE
Properties: start, nDivs,
missegregationAt

Chromosome Labels: CHROMOSOME,
one of {CH1, . . . ,CH6}
Filter: (0, 0, 0)

Apoptosis gene Labels: GENE, APOPT GENE
Vote: (0, 1, 0)

Division gene Labels: GENE, DIV GENE
Vote: (1, 0, 0)

Segregation gene Labels: GENE, SEG GENE
Filter: (0, 0, 0)

To capture the concepts of evolutionary heritage (i.e. cell
lineage), FROM and WAS relationships between CELL sys-
tems are used. These indicate heritage of regular cell divi-
sion and heritage of division in which missegregation occurs
respectively. Other metrics essential in tracing the ances-
try of evolved cells are recorded using the cell properties:
start, indicating the iteration in which a cell first came to
exist; nDivs, recording the number of times a cell has di-
vided; and missegregationAt, indicating the iteration
in which chrosomome missegregation has occured.

Organisation
Figure 5 shows the hierarchy of a tissue system composed
of cells with chromosome distribution B. The TISSUE sys-
tem groups the contained cells to provide an entry point for
the recursive algorithm. The horizontal (in the context of
the hierarchy tree) FROM and WAS relationships are created
between cell systems as shown in Figure 7.

2All filters, votes, and vote functions are set to the defaults un-
less otherwise stated.

Figure 5: IHDN Tissue to Gene Model. Apoptosis and division
gene systems influence function selection according to their votes.
The presence of segregation genes is queried during cell division
in order to calculate the required probability of missegregation.

Interaction
While there are three cell behaviours to model in this simu-
lation (cell division, cell death, and chromosome missegre-
gation), since missegregation may only occur in the context
of a division, it is not treated as a distinct function, rather
it is incorporated into the division function. To enable cells
to abstain from any behaviour in a given iteration, a pass
function is also given resulting in the ordered set

F = {divide, die, pass}

The divide function performs a deepClone of the
current system, such that any contained systems are recur-
sively copied, and any incoming CONTAINS relationships
are also copied (Figure 2). The result is an exact copy of
the structural hierarchy and composition, without duplica-
tion of any user-defined relationships (i.e. the FROM and
WAS relationships). After cloning, assuming no missegrega-
tion has occurred, the start property of the clone is set to
the current iteration and the nDivs property in each system
incremented.

For the die function, a inactiveAt property is set to
the current iteration and the system is labelled INACTIVE
to exclude it from further computation.

The cellVote vote function ensures that the probabil-
ity of selecting the pass function is always 0.5, indepen-
dent of the number of contained genes or their configuration
(Figure 6). The remaining 0.5 is then shared (as per the de-
fault behaviour) between the divide and die functions

Figure 6: Demonstration of message passing system from lower
to higher scale systems in a diploid cell of Distribution A: (A) the
votes of the gene systems are summed with the chromosome sys-
tem’s own vote resulting in (1, 1, 0); (B) the cellVote function
intercepts the votes from the chromosomes, reduces them with the
default vote function, but then assigns the total of all elements to
the position corresponding to the pass function.

proportionally to the number of votes for each, resulting in
the following probability distribution for cell function selec-
tion:

P (f = pass) =
1

2

P (f = divide|f 6= pass) =
d

a+ d

P (f = die|f 6= pass) =
a

a+ d

where a and d are the number of contained ADOPT GENE
and DIV GENE systems respectively.

Since presence of the abstracted segregation gene does
not bias function selection, but rather influences the extent
to which the chromosomes are correctly segregated during
cell division, the number of contained SEG GENE systems
is queried via a Cypher call during the divide function
directly without need for voting or an additional function.
As with (Araujo, 2013), the conditional probability of cell
missegregation used is3:

P (missegregation|f = divide) =
1

100
× (4− s)

where s is the number of contained SEG GENE systems.
In the case that a cell division is subject to chromosome

missegregation, a copy of the configuration prior to divi-
sion is made. The resulting system’s CELL label is replaced
with CELL COPY and INACTIVE to prevent its inclusion
in any further computation. The resulting pair of aneuploid
cells are each linked to it with a WAS relationship (see Fig-
ure 7). The iteration in which the missegregation occurred
is recorded with the missegregationAt property on the
CELL COPY system.

The TISSUE system is the single ROOT system, thus ev-
ery contained system is visited for computation once per it-
eration.

