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Abstract 

Tuberculosis (TB) remains a public health problem in cities in high-income, low-incidence 

countries, such as London, where it disproportionately affects particular population groups 

and, as such, more effective intervention strategies are needed. With whole genome 

sequencing (WGS) data being increasingly used for TB epidemiology, I investigated how 

WGS data alongside statistical inference and mathematical modelling can improve our 

understanding of transmission in these population groups. By reviewing the literature on 

WGS in TB epidemiology studies, I concluded that whilst genomic data can improve our 

understanding of TB transmission, including epidemiological data alongside is helpful for 

mitigating uninformative genomic data or strengthening conclusions. I then employed a 

statistical inference method on sequencing data from a Canadian outbreak and used the 

inferred transmission network to determine that the outbreak had ended, demonstrating the 

use of genomic epidemiology in public health. As we must analyse genomic data using 

bioinformatics and sometimes phylogenetic methods before we can interpret it for 

epidemiological purposes, I undertook bioinformatics analysis of 415 genomes from a 

London TB outbreak and attempted to create a timed-phylogenetic tree that could be used 

for genomic epidemiology inferences. However, the data proved difficult to interpret resulting 

in a tree with little confidence, potentially due to little variation amongst the sequences. 

Finally, I constructed a novel mathematical transmission model to recapitulate the London 

outbreak and investigate public health interventions to conclude that despite loss-to-follow-

up being considered an important factor amongst the cohort anecdotally, focusing 

interventions on reducing loss-to-follow-up or increasing re-engagement does not 

significantly reduce the number of outbreak cases. Finding infectious cases early achieves 

the most impact. In conclusion, combining epidemiological and sequencing with novel 

quantitative analysis using statistical inference and transmission modelling, provides useful 

insight into the spread of TB in urban outbreaks and illustrates the limitations of new 

approaches and data. 
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Impact statement 

The research presented here may prove useful within public health studies of infectious 

disease. In my systematic review, I explored why and where there may be limitations to the 

use of whole genome sequencing for investigating TB transmission. This will prove a useful 

resource for academic research to help in designing and evaluating studies of TB using 

whole genome sequencing, a now popular approach. I explore two new methods, a 

statistical inference method and mathematical model, for studying TB transmission for public 

health purposes. The statistical inference method seeks to infer the infection dates of TB 

cases, an often hidden aspect of TB disease, and is improved in this thesis. The finding of 

infection dates allows for the studied TB outbreak to be declared over, which is important for 

TB public health teams worldwide as it allows them to stop unnecessarily using resources 

for the outbreak. The mathematical model developed in the final chapter of this thesis seeks 

to model a (previously unmodelled) large ongoing TB outbreak and determine which of 

several interventions may prove the most effective. The results of the model could be 

applied in future epidemics and the model may be used to study other outbreaks in similar 

settings.   
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1 INTRODUCTION 

Tuberculosis (TB) is often considered a disease of the poor or of the past, it is thus often 

assumed that high-income, developed countries are free from the burden of this ancient 

infectious disease. However, with over 5,000 TB cases in the UK in 2017 [1], this is far from 

the case. Although there has been a year-on-year decrease in the number of cases in the 

country since 2011, some boroughs in London have rates comparable to high-incidence 

countries: more than 40 cases per 100,000 in Brent and Newham [2]. Additionally, TB 

disproportionately affects particular population groups; the proportion of TB cases with at 

least one social risk factor, classed as current alcohol misuse that would impact on the 

patient’s ability to take treatment, current or history of drug misuse, homelessness and/or 

imprisonment, has increased from 9.4% in 2014 to 12.6% in 2017 [1]. This would suggest 

we need a different approach for tackling the TB epidemic in these small pockets of 

communities, and perhaps a better understanding of what is driving TB outbreaks in low-

incidence countries would help find a solution.  

With the advent of whole genome sequencing (WGS), now is the perfect time to use the 

ever-increasing amount of genomic data to uncover more about transmission patterns and 

determine if it can provide better insights into the best way to tackle the TB epidemic. 

