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a b s t r a c t 

The accurate determination of the in-use heat transfer coefficient (HTC) of a dwelling can support ef- 

ficiency improvements and understanding of energy costs, potentially addressing the performance gap. 

This paper introduces a dynamic grey-box framework combining Bayesian methods and lumped thermal 

capacitance models for the estimation of the performance of in-use buildings. It focuses on methods to 

account for solar gains, a significant contributor to the heat transfer. Six simple first-order lumped mod- 

els of occupied homes are presented, which explicitly include gains from solar radiation with varying 

complexity. Specifically, the models use solar radiation as a single heat input, divided by façade accord- 

ing to the angle of the sun, and including diffuse radiation. Two case study houses in the UK, monitored 

over two different seasons, were used to illustrate the models’ performance. Bayesian model comparison 

was used, in conjunction with other methods, to determine the most suitable model for each sub-dataset 

analysed; this indicates that the most appropriate model is both season and case-study dependent, high- 

lighting the importance of local topography and weather experienced. For each case study, the models 

selected provided HTC estimates within 15% of each other, including during the summer, using only 5–

10 days of data. Such techniques have the potential to estimate the thermal performance of dwellings 

year-round, with minimum disturbance to the occupants and could be developed to improve quality as- 

surance processes for new build and retrofit, identify opportunities for targeted retrofit, and close the 

performance gap. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The residential sector accounted for 27% of global energy con-

umption in 2010, with emissions from the sector increasing by

4% in the preceding decade [1] . Reducing carbon emissions asso-

iated with the built stock is essential to limit the global tempera-

ure increase to 2 ◦; this can be achieved via either fuel switch-

ng alone or by also improving the efficiency of the built stock

2] . Although progress is being made in this area, with emissions

ecreasing in developed countries [1] , there is still potential for

ost-effective ener gy demand reduction in the residential sector

2] . However, there is often a significant difference between the

esigned, or expected, energy use and that observed in reality,

ermed the performance gap [3–6] . A range of technical and social

actors contribute to the performance gap, that affect the design,

uild, and operation stages of the building [5] . Characterisation of

he thermophysical performance of occupied dwellings provides a
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echanism to understand their real energy use; this may be com-

ared to design predictions to identify whether a performance gap

s present and subsequently take measures to reduce it. The use

f in-situ measurements in this regard is particularly useful as it

nables estimates of performance that take into account the im-

acts of occupant behaviour, installation quality, and degradation

f materials on the dwelling performance [5] . 

The heat transfer coefficient (HTC), often previously and in-

erchangeably referred to as the heat loss coefficient (HLC), is a

ommonly used and simply understood parameter to describe the

hermal performance of a building; it is the heat flow rate per

nit temperature difference between inside and outside [7] . There

re many proposed methods for determining the HTC of a resi-

ential building, which can be separated into static and dynamic

pproaches. Static methods average the data being analysed over

ong-enough periods to exclude the impacts of dynamic effects

uch as thermal mass and thus achieve a quasi-static state. How-

ver, dynamic methods aim to characterise how dwellings respond

o changes in conditions, including the effect of thermal mass. The

ethod selected to estimate the HTC of a property should address
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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a  

d  
the intended purpose of the analysis and the performance insights

provided (such as whether the size of the thermal mass or solar

aperture are desired); the accuracy and repeatability of methods

are also important factors to method selection, in addition to dis-

ruptiveness and data requirements. 

A key static approach of estimating the HTC is the power-

temperature-gradient method, an energy signature method first

proposed in [8] and subsequently utilised for a variety of pur-

poses [9–11] . The HTC is simply derived by linear regression as

the gradient of the sloped portion of a graph of the total aver-

age power consumption against the external temperature. The ap-

proach utilises data from occupied dwellings; however, it requires

a dataset lasting two seasons at a minimum and assumes that all

free heat gains are constant throughout the period analysed [8] .

An alternative approach is taken in some related energy signature

methods [12–15] by utilising estimates for the magnitudes of the

free heat gains over each measurement interval to avoid the as-

sumption they are unchanging. The length of dataset required and

implicit steady-state assumptions have prohibited its widespread

application, an issue shared by the steady-state methods described

in [16] (BEECHAM) and [17] (EBBE). 

The coheating test is a static method of HTC characterisation

that does not require as lengthy a monitoring period. A constant

dwelling internal temperature is maintained through the use of

electric heaters for a period of 1 to 3 weeks to minimise ther-

mal mass effects [18] . However, a key disadvantage of this method

is that the dwelling must remain unoccupied for the duration of

the monitoring, excluding the impact of occupant behaviour on the

HTC and consequently potentially making the test prohibitively ex-

pensive; additionally, the test is undertaken with planned venti-

lation sealed and using fans to mix the air. Coheating test results

therefore estimate an HTC in a specific dwelling state that does

not represent normal operation, and consequently the use of this

coheating HTC to represent the total HTC of the dwelling may con-

tribute to a performance gap between real use and test results.

Furthermore, the test can only be performed in winter, to ensure

that the temperature difference between the internal and external

air is sufficiently high to reduce the impacts of measurement error

[18] . These necessary conditions to perform a coheating test make

it difficult to integrate into the construction process: only houses

available in winter may be tested and a minimum two-week pe-

riod between completion and handover is required. These issues

are exacerbated for retrofitted homes, where the dwelling may not

be unoccupied for any period of time. 

An extension to the coheating test to allow it to take place in

summer is presented in [19] , where the heating power from solar

gains is added to that measured from the electrical heaters. This

heating power is calculated based on typical transmittance values,

and the solar radiation is either directly measured on each façade,

which may not always be practical in a measurement campaign,

or the global horizontal data are translated. The method gives HTC

estimates with accuracies of ± 15% [19] . 

Dynamic methods aim to characterise, rather than average out,

effects such as thermal mass and can allow a much shorter mon-

itoring period to determine the HTC of a dwelling. The methods

described in [20–22] utilise variations of the coheating test with

free running periods to estimate the thermal mass using the cool-

ing curve. However, despite this extension, these methods share

the limitations of the coheating test that the property must be un-

occupied, often in a different state to that in-use, and ideally the

test takes place during winter. 

Many proposed dynamic methods use the assumption of

lumped matter, where a system is modelled as a series of thermal

masses (‘lumps’), within which the temperature is homogeneous,

joined by thermal resistances [ 23 , p. 260-261]. Models of this form

may be customised to represent property characteristics that may
e readily physically interpreted. The simplest of these models in-

lude a single thermal resistance and capacitance and estimate the

roduct of these two parameters, the thermal time constant. One

uch method is presented in [24] ; however, this simple approach

oes not account for occupancy or other heat inputs. 

A more complex model for whole building representation (or,

s in this case, simulation) is outlined in [25] , where the dwelling

s represented by three thermal capacitances and five resistances

epresenting ventilation and fabric heat losses. A similar approach

s also utilised in [26] , where two adjoined test rooms are repre-

ented by a system of four thermal capacitances, one for both the

oor and air in each zone. Heat inputs from solar radiation and the

eating system are included; the former as a single heat input split

etween the floor and air capacitances with the assumption that

0% of the glazing area is the solar aperture. The solar aperture of

 dwelling is dependent on both the amount of glazing, the orien-

ations of said glazing and any shading of the glazing. The latter is

on-constant, as it is affected by the time of year and occupant be-

aviour (for example, curtain usage) and thus assuming this value

ould potentially lead to errors in the modelled heat input from

olar radiation. 