3s may only change ±1 per division, and only when
P (missegregation) > 0, it is therefore guaranteed that 0 ≤ s ≤ 4.

Figure 7: Example simulation output graph demonstrating connec-
tions between systems on the cellular level of abstraction, where
(a,d, s) represents the number of contained apoptosis, division,
and segregation genes respectively. This particular graph implies
the sequence of events: A divides producing B, A divides produc-
ing C, C divides producing D, D divides producing E, C dies, E
divides producing F, E divides but missegregates resulting in G and
H.

Experiment
To verify our model we test the tumour simulation against
the results of (Araujo, 2013) by comparing the tissue size,
genome diversity, and ratio of apoptosis to division genes
for each of the three chromosome distributions. Then, as
a demonstration of the additional capabilities of our model,
we analyse the evolutionary heritage (i.e. the cell lineage)
of the most prolific aneuploid tumour cells that arise during
the simulations.

The simulation is started with 100 identical diploid cells,
and executed 20 times for each of the three possible chro-
mosome configurations (Figure 4). The simulation is exe-
cuted until the tissue exceeds 7, 000 living cells (cell count
is monitored at the end of each complete iteration), or 100
iterations are reached (whichever occurs first).

Results
Verification
The simulation results (Figure 8 to 10) of the IHDN model
show the expected growth behaviours as demonstrated in the
reference model (Araujo, 2013)4. When the apoptosis and
division genes are distributed in the same chromosome (Dis-
tribution A), we see an expected homoeostasis in the size of
the tissue. However, when the cells are able to evolve the
number of contained copies of the apoptosis and division

4Graphs of reference model simulation are reproduced here
with permission and original data from the author.

0 50 100

2

4

6
1e2 Distribution A

0 20 40
0.0

0.5

1.0 1e4 Distribution B

0 20 40
Iteration

0.0

0.5

1.0 1e4 Distribution C

0 100 200
1.0

1.5

2.0

1e2 Distribution A

0 100
0.0

0.5

1e4 Distribution B

0 100
Iteration

0.0

0.5

1e4 Distribution C

Figure 8: Tissue Size – Total number of living cells per iteration
(left: IHDN, right: Reference model). Dashed line indicates me-
dian iterations to tissue size > 7, 000 cells.

0 50 100
0

10

20

Distribution A

0 20 40

5
10
15

Distribution B

0 20 40
Iteration

0

10

20

Distribution C

0 100 200

5

10
Distribution A

0 100

5
10
15

Distribution B

0 100
Iteration

0

20

Distribution C

Figure 9: Chromosome Diversity – Number of distinct genome
types per iteration (left: IHDN, right: Reference model).

genes independently, we see the tissue grow in size expo-
nentially. This behaviour is due to the evolution of cells that
are ‘fitter’ (i.e. more prolific and less likely to die) than the
initial population of diploid cells. Thus, we see the growth
of a tumour.

While Distributions B and C both demonstrate exponen-
tial growth, it is observed in the reference model that the

0 20 40
Iteration

0.4

0.6

0.8

1.0

0 50 100
Iteration

0.4

0.6

0.8

1.0 Distribution
A
B
C

Figure 10: Mean ratio of apoptosis to division genes (left: IHDN,
right: Reference model).

rate of growth is faster in C (Araujo, 2013). By comparing
the mean number of iterations until the tissue size exceeds
7, 000 cells (dashed vertical line in Figure 8), we observe the
same result5.

Cell Lineage
Having verified the behaviour of our model against an ex-
isting conventional implementation, we now demonstrate
its advantages. Throughout the remainder of this section,
(a, d, s) denotes the number of contained apoptosis, divi-
sion, and segregation regulatory genes respectively.

Using Neo4j Cypher queries to search the graphs for par-
ticular patterns, the complete evolutionary paths of any cell
can be traced. Listing 1 demonstrates an example query (vi-
sual result in Figure 11) to show three evolutionary paths
from the start cell configuration, (2, 2, 2), to the highest oc-
curring cell configuration (a particularly harmful cell) of
Distribution C, (0, 2, 0).

