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Abstract 

 

Over the last decade, genetic studies, including genome-wide association studies, have accelerated the 

discovery of genes and genomic regions contributing to primary open-angle glaucoma (POAG), a leading cause 

of irreversible vision loss. Here, we review the findings of genetic studies of POAG published in English prior to 

September 2019. In total, 74 genomic regions have been associated at a genome-wide level of significance with 

POAG susceptibility. Recent POAG GWAS provide not only insight into global and ethnic-specific genetic risk 

factors for POAG susceptibility across populations of diverse ancestry, but also important functional insights 

underlying biological mechanisms of glaucoma pathogenesis. In this review, we also summarize the genetic 

overlap between POAG, glaucoma endophenotypes, such as intraocular pressure and vertical cup-disc-ratio, 

and other eye disorders. We also discuss approaches recently developed to increase power for POAG locus 

discovery and to predict POAG risk. Finally, we discuss the recent development of POAG gene-based therapies 

and future strategies to treat glaucoma effectively. Understanding the genetic architecture of POAG is essential 

for an earlier diagnosis of this common eye disorder, predictive testing of at-risk patients, and design of gene-

based targeted medical therapies of which there are currently none available. 
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1. POAG genetics advances 

A. Recent GWAS of POAG led to the discovery of numerous genetic loci 

In the last decade, genome-wide association studies (GWAS) have rapidly accelerated the discovery of 

genetic determinants of numerous diseases and complex traits, with more than 10,000 significant genome-wide 

associations reported to date(1-3). Unsurprisingly, this GWAS success in identifying risk loci has also applied to 

primary open-glaucoma (POAG). As of 2017, sixteen genomic regions associated with POAG at a genome-wide 

level of significance (P<5x10-8) had been reported(4), with most studies conducted in European and Asian 

populations(5-13). In the last 3 years, many other loci that contribute to POAG susceptibility have been 

discovered(14-17), bringing the total number of POAG loci to 74 (Table 1). This recent, rapid increase in the 

discovery of POAG loci is likely due to several factors: 1) the emergence of large and multiethnic biobank-based 

cohorts, such as the UK Biobank(18, 19) and the Kaiser Permanente GERA(20, 21) cohorts; 2) the availability 

of summary statistics of published GWAS to the scientific community (e.g. GWAS catalog(2)), which has enabled 

more rapid confirmation of association loci; 3) the combination of the results from different GWAS in large 

multiethnic meta-analyses(14, 17); and 4) the application of recently developed approaches (e.g. gene-based 

analysis) using GWAS summary statistics(22, 23). 

B. Shared and ethnic-specific genetic associations 

Recent GWAS provide insight into global and ethnic-specific genetic risk factors for POAG susceptibility 

across populations of diverse ancestry. As of 2017, five genomic regions had been reported to be associated 

with POAG in populations of Asian ancestry, including ABCA1, PMM2, and CDKN2B-AS1(8, 10, 24). 

Associations at all of these loci were either previously reported or have been largely confirmed in populations of 

European ancestry(9, 13, 14, 17). A recent Japanese GWAS of POAG confirmed genome-wide associations at 

known POAG-loci, and identified seven novel loci, including FNDC3B, ANKRD55-MAP3K1, LMX1B, LHPP, 

HMGA2, MEIS2 and LOXL1(16). Among these newly identified POAG loci, 3 loci, including LHPP, HMGA2, and 

MEIS2, replicated neither in European population nor in African population from this study. This suggests the 

possible existence of genetic-specificities at those LHPP, HMGA2, and MEIS2 loci for POAG for Japanese 

individuals, and future studies in multiethnic populations may confirm those Asian-specific POAG genetic 

associations.  

Recently, progress has been made in the identification of genetic variants associated with POAG in 

populations of African ancestry(25-27). Because individuals of African ancestry have 3-5 times increased POAG 

risk, and have worse visual field damage and disease progression compared to other populations(28, 29), it is 

important to elucidate the genetic contribution to POAG pathogenesis to aid identification of high-risk groups. 

