Supporting Modern Code Review

DongGyun Han

A dissertation submitted in fulfilment
of the requirements for the degree of

Doctor of Philosophy
of
University College London

Department of Computer Science

University College London

15 February 2019

Declarations

I, DongGyun Han, confirm that the work presented in this thesis is my own.
Where information has been derived from other sources, I confirm that this
has been indicated in the thesis. The papers presented here are original work
undertaken between April 2015 and February 2019 at University College
London. They have been submitted for publication as listed below with a
summary of my contributions to the papers:

1. D. Han,]J. Krinke, M. Paixao, C. Ragkhitwetsagul, and G.Rosa, ‘Pretty

Patches: An Empirical Study of Coding Conventions During Code Re-
view’, submitted to 27th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE), 2019 (under review).
Contribution: managed and lead the study, including the experiments
and manual investigation. I designed the research questions and anal-
ysed data to derive answers to the research questions. In addition, I
participated in the manual investigation as an investigator. This paper
is presented in Chapter 4

2. M. Alonaizan, D. Han, J. Krinke, C. Ragkhitwetsagul, D. Schwartz-

Narbonne, and B. Zhu, ‘Recommending Related Code Reviews’, major
revision submitted to Transactions on Software Engineering (TSE), 2018
(major revision).
Contribution: This study is based on the master’s thesis of Manal
Alonaizan, who is an author of the paper. During her master’s program,
Dr. Jens Krinke and I managed her master thesis. After her graduation,
I extended the paper by conducting additional experiments, rewriting
the contents, and adding an interview based on our technique during
my Amazon internship. This paper is presented in Chapter 5.

In addition, I have co-authored the papers below during my PhD program.
The following papers are not presented in this thesis:

1. M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman, ‘The
Impact of Code Review on Architectural Changes’, IEEE Transactions
on Software Engineering (TSE), 2018 (major revision).

2. M. Paixao, J. Krinke, D. Han, and M. Harman, ‘CROP: Linking Code
Reviews to Source Code Changes’, in Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories (MSR2018), 2018.
(Data Showcase)

3. M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman,
‘Are Developers Aware of the Architectural Impact of Their Changes?’,
in Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2017), 2017.

4. T. Lee, J. Nam, D. Han, S. Kim and H. In, ‘Developer Micro Interaction
Metrics for Software Defect Prediction’, IEEE Transactions on Software
Engineering (TSE), 2016.

Date Signature

Abstract

Modern code review is a lightweight and asynchronous process of auditing
code changes that is done by a reviewer other than the author of the changes.
Code review is widely used in both open source and industrial projects
because of its diverse benefits, which include defect identification, code
improvement, and knowledge transfer.

This thesis presents three research results on code review. First, we conduct a
large-scale developer survey. The objective of the survey is to understand
how developers conduct code review and what difficulties they face in
the process. We also reproduce the survey questions from the previous
studies to broaden the base of empirical knowledge in the code review
research community. Second, we investigate in depth the coding conventions
applied during code review. These coding conventions guide developers to
write source code in a consistent format. We determine how many coding
convention violations are introduced, removed, and addressed, based on
comments left by reviewers. The results show that developers put a great deal
of effort into checking for convention violations, although various convention
checking tools are available. Third, we propose a technique that automatically
recommends related code review requests. When a new patch is submitted
for code review, our technique recommends previous code review requests
that contain a patch similar to the new one. Developers can locate meaningful
information and development context from our recommendations.

With two empirical studies and an automation technique for recommending
related code reviews, this thesis broadens the empirical knowledge base
for code review practitioners and provides a useful approach that supports
developers in streamlining their review efforts.

Impact Statement

To improve the current practice, two steps are required: understanding the
current issues and providing solutions for them. This thesis investigates the
current issues in code review practice via two large-scale empirical studies
and proposes an automated technique that recommends related code reviews.
In addition, we conduct a thorough literature review to summarises state-of-
the-art publications in code review research.

A large-scale developer survey targeting open source developers helped
us to comprehend developers” expectations and reality. We extracted 16
questions in four categories from a preliminary interview with 12 develop-
ers. In addition, we reproduced five questions from two previous survey
papers and compared our results with the published results to extend the
body of empirical knowledge. Overall, our survey results provide a better
understanding of open source developers’ code review practices in terms
of demographics, reviewer selection methodologies, expected and actual
review time, practices in consulting previous reviews, motivation for code
review, and review criteria.

We conducted a second empirical study to investigate coding convention
issues during code review. We found that developers waste time check-
ing simple coding convention violations, such as trailing whitespace, even
though various automated convention checkers exist to support developers
in these tasks. Based on our empirical studies, researchers and practitioners
can better understand the current issues developers face and how to support
them.

Lastly, we proposed a related review recommendation technique. Our ap-
proach recommends related reviews by computing similarities between
newly submitted patches and previously reviewed patches. To the best of

our knowledge, there is no existing technique to support developers by au-
tomatically locating related reviews; instead, developers need to manually
track related reviews.

Acknowledgements

My PhD program and this dissertation could not have been finished without
the sincere support of many people. I gratefully acknowledge the people
who really supported and loved me here.

First of all, I thank my first supervisor, Dr Jens Krinke, for his dedicated
supervision. I understand how much he has suffered because of the stubborn
student (i.e. me) who is hard to persuade. However, he has always done his
best to persuade me logically, to guide me to the correct way, and to derive
the best research result with me. Without his kind and dedicated supervision,
I cannot imagine my PhD could have been completed.

I also appreciate my co-second supervisors, Prof. Mark Harman and Dr Fed-
erica Sarro, who have provided much feedback to help me finish my PhD. In
addition, I would like to recognise all members at CREST, UCL. My research
was improved by discussions with talented CRESTies and by their kind help.
I am especially grateful to Bobby Bruce, Carlos Gavidia, Matheus Paixao,
and Chaiyong Ragkhitwetsagul.

Dr Alberto Bacchelli and Dr David Clark spent their valuable time reading
my PhD thesis for my PhD viva as examiners. I appreciate their constructive
comments to improve this thesis. I also appreciate Dr Dongsun Kim for his
fruitful proofreading of this thesis.

Without sincere supervision and support from Dr Sunghun Kim and Prof. Hoy-
oung Kwak, I could not even have started my PhD. Dr Sunghun Kim taught
me many research skills during my MPhil at Hong Kong University of
Science and Technology (HKUST). Prof. Hoyoung Kwak provided diverse
research experiences during my undergraduate time at Jeju National Univer-
sity.

Four internship periods at Amazon provided me with a range of research
ideas. I could experience software engineering research in industry and
watch how real developers work in practice. In particular, Daniel Schwartz-
Narbonne supported me a great deal as a mentor during my four internship
periods. In addition, I am grateful for the automated reasoning group (ARG)
and developer tools at Amazon.

I value the friendship and support of all my Korean friends from my home-
town, Jeju Island. I especially appreciate Changsoo Moon, Sunghwan Cho,
Jihyun Kim, Hongyoon Oh, and Jae-eun Lee.

I also want to acknowledge Ryan at Kakao Friends and M&M'’s. Without
their cheering, I might have dropped my PhD in the middle (seriously).

And last but not least, I would like to thank my family for their support all
the way from the very beginning.

Contents

Introduction

1.1 Modern Code Review Process
1.2 Motivation e e
1.3 Listof Publications
14 Expected Contributions
1.5 ThesisOrganisation

Literature Review

21 SurveysonCodeReview
2.2 Coding Conventions During Code Review
2.3 Recommendation Techniques for Code Review
24 Conclusions o

How Do Developers Conduct Code Review?

3.1 Introduction,

32 PreviousSurveys e

3.3 Methodology

34 Result. e
341 Demographics.
34.2 ReviewerSelection
343 ReviewTime
34.4 Consulting Other Reviews
345 Motivation. L o e
3.4.6 Importance and Accessibility of Review Criteria

3.5 Discussion e
3.5.1 Expected and actual review time
3.5.2 Consulting Earlier Code Reviews
35.3 Motivation for codereview
3.54 Importance and accessibility of review criteria

Contents

3.6 ThreatstoValidity
3.6.1 Internal Validity.
3.6.2 External Validity

37 Conclusion

Pretty Patches: An Empirical Study of Coding Conventions Dur-
ing Code Review
41 Introduction
42 Experimental Design
421 ResearchQuestions.
422 TheCROPDataSet.....................
423 Extracting Introduced Violations
43 Results
43.1 RQI1. How many convention violations are introduced
during code review? Lo oL
4.3.2 RQ2. What kinds of convention violations are addressed
during codereview? L.
4.3.3 RQ3. Do convention violations delay the code review
ProCess?
434 Discussion
4.4 Coding Conventions in Practice
441 Checking Tool Adoption
442 Fixing Tool Adoption
443 Trailing Whitespace
444 Enclosing Blocks in Braces in JGit and EGit
45 Threatsto Validity
46 Conclusion o

Recommending Related Code Reviews

51 Introduction

52 CodeReview e

53 Motivation e

54 Methodology
54.1 Similarity Measures
5.4.2 Goal and Research Questions
543 ExperimentalSetup.

10

Contents

55 Results 98
55.1 RQ1I: Do the recommended patches provide useful
information during code review? 99
5,52 RQ2: How precisely are the recommended patches
related to the submitted patches? 103
5.5.3 RQ3: How does the similarity threshold affect the ac-
curacy of theresults? 108
554 RQ4: How robust is the result compared to other simi-
larity measures with different thresholds? 114
56 Discussion o oo 117
57 Threatsto Validity, 119
58 Conclusions o 121
6 Conclusions and Future work 123
6.1 Summary of Achievements 123
6.1.1 Developer Survey on Code Review 123
6.1.2 Coding Conventions in Code Review 124
6.1.3 Recommendations of Related Reviews 124
6.2 Summary of Future Work, 125
Bibliography 127

11

List of Figures

1.1

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

3.9

3.10

3.11
3.12

3.13

4.1

4.2

4.3

Modern code review process 18
Overall process of thesurvey 30
Q1. Primary work area of the survey respondents 34
Q3 and 4. Overall development experience and experience

within the current team or project 35
Q5. Number of colleagues on a team or project 36
Q7. Programming languages the respondents use the most . . 37
Q9. Reviewer preference of the respondents 38
Q11. The respondents’ expectation on review time 40
Q12. Expected time to resolve a code review request and actual

time from code review repositorydata 41
Q13. Expected number of revisions to resolve a code review

request and actual number of revisions from code review

repositorydata Lo Lo oo 42
Q16. Level of agreement with three statements regarding the
helpfulness of consulting other reviews 44
Q17. Developers’ top three motivations for code review 45
Q19. How important it is to identify each problem during code
TOVIEW e 47
Q20. How easy or difficult it is to identify each problem during
codereview e 49

Extracting introduced violations during code review by com-

paring violations before and afterapatch 61
The accumulated numbers of convention violations detected
in the first (grey) and last (black) patches 66

Number of lines added or deleted in the first and last patches 67

12

4.4

4.5

4.6

4.7
4.8

51

52
53
54
5.5

5.6

57
5.8

59

List of Figures

The number of violations varies over the number of inserted
lines between the first and the last patches 68
The numbers of code review requests in which violations were
addressed during code review as confirmed by manual inves-
tigation (‘Confirmed” — grey) and those in which violations
disappeared without evidence ("No Evidence” — black) found
in the manual investigation 70
Delay in detecting (‘“TimeToReview’) a convention violation
during code review and delay in addressing (‘“TimeToAd-

dress’) a convention violation, 73
Time taken for code review requests to be approved 74
A reviewer pointed out trailing whitespace during code re-

view. Gerrit highlights trailing whitespaceinred. 81

Two related reviews in Eclipse’s EGit project as found in the
Gerrit code review system. The developers’ names are blinded

forprivacy. Lo 87
Patch example. Developers’ names are blinded for privacy. . . 90
Similarity measure distribution for each individual patch. . . 96

Q3 — 1.5 x IQR thresholds over the different number of patches108
Number of recommendations that are made based on different

thresholds 109
Average number of recommendations per patch based on
different thresholds, 110

Area under the receiver operating characteristics (ROC) curve 111
Precision (top) and recall (bottom) with different Jaccard index

thresholds 113
Similarity measure distribution for each individual patch . . . 114

5.10 Precision and recall with different similarity measures with a

Q3+ 15 xIQRthreshold 115

13

List of Tables

3.1 Questions in the questionnaire 31
3.2 Q15. Reasons why developers consult earlier reviews 43
41 Codereview data sets statistics 60
4.2 Opverall convention violation variations found between first

and last patches of a code review request 63
4.3 The number of manually investigated convention violations

and the number of conflicts between human investigators. The

conflicts were all resolved based on discussion. 63
5.1 Evaluation result of the three similarity measures by using

Ragkhitwetsagul et al.’s framework and benchmark data [Ragkhitwet-

saguletal.,2018] L. 91
5.2 Collected data sets for each project 94
5.3 The interviewees’ experience at Amazon and interview duration 97
5.4 Recommendation examples for the interviews. ‘External” means

a code review request was authored or reviewed by a devel-

oper on the external team; otherwise, we specify SDE alias . . 99
5.5 The interview overview foreachSDE 102
5.6 A statistical summary of the evidence categories and the types

of evidence within each category 103
5.7 A list of different relationship categories for the suggested

patchsets. 104
5.8 Ratios of resubmitted identical patches by reason. The paren-

thetical values show the numbers of resubmitted patches . . . 106
5.9 Six thresholds based on distances from the third quartile for

each project with Jaccard index. The distances are computed

by using the interquartile range (IQR). 112
5.10 Thresholds for each project and similarity measures 116

14

List of Tables

5.11 Average relative precision for different thresholds and simi-
larity measures L Lo oo

5.12 Average relative recall for different thresholds and similarity
MEASUIES . . . & v o v v v e e e e e e

15

1 Introduction

Code review is the process by which one developer reviews the source code
of another. Since Fagan [1976] proposed code inspection, which is a formal
and synchronous code review technique, many researchers have shown
various benefits of code review as a tool for detecting defects. As a result,
many companies and organisations have adopted this technique in their
development process.

However, the synchronous characteristic of code inspection hinders its adop-
tion in practice. Code inspection requires an offline meeting with developers
other than the author. This means that the developers who are needed to
attend the code inspection meeting must stop their work to review their
colleague’s code. For example, if five developers attended a code inspection
meeting for an hour, the company has spent five person-hours to review
code snippets, which is very expensive and wasteful. In addition, scheduling
a meeting and waiting for other colleagues also requires time. Because of
their time-consuming and cumbersome characteristics, many practitioners
try to avoid code inspection meetings, regardless of their benefits.

Recently, modern code review is becoming popular (Bacchelli and Bird
[2013]), and many companies have adopted the technique in their devel-
opment process. In contrast to the code inspection technique, modern code
review is a tool-based, asynchronous, and informal code review process. De-
velopers submit their code changes to an online code review tool whenever
they are ready to integrate their changes without interrupting other team
members. As soon as a developer submits a change to the code review tool,
other team members are notified that there is a new code change waiting
for review. The other team members can remain focused on their own work
until they finish their current task. They do not need to wait for others to join
the review session but can start their own review whenever they want. In

16

1 Introduction

the code review tool, they can see the changed code snippets, leave review
comments, and discuss the change via comments. Therefore, developers
save time and suffer from fewer interruptions while getting almost the same
benefits achieved with code inspection.

In addition, many recent studies reveal various benefits of modern code re-
view beyond detecting potential defects. Developers can find better solutions
for bug fixing or feature enhancement while discussing the code changes, and
this discussion leads to improved code quality. Another benefit is knowledge
sharing among team members. It takes considerable human effort to train
a new developer. If the novice developer joins code reviews, however, she
will learn the code base by watching discussions between senior developers.
Additionally, when she makes a code change, experienced developers can
give her constructive comments via the code review tools.

1.1 Modern Code Review Process

Figure 1.1 shows the overall process of modern code review supported
by tools. Unlike the code inspection technique, modern code reviews are
conducted using a variety of code review tools now available.

A developer has at least one of two major roles in modern code review:
change author or reviewer. The change author in the figure makes a change to
the original source code, which has been checked out from the repository.
She submits her change — also referred to as a patch in many studies —
to the code review tool. Usually, the change is committed to a temporary
branch of the source code repository and not directly to the master branch.
At the moment of the change submission, a continuous integration (CI) tool
automatically conducts a verification check. The verification criteria used can
vary between companies and organisations. Basically, most CI tools check
for build and test failures. If the change causes an error in verification, the
change author must rework the change until no error occurs during the
verification step.

If the change successfully passes the verification check, another developer —
the reviewer in the figure — manually inspects the change. Note that there is

17

1 Introduction

Merge
Repository Approved
Patch

Verification Result

- =

Author ClI Verification Reviewer

v(:h%k

Review Comment

Original
Source
Code

Figure 1.1: Modern code review process

usually more than one reviewer. These reviewers are generally experienced
developers with more knowledge of the code change context than other
developers. In the example, we assume that there is only one reviewer in the
review process. The reviewer checks the change by considering functional
and non-functional requirements (e.g. although the change may passed
all the unit tests and CI checks, it can be rejected if it does not follow the
coding conventions of the project). In addition, developers other than the
reviewers and the change author can make additional comments during the
review. If the change does not satisfy the requirements, the reviewer provides
constructive comments about it. The change author then reworks it based on
the reviewer’s comment and repeats this process until the reviewer approves
the change. Finally, the reviewer merges the approved change into the master
branch of the repository.

18

1 Introduction
1.2 Motivation

My PhD thesis has two ultimate goals:

First, the thesis seeks to understand developers’ perspectives in code review.
Comprehending what developers want and how they conduct code review
is one of the most important objectives of empirical studies on code review.
As code review becomes more popular, many empirical studies identify
its benefits, but only a few studies are available that help us understand
developers in a code review context.

The second goal is to determine how to support developers in code review.
Although many empirical studies have reported on code review, not many
techniques are available to support developers during the process. We must
use the empirical knowledge gained from developers, to better support
developers in code review.

1.3 List of Publications

During my PhD program, I have participated in and am currently working
on the following papers as an author:

¢ DongGyun Han, Jens Krinke, Matheus Paixao, Chaiyong Ragkhitwet-
sagul, and Giovani Rosa, ‘Pretty Patches: An Empirical Study of Cod-
ing Conventions During Code Review’, submitted to 7th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2019 (under review;
discussed in Chapter 4).

e Manal Alonaizan, DongGyun Han, Jens Krinke, Chaiyong, Ragkhitwet-
sagul, Daniel Schwartz-Narbonne, and Bill Zhu, ‘'Recommending Re-
lated Code Reviews’, submitted to IEEE Transactions on Software Engi-
neering (TSE), 2018 (major revision; discussed in Chapter 5).

e Matheus Paixao, Jens Krinke, DongGyun Han, and Mark Harman,
‘CROP: Linking Code Reviews to Source Code Changes’, in Proceedings
of the 15th International Conference on Mining Software Repositories
(MSR2018), Gothenburg, Sweden, 2018, Data Showcase.

19

1 Introduction

e Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwet-
sagul, and Mark Harman, ‘Are Developers Aware of the Architectural
Impact of Their Changes?’, in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE
2017), Urban Champaign, Illinois, USA, 2017.

1.4 Expected Contributions

Improving current practice requires two steps: understanding the current
issues and developing solutions for them. In this thesis, I present two empiri-
cal studies to improve our understanding of the current issues, and I propose
an automated technique to improve the current practice.

One part of my work for my PhD thesis is a large-scale survey to under-
stand how actual developers do code review in practice. The survey was
conducted in open source communities (Eclipse and OpenStack). Since the
survey reproduces some questions that appeared in previous publications,
these results reveal differences between past and present. The survey results
provide a better understanding of the code review practice in open source
projects in terms of the developers’ expectations and difficulties.

Another empirical study in this thesis highlights the coding convention is-
sues during code review. The main goal of this second study is to learn
what kinds of coding convention violations are detected during code review
and how developers react to these violations. Although various tools sup-
port developers in detecting coding convention violations, we found that
many patches are rejected because of such violations. This work extends
our empirical knowledge by highlighting how developers handle coding
conventions during code review and the difficulties they have in manually
checking violations of those conventions.

Using the survey, I identified several difficulties developers face. To miti-
gate their pain during code review, I developed a technique to recommend
related code reviews. The technique can provide more context for devel-
opers reviewing a change by recommending related previous code review
requests.

20

1 Introduction

1.5 Thesis Organisation

The remainder of the thesis is organised as follows. Chapter 2 surveys re-
cent studies about code review. Chapter 3 presents results of the developer
survey on code review. Chapter 4 reviews the empirical results on coding
conventions used during code review. Chapter 5 describes the related re-
view recommendation technique. Finally, Chapter 6 concludes the thesis and
suggests the future work.

21

2 Literature Review

2.1 Surveys on Code Review

Bacchelli and Bird [2013] conducted a large-scale empirical study at Microsoft
to learn the expectations, outcomes, and challenges of modern code review
in practice. The authors interviewed developers to understand how they
perform code review in practice. In addition, the authors manually inspected
review comments extracted from CodeFlow, which is the internal code re-
view tool at Microsoft. They conducted open card sorting to illustrate a
mental model and derived categories from the interviews and code comment
data without predefined categories. Based on the taxonomies extracted from
open card sorting, the authors wrote a survey questionnaire. They sent the
first survey, consisting of six questions, to 600 managers in the company;
165 (28%) responded. The authors also sent a second survey composed of 18
questions to 2,000 developers and received 873 (44%) answers. The survey
results indicate that even though the primary motivation for code review
was to find defects, developers thought code improvement, finding an alter-
native solutions, and knowledge sharing were also important motivations
for conducting code review. The authors” comment analysis, however, shows
most review comments are about code improvement, understanding, and
social communication. Finally, the authors point out that knowledge transfer,
increased team awareness, and creation of alternative solutions to problems
are also expected outcomes of modern code review rather than simply the
identification of defects.

Tao et al. [2014] investigated how to write acceptable patches to avoid review
rejection and the need for resubmission. To this end, they manually analysed
rejected patches from the Mozilla and Eclipse open source projects to derive
review criteria used by developers in practice. They extracted 12 reasons for

22

2 Literature Review

patch rejection. Based on this knowledge, they conducted a survey of Eclipse
and Mozilla developers, asking how decisive the 12 patch rejection reasons
were during code review. In addition, they asked how easy or difficult it
was to identify the reasons for patch rejections. They reported that the most
important reason for rejecting a patch was introducing new bugs; they also
reported this was the most difficult problem to identify.

Kononenko et al. [2016] surveyed the ways in which developers perceive
code review quality. They sent a questionnaire to 88 Mozilla developers. The
authors observed that the review quality is associated with the thorough-
ness of the feedback, the reviewer’s expertise with the code base, and the
perceived quality of the code itself.

Bosu et al. [2017] conducted surveys of open source developers and devel-
opers from Microsoft to comprehend the process and the benefit of code
review. The authors discovered that developers spent about 10 to 15 percent
of their time in code reviews. In addition, developers spent more time in code
review as they became more experienced. They reported that open source
developers and Microsoft developers gave similar answers on their survey
in general.

Gousios et al. [2015] investigated the integrator’s role within a pull-based
development. They surveyed 749 integrators to comprehend their practices
and challenges. The authors argued that the integrators have difficulties in
prioritising code changes to be merged.

Baum et al. [2017] studied the optimal order of reading source code changes.
They conducted interviews and a survey and investigated the code review
history of a company. Based on the diverse dimensions of study, the authors
came up with six principles to organise source code changes. In particular,
they argued that optimal grouping of the changed sections by relatedness is
the most important.

2.2 Coding Conventions During Code Review

Panichella et al. [2015] investigated how developers handle static analysis
results such as coding convention violations during code review. While their

23

2 Literature Review

approach to the analysis is very similar to that we use in research presented in
Chapter 4, their evaluation was limited and mainly focussed on quantitative
analysis. While they manually investigated only a small sample of candidate
reviews, we manually investigated all reviews. Moreover, they concluded
that static analysis tools can be used to support developers during code
reviews. In contrast, our analysis demonstrated that developers were not
effective — and more importantly, not consistent — in detecting violations,
suggesting that automated checking (and fixing) should be used to reduce
the burden on reviewers and make the code review more rigorous in terms of
catching violations that developers actually care about. We focused in detail
on what violations are inserted and removed during the review, improving
on the diversity of those already present.

Balachandran [2013] suggested the Review Bot, which is an extension of the
Review Board and can recommend appropriate reviewers for a submitted
review issue. The Review Bot uses line-level change history to determine the
proper reviewer. The author evaluated his approach by using proprietary
data from VMware. Since there were no previous studies on reviewer recom-
mendation, the author compared the recommendation result with the result
extracted via a different level of granularity (i.e. file-level change history).
When the Review Bot recommended only one reviewer, its reported accuracy
was 59.92%-61.17%. When it recommended five reviewers, it showed an
80.85%-92.31% accuracy rate.