An alternative to [26] ’s method of accounting for solar gains has

een proposed to predict future thermal loads of buildings, rather

han thermal performance parameters [27–29] . The highly com-

lex models require significant input data or assumptions about

he construction performance. Solar gains are addressed by esti-

ating the sol-air temperature based on the building location and

he forecast maximum external temperature, and cloud cover. Util-

sing the sol-air temperature as opposed to solar radiation mea-

urement introduces additional complexity and assumptions. 

Characterisation of the thermal performance of occupied

wellings could be used to support the implementation of poli-

ies and the improvement of practices to reduce energy demand.

he method requires an accuracy suitable for identifying any no-

able performance gap, and should cause minimal disruption to

ccupants. However, at present there is no widely accepted way

o estimate the HTC of an occupied dwelling, particularly out-

ide the winter months, and accounting for solar gains. This pa-

er presents and compares a series of methods of addressing so-

ar gains in lumped thermal capacitance models of buildings using

asily available weather data and minimal assumptions; the anal-

sis uses Bayesian techniques for thermophysical parameter esti-

ation. Solar radiation data is included in the models as a heat

ain to the internal thermal mass, multiplied by an effective so-

ar aperture. The effective solar aperture is an estimated parame-

er, encompassing the glazing fraction and shading as well as other

actors including the reflectivity of the glass and window opening.

hese effects can either be averaged over the entire dwelling or

haracterised for each façade separately. The latter is preferable as

t better reflects the dynamic nature of these effects. Models in-

luding the impact of diffuse radiation are also presented. Bayesian

odel comparison is used to objectively identify the model that

est describes the data. The results from the different models, and

heir physical interpretation, are discussed. 

In the following section the lumped thermal models developed

n this research are described, along with details of the data used

nd the analysis performed. In Section 3 the results of applying

hese models are discussed, and the most appropriate model for

ach data period is identified; the conclusions of the paper are pre-

ented in Section 4 . 

. Methods 

The grey-box models developed to estimate the heat transfer

nd heat power loss (HPLC) coefficient of occupied dwellings are

iscussed in this section. Firstly, the models are described, fol-
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Fig. 1. Equivalent electrical circuits of the 1C1R1P (solid lines) and 1C1R1P1S (solid 

and dashed lines) models, where the model names reflect the number of thermal 

masses ( C ), thermal resistances ( R ), power inputs ( P ) and solar inputs ( S ). The house 

is represented as a single effective thermal mass, C 1 , at the area-weighted average 

internal temperature, T in . It has a thermal resistance, R 1 , to the external tempera- 

ture, T out , and an effective solar aperture, g . 

l  

u  

s

2

 

h  

m  

s  

b  

r  

a

2

 

p  

a  

t  

p  

b  

e  

e  

t  

d  

S

 

b  

a  

m  

K  

W  

p  

o  

e

C  

w  

a  

p  

a  

a  

b

 

(  

Fig. 2. Equivalent electrical circuit representation of the 1C1R1PmS (solid and 

dashed lines), and 1C1R1PmSD (solid, dashed, mixed lines). 
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owed by an overview of Bayesian statistical analysis. The data

sed in this study is outlined, and finally the details of the analysis

etup are provided. 

.1. Theory and calculations 

The analysis presented in this paper represents whole building

eat loss through highly simplified models, utilising the lumped

atter discipline followed by Bayesian inference. The method is

imilar to that developed to estimate the thermal performance of

uilding elements, developed by [30] , which employs the Occam’s

azor approach of Bayesian model comparison to enable the most

ppropriate models to be selected. 

.1.1. Lumped thermal capacitance models 

The lumped models of heat transfer in an occupied house are

resented below, incorporating increasingly complex methods to

ccount for solar gains: from a model with no explicit represen-

ation of solar gains, through models with a single solar gain in-

ut, and a model that represents the gain on each façade of the

uilding, to finally a model that incorporates the gains at differ-

nt façades in addition to diffuse radiation. These models produce

stimates for the thermal resistance between the internal and ex-

ernal temperatures, the inverse of which is the HTC or HPLC. The

ifferences between these two parameters are discussed further in

ection 2.2.2 . 

a) Single thermal mass model with power input (1C1R1P) The

ase model of the house (1C1R1P, shown in Fig. 1 ) takes no explicit

ccount of the solar gains. It comprises a single effective thermal

ass with units JK 

−1 , C 1 , with a thermal resistance with units

W 

−1 to the external temperature, R 1 , and a heat gain in units of

 equal to the combined electricity and gas consumption multi-

lied by an efficiency λ, giving P (t) = λP gas (t) + P elec (t) . The use

f λ is discussed further in Section 2.2.2 . The resultant differential

quation is: 

 1 
dT in (t) 

dt 
= 

T out (t) − T in (t) 

R 1 

+ P (t) , (1)

here T out ( t ) and T in ( t ) are respectively the external and internal

ir temperatures at time t , with the latter assumed to be the tem-

erature of the effective thermal mass. The inputs to this model

re T out ( t ) and P ( t ), with the data for T in ( t ) used for optimisation

nd the remaining quantities ( C 1 , R 1 ) in Eq. (1) the parameters to

e estimated. 

b) Single thermal mass model with power and solar input

1C1R1P1S) The second model presented here extends the 1C1R1P
odel by incorporating solar gains as a single term across the

ntire building (a single, average, solar aperture): the 1C1R1P1S

odel ( Fig. 1 ). The data inputs are the same as for the previous

odel, with the addition of the solar radiation, S . The solar aper-

ure, g , has units of m 

2 , and represents the area of the building’s

xternal surfaces that transfers heat from solar radiation to the in-

ernal thermal mass; this is similar in physical form to that in [26] .

s a differential equation: 

 1 
dT in (t) 

dt 
= 

T out (t) − T in (t) 

R 1 

+ P (t) + gS(t) . (2)

) Single thermal mass model with power and separate solar input

er façade (1C1R1PmS) The third model presented here attempts

o capture the complexity of orientation, glazing size and posi-

ion, and shading, through incorporating a solar aperture for each

açade of the building. Taking m as the number of non-North facing

açades, the analysis can be performed in the range 1 ≤ façades

onsidered ≤ m . This 1C1R1PmS model ( Fig. 2 ) utilises the same

nput data as the 1C1R1P1S model above, with solar input for each

açade adjusted by the difference between the orientation of the

all and the azimuth angle of the sun, z , at a given time. It is in all

ther respects identical to the 1C1R1P1S model. This is governed

y the following: 

 1 
dT in (t) 

dt 
= 

T out (t) − T in (t) 

R 1 

+ P (t) + 

n = m ∑ 

n =1 

g n S n (t) (3)

here 

 n (t) = 

{
S(t ) cos ( z(t ) − o ) for | z(t ) − o | � 

π
2 

0 

(4) 

here o is the orientation of façade n with respect to South

n units of radians. Up to four mutually perpendicular orienta-

ions may be included; whilst more complex buildings with more

açades can be modelled in this way, the apertures estimated

ould not then be comparable to those, for instance, estimated in

 coheating test. An example of solar radiation separated in this

anner is shown in Fig. 3 , for case study house A (described in

ection 2.2.1 ). 