Recent GWAS of glaucoma/POAG in African ancestry populations enabled the identification of genome-wide 

significant associations at DNAJC24-ELP4, TRIM9-TMX1, FAM86A-RBFOX1, EXOC4, and EN04 loci, and 

suggestive associations at COL21A1-DST and MNS1-ZNF280D(25-27). However, these associations still await 

validation in external cohorts, with the exception of TRIM9-TMX1 and FAM86A-RBFOX1, which reached nominal 

significance in African-Americans from GERA(14) and in African-Americans from BioMe(27), respectively. In 
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addition, recent genetic studies conducted in populations of African ancestry attempted to replicate the 

associations at loci previously identified in GWAS predominantly conducted in populations of European or Asian 

ancestry. While some studies could not replicate any of these loci(25, 30), others provided evidence of 

association at TXNRD2, FNDC3B, 8q22, AFAP1, TMC01, or CDKN2B-AS1 loci(26, 27, 31, 32). Using a “local” 

replication strategy that considered different linkage disequilibrium (LD) patterns across study populations, 

Bonnemaijer et al.(27) replicated in their African cohorts, the POAG-associations at TXNRD2, TMC01, and 

CDKN2B-AS1, originally identified in European populations(5, 13). This suggests that POAG-susceptibility loci 

identified in cohorts of European or Asian ancestry may be relevant to populations of African ancestry. Genetic 

risk scores based on the previously reported and newly discovered POAG-genetic variants have been shown to 

predict POAG and explain up to 4% of the overall POAG risk in populations of African ancestry(14, 25-27). These 

findings provide new insight into the genetic architecture of POAG in populations of African ancestry, and future 

studies investigating the genetic complexity of POAG in these populations would request studies of extremely 

large size. 

In contrast to the recent progress made in populations of African ancestry, the genetics of POAG in 

Hispanic/Latino populations remain largely unexplored, and to date, no genome-wide significant signal has been 

detected in Hispanic/Latino populations. Choquet et al.(14) examined the associations of the loci previously 

identified in GWAS of European or Asian populations in their Hispanic/Latino sample, consisting in 411 POAG 

cases and 4,778 controls. Three loci replicated after correction for multiple testing, including TMC01, near 

CDKN1A, and CDKN2B-AS1; and two others: AFAP1 and ABCA1 were nominally significant. When investigating 

the associations of the novel POAG-loci identified in this study, a suggestive association between PDE7B and 

POAG risk in Hispanic/Latinos was observed(14). Further, previously known and newly discovered genetic 

variants from this study explained 3.3% of POAG variance in Hispanic/Latinos from GERA. Future efforts to 

identify the genetic factors for POAG risk in this ethnicity may aid in understanding of the genetic architecture of 

POAG. 

C. Importance of genetic ancestry 

Beyond genomic regions identification, recent genetic studies of POAG have enabled the determination of 

ancestry and population substructure(14, 33). Because variation in POAG prevalence has been observed across 

populations of diverse ancestry, especially in African-Americans who have a higher risk for developing POAG, it 

is important to investigate whether differences in POAG prevalence are due to genetic ancestry. Choquet et 

al.(14) investigated the association between genetic ancestry, as represented by genetic principal components, 

and the risk of POAG within each of the 4 GERA ethnic groups. A higher risk of POAG was associated with: 

greater northern (versus southern) East Asian ancestry in the East Asian group; greater Native American (versus 

European) ancestry in the Hispanic/Latino group; and greater African (versus European) ancestry in the African-

American group. These findings suggest that this within-group variation could be due to genetic risk factors that 

correlate with genetic ancestry. Consistently, a recent study(33) conducted in an African-American cohort, 

assessed the local genetic ancestry at CDKN2B-AS1, an important POAG-associated locus established in 
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populations of European and Asian ancestry. Interestingly, a significant association was observed between 

POAG risk and local African genetic ancestry at CDKN2B-AS1, and on average, POAG cases were of 90% 

African descent compared with 58% for controls(33). It is noteworthy that in this study(33), no significant single 

SNP-POAG associations at this locus was detected after correcting for multiple testing. These findings highlight 

the importance of considering the variability in linkage disequilibrium patterns across populations and genetic 

heterogeneity when conducting genetic studies. 

D. Genetic loci discovery led to biological pathways discovery 

Although GWAS-identified associations do not directly highlight a specific gene or mechanism, several 

genetic studies conducted follow-up experiments of candidate genes within identified POAG-genomic regions 

using animal models and human cell lines. Before 2017, only a few POAG-candidate genes (i.e., SIX6, CDKN2B-

AS, and CAV1/2) have been investigated in functional studies(34-37). SIX6 encodes a homeobox protein and 

plays an important role in the development of the eye, especially the morphology of the optic nerve and the 

formation of the retina(38-40). In vivo (zebrafish) and in vitro assays demonstrated that SIX6 risk variants 

attenuated protein function, leading to a reduction in the number of retinal ganglion cells, which are the primary 

cell type affected in glaucoma, thereby increasing POAG risk(34). Consistently, a SIX6 risk variant (rs33912345) 

increased the expression of CDKN2A (another well-established POAG- and normal tension glaucoma-locus), 

resulting in the senescence of retinal ganglion cells in cell line, animal models, and human glaucoma retinas(36). 