Listing 1: Example Cypher query to return three distinct paths
of genome evolution from the initial (2, 2, 2) to the cancerous
(0, 2, 0).

match (c:CELL) where (not (c:INACTIVE)) and
↪→ c.genome=[0,2,0]

with c match p = (c)-[:FROM|WAS*]->(o)
where
((o:CELL) or (o:CELL_COPY))
and not (o)-[:FROM|WAS]->()
and not (c)<-[:FROM|WAS]-()

return p limit 3

Going further, for each of the configurations we query all
distinct genome evolutionary paths to each of the arising
cell configurations, where consecutive matching genomes
are removed from the returned sequences. We see that ap-
proximately two thirds of the (0, 2, 0) cells of Distribution
C followed the simplest possible route (Table 2); because
of the higher probability of chromosome missegregation in
these cells, many demonstrate increased exploration and os-
cillation between configurations in their genome ancestry.

5Note that due to the difference in computing styles, the itera-
tion numbers do not correspond; however, the purpose here is to
validate the life-like evolutionary behaviour of the tissue and cells,
not the precise figures of the reference model.

Figure 11: Visual result of the example query (Listing 1). (Graphic
produced by the Neo4j Bowser).

However, for the most prolific arising cell configuration of
Distribution B, (0, 2, 2), it can be seen that a much greater
proportion took the shortest evolutionary path, as the proba-
bility for missegregation, and hence evolution, in these cells
is much lower.

Distribution B
Path %

(2,2,2),(1,2,2),(0,2,2) 86.3
(2,2,2),(1,2,2),(1,1,1),(0,1,1),(0,2,2) 3.81
(2,2,2),(1,2,2),(0,2,2),(0,1,1),(0,2,2) 3.54

Distribution C
Path %

(2,2,2),(1,2,1),(0,2,0) 67.3
(2,2,2),(1,2,1),(0,2,0),(0,1,0),(0,2,0) 7.47
(2,2,2),(1,2,1),(0,2,0),(0,3,0),(0,2,0) 7.32

Table 2: Proportion of most abundant final cell configuration that
followed the most commonly occurring distinct evolutionary paths.

By considering the mean number of distinct paths, we also
see that ancestry of the arising (0, 2, 0) genome configu-
rations (Distribution C) is the most diverse (12.45) across
all distributions, followed closely by (0, 3, 0) with 12.05.
While these forms of analysis require no additional tooling
with IHDNs, they were not possible in previous implemen-
tations and could help inform the open debate (for example,
(Greaves and Maley, 2012) and (Sottoriva et al., 2015) are
two opposing views) over the evolution of such cells.

Conclusion
We have introduced the IHDN model for simulating com-
plex dynamic systems, and verified the effectiveness of its
novel, cross-scale message passing system in capturing the

dynamic hierarchical dependencies of living systems.
Having demonstrated its application in simulating aneu-

ploid tumour development we observe the expected growth
behaviours for all three chromosome distributions. We have
also shown that through integration with a graph database
the IHDN model facilitates powerful ‘out of the box’ analy-
sis not possible in prior models, demonstrated here through
tracing the evolutionary paths of arising cell configurations.

Moreover, the pattern matching techniques we have
demonstrated are not restricted to post-analysis; any system
functions may take full advantage of the optimised pattern
matching Neo4j Cypher query engine during execution, thus
enabling systems to interact or adapt their behaviour accord-
ing to the detection of complex network structures.

Acknowledgements
Arturo Araujo – for his advice on the biological model pre-
sented, as well as providing his original simulation data.
Braintree Ltd – for providing the funding to support this
work.

References
Ahmed, S., Karsiti, M. N., and Agustiawan, H. (2006). A Devel-

opment Framework for Collaborative Robots Using Feedback
Control.

Araujo, A. (2013). Modelling Chromosome Missegregation in Tu-
mour Evolution. PhD thesis, UCL.

Arel, I., Liu, C., Urbanik, T., and Kohls, A. (2010). Reinforcement
learning-based multi-agent system for network traffic signal
control. IET Intelligent Transport Systems, 4(2):128.

Axelrod, R. (1997). The complexity of cooperation: Agent-ased
models of competition and collaoration.

Batty, M., Xie, Y., and Sun, Z. (1999). Modeling urban dynamics
through GIS-based cellular automata. Computers, Environ-
ment and Urban Systems, 23(3):205–233.

Bentley, P. J. (2009). Methods for improving simulations of bio-
logical systems: systemic computation and fractal proteins.
Journal of The Royal Society Interface, 6(Suppl 4):S451–
S466.