d) Single thermal mass model with power, direct solar input per

açade and diffuse solar input (1C1R1PmSD) The 1C1R1PmS model

ccounts only for direct solar radiation, and does not support any

eat input to a North-facing façade. This is addressed through

he final model presented here: the 1C1R1PmSD model, shown in

ig. 2 , where an additional solar input is added at all times rep-

esenting the diffuse solar radiation, S d . This model uses the same

nput data as the previous two presented. It is described by: 

 1 
dT in (t) 

dt 
= 

T out (t) − T in (t) 

R 1 

+ P (t) + 

n = m ∑ 

n =1 

g n S n (t) + g d S d (t) , (5)
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Fig. 3. The transformed solar inputs per façade to a house (Case Study A) with three exposed façades over five days in June 2016. This is obtained from the solar radiation 

data using Eq. (4) . 
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where S d ( t ) is the diffuse solar radiation calculated from an empir-

ical relationship between the diffuse and total solar radiation pre-

sented in [31] : 

S d (t) = S(t ) 

{ 

1 . 0 − 0 . 249 k T (t) k T (t ) < 0 . 35 

1 . 557 − 1 . 84 k T (t) 0 . 35 � k T (t) � 0 . 75 

0 . 177 k T (t ) > 0 . 75 . 

(6)

The clearness index, k T , is the ratio of the total radiation at the sur-

face of the Earth, S , to the extraterrestrial radiation, S 0 . The latter

is defined here by the following equation, taken from Duffie and

Beckman [32 , p. 37]: 

S 0 = S SC 

(
1 + 0 . 033 cos 

(
2 π i 

365 

))
cos (z) (7)

where i represents the day number of the year and S SC is the solar

constant, 1367 Wm 

−2 [32] . The solar inputs for each façade are

then calculated as for the 1C1R1PmS model, after the calculated

diffuse radiation is subtracted from the measured radiation: 

S n (t) = 

{
(S(t) − S d (t )) cos (z(t ) − o) for | z(t) − o| � 

π
2 

and (
0 . 

(8)

The models outlined in this section are evaluated with respect

to the data using the Bayesian techniques described in the follow-

ing section to produce estimates for the model parameters. The

global structural identifiability of the models was assessed utilis-

ing the transfer function approach [33] , with all found to meet

this requirement under the relevant datastreams combination used

in this paper (i.e. dynamic non-zero temperature timeseries, and

non-zero power and solar radiation observations) as shown in the

Appendix. 

2.1.2. Bayesian inference with MCMC sampling 

The parameters of the models outlined in Section 2.1.1 above

are evaluated using Bayesian inference with Markov Chain Monte

Carlo (MCMC) sampling. Bayes’ theorem gives: 

p(θ | y, H) = 

p(y | θ, H) p(θ | H) 

p(y | H) 
, (9)
 − S d (t)) > 0 

here p ( θ | y, H ) is the joint posterior probability distribution of the

ector of parameters θ given the data y and model H; p ( y | θ , H )

s the likelihood function, describing the ability of the model to

xplain the data; p ( θ | H ) is the prior probability distribution of θ ;

nd finally p ( y | H ) is the marginal distribution of the data, which

cts as a normalising constant [34] . 

The posterior is often mathematically intractable for complex

odels, therefore MCMC sampling is used to simulate the poste-

ior parameter distribution, by drawing samples iteratively from it

nd ensuring that with each step the process produces a proposal

osterior distribution that is at least as close as the current distri-

ution to the target. An affine-invariant ensemble sampler is used

n this work, which, among other advantages, has a shorter au-

ocorrelation time than traditional MCMC samplers and is thus a

ore efficient sampler [35,36] . 

The implementation of Bayesian inference with MCMC sampling

esults in an estimate of the probability distribution of the model

olution, which can be marginalised to that for each individual

arameter and illustrate correlation between parameters. This in-

ormation can be used to explore potential issues around the es-

imated parameter space, such as the identification of significant

ovariance and possible practical identifiability issues [37] , trun-

ation of distributions and any multi-modal behaviour, supporting

reater investigation into the validity of the solution than a single

aximum a posteriori (MAP) estimate. The relationships between

ariables have also been shown to support the physical interpreta-

ion of solutions, providing greater insight into in-situ performance

han is possible with single estimates of parameters [38] . 

A key advantage of a Bayesian framework is its model compar-

son method; comparison of the evidences (i.e. the marginal dis-

ributions of the data) embodies the principle of Occam’s razor in

hat more complex models are penalised, unless the improvement

n the fit of the parameters to the data justifies the additional com-

lexity [39] . The evidence for a model is estimated using Eq. (9) as

escribed in [30] and thus penalises models with increased prior

pace resulting from higher numbers of parameters [34,40] . 
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.2. In-situ monitoring and analysis 

In this section the datasets used in this paper are described,

ollowed by the specific details of the application of the analysis

ethods introduced above. Two case studies are presented; one

emi-detached, occupied house with unusual water heating pat-

erns (discussed below), and one detached house which was unoc-

upied but maintained a space heating cycle and occasional elec-

ricity use. 

.2.1. Case studies 

The first dwelling (hereafter referred to as Case Study A [41] )

s a semi-detached, two-storey, occupied house near Letchworth

arden City (UK), with solid wall construction, solar photovoltaic

anels and a system boiler with a stated efficiency of 88.8%. Its ex-

ernal façades have NE, SE and NW orientations. A coheating test

erformed in 2016 gave an HTC of 141 WK 

−1 [42] . 

An extensive monitoring campaign was conducted on Case

tudy A, recording a wide range of parameters to characterise the

hermal performance, whilst balancing this against the need to

imit the intrusiveness and disruption to occupants. The air tem-

erature in every room was measured using Eltek GD10 temper-

ture and relative humidity transmitters [43] ; the CO 2 concentra-

ion in the main downstairs room with an Eltek GW47 CO 2 trans-

itter [44] , and the electricity and gas consumption with Eltek

C62 pulse transmitters [45] . These parameters were sampled and

ecorded at 10 min intervals, with a weather station approximately

0 miles away recording the external air temperature and global

olar radiation at the same intervals using an Eltek OD14J exter-

al temperature transmitter [46] and a Kipp & Zonen CMP3 pyra-

ometer [47] respectively. Ideally the weather station would have

een sited closer to the property, but this was not possible due

o conservation and aesthetic concerns regarding the site. On-site

xternal temperature was measured for a short period, and agreed

losely with that from the weather station. The total electricity use

as calculated at each time interval as the sum of the import from

he grid and the generation from the photovoltaic panels, minus

he export to the grid. 

The second property (hereafter Case Study B) is a detached

ouse over three floors with a winter garden (SE facing) and sky-

ights, in addition to standard glazing on two façades (NW and SE),

ear York, UK. It has partially insulated cavity walls and a tim-

er frame construction, with a combination boiler with a stated

fficiency of 91.2%. A coheating test was performed giving an HTC

f 133 WK 

−1 [48] . The house was unoccupied during the period

hen the data used in this paper was collected; however, a daily

as space heating schedule was in operation throughout, with oc-

asional electricity use due to its purpose as a show home. These

ources of energy use in the dwelling approximate an occupied

tate, but do not represent patterns of water heating, door and

indow opening, and other occupant-driven energy uses. The to-

al electricity use at each time step was calculated as the total

f the sub-metered electricity. The air temperature in the mon-

tored rooms and the electricity and gas use was recorded at

0 min intervals, with the external air temperature and solar ra-

iation recorded at a nearby location, again every 10 min. Exclud-

ng the gas data, the above were recorded using a system of Eltek

ransmitters and dataloggers; the gas data was collected using a

evenco COPMV2 pulse transmitter [49] . 