Further, mice homozygous for a deletion in CDKN2B-AS are more vulnerable to retinal ganglion cell loss in 

response to elevated intraocular pressure, compared to wild-type and heterozygous animals(35). Vulnerability 

to retinal ganglion cell loss manifests by microglial reactivity signs both in the retina and the optic nerve of 

mutated mice(35), which are early indicators of glaucoma onset or progression(41, 42).  

CAV1, which is located within the glaucoma susceptibility locus CAV1/CAV2, encodes the caveolin 1. CAV1 

has been shown to maintain normal intraocular pressure (IOP) levels by participating to the caveolae formation 

in the Schlemm's canal and trabecular meshwork, thereby facilitating aqueous humor flow through the eye(37). 

Similarly, FMNL2, a gene in one of the recently discovered POAG-loci, that is also associated with intraocular 

pressure(43), supports trabecular meshwork function relevant to aqueous humor outflow regulation(14). Indeed, 

suppression of FMNL2 expression using small interfering RNAs (siRNAs) caused trabecular meshwork cell 

morphological modifications, thereby decreasing contractile activity and the assembly of actin stress fibers(14). 

Investigation of expression profiles of genes associated with both IOP and glaucoma also revealed a high 

enrichment in the trabecular meshwork compared to other human ocular tissues(17). Functional follow-up 

experiments have been also conducted for another POAG candidate gene, LMX1B(14, 16), previously reported 

to cause nail-patella syndrome, a rare developmental disorder, with some patients presenting a similar 

“glaucoma” phenotype associated with structural defects of the eye(44-46). In mouse models of different genetic 

backgrounds, Lmx1b mutations can result in high IOP and glaucomatous nerve damage in eyes without 

developmental defects(14). This suggests that LMX1B acts via elevated IOP to affect glaucoma susceptibility, 

with some mutations causing a condition in mice that resembles POAG. These findings provide important 
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functional insights linking genetic susceptibility POAG-loci to the underlying mechanisms of glaucoma 

pathogenesis. 

In addition to in vivo/vitro follow-up experiments, in silico analyses turned out to be effective to prioritize the 

causal gene within the identified locus and to discover biological mechanisms underlying POAG disease. These 

include publicly available tools and datasets providing genomic annotations, epigenetic marks, drug targets, 

gene expression, and expression quantitative trait locus (eQTL) information(47-53). The interpretation of the 

non-coding variants that account for the majority of GWAS-identified risk alleles is crucial to understand the 

biological mechanisms through which these risk variants act. Recent GWAS studies(15-17) performed pathway 

analyses and identified relevant biological pathways that might be involved in POAG pathogenesis; these include 

“epidermal growth factor receptor signaling”, “response to fluid shear stress”, “abnormal retina morphology”, and 

“vascular development”. Functional follow-up experiments in cell lines or animal models may confirm the 

involvement of these biological pathways and provide underlying mechanisms of glaucoma pathogenesis.  

E. Pleiotropy and genetic correlations between POAG, glaucoma endophenotypes, ocular and 
systematic diseases 

Many of the POAG-associated loci, recently identified by GWAS, are also associated with glaucoma 

endophenotypes and other ocular conditions. While common variants in POAG-loci(14, 16) FNDCB3 and FMNL2 

were known to be associated with intraocular pressure(43, 54), common variants in CDKN2B-AS and SIX6(17) 

were known to be associated with vertical cup-disc ratio(55). Similarly, while common variation at LOXL1 POAG-

locus(16) has been reported to be associated with exfoliation syndrome/exfoliation glaucoma(56-58), common 

variation at MYOF POAG-locus(15) has been reported to be associated with refractive error(59). In addition, 

common and rare variants in C9, a gene identified to be associated with POAG(15) using a gene-based 

approach, have been associated with age-related macular degeneration(60-62). These results are consistent 

with results from a recent study showing significant genetic correlation between POAG and age-related macular 

degeneration(63).  

Genetic correlation analyses, using a technique-cross-trait LD score regression(64), also revealed the 

relationships between POAG and systemic diseases, including type 2 diabetes and cardiovascular diseases, 

such as myocardial infarction and ischemic stroke(16). These findings support previous reports, showing that 

pleiotropy, a term that refers to individual genetic loci that influence the risk of multiple diseases or affect variation 

in multiple complex traits, is pervasive(1, 3, 64-66). 