Similar to Balachandran’s work, Henley et al. [2018] integrated a CI tool,
CloudBuild [Esfahani et al., 2016], that covers builds, test, and code analysis
within a code review tool, CodeFlow. The authors showed that integrating
static analysis tools within the code review leads to more communication
between developers. In particular, their technique increased discussions of
coding conventions by about 50%.

Singh et al. [2017] found that PMD can reduce the workload of code re-
viewers. Beller et al. [2016] empirically studied how developers leverage
static analysis tools during code review, reporting that such tools are widely
adopted in projects, but their use is not strictly enforced.

Czerwonka et al. [2015] reported on experience within Microsoft about bene-
fits and costs of reviewing practices. They discussed the high cost of code
reviews and the fact that reviews are not always used efficiently.

24

2 Literature Review

Vassallo et al. [2018] investigated developers in both industry and open
source projects who use static analysis tools. They observed that develop-
ers configure static analysers at least once, and the configuration is rarely
changed during a project. They also stated that developers assign different
priorities to warnings generated by static analysers based on different con-
texts. Zampetti et al. [2017] empirically investigated the integration of static
analysis tools and ClIs. They found that a failure caused by a convention
checker is one of the main reasons for build failure. Sarkar and Parnin [2017]
argued that human efforts imply mental fatigue, which causes an increase in
coding convention violations.

Smit et al. [2011] examined whether convention adherence is a proxy mea-
surement for maintainability. They observed that adopting coding conven-
tion checking tools does not lead to a reduction in the number of violations.
On the other hand, Java programmers find it difficult to comply with coding
conventions, as a study by Elish and Offutt [2002] has demonstrated.

2.3 Recommendation Techniques for Code Review

Thongtanunam et al. [2014, 2015] introduced a reviewer recommendation sys-
tem based on file location information. The authors asserted the importance
of the reviewer recommendation problem by showing 4%-30% of reviews
suffered a code reviewer assignment problem. Notably, large systems have
more difficulties in finding appropriate reviewers than comparable small
systems. They assume that files that have similar paths will be managed and
reviewed by a similarly experienced developer. Based on this assumption,
the authors proposed a file-path-based code reviewer recommendation sys-
tem, RevFinder. They demonstrated that RevFinder correctly recommended
79% of reviewers (top-10 recommendation) and outperformed the Review
Bot proposed by Balachandran [2013].

Ouni et al. [2016] proposed a search-based code reviewer recommendation
technique called RevRec. Specifically, the authors adopted a genetic algo-
rithm to find reviewers using previous reviews. They claimed that their
approach could achieve 59% precision and 74% recall.

25

2 Literature Review

Zanjani et al. [2016] proposed another reviewer recommendation approach
called cHRev based on code review history data. The authors argued that
the specific information from previously resolved code reviews (i.e. the
quantification of review comments and their recency) dramatically improved
the recommendation performance.

Hannebauer et al. [2016] suggested a reviewer recommendation technique
based on developers” expertise. They used six algorithms based on code
change expertise and two algorithms based on code review expertise. The
authors claimed that their technique could recommend at least one out of
tive reviewers correctly in 69%-75% of all cases.

2.4 Conclusions

In the 40 years since Fagan first proposed the code inspection technique,
many code review studies have been conducted. Recently, the code review
paradigm has shifted from formal code inspection to modern code review,
which is a lightweight and asynchronous technique. With the emergence of
modern code review, many developers and researchers became interested in
studying its performance. Numerous empirical studies have been published,
and diverse modern code review tools have been released. Through these
advances, developers could gain many benefits. However, recent research has
been heavily biased towards empirical studies of modern code review. Even
though empirical studies are important and can provide valuable insights for
practitioners, there has not been sufficient consideration for direct support of
developers in modern code review. This calls for more work on code review
automation and tool support.

26

3 How Do Developers Conduct
Code Review? An Empirical
Study of Code Review Practice
in Open Source Projects1

3.1 Introduction

Fagan [1976] proposed the traditional code inspection technique to detect
potential defects at an early stage. Fagan’s code inspection technique is a
formal review process based on an off-line meeting of developers in which
they discuss whether the code is buggy or how to improve it. Since it was first
proposed, a series of studies have observed the benefits of code inspection,
including finding defects and reducing testing time [Fagan, 1986, Ackerman
etal., 1989, Siy and Votta, 2001]. On the other hand, it has also been observed
that this traditional approach to code review consumes significant develop-
ment resources because of its formality and its synchronous nature [Votta,
1993].

Modern code review is differentiated from the traditional code inspection
technique by its lightweight and asynchronous characteristics while preserv-
ing the benefits of the code inspection technique [Bacchelli and Bird, 2013].
Modern code review is conducted using a code review tool asynchronously
(i.e. developers can review their colleagues’ changes at their own conve-
nience) rather than relying on an offline code inspection meeting. Because of

I This work has done with Jens Krinke and Federica Sarro at University College London
and Daniel Schwartz-Narbonne at Amazon Web Services.

27

3 How Do Developers Conduct Code Review?

modern code review’s benefits and efficiency, it has been widely adopted in
both open source [Bosu and Carver, 2013, Tao et al., 2014] and proprietary
projects [Feitelson et al., 2013, Bosu et al., 2015, Sadowski et al., 2018].

Given that the use of code review is increasing, we need to improve the
current process to mitigate the burden it puts on developers. A three-step
approach has been widely adopted by empirical researchers to improve a
process or practice [Wohlin et al., 2003]. First, we need to understand the
current practice. Based on a proper understanding of the current practice,
we can derive potential improvement opportunities. Second, we must eval-
uate whether the new idea from the first step contributes to improving the
current practice. Lastly, we can improve the current process by adopting the
suggestions from the evaluation. In this chapter, we conduct a large-scale
survey to evaluate developers’ current code review practice and to better
understand existing code review process.

Many researchers have conducted survey surveys to understand modern
code review [Bacchelli and Bird, 2013, Kononenko et al., 2016, 2018, Bosu
et al., 2017]. However, their findings are limited to the subjects they have
investigated, and it is not clear whether the findings apply to other subjects.
Different open source projects and proprietary projects can have different
characteristics, and the conclusions from the previous studies may not be
applicable to all projects. Therefore, reproducing existing studies can extend
empirical knowledge and provide a better understanding by confirming
the previous results with different subjects or by reporting different results
from different subjects. We carried out a survey composed of 21 questions
informed by developers and previous surveys on the same topic. To compare
our new results to those of previous surveys, we need to get data from
those earlier studies. With the original authors’ support, we gained access
to the survey results of Bacchelli and Bird [2013] and Tao et al. [2014] and
reproduced the questions used in their studies.

This chapter presents the following contributions:

e A large-scale survey of code review within open source projects (Eclipse
and OpenStack)

e A comparison between developers’ perceptions and reality in terms of
review time

28

3 How Do Developers Conduct Code Review?

e A reproduction of previous surveys in open source projects

The remainder of this chapter is organised as follows: Section 3.2 explains the
previous survey studies we reproduced in this chapter. Section 3.3 describes
our survey process. The results of the survey are presented in Section 3.4.
We discuss these results in Section 3.5. Section 3.6 reviews the threats to the
validity for our work, and Section 3.7 concludes the chapter.

3.2 Previous Surveys

In this chapter, we reproduce survey questions from two previous stud-
ies [Bacchelli and Bird, 2013, Tao et al., 2014]. Here We review these earlier
studies for better understanding of the reproduced questions.

Bacchelli and Bird [2013] reported developers” expectations, outcomes, and
challenges during code review via an empirical study within Microsoft. They
conducted a survey to identify the motivations for code review are in the
company and reported that developers are interested in finding defects and
improving code. Moreover, the authors manually inspected code review
comments stored in CodeFlow, Microsoft’s internal code review tool. They
concluded that code review has diverse benefits, including knowledge trans-
fer and increased team awareness, although they found defect cases reported
to be fewer than expected.

Tao et al. [2014] investigated how to write acceptable patches to avoid re-
jection and resubmission. To this end, they manually investigated rejected
patches from the Mozilla and Eclipse open-source projects to derive review
criteria that are used by developers in practice. Through a manual investiga-
tion, they extracted 12 reasons for patch rejection. Based on their results, they
surveyed Eclipse and Mozilla developers, asking how decisive each of the 12
patch rejection reasons was during code review. They also asked how easy or
difficult it was to determine the reason a patch was rejected. They reported
that the fact that a patch was introducing new bugs was the most important
reason for rejecting while also being the most difficult problem to identify in
a patch.

29

3 How Do Developers Conduct Code Review?

Ko 2o »(H > B » R

Developer Extract Common Write Revise The Main Survey Analyse Result
Interview Concerns Questionnaire Questionnaire
With Developers

Figure 3.1: Overall process of the survey

3.3 Methodology

The survey is consisted of two parts. The first part aimed to understand
developers’ concerns with code review. Although many surveys have been
conducted, as we stated in Section 3.1, we identified interesting questions
about code review that have not yet been answered by researchers. The
second part reproduced questions from surveys by Bacchelli and Bird [2013]
and Tao et al. [2014].

Figure 3.1 illustrates the process we followed to design the survey. To extract
the developers” concerns, we conducted semi-structured interviews. We
did not use a specific question set, but allowed the questions to evolve
through repeated interviews. We followed the interview process of Bacchelli
and Bird [2013]. We interviewed 12 developers?, and each whom spent 30
minutes with the author of this thesis. All interviews were recorded with the
interviewee’s consent. Once we had interviewed 10 developers, we reached
the saturation point (i.e. no new issue was identified).

We performed open coding on the recorded interview transcript to extract
common concerns. The author of this thesis split the recorded interview script
into topics (i.e. single words or short sequences of words), then grouped
similar topics into categories and assigned a representative name to each
category. These topics and categories were reviewed by the collaborators
and revised based on that review to mitigate subjective bias . The resulting
questionnaire consisted of 16 questions under four categories: demographics,
reviewer selection, review time, and consulting other reviews.

2Due to the company’s policy, we can not present the details of the developers here.

30

3 How Do Developers Conduct Code Review?

Table 3.1: Questions in the questionnaire

Category | Answer Type | Question
Multi-choice | Q1. Which best describes your primary work area?
Open-ended Q2. If your primary work areas are not listed above, please
list them here
Numeric Q3. How many years of software development experience
do you have?
Numeric Q4. How many years have you been a member of your
Demographics current team / open source project?
. Q5. How many members are there in your project
Numeric (including yogrself) YOuP
Yes-No Q6. Within your project, is it mandatory to perform

code review?

Multi-choice

Q7. Which of the following languages do you typically
work with?

Open-ended

Q8. If you use other language that are not listed
above, please list them here

Reviewer Selection

Multi-choice

Q9. Whom do you prefer to send your code review?

Open-ended

Q10. If you have another criteria for selecting a reviewer,
please list them below

Review Time

Choice

Q11. Based on your expectation, what is the ideal time
to review a review request?

Numeric

Q12. Based on your expectation, a review request should
be resolved (finally merged /abandoned) within how many
days in general?

Numeric

Q13. Based on your expectation, a review request
should be resolved within how many revisions in general?

Consulting Other Reviews

Yes-No

Q14. Do you ever consult other/earlier reviews when
doing a review?

Open-ended

Q15. What are the reasons you consult other/earlier
reviews?

Likert Scale

Q16. In the context of carrying out code review,
how much do you agree or disagree with the
following statements?

Motivation
[Bacchelli and Bird, 2013]

Top3

Q17. What are your motivations for code review?

Please pick three most important ones (in order, without
ties) from the following list (choice per items: First most
important, second most important, third

most important, not top 3 importance)

Open-ended

Q18. If you have other motivation for code review that
are in the top three but are not listed above, please
list them here.

Importance
& Difficulty
[Tao et al., 2014]

Likert Scale

Q19. On the scale provided, how important is it to
identify these common problems during code review?

Likert Scale

Q20. How easy or difficult is it to identify these problems
during code review?

Open-ended

Q21. Please specify other criteria to evaluate the
patches, if you have any.

31

3 How Do Developers Conduct Code Review?

In the demographics category, we gathered the basic information from the
survey participants, including their experience and work area. The reviewer
selection category asked developers how they select a reviewer. The review
time category questions asked developers about their expectation in terms
of review time. Finally, the consulting other reviews section asked developers
whether they had consulted earlier reviews when reviewing a new change.

We also added five questions in two categories that had already been re-
ported in previous papers (in different projects): motivation and importance
and difficulty. The motivation category is taken from Bacchelli and Bird [2013].
As we discussed in Section 3.2, they queried Microsoft developers about
their most important motivations for conducting code review. We used the
same question statement and options used by Bacchelli and Bird [2013]. The
importance and difficulty category is a reproduction from Tao et al. [2014]. They
extracted code review criteria and asked Eclipse and Mozilla developers how
important each criterion was and how easy or difficult it was to get informa-
tion to evaluate the criterion during review. Since they had conducted their
survey in 2012, we could observe the trend changes during the last 6 years
by asking the same questions.

Based on the above categories, we drafted an initial questionnaire. We shared
the draft with 10 stakeholders, including managers, researchers, and engi-
neers, and asked them to provide feedback. Based on their feedback, we
revised the questionnaire.

Table 3.1 presents the questions of the final revised questionnaire. We set
different answer types for each question to ease the survey process. Multi-
choice questions provided multiple options for a participant to select among;
open-ended questions allowed the participants to provide their answers or
opinions in complete phrases. Since the answers for open-ended questions
were written in natural language, the author of this thesis qualitatively anal-
ysed these answers, and the collaborators reviewed the analysis to mitigate
subjective bias; Numeric questions allowed numeric answers only. For Yes-No
questions, the participants were asked to answer either yes or no. Likert Scale
questions provided answer options along a 5-point Likert scale. For each
question, we used different labels for the 5-point Likert scale. To reproduce
the motivation question from Bacchelli and Bird [2013], we also used Top-3

32

3 How Do Developers Conduct Code Review?

type questions in which participants could select their top 3 elements from
among the options.

We selected developers from the code review systems in Eclipse and Open-
Stack and asked them to complete the survey. To minimise unreachable
emails and filter out inactive developers, we targeted developers who have
submitted at least one comment within the month preceding the survey start
date. We were able to extract 2,144 developers from Eclipse and OpenStack
projects and sent them a link to our questionnaire via email. Among them,
110 developers were not reachable (i.e. we received auto-reply, invalid email,
or vacation responses). We opened the questionnaire link for 10 days. On the
titth day of the survey, we sent a reminder to encourage developers to answer
the survey. In the end, 100 open source developers provided answers.

3.4 Result

We present the results of the survey category by category in this section.

3.4.1 Demographics

The survey answers can vary between different groups of people. Some
answers may be a product of the unique environment of participants. For
example, C developers may be more concerned than Java developers about
memory management. Therefore, it is important to understand the par-
ticipants” demographics. We asked seven questions in the demographics
category designed to provide information on the participants” experience
and work environment. Our demographics questions and the initial options
for those questions were inspired by Bacchelli and Bird [2013].

Although we selected survey participants who had left at least one comment
in the code review tool, participants’” primary role could be other than devel-
opment role. Therefore we asked ‘Q1. Which best describes your primary work
area?’. Figure 3.2 shows the answers to this question. The question allowed
developers to select more than one answer, since a participant can have more
than one primary work area in a project (e.g. a manager may manage a team

33

3 How Do Developers Conduct Code Review?

3] ~
o (&)

The number of responses
N
[62]

T T T
X A .
‘210 ,\Q;‘J §b

N £2
\\Q}OQ
&

I S e
S S

X
&

o &

Figure 3.2: Q1. Primary work area of the survey respondents

while also implementing code). We provided selection options based on
the pre-defined major work areas in software development. The majority of
participants answered that their primary work area was Development (90 re-
sponses) followed by Testing (31 responses). The results indicate that Eclipse
and OpenStack developers participate in diverse work areas, such as testing
and operation.

Because survey participants may have had a work area other than the cate-
gories we provided in the question, we also included ‘Q2. If your primary work
areas are not listed above, please list them here”. Only one participant answered
this question with ‘Consulting’.

Q1-2. The majority of the survey participants from Eclipse and OpenStack
projects work on development. Eclipse and OpenStack developers partici-
pate in diverse work other than development.

We asked “Q3. How many years of software development experience do you have?’
because developers’ experience level can affect their answers. In addition,
we also asked ‘“Q4. How many years have you been a member of your current team
/ open source project?’ to determine participants” experience level with their

34

3 How Do Developers Conduct Code Review?

301

Years

.
104 .

01 I

Development Team/Project

Figure 3.3: Q3 and 4. Overall development experience and experience within the current
team or project

current team or project. Figure 3.3 presents results on participants” general
development experience and their experience in their current company or
project. The left side shows participants’ entire development experience,
while the right side presents their experience with their current team or
project. The median length of development experience is 8 years. The majority
of the Eclipse and OpenStack developers have from 4 years to 15 years of
development experience.

The team or project experience duration is shorter than the overall develop-
ment experience, as developers have experience in multiple teams or projects.
The responses show a narrow experience distribution. The majority of the
Eclipse and OpenStack developers have 2 to 5 years of experience with their
current project.

Q3-4. The majority of developers have about 8 years of development ex-
perience and have about 2 to 5 years of experience within the current
team /project.

The size of a team (i.e. the number of colleagues on a team) may affect the
participants’ code review experience. Therefore, we asked ‘Q5. How many

35

3 How Do Developers Conduct Code Review?

10 1000 10000
The number of colleagues (log scale)

Figure 3.4: Q5. Number of colleagues on a team or project

members are there in your team / project (including yourself)?’. Figure 3.4 displays
the responses. Due to the wide range of the answers, we used a log scale to
visualise the results. The median number of team members from Eclipse and
OpenStack is 10, although some extreme outliers show teams larger than
1,000. The results may reflect that the Eclipse and OpenStack projects invite
as many contributors as possible.

Q5. Most teams in the Eclipse and OpenStack projects have a large variation
in size (i.e. the number of developers).

Although code review is a widely adopted technique for maintaining soft-
ware quality, it may not be a mandatory process for the teams and projects.
Therefore, we asked ‘Q6. Within in your team/project, is it mandatory to per-
form code review?’” Participants were asked to answer yes or no; 82 answered
yes. The results indicate that code review is a mandatory and widely used
technique in Eclipse and OpenStack communities.

Q6. Code review is mandatory in Eclipse and OpenStack projects.

The last question in the demographics category asked about the kinds of
programming languages participants used (i.e. ‘Q7. Which of the following
languages do you typically work with?”). Since developers can use more than
one language in a project, we allowed participants to check multiple answers
for this question. Figure 3.5 graphs the languages that the developers used.
The options for the question were extracted from the language popularity

36

3 How Do Developers Conduct Code Review?

80

60 A

40 1

The number of responses

Figure 3.5: Q7. Programming languages the respondents use the most

rank.” The most popular programming language is Python in the Eclipse and
OpenStack projects (82 answers). Please note that the programming language
is strongly dependent on the project type: Eclipse projects are mainly Java
projects, whereas OpenStack projects are mainly Python projects.

Since developers can use a programming language other than the ones
specified in the above question, we also asked the following: ‘Q8. If you
use other language that are not listed above, please list them here’. Among
Eclipse and OpenStack developers, Ansible (4 answers) was the most popular
language used other than the ones specified in the list for Q7. The Eclipse
and OpenStack developers also answered that they use Jinja2, yaml, Puppet,
and Common Lisp as well.

Q7-8. The most popular languages in the Eclipse and OpenStack projects
are Python, Bash, and Java. Other than the popular languages, developers
use diverse languages in their work.

In this section, we reported the demographics of the survey respondents.
Work experience, size of a development team (i.e. the number of members

3TIOBE index (https://www.tiobe.com/tiobe-index)

37

https://www.tiobe.com/tiobe-index

3 How Do Developers Conduct Code Review?

N w e a
o o o o
1 1 1 1

The number of responses
=
o
1

Figure 3.6: Q9. Reviewer preference of the respondents

on a team or project), and programming language may affect the answers
reported in the following sections.

3.4.2 Reviewer Selection

One of the developers’ concerns we extracted from the preliminary inter-
views was how to find a proper reviewer when requesting a review. Although
diverse automated reviewer recommendation techniques [Balachandran,
2013, Thongtanunam et al., 2015, Rahman et al., 2016] have been proposed,
we could not see that any of them had been adopted in the studied organisa-
tions. We asked, ‘Q9. Whom do you prefer to send your code review to?’.

Figure 3.6 shows the results from the Eclipse and OpenStack projects. We
extracted the selection options from the preliminary interviews. The most
popular reviewer type in the Eclipse and OpenStack projects is a reviewer
who provides a constructive review comment (i.e. constructive commenter).

38

3 How Do Developers Conduct Code Review?

Of the Eclipse and OpenStack developers, 24 assigned a code review request
to their managers.

Q9. Developers prefer to send a code review request to a reviewer who
provides them with constructive comments.

Since the selection options for the above question might miss a developer’s
concerns, we also requested the following: ‘“Q10. If you have another criteria
for selecting a reviewer, please list them below’.

We received 11 answers to this question. Since various stakeholders partici-
pate in Eclipse and OpenStack projects, the developers try not to be biased
to a specific stakeholder. Therefore they prefer a reviewer who can review
a potential bias for a specific stakeholder. In addition, a reviewer who is an
expert in security is preferred.

Q9-10. Other than a constructive reviewer, developers also prefer a reviewer
who can review a potential bias for a specific stakeholder and provide
security related comments.

As presented in this section, the majority of developers prefer to send a
code review request to a reviewer who can provide constructive comments.
Although the constructive reviewer is the most preferred reviewer type,
developers also have other ideal reviewer type (e.g. a reviewer who has
security expertise).

3.4.3 Review Time

Another of the developers’ concerns we found during the preliminary in-
terviews was that the amount of time needed to perform code review was
excessive. Therefore, we included three questions related to this aspect (i.e.
Q11, Q12, and Q13). Moreover, we compared the expectations identified
through the questionnaire to the actual time taken which we extracted from
the code review data.

39

3 How Do Developers Conduct Code Review?

100 1

0

%

c 754

o

o

0

3]

=

5

- 504

]

Qo

£

>3

[

o 254

K=

] -

04 - - I - - |
$
& & S S & & & & o &
& N O O & & N @ O
N o N N 2 o 2 S <&
Q& ? S & O N & &0 o >
S & & & & & & $ N S
& & & N N & & & o Q\\\.‘(\\
Q S N .
\$\‘\° $\& $\® N $§ \$’\\

Figure 3.7: Q11. The respondents” expectation on review time

First, we asked “Q11. Based on your expectation, what is the ideal time to review
a review request?’. This question was designed to determine the expected
review time for a revision of a code review request. We provide pre-defined
options for this question: within 30 minutes, within an hour, within two hours,
within three hours, within a day, within two days, within three days, within a week,
within two weeks, and within a month. Figure 3.7 shows the expected review
time for a revision. The bars present the ratio of each category to total number
of answers, while the line shows the accumulated ratio. Of the Eclipse and
OpenStack developers, 22 expected to receive a review within 30 minutes,
while another 22 expected it within a day. The predominant number of the
Eclipse and OpenStack developers expected that reviews should be done
within a day (i.e. 67 responses).

Q11. The majority of the developers from Eclipse and OpenStack expected
that their code review request receive a review within a day or less.

Second, we asked ‘Q12. Based on your expectation, a review request should
be resolved (finally merged/abandoned) within how many days in general?’. This
question sought to determine the expected overall time to resolve a code
review request.

40

3 How Do Developers Conduct Code Review?

30

ecececcoe

N
o
f

The number of days
=
o

Survey Code Review

Figure 3.8: Q12. Expected time to resolve a code review request and actual time from code
review repository data

Figure 3.8 shows the developers’ expectations for the number of days needed
to resolve a code review request (survey in the figure) and the actual number
of days taken to resolve code review requests in the code review system
(code review in the figure). The results indicate that the Eclipse and OpenStack
developers’ expectation was 5 days on average. The data show that the most
review requests were resolved more quickly than the developers” expected.
Most code review requests were resolved within a day (i.e. the median value
was less than a day).

Q12. The majority of code review requests were resolved within a day in
Eclipse and OpenStack projects which was shorter than the developers’
expectation.

Lastly, we asked ‘Q13. Based on your expectation, a review request should be
resolved within how many revisions in general?’. This question asked about the
expected number of iterations during code review. Figure 3.9 graphs the
developers’ expectations and the actual number of revisions to resolve a
code review request in the code review system. The majority of the Eclipse
and OpenStack developers expected that a code review request should be

41

3 How Do Developers Conduct Code Review?

154

of revisions
N
o
L]

o
1
.