.2.2. Gas consumption and boiler efficiency 

The calculation of the HTC requires measurement of the heat

elivered to the property, or its estimation from related data. Heat

elivered may be measured using heat meters, neglecting case

osses of the heating plant if it is located within the thermal en-

elope of the dwelling, as here. For a boiler, as fitted to the case
tudies investigated, such metering requires the pipework near the

oiler to be revised to accommodate heat meters on the cold inlet,

ot water, flow and return, incurring significant costs and disrup-

ion. These issues prevented the installation of heat meters during

his research. 

The nominal efficiency of the heating plant multiplied by the

as use provides an estimate of the heat delivered to the prop-

rty, neglecting adjustments to account for use of gas through ap-

liances other than the boiler, such as gas fires and cookers. These

djustments are likely to be unnecessary for Case Study B, as it was

ot occupied. Such an estimate neglects gains from case losses of

he boiler into the dwelling and assumes that the boiler operates

t a known efficiency throughout the year. Methods exist to esti-

ate the seasonal boiler efficiency, such as those employed in the

K’s National Calculation Method, the Standard Assessment Pro-

edure (SAP) [50] , addressing the relative demands of water and

pace heating over the year, plus changes to the efficiency of water

eating. However, they do not account for variations in-situ boiler

erformance due to factors such as the mismatch of heat demand

o boiler output, and consequent on-off cycling behaviour, which

an have a significant impact on boiler efficiency [51–53] . 

Alternatively to estimating the efficiency of the heating plant,

he combined whole dwelling fabric and heating system perfor-

ance may be estimated by using the gas delivered to the prop-

rty as the energy input. This approach produces an estimate of

he heat power loss coefficient, HPLC, as defined by [54] . Whilst

ot directly comparable to the HTC, the HPLC avoids assumptions

f the efficiency of the heating plant and may be readily related

o occupants’ bills and carbon reduction targets. Both the HTC de-

ived using a constant boiler efficiency, λ, and the HPLC ( λ = 1 )

see Section 2.1.1 ) are calculated as the inverse of the estimated

hermal resistance, R 1 , and reported in this paper to provide in-

ight into the difference between these two measures. 

.2.3. Analysis 

This section provides the details of the analysis described in

ection 2.1 , applied to the data described in Section 2.2.1 . The so-

ar radiation data was transformed to that received by a vertical

urface utilising the diffuse fraction, calculated as above, and the

ltitude of the Sun at any given time. In the transform of the mea-

ured solar radiation data the transformed radiation was limited

o not exceed the total extraterrestrial radiation at that time; this

revented possible numerical issues introduced, for example, by

eflected radiation on the pyranometer at low and negative solar

ltitudes or measurement noise. 

The differential equations described in Section 2.1.1 were ap-

roximated using the bilinear transform, as shown in [39] , and

olved for T in , the area-weighted average internal temperature for

ach property, which is assumed to be the temperature of the in-

ernal thermal mass. A Gaussian likelihood was used to assess the

iscrepancy between the time series of T in predicted by the model

nd the measured one. The residuals were assumed independent

nd identically distributed. During this optimisation stage all pa-

ameters are rescaled according to their prior limits to ensure they

re of comparable magnitudes. 

The priors used for the model parameters (e.g., R 1 , C 1 , g, T in )

ere uniform with large ranges, as shown in Table 1 . These ranges

ere selected to assign equal probability to all physically possi-

le values of the parameters, for example avoiding a negative ef-

ective solar aperture, whilst not making assumptions about the

erformance of the dwelling, or, in the absence of evidence, the

ikely distribution of dwelling thermal performance characteristics.

o ensure that the priors selected were not over-informative and

hat the likelihood contributed sufficiently to the final estimates, it

as checked that the posterior standard deviations were less than
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Table 1 

The ranges of the uniform prior distributions for all models. 

Parameter type Unit Minimum value Maximum value 

Thermal resistance, R 1 KW 

−1 1 . 0 × 10 −4 1.0 

Thermal mass, C 1 JK −1 0.1 5.0 × 10 8 

Temperature, T in 
◦ -5.0 40.0 

Solar aperture, g m 

2 1 . 0 × 10 −7 1.0 × 10 3 
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10% of those of the priors [55] . Priors were kept constant for each

model to enable model comparison using the evidences. 

These choices of prior and likelihood, substituted into Eq. (9) ,

produce the following unnormalised posterior: 

p(θ | y, H) p(y | H) = 

(2 π) −
n 
2 | σ 2 I n | − 1 

2 exp 

(
−1 

2 

r (θ ) T (σ 2 I n ) 
−1 r (θ ) 

)∏ 

j 

1 [ p j ,q j ] 
(θ j ) 

q j − p j 

(10)

where n is the number of observations in the datastream analysed

(i.e. internal temperature in this case, T in,m 

); r(θ ) = T in , e (θ ) − T in , m 

is the vector of residuals between the time series of the internal

temperature estimated from a lumped thermal capacitance model

(defined in Section 2.1.1 ) and the measured one; σ 2 is the variance

of the distribution of the residuals; I n is an identity matrix of di-

mension n; θ j denotes each parameter (e.g., R 1 , C 1 , T in , g ) in the

vector of parameters θ ; p j and q j are the lower and upper limits of

the prior for each parameter; and finally 1 [ p j ,q j ] (θ j ) is the indicator

function, which is one when θ j ∈ [ p j , q j ] and zero otherwise. 

As a preliminary step, the SciPy Basinhopping function [56] was

used to maximise the function in Eq. (10) and obtain the MAP es-

timates of the parameters. The information matrix of the parame-

ters was computed as the Hessian of the minus natural logarithm

of Eq. (10) at the MAP. Its condition number was calculated to in-

vestigate the structural local identifiability of the model [37] . Con-

versely, the practical identifiability was assessed through plots of

the marginalised joint distribution of pairs of parameters obtained

from the MCMC chains as follows. 

To obtain the posterior distributions of the parameters in addi-

tion to a point estimate (the MAP), MCMC sampling was performed

using the EMCEE Python module [35] , with the walkers initialised

using an overdisperse distribution centred at the MAP [40] . The

convergence of the posterior parameter distributions was assessed

through examination of the corresponding MCMC traces and inte-

grated autocorrelation times. The burn in was removed after plot-

ting the MCMC traces, but before plotting the posterior distribu-

tions and their covariances. For all analyses presented here 100

MCMC walkers were used for 20 0 0 iterations initially, then the it-

erations were increased as necessary [34] . A burn in of 250 itera-

tions was found to be suitable for all cases [34] . The final HTC or

HPLC estimate was, for all models, calculated as the inverse of R 1 ,

the thermal resistance between the internal and external tempera-

tures. 