F. Heritability and variance explained 

Beyond the identification of genomic regions, recent GWAS of POAG have facilitated the quantification of 

how much of the total additive genetic variation due to segregating variants in the population is tagged by 

genotyped SNPs(14, 67). This quantification of “array” or “SNP” heritability is informative with respect to the 

unknown genetic architecture of the disease. A recent phenome-wide heritability study conducted in the UK 

Biobank(19), based on self-reported disease information, reported an array heritability estimate of 26.0% 

(s.e.=6.0%) for glaucoma(67). Consistently, Choquet et al. estimated an overall heritability of 26.0% (s.e.=1.0%) 
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for POAG in the GERA non-Hispanic white ethnic group(14). However, our current knowledge of genome-wide 

significant POAG/glaucoma SNPs explains only ∼3% of the genetic contribution to glaucoma susceptibility, 

suggesting that additional variants remain yet to be discovered(14).  

To explain the remaining “missing” heritability of POAG, innovative approaches have been employed. 

Gharahkhani et al.(15) conducted a meta-analysis of genetic data from OAG and its correlated traits (e.g. 

intraocular pressure, optic disc parameters) to identify new loci. Using this innovative and integrative approach, 

they found additional loci associated with OAG (i.e. near MYOF, LINC02052, and LMO7) at genome-wide level 

of significance. They also identified an association with a previously unreported gene, complement factor 9 

(C9)(15), using a fast and flexible set-Based Association Test (fastBAT) method(68). This gene would not have 

been identified in a standard single-variant analysis due to the limited statistical power to detect individual genetic 

variants with small effect sizes. Similarly, MacGregor et al.(17) conducted gene-based association analyses and 

identified 4 genes that were associated with POAG after multiple testing correction, including BICC1, SLC38A3, 

KALRN, and, RELN. Next-generation sequencing has been recently largely used to identify novel associations 

between low frequency (or rare) coding variants and disease susceptibility(69). Zhou et al.(70) conducted a 

whole exome sequencing (WGS) analysis on 187 patients with early onset advanced POAG and 103 controls 

without glaucoma and found enrichment of rare variants in camera-type eye development genes (i.e. CRYBA4; 

GAS1; GJA8; HES5; MAB21L2; NEUROD4; NR2E1; PAX6; RXRA; SLC25A25; VAX1). Rare variants identified 

by WGS may have much greater positive predictive values in terms of clinical application compared to common 

SNPs identified by GWAS, as GWAS do not necessarily identify the causal variants. 

2. Genetics of glaucoma-related traits 

A. The endophenotype approach to glaucoma gene discovery 

While case-control GWAS remain the definitive method for identifying genetic variants associated with 

disease, an alternative approach is to examine a heritable quantitative trait related to the disease. Such traits 

are termed endophenotypes and examples for glaucoma include IOP and vertical cup-disc-ratio (VCDR). There 

are several potential advantages of an endophenotype approach. Rather than requiring data from many disease 

cases, data can be leveraged from healthy population samples as it is the variation of the endophenotype across 

the whole range of health and disease that drives the association signal. This allows many population cohorts to 

contribute to analyses, even if the studies have a low prevalence of disease, resulting in large sample sizes and 

power to detect small associations. Statistical power is also increased by analyzing a continuous outcome trait 

rather than a binary outcome variable.  Additionally, examining individual traits may help better characterize how 

discovered genetic variants contribute to disease (e.g. IOP-increasing versus IOP-independent mechanisms for 

glaucoma). However, caution is required in inferring disease-relevance of endophenotype associations and 

further studies examining association with disease are required.  

B. Genetic associations with IOP 

IOP is the cardinal modifiable risk factor for POAG(71, 72) and is known to be a heritable trait(73). 

Understanding what causes variation in level of IOP within the normal range may shed light on the mechanisms 
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that also contribute to high IOP and, in turn, POAG. Earlier work examining genetic associations with IOP has 

proven successful at identifying glaucoma risk variants(74, 75). Combining data from 35,296 participants of 18 

population studies contributing to the International Glaucoma Genetics Consortium (IGGC) led to the 

identification of 8 genome-wide significant loci for IOP, the majority of which demonstrated significant association 

with POAG in independent studies(74). However, these loci explained only a very small proportion of IOP 

variability. Two recent studies with considerably larger sample sizes have identified over 100 more IOP-loci 

associated loci, demonstrating the importance of a large sample size in GWAS of complex traits to identify small 

effect associations(43, 76).  

The first of these two studies to report was a multi-ethnic GWAS for IOP in 69,756 individuals of the GERA 

cohort(43). IOP measurements were taken as part of routine clinical care, and only measurements taken prior 

to any IOP-lowering treatment were considered. For participants with multiple longitudinal IOP measurements, 

the median value was considered; this approach was demonstrated to be more effective than just considering 

IOP measured at one random timepoint(43). The GERA analysis replicated the majority of previously reported 

IOP-associated loci, demonstrating the validity and utility of using opportunistic IOP measurements in a clinical 

cohort rather than protocoled measurements in a population-based study. Reporting shortly after GERA was a 

GWAS of IOP in European participants of the UK Biobank study(76). Results from the UK Biobank GWAS were 

then meta-analysed with IOP GWAS results from the EPIC-Norfolk Eye Study(77) and the aforementioned IGGC 

study(75); the combined analysis included 139,555 participants(76).  An independent group of investigators also 

conducted a GWAS for IOP in UK Biobank and found similar results(17).  