Namely, we need to establish how best to direct our current control efforts. In this thesis I 

investigate questions around TB control using whole genome sequencing, statistical 

inference, and mathematical modelling, using data collected from real-world TB outbreaks in 

two low incidence TB countries, the UK and Canada. 

 BIOLOGY OF TB 

The bacterium Mycobacterium tuberculosis (M. tb.) is the causative agent of most human TB 

disease. Transmitted through the air via droplet nuclei expelled whilst coughing, singing, or 

sneezing [3], it primarily affects the lungs (pulmonary disease), and this is when it is in its 

most communicable form. For a proportion of cases, the bacteria will affect the body outside 

of the lungs (extra-pulmonary disease), for example the spine [4].  

Once infected with the bacterium, the body’s immune system fights the invading bacteria. 

Some individuals are able to eradicate the infection entirely; in others the immune system 

cannot clear the infection but manages to contain the bacteria within granulomas, collections 

of immune cells and M. tb. (which may be dead) [5]. If successfully contained, they can 

remain latently infected until the end of their lives and never experience active TB disease. 

For a small proportion of cases, often quoted as 5-10% although recently debated [6, 7, 8], 

active TB disease will develop when the immune system is no longer able to contain the 

bacteria, although this may be weeks or decades after infection [6]. Those with impaired 

immune systems, e.g. HIV-positive individuals, have a higher risk of developing active TB 
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[9]. The mechanisms behind eradication, containment, long latency periods and the 

breakdown of immune response are an area of interest for research as being able to 

enhance the body’s innate immune response to TB could provide a viable method for control 

[10]. 

When individuals progress to active TB disease shortly after infection, defined to be within 

two (or three years), they are classed as having primary TB disease. We consider those 

progressing after a long period of latency (more than two years) to have reactivated, 

secondary, or post-primary TB. This may be as a result of endogenous reactivation, where 

the immune system breaks down releasing the bacterium from the granuloma, or 

exogenous, where the individual is re-infected [11, 12]. 

There are multiple methods that can help diagnose a patient with pulmonary TB, the most 

common are via sputum culture, sputum smear, or chest x-ray and these are ideally used in 

conjunction. Sputum culture and sputum smear require a sputum sample, produced via 

coughing up phlegm, which is then examined for the presence of M. tb., only then is the 

case considered bacteriologically confirmed. It is possible for the smear and culture to 

produce contrasting results [13, 14], and even both to come back negative for the presence 

of M.tb. but the individual still classified as having TB via another means [15]. Thus, we often 

describe TB cases as having sputum/culture negative/positive TB, especially as this factor 

can determine certain features of the TB disease for that individual, e.g. the infectiousness 

of the patient [16, 17]. Radiological findings of lesions on the lungs can also suggest 

infection with TB [18]. Once diagnosed, the typical line of treatment for TB as recommended 

by the National Institute for Health and Care Excellence (NICE) is a six-month course of 

antibiotics, isoniazid and rifampicin supplemented by pyrazinamide and ethambutol in the 

first two months [19]. If the disease is bacteriologically confirmed we can test the sputum 

sample for drug resistance, which may result in an alternative treatment course, should the 

bacterium be resistant to one of the drugs used for treatment. 

Once an individual diagnosed with bacteriologically confirmed TB has finished a prescribed 

course of treatment, we consider them to have been officially cured of (drug-sensitive) TB if 

they are culture negative/smear negative in the last month of treatment and on at least one 

previous occasion [20].  