For Case Study A it was found that five days of data was suffi-

cient for estimates of the HTC (and HPLC) to converge, whilst for

Case Study B ten days of data were required. As Case Study B is

a far more complex building, this is not unexpected. In the ab-

sence of a standardised method to determine the optimal length

of time series to be analysed for whole-building thermophysical

characterisation, this was determined with an approach based on

that in [57] for a static method of estimating wall U-values. The

1C1R1P and 1C1R1PmS models were applied to increasing num-

bers of complete days of data until the resulting HTC was within

10% of that obtained 24 h previously. This criterion is less strict

than the 5% used in [57] , due to the increased complexity of an

occupied house in comparison to a single element. For both case
tudies, data from within and outside the winter heating season

as selected for analysis; for A this was from November 2016 and

he following June, and for B from February and April of 2012.

he HTC stabilisation was explored on all selected data, with the

ongest required dataset chosen for all seasons in each case study.

here was no hot water production for Case Study B and the June

017 data for Case Study A, whereas for November 2016 in Case

tudy A there was constant water heating with no evidence of use

n the return temperatures. It is advantageous to analyse as short

 period of data as possible, as the models used assume that all

hermophysical properties are constant. Analysing multiple short

ata periods from a larger dataset therefore facilitates the study of

arameter changes due to changes in ventilation, shading, and oc-

upant behaviour [30] . The ability to utilise short measuring peri-

ds also enables the method to be used for standalone monitoring

ampaigns of limited duration. 

To enable comparisons between models and assess which best

epresents the data, the root mean square error (RMSE) of the pre-

ictions for T in and the evidence for each application of a model

ere computed. 

. Results and discussion 

In this section the results of all models described in

ection 2.1.1 , for both case studies, are presented and compared

o one another and to the coheating test results. The most effec-

ive model for each case study is also identified and discussed,

ith the numeric parameter estimations given the means of their

arginalised posterior probability distributions. 

.1. Model evaluation and selection 

The appropriateness of a model for the data analysed is initially

ssessed through examination of plots of the MCMC traces, poste-

ior parameter distributions, and their covariances. This facilitates

he identification of problems and challenges, such as multimodal

arameter distributions and the use of insufficiently broad prior

istributions leading to truncation of parameter distributions. The

vidence for each of the models (see Eq. (9) ) is also compared,

o give an objective comparison of model fit that takes into ac-

ount the increased goodness of fit that is typically observed as

he number of parameters is increased. Finally, the RMSE for the

redictions of the average internal temperature ( T in , the tempera-

ure of the internal thermal mass) is considered. This section fo-

uses on discussion of the 1C1R1P1S, 1C1R1PmS and 1C1R1PmSD

odels, which were found to represent the observed data signifi-

antly better than the simpler 1C1R1P model. The separated solar

odels (1C1R1PmS and 1C1R1PmSD) were applied to the data for

ase Study A. Assessment of the MCMC traces and posterior distri-

utions of the results from the 1C1R1PmS model for the June data

rom Case Study A indicated that not all façades were significant,

s shown in Fig. 4 a. These images are from the analysis producing

he HPLC estimate, however the same patterns were observed for

he analysis resulting in the HTC. The posterior distribution for g 3 ,

he effective solar aperture of the NW façade ( Fig. 4 b), shows that

he value is likely very close to the lower boundary of the prior

 ~ 0 m 

2 ), with the peak at approximately zero. These results sug-

est that the third solar aperture g 3 (NW façade) is unnecessary, as

onfirmed by comparison of the evidence which was smaller when

 3 was included than without it. This façade (and consequently

he g 3 parameter) was therefore excluded and the 1C1R1P(m-1)S

odel was applied. The corresponding covariances and distribu-

ions are shown in Fig. 4 b), where all the traces have converged

nd the posterior parameter distributions are approximately Gaus-

ian in appearance. 
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Fig. 4. The posterior distributions and covariances for the 1C1R1PmS (a) and 1C1R1P(m-1)S (b) models applied to June, Case Study A. Here the total gas consumption is 

used and thus the inverse of R 1 is the HPLC. In a) it is clear that the g 3 parameter, the effective solar aperture for the NW façade, is unnecessary; thus the (m-1) version of 

the model was applied. The approximately Gaussian posterior distributions shown in c) demonstrate this further. 

Table 2 

The results for the selected models for the two time periods from Case Study A; 

1C1R1P(m-1)S for June, and 1C1R1P(m-1)SD for November. g 2 is estimated for June, 

and g 3 for November. 

R 1 (mKW 

−1 ) C 1 (MJK −1 ) g 1 (m 

2 ) g 2/3 (m 

2 ) g d (m 

2 ) 

Jun, HTC 5.9 ± 0.4 50 ± 4 5 ± 1 2.4 ± 0.5 - 

Jun, HPLC 5.3 ± 0.4 55 ± 5 6 ± 1 2.7 ± 0.5 - 

Nov, HTC 6.9 ± 0.3 50 ± 3 50 ± 20 30 ± 7 6 ± 1 

Nov, HPLC 6.1 ± 0.2 50 ± 3 50 ± 30 26 ± 6 5.7 ± 1.0 
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The temperature predictions for the 1C1R1P(m-1)S model for

ase Study A June data are shown in Fig. 5 , plotted alongside the

rea-weighted average internal temperature of the dwelling. The

W façade was excluded from the analysis. The fit of the mod-

lled to the measured data appears good, with a low RMSE value

f 0.12 WK 

−1 for both plots. The residuals, whilst not consistently

iased, do not appear uncorrelated indicating that as expected this

implified model omits some heat transfer processes present in the

uilding. The parameter estimates from this model are shown in

able 2 . 

The HPLC estimated for these data by the 1C1R1P(m-1)S model

s (190 ± 10) WK 

−1 and the HTC is (170 ± 10) WK 

−1 , as given

n Table 4 . The HTC, where the nominal boiler efficiency has been

pplied to the gas consumption data, is lower than the HPLC as

xpected. 

The temperature predictions shown in Fig. 6 are those pro-

uced by the 1C1R1P(m-1)SD model for November in Case Study

, having the greatest evidence for these data. In contrast to Fig. 5 ,

he resultant temperature predictions plotted alongside the area-

eighted average internal temperature in Fig. 6 do not follow the

rends of the data as closely, which is reflected in the increased

MSE values. A key difference in heat flows between the Novem-

er and June data is the differing operation of the boiler, with no
ater heating in June, but constantly high flow and return temper-

tures to the hot water cylinder in November. The gas use for this

ater heating is captured in this model as a direct heat gain to the

welling; however, the real behaviour is clearly far more complex,

ith gas use for water heating decoupled from the direct gains by

ts storage in the hot water tank, and by losses through waste wa-

er, resulting in a less accurate temperature prediction. The solar

perture values are large for data from November and there is sig-

ificant error in the parameter estimates; this illustrates the failure

f the model to clearly capture the internal temperature patterns

ithin the dwelling, potentially a consequence of the complex heat

ains and losses from the water heating. 

The estimated HPLC for the November data for Case Study A is

163 ± 5) WK 

−1 , and the HTC is (145 ± 6) WK 

−1 . Unlike the model

ith the highest evidence for this Case Study house for the June

ata, the diffuse radiation is included in this model and may reflect

he increased proportion of cloud cover in November. The orienta-

ion of the façades included in the models with the highest evi-

ence is also different in June and November; the NE façade is not

ncluded in November, being replaced with the NW façade, while

he SE facing façade remains. Such differences may be expected for

wellings surrounded by complex topography, where seasonal dif-

erences in shading are likely. 