The GERA analysis identified 47 genome-wide significant loci, 40 of which were novel(75), and the UK 

Biobank analysis identified 112 genome-wide significant loci, 68 of which were novel(76). The scale of this 

discovery represents a step-change in our knowledge of IOP genetics. The identified loci explained 17% of the 

variance of IOP in the EPIC-Norfolk Eye Study(76), which is substantial given the variability of IOP caused by 

diurnal changes and measurement error alone. There is considerable overlap between the GERA and UK 

Biobank discovered loci. A meta-analysis of the two studies has not be done to date. 

Among the significant results were loci at genes previously associated with POAG, but not previously known 

to influence IOP (AFAP1, TXNRD2, ATXN2)(43, 76). This strongly suggests that genetic variation at these genes 

mediate their increased POAG risk via raised IOP, rather than via direct effects on retinal ganglion cells. Also 

among the significant results were four loci previously reported as conferring susceptibility to primary angle-

closure glaucoma (PLEKHA7, HGF, FERMT2, GLIS3)(43, 76) suggesting that angle-closure mechanisms may 

contribute to variation in IOP even within the normal range.  

One of the most significant novel findings was a locus at the Diacylglycerol Kinase Gamma (DGKG) gene 

(P=8.9x10-52 in UK Biobank meta-analysis). Diacylglycerol is involved in adenosine receptor signalling, which is 

known to be involved in IOP regulation and is a reported target for IOP-lowering therapy(78). More generally, 

DGKG is involved in lipid metabolism, adding weight to the growing evidence that lipid metabolism is a key 

component of IOP regulation(4).  
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There were multiple IOP-associated loci at genes previously associated with Mendelian childhood glaucoma 

(FOXC1, PITX2, LMX1B, LTBP2)(43, 76). Other IOP-associated loci were at genes involved in ocular 

development (SIX3, ADAMTS18, MEIS1), eye size (RSPO1) and iris architecture (TRAF3IP1)(76). Furthermore, 

genes involved in developmental processes in general were significantly enriched in the UK Biobank results(76). 

These findings suggest common genetic variation may contribute to developmental or anatomical changes that 

are insufficient to cause glaucoma in childhood but that may lead to a decompensation of IOP in later adult life 

and potentially POAG. 

C. Post-trabecular meshwork IOP regulation 

One of the most striking findings from both IOP GWAS studies was evidence for an important role of vascular 

endothelial processes in IOP regulation. Genes involved in “vascular endothelial cell morphology” were the most 

significantly enriched gene-set in GERA(43) and genes involved in “angiogenesis” were the most significantly 

enriched gene-set in the UK Biobank study(76) (both studies used different approaches for examining 

enrichment). In contrast to the trabecular meshwork (TM) which is comprised of epithelial cells, Schlemm’s canal 

and collector channels are composed of endothelial cells which have a similar phenotype to lymphatic 

vessels(79). The major drivers for the vascular endothelial gene-set enrichment were variants in ANGPT1, 

ANGPT2 and VEGFC.  ANGPT1 and ANGPT2 are primary TEK (Receptor Tyrosine Kinase) ligands. Mutations 

of TEK cause primary congenital glaucoma(80). This suggests that, while rare mutations affecting angiopoietin-

TEK signalling can cause congenital disease, more common genetic variation with less deleterious functional 

consequence can cause less severe changes and a decompensation of IOP only manifest in later life. TEK 

receptors are highly expressed in Schlemm’s canal(81), and disruption of angiopoietin-TEK signalling in mice 

causes absent Schlemm’s canal development(82). VEGF-C increases VEGFR-3 tyrosine kinase signalling in 

lymphatic endothelial cells and anterior chamber delivery of VEGF-C in adult mice induced Schlemm’s canal 

growth and a sustained reduction in IOP(79). Put together, there is clear emerging evidence that post-TM 

structures (Schlemm’s canal and collector channels) are critical for IOP regulation, challenging the dogma that 

POAG is primarily a disease of TM. There also appears to be potential for regulators of lymphangiogenesis as 

targets for glaucoma therapy. 