Survey Code Review

Figure 3.9: Q13. Expected number of revisions to resolve a code review request and actual
number of revisions from code review repository data

resolved within five revisions in general. Interestingly, the actual number
of revisions was generally lower than what developers expected. The data
shows that most of code review requests were resolved within a revision.

Q13. The developers expected that their code review requests should be
resolved within five iterations while the actual code reviews are mostly
resolved within a single revision.

In this section, we compared the developers’ perceptions of desirable code
review times with the actual code review times. The Eclipse and OpenStack
developers answered that they wanted to get a response from the reviewers
within a day. Fortunately, the actual code review data showed that the major-
ity of code review requests get a review within a day and with only one or
two iterations.

42

3 How Do Developers Conduct Code Review?

Table 3.2: Q15. Reasons why developers consult earlier reviews

Category # of responses
To get context 36
To learn 13
To evaluate a patch 11
To check duplication 11
To extract criteria 3
To increase review speed 2
To find a reviewer 1

3.4.4 Consulting Other Reviews

During the preliminary interviews, we found that developers frequently con-
sulted previous code review requests when reviewing a new one. Therefore,
we asked questions regarding consulting other reviews.

The first question was ‘Q14. Do you ever consult other/earlier reviews when doing
a review?’. This question had two answer choices: yes or no. In total, 81 of the
Eclipse and OpenStack developers answered ‘yes’.

Q14. The majority of developers have consulted other/earlier code review
requests to review a new one.

Why do developers consult earlier reviews? We put the open-ended question
in the questionnaire: “What are the reasons you consult other/earlier reviews?’. We
got 63 answers. The authors performed open coding on these answers. After
extracting representative words and conducting axial coding to categorise
the answers, we extracted seven categories for why developers consult other
reviews: to get context, to evaluate a patch, to extract criteria, to learn, to check
duplication, to increase review speed, and to find a reviewer. Table 3.2 shows
the number of answers for each category. Please note that an answer can be
categorised into more than a category (i.e. an answer might be categorised
into both “to get context” and ‘to evaluate a patch’). The most frequently cited
category was to get context; the second most frequent was to learn.

43

3 How Do Developers Conduct Code Review?

Strongly Disagree Disagree . Neutral . Agree . Strongly Agree

504

404

30+

20+

The number of responses

104

T T T
Changed the same class/file Containing similar changes Submitted by the same author

Figure 3.10: Q16. Level of agreement with three statements regarding the helpfulness of
consulting other reviews

Q15. The result shows that developers can get diverse benefits from con-
sulting other/earlier reviews. The most popular reason for consulting oth-
er/earlier review is to get context followed by to learn.

To determine what kind of information from earlier code review requests is
helpful, we asked ‘Q16. In the context of carrying out code review, how much
do you agree or disagree with the following statements?’. We provided the three
statements with answer choices on a 5-point Likert scale (i.e. strongly disagree,
disagree, neutral, agree, and strongly agree):

e Previous reviews that changed the same class/file will be helpful.
e Previous reviews containing similar changes will be helpful.
e Previous reviews submitted by the same author will be helpful.

Figure 3.10 illustrates the ratio of answers on the 5-point Likert scale for each
item. Agree is the dominant answer for changed same class/file and containing

44

3 How Do Developers Conduct Code Review?

Microsoft 0ss

Finding defects A

Code improvement
Alternative solutions
Knowledge transfer
Team awareness -
Improving dev process

Share code ownership 4

.Top

Second

Avoid build breaks

Track rationale 4 i
Third

Team assessment 4

°—---.

50 75 100 O 25 50 75 100
Ratio (%)

N
o

Figure 3.11: Q17. Developers’ top three motivations for code review

similar changes, while most of the developers selected neutral for the submitted
by the same author category. This may indicate that the developers think
previous reviews by the same author contain less useful information than do
the actual changes (i.e. changes in the same file or similar changes).

Q16. The Eclipse and OpenStack developers are interested in the other/ear-
lier code review requests that contain either changes in the same class/file
or similar changes.

As reported in this section, developers answered that consulting previous
reviews has diverse benefits, providing development context and review
criteria. In addition, developers could learn their team’s code base from the
other reviews [Bacchelli and Bird, 2013].

3.4.5 Motivation

Bacchelli and Bird [2013] asked the following question to Microsoft devel-
opers, ‘Q17. What are your motivations for code review? Please pick three most

45

3 How Do Developers Conduct Code Review?

important ones (in order, without ties) from the following list (choice per items:
First most important, second most important, third most important, not top 3
importance)’. We reproduced the same question for the Eclipse and OpenStack
projects to check the difference between Microsoft and the Eclipse and Open-
Stack projects. Figure 3.11 shows the results for the question from Microsoft
and the Eclipse and OpenStack developers. Please note that the Microsoft
results were presented in Bacchelli and Bird [2013]. Since the organisations
have different numbers of survey participants, we use ratio to visualise the
results to allow for an easy comparison between the organisations.

Overall, the organisations’ developers provided similar answers, as pre-
sented in the figure. Most participants answered that finding defects and code
improvement were the most important motivations for conducting code re-
view. Microsoft developers identified finding defects as the most important
motivation, while Eclipse and OpenStack respondents identified code im-
provement as the most important motivation. We found a peak in the Eclipse
and OpenStack answers for avoid build breaks. This may suggest the Eclipse
and OpenStack developers are suffering more from build breakages than are
industrial developers.

Q17. Finding defects and code improvement are the most important motiva-
tions for code review in both Microsoft and the Eclipse and OpenStack
projects.

3.4.6 Importance and Accessibility of Review Criteria

Tao et al. [2014] investigated what kinds of review criteria were important
to developers and how easy or difficult was it to check those criteria during
code review. We reproduced the same four questions Tao et al. [2014] asked
in their paper.

The first question was ‘Q19. How important is it to identify these common
problems during code review?’. As Tao et al. [2014] did, we asked developers
to answer the question using a 5-point Likert scale: Unimportant, Of Little
Importance, Moderately Important, Important, and Very Important. Figure 3.12
presents the results from the current survey (i.e. OSS) and the results from Tao

46

Ratio (%)

3 How Do Developers Conduct Code Review?

Unimportant Of Little Importance . Moderately Important . Important . Very Important
75+
50
o
(]
(7]
25- l l i l l i l I
O.
754
50
3
O
N
o
Ny
N
O.
T T T T T T T T T T T T
A) %) 4 2
Q’C’é 47@\5‘/ %0/) L/%f Ooooy %/)@ O%é' \S\%o 47/% ’7/»00 %’A\ OO/),’O
. 2 % C (8] N Q, 5 %
S , 7, . 2% (2 3, %
<o Yo %, o, %, RN ‘?oo/) N %, %, %, o0
,Oo Q, © > QA ‘9/} /® %, 0”@ ® @,/o
(o) 7
6 b, % %, 7 %, e
% %, % %, , 2%, 2,
% %, 3 7% O
% S, %
& 0,

Figure 3.12: Q19. How important it is to identify each problem during code review

47

3 How Do Developers Conduct Code Review?

et al. [2014] (i.e. Tao2014). Overall, introducing new bugs is the criterion that
developers think the most important to check for during code review. It
is interesting that compile failure was the most important criterion in Tao
et al. [2014], whereas it is comparably less important in the recent results.
One potential reason is that the wide adoption of CI relieves the developers’
burden in checking for compile failure during code review.

Responses to the incomplete fix criterion differ notably between the surveys.
This may denote that the developers’ perceptions regarding incomplete
fixes have changed within open source projects. In Tao2014, the majority of
developers rated incomplete fix as moderately important or important. However,
the recent results are more weighted to very important.

Ratings for Compile failure, test failure, and misleading documentation also differ
notably between the past and the current surveys. Both compile failure and
test failure declined as concerns from Tao2014 to OSS. This may suggest that
CI now can relieve the developers” burden of checking compilation failure
and test failure manually. OSS results show a greater concern for misleading
documentation than do the Tao2014 results. This change may represent higher
requirements for accurate documentation in open source communities.

Q19. Detecting new bugs introduced in a change and incomplete fix are
the most important issues during code review in both the past and present
surveys. Despite that complication and test failure can and should be iden-
tified through CI before code review, it is interesting to see that they are still
considered important problems during code review.

The second reproduced question was ‘Q20. How easy or difficult is it to identify
these problems during code review?’. As with the importance question, we used a
5-point Likert scale, but we attached different labels: Very Easy, Easy, Moderate,
Difficult, Very Difficult. Figure 3.13 displays the results for this question. The
developers indicated that compile failure, test failure, and patch size too large
were relatively easy to identify during code review. In all results, the most
difficult criterion was introducing new bugs.

The OSS and Tao2014 results differ for only three criteria: compile failure, miss-
ing documentation, and patch size too large. These differences might provide

48

3 How Do Developers Conduct Code Review?

Very Easy . Easy . Moderate . Difficult . Very Difficult

60 1
40 1
o
73
7
20- l h
g o
A
T
@
60
401
—
3
N
o
[
~
20- l l l L
04
v ' v . v v ' ' ' ' v '
2) Y P
% % 6390. b’o, . 4, O% %, %, %, By Q,
%, %, % %, %, KON %, s, S %, “, K>
o 7%, %, % % R ", K> % %% “ s,
’Oo q, 9,,@ <. ¢fb 4 S %, © oy ® <9,,o
%, 0’@,) %, * %, %, @, %, ®
%, %, %y, %) o) 97@ 4,
%, @é}) () ” o Qs
N Qf/‘b/)

Figure 3.13: Q20. How easy or difficult it is to identify each problem during code review

49

3 How Do Developers Conduct Code Review?

a warning signal for the open source community, since developers feel the
same difficulty in accessing the required information. If a sufficient tool or
process improvement had been provided, developers would have experi-
enced less difficulties to check the criteria. However, the results show no big
difference. This findings call for more work to support developers.

Q20. Although detecting new bugs introduced in a change and incomplete
fix are the most important, it is still difficult to identify the problems.

Since the above questions used the specified criteria from the previous study,
we also asked developers ‘Q21. Please specify other criteria to evaluate the
patches, if you have any’.

We received 10 answers to this question. Interestingly, six developers an-
swered that compile and test failures are detected by CI, so they did not
understand why these categories were included in the questionnaire. When
the Tao2014 survey was conducted, however, there was no CI support for
the studied subjects, and developers manually inspected for these failures.
Other notable comments from the Eclipse and OpenStack developers were
as follows:

Usually a patch should change one thing that is easy to understand for
reviewers.

In case of a new API, the signatures of API should be optimum. Need to
think about the necessity of each arqument.

Q21. Other than the categories presented in Tao et al. [2014], developers
have their own criteria to evaluate a patch such as test coverage, commit
message, and security.

Developers use diverse criteria when reviewing a patch. By using the same
question and answer set used by Tao et al. [2014], we could compare open
source in the past and present.

50

3 How Do Developers Conduct Code Review?
3.5 Discussion

In this section, we discuss notable survey results in detail.

3.5.1 Expected and actual review time

Since code review is a process in which a human reviewer inspects changes,
it takes time and it is difficult to predict how long it will take. The majority of
developers in Eclipse and OpenStack expected their patches to be reviewed
within a day or less.

As to resolving a code review request (i.e. until it is finally merged or aban-
doned), the Eclipse and OpenStack developers expected this to be done
within 5 days. In the actual code review data, however, most code reviews
were resolved within a day.

In terms of the number of revisions needed to resolve a request, the Eclipse
and OpenStack developers expected fewer than five revisions. The actual
data shows a lower average number of revisions than the developers” expec-
tations, with most code review requests are resolved within two revisions
for Eclipse and OpenStack projects.

Overall, the majority of code review requests were resolved faster than the
developers expected. This could be interpreted as a positive signal, since the
actual resolution time was shorter than developers’ expectations. However,
developers must manage code reviews carefully, since the process introduces
many interruptions. For example, developers get notification from a code re-
view tool for diverse review events (e.g. a new review comment) via email or
messenger. If developers conducts code review whenever they get a notifica-
tion, they need to switch context multiple times. Previous studies show that
interruptions and context switching leads to lower software development
productivity [Kersten and Murphy, 2005, Meyer et al., 2014]. Therefore, it is
important for developers to manage code review in such a way as to reduce
the number of interruptions.

51

3 How Do Developers Conduct Code Review?

3.5.2 Consulting Earlier Code Reviews

During our preliminary interviews, we found that developers often consult
previous code review requests. We confirmed that the majority of developers
have consulted earlier code review requests during code review. More than
half of Eclipse and OpenStack developers answered that they had consulted
previous code reviews to get context. Developers also consulted earlier code
reviews to evaluate a patch, to extract criteria, and to learn. The Eclipse
and OpenStack developers indicated that earlier code reviews that changed
the same file or that contain similar changes are particularly helpful when
reviewing a new request.

As the results show, leveraging previous code review requests can mitigate
developers’ review burden. This finding directly motivates the study pre-
sented in Chapter 5. Since past code review requests contain a great deal of
information based on developers” discussion in the comments, we should
leverage this valuable information to enhance software productivity. Fur-
ther studies should be conducted to find and leverage related code review
requests.

3.5.3 Motivation for code review

We asked what Eclipse and OpenStack developers” motivations are for con-
ducting code review. The results from open source (i.e. Eclipse and Open-
Stack) and Microsoft (i.e. as reported in Bacchelli and Bird [2013]) show that
developers expected to find defects or to improve code during code review.
Our results supported the results presented in Bacchelli and Bird [2013]. As
reported in Q20, however, finding defects (i.e. catching problems that may
be introducing new bugs) is one of the most difficult task for developers. Bac-
chelli and Bird [2013] also reported that the intended code review outcome
is to improve code and understand rather than detect defects. This result
calls for further research into a tool or methodology for detecting defects
during code review. Despite the differences in the groups, they share similar
motivations.

52

3 How Do Developers Conduct Code Review?

An interesting finding is that Eclipse and OpenStack developers cast more
Top votes for avoid build breaks than Microsoft developers did. As Tao et al.
[2014] reported, detecting a compilation failure is one of the most important
parts of code review. However, it is interesting that Microsoft developers
reported relatively lower motivation for detecting a compilation failure. This
result suggests that Eclipse and OpenStack developers put more manual
effort into detecting a build break than Microsoft developers. It is recom-
mended that Eclipse and OpenStack developers review their tooling to detect
build breaks.

3.5.4 Importance and accessibility of review criteria

For each criterion, we asked how important it was and how easy or difficult
it was to access. We can compare the differences between past and present,
as the same questions were answered by Tao et al. [2014]. It is interesting that
our survey results showed that detecting new bugs is the most important
criterion to check for during code review, while Tao et al. [2014] identified
detecting compilation failure as the most important criterion. In line with
Tao et al. [2014], checking whether a patch is introducing new bugs remains
the most important and the most difficult to judge criterion in code review.
This calls for further research and support to detect a new bug introduced in
a patch.

The results of Tao et al. [2014] have more very important answers for compile
failure and test failure. Tao et al. [2014] reported 1.9% and 5.5% of patches
they manually investigated were rejected because of compilation failure and
test failure, respectively. The decreased level of importance in our results for
compile failure and test failure potentially shows that developers” burden for
manually detecting these issues has been mitigated.

Another notable difference between our survey and Tao et al. [2014] is in
responses to the incomplete fix category. Our survey of developers returned
more very important answers for the incomplete fix category than seen in the
results of Tao et al. [2014]. This result shows that current developers have a
higher expectation than past developers did that a patch should be complete
one when it is submitted for a review.

53

3 How Do Developers Conduct Code Review?
3.6 Threats to Validity

In this section, we discuss threats to validity of our study.

3.6.1 Internal Validity

Given the length of our questionnaire, to increase participation we did not
push the developers to answer all questions on the survey (i.e. questions were
not mandatory). However, we confirmed that most of the survey participants
answered most questions except for the open-ended questions. All questions
had at least a 91.0% (91 responses) response rate.

In designing the questionnaire, we interviewed only company developers.
As we did not interview Eclipse and OpenStack developers, their concerns
may not be fully reflected in our survey.

3.6.2 External Validity

We studied the code review process of Eclipse and Open Stack developers.
Although 100 developers in total answered our survey, the results may not
generalise to other companies or open source projects.

Because of the differences between code review tools, results may not be
fairly comparable. Bacchelli and Bird [2013] and Tao et al. [2014] conducted
surveys on different code review platforms. Bacchelli and Bird [2013] used
CodeFlow, Microsoft’s internal code review tool, and Tao et al. [2014] used
Bugzilla data from Eclipse and Mozilla. On the other hand, our data is from
the Gerrit tool used with Eclipse and Open Stack.

3.7 Conclusion

In this chapter, we investigated developers’ concerns over code review. We
surveyed developers in open source projects (i.e. Eclipse and OpenStack).

54

3 How Do Developers Conduct Code Review?

Our questionnaire consisted of four categories of questions extracted from
a preliminary interview and two categories of questions reproduced from
previous surveys (i.e. Bacchelli and Bird [2013] and Tao et al. [2014]). Through
our survey, we learned how developers conduct code review in Eclipse and
OpenStack projects. We summarise our findings below

When searching for an optimal reviewer to send a code review request
to, Eclipse and OpenStack developers looked for a reviewer who could
provide constructive comments. In terms of code review time, the majority
of developers expected to get a review done within a day. We analysed
actual code review data and found that the most code reviews were in fact
done within a day, as the developers expected. During our preliminary
interviews, we found that developers consulted the previous code review
requests when reviewing a new code review request. The majority of the
developers answered that they consulted previous code review requests to
get context. They also said that those previous code review requests that
changed the same classes or files were particularly helpful.

In our reproduction of the survey questions of Bacchelli and Bird [2013] (i.e.
motivation for code review), we found that there was no major difference
between developers working on Microsoft and open source projects. We con-
firmed that developers” most important motivations for code review were
finding defects and improving code quality. Our assessment of the impor-
tance and accessibility of code review criteria questions (i.e. our reproduction
of the Tao et al. [2014] survey) identified some differences between past and
present open source projects.

55

4 Pretty Patches: An Empirical
Study of Coding Conventions
During Code Review 1

4.1 Introduction

The adoption of coding conventions, or programming style guidelines, is
one of the most widely accepted best practices in software development. It
is assumed that adherence to coding conventions increases not only read-
ability but also maintainability of software. However, adoption of style
checking tools does not necessarily lead to projects with no or only a few
violations [Smit et al., 2011].

Since coding conventions are usually not enforced by the programming lan-
guages, individuals, teams, or organisations can freely use their own coding
conventions. For Java, for example, coding conventions [Sun Microsystems,
1999] were defined and introduced early on by Sun Microsystems. Organisa-
tions” own coding conventions, however, often deviate from the original. For
example, Eclipse and JetBrains deviated from the coding convention of Sun
Microsystems in the default configurations of their respective Java integrated
development environments (IDEs) [Eclipse, Intelli]]. In addition, developers
involved in a particular software project often adjust the standard coding
conventions to their own preferences [Google, Open]DK, EGit].

IThis chapter contains work that was submitted to the 27th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE) in 2019. I am the main author of the paper and co-authored it with Jens Krinke,
Matheus Paixao, and Chaiyong Ragkhitwetsagul at University College London, and Gio-
vanni Rosa at the University of Molise.

56

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

Code review, a popular method for maintaining high-quality software, is the
process of conducting reviews of source code changes by developers other
than the change author. Diverse empirical studies report benefits of code
review, such as detecting defects [Mantyld and Lassenius, 2009], improving
code quality [McIntosh et al., 2014], and sharing knowledge among team
members [Bacchelli and Bird, 2013]. Code review has widely spread in both
open source projects and industrial projects [Shimagaki et al., 2016, Sadowski
et al.,, 2015, Feitelson et al., 2013], and is usually supported by platforms such
as Gerrit [Mukadam et al., 2013], a widely adopted code review tool.

Although adhering to coding conventions does not affect a program’s be-
haviour, developers spend manual effort on detecting coding convention
violations during code review. Tao et al. [2014] reported that developers
believe coding conventions are important criteria to apply in evaluating a
patch (i.e. a code change). If a patch does not follow coding conventions,
the patch will be rejected during the review. Furthermore, Tao et al. [2014]
observed that 21.7% of patches in Eclipse and Mozilla projects are rejected
if they, for example, violate coding conventions, include poor naming, or
are missing documentation). Their results show that developers are still
struggling with checking coding conventions manually, although automated
tools for checking coding conventions are available such as Checkstyle and
PMD. Previous studies have reported that developers ignore about 90% of
warnings generated by automated tools [Kim and Ernst, 2007, Panichella
et al., 2015].

Panichella et al. [2015] investigated how convention violations raised by
automated tools disappear during code review. They mainly focused on
how a patch under review affects the density of convention violations at
the beginning and end of a code review. However, they did not investigate
whether the appearance or disappearance of a convention violation was
actually due to the code review or was coincidental.

In this chapter, we investigate what kinds of convention violations are ad-
dressed during code review and how much time is devoted to checking and
fixing. We used the code review open platform (CROP) data [Paixao et al.,
2018], a data set created from project repositories and their corresponding
Gerrit code review repositories [Mukadam et al., 2013]. The CROP data con-
tains code review data, the changes that were reviewed, and the entire source

57

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

code for each change, which is usually not recorded in a Git repository. In
total, we analysed 16,442 code review requests from four sub-projects of
Eclipse with a further detailed investigation of 1,268 review requests and
2,172 reported style violations.

The contribution of this chapter is an in-depth investigation of coding con-
vention violations during code review. We investigate what kind of coding
convention violations are introduced, removed, and addressed during code
review. Furthermore, we investigate whether manual coding convention
checks done by reviewers delay the code review process.

We also discuss possible explanations for our observations, based on our
examination of coding conventions in four open source projects and how
automatic tools are used. The discussion highlights how developers adopt
coding conventions and what difficulties they face.

4.2 Experimental Design

4.2.1 Research Questions

The goal of this chapter is to investigate in detail how developers deal with
coding convention violations in real-world software projects during code
review. To this end, we want to answer the following research questions:

RQ1. How many coding convention violations are introduced during code review?
As a preliminary research question, we investigate how many convention
violations are introduced in the first (i.e. initial) patch of a code review request
and how many convention violations are introduced in the last (i.e. final)
patch. If code review is effective, the last patch should have fewer introduced
convention violations.

RQ2. What kinds of convention violations are addressed during code review? While
RQ1 investigates how many convention violations are introduced in the first
and in the last patch, RQ2 investigates convention violations that are intro-
duced in the first patch but are no longer presented in the last patch — that
is, introduced violations that have disappeared. Moreover, we want to know

58

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

how many convention violations disappear because they are addressed and
fixed in response to a code review comment that points out a convention
violation. For example, a code snippet which contains a convention violation
may be deleted to fix a defect, not because of a style issue. This research ques-
tion identifies those convention violations that seem sufficiently important
to developers so that the violations are raised during code review and are
fixed in subsequent patches under review.

By answering this research question, we can extract the set of coding conven-
tions that are perceived as being important to developers during code review
and can study such convention violations in more detail. Previous studies
have reported that developers ignore about 90% of warnings generated from
automated tools [Kim and Ernst, 2007, Panichella et al., 2015], and the answer
to the above research question can help to identify important violations so
that unimportant violations can be removed from report, preventing ‘Static
Analysis Fatigue” [Regehr, 2010].

RQ3. Do convention violations delay the code review process? As we presented in
Section 4.4 and as also reported by others [Kim and Ernst, 2007, Panichella
et al., 2015], Checkstyle and other automated coding convention checking
tools are not widely adopted in practice. However, if such tools were used
only to check for violations that are important to developers, giving the tools
a low false positive rate, their use could eliminate the need for human devel-
opers to check and fix violations, speeding up the code review process. We
investigate the delay caused by manual checking for convention violations
that might be mitigated by adopting automated tools.

4.2.2 The CROP Data Set

To answer the research questions, we need not only to analyse source code
for coding convention violations, but also to analyse changes submitted for
code review and for every patch during the change and to investigate the
review comments related to those patches. Instead of mining code review
data ourselves, we used CROP [Paixao et al., 2018], a code review data
set that links code review data to software changes. All projects in CROP
are open source and use Gerrit for their code review. The data set contains

59

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

code review data (e.g. description, changed files, and comments) and the
complete code base before and after a change revision. Please note that Git
repositories of the projects contain only accepted revisions (i.e. the changes in
the final patches in a code review request), whereas CROP stores all revisions,
including the revisions rejected during code review.