The model with the highest evidence for the February data

rom Case Study B is also the 1C1R1P(m-1)SD model, excluding

he NW façade. The resultant temperature predictions are shown

longside the area-weighted average internal temperature data in

ig. 7 , and the parameter estimates are found in Table 3 . This

odel produced a HPLC estimate of (137.4 ± 0.9) WK 

−1 and a HTC

f (125.6 ± 0.9) WK 

−1 . 

The model without separate consideration of diffuse radiation

1C1R1P(m-1)S) had the largest evidence for the April data from

ase Study B, with the same façade (NW) excluded as for February.

he temperature predictions resulting from this analysis are shown
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Fig. 5. The temperature prediction, T in _Estimated, from the 1C1R1P(m-1)S model with the observed area-weighted average internal temperature, T in _Measured, for Case 

Study A over 5 days in June 2017. The residuals are in the order presented in the legend; this is the case for all following figures also. 

Table 3 

The results for the selected models for the two time periods from Case 

Study B; 1C1R1P(m-1)S for April and 1C1R1P(m-1)SD for February. 

R 1 (mKW 

−1 ) C 1 (MJK −1 ) g 1 (m 

2 ) g d (m 

2 ) 

Apr, HTC 6.56 ± 0.06 55 ± 1 16.8 ± 0.5 - 

Apr, HPLC 6.03 ± 0.05 61 ± 1 18.4 ± 0.57 - 

Feb, HTC 7.96 ± 0.05 47.6 ± 0.7 9.5 ± 0.2 10.1 ± 0.3 

Feb, HPLC 7.28 ± 0.05 51.8 ± 0.8 10.6 ± 0.2 10.8 ± 0.4 
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in Fig. 8 , which is similar to Fig. 7 in the quality of the fit to the

data. 

The estimated HPLC is (166 ± 1) WK 

−1 and HTC is

(152 ± 1) WK 

−1 , which are both slightly higher than those from

the analysis of the February data for this case study. Such dif-

ferences could be caused by the ability of the models to de-

scribe seasonally-dependent variations in the recorded data, or

by changes in occupant behaviour, such as the ventilation strat-

egy. The effective thermal mass estimates are also higher than the
ebruary data, with higher effective solar apertures reflecting that

o other solar gain is included for February. 

There are some features of the model results common to all

eriods of data analysed here, and can thus be considered to re-

ect on the model performance in general. Whilst providing a gen-

rally good fit to the data, as shown above, the residuals for all

f the temperature predictions have clear structure indicating that

ome of the dynamic heat transfers processes within the dwellings

ave not been fully characterised by the presented models. The

odel predictions capture the trend of the data well, but peaks

nd troughs are often under- or over-estimated. Although this is

artly expected as consequence of the thermal mass effect (which

ffectively acts as a low-pass filter in the equivalent electrical cir-

uit), it also suggests that the models may be omitting or over-

implifying some of the thermophysical mechanisms occurring in

he dwellings. Examples of these could be ventilation heat trans-

er, which may be particularly important for occupied homes with

ummer data, and metabolic gains. Averaging the effective solar

pertures over each façade could also cause disparities in the tem-
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Fig. 6. The temperature prediction results from the 1C1R1P2SD model for the November 2016 data for Case Study A. The RMSEs of 0.58 WK −1 and 0.56 WK −1 , for the HTC 

and HPLC plots respectively, are considerably larger than those for the prediction of the June 2017 data. The residuals are again in the order of the legend. 

Table 4 

The results for the HPLC and the HTC from all models outlined in Section 2.1.1 for both time 

periods in both case studies. The effect of the inclusion of solar gains is clearly shown, as 

is the effect of the season on the error. Results indicated in bold are those from the model 

with the best evidence for that data. 

HPLC (WK −1 ) 

Model A, November A, June B, February B, April 

1C1R1P 186 ± 1 61 ± 2 146.5 ± 0.1 109.3 ± 0.2 

1C1R1P1S 183 ± 2 170 ± 10 167.3 ± 0.3 162 ± 1 

1C1R1PmS 138 ± 8 190 ± 10 167.9 ± 0.3 166 ± 1 

1C1R1P(m-1)S 137 ± 7 190 ± 10 167.9 ± 0.3 166 ± 1 

1C1R1PmSD 172 ± 6 190 ± 20 137.4 ± 0.9 138.6 ± 0.8 

1C1R1P(m-1)SD 163 ± 5 180 ± 20 137.4 ± 0.9 138.6 ± 0.8 

HTC (WK −1 ) 

1C1R1P 169 ± 1 57 ± 2 134.7 ± 0.1 101.0 ± 0.2 

1C1R1P1S 165 ± 2 160 ± 10 153.4 ± 0.3 149 ± 1 

1C1R1PmS 117 ± 8 170 ± 10 153.9 ± 0.3 152 ± 1 

1C1R1P(m-1)S 118 ± 8 170 ± 10 153.9 ± 0.3 152 ± 1 

1C1R1PmSD 154 ± 6 170 ± 20 125.6 ± 0.9 127.7 ± 0.7 

1C1R1P(m-1)SD 145 ± 6 170 ± 20 125.6 ± 0.9 127.7 ± 0.7 

Coheating test result 141 141 133 133 
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Fig. 7. The temperature predictions from the 1C1R1P(m-1)SD model applied to the February data from Case Study B plotted alongside the area-weighted average internal 

temperature measured during this period. The RMSE for these temperature predictions is 0.34 WK −1 for both plots. 
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(  
perature predictions compared to observed data, as this could de-

crease the modelled heat input from solar radiation at the internal

temperature peaks. Another potential cause of the correlated resid-

uals is that the effective thermal mass may not be at the same lo-

cation as the area-weighted average internal temperature, as mod-

elled here, or that multiple thermal masses are required to cap-

ture the complex behaviour of real dwellings. Finally, data was not

available to this study that included typical water heating and us-

age patterns; further work is required to investigate and develop

appropriate models to describe its impact on whole dwelling per-

formance estimates. 

Whilst the models presented in this paper are highly simplified,

particularly in their treatment of the thermal mass, the general be-

haviour of the data is well represented in the predictions they pro-

duce. The models produce HTC estimates that are consistent over

different seasons, given the expected differences due to the chang-

ing conditions, and any disparities between models are as would

be expected given their differing parameters. This is expanded on

in Section 3.2 . 
.1.1. The importance of a model selection process 

The same model (1C1R1P(m-1)SD) was selected for the cooler

ata for both case studies, with the 1C1R1P(m-1)S model best able

o describe the data from warmer months. The excluded façade

as the same for both Case Study B periods, however differed for

ase Study A. The two periods of data analysed for Case Study

 span a wider seasonal difference than for Case Study B, which

ould be a factor in the selection of different models, as the rela-

ive contributions of different heat sources varies across the year.

n particular, the size of the space heating load compared to the

ater heating load, shading and cloud cover may all change con-

iderably for some dwellings. The results for both case studies also

uggest that the HTC itself is not necessarily a constant quantity

as discussed above in Section 2.2.3 ), as expected, due to variations

n weather affecting heat flow (particularly ventilation rates) and

ecause occupant use of a property is likely to vary through the

ear, particularly with respect to window opening. 