D. Association of IOP loci with POAG 

It is important to determine whether genetic variants associated with higher IOP also confer higher risk for 

POAG. The GERA investigators tested their IOP-associated loci for association with clinically coded POAG in 

the same GERA cohort; 89% of variants were directionally consistent with IOP-increasing risk alleles having an 

odds ratio estimate >1 for POAG(43). In the UK Biobank study(76), association of the IOP loci with POAG was 

examined in 3,853 cases and 33,480 controls from the independent NEIGHBORHOOD study(13). There was a 

strikingly linear trend between the effect estimates for IOP from UK Biobank and POAG from NEIGHBORHOOD 

when plotted(76). Additionally, 48 variants were nominally associated with POAG (P<0.05), of which 14 were 

significant at a Bonferroni-corrected threshold(76).  
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E. Prediction of POAG using IOP-associated loci 

The UK Biobank investigators also examined whether the IOP loci, together with age, sex and three known 

POAG-associated polymorphisms showing no evidence of association with IOP (at MYOC, SIX6 and CDKN2B-

AS1), were predictive of POAG in NEIGHBORHOOD using a regression-based model. The results were 

particularly striking for high-tension POAG with an area under the receiver operating characteristic curve (AUC) 

of 76%(76). This suggests that genetic markers, measurable at birth, have a substantial ability to predict later 

life IOP and risk of POAG, opening up the possibility of targeted population screening to aid earlier POAG 

detection and prevention of sight loss. 

The potential for the UK Biobank IOP loci to aid detection of POAG was also examined in 1,734 cases of 

advanced POAG and 2,938 controls from the Australian and New Zealand Registry of Advanced Glaucoma 

(ANZRAG)(17). MacGregor and colleagues derived a polygenic risk score based on their identified IOP loci and 

the CDKN2B-AS1 and SIX6 loci. Participants in the top decile of this score were at 5.6 (95% CI 4.1-7.6) times 

increased odds of advanced POAG compared to participants in the bottom decile(17).  

F. Genetic associations with central corneal thickness 

While a thinner central corneal thickness (CCT) has been associated with increased POAG 

incidence(83), progression(84) and conversion from ocular hypertension(85), it remains uncertain whether the 

relationship is biologically causal, or whether it is driven by corneal artefact influencing IOP measurement. A 

landmark GWAS for CCT was reported in 2013 and identified 16 genome-wide significant loci; only one of these 

loci (at FNDC3B) was found to be associated with POAG and in an unexpected direction (the CCT-decreasing 

allele was protective for POAG)(86). More recently, a larger GWAS of over 25,000 European and Asian 

participants identified 44 loci associated with CCT at genome-wide significance(87). None of these loci were 

significantly associated with POAG (comparing 5,008 cases with 35,472 controls) after correction for multiple 

testing(87). Furthermore, there was no significant correlation between the CCT and POAG effect sizes for the 

CCT-associated variants (r=−0.17, P=0.2). This is in contrast to the significant correlation identified between 

CCT and keratoconus effect sizes (r=−0.62, P=5.3×10−5)(87). Another GWAS of CCT and other corneal 

parameters was recently conducted in an Icelandic population; similarly, no significant CCT-associated loci were 

associated with glaucoma (either POAG or primary angle-closure glaucoma)(88). Put together, the evidence 

suggests that CCT is not an endophenotype for POAG and supports the hypothesis that the CCT-glaucoma 

association observed in studies is due to IOP measurement artefact rather than biological causality. 

G. Genetic associations with optic disc parameters 

Initial glaucoma-related GWAS suggested that VCDR is a good endophenotype for glaucoma. The 

CDKN2B-AS1 locus was first reported in a VCDR GWAS(55) before being identified as POAG-associated 

subsequently(5). Following this, large VCDR GWAS meta-analyses have identified over 50 associated loci, but 

only 9 of these were associated with POAG(75). This suggests that some of the genetically-driven variation in 

population VCDR is reflecting non-glaucomatous processes and may instead reflect baseline anatomy, for 
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example. Similarly, many genome-wide significant loci have been identified for optic disc rim area and cup area, 

but the majority of these do not demonstrate significant association with POAG(75). To date, there have been 

no reported genome-wide significant associations with circumpapillary retinal nerve-fibre layer thickness, though 

a recent study demonstrated a significant association between a known POAG-risk variant in SIX6 and retinal 

nerve fibre layer thickness in a European adult population(89).  

3. The road to personalized glaucoma management 

A. Risk prediction and screening 

Identifying glaucoma disease-related genes makes it possible to use disease associated or causative 

genetic variants to assess populations at risk. For glaucoma pre-symptomatic screening is particularly important, 

as patients are unaware of disease-related visual symptoms until later stages when the optic nerve is severely 

damaged, and treatment is not optimally effective. Current approaches for population screening involving IOP 

measurement, and/or optic nerve evaluation, are expensive and may only be effective for targeted screening of 

high risk groups(90). The discovery of genetic variants related to disease risk allows for development of a gene-

based screening approach that could identify patients at increased risk.  