We selected all projects that had Java as their primary language. The statistics
of the four projects are displayed in Table 4.1. The table shows the date of the
first review (‘Start Date’) in the data set (the last review date is November
2017 for all four projects) and the number of code review requests (‘Reviews’)
for each project in the original data set. The table also shows the number
of code review requests that were finally merged (‘Merged Reviews’) and
how many of those code review requests consisted of more than a single
revision (‘Multiple Patches’). Only merged reviews with multiple patches
are of interest to us because the initially submitted patch was revised based
on reviewers’ comments, and the patch was finally accepted and merged
into the codebase.

Table 4.1: Code review data sets statistics

[tem Platform UI EGit JGit Linux Tools
Start Date Feb’13 Sep’09 Oct’09 Jun’12
Reviews 4,756 5,336 5,382 5,105
Merged Reviews 3,802 4,502 4,463 3,695
Multiple Patches 2985 2,899 2,533 3,438

4.2.3 Extracting Introduced Violations

Diverse automated tools have been introduced to support developers in
adhering to coding conventions. To identify coding convention violations,
we used a well-known tool, Checkstyle [Checkstyle], in version 8.8. Check-
style is flexible and extensible, making it adjustable to any deviation from
a Java coding convention. Checkstyle validates all Java source code against
a set of rules by checking the actual style against the encoded conventions,
and it reports all cases in which the code is not compliant with the coding
conventions (i.e. coding convention violations). Checkstyle can check for 153

60

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

First revision Last revision
Before After Before After
I I
(Checkstyle) (Checkstyle)
v
Checkstyle Checkstyle Checkstyle Checkstyle
issues issues issues issues
before after before after

\A/ \A/

Difffirst Diﬁlast

JAY

Di ﬁﬁnal

Figure 4.1: Extracting introduced violations during code review by comparing violations
before and after a patch

different types of convention violations, grouped into 14 categories. How-
ever, only 62 conventions grouped in 11 categories are enabled for Sun’s Java
coding conventions. Based on the coding conventions of the four projects in
our study, we set up our own Checkstyle configuration that complies with
the conventions used by the projects.

First of all, we needed to understand what kinds of style violations are
introduced at the beginning of a code review request for a new change.
Since static analysis tools such as Checkstyle require the entire source code,
we extracted style violations from two different versions of source code:
before and after applying the first patch of a code review request. Figure 4.1

61

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

shows the process we used to extract violations that appeared or disappeared
during code review. By comparing the lists of violations, we could extract
those violations that were newly introduced by the first patch of a code
review request (Diffz;). In matching the lists of violations, we ignored line
numbers, file names, and so on, because those elements may be changed by
the patch. Moreover, only the added — that is, newly introduced — violations
were considered, because code review should prevent the introduction of
convention violations. It is important to note that the system may have
changed while the patch was being revised. Therefore, the state before the
last revision may be different from the state before the first revision (in
technical terms, the commits of the subsequent revisions were rebased).
Changes in violations between the state before the first revision and the state
before the last revision need to be ignored. Therefore, we repeated the same
steps above on the last patch of a code review request to extract the list of
introduced violations at the end of the code review (Diff,;).

The next step (for RQ2) was to determine whether the newly introduced
violations disappeared during the code review. A violation was considered
to have disappeared if it was introduced in the first patch but it was no
longer present in the last patch. We determined what kinds of violations
had been introduced in the first patch (Diffz;;), and then disappeared in the
last patch (Diffj,s;) by comparing the difference between Diffy,; and Diffy;.
The comparison result (Diffg,,) contains the violations that were added
(appeared) and deleted (disappeared) during the code review. For RQ2, only
the disappearing violations are needed (the violations deleted in Diffg,,).

Table 4.2 shows the overall statistics for our violation extraction from code
review data. The ‘Unchanged’ row presents the number of code review
requests that have no violation changes between the first and last patch
(i-e. Diffs,; = Diffjg). The ‘Changed’ row shows the number of code re-
view requests that contain violation changes (violations either appeared or
disappeared) between the first and last patch (i.e., Diffs,s; # Diffj,g). The
‘Improved’ row states the number of code review requests that were viola-
tions that disappeared at the end of the code review. From the 4,502 merged
EGit reviews, for example, we extracted Diffs; and Diffy,s for 2,899 code
review requests that have multiple patches. Among the 2,899 reviews, 2,138
have no changes in violations, while only 761 reviews have differences in
violations between the first and last patch. A total of 375 reviews out of these

62

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

Table 4.2: Overall convention violation variations found between first and last patches of a
code review request

Item Platform UI EGit JGit Linux Tools
Unchanged 2,636 2,138 1,799 2,886
Changed 349 761 734 552
Improved 199 375 397 314

Table 4.3: The number of manually investigated convention violations and the number of
conflicts between human investigators. The conflicts were all resolved based on

discussion.
Platform UI EGit JGit Linux Tools
Violations 313 622 640 597
Conflicts 16 25 80 73
(5.11%) (8.84%) (12.50%) (12.23%)

761 contain violation changes in which a violation was introduced in the
tirst patch but is no longer present in the last patch (i.e. the code review has
improved the change).

Although we have the list of convention violations that appeared and dis-
appeared during code review, we do not know whether an appearing con-
vention violation disappeared because it had been flagged by a reviewer
during the code review and addressed by the patch author. For example,
EGit has 375 improved code review requests based on the definition above.
The 375 code review requests contain 622 violations that were introduced in
the first patch and disappeared in the last patch. Among these 622 violations,
however, we do not know how many were addressed during code review
(i.e. they did not coincidentally disappeared because of other addressed
issues). To determine whether reviewers detected and raised the convention
violations during code review, we manually investigated the review com-
ments from the four projects for all patches of such reviews. We focused
primarily on finding whether a reviewer’s comment (e.g. ‘please remove
the trailing whitespace”’) points out the convention violation that appeared
in Difff,, but is no longer present in Diffy,;. If we could locate a comment
pointing out the style violation, we labelled the violation as ‘Confirmed’; oth-
erwise, we labelled it as ‘No Evidence’. To mitigate subject bias of the manual

63

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

investigation, two of the authors (investigators) inspected the comments
independently. They read the review comments and looked for mentions
of the reported style violations. Sometimes they also checked the patch to
see how a violation disappeared. After finishing the independent rounds
of investigation, the two investigators held a discussion to resolve conflicts.
They discussed a conflict until both agreed on the same label.

As shown in Table 4.3, from 313 (Platform UI) to 640 (JGit) convention
violations were introduced in the first patch and resolved in the last patch of
code review requests. Please note that we did not investigate code review
requests that had only one patch or that had no style violations introduced
and removed (i.e. we investigated only those code review requests that
introduced and removed at least one coding convention violation). As shown
in the table, the investigators initially had conflicting results in 5.11%-12.50%
of the cases. However, the investigators resolved the conflicts by discussing
until both of them agreed.

4.3 Results

The results from the above described experiment are used to investigate and
answer the three research questions.

4.3.1 RQ1. How many convention violations are introduced
during code review?

Figure 4.2 shows the accumulated numbers of violations appearing in the
tirst and last patch of a code review request for the four projects. The figure
shows the number of violations for each violation category. There are 11
categories for 62 convention violation types overall. For example, a violation
of type RegexpSingleline belongs to the Regexp category. The grey bar shows the
number of violations in the first patch, while the black bar shows the number
of violations in the last patch. As shown in Figure 4.1, we ran Checkstyle
before and after applying the first patch and the last patch, respectively. By
computing the differences between before and after applying a patch, we

64

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

derived the list of introduced violations in the patch (i.e. Diffg,s; and Diffyg;
for the violations introduced in the first and the last patch, respectively).

A Mann-Whitney U test showed no statistically meaningful difference be-
tween the the numbers of convention violations introduced in the first and
the last patches (p-value > 0.05) per violation type. Although there is no
statistical difference per violation type, the number of added convention
violations in the last patch is larger than the number in the first patch for all
convention categories except for the Regexp convention category.

One cannot conclude that code review introduces more violations than it pre-
vents, because the number of violations naturally increases as the code base
grows larger. Figure 4.3 shows the distribution of the numbers of inserted
and deleted lines in the first and last revisions of a code review request. We
conducted a Mann-Whitney U test to determine the statistical difference
between the first and the last patches in terms of the numbers of inserted
and deleted lines (i.e. the difference between the number of inserted lines
in the first and the last patches and also the difference between the number
of deleted lines in the first the and last patches). All four projects show a
statistically meaningful difference between the first and the last patches for
both inserted and deleted lines (p-value < 0.05). As shown in Figure 4.3, the
last patch usually has more added lines than the first patch. This gradually
increasing pattern is similar to the pattern shown in Figure 4.2. It shows
that many violations appear in the first patch of a code review request, the
violations do not disappear, and more violations appear until the last patch,
which is also usually larger than the first patch. Therefore, the number of
violations increases as the number of inserted lines increases.

Figure 4.4 shows how the number of appearing violations increases in the
number of added lines during code review. For each code review request,
we extracted the number of appearing violations in the first and the last
patches and the y-axis shows the difference (increase) from the first to the
last patches, and the x-axis shows the difference (increase) in the number of
inserted lines between the first and the last patches. We consider only the
number of inserted lines, since deleted lines cannot introduce convention
violations. Please note the number of inserted lines can be negative, since the
first patch can add more lines than the last patch. Moreover, the first patch
can have more appearing violations than the last patch. Although there is

65

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

First
30001
.Last
3
20001 2
]
S
c
1000 I -
Jemem Tl _ |
30001
20001 o
@
2 1000
K]
: I I
o
i 04 — . -
o
9]
Q
£
2 3000
[}
ey
[=
20001 o
@)
10001 I I I I
oA - | . - . I
30001
[
20001 2
x
g
o
1000+ I @
NN I - | I |
A
$39%%%%% %% %
% % % 9 © 0 2 2 & © %
2 % % % % 2 % %
[» 2 . o © ,%
&)

Figure 4.2: The accumulated numbers of convention violations detected in the first (grey)
and last (black) patches

66

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

E Firstinsertion E FirstDeletion E Lastlnsertion - LastDeletion

150 4

0 I l |

[}

£

D

E 100 4

[} 1

Q _

3 — |

= 2 |

S 50 A]

<

0 - L — I T == 1 . L

Platform Ul EGit JGit Linux Tools

Figure 4.3: Number of lines added or deleted in the first and last patches

a variance, the number of violations generally increases as the number of
inserted lines increases.

Considering the different violation categories in Figure 4.2, the Javadoc con-
ventions category shows the largest number of violations in all four projects.
This observation is in line with a previous study that showed that developers
tend to treat missing documentation as a relatively less important issue than
other conventions [Tao et al., 2014].

The Regexp conventions category shows the lowest number of violations in
both first and last patches. In addition, the number of added Regexp violations
in the last patch is smaller than the number of violations in the first patch (i.e.
| Diffge| > |Diffyas|). This shows that the violations in this category may have
been addressed during code review (i.e. spotted by reviewers, raised, and
fixed). The Regexp convention violation category contains the RegexpSingleline
convention violation, a configurable check that is usually set to check for
trailing whitespace (although most whitespace-related conventions belong to
the Whitespace category). No other violation of the Regexp category has been
reported, thus Regexp represents trailing whitespace violations. We discuss
the trailing whitespace issue in detail in Section 4.4.3.

67

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

Platform Ul

A EGit
JGit

10 -
+ Linux Tools

O-n. A.o-o‘“.‘*‘

. = TRIE

The number of violations added

A l
. AFH: +o A + AA“ -|A A B
-]
++ u
A . | | -t OAA A

o A

-104 u A

-20 +

-200 -100 0 100 200

The number of lines inserted

Figure 4.4: The number of violations varies over the number of inserted lines between the

first and the last patches

68

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

Please note that the conventions in the Whitespace category provide finer-
granularity checks for whitespace (e.g. GenericWhitespace checks the whites-
pace around the Generic tokens ‘<" and “>’). On the other hand, the con-
vention violations might simply have disappeared when issues other than
convention violations were addressed (e.g. bug fixes or to removal of redun-
dant code). We therefore investigate in RQ2 whether a convention violation
disappeared because it had been addressed during the code review.

Key observation: The number of convention violations usually increases
during code review as the size of the patches increases.

While this key observation is not a surprising result, it confirms a correlation
of the number of introduced violations and the size of a patch. This suggests
that code review is not effective in preventing the introduction of convention
violations.

4.3.2 RQ2. What kinds of convention violations are
addressed during code review?

Figure 4.5 shows the number of code review requests in which the viola-
tions of a specific category disappeared during the code review between the
first and last patches. The reported numbers are the result of the manual
investigation of all 2,172 disappearing style violations, which affect 1,268
review requests. For 55 out of the 62 violation types, we found at least one
disappearing violation.

The x-axis presents different categories of coding conventions, while the
y-axis shows the number of violations for each category. The ‘Confirmed’
bars (grey) show the numbers of reviews in which a convention violation
of a specific category appeared in the first patch, the convention violation
was raised by a reviewer in a code review comment, and the final patch
no longer contains the violation (that appeared in the first patch). The ‘No
Evidence’ bars (black) show the numbers of reviews in which a convention
violation of the specific category appeared in the first patch, and the final
patch no longer contains the violation, but in which the reviewers did not
raise concerns about the violation (i.e. the investigators could not locate any
code review comments regarding the violation). Mann-Whitney U tests for all

69

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

60 Confirmed
.NoEvidence
40+ o
QD
)
=S
20 I €
Jm i m B I I L 1
601
40+
9 A
¢ =
;:;zo-
=
I 01 I l |
3
o
< 601
o
g
€
>
< 40
(4]
£ (&
= ©)
) I I I
N I I I 1=l
60
40 g
x
3
S
20 o
N | 1 l i1
) ' Q 4 4 ' ' ' ' d\ '
2.9 %% % %2 % %% % %
* % % e %% % g
& 2 9% 9% & @ B %
%

Figure 4.5: The numbers of code review requests in which violations were addressed during
code review as confirmed by manual investigation (‘Confirmed” — grey) and
those in which violations disappeared without evidence (‘No Evidence” — black)
found in the manual investigation

70

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

four projects show statistically meaningful differences between the numbers
of investigated violations and confirmed violations (i.e. p-value < 0.05) in
each project. The statistical tests indicate that the numbers of violations
confirmed in our manual investigation were not affected by the total number
of investigated violations.

In 55 convention violation types, at least one violation disappeared in the last
patch. In only 38 of these violation types could manual investigation confirm
at least one violation had been raised during code review. It may seem that
developers did not care about coding convention violations for the other 17
violation types.

It is interesting to see that the majority of cases in which violations of a
specific category were introduced in the initial patch but disappeared in the
last patch were not due to reviewers raising the issue (‘No Evidence’ in the
figure). We found two scenarios illustrating why a violation disappeared
even though no review comment had mentioned the violation. In the first
scenario, a patch author changed a patch to address a reviewer’s comment,
and although the comment was not about the convention violation. The
changed patch no longer contained the violation. For example, a reviewer
points out a bug in a patch which also introduces a convention violation.
While fixing the bug, the patch author removes the violation as well (without
knowing about the violation). Please note that if the reviewer had pointed
out the convention violation in the comment, we would have labelled this
occurrence as ‘Confirmed’. In the second scenario, the change was not in
response to a reviewer’s comment, but the new patch no longer includes the
convention violation. In this scenario, it is unclear why the patch has been
changed. Most often this was due to self-review (i.e. the patch was created
and reviewed by the same developer without a review comment).

We can also see that the rankings of confirmed violations are similar for all
four projects. In considering both ‘Confirmed” and ‘No Evidence’ categories,
it becomes clear that the problems of trailing whitespaces (i.e. Regexp) were
pointed out by a human reviewer and fixed afterwards in large numbers.

For JGit and EGit, the second largest number of raised and fixed convention
violations was the requirement that blocks always be enclosed in braces
(i.e. the NeedBraces violation in the Block category). As will be discussed in
Section 4.4.4, as of 27 January 2015, EGit and JGit no longer allowed braces

71

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

around single-line blocks, and not enclosing a block in braces became a
violation. Before this update of the coding convention, among the 31 and
29 disappearing NeedBraces violations in EGit and JGit, respectively, none
were confirmed. After the new convention was adopted, there were 6 and
13 confirmed NeedBraces violations out of 7 and 27 disappearing NeedBraces
violations, respectively.

The next largest number of raised and fixed convention violations (second
largest for Linux Tools and Platform UI, third largest for JGit and EGit) is in
the Whitespace category.

Key observation: Whitespace is the convention violation that is most of-
ten raised and fixed during code review — in particular, trailing whites-
pace.

For the violation types that reviewers care about, one would expect that
not only would violations introduced in the first revision be removed in
the final revision, but also that no new violations would be introduced.
For most (33) of the violation types, however, this was not the case. There
were only five violation types for which, in all four projects, there are fewer
reviews where the violation is introduced in the final revision compared to
the number of reviews introduced in the initial revision. As the violation type
RegexpSingleline (trailing whitespace) was the most often raised and fixed
issue for all four projects, it appears that it is the violation that reviewers
cared about most. However, even for RegexpSingleline, a significant number
of violations still appear in the last revision of a patch (as can be seen in
Figure 4.2).

It seems that although reviewers care somewhat about the 33 violation types,
they do not care enough to ensure that new violations of the type are not
introduced during the code review, and they do not apply consistent and
rigorous checking.

Key observation: Many coding conventions violations are ignored by de-
velopers and reviewers.

One possible reason that coding convention violations are ignored may be
that raising a coding convention violation would require the patch author
to fix the violation and resubmit the patch for review. This would delay the

72

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

* ETimeToReview
[]
900 - * ETimeToAddress
2 . .
3 []
(@] ° .
< 600+ $.
E g °
g : ; :
A i .
300 - | s R
R I H
: i 3
|
! — '
04 —

Platform Ul EGit JGit Linux Tools

Figure 4.6: Delay in detecting (“TimeToReview’) a convention violation during code review
and delay in addressing (“TimeToAddress’) a convention violation

integration of the change and consume additional developer and reviewer
time. This is a case we investigate further below.

4.3.3 RQ3. Do convention violations delay the code review
process?

Although automated convention checking tools support developers by de-
tecting convention violations instantly, they are often not adopted in practice,
and many convention violations are still detected through manual inspection
by a reviewer. In this section, we investigate the delay caused by manually
detecting (and fixing) a convention violation during code review.

During the manual investigation for RQ2, we recorded the timestamps of
review comments that point out convention violations and the timestamps of
the subsequent patches. Figure 4.6 shows the time (in hours; not all outliers
are shown) from the introduction of a convention violation in the first patch
(which is the time of the initial patch submission) to a review comment

73

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

30001 § o i o
¢ ° E Entire E No Evidence E Confirmed
(]
) e o]
2 1 i :
8 ° ° °
P ‘ ° ° ° °
<= 2000 - ¢ ° l . *—
() 1 S °
> ° °
o . 1
e i .
@ . l
S 1000+
G) [
£
|_
- [
Platform Ul EGit JGit Linux Tools

Figure 4.7: Time taken for code review requests to be approved

that points out the violation (“TimeToReview’) and the time from the review
comment to the next patch that removes the violation (“TimeToAddress’).
It takes more than 24 hours (the median is 24.21 hours) to receive a review
comment that points out a convention violation. It then takes more than 6
hours (the median is 6.90 hours) until the violation is addressed and fixed in
the next patch. If developers used an automated convention checking tool
such as Checkstyle, they could immediately detect violations (with no delay
of 24 hours) and address them even before submitting a patch for review.

To investigate whether detecting and addressing convention violations actu-
ally causes longer code reviews, we measured the time between the initial
patch submission and the last comment on a review request, which is the
automated comment that the final patch has been merged. Figure 4.7 shows
the measured time for three different datasets: The first dataset (‘Entire”)
is for all code review requests that have at least two patches, meaning a

74

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

reviewer has raised an issue that needed to be addressed. The second dataset
(‘No Evidence’) consists of all code review requests in which at least one
violation disappeared but there is no evidence that a reviewer identified and
raised a convention violation. The third dataset (‘Confirmed”) consists of all
review requests in which the manual investigation has confirmed that a re-
viewer identified and raised a convention violation. The figure clearly shows
that the median time for review requests in which a convention violation is
commented on by a reviewer is higher than for the other two datasets.

Key observation: Overall, manual checking and fixing of a convention
violation may delay the code review process.

4.3.4 Discussion

The results for the three research question suggest some key observations
about coding conventions during code review.

Convention violations accumulate as code size increases

As we presented in Section 4.3.1, convention violations not only accumulate
as code size increases, but the number of violations that a change introduces
also increases during code review. The only exception over the four analysed
projects was the Regexp category (i.e. trailing whitespace). The accumulated
convention violations decrease code readability and maintainability; they
become technical debt. Therefore, our results call for further studies on how
to prevent accumulating convention violations as code size increases.

Developers manually check convention violations during code review

Although diverse convention checking tools are available, developers still
manually check for convention violations during code review. Since code
review is the gatekeeper process to assure code quality, the check for conven-
tion violations seems natural. Our results in Section 4.3.2 show that many
convention violations are detected manually by developers, including very

75

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

simple trailing whitespace violations. However, the results also show that
humans are neither effective nor consistent in preventing the introduction of
convention violations. For almost all violations that we could confirm were
spotted and raised by a reviewer, we observed that the number of violations
introduced by a change was higher at the end of the code review than in
the initial version of the change. The notable exception was again trailing
whitespace.

Convention violation checking delays code review

The answer to RQ3 highlights that the manual convention violation checking
can cause delays during code review. Surprisingly, a patch author faces a
median wait of more than 24 hours to receive a reviewer’s comment raising
a convention violation and it takes a median 6 additional hours to fix the
violation. More importantly, even if the change is otherwise ready to be
accepted, the presence of a convention violation raised by a reviewer will not
only require time to fix the violation but will also require another round of
code review, including a CI run. Overall, the median time needed from the
initial submission of a patch to the approval of the patch is greater for code
review requests in which a reviewer raises a coding convention violation.
We believe this delay can be reduced if developers can employ a trustworthy
automated convention violation checking tool.

4.4 Coding Conventions in Practice

The experiment presented in the previous sections showed that convention
violations can cause delays during code review because reviewers check
them manually and authors need to fix violations that they were made aware
of. Moreover, reviewers are not effective at preventing the introduction of
convention violations. One can make the case that automatic convention
checking (and fixing) tools should be used to allow authors and reviewers to
focus on issues that cannot be automatically checked. To understand why
such tools are not used, we investigated four open source systems to see how

76

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

automatic tools are used (or not used) and how they handle convention vio-
lations. Moreover, we looked for reasons why trailing whitespace violations
were spotted and fixed more often than any other violation, and why, for
JGit and EGit, the second largest number of raised and fixed violations was
the requirement to always enclose blocks in braces.

4.4.1 Checking Tool Adoption

Our experiment has used Checkstyle, which is often used for convention vio-
lation checking. However, none of the four projects we investigated showed
evidence that Checkstyle had been used. In May 2011, there was a discussion
among Eclipse developers about adopting Checkstyle in their projects?, but
the tool does not seem to have been widely adopted. Instead, one advice is
to use the Eclipse Formatter. One reason why Checkstyle is not introduced
into existing codebases is that the source code does not adhere to the coding
conventions. As one Eclipse developer expressed it, ‘I would never impose
Checkstyle on an existing code base. Even in well behaved code one would get
thousands (more likely tens of thousand) warnings/errors.’.

According to JGit’s and EGit’s coding conventions, both projects integrate
FindBugs [Hovemeyer and Pugh, 2007, Ayewah et al., 2007] and PMD’s
copy-paste-detector [PMD] as part of their build process. However, JGit
developers currently do not use these tools in their build process.

The Eclipse Platform Ul project has adopted SonarQube [SonarQube] to
conduct code quality analysis. However, it does not seem to be used regularly,
because as of 9 January 2019, 32,796 issues had been repor’ced,3 757 of them
categorised as critical. SonarQube was mentioned only once* during code
review discussions on Gerrit for Eclipse Platform UlI, suggesting that the
SonarQube quality analysis is not important enough to Eclipse Platform Ul
developers.