For all data analysed, model selection indicated that including

m-1) façades in the model best represented the data, with the
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Fig. 8. The temperature predictions of the 1C1R1P(m-1)SD model applied to the April data from Case Study B, with the area-weighted average internal temperature used to 

optimise the analysis. The residuals for both plots show structure, as for the other analyses, and the predictions have a RMSE of 0.33 WK −1 for both. Despite this, the overall 

fit to the data appears reasonable. 

N  

i  

b  

a  

a  

p  

e  

a

3

 

a  

t  

t  

t  

c  

t  

a  

t  

f  

H  

f  

a  

d  

f

 

A  

i  

w  

o  

c  

o  

i

 

d  

e  

f  
W façade of Case Study A excluded in June, and the NE façade

n November. For Case Study B the NW façade was excluded for

oth periods of data analysed. Such differences in the models best

ble to represent the observed data across seasons highlights the

dvantages of the model selection process: differences in dwelling

erformance may be related to physical effects, and multiple mod-

ls may be applied that represent different thermal characteristics

nd local conditions, particularly shading. 

.2. Comparison of all results 

In Table 4 the means of the posterior distributions of the HTC

nd HPLC are shown for the models described in Section 2.1.1 , with

he estimates from the best model highlighted in bold, for each

ime period analysed. The means are used to summarise the dis-

ributions as they were found to be approximately Gaussian in all

ases. As outlined in Section 2.2.3 , the errors given in Table 4 are

he standard deviations of the posterior distributions of the HTCs

nd HPLCs, and thus reflect only the confidence in the position of
he mean given the model in question rather than estimating the

ull uncertainty. These are predominantly smaller for the HTCs and

PLCs estimated with winter data compared with the warmer data

or the corresponding case studies, reflecting that there is less vari-

tion in input data (for instance, the internal-external temperature

ifference and gas use) during summer thereby providing less in-

ormation to the model. 

The errors in Table 4 are lower for Case Study B than Case Study

. The models presented in this paper assume that the dwelling is

n a constant configuration during the data analysed, for example

ith all internal and external windows and doors remaining either

pen or closed throughout. In Case Study B this is likely to be ac-

urate, as the building was unoccupied. However, Case Study A was

ccupied and such components of the building configuration thus

ncrease the spread of the posterior parameter distributions. 

Table 4 reports both the results of the coheating test and the

ynamic analysis developed in this work. It is notable that consid-

rably shorter datasets collected in-use dwellings were sufficient

or the dynamic models: typically 5–10 days, compared to a stan-
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dard monitoring campaign of 2–3 weeks from unoccupied proper-

ties for coheating [18] . Similarly, the dynamic method enabled the

estimation of the HTC and HPLC at times of year when coheating

tests are not advised [18] : outside the heating season, including in

the summer, with < 15% difference between the models with the

highest evidence. A rapid and robust method for the characteri-

sation of the thermophysical performance of occupied buildings at

different times of the year has undoubtedly several advantages and

practical applications. These include the use of the method as a

tool for operational energy performance evaluation, accounting for

the building’s state of conservation and surrounding landscape; for

diagnosis and quality assessment; for decision making and regula-

tory purposes. 

The difference between HTC and HPLC estimates for different

models incorporating solar gains is case-study specific and can

highlight the characteristics of the property. The results display

several characteristics that align to expectations. Firstly, all the re-

sults from the lumped capacitance models (including solar gains)

are higher than the coheating test HTC estimates. This is to be ex-

pected as during coheating testing ventilation pathways are closed

[18] , whereas under normal operation they may be open, adding to

the heat load. This effect is exacerbated by the fans used in coheat-

ing tests to ensure uniform air temperature throughout a building.

For Case Study A the property was occupied during the analysed

periods and therefore additional heat loss paths may be present,

in addition to any occupant-driven effects on the energy consump-

tion of the building. 

The lowest HTC and HPLC for each case study and time pe-

riod is mostly produced by the 1C1R1P model without solar gains.

In this model the only heat supply to raise internal temperatures

above external temperatures is assumed to be gas and electricity

consumption, whilst in reality the unmetered solar gains also in-

crease internal temperatures, resulting in an estimate of the HTC

and HPLC that is too low. The difference between HTC and HPLC

estimates for the 1C1R1P model and the others in the June and

April results is pronounced, as expected due to the increased solar

gains in these warmer months compared to winter. 

For all data periods, the HTC and HPLC results from the solar

models with separated inputs and diffuse radiation are in strong

agreement between the m and (m-1) versions. This is because the

models tend towards the same solution: the effective aperture of

the façade in the m model variant which is excluded for (m-1)

has been found to be approximately zero, and thus has little effect

on the model results. This enables the plots of the MCMC traces,

posterior parameter distributions, and covariances to be used to

select the most appropriate model for a particular set of data

( Section 3.1 ); in this case the Bayesian model selection between m

and m-1 models does not improve the physical insights from their

application but confirms the most appropriate model to describe

the observed data. 

The effect on the HTC and HPLC of the separate inclusion of

diffuse radiation varies between the data analysed. Similarly to

the inclusion of direct radiation, it is likely that failing to account

for diffuse radiation into a dwelling neglects a potentially signif-

icant heat source, which lowers the HTC and HPLC estimated by

such models; the importance of this factor changes seasonally as

demonstrated by the differences in the models with the highest

evidences between different data. 

In Table 4 both the HTC and HPLC are given, with the former

using the metered gas consumption multiplied by the manufac-

turer boiler efficiency, and the latter the metered gas consumption

alone. As would be expected, the HTC results are lower than the

corresponding HPLCs in all cases, as the HPLC includes losses from

the heating systems, whilst the HTC excludes them. The HTCs are

directly comparable to the coheating test results; however, as the

real efficiency of the boiler and how it changes with season is un-
nown [51–53] , using this fixed efficiency introduces an important

ssumption and potential cause of error into the analysis. The al-

ernative HPLC represents the fabric efficiency in addition to the

eating plant efficiency and, whilst not simply comparable to the

TC, represents the overall thermal performance of the dwelling in

ts measured and operational state. 

. Conclusions 

In this paper a series of lumped thermal capacitance models

f in-use whole-house thermal performance have been presented.

hese models have incorporated solar gains in different ways; their

erformance has been analysed with respect to data from two case

tudies using Bayesian techniques with MCMC sampling. It has

een illustrated that heat input from solar radiation is crucial for

he evaluation of whole-building in-situ thermal performance at all

imes of the year, and also that this can be estimated in summer

nd winter using datasets of 5–10 days in an occupied dwelling, in

ontrast to standard steady-state methods and co-heating requiring

 number of weeks. The models that best describe the data, as de-

ermined by Bayesian model comparison, are seasonally and build-

ng dependent. HTCs at different times of the year were within 15%

f each other, including during the summer, and in line with co-

eating results. 

The models presented in this paper all include one thermal

ass, one thermal resistance and heat input from electrical gains

nd the heating system. Models have been applied that incorporate

irect solar radiation as a single heat gain over the whole fabric,

s a gain to each façade separately, as a gain to a reduced number

f façades, and to the latter two also including diffuse radiation.

he practical and structural (both local and global) identifiability

as assessed for these models. The global structural identifiabil-

ty was investigated utilising the transfer function approach in the

aplace domain under mild assumptions about the input data; in-

estigations of conditions or combinations of inputs breaking these

ssumptions would be interesting for future work. The ability of

ach model to explain the observed case study data was tested us-

ng Bayesian model comparison, reviewing the MCMC chains and

ovariance plots, and the RMSE. 