Substantial progress has been made toward gene-based screening. For patients with disease onset prior to 

age 50, disease causing mutations in genes known to cause early-onset forms for glaucoma can be detected by 

DNA sequencing tests(91, 92). Families and patients found to have a mutation in one of these genes can benefit 

from informed genetic counseling and treatment and surveillance plans tailored to individual disease risk(93). A 

limitation is the relatively low diagnostic yield (20%) after testing for the genes currently known to cause early-

onset glaucoma(92), suggesting that further work in this area would be fruitful. 

Genetic screening to detect patients at high risk for adult-onset (after age 50) POAG also appears promising. 

Recent GWAS for POAG and related traits have successfully identified over 100 loci associated with disease 

risk have a receiver operator characteristic of up to 76%, suggesting that genetic risk factors can be an effective 

tool for discriminating POAG cases from controls(76). More recently genetic risk scores have demonstrated that 

cases with an excess of risk variants have earlier onset of disease(94) and greater risk of disease 

development(17) compared to individuals with fewer risk alleles. More comprehensive polygenic risk scores 

comprised of larger numbers of POAG risk alleles may yield sufficiently accurate tests that screening based on 

genetics alone may be useful.  

B.  Gene-based therapies 

Glaucoma gene discovery also makes possible the design of novel therapies that target the actual molecular 

events responsible for disease and recent advances in methods for gene-replacement and CRISPR/cas gene-

editing support the feasibility of gene-based therapies for glaucoma in the relatively near future(95-97). Currently 

there are no FDA approved gene-based methods for glaucoma, however several strategies have been 

suggested by recent research.  
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Genetic defects in MYOC, coding for Myocilin are known to cause early-onset open-angle glaucoma 

inherited as a dominant trait. Disease-causing mutations are known to cause protein misfolding and cell toxicity 

due to endoplasmic reticulum accumulation(98). Recent studies have shown that removing myocilin by 

CRISPR/cas gene editing can lower IOP in transgenic mice carrying a deleterious MYOC mutation(97). This 

very promising result suggests that CRISPR/cas could be used to target MYOC mutations in humans. Similarly, 

recent studies identifying TEK and ANGPT1 mutations in humans with early-onset glaucoma and due to 

abnormal Schlemm’s canal development and function suggest that restoring TEK signaling function could be 

therapeutic(80, 99). As ANGPT1 has been associated with IOP and POAG in humans(14, 76), therapies 

targeting TEK signaling could be useful for both early-onset and adult-onset disease.  Other early-onset 

glaucoma genes may also be targets for gene-based therapies including CYP1B1, known to cause recessive 

congenital and juvenile onset glaucoma(100), and PAX6, responsible for aniridia(101). 

Genetic variants associated with POAG appear to impact a number of different biological processes and 

pathways and several of these could suggest effective therapeutic approaches. Four POAG and IOP loci include 

genes known to be involved in lipid metabolism (ABCA1, CAV1, DGKG, ARHGEF12)(12, 76). Interestingly recent 

studies support protective effects of statin therapy on glaucoma(102). Collectively, these results suggest that 

therapies targeting lipid and cholesterol metabolism could be effective treatment strategies, especially in patients 

with high tension glaucoma. Another potentially interesting therapeutic target is mitochondrial function. TXNRD2, 

thioredoxin reductase 2, codes for a mitochondrial protein required for reducing oxidative stress and maintaining 

redox homeostasis. TXNRD2 genomic variants have been associated with both POAG and IOP(13, 76) and in 

the UK Biobank IOP GWAS 4 other genomic loci related to mitochondrial function were also associated with IOP 

(ME3, VPS13C, GCAT, PTCD2). These results suggest that mitochondrial function can contribute to IOP 

variation and that maintaining mitochondrial function could help regulate IOP and reduce POAG risk. Further 

discovery of POAG associated risk variants will identify additional targets for POAG gene-based therapies with 

effective and even curative potential. 
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 Table 1. Primary open-angle glaucoma (POAG) loci discovered by GWAS 

Population Case/control (N) New Loci Reference 

Discovery Replication 

Iceland 1,263/34,877 2,175/2,064 (European) 
299/1607 (Chinese) 

CAV1/CAV2 Thorliefsson et al. Nat. Genet. 2010 

Australian 
(ANZRAG) 

615/3,956 892/4,582 (Australian) CDKN2BAS, TMCO1 Burdon et al. Nat. Genet. 2011 

European ancestry 
(NEIGHBOR) 