Zhttps://bugs.eclipse.org/bugs/show_bug.cgi?id=347666

3https://sonar.eclipse.org/dashboard/index/eclipse.platform.ui:eclipse.
platform.ui

4https://git.eclipse.org/r/#/c/65695

77

https://bugs.eclipse.org/bugs/show_bug.cgi?id=347666
https://sonar.eclipse.org/dashboard/index/eclipse.platform.ui:eclipse.platform.ui
https://sonar.eclipse.org/dashboard/index/eclipse.platform.ui:eclipse.platform.ui
https://git.eclipse.org/r/#/c/65695

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

Although Checkstyle is not used in the Eclipse projects that we investigated,
another project contained in the CROP dataset uses it. Spymemcached is a
lightweight Java implementation of a memory caching system. The project
was terminated and became the groundwork for the Java client for the
Couchbase NoSQL database [Couchbase]. Although the project is no longer
maintained, we found an interesting case regarding coding conventions. At
the beginning of the project, spymemcached developers did not employ any
automated coding convention checking tools in their development process.
Therefore, developers spent considerable time during code review discussing
and fixing style issues. In August 2011, the project integrated Checkstyle
into its development process. As an integration step, a developer executed
Checkstyle for the complete project code and fixed all the style violations that
were reported in a single commit.” Because of this ‘big-bang’ style change,
most of the files in the code base were changed by a single developer in a
single commit, and the change history was tainted. For example, developers
can no longer track when the last change was introduced and who made
the change in a file farther back than the ‘big-bang” commit. To avoid this
problem, the projects that we investigated have decided against fixing present
convention violations. Moreover, we have seen during our investigation
that code reviewers often reject changes that fix only convention violations.
Instead, changes should not introduce new coding violations.

4.4.2 Fixing Tool Adoption

Assuming that Eclipse developers themselves use Eclipse, it was surprising
to see a large number of convention violations that could have been pre-
vented by Eclipse’s automatic formatting system. For example, the Eclipse
Platform UI project has documented coding conventions together with in-
structions on how to adhere to them. It has adopted the Eclipse Coding
Conventions [Eclipse], and it provides IDE configurations for code format-
ting that a contributor needs to import. Clear instructions are given on code
formatting:

Shttp://review.couchbase.org/#/c/8644/

78

http://review.couchbase.org/#/c/8644/

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

Awvoid formatting whole files — as this can generate pseudo-changes (whites-
pace related) when committing changes to existing source files. The easiest
way, for Java files, is to have ‘Format edited lines’ activated

Given these explicit instructions on how to use automatic code formatting,
one would assume that violations to the corresponding documented con-
ventions do not occur. As presented in the previous sections, however, there
was an abundance of code reviews in which violations were discussed by
developers. Some discussions even mentioned that the Eclipse automatic
formatting system was not working correctly at some point.°

4.4.3 Trailing Whitespace

The introduction of trailing whitespace was the only convention violation
that decreased in number during code review. One might conclude that
trailing whitespace is a convention violation that developers are specifically
interested in. A developer contributing to the Eclipse Platform Ul even
mentioned trailing whitespace in discussing coding conventions during code
review:

The general rationale behind coding style, namely improving readability, is
very important to code reviews, because the main task of code reviews is to
read code. In Eclipse Platform, my experience is that coding style is handled
quite strictly. Even a trailing space at the end of the line can lead to a rejection
of the change set and needs to be fixed in order to be included.

However, the explanation for the role of trailing whitespace may be much
simpler, because Gerrit’s visualisation of changes highlights trailing whites-
pace in red. Figure 4.8 shows an example from the Eclipse Gerrit repository
that illustrates how a reviewer’ pointed out trailing whitespace in a change.
The patch author introduced two meaningless trailing whitespaces (high-
lighted in red) while making a change. Then the reviewer pointed out the

éhttps://bugs.eclipse.org/bugs/show_bug.cgi?id=477476
The reviewer’s photo and name are blinded for privacy.

79

https://bugs.eclipse.org/bugs/show_bug.cgi?id=477476

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

issue, the patch author revised the change, and the trailing space disap-
peared in the following revision. Given that striking visualisation of trailing
whitespace in Gerrit, it is no wonder that reviewers often raise the violation
explicitly.

4.4.4 Enclosing Blocks in Braces in JGit and EGit

For JGit and EGit, the second largest number of raised and fixed convention
violations related to the requirement to always enclose blocks in braces (i.e.
the NeedBraces violation in the Block category). Both JGit and EGit use devia-
tions from Eclipse coding conventions [EGit]. Their coding conventions raise
two particular cases: First, they highlight that trailing whitespace should
be automatically removed (similar to Eclipse Platform UI). Second, they
discuss the need for braces around one-line statements. The second element
conflicted with the Eclipse coding convention. Before 27 January 2015, EGit
and JGit did not allow braces around single-line blocks, and many review-
ers requested the removal of braces in cases where single-line blocks were
enclosed in them. For example, in code review request #11558, the reviewer
pointed out that the patch author should remove the braces around a single
line. A proposal to change this deviating coding convention was raised in
Bugzilla (Bug #457592) by one of the main JGit/EGit developers.

I found this rule pretty annoying for many reasons: the rule itself is not only
an exception from the general rule to have braces around any blocks but also
contains another 2 exceptions that you *have to* use braces in some special
cases. The code containing multiple if/else block with and without braces looks
inconsistent, refactoring often leads to left-over braces. Especially that Eclipse
formatter does not remove ‘unnecessary’ braces automatically is kind of a
showstopper - one can’t even trust Ctrl+Shift+F.

Based on this discussion, the developers updated the contributor guide [EGit].
The guide currently says:

Starting with 3.7.0 braces are mandatory independently of the number of lines,
without exceptions. The old code will remain as is, but the new changes should
use the style below:

80

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

30/ 30
31 31
32 32
33
34
35
36
37
38
33
34
35
36
L ==
38
39
40
41
39 42
40 43
41 44
42 45
43 46
44 |
| 47
45 48
46 49
47 50
48 51
49 |
| 52
50 53
51 54
52 55
53
54
55
| 56
W o o
| 57
56 58
57 59
58 60

37 I

fr*
* HashMapEntry is an internal class which is used to hold the entries of a F
*/
private static class HashMapEntry {
Object key, wvalue;

HashMapEntry next;

HashMapEntry(Object theKey, Object theValue) {
private static class HashMapEntry<K, V> {

K key;
V value;

remove trailing whitespace Aug 8, 2013 I

HashMapEntry<K, V> next;

HashMapEntry(K theKey, V theValue) {
key = theKey;
value = theValue;

}

private static final class EmptyEnumerator implements Enumeration {
private static final class EmptyEnumerator<E> implements Enumeration<E> {
public boolean hasMoreElements() {
return false;

}

public Object nextElement() {
public E nextElement() {
throw new NoSuchElementException();
}
}

private class HashEnumerator implements Enumeration {
boolean key;

remove trailing whitespace Aug 8, 2013 |

private abstract class HashEnumerator<E> implements Enumeration<E>{

int start;

Figure 4.8: A reviewer pointed out trailing whitespace during code review. Gerrit highlights
trailing whitespace in red.

81

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

if (condition) {
#doSomething () ;
}

The main reason for the change was to simplify the review process, coding
guidelines and to make them more consistent with Eclipse code formatter.

The developers updated their coding conventions to reduce confusions.
However, we found that updating the coding conventions failed to reduce
confusion, because our investigation of code reviews showed that the devel-
opers were still confused and spent manual effort detecting and fixing the
violations of this convention.

Deviations from generally accepted coding conventions may lead to confu-
sion and unnecessary discussions during code review and should be avoided.
Removal of such deviations can also cause confusion and unnecessary dis-
cussions.

4.5 Threats to Validity

We selected four projects (i.e. Platform UlI, EGit, JGit, and Linux Tools) from
the Eclipse Foundation. Although the projects have large amounts of code
review data, as shown in Table 4.1, the results may not be generalisable to
other commercial or open source projects. Moreover, all four projects use
Gerrit as the code review platform, and this has only limited support for
including automatic checking tools.

We focused only on the first and the last patch of a code review request.
However, it is possible that we may have missed convention violations in
intermediate patches — for example, a case in which a developer violated
a coding convention in the second patch, a reviewer spotted it, and the
violation was addressed in the third patch. However, we assume there will
be no significant difference between the first patch and the following patches
in a code review request, since Eclipse and other open source and proprietary
projects limit the size of patches [Weisgerber et al., 2008].

82

4 Pretty Patches: An Empirical Study of Coding Conventions During Code Review

Since our investigation for RQ2 was a manual process, it risked being subjec-
tive. To mitigate this threat, two authors investigated the data independently.
If the two investigators found a conflict between their investigation results,
they discussed the conflict until they agreed on the same decision.

The delay reported in this chapter might not be representative, since a code
review comment and patch may address multiple issues at once. Therefore,
the time we measured between them in this chapter may not be solely spent
on the checking and fixing of convention violations.

4.6 Conclusion

In this chapter, we described how developers handle coding convention
violations during code review. First, we investigated how many convention
violations are introduced (appear) in the first patch of a code review request
and disappear in the last patch. Then, we investigated whether violations
disappeared because they were addressed in response to reviewer comments.
We found that developers manually check coding conventions during code
review. Our investigation results highlight that adherence to coding conven-
tions while introducing changes is important, and that some conventions are
ignored during code review. Our results also show that changes to already
agreed coding conventions should be avoided. Finally, we investigated how
manual convention checks by developers can delay the code review process.
Code review requests in which reviewers raise coding convention violations
take longer to be finally accepted and merged.

Our study calls for further future work on coding conventions. For example,
the majority of coding convention violations can easily be detected by au-
tomated tools, rather than by a reviewer’s manual inspection. On the other
hand, it is important to provide fewer false-positives (i.e. violation warnings
that are either unimportant or unnecessary) to developers, and it is necessary
for the tools to be able to analyse changed code only. Based on the results
presented in this chapter, automated tool support can save developers’ time
and boost development speed.

83

5 Recommending Related Code
Reviews!

5.1 Introduction

Because code reviews focus on the submitted change, they do not provide
the full context surrounding the change. One way to understand the context
is to visit related code reviews—for example, previously performed reviews
of similar changes. There are various scenarios in which visiting related
reviews can provide important information. For example, reviewers may
want to know if there is something that needs special attention as it has been
overlooked by developers in the past, as pointed out in previous reviews.
In addition, they can check previous code reviews to come up with review
criteria and comprehend the context of changes. Another example concerns
a developer submitting a change. Even before submitting changes for review,
a developer can consult earlier reviews of similar changes to avoid mistakes.
This could be especially helpful for a new team member, who can compare
and contrast related reviews to broaden her understanding and familiarise
herself with the team’s standards Bacchelli and Bird [2013].

Although code review tools keep track of developer discussions and the
development context, manual effort is required to locate code review requests.
If a developer does not manually link related code review requests to a new
code review request or does not add meaningful metadata, developers may
not be able to leverage available discussions and their development context

I This chapter contains work that was submitted to Transactions on Software Engineering
(TSE) in 2018. I am the main author of the paper and co-authored it with Manal Alonaizan
at King Saud University, Jens Krinke and Chaiyong Ragkhitwetsagul at University College
London, and Daniel Schwartz-Narbonne and Bill Zhu at Amazon Web Services.

84

5 Recommending Related Code Reviews

that is stored in code review tools and repositories. Current code review
tools cannot find and link to related code review requests, and their search
capabilities work only if there is matching metadata in previous code review
requests. Developers may waste valuable time repeating similar discussions,
or, even worse, may overlook issues that have been pointed out in previous
reviews of similar changes. As code review data accumulates, it gets more
difficult to manually keep track of related code review requests without
having a recommendation system in place. For example, on average, 74.4
code review requests are submitted every day to Qt’s Gerrit repository Xia
et al. [2015].

We present a technique that recommends code review requests with similar
patches from a code review history to a newly submitted patch based on the
similarity of the patches. This technique can help developers to easily locate
similar code review requests in a project’s code review history.

The main contributions of this chapter are as follows:

e A related code review recommendation system
e An empirical study on the related code review recommendation system

The remainder of this chapter is organised as follows: Section 5.2 describes
the special characteristics of the code review processes at Amazon and in
open source projects. Section 5.3 provides the motivation for our approach.
Section 5.4 presents an overview of our approach, research questions, and the
experimental setup. The results of the evaluation are presented in Section 5.5
and discussed in Section 5.6. Threats to validity are discussed before the
chapter concludes.

5.2 Code Review

Gerrit provides specialised code review support features that may not be
offered by other tools. One of the features is the Change-Id. The Change-Id is
a unique identifier for grouping patches that belong to the same code review
request. When patches are merged into the Git repository, the Change-Id is
stored in the commit message. The Change-Id enables developers to trace
commits back to the code review request in Gerrit. Gerrit provides additional

85

5 Recommending Related Code Reviews

information to easily locate other code review requests and patches including
Related Changes, Topic, Cherry Picks, and Conflicts With information. The Related
Changes information shows the ancestors and descendants of the current code
review request (i.e. requests on which the current review request depends
and open review requests that depend on the current review request). The
Topic information shows only open code review requests that have the same
topic as the current review request. Gerrit’s topics are based on the topic
branches in Git (i.e. temporary branches that a developer pushes to commit
a set of logically-grouped dependent commits). The Cherry Picks information
shows the cherry-picked code review requests, filtering out abandoned code
review requests. Cherry-picking in Git is typically designed to introduce
particular commits from one branch into a different branch. A common
use is to forward or backward commit from a maintenance branch to a
development branch. The Conflicts With field shows the code review requests
that conflict with the current code review request, with abandoned code
review requests are filtered out.

Code review is a highly recommended process at Amazon. The internal code
review tool is highly integrated with Amazon’s internal infrastructure and
provides a convenient review environment. The overall code review process
is similar to the process described above. Similarly to the other code review
tools, the internal code review tool provides overall information required
for code review, including the author of a change, assigned reviewers, and
syntactically highlighted patches.

5.3 Motivation

Figure 5.1 shows a motivating example of related code review requests.
The example is from the Eclipse EGit project. The developers” names are
blinded for privacy. Instead, we use aliases for the developers’ identities (i.e.
Dev. A and Dev. B). Both code review requests are authored by Dev. A and
reviewed by Dev. B (and automatically checked through CI via Hudson).
Please note that the ‘Reviewers’ shows the assigned reviewers (i.e. that who
are requested for the review), while ‘Committer’ shows who has commit-
ted the patch for review. These two code review requests are related, as

86

5 Recommending Related Code Reviews

Change 18476 - Merged
Improve order of menu entries in "Compare With" menu

By defining them using the org.eclipse.ui.menus extension point instead
of the deprecated org.eclipse.ui.popupMenus, it's possible to show the
Git-specific entries first. See bug 175693 for why we need to "override"
the menu.

Bug: 421893
Change-Id: I0257cbdbl8009£357c965dffeel72d4el3155352
signed-off-by: uDev. A

Author DeV/ 7Awss Nov 17,2013 4:14 PM
Committer Dey/ 7Aw=— Nov 17,2013 9:08 PM
Commit 286de3ec27a8bd10087e2002624b38be0762f303
Parent(s) 5b478b7715c60ec07de845d67786fa6dfb93b59¢c
Change-Id 10257¢cbdb18009f357c965dffee172d4e13155352

File Path

Commit Message
org.eclipse.egit.ui/plugin.properties
org.eclipse.egit.ui/plugin.xml

D org.eclipse.egit.ui/src/or ip: it/ui/interr ions/(

D org.eclipse.egit.ui/src/org/eclipse/egit/ui/internal/actions/CompareWithCommitAction.java
D org.eclipse.egit.ui/src/org/eclipse/egit/ui/internal/actions/CompareWithHeadAction.java
D org.eclipse.egit.ui/src/org/eclipse/egit/ui/internal/actions/CompareWithindexAction.java

D org.eclipse.egit.ui/src/org/eclipse/egit/ui/internal/actions/CompareWithPreviousAction.java

VithHeadAction.java

Change 18696 - Merged
Improve order of menu entries in "Replace With" menu

They are now consistent with the order in "Compare With", see
10257cbdb18009£357c965dffeel72d4e13155352.

Bug: 421893
Change-Id: Ialb09bbfc616b78fec351364c6dc7act619fbeed
Signed-off-by: sDev.

Signed-off-by: Ty g

Author

DevJA! Nov 21, 2013 9:11 PM

Committer iDev=B ~ - Nov 22, 2013 12:01 AM
Commit 17f9b50fc7b1d351cd615cb87f33dfc52a4bd6de
Parent(s) 463d324d05914a833b5c7484531eb88ec00f80eb
Change-Id la1b09bbfc616b78fec351364c6dc7act619fbeed
File Path

Commit Message
org.eclipse.egit.ui/plugin.properties

org.eclipse.egit.ui/plugin.xml

D org.eclipse.egit.ui/src/org p: git/ui/internal/actions/DiscardChangesAction.java

D org.eclipse.egit.ui/src/org/eclipse/egit/ui/internal/actions/ReplaceWithCommitAction.java
D org.eclipse.egit.ui/src/org/eclipse/egit/ui/internal/actions/ReplaceWithHeadAction.java

D org.eclipse.egit.ui/src/org/eclipse/egit/ui/internal/actions/ReplaceWithPreviousAction.java

D org.eclipse.egit.ui/src/org/eclipse/egit/ui/internal/actions/ReplaceWithRefAction.java

D org.eclipse.egit.ui/src/org/eclipse/egit/ui/internal/actions/CompareWithRefAction.java Owner DevyA
Reviewers 'Hudson CI "Deyv3Bms

Owner Deyv/ Ay P 1 o o
Reviewers Hudson CI EsReviiBi rojec egitiegit

. . Branch master
Project t/egit .

) egivegt Topic
Branch master Updated 2 years, 9 months ago
Topic
Updated 2 years, 10 months ago

Review #18476 Review #18696

Figure 5.1: Two related reviews in Eclipse’s EGit project as found in the Gerrit code review
system. The developers’ names are blinded for privacy.

they refer to the same bug: number 421893. Moreover, the reviewer Dev. B
explicitly linked the change of code review request #18696 to code review
request #18476 by adding a reference in the commit message to the Change-
Id 10257cbd. . .5352, which is reviewed in code review request #18476. The
reviewer for code review request #18696 can visit the linked code review
request #18476 to get more context and establish review criteria before inves-
tigating the review request. Note that the link has been created manually by
reviewer Dev. B, as no system currently exists to recommend or link related
code review requests.

As presented in Chapter 3, we asked developers from open source projects:
‘Do you ever consult other/earlier reviews when doing a review?’. Among open
source developers, 83% (81 out of 98) answered that they may consult earlier
code review requests when reviewing a newly submitted code review request.
As shown in Table 3.2, 36 developers had consulted earlier code review
requests to get context for a current code review request. While other reasons

87

5 Recommending Related Code Reviews

exist for consulting past requests, getting context is the one mentioned most
often. In a preliminary interview for the survey, a developer stated that
‘[Referring to other code review requests] is the most convenient way to understand
what is going on in my team and the code base rather than go through the entire
code base’.

Despite the above discussed need to locate and consult related reviews, the
authors are not aware of work that supports locating and consulting related
reviews, and therefore a code review recommendation approach is presented
and evaluated in the rest of this chapter.

5.4 Methodology

This section offers an overview of our methodology for recommending
related previous code review requests for a newly submitted patch. It also
contains a description of the goal and the research questions we address in
this chapter.

Our approach finds and recommends the most related previous code review
requests for any newly submitted patch based on the similarity of the patch
fragments. To illustrate, when a developer submits a new code review re-
quest with an initial version of a patch, a pairwise comparison is applied
between the newly submitted patch and all the patches that have previously
been reviewed. Then, we rank all the patches according to similarity. The
patches are linked to their code review request, so that the recommendations
consist of code review requests with specific patches that contain similar
modifications. A developer can investigate the related code review requests
to learn what has been important and to decide what to focus on in the freshly
submitted patch. Moreover, as the recommendation points to a specific patch
in the history of the related code review request, the developer can consider
the list of potential issues in the new patch using the issues raised for the
recommended patch and in light of how the issues were addressed in the
patch’s succeeding revisions within the same code review request.

Since our technique relies on the textual similarity, some recommendations
may provide no useful information to developers. For example, a developer

88

5 Recommending Related Code Reviews

may receive code review request recommendations that are not actually
related but just show a certain level of similarity. Therefore, we define a
threshold to filter out the non relevant recommendation results and recom-
mend only those patches with a similarity value greater than the threshold.
The choice of the similarity threshold is not straightforward [Ragkhitwet-
sagul et al., 2016, 2018], and we must find an effective way to choose a
threshold. Please note that the threshold can be changed to allow a developer
to retrieve more related code review requests or to increase the precision of
retrieved patches.

5.4.1 Similarity Measures

To compare the patches (i.e. to compare the newly submitted changes that
need to be reviewed with all changes that have previously been reviewed),
the similarity of two patches needs to be measured.

We set four requirements for the similarity measures to be used by our
approach. First, the similarity measures must generally be applicable to
compare patches (diffs) for any type of document, not just source code. For
example, patches for HTML, XML or JSON files often occur in reviews.
Therefore, any programming language-specific measures cannot be used.
Ragkhitwetsagul et al. [2018] have shown that textual similarity measures can
perform well on source code with modifications. We use the entire diff text
in a patch to compute the similarity without any pre-processing. Figure 5.2
shows an example patch that we used to compute the similarity between
patches. A patch consists of two elements that are divided by a separator
(‘---'): meta-information and the diff (i.e. the actual changes to files). From
the patch we exclude the meta-information (e.g. SHA-1 hash id, date, and
commit message) and use only the diff content that represents the actual
changes. Since the meta-information uses a consistent form and keywords,
it will always have a certain level of similarity, which can be considered as
potential noise for our approach. Second, the similarity measures should be
normalised. Otherwise, small patches may not get recommendations due
to too low similarity values although they actually have related patches
(i.e. false-negatives). On the other hand, large patches get recommendations
that may not actually be related to the patches (i.e. false positives). Third,

89

5 Recommending Related Code Reviews

From b@6a691872¢9e610974587b97c9775785d36¢c45b Mon Sep 17 00:00:00 2001
From: mess = = = TEE S EE . u
Date: Thu, 21 Nov 2013 22:11:15 +0100
Subject: [PATCH] Improve order of menu entries in "Replace With" menu

They are now consistent with the order in "Compare With", see
10257cbdb18009f357c965dffeel72d4e13155352.

Bug: 421893
Change-Id: Ialb@9bbfc616b78fec351364cb6dc7acf619fbee8
Signed-off-by: e N o Em

diff ——git a/org.eclipse.egit.ui/plugin.properties b/org.eclipse.egit.ui/plugin
.properties
index 3507110..e04d440 100644
—-—- a/org.eclipse.egit.ui/plugin.properties
+++ b/org.eclipse.egit.ui/plugin.properties
@e -33,7 +33,7 @@
RemoveFromIndexAction_label=Remove from Index
BranchAction_label=&Switch to ...
BranchAction_tooltip=Checkout branch, tag, or reference

+DiscardChangesAction_label=Git &Index
ReplaceWithHeadAction_label=&HEAD Revision
ReplaceWithCommitAction_label=&Commit...
replaceWithPreviousVersionAction. label = &Previous Revision
@@ -233,6 +233,7 @@
ReplaceWithHeadCommand.name = Replace with HEAD revision
ReplaceWithCommitCommand.name = Replace with commit
ReplaceWithRefCommand.name = Replace with branch, tag, or reference
+ReplaceWithPreviousCommand.name = Replace with Previous Revision
FetchCommand.name = Fetch
IgnoreCommand.name = Ignore
MergeCommand.name = Merge
@@ -282,12 +283,13 @@
PushBranchAction.label = Push &Branch...
CompareWithBranchOrTagAction.label = &Branch, Tag, or Reference...
MergeToolAction. label = Merge Tool

+CompareWithCommitAction. label = &Commit...
CreatePatchAction.label = Crea&te Patch...

Figure 5.2: Patch example. Developers’ names are blinded for privacy.

90

5 Recommending Related Code Reviews

Table 5.1: Evaluation result of the three similarity measures by using Ragkhitwetsagul et
al.’s framework and benchmark data [Ragkhitwetsagul et al., 2018]

Precision | Recall | Accuracy | F-measure
Jaccard 0.891 | 0.884 0.978 0.888
Serensen-Dice 0.885 | 0.890 0.977 0.887
Cosine 0.497 | 0.774 0.899 0.605

the similarity measures must be computed efficiently, since our technique
uses pairwise comparison at the moment. If a similarity measure has higher
than linear complexity (i.e. O(n)), it will become difficult to provide useful
recommendations to developers in a timely manner as more and more code
review data is accumulated. Lastly, the similarity measures should achieve
high fidelity in their results.