The model that best explains observed data is dependent on

oth the building and the time of year, with different façades more

ignificant in the different seasons; separated façades were re-

uired for both seasons’ data. It is notable that in both of the case

tudies presented in this paper, models that exclude one of the ex-

osed façades performed best in Bayesian model comparison. This

s likely to be highly case specific, depending on the glazed areas

nd the potentially seasonally dependent local shading that they

xperience, as demonstrated by the results for Case Study A. The

erived models can therefore estimate the relative significance of

olar gains, façade-by-façade at different times of year, providing

nsight into the dwelling’s dynamic performance. 

Models separately including direct and diffuse radiation were

elected as the most appropriate for two of the datasets analysed

n this paper, demonstrating that different treatment of these as-

ects of solar radiation is often necessary. The periods of data

here separate accounting of direct and diffuse radiation was not

ound to be necessary were in warmer months and have higher

evels of solar radiation: direct radiation dominated during these

imes, highlighting the dependence of the model that best de-

cribes the thermal performance of a property on the weather. 

The estimates of a dwelling’s HTC can vary considerably be-

ween the different models and at different times of year; most no-

ably for the data from the warmer months of June (Case Study A)

nd April (Case Study B). In both of these instances, the result for

he 1C1R1P model is significantly lower than those from all other

odels, and indeed also that from the coheating test. Such results
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re expected, due to the impact of the unmetered solar gains on

nternal temperatures, and highlight the importance of accounting

or solar radiation in such analysis. By contrast, there is little dif-

erence in the HTC estimates for the m and m-1 versions of the

odels selected as best in each case, as expected when the addi-

ional aperture is approximately zero. 

An enhanced method, like the one presented here, enabling the

apid and robust evaluation of heat transfer and thermophysical

ehaviour of occupied dwellings at any time of the year, has the

otential to reduce the performance gap by extending the use of

onitored data to gain greater understanding of the energy per-

ormance of the building stock. Methods, such as that presented

ere, that can be used to automatically select the best physical

epresentation of a dwelling through the specific model that is ap-

lied, can highlight how the building performance changes over

he course of a year, and identify models that do not represent

he data well. The ability to apply such methods in the future is

ikely to increase, due to the availability of data from smart me-

ers, extensive weather data, internet of things sensors and smart

uilding controls [58] . With further development of the method

nd the models, such techniques may be used to provide tailored

etrofitting solutions; to inform occupants of appropriate space

eating and cooling strategies to improve thermal comfort; to eval-

ate the thermal performance of dwellings to assess building com-

liance and provide feedback loops to the building industry; and to

rovide new business and policy opportunities in the energy sector

owards closing the performance gap. 

uthor Declaration 

Frances Hollick Conceptualisation, Methodology, Software, For- 

al analysis, Investigation, Data Curation, Writing - Original Draft,

isualisation, Project administration Virginia Gori Methodology,

oftware, Validation, Writing - Review & Editing, Funding acqui-

ition Cliff Elwell Conceptualisation, Writing - Review & Editing,

upervision, Funding acquisition 

eclaration of Competing Interest 

We wish to confirm that there are no known conflicts of inter-

st associated with this publication and there has been no signifi-

ant financial support for this work that could have influenced its

utcome. 

cknowledgments 

This research was made possible by support from the EPSRC

entre for Doctoral Training in Energy Demand (LoLo), grant num-

ers EP/L01517X/1 and EP/H009612/1 , and the sponsorship of

ilmott Dixon. It was also supported by the Research Councils UK

 RCUK ) Centre for Energy Epidemiology, EP/K011839/1 , the EPSRC

entre for Research into Energy Demand Solutions, EP/R035288/1 ,

nd the EPSRC Doctoral Prize fellowship, EP/N509577/1 . The au-

hors are grateful to Dr Jez Wingfield for assistance and advice

oncerning the monitoring campaign for Case Study A, and to

r Phillip Biddulph for the original development of a MAP-based

ayesian approach. They are also grateful to the team at Leeds

eckett for providing the dataset for Case Study B. 

ppendix A. Investigation of global structural identifiability 

Global structural identifiability (GSI) was investigated for the

umped thermal capacitance models presented in Section 2.1.1 , un-

er the input datastreams combination covered in this paper (i.e.

on-zero power and solar inputs, and non-constant non-zero tem-

erature inputs). The transfer function method [33] in the Laplace
omain was adopted to assess GSI. This method is particularly

uited to the framework presented, as the Laplace transform is al-

eady used as intermediate step to replace the linear differential

quations with polynomial operations in the complex variable S

representing the derivative operator) before discretising the mod-

ls for simulations [30,39] . 

Single thermal mass model with power input (1C1R1P) Using

he Laplace transform, the governing differential equation for the

C1R1P model ( Eq. (1) , Section 2.1.1 ) can be rewritten as: 

 1 S T in (S ) = 

T out (S ) − T in (S ) 

R 1 

+ P ( S ) . (A.1)

ividing Eq. (A.1) by C 1 and rearranging: 

S + 

1 

R 1 C 1 

)
T in (S ) = 

T out (S ) 

R 1 C 1 
+ 

P (S ) 

C 1 
, (A.2)

t can be observed that for arbitrary sets of parameters θ and
′ : R 1 C 1 = R ′ 1 C ′ 1 , C 1 = C ′ 1 and therefore R 1 = R ′ 1 , demonstrating that

he 1C1R1P model is globally structurally identifiable for the in-

ut datastreams combination relevant to this paper. Interestingly,

here are pathological cases where the model may become non-

dentifiable. For example, when the power is constantly zero the

ast term in Eq. (A.2) vanishes and the model is non-identifiable

long hyperboles R 1 C 1 = const . 

Single thermal mass model with power and solar input (1C1R1P1S)

ollowing the same approach adopted above for the 1C1R1P

odel, the governing differential equation for the 1C1R1P1S model

 Eq. (2) , Section 2.1.1 ) can be rewritten as: 

 1 S T in (S ) = 

T out (S ) − T in (S ) 

R 1 

+ P ( S ) + gS( S ) . (A.3)

ividing Eq. (A.3) by C 1 and rearranging: 

S + 

1 

R 1 C 1 

)
T in (S ) = 

T out (S ) 

R 1 C 1 
+ 

P (S ) 

C 1 
+ 

gS(S ) 

C 1 
. (A.4)

t can be observed that for arbitrary sets of parameters θ and θ ′ :
 1 C 1 = R ′ 

1 
C ′ 

1 
, C 1 = C ′ 

1 
, g = g ′ and therefore R 1 = R ′ 

1 
, demonstrating

hat also the 1C1R1P1S model is globally structurally identifiable

nder the input conditions relevant to this paper. 

Following the same reasoning as above and under similar as-

umptions about the data, it can be demonstrated the GSI of the

emaining two models presented in Section 2.1.1 : the ‘Single ther-

al mass model with power and separate solar input per facade’

1C1R1PmS) and the ‘Single thermal mass model with power, di-

ect solar input per facade and diffuse solar input’ (1C1R1PmSD). 
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