Bolton, H., Graham, S. J., Van Der Aa, N., Kumar, P., Theu-
nis, K., Gallardo, E. F., Voet, T., and Zernicka-Goetz, M.
(2016). Mouse model of chromosome mosaicism reveals
lineage-specific depletion of aneuploid cells and normal de-
velopmental potential. Obstetrical and Gynecological Sur-
vey, 71(11):665–666.

Bortot, L., Auchmann, B., Garcia, I. C., Fernando Navarro, A. M.,
Maciejewski, M., Mentink, M., Prioli, M., Ravaioli, E.,
Schops, S., and Verweij, A. (2017). STEAM: A Hierarchical
Co-Simulation Framework for Superconducting Accelerator
Magnet Circuits. IEEE Transactions on Applied Supercon-
ductivity, 28(3).

Cremer, T., Cremer, C., Not at Dartmouth/Dhmclibraries, and
on interlibrary loan, R. (2001). Chromosome territories, nu-
clear architecture and gene regulation in mammalian cells.
Nature Reviews Genetics, 2(4):292–301.

Epstein, J. M. (1999). Agent-based computational models and gen-
erative social science. Complexity, 4(5):41–60.

Frank, S. a. (2007). Cell Lineage History. In Dynamics of Cancer.
Incidence, Inheritance, and Evolution, chapter 14, pages 1–
378. Princeton University Press.

Funk, S., Salathé, M., and Jansen, V. a. a. (2010). Modelling the
influence of human behaviour on the spread of infectious dis-
eases: a review. Journal of the Royal Society, Interface / the
Royal Society, 7(50):1247–56.

Gilbert, N. (2004). Agent-based social simulation: dealing with
complexity. The Complex Systems Network of Excellence,
9:1–14.

Gonzalez, M. W. and Kann, M. G. (2012). Chapter 4: Protein In-
teractions and Disease. PLoS Computational Biology, 8(12).

Greaves, M. and Maley, C. C. (2012). Clonal evolution in cancer.

Gross, T., D’Lima, C., and Blasius, B. (2006). Epidemic Dy-
namics on an Adaptive Network. Physical Review Letters,
96(20):208701.

Lenaerts, T., Groß, D., and Watson, R. (2002). On the Modelling
of Dynamical Hierarchies : Introduction to the Workshop.
Proceedings of the Alife VIII workshop, (31):37.

Pearlmutter, B. A. and Houghton, C. J. (2009). A New Hypoth-
esis for Sleep: Tuning for Criticality. Neural Computation,
21(6):1622–1641.

Sakellariou, C. and Bentley, P. J. (2015). Demonstrating the perfor-
mance , flexibility and programmability of the hardware ar-
chitecture of systemic computation modelling cancer growth.
Bio-Inspired Computation, 7(6).

Sayama, H. (2007). Generative network automata: A generalized
framework for modeling complex dynamical systems with
autonomously varying topologies. Proceedings of the 2007
IEEE Symposium on Artificial Life, CI-ALife 2007, pages
214–221.

Sayama, H., Pestov, I., Schmidt, J., Bush, B. J., Wong, C., Ya-
manoi, J., and Gross, T. (2013). Modeling complex systems
with adaptive networks. Computers and Mathematics with
Applications, 65(10):1645–1664.

Sottoriva, A., Kang, H., Ma, Z., Graham, T. A., Salomon, M. P.,
Zhao, J., Marjoram, P., Siegmund, K., Press, M. F., Shibata,
D., and Curtis, C. (2015). A big bang model of human col-
orectal tumor growth. Nature Genetics, 47(3):209–216.

Webster, M. and Malcolm, G. (2008). Hierarchical components
and entity-based modelling in artificial life. Artificial Life
XI: Proceedings of the 11th International Conference on the
Simulation and Synthesis of Living Systems, ALIFE 2008,
(1991):678–685.

Yao, Y. and Van de Peer, Y. (2017). Simulating Biological Com-
plexity through Artificial Evolution. In 2017 3rd IEEE Inter-
national Conference on Cybernetics (CYBCONF), pages 1–8.
IEEE.

	Introduction
	Background
	Interacting Hierarchical Dynamic Networks
	The Model of Computation
	Implementation

	Tracing Cell Lineage in Simulated Aneuploid Tumour Growth
	Biological Observations
	The Model
	Components
	Organisation
	Interaction

	Experiment
	Results
	Verification
	Cell Lineage

	Conclusion
	Acknowledgements