2,170/2,347 976/1,140 (GLAUGEN) SIX6, 8q22 (NTG) Wiggs et al. PLoS Genet. 2012 

Japanese 1,394/6,599 1,802/7,212 CDKN2BAS, SIX6 Osman et al. Hum. Mol. Genet. 2012 

Australian 
(ANZRAG) 

1,155/1,992 3,548/9,496 (Australian and 
US European) 

ABCA1, AFAP1, GMDS Gharahkhani et al. Nat. Genet. 2014 

Chinese 1,007/1,009 1,899/4,965 (Chinese and 
Singaporean Chinese) 

ABCA1, PMM2 Chen et al. Nat. Genet. 2014 

African-American 
and Hispanic (WHI) 

1,720/6,067 
(African-
American WHI) 

489/2,685 (Hispanic WHI) DNAJC24-ELP4,  
TRIM9-TMX1,  
FAM86A-RBFOX1 

Hoffmann et al. Hum Mol Genet. 
2014 

Multiethnic 3,504/9,746 9,173/26,780 (multiethnic) TGFBR3, FNDC3B Li et al. Hum. Mol. Genet. 2015 

European 
(Rotterdam) 

8,105 
(population-
based) 

7,471 population-based 

1,225/4,117 

ARHGEF12 Springelkamp et al. Hum. Mol. 
Genet. 2015 

European ancestry 
(NEIGHBORHOOD) 

3,853/33,480 3164/9242 (Australian, 
European, Singaporean 
Chinese) 

TXNRD2, ATXN2, 
FOXC1, GAS7 

Cooke Bailey et al. Nat. Genet. 2016 

Australian 
(ANZRAG) 

3,071/6,750 3,853/33,480 US European 
ancestry (NEIGHBOR) 

MYOF/CYP26A1, 
LINC02052/CRYGS, 
LMX1B, LMO7 

Gharahkhani et al. Sci Rep. 2018 

Japanese 7,378/36,385 1,008/591 (East Asians) 
5,008/35,472 (Europeans) 
2,341/2,037 (Africans) 

FNDC3B, ANKRD55-
MAP3K1, LMX1B, 
LHPP, HMGA2, MEIS2, 
LOXL1 

Shiga et al. Hum Mol Genet. 2018 

Multiethnic 
(GERA and UKB) 

4,986/58,426 
7,329/169,561 

7,329/169,561 (UKB) 
4,986/58,426 (GERA) 

FMNL2, PDE7B, 
TMTC2, IKZF2, CADM2, 
DGKG, ANKH, EXOC2, 
LMX1B, THSD7A, 
ANGPT1, 
CTTNBP2/LSM8, 
BICC1, ELN, TCF12, 
PLCE1, LMO4/PKN2-
AS1, COL11A1, PNPT1, 
MEIS1, ACOXL, DGKD, 
RARB, TSC22D2, LPP, 
BNIP1, PKHD1, 
TMEM181, FAM120B, 
SEMA3C/CACNA2D1, 
PRKAG2, FBXO32, 
MADD, NEAT1, 
LINC00540, VPS13C, 
CASC20, CHEK2     

Choquet et al. Nat Commun. 2018 

Multiethnic 
(UKB 
and ANZRAG) 

11,018/126,068 NA CADM2, THSD7A, 
ANGPT1, ANKH, 
EXOC2, BICC1, 
CTTNBP2, 
LOC101929614, 
LOC105378153, 
MECOM, CFTR, ETS1, 
LOC107986141, 
LOC107986142; 

MacGregor et al. Nat Genet. 2018 

African 
(GIGA and BioMe) 

1,113/1,826 4,588/4,543 EXOC4 Bonnemaijer et al. Hum Genet. 2018 

African (ADAGES) 946 advanced 
POAG/ 1,709 

NA EN04 Taylor et al. Ophthalmology 2019 

Adapted and updated from Wiggs and Pasquale, Hum Mol Genet. 2017. Abbreviations: ANZRAG, Australian and New 
Zealand Registry of Advanced Glaucoma; NEIGHBOR, National Eye Institute Glaucoma Human Genetics Collaboration; 
GLAUGEN, Glaucoma Genes and Environment; NTG, normal tension glaucoma; NEIGHBORHOOD, National Eye Institute 



20 
 

Glaucoma Human Genetics Collaboration Heritable Overall Operational Database; WHI, Women’s Health Initiative; GERA, 
Genetic Epidemiology Research in Adult Health and Aging; UKB, UK Biobank; GIGA, Genetics In Glaucoma patients from 
African descent study; ADAGES, African Descent and Glaucoma Evaluation Study. Note: Loci that are underlined still await 
validation in external cohorts. 

 