Our approach uses a programming-language-agnostic off-the-shelf similarity
measure, the java-string-similarity library?, a library implementing different
string similarity and distance measures, rather than using dedicated code
similarity tools (e.g. a code clone detector). A dozen algorithms, including
Levenshtein edit distance and siblings, Jaro-Winkler, Longest Common Sub-
sequence, N-grams, Q-grams, cosine similarity, Jaccard index, and Serensen—
Dice coefficient, are implemented and ready to be used. Although multiple
algorithms are available in the library, only three of them satisfy our re-
quirements: Jaccard index, Serensen—Dice coefficient, and cosine similarity.
All other algorithms are either not normalised or are too slow (having a
complexity higher than O(n)). The library removes space from the strings to
be compared (pre-processing) and then generates n-gram [Kondrak, 2005].
Except for space, everything else is preserved (comments, keywords, punc-
tuation, and symbols). The (space-less) strings are converted into sets of
n-grams (sequences of n characters), and then the similarity between the two
sets is measured. Our approach uses the library’s default value of n, which is
3.

We evaluated the three candidate similarity measures from java-string-similarity
by using Ragkhitwetsagul et al.’s framework and benchmark data Ragkhitwet-
sagul et al. [2018], which have been used to compare 30 well-known code

Zhttps:/ / github.com/tdebatty /java-string-similarity

91

5 Recommending Related Code Reviews

similarity analysers. Table 5.1 presents the evaluation results. The Jaccard
index and Serensen-Dice coefficient (over 3-grams) show better perfor-
mance than most of the 30 other algorithms, including clone detectors such
as Deckard [Jiang et al., 2007] and Simian [Harris, 2015]. Only CCFind-
erX [Kamiya et al., 2002] showed better results than the Jaccard index and
the Serensen-Dice coefficient, however, CCFinderX does not satisfy our
requirements because the technique is language-specific and has a high
complexity.

We chose the Jaccard index to generate examples to evaluate our tech-
nique because it is widely used in research areas involving similarity mea-
sures (e.g. duplicate detection [Hajishirzi et al., 2010], clone detection [Keivan-
loo et al., 2014], and software plagiarism detection [Chae et al., 2013]) and
because of its very good performance, as presented in Table 5.1.

5.4.2 Goal and Research Questions

The goal of our study is to evaluate the effectiveness of our approach in
recommending related code review requests based on similarities between
the patch fragments. To achieve our goal, we address the following research
questions:

RQ1: Do the recommended patches provide useful information during
code review? Although we mentioned our recent survey result in Section 5.3,
we do not know whether developers can use our technique in practice, as
there is no known tool or technique to recommend related code review
requests, to the best of our knowledge. Therefore, we tested our technique by
interviewing seven software development engineers (SDEs) from a team at
Amazon. We showed them examples of actual recommendations generated
from internal Amazon code review data, and we interviewed them, asking
questions about whether the recommendations could be understood and
how useful they were.

RQ2: How precisely are the recommended patches related to the submit-
ted patches? Although RQ1 evaluates the applicability of the recommenda-
tion technique via developer interviews, the study has two threats to validity.
First, we interviewed the developers who are directly involved in the projects.

92

5 Recommending Related Code Reviews

Since the developers have enough knowledge and context in the projects,
the results from them might be subjective. Second, the interviews rely on
industrial review data which means the result may not be applicable to open
source projects. To mitigate the threats to validity, we evaluated the precision
of our approach for recommending related code review requests through
manual inspection of the actual recommendation results from three Eclipse
projects.

RQ3: How does the similarity threshold affect the accuracy of the results?
Although our approach does not rely on a specific threshold, we used a
conservative threshold (discussed later in this section) for both RQ1 and RQ2.
While RQ1 and RQ2 are answered with a threshold, RQ3 investigates how
sensitive the recommendations are to the threshold in terms of the number
of recommendations, precision, and recall.

RQ4: How robust is the result compared to other similarity measures with
different thresholds? Although we used the Jaccard index because of its high
fidelity, it may affect the robustness of our approach (i.e. the recommenda-
tions may be different when using other similarity measures). Therefore, we
evaluate the robustness of the Jaccard index by comparing the results with
results from the Serensen-Dice coefficient and cosine similarity, since they
also satisfy our similarity measure requirements.

5.4.3 Experimental Setup

To answer the research questions, we selected an Amazon internal project
(RQ1) and three projects from the Eclipse foundations (RQ2-RQ4). For the
interview study at Amazon (RQ1), we selected an internal web project that
is actively used by internal Amazon developers on a daily basis.” The three
projects from the Eclipse foundations are EGit, Linux Tools, and JGit. These
projects had had the greatest number of code review requests in Gerrit at the
time of the experiment. Our experimental evaluation used a replay approach
in which all extracted patches were assumed to be freshly submitted, one-by-
one, in the order of the original submission. For the projects, we extracted all
code review requests and their patches. Each patch was then used as a query,

3Due to the company’s policy, we can not present the details here.

93

5 Recommending Related Code Reviews

Table 5.2: Collected data sets for each project

EGit JGit Linux Tools
of Review Requests 4,752 4,408 4,546
of Patches 7,050 6,457 9,232
Average # of patches/requests | 148 1.46 2.03
Median # of patches/requests 2 2 1

and our approach compared the query to all previously submitted patches.
Table 5.2 shows the number of code review requests and patches for the
three data sets from the Eclipse foundations. We crawled code review data
from the beginning of the Gerrit repository until May 2016. As of August
2017, the project we selected from Amazon had 7,680 patches reviewed in
the internal code review tool, which is comparable to the number of patches
in the projects from Eclipse.

To establish the threshold used in RQ1 and RQ2, we considered the dis-
tribution of the similarities for each project individually. For each patch,
we extracted the most similar previous patches from different code review
requests. Patches are expected to have a certain level of similarity to other
patches in the same project, since they share the same programming language
and the same terminology. Because a generous threshold may introduce im-
proper recommendations (i.e. more false positives), we chose a conservative
threshold. We considered similar patches to be outliers of the similarity dis-
tribution over patches based on the assumption that related patches will
show unusually high similarity values. To detect outliers, we used Tukey’s
method [Tukey, 1977] and defined the upper outlier fence as 1.5 x IQR
(interquartile range) from the third quartile (Q3). We assumed measured
similarities higher than the upper outlier fence to be indicative of actual
similarity. The main goal in adopting Tukey’s method was to set a threshold
to answer RQ1 and RQ2. Figure 5.3 shows the similarity measure distribution
for the Jaccard index. The x-axis denotes different projects while the y-axis
shows normalised similarity values from 0 to 1. We present the combination
of a violin plot and a box plot in the same figure to clearly represent data pop-
ulation and quartiles simultaneously. The similarities are widely distributed
and outliers are clearly visible. Since there are many closely neighbouring
outliers, the outlier representations in the figure look like bold vertical lines.

94

5 Recommending Related Code Reviews

With Tukey’s method, we established the thresholds for each project: 37%
for EGit, 34% for JGit and 36% for Linux Tools. Note that the thresholds are
close to each other despite being project specific.

To address RQ1, we interviewed seven developers in a team at Amazon.
The team follows most recommended practices at Amazon. We extracted
recommendation examples from the code review data stored in the Ama-
zon internal code review tool. The interviews were a semi-structured 1:1
interviews between a developer (interviewee) and the author of this thesis
(interviewer). The semi-structured interview is an interview technique that
leverages general topics and questions rather than relying on an exact set
and order of questions. Semi-structured interviews are widely used to de-
termine what is happening and to seek new insights [Lindlof and Taylor,
2011, Bacchelli and Bird, 2013]. We asked developers to review three code
review requests with recommendations extracted via our approach and to
narrate their findings. The interviewer’s role was just to follow intervie-
wees’ activities. To minimise intrusion by the interviewer, we limited the
interviewer’s role to motivate developers to keep narrating their findings by
asking simple questions (e.g. Which line are you looking at? What are your
findings in this example?). The interviewer was prohibited from providing
potential clues to the relationships between code review requests. We set up
a 27-inch monitor with two separate browser windows. A newly submitted
code review request was located on the right side of the screen, while the
recommendation result was shown on the left side. For each interview, we
declared that the interview result would be handled anonymously, and we
recorded the interview scripts with the interviewees’ consent.

For the interviews, we conducted purposive sampling [Teddlie and Yu, 2007]
to select three recommendation examples with the below criteria:

e The similarity between the two patches should exceed the threshold
(i.e. the upper outlier fence).

e The number of changed lines in the recommended patch and the newly
submitted patch should be less than 50 in each. Otherwise, a developer
would have to spend more time to comprehend the changes, which
would reduce the interview time with the developer.

e On the other hand, the number of changed lines in the recommended
patch and the newly submitted patch should be greater than 10 in

95

Similarity

1.00-

0.75-

0.50 -

0.25-

0.00-

5 Recommending Related Code Reviews

EIGit Jéit LinuxITools
Project

Figure 5.3: Similarity measure distribution for each individual patch.

each, since it can be hard to understand a code review request (either a
recommended or a new one) if too little information is provided by the
patch.

Each recommended code review request should have more than two
comments submitted by developers. If a code review request contains
no comment, it denotes that no context was recorded during the code
review.

Both the recommended code review request and the newly submitted
code review request should have been submitted at least 2 months
before the interview date. If the examples had been recently submitted,
developers might still have been familiar with the code review requests
if they had been involved in the reviews.

To select the interviewees, we contacted a development team at Amazon and
interviewed the team’s developers. The team develops and maintains the
internal services that are used by Amazon developers on a daily basis. Ta-

96

Table 5.3: The interviewees’ experience at Amazon and interview duration

5 Recommending Related Code Reviews

SDE Experience at Amazon Interview time
SDE#1 5 years 2 months | 12 minutes 59 seconds
SDE#2 10 months | 15 minutes 11 seconds
SDE#3 5 years 2 months | 22 minutes 21 seconds
SDE#4 7 years 2 months | 8 minutes 10seconds
SDE#5 3 years 1 month | 12 minutes 52 seconds
SDE#6 4 months | 24 minutes 01 second
SDE#7 2 years | 11 minutes 06 seconds

ble 5.3 shows the interviewed SDEs’ experience at Amazon and the interview
time duration. The developers have experience within Amazon ranging from
4 months (SDE#6) to more than 7 years (SDE#4). As shown in the Table 5.3,
interviews varied in their duration. The mean interview time was 15 minutes
14 seconds. All developers used a side-by-side diff view (a screen split into
two parts with the left side presenting the code before the change and the
right side showing the code after the change) for the interview except SDE#3.
SDE#3 used an inline view (visualising the change as a unified diff).

Since there is no ground truth for related patches (i.e. no correct answer
set), we could not evaluate the recall of our approach. If a recommendation
technique shows a high precision, it may have a lower recall. Therefore, we
computed the relative recall by using a partial ground truth to measure the
sensitivity of our technique [Jiang et al., 2014]. To construct a partial ground
truth, we extracted the Change-Ids from the code review data and identified
related patches. If a patch contained a Change-Id of another patch (i.e. the
Change-1d of another patch appeared in the description or comments), we
assumed that they were related. We extracted 406, 936, and 1,265 related
patches in this way from EGit, JGit, and Linux Tools, respectively. The rela-
tive recall was computed as the ratio of recommendation pairs that have a
similarity value higher than the threshold and appear in the partial ground
truth for the number of pairs in the partial ground truth. Remember that
Change-Ids only appear in the description or comments of another review if
they have been manually identified and inserted, thus they represent only
that part of the ground truth that the developers were aware of and where
they considered the relationship important enough to make it explicit. Be-

97

5 Recommending Related Code Reviews

cause identifying related changes requires manual effort, the actual number
of related patches is expected to be higher.

Based on the partial ground truth, we created a balanced data set to evaluate
the accuracy of our recommendation technique in terms of both precision
and recall. We randomly selected patch pairs that did not have evidence of a
relationship to match the numbers of pairs used as the partial ground truth
(i.e. 406, 936, and 1,265 patches for EGit, JGit, and Linux Tools, respectively).
Because most patch pairs are not related, the random selection of pairs that
are not in the ground truth will be very likely return pairs that are not related.
For example, we extracted 406 random patch pairs that did not have clear
evidence of a relationship for EGit since EGit has 406 pairs in the partial
ground truth. By merging 406 randomly selected pairs and the 406 pairs in
the partial ground truth, we got 912 pairs in a balanced data set, i.e. 50% of
pairs were related while 50% of pairs were (very likely) not related. We could
then measure the precision and recall based on the balanced data set. Since
this evaluation data contained randomly selected patch pairs, we repeated
the evaluation 100 times [Lee et al., 2011, 2016], each time with a newly
generated, balanced data set.

5.5 Results

In this section, we answer the research questions raised in the previous
section. First, we test whether our technique can provide useful information
during code review by interviewing developers at Amazon with actual
recommendation examples (RQ1). We evaluate our technique by manually
investigating how many recommended code review requests are actually
related to a submitted patch (RQ2). Finally, we compare the recommendation
results using different thresholds (RQ3) and among three different similarity
measures (RQ4).

98

5 Recommending Related Code Reviews

Table 5.4: Recommendation examples for the interviews. ‘External’ means a code review
request was authored or reviewed by a developer on the external team; otherwise,
we specify SDE alias

Example | Date oa Recommendation New code review request
P 8P [comments | Author | Reviewer Author | Reviewer

R1 4 days 2 | SDE#7 | SDE#4 External | SDE#7 & External

R2 40 days 22 | External | SDE#7 & External | External | SDE#7 & External

R3 1 day 20 | External | SDE#7 & External | External | SDE#7 & External

5.5.1 RQ1: Do the recommended patches provide useful
information during code review?

Table 5.4 presents details about three selected examples. Please note that
we used the Jaccard index to extract the recommendations. The project we
investigated is a developers’ tool that is maintained by multiple teams, but
mainly by the team we contacted. Therefore, developers from other teams
(shown as “external” in the table) also contribute to the project. The date gap
column shows the number of days between the recommended code review
request and the newly submitted code review request. The ‘# comments’
column represents the accumulated number of comments across all revisions
in the recommended code review request. Please note that all seven SDEs
received optional reviewer requests,* although SDE#4 and SDE#7 seemed
to be the only reviewers from the team for the three examples. SDE#4 and
SDE#7 were also the final approvers of the code review request.

Since we cannot present the actual example in this chapter because of the
company’s policy, we explain each example and discuss the SDEs” com-
ments.

The R1 example in the table represents a reverting changes scenario. The
recommended previous review is a temporary bug fix that disabled a prob-
lematic feature, while the newly submitted review is a clean fix for the bug
and re-enables the feature. However, we could not find a specific reference to
the bug report or to a previous code review request in either the target code

4The internal review tool supports sending review requests using a team alias. In such
cases, all SDEs on a team receive code review request notifications. The project we studied
adheres to the practice of using the team alias for all review requests.

99

5 Recommending Related Code Reviews

review request or the recommended code review request. The two comments
in the recommended code review request describe the author’s intention (i.e.
‘I tried to fix...”). All interviewers could correctly identify the relationship
between the recommendation and the newly submitted code review request.
Although SDE#4 reviewed the recommended code review request at the
time, he could not specifically remember the code review request. SDE#7
commented on this example:

I think there is another code review request before this one [the recom-
mended code review request]. I wrote this change [the recommended
code review request] to fix bug ‘A" introduced by the previous one, but,
my fix introduced bug ‘B’ then, this fix [newly submitted code review
request] is submitted to fix ‘B’.

We confirmed that our technique also recommended the previous code re-
view request that introduced bug ‘A’, although its patch had a lower similar-
ity value than the patch with the recommended review request used in the
example.

The R2 example is a change similar location scenario. Although the R2 rec-
ommended request does not handle the same issue, we could see that the
changed files and their locations in the newly submitted code review request
and the recommended code review request were very similar. As shown in
Table 5.4, this example contained the greatest number of comments. SDE#6
said that:

Both review requests were written by the same developer, and I can find
some comments regarding style. So I think I can use the comments on
the recommendation as guidelines to review the new code review request

One interesting observation is that SDE#4 and SDE#5 immediately collapsed
(i.e. hide) the comments on the recommended code review request. The
interviewer asked them why they had collapsed the comments. SDE#4 stated
that:

I've been working on the project from the beginning and am familiar
with the context. So, I more focus on the change itself, but, I could see
how changes are evolved from your recommendation. It looks like the
Git blame feature for code review.

100

5 Recommending Related Code Reviews

On the other hand, SDE#5 provided following explanation for why he col-
lapsed the comments:

I usually collapse the comments when I review code changes because I
don’t want to be biased by others comments.

The example of SDE#4 may imply that our technique is more useful for
novice developers than for experienced developers. In addition, the example
of SDE#5 calls for further work on how to support developers in producing
non-biased reviews.

The last example, R3, is a developer’s mistake scenario. The author of R3
had just joined the company and was not familiar with the internal code
review tool. Although he needed to submit a new revision of the code review
request that was recommended by our technique, he created an entirely new
code review request instead (the one for which the recommendation was
generated). This is why the date gap between code review requests is very
short (i.e. just a day). Even worse, these two review requests have different
titles. All interviewees mentioned that the two code review requests look
very similar, almost identical. SDE#1 said:

The title of code review requests are different and commit IDs are differ-
ent. So it seems like a totally different review request, but, the changed
parts are the same. It is very weird.

At the end of the interview, we asked for general feedback on our approach.
All interviewees agreed that our proposed technique can provide useful
information to review a new code review request. Table 5.5 shows the inter-
view overview for each SDE. The ‘relationship” column represents whether
an SDE could locate the relationship between the code review requests. If an
SDE could locate that relationship between code review requests, we note the
example id (i.e. R1, R2, and R3). The ‘find intention” column denotes whether
an SDE could determine the intention of the previous (i.e. recommended)
changes. The ‘check comment” column indicates whether an SDE extracted
context from the comments in a recommended code review request. As we
mentioned above, SDE#4 and SDE#5 did not investigate the comments of the
recommended code review requests. Useful information as demonstrated by
the interviews is given below:

101

5 Recommending Related Code Reviews

Table 5.5: The interview overview for each SDE

SDE

Relationship

Find intention

Check comment

SDE#1
SDE#2
SDE#3
SDE#4
SDE#5
SDE#6
SDE#7

R1,R2,R3
R1,R2,R3
R1,R2,R3
R1,R2,R3
R1,R2,R3
R1,R2,R3
R1,R2,R3

R1,R2,R3
R1,R2,R3
R1,R2,R3
R1,R2,R3
R1,R2,R3
R1,R2,R3
R1,R2,R3

R1, R2, R3
R1,R2,R3
R1,R2,R3

R1,R2,R3
R1,R2,R3

e Intention of the previous change: In the R1 example, the intention of
the recommended code review request was the reversion of a previous
change. The developers could understand the intention of previous

changes.

e Link to the previous change: As shown in the R1 and R3 examples,
the developers could locate previous code review requests that handle

the same issue without the use of additional metadata.

e Review criteria: In the R2 example, the developers could consider other
reviewer’s comments in the recommended code review request. The
comments can highlight common mistakes and provide review criteria.

In addition, we could confirm that our technique can be useful for code

review request authors as well. SDE#7 stated that:

This technique can benefit not only reviewers but also authors. Before
the authors send a review request, they can evaluate their changes by

using this technique.

The interviewees pointed out that sometimes it is difficult to locate useful
information from the recommendation, since there is no user interface (UI)
support. Integrating proper Ul support for our technique is a task for future

work. SDE#1 recommended the following:

Through the three examples, 1 can understand how your technique
works, but, it is hard to locate similar changes from the recommendation
since there is no Ul support. It would be great to integrate the Ul for
the recommendation such as highlighting the same file changed in both

code review requests

102

5 Recommending Related Code Reviews

Table 5.6: A statistical summary of the evidence categories and the types of evidence within
each category

EGit JGit Linux Tools
Total Sample Size 204 302 169
Bug id 29.9% (61) | 172% (52) | 3.6% (6)
Topic 78% (16) - - - -
Related change 17.7% (36) | 9.6% (29) | 95% (16)
Recommended Change-Id 8.8% (18) | 14.2% (43) | 53% (9)
Same Change-Id 18.6% (38) | 33.1% (100) | 23.1% (39)
Recommended Change-Id in comments | 18.1% (37) | 22.9% (69) | 7.1% (12)
Description in the commit message 1.0% 2| 33% (10)| 65% (11)
Todo in code 2.5% (5) - - - -
Total Evidence 82.4% (168) | 85.4% (258) | 52.1% (88)

From the three examples, developers could identify the relationship be-
tween recommendations and newly submitted code review requests and
gain useful information from our recommendation.

5.5.2 RQ2: How precisely are the recommended patches
related to the submitted patches?

To answer RQ2, we investigated whether the recommended code review re-
quests actually were related to the new patch. For each project, we randomly
sampled 45 code review requests from among those code review requests
with patches that received recommendations based on the Q3 + 1.5 x IQR
threshold. We manually analysed them to identify whether the recommended
code review requests are actually related. For each recommended code review
request of the sample, we manually investigated the details and categorised
how the recommended code review request is actually related to the sam-
pled code review request. One of the collaborators in this research (i.e. the
investigator) manually investigated the metadata, comments, and the actual
changes of the code review request and recommended code review requests
in pairs. The investigator recorded evidence that clarified the relationship
between the two code review requests in a pair. Based on this recorded
evidence, we categorised the relationship. To mitigate subjective bias, the
thesis author reviewed the results with the investigator in a cross-validation

103

5 Recommending Related Code Reviews

Table 5.7: A list of different relationship categories for the suggested patch sets

Category EGit JGit Linux Tools Total

Same files Other files | Same files Other files | Same files Other files | Same files Other files
Change of similar - 1.0% ()| 3.0%) 13% 4)| 53% (9) 53% (9)| 2.7% (18) 2.2% (15)
code
Related change 29% (6) 14.7% (30) | 3.0% (9) 6.6% (20) | 10.1% (17) - | 47% (32) 7.4% (50)
Revert change 2.9% (6) - | 53% (16) - 41% (7) - 43% (29) -
Fix the same bug 3.9% (8) - | 11.3% (34) - - - 62% (42) -
Same change submit-
ted twice (with minor
change)
- Same branch 26.0% (53) - | 245% (74) — | 26.0% (44) -1 25.3% (171) -
- Different branch 31.9% (65) - | 33.1% (100) — | 25.4% (43) - | 30.8% (208) -
Change in similar lo- | 3.4% (7) - 3.6% (11) - - - 27% (18) -
cation
Refactoring 5.9% (12) - 7.6% (23) -1 21.9% (37) -110.7% (72) -
Fix newly introduced | 1.0% (2) -1 03% (1) - - - 0.4% (3)
bug
Update metadata 39% (8) 05% (1) | 0.3% (1) - 17% (3 - 1.8% (12) 0.1% (1)
Not related - 2.0% @) - - - - 0.6% @ -

manner. In total, the 135 code review requests of the sample received 675
related code review requests.

During the manual investigation, we found a large amount of evidence that
the two code review requests were actually related. Table 5.6 presents the
evidence we found for each recommendation pair in terms of the recom-
mended related code review requests. Please note that the total sample size
is the number of recommended pairs, as most of the 45 sampled code review
requests received more than one recommendation. The first three rows show
the number of pairs that share the same Bug id or Topic information in the
metadata of the paired code review requests, or where the recommended
code review request appears in the Related Changes list. The next three rows
show the numbers of pairs in which the code review requests mention a
Change-Id. In the case of Recommended Change-Id, the Change-Id of the recom-
mended code review request appears in the metadata (commit message) of
the sampled code review request—that is, the author of the sampled code re-
view request explicitly linked it to the (recommended) previous code review
request. In the case of Same Change-Id, the sampled and the recommended
requests both explicitly mention in their metadata the same Change-Id of
a third code review request. In the case of Recommended Change-Id in com-
ments, the Change-Id of the recommended code review request appears in
a review comment: in other words, a reviewer of the sampled code review

104

5 Recommending Related Code Reviews

request explicitly linked it to the (recommended) previous code review re-
quest. Lastly, in the Todo in code case, we found information that was related
to the recommended code review request appearing in the patch as a todo
task. As shown in the table, overall, we could find clear evidence relating 168
(EGit), 258 (JGit), and 88 (Linux Tools) recommended pairs. However, we
could not find clear evidence for from 14.6% to 47.9% of the recommended
review pairs. This does not mean that they are not related, only that there is
no clear evidence.

In addition, to identify reasons beyond clear evidence of a relationship, we
manually investigated the recommended pairs for different relationship cat-
egories. Table 5.7 presents the list of relationship categories we identified
for the suggested patches. We separately counted the numbers of recom-
mended pairs based on their file location (i.e. whether the recommended
patch modifies the same files as the sampled patch or other files). In the
Change of similar code category, the paired patches modify similar code in a
similar way. The Related change row shows the numbers of recommended
patches in which the sampled review request contains related change in-
formation as manually labelled by the developer (clear evidence as above).
Revert change represents the number of patches that are similar because a
developer reverted the change of the recommended patch. In the Fix the
same bug category, the two paired patches fix the same bug. In the case of
Same change submitted twice (with minor differences), the same patch with only
minor differences was detected in the paired code review requests, aiming
at the same branch or at a different branch. In the Change in similar location
category, the two paired patches make a change at a very similar location
in the source code, although the actual content of the changes differs. In
the case of Refactoring, the two paired patches perform the same refactoring,
such as renaming a method’s name. Fix newly introduced bug represents the
situation in which the later patch was submitted to fix a bug that had been
introduced by the recommended patch. Lastly, in the Update metadata case,
the paired patches perform a similar update of metadata, such as a project
version number. Whenever developers update metadata, they must change
all files that contain the metadata.

As the table shows, only 4 (2%) out of the manually investigated 204 cases
of suggested patches in EGit have no relationship (i.e. are false positives).
Surprisingly, we could not find any false positives in the manually inves-

105

5 Recommending Related Code Reviews

Table 5.8: Ratios of resubmitted identical patches by reason. The parenthetical values show
the numbers of resubmitted patches

Target branch Category EGit JGit Linux Tools
. Cherry pick 77.6% (38) | 70.8% (17) | 865% (217)
Different branch | o o2 163% (8) | 125% (3) | 11.2% (28)
Working on same base | 4.1% (2) | 42% (1) | 2.0% 5)

Same branch Mistake 20% (1) - - 04% (1)
Take over - - 1125% (3) - -

tigated recommendation pairs from the JGit and Linux Tools projects. We
investigated the four false positives from EGit and found that the actual
changes were not related, but a huge file change from outside the code re-
view request was found in a specific revision of a patch. For example, code
review request #3645 is recommended as a related request for code review
request #16761. We found that patch set #5 of code review request #16761
contains 1,662 changed lines in uitext.properties, while the other patch sets
in the code review request contain only two changed lines in the same file.
However, the 1,662 changed lines are part of the patch to fix an unresolved
conflict which was present in uitext.properties at the time of the patch (it is
not clear how it is possible that such an unresolved conflict was presented
in a committed revision). Since the code review request #3645 changed 442
(similar) lines in uitext.properties, it was recommended despite it is not being
related.

Our approach recommended related code review requests with 98% of pre-
cision in the 45 sampled review requests from the EGit project and 100%
among the sampled code review requests from the JGit and Linux Tools
projects based on the Q3 + 1.5 x IQR threshold. Moreover, for 82.3%, 85.4%,
and 52.1% of the investigated recommended code review requests in the
EGit, JGit and Linux Tools projects, respectively, we found clear evidence of
a relationship between the paired review requests.

Overall, our manual investigation of the 675 recommended related patches
demonstrates that our approach can effectively recommend related code
review requests.

While manually investigating the recommendation results, we found patches
that are identical to earlier patches in different code review requests (i.e. iden-

106

5 Recommending Related Code Reviews

tical patches are resubmitted as new changes). Among the investigated
projects, 0.7% (49/7,050) of EGit patches, 0.4% (24/6,457) of JGit patches,
and 2.7% (252/9,232 patches) of Linux Tools patches are resubmitted as new
code review requests. Note that these numbers do not include resubmitting
identical patches resubmitted under the same code review request,5 as in-
cluding them would result in 1,236 identical resubmissions for EGit, 1,364
for JGit, and 1,610 for Linux Tools.

As we found that non-ignorable numbers of patches are resubmitted, we
manually inspected to learn why. The manual investigation was performed
by one of the collaborators of in this research, and the results have been
validated by the author of this thesis. Table 5.8 lists the categories explaining
why patches are resubmitted and the numbers of patches belonging to each
category. We classified the reasons into two broad classes: relocating to a
different branch and resubmitting to the same branch. From 83.3% to 97.6%
of identical patch resubmissions are the result of relocating changes to a
different branch by cherry-pick or merge. Both cherry-pick and merge are
Git features that migrate particular commits from one branch into a different
branch. Sometimes, identical patches are resubmitted in the same branch.
We classified the resubmission of identical patches to the same branch into
three categories. The Working on the same base category describes cases in
which developers want to improve the same patch in different code review
requests. For example, we can assume two different bug issues rely on a
patch. Developers want to improve the same patch in different directions and
merge both patches later. The Mistake category shows developers mistakenly
submitting a patch in the wrong code review request. The Take over category
occurs when the patch author changes while a slightly changed patch is
resubmitted as a new code request. We observed this case in the JGit project.
A developer stopped writing new patches in a code review request. Another
developer then took over the patch and submitted an improved version of
the patch as a new review request.

SResubmitting the same patch again into the same code review request occurs often in
code review—for example, to restart a failed CI run.

107

5 Recommending Related Code Reviews

Project
0.42- « EGit
‘\ A JGit
= Linuxtools
0.40-

Threshold

0.38-

0.36-

0.34-
0 25 50 75 100
Data sample point (%)

Figure 5.4: Q3 — 1.5 x IQR thresholds over the different number of patches

5.5.3 RQ3: How does the similarity threshold affect the
accuracy of the results?

Although our approach uses a customisable threshold to establish a mini-
mum similarity that a pair of patches has to have to report the second as a
recommendation, we chose a fixed threshold (i.e. Q3 + 1.5 x IQR) to answer
RQ1 and RQ2. However, the threshold should be adapted by practition-
ers to their individual needs. Therefore, we studied the sensitivity of the
recommendations to the similarity threshold.

It is well-known that recommendation techniques can suffer the cold start
problem (i.e. an insufficient number of data points will lead to poor recom-
mendation results) [Schein et al., 2002]. If the number of patches is small, we
might not select a meaningful threshold for our evaluation. Figure 5.4 shows
the variation of threshold as defined by Q3 — 1.5 x IQR with an increasing
number of patches. The x-axis shows the number of patches (i.e. data sam-

108

5 Recommending Related Code Reviews

@ Project
S .
@ 1e+07 - —~ EGit
8 -&. JGit
a -&- Linuxtools
i)
T 1le+06 -
o
c
)
£
£
3
o) 1e+05 -
—
S
o
o
E 1e+04-
c
I3)
=
I—
0.00 0.25 0.50 0.75 1.00

Threshold

Figure 5.5: Number of recommendations that are made based on different thresholds

ples) used for the threshold computation (from 1% to 100%) while the y-axis
shows the corresponding Q3 — 1.5 x IQR similarity threshold (from 34%
to 43%) extracted from the number of patches considered. Please note that
we use the ratio of patches instead of the actual number since the projects
have different numbers of patches. The patches are sorted by submission
order. As shown in the figure, EGit and JGit show sharp decrements and
fluctuations with less than 10% of data samples because of the cold start
problem. Although the thresholds vary based on the different data sample
points, the variation is less than 0.04 above the 25% data sample point for
all three projects. Moreover, for almost all data points above 10%, the three
thresholds are close within a 0.04 range.

Figure 5.5 shows the number of recommendations produced based on differ-
ent similarity thresholds. The x-axis shows the similarity threshold from 0 to
1 while the y-axis denotes the number of recommendations that are made
with the corresponding threshold on a logarithmic scale. Please note that the

109

5 Recommending Related Code Reviews

Project

10004 —~— EGit

-&- JGit

—&- LinuxTools

10-

The average number of recommendations (log scale)

0.00 0.25 0.50 0.75 1.00
Threshold

Figure 5.6: Average number of recommendations per patch based on different thresholds

numbers of recommendations are extremely large because we adopted pair-
wise comparison by replaying the code review history — that is, comparing a
patch to all preceding patches. For example, EGit has up to 24,847,725 patch
pairs when replaying its 7,050 patches. We excluded the patches that are
in the same code review request. Among the patch pairs, we only counted
those patch pairs with a similarity higher than each threshold. As shown
in the figure, the number of recommendations decreases as the threshold
increases. The number of recommendations sharply decreases between the
thresholds of 0.25 and 0.50. Please note that lower thresholds lead to more
recommendations with more false positives while higher thresholds lead to
fewer recommendations with fewer false positives. We discuss the accuracy
of the recommendations based on different thresholds later in this section.

Figure 5.6 presents the average number of recommendations per patch based
on different thresholds. Similar to Figure 5.5, the x-axis shows the threshold
from 0 to 1 while the y-axis presents the average number of recommendations

110

5 Recommending Related Code Reviews

1.00-
0.75-
9
o
()
=
% 0.50-
o
o
[
2
= .
Project
0.25-
o eqit
A it

B [inuxtools
0.00-

0.00 0.25 0.50 0.75 1.00
False positive rate

Figure 5.7: Area under the receiver operating characteristics (ROC) curve

that are made per patch on a logarithmic scale. As the threshold increases, the
number of recommendations per patch decreases. At a threshold of 0.5, EGit
and Linux Tools show less than one recommendation per patch on average,
while JGit shows 10 recommendations.

In addition to the number of recommendations, we used the area under the
receiver operating characteristic curve (AUC) to measure the sensitivity of
our approach over different thresholds [Menzies et al., 2007]. Since AUC is
robust with respect to class imbalance and independent of the prediction
threshold, it is widely used [Nam et al., 2018, Giger et al., 2012, Lessmann
et al., 2008, Rahman et al., 2012, Tantithamthavorn et al., 2017]. By using
the partial ground-truth that we described in Section 5.4.3, we compute the
AUC of the three projects. The curves in Figure 5.7 are receiver operating
characteristic (ROC) curves for each project. Higher AUCs represent the
better prediction models, while an AUC of 0.5 (i.e. the straight line without
dots in the figure) equals a random prediction model. All three projects

111

5 Recommending Related Code Reviews

Table 5.9: Six thresholds based on distances from the third quartile for each project with
Jaccard index. The distances are computed by using the interquartile range (IQR).

EGit JGit Linux Tools
Q3 —-05xIQR | 17% 15% 15%
Q3+ 0.0 xIQR | 22% 20% 20%
Q3+05xIQR | 27% 25% 26%
Q3+1.0xIQR | 32% 29% 31%
Q3+15xIQR | 37% 34% 36%
Q3+2.0xIQR | 42% 39% 41%

show high AUC values (i.e. 0.902, 0.820, and 0.791 for EGit, JGit, and Linux
Tools, respectively) which means that our technique is robust with respect to
different thresholds.

To evaluate the precision and the recall of our approach over the partial
ground-truth, we tested six different thresholds based on the similarity dis-
tribution. Table 5.9 presents different thresholds for each project based on
the similarity distribution. Similarly to Tukey’s method, we use different
distances from the third quartile (Q3). The thresholds cover the median (i.e.
Q3 — 0.5 x IQR) and the third quartile (i.e. Q3 4- 0.0 x IQR) as well. As shown
in the table, the six different thresholds for each project cover a range from
15% (JGit and Linux Tools) to 42% (EGit).

Figure 5.8 shows the precision and recall for each project with different
thresholds over the 100 balanced datasets we constructed as described in
Section 5.4.3. The x-axis shows the thresholds (e.g. -0.5 denotes Q3 — 0.5 x
IQR) presented in Table 5.9, while the y-axis presents the precision (top) or
recall (bottom). Although the plot looks like it has horizontal lines for each
threshold due to the narrow range of recall, the horizontal lines actually
represent box plots generated over the 100 balanced datasets (i.e. containing
quartiles and a median). The narrow range of recall is because only the
negatives in the datasets vary while the positives stay the same. As shown
in the figure, the precision increases and recall decreases as the threshold
increases for all the three projects. For example, EGit shows 0.70 precision
and 0.91 recall at a Q3 — 0.5 x IQR threshold and 1.00 precision and 0.67
recall at a Q3 4 1.5 x IQR threshold. The precision values show almost the

112

5 Recommending Related Code Reviews

EGit JGit Linux Tools

% %_.%#‘F S

0.9-

1
1+
uolsIoaid

0.8- . #

' e
0.9 cmm
0.8- —— —
- -

0.7- —— —_— —— g
0.6- ==
0.5- 1 1 1 1 1 1 1 1 1 1 1 f 1 1 1 1 1 1

-05 0 05 1 15 2 -050 05 1 15 2 -050 05 1 15 2

Thresholds

Figure 5.8: Precision (top) and recall (bottom) with different Jaccard index thresholds

same result we saw in our manual investigation (i.e. with the Q3 4+ 1.5 x IQR
threshold).

Although different thresholds affect the number of recommendations, our
technique achieves precision (i.e. precision varies from 0.64 to 1.00) with
recall (i.e. recall varies from 0.51 to 0.91) regardless of the thresholds and
projects.

113

5 Recommending Related Code Reviews

Jaccard Sorensen-Dice Cosine

0.00 -

o
u
o

EGit JGit LinuxTools EGit JGit LinuxTools EGit JGit LinuxTools

Similarity
o
a
o

o
N
(&)

Figure 5.9: Similarity measure distribution for each individual patch

5.5.4 RQ4: How robust is the result compared to other
similarity measures with different thresholds?

We used the Jaccard index to answer the previous research questions. How-
ever, we are also interested in comparing the results using the Jaccard index
to results using other similarity measures to study the sensitivity of the rec-
ommendations to the chosen similarity measure. Therefore, we assess two
other well-known measures, Serensen—Dice coefficient and cosine similarity,
that satisfy the requirements described in Section 5.4.1.

Figure 5.9 shows the patch similarity distribution using the Jaccard index,
cosine similarity, and the Serensen-Dice coefficient for all three projects.
As shown in the figure, the Jaccard index has the narrowest similarity dis-
tribution range, while cosine similarity has the widest distribution range.
The Jaccard index also has lower similarity values than the Serensen—Dice
coefficient or cosine similarity. The cosine similarity tends to report a much
higher similarity than the Serensen—Dice coefficient and the Jaccard index.
One possible explanation is that the vector space model representation of
cosine similarity contains not only the words in the documents but also their
weights (i.e. the frequency of word occurrences).

Figure 5.10 presents precision and recall for the different similarity measures
with a Q3 + 1.5 x IQR threshold. As in Figure 5.8, we repeated the com-
putation of precision and recall with the 100 balanced datasets described
in Section 5.4.3. The x-axis represents similarity measures, and the y-axis

114

5 Recommending Related Code Reviews

EGit JGit Linux Tools
1. -
000- ¢) |) 1 = ﬁﬁ E =
L] L] []
: : T
0.975-
2]
@
O,
0.950 - =
=}
0.925 -
0.6- —
. >
0.5- 3
: -
0.4-
S @ @ QS @ @ S o @
0(:0\ /Q\CJ 0%\0 0(’%\ /0\(’ 0%\0 Q(’é /O\(J 06\0
3‘0’ QJ(\ (@) 3‘0’ QJ(\ (@) 3@' Q;Q (@)
o o o
Q& N N
& & @
X X X

Figure 5.10: Precision and recall with different similarity measures with a Q3 4+ 1.5 x IQR
threshold

shows precision and recall. As shown in the figure, all the three similarity
measures show high precision (i.e. precision > 0.92). Cosine similarity shows
the highest precision and lowest recall among the three measures whereas
the Jaccard index shows lower but comparable precision while showing the
highest recall.

115

oTT

Table 5.10: Thresholds for each project and similarity measures

EGit JGit Linux Tools
Jaccard Serensen-Dice Cosine | Jaccard Serensen-Dice Cosine | Jaccard Serensen-Dice Cosine
Q3 - 0.5 x IQR 17% 28% 47% 15% 26% 46% 15% 26% 37%
Q3+ 0.0 x IQR 22% 36% 57% 20% 33% 56% 20% 34% 46%
Q3+ 0.5 x IQR 27% 43% 68% 25% 40% 66% 26% 42% 56%
Q3+ 1.0 x IQR 32% 51% 78% 29% 48% 76% 31% 49% 65%
Q3+ 1.5 xIQR 37% 59% 88% 34% 55% 86% 36% 57% 74%
Q3+ 2.0 x IQR 42% 66% 99% 39% 62% 96% 41% 65% 83%
Table 5.11: Average relative precision for different thresholds and similarity measures
EGit JGit Linux Tools
Jaccard Serensen-Dice Cosine | Jaccard Serensen-Dice Cosine | Jaccard Serensen-Dice Cosine
Q3 —-0.5 x IQR 0.701 0.700 0.978 0.683 0.671 0.928 0.637 0.603 0.832
Q3+ 0.0 x IQR 0.851 0.844 0.998 0.826 0.813 0.968 0.779 0762 0.975
Q3+ 0.5 x IQR 0.943 0946 0.999 0.907 0905 0.996 0.930 0927 0.998
Q3+ 1.0 x IQR 0.987 0994 0.999 0.926 0932 0.999 0.986 0990 0.999
Q3+ 1.5 xIQR 0.997 0998 0.999 0.942 0963 0.999 0.997 0998 0.999
Q3 +2.0 x IQR 0.998 0999 0.999 0.970 0990 0.999 0.998 0999 0.999
Table 5.12: Average relative recall for different thresholds and similarity measures
EGit JGit Linux Tools
Jaccard Serensen-Dice Cosine | Jaccard Serensen-Dice Cosine | Jaccard Serensen-Dice Cosine
Q3 —-0.5 x IQR 0.909 0909 0916 0.818 0.819 0.831 0.865 0.866 0.920
Q3+ 0.0 x IQR 0.823 0.823 0.860 0.720 0724 0.734 0.791 0.783 0.874
Q3+ 0.5 x IQR 0.766 0.756 0.771 0.639 0.639 0.639 0.725 0.718 0.801
Q3+ 1.0 x IQR 0.702 0.687 0.663 0.586 0.567 0.546 0.680 0.669 0.735
Q3+ 1.5 xIQR 0.667 0.626 0.571 0.544 0520 0.458 0.647 0.630 0.668
Q3 +2.0 x IQR 0.626 0579 0.453 0.514 0480 0.373 0.625 0592 0.597

SM3INSY] SPO7) Pale|oy Sulpuswwodsy §

5 Recommending Related Code Reviews

Similar to Table 5.9, we selected six thresholds to compare precision and
recall across three similarity measures with different thresholds. Table 5.10
shows the six different thresholds based on different distances from the third
quartile (i.e. Q3). The Serensen-Dice coefficient and cosine similarity have
higher thresholds than the Jaccard index because of their wider similarity
value distribution, as shown in Figure 5.3. In particular, EGit with cosine
similarity has a 99% threshold at the Q3 4 2.0 x IQR threshold.

By using the thresholds defined in Table 5.10, we computed precision and
recall for the three similarity measures over the 100 balanced datasets. Ta-
ble 5.11 and Table 5.12 show the average relative precision and recall. As
the threshold increases, the precision increases while the recall decreases.
With the highest threshold (i.e. Q3 4 2.0 x IQR), all three similarity measures
show almost 1.0 precision (i.e. 0.970-0.999).

Surprisingly, and contrary to the evaluation in Table 5.1, cosine similarity
with lower thresholds outperforms the Jaccard index: Consine similarity
with a threshold of Q3 + 0.5 x IQR has higher precision and recall than the
Jaccard index with a Q3 + 1.5 x IQR threshold.

Overall, while the Jaccard index shows a good performance, cosine simi-
larity can achieve higher recall and precision at lower thresholds.

5.6 Discussion

Our technique can support developers by recommending a previous code
review request, including all discussions between developers about similar
changes. Assume that a developer just submitted a new code review request,
and our technique has recommended a related previous review. A reviewer
can now navigate the discussion between developers in the recommended
code review request and can observe how the patches evolved to address
the comments of the previous reviewers. Moreover, our approach can be
integrated into an IDE (integrated development environment) so that devel-
opers can get recommendations and investigate related code review requests
before even they submitting their patch for code review.

117

5 Recommending Related Code Reviews

Our manual investigation of 675 recommended related patches revealed a
very high precision in the recommendations among the studied samples
from the three projects, as we did not find any false positive for JGit and
Linux Tools, and only 2% false positive rate for EGit. These results show
that our technique can be used effectively for recommending related code
review requests to ease code review. In addition, our interviews with Amazon
developers showed promising results for our recommendation technique.

In our manual investigation of recommended related code review requests,
we saw large amounts of evidence where reviewers explicitly referring to
related code review requests, which suggests that this information is not only
helpful but often necessary. A recommendation based on just considering
the metadata, such as bug ids or Change-Ids would be simpler, but it would
not have a sufficient recall rate. Table 5.6 shows that only 29.9% (EGit),
17.2% (JGit), and 3.6% (Linux Tools) of the sample set are related by bug
id, suggesting that the recall rates would be in that range. Similarly, the
table shows that only up to 45.6% (EGit), 70.2% (JGit), and 35.5% (Linux
Tools) are related by Change-Id. Moreover, remember that such links are
created manually by reviewers, an activity that would be supported by our
approach.

We also found a significant number of situations in which the same patch
had been resubmitted unchanged under a new code review request. We are
unaware of any previous work that has addressed the issue of resubmission
of identical patches, and it is therefore unclear how previous research results
are affected by the phenomenon of resubmitted identical patches.

Although we used the upper outlier fence as a threshold to conduct developer
interviews and manual investigation, actual practitioners can set a threshold
based on their preferences (e.g. either more recommendations or more accu-
rate results). We also investigated the relationship between recommendation
results and the selected threshold. Our approach showed promising AUC
values for three projects (i.e. 0.902, 0.820, and 0.791 for EGit, JGit, and Linux-
Tools, respectively). In addition, we set six thresholds to compare precision
and recall. The six similarity thresholds ranged from 15% to 42%. As the
threshold increases, precision also increases while recall decreases. With six
different thresholds, the precision varied from 0.6 to 1.0, and the recall varied
from 0.5 to 0.9.

118

5 Recommending Related Code Reviews

The recall rates may seem low when high thresholds are used, but this can
be explained by how patches can be related. Our approach recommends
related code review requests because their patches made similar changes to
the code. However, code review requests also can be related for other reasons.
For example, code review request #5363 in JGit was about a patch to fix a
problem with large files. A reviewer of this request decided that there was an
underlying problem and submitted a new code review request #5366 a few
hours later that reverts a previous change which introduced the underlying
problem. Request #5363 was abandoned, mentioning request #5366 that made
the change in #5363 obsolete. The request pair was, therefore, part of the
partial ground truth, although the two requests performed different changes.
Their patch similarity (via Jaccard index) is 40%, well below the set threshold
of 74%. The median Jaccard index similarity in the JGit partial ground truth
is 41%, leading to the expectation that less than half of the related pairs in
the partial ground truth are performing similar changes.

To evaluate our technique, we mainly used the Jaccard index, but other
similarity measures that satisfy our requirements may show different results.
Therefore, we compared the recommendation results of three similarity
measures (i.e. Jaccard index, Serensen—Dice coefficient, and cosine similarity)
at various thresholds. We found that cosine similarity at lower thresholds
can outperform Jaccard index in precision and recall, contrary to results from
a framework and benchmark for source code similarity.

Through the diverse perspective validations, we find that our approach can
support reviewers by automatically suggesting related code review requests
with high precision and recall rather than having developers manually track
related code review requests.

5.7 Threats to Validity

In this section, we discuss the threats to validity of our work as follows:

Internal validity. The interview results do not represent the entire Amazon
company. Since Amazon has diverse teams across different domains, the
team we interviewed might not be representative. However, the team has the

119

5 Recommending Related Code Reviews

typical structure of the teams at Amazon (i.e. a team should be small enough
to be fed by two pizzas [Atlas, 2009]) and follows most of the recommended
practices at Amazon.

We evaluated our recommendation technique with three well-known simi-
larity measures, including Jaccard index, cosine similarity, and the Serensen—
Dice coefficient. Leveraging other similarity measures may achieve better
results. Moreover, we have not performed any pre-processing, such as TF-
IDF [Salton and McGill, 1986] to achieve computational efficiency. As we
reported earlier in this chapter, however, our approach showed high pre-
cision and high recall with a simple and lightweight (i.e. O(n) complexity)
similarity measure, Jaccard index over 3-grams. The results for RQ4 con-
firm that cosine similarity with lower thresholds can achieve even higher
precision and recall.

We used an n-gram size of 3, as it was chosen by the creator of the tools.
Choosing other n-gram values may provide different results. We have, how-
ever, evaluated the performance of the tools based on 3-gram and found that
they gave satisfying results.

The manual investigation results may be subjective, since the investigation
was carried out by one of the collaborators in this research and was reviewed
by the author of this thesis. To mitigate this threat, we initially looked for clear
evidence, such as meta-information that is manually labelled by developers,
in the code review data and categorised the relationships from a high-level
perspective.

Despite cosine similarity having higher precision and recall at lower thresh-
olds than the Jaccard index that was used in the manual investigation, the
results of the investigation are not invalidated simply because the use of
cosine similarity would have led to an even higher precision.

Construct validity. The criteria we used to select recommendation examples
for the interview affects the validity of our results. As we limited the number
of changed lines (i.e. more than 10 lines but less than 50) to ease the interview
process, it narrowed the size of our samples. We also limited the number of
comments (i.e. requiring more than two comments in a code review request)
even though developers may find interesting information in code changes in
a recommended code review request without previous comments. Moreover,

120

5 Recommending Related Code Reviews

the 2-month delay might not be appropriate, since developers could still
remember the context of the code review requests even after 2 months.

Since we used only a partial ground truth to evaluate our technique together
with randomly selected code review request pairs, the reported precision and
recall are not necessarily the correct ones. However, the precision results in
the evaluation over the partial ground truth are consistent with the results of
our manual investigation. To mitigate the threats from the random sampling,
we repeated the same experiment with 100 randomly sampled data sets.

External validity. We used Gerrit review data from the EGit, JGit, and Linux
Tools projects in the Eclipse Foundation and the internal code review data
from a project at Amazon. Although we investigated a large amount of code
review data, our findings may not generalise to other projects using different
review systems.

5.8 Conclusions

In this chapter, we presented a related code review request recommendation
technique. The code review request recommendation technique leverages
similarity measures to find related code review requests based on the similar-
ity of their patches. If a new code review request is submitted, our technique
computes the similarity between the patch in the new code review request
and the patches of previously submitted code review requests. If a patch
achieves a similarity value higher than the predefined threshold, its code
review request is included in the list of recommendations.

Through the developer interviews at Amazon, we could confirm that the
proposed technique has the potential to support developers. We provided
three recommendation examples to the developers and let them review the
patch. All the interviewees could extract information for reviewing a newly
submitted code review request from the recommended code review requests.
We plan to extend our work by deploying the technique to the daily code
review practice at Amazon.

121

5 Recommending Related Code Reviews

We evaluated our technique by using three large projects (EGit, JGit, and
Linux Tools) from the Eclipse Foundation. We manually investigated a sam-
ple of 675 recommendation results to confirm the precision of our recom-
mendation approach and to study the relationship patterns of related code
review requests. Our approach achieved 100% precision in the recommenda-
tion results for the JGit and Linux Tools projects, and 98% precision for the
EGit project.

Since our technique uses a similarity threshold to reduce unrelated reviews,
we also investigated the sensitivity of our technique over diverse thresholds
in terms of precision and recall. We set six thresholds and measured precision
and recall for each threshold. As the threshold for the Jaccard index similarity
measure increases, the precision increases from 0.64 to 1.00, and the recall
decreases from 0.91 to 0.51.

We investigated our technique with three different similarity measures: Jac-
card index, cosine similarity, and the Serensen-Dice coefficient. We also
measured the precision and recall at six different thresholds. We found that
cosine similarity at lower thresholds can outperform Jaccard index in pre-
cision and recall, suggesting that future work should use cosine similarity
despite its poor performance in a framework and benchmark for source code
similarity.

122

6 Conclusions and Future work

Code review is a widely used process to maintain software quality in both
open source and proprietary projects. Developers check potential improve-
ments or their colleagues” mistakes during code review. In addition, various
automated techniques help developers to conduct code review more effi-
ciently.

In this thesis, we mainly focused on two topics: (1) understanding how devel-
opers conduct code review and (2) automated techniques to support devel-
opers in code review. We investigated the current state-of-the-art code review
studies and code review tools via a literature review. The large-scale devel-
oper survey provided a better understanding of developers” perceptions and
reality, and of potential improvements in code review. The empirical study
on coding conventions during code review highlighted that developers still
manually detect convention violations and spend a significant amount of
time on this process, despite the fact that various automated convention
checking tools are available. Based on the survey, we found that develop-
ers have difficulty in locating related patches when reviewing a new patch.
Therefore, we proposed the related review recommendation technique based
on the textual similarity between patches.

6.1 Summary of Achievements

6.1.1 Developer Survey on Code Review

We surveyed 100 open source developers (i.e. Eclipse and OpenStack), as pre-
sented in Chapter 3. We extracted 16 questions within four categories from
preliminary interviews with 12 developers. In addition, we reproduced five

123

6 Conclusions and Future work

questions from two previous survey papers and compared our results with
those previous results to extend the base of empirical knowledge. Overall,
our survey results provide a better understanding of code review practice in
open source projects in terms of demographics, reviewer selection method-
ologies, expected and actual review times, processes for consulting previous
reviews during a new review, motivation for code review, and review criteria.
Interesting findings reported in this thesis include these: 1) developers often
consult previous code review requests when reviewing a new request; 2) de-
velopers usually get reviews for their changes within a day, as they expected;
and 3) the most important motivations for code review are finding defects
and improving code quality.

6.1.2 Coding Conventions in Code Review

We investigated how coding convention violations are introduced, addressed,
and removed during code review by developers. We discussed the results
in Chapter 4. To do this, we analysed 16,442 code review requests from
four projects of the Eclipse community for the introduction of convention
violations (as detected by Checkstyle). Our result shows that convention
violations accumulate as code size increases despite the fact that changes
are reviewed. We also manually investigated 1,268 code review requests in
which convention violations disappeared to determine whether a convention
violation was removed because it had been raised in a review comment. The
investigation results highlight that when convention violations are manually
identified and fixed by developers, the code review process may be delayed
significantly.

6.1.3 Recommendations of Related Reviews

We propose a review recommendation technique to support developers,
as presented in Chapter 5. Our approach recommends related reviews by
computing similarities between newly submitted patches and previously
reviewed patches. We showed the potential applicability of our technique in
practice by interviewing Amazon developers. The developers could easily

124

6 Conclusions and Future work

locate useful information for code review and development context from the
recommendation. To evaluate our approach, we applied our technique to
the three projects from the Eclipse Foundation with the largest code review
histories. We manually investigated the precision of our recommendation
results and found it to be 98% to 100% precise. Furthermore, we evaluated our
technique with six similarity thresholds and three similarity measures over a
partial ground truth that was manually labelled by developers. Depending
on the similarity measure and threshold, our technique showed a precision
from 0.603 to 0.999 with recall from 0.920 to 0.453.

6.2 Summary of Future Work

Although various empirical studies have investigated how developers con-
duct code review and what their concerns are, more empirical studies should
be performed to improve our understanding. Building on a better under-
standing via empirical studies, more automated techniques can be proposed
to support developers to reduce their use of resources and time in the review
process. We discuss several potential research topics that may follow this
thesis:

Patch Acceptability Prediction Code review mainly relies on developers’
manual efforts to review a patch. Since the manual process consumes a
great deal of developers’ time and resources, it is necessary to minimise
developers’ efforts on code review. One potential solution is patch
acceptability prediction. Based on various code review metrics, we can
develop a prediction model. The output of the prediction model should
be the probability that a patch will be accepted or rejected. In the case
of a rejection, it should automatically notify the developer of a potential
issue to be addressed.

Patch Risk Measure It may be difficult to know the level of risk of a patch
during code review. It would be useful if we can build an extension to a
code review tool to inform developers of a risk measure whenever they
submit a patch. As Kim and Ernst [2007] reported, a patch that changes
recently defective files is highly likely to be defective. Therefore, we can
derive the level of risk of a patch by using defective file information

125

6 Conclusions and Future work

from code change and code review history. If developers are informed
of the risk metrics, they will be careful when they write a patch, and
reviewers will review a patch more closely.

In addition, we can leverage review comments to derive the risk topics
of each file. Developers describe flaws or issues in files in natural
language by using the comment feature in code review tools. The
mapping information between file and risk can identify what kind of
risk can potentially be introduced in a new change.

Code Review Request Curation Current code review tools stack code re-
view requests just in chronological order (i.e. recent requests will be
shown at the top of issue list). Developers who access the code review
request list may find the most recent requests are not of interest to them.
Issue curation will sort code review requests based on developers’
preferences to help them locate code review requests of interests.

126

Bibliography

Frank Ackerman, Lynne S. Buchwald, and Frank H. Lewski. Software In-
spections: An Effective Verification process. IEEE Software, 6(3):31-36, 1989.
doi: 10.1109/52.28121.

A. Atlas. Accidental adoption: The story of Scrum at Amazon.com. In Agile
Conference, 2009.

Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and
YuQian Zhou. Evaluating static analysis defect warnings on production
software. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering (PASTE "07), 2007 .

Alberto Bacchelli and Christian Bird. Expectations, outcomes, and chal-
lenges of modern code review. In 35th International Conference on Software
Engineering (ICSE), 2013.

V. Balachandran. Reducing Human Effort and Improving Quality in Peer
Code Reviews Using Automatic Static Analysis and Reviewer Recommen-
dation. In 2013 35th International Conference on Software Engineering (ICSE),
2013.

T. Baum, K. Schneider, and A. Bacchelli. On the Optimal Order of Reading
Source Code Changes for Review. In 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2017.

Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. An-
alyzing the State of Static Analysis: A Large-Scale Evaluation in Open
Source Software. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), 2016.

127

Bibliography

A.Bosu and J. C. Carver. Impact of Peer Code Review on Peer Impression
Formation: A Survey. In 2013 ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement, Oct 2013.

A. Bosu, M. Greiler, and C. Bird. Characteristics of Useful Code Reviews: An
Empirical Study at Microsoft. In 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories, 2015.

A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley. Process Aspects
and Social Dynamics of Contemporary Code Review: Insights from Open
Source Development and Industrial Practice at Microsoft. IEEE Transactions
on Software Engineering, 2017.

Dong-Kyu Chae, Jiwoon Ha, Sang-Wook Kim, BooJoong Kang, and Eul Gyu
Im. Software Plagiarism Detection. In Proceedings of the 22nd ACM interna-
tional conference on Conference on information & knowledge management (CIKM
"13), 2013.

Checkstyle. Checkstyle. URL http://checkstyle.sourceforge.net.

Couchbase. Couchbase NoSQL database. URL https://www.couchbase.
com/.

Jacek Czerwonka, Michaela Greiler, and Jack Tilford. Code Reviews Do Not
Find Bugs: How the Current Code Review Best Practice Slows Us Down.
In Proceedings of the 37th International Conference on Software Engineering,
2015.

Eclipse. Eclipse coding conventions. URL http://wiki.eclipse.org/
Coding_Conventions.

EGit. Contributors” guide for Egit. URL https://help.eclipse.org/
mars/topic/org.eclipse.egit.doc/help/EGit/Contributor_Guide/
Contributing-Patches.html.

Mahmoud O. Elish and Jeff Offutt. The Adherence of Open Source Java
Programmers to Standard Coding Practices. In 6th IASTED International
Conference on Software Engineering and Applications (SEA), 2002.

128

http://checkstyle.sourceforge.net
https://www.couchbase.com/
https://www.couchbase.com/
http://wiki.eclipse.org/Coding_Conventions
http://wiki.eclipse.org/Coding_Conventions
https://help.eclipse.org/mars/topic/org.eclipse.egit.doc/help/EGit/Contributor_Guide/Contributing-Patches.html
https://help.eclipse.org/mars/topic/org.eclipse.egit.doc/help/EGit/Contributor_Guide/Contributing-Patches.html
https://help.eclipse.org/mars/topic/org.eclipse.egit.doc/help/EGit/Contributor_Guide/Contributing-Patches.html

Bibliography

Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik
Mavrinac, Wolfram Schulte, Newton Sanches, and Srikanth Kandula.
CloudBuild: Microsoft’s Distributed and Caching Build Service. In Proceed-
ings of the 38th International Conference on Software Engineering Companion
(ICSE "16), 2016.

Michael E. Fagan. Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal, 1976.

Michael E. Fagan. Advances in Software Inspections. IEEE Transactions on
Software Engineering, 1986.

D. G. Feitelson, E. Frachtenberg, and K. L. Beck. Development and Deploy-
ment at Facebook. IEEE Internet Computing, 2013.

Emanuel Giger, Marco D’Ambros, Martin Pinzger, and Harald C. Gall.
Method-level Bug Prediction. In Proceedings of the ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, 2012.

Google. Google Java Style guide. URL https://google.github.io/
styleguide/javaguide.html.

Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van
Deursen. Work Practices and Challenges in Pull-based Development: The
Integrator’s Perspective. In Proceedings of the 37th International Conference
on Software Engineering, ICSE "15, 2015.

Hannaneh Hajishirzi, Wen-tau Yih, and Aleksander Kolcz. Adaptive Near-
Duplicate Detection via Similarity Learning. In Proceeding of the 33rd
international Conference on Research and development in information retrieval
(SIGIR "10), 2010.

Christoph Hannebauer, Michael Patalas, Sebastian Stiinkelt, and Volker
Gruhn. Automatically Recommending Code Reviewers Based on Their
Expertise: An Empirical Comparison. In 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2016.

S Harris. Simian-similarity analyser, version 2.4, 2015. URL http://wuw.
harukizaemon.com/simian.

129

https://google.github.io/styleguide/javaguide.html
https://google.github.io/styleguide/javaguide.html
http://www.harukizaemon.com/simian
http://www.harukizaemon.com/simian

Bibliography

Austin Z. Henley, KIvang Muclu, Maria Christakis, Scott D. Fleming, and
Christian Bird. CFar: A Tool to Increase Communication, Productivity, and
Review Quality in Collaborative Code Reviews. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems (CHI '18), 2018.

David Hovemeyer and William Pugh. Finding More Null Pointer Bugs, but
Not Too Many. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering (PASTE '07), 2007.

Intelli]. Intelli] coding conventions. URL https://www.jetbrains.com/
help/idea/code-style-java.html.

Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu.
DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones.
In Proceedings of the 29th International Conference on Software Engineering,
ICSE 07, 2007.

Yujuan Jiang, Bram Adams, Foutse Khomh, and Daniel M. German. Tracing
Back the History of Commits in Low-tech Reviewing Environments: A
Case Study of the Linux Kernel. In Proceedings of the 8th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement, ESEM
14, 2014.

T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Multilinguistic Token-
Based Code Clone Detection System for Large Scale Source Code. IEEE
Transactions on Software Engineering, 2002.

Iman Keivanloo, Chanchal K. Roy, and Juergen Rilling. SeByte: Scalable
Clone and Similarity Search for Bytecode. Science of Computer Programming,
2014.

Mik Kersten and Gail C. Murphy. Mylar: A degree-of-interest model for ides.
In Proceedings of the 4th International Conference on Aspect-oriented Software
Development, 2005.

Sunghun Kim and Michael D. Ernst. Which Warnings Should I Fix First? In
Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering (ESEC/FSE '07), 2007 .

130

https://www.jetbrains.com/help/idea/code-style-java.html
https://www.jetbrains.com/help/idea/code-style-java.html

Bibliography

Grzegorz Kondrak. N-gram Similarity and Distance. In International Sympo-
sium on String Processing and Information Retrieval, 2005.

O. Kononenko, O. Baysal, and M. W. Godfrey. Code Review Quality: How
Developers See It. In IEEE/ACM 38th International Conference on Software
Engineering (ICSE), 2016.

O. Kononenko, T. Rose, O. Baysal, M. Godfrey, D. Theisen, and B. de Water.
Studying Pull Request Merges: A Case Study of Shopify’s Active Merchant.
In Proceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice, ICSE-SEIP "18, 2018.

Taek Lee, Jaechang Nam, DongGyun Han, Sunghun Kim, and Hoh Peter In.
Micro Interaction Metrics for Defect Prediction. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ESEC/FSE "11, 2011.

Taek Lee, Jaechang Nam, DongGyun Han, Sunghun Kim, and Hoh Peter In.
Developer Micro Interaction Metrics for Software Defect Prediction. IEEE
Transactions on Software Engineering, 2016.

S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking Classifica-
tion Models for Software Defect Prediction: A Proposed Framework and
Novel Findings. IEEE Transactions on Software Engineering, 2008.

Thomas R Lindlof and Bryan C Taylor. Qualitative Communication Research
Methods. Sage, 2011.

M.V. Méntyla and C. Lassenius. What Types of Defects Are Really Discovered
in Code Reviews? IEEE Transactions on Software Engineering, 2009.

Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. The
impact of code review coverage and code review participation on software
quality: A case study of the Qt, VIK, and ITK projects. In Proceedings of the
11th Working Conference on Mining Software Repositories (MSR), 2014.

T. Menzies,]. Greenwald, and A. Frank. Data Mining Static Code Attributes
to Learn Defect Predictors. IEEE Transactions on Software Engineering, 2007.

131

Bibliography

André N. Meyer, Thomas Fritz, Gail C. Murphy, and Thomas Zimmermann.
Software developers’ perceptions of productivity. In Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014.

Murtuza Mukadam, Christian Bird, and Peter C. Rigby. Gerrit Software Code
Review Data from Android. In 2013 10th Working Conference on Mining
Software Repositories (MSR), 2013.

J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan. Heterogeneous Defect Predic-
tion. IEEE Transactions on Software Engineering, 2018.

Open]DK. Java style guidelines (draft, v6). URL http://cr.openjdk. java.
net/~alundblad/styleguide/index-v6.html.

Ali Ouni, Raula Gaikovina Kula, and Katsuro Inoue. Search-Based Peer
Reviewers Recommendation in Modern Code Review. In IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2016.

Matheus Paixao, Jens Krinke, DongGyun Han, and Mark Harman. CROP:
Linking Code Reviews to Source Code Changes. In International Conference
on Mining Software Repositories (MSR '18), 2018.

S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol. Would Static
Analysis Tools Help Developers with Code Reviews? In IEEE 22nd Interna-

tional Conference on Software Analysis, Evolution, and Reengineering (SANER),
2015.

PMD. PMD - an extensible cross-language static code analyzer. URL https:
//pmd.github.io.

Chaiyong Ragkhitwetsagul, Jens Krinke, and David Clark. Similarity of
Source Code in the Presence of Pervasive Modifications. In Proceedings
of the 16th International Working Conference on Source Code Analysis and
Manipulation (SCAM 16), 2016.

Chaiyong Ragkhitwetsagul, Jens Krinke, and David Clark. A Comparison of
Code Similarity Analysers. Empirical Software Engineering, 2018.

132

http://cr.openjdk.java.net/~alundblad/styleguide/index-v6.html
http://cr.openjdk.java.net/~alundblad/styleguide/index-v6.html
https://pmd.github.io
https://pmd.github.io

Bibliography

Foyzur Rahman, Daryl Posnett, and Premkumar Devanbu. Recalling the
“imprecision” of cross-project defect prediction. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engi-
neering, 2012.

M. M. Rahman, C. K. Roy, J. Redl, and J. A. Collins. CORRECT: Code
Reviewer Recommendation at GitHub for Vendasta Technologies. In 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE),
2016.

John Regehr. Static Analysis Fatigue. 2010. URL https://blog.regehr.org/
archives/259.

C. Sadowski, J. v. Gogh, C. Jaspan, E. Soderberg, and C. Winter. Tricorder:
Building a Program Analysis Ecosystem. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, 2015.

Caitlin Sadowski, Emma Séderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. Modern Code Review: A Case Study at Google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice, ICSE-SEIP "18, 2018.

Gerard Salton and Michael] McGill. Introduction to Modern Information
Retrieval. 1986.

S. Sarkar and C. Parnin. Characterizing and Predicting Mental Fatigue
during Programming Tasks. In 2017 IEEE/ACM 2nd International Workshop
on Emotion Awareness in Software Engineering (SEmotion), 2017.

Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M.
Penn ock. Methods and Metrics for Cold-start Recommendations. In
Proceedings of the 25th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, 2002.

J. Shimagaki, Y. Kamei, S. Mcintosh, A. E. Hassan, and N. Ubayashi. A Study
of the Quality-Impacting Practices of Modern Code Review at Sony Mobile.
In 2016 IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C), 2016.

133

https://blog.regehr.org/archives/259
https://blog.regehr.org/archives/259

Bibliography

D. Singh, V. R. Sekar, K. T. Stolee, and B. Johnson. Evaluating How Static
Analysis Tools Can Reduce Code Review Effort. In IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 2017.

Harvey Siy and Lawrence Votta. Does The Modern Code Inspection Have
Value? In IEEE International Conference on Software Maintenance (ICSM),
2001.

Michael Smit, Barry Gergel, H. James Hoover, and Eleni Stroulia. Code
Convention Adherence in Evolving Software. In International Conference on
Software Maintenance (ICSM), 2011.

SonarQube. Sonarqube. URL https://wiki.eclipse.org/SonarQube.

Sun Microsystems. Code conventions for the Java programming language.
1999. URL http://www.oracle.com/technetwork/java/codeconvtoc-
136057 .html.

C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. An Em-
pirical Comparison of Model Validation Techniques for Defect Prediction
Models. IEEE Transactions on Software Engineering, 2017.

Yida Tao, Donggyun Han, and Sunghun Kim. Writing Acceptable Patches:
An Empirical Study of Open Source Project Patches. In Proceddings of the
30th International Conference on Software Maintenance and Evolution (ICSME
'14), 2014.

Charles Teddlie and Fen Yu. Mixed Methods Sampling: A Typology With
Examples. Journal of Mixed Methods Research, 2007 .

Patanamon Thongtanunam, Raula Gaikovina Kula, Ana Erika Camargo Cruz,
Norihiro Yoshida, and Hajimu lida. Improving Code Review Effectiveness
Through Reviewer Recommendations. In Proceedings of the 7th International
Workshop on Cooperative and Human Aspects of Software Engineering - CHASE
2014, 2014.

Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina
Kula, Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. Who

134

https://wiki.eclipse.org/SonarQube
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

Bibliography

Should Review My Code? A File Location-Based Code-Reviewer Recom-
mendation Approach for Modern Code Review. In IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), 2015.

John W. Tukey. Exploratory Data Analysis. Addison-Wesely, 1977.

C. Vassallo, S. Panichella, F. Palomba, S. Proksch, A. Zaidman, and H. C.
Gall. Context is King: The Developer Perspective on The Usage of Static
Analysis Tools. In 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2018.

Lawrence G. Votta. Does Every Inspection Need a meeting? In Proceedings

of the 1st Symposium on Foundations of Software Engineering (SIGSOFT '93),
1993.

Peter WeifSgerber, Daniel Neu, and Stephan Diehl. Small Patches Get In! In

Proceedings of the 2008 international workshop on Mining software repositories
(MSR ’08), 2008.

Claes Wohlin, Martin Host, and Kennet Henningsson. Empirical Research
Methods in Software Engineering. Springer Berlin Heidelberg, 2003.

Xin Xia, David Lo, Xinyu Wang, and Xiaohu Yang. Who Should Review This
Change? Putting Text and File Location Analyses Together for More Accu-
rate Recommendations. In In Proceedings of 31st International Conference on
Software Maintenance and Evolution, 2015.

F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta. How
Open Source Projects Use Static Code Analysis Tools in Continuous In-
tegration Pipelines. In 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), 2017.

Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. Automat-
ically Recommending Peer Reviewers in Modern Code Review. IEEE
Transactions on Software Engineering, 2016.

135

	Introduction
	Modern Code Review Process
	Motivation
	List of Publications
	Expected Contributions
	Thesis Organisation

	Literature Review
	Surveys on Code Review
	Coding Conventions During Code Review
	Recommendation Techniques for Code Review
	Conclusions

	How Do Developers Conduct Code Review?
	Introduction
	Previous Surveys
	Methodology
	Result
	Demographics
	Reviewer Selection
	Review Time
	Consulting Other Reviews
	Motivation
	Importance and Accessibility of Review Criteria

	Discussion
	Expected and actual review time
	Consulting Earlier Code Reviews
	Motivation for code review
	Importance and accessibility of review criteria

	Threats to Validity
	Internal Validity
	External Validity

	Conclusion

	Pretty Patches: An Empirical Study of Coding Conventions During Code Review
	Introduction
	Experimental Design
	Research Questions
	The CROP Data Set
	Extracting Introduced Violations

	Results
	RQ1. How many convention violations are introduced during code review?
	RQ2. What kinds of convention violations are addressed during code review?
	RQ3. Do convention violations delay the code review process?
	Discussion

	Coding Conventions in Practice
	Checking Tool Adoption
	Fixing Tool Adoption
	Trailing Whitespace
	Enclosing Blocks in Braces in JGit and EGit

	Threats to Validity
	Conclusion

	Recommending Related Code Reviews
	Introduction
	Code Review
	Motivation
	Methodology
	Similarity Measures
	Goal and Research Questions
	Experimental Setup

	Results
	RQ1: Do the recommended patches provide useful information during code review?
	RQ2: How precisely are the recommended patches related to the submitted patches?
	RQ3: How does the similarity threshold affect the accuracy of the results?
	RQ4: How robust is the result compared to other similarity measures with different thresholds?

	Discussion
	Threats to Validity
	Conclusions

	Conclusions and Future work
	Summary of Achievements
	Developer Survey on Code Review
	Coding Conventions in Code Review
	Recommendations of Related Reviews

	Summary of Future Work

	Bibliography