 GLOBAL TB 

Despite the existence of anti-tuberculous drugs [21], a vaccine [22], and multiple, albeit 

imperfect, methods for detection and diagnosis [23], TB remains a devastating problem 

globally with an estimated 10.4 million people contracting TB and 1.7 million dying from the 

disease in 2016 [24]. In particular, low income countries, such as Liberia with an estimated 

TB incidence rate of 308 per 100,000 in 2016 [24], are affected to a greater extent than high 

income countries. These figures have earned TB the title of the world’s deadliest infectious 
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disease, clearly highlighting that there is a serious need to address the epidemic. The ability 

of M. tb. to develop drug resistance [25], remain latent for decades [26], and supposedly 

establish an infection after brief exposure [27], have all contributed to its success in evading 

eradication. 

Numerous initiatives around ending the TB epidemic exist worldwide, such as the World 

Health Organization’s (WHO) End TB strategy [28], which outlines a goal to dramatically 

reduce suffering and death due to TB by 2035, similar to the United Nations’ Sustainable 

Development Goals (Goal 3: Good health and well-being) . Others include the Zero TB 

initiative [29] and the Stop TB partnership [30]. These initiatives often centre on increasing 

the rates of diagnosis and treatment, improving distribution of drug, vaccine and 

technological resources (especially to low-income countries), and finding better drug 

regimens, better diagnostics and a new vaccine. The major focus of these initiatives is to 

tackle the TB epidemic in low-income countries with high burdens. 

 TB IN LOW INCIDENCE COUNTRIES 

Whilst developing countries shoulder the largest proportion of the TB burden, high-income 

developed countries, such as the UK, still experience pockets of high incidence, especially in 

large cities [31]. These high incidence rates are mostly thought to be driven by a high 

proportion of migrants from high-incidence countries, immuno-supressed, e.g. HIV-positive, 

individuals, and socially deprived individuals living in crowded and poor sanitary conditions, 

as large, urban cities have a high number of these populations [32, 33]. As a result, one key 

area of control for the TB epidemic in low-incidence countries centres on effective allocation 

and use of resources (medication, technology, etc.) for targeting of these hard-to-reach 

individuals, as opposed to how to afford and obtain the resources foremost, as is the case in 

many developing countries [34].  

Public Health England (PHE), an executive agency of the Department of Health and Social 

Care responsible for safeguarding the public health of the country, has determined its own 

TB strategy for tackling the epidemic, the Collaborative TB strategy for England 2015-2020 

[35]. Their aims are to find cases (and start them on treatment) earlier, increase the number 

of cases finishing their course of treatment, reduce the amount of drug-resistant TB and 

tackle TB in underserved populations (i.e. the hard-to-reach). 

We define hard-to-reach individuals as people who do not engage with the standard 

healthcare system and are difficult to treat [36]. Within a metropolitan city, this may be 

because they have a social risk factor (SRF), such as they take drugs, abuse alcohol, are 

frequently in prison or have no fixed abode, amongst other reasons such as having a 

disability or speaking a different language. As a consequence, in London, numerous 

monitoring indicators are worse in these groups than in those without a SRF: the most 
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deprived 10% of the population have a TB incidence rate more than 7 times higher than the 

least deprived 10%, treatment outcomes are worse (6.5% of those with at least one SRF are 

lost to follow-up at final outcome vs. 3.3% without an SRF), and time to diagnosis is longer 

(33.9% of people with pulmonary TB and a SRF who experienced a delay from symptom 

onset to treatment start of more than four months versus 31.6% of those without an SRF) 

[1]. These individuals therefore often act as an untreated source of infection and potentially 

have large contact networks (i.e. come into contact with or share a common setting with a 

large number of individuals), due to exposure to locales with large mixing populations e.g. 

prisons and homeless shelters. As a result, extra interventions besides the standard are 

necessary to control the epidemic in this group. Standard interventions would consist of 

efficacious treatment and passive case finding, which involves only screening cases (testing) 

for TB when individuals present at a healthcare setting. Extra interventions focus on finding 

and diagnosing people in these groups quickly, using active case finding or contact tracing 

[37, 38], which involves finding more cases through population screening and screening 

contacts of infected cases; encouraging them to take treatment and come to follow up 

appointments, using peer support and cash incentives [39, 40]; and tracing those who 

become lost to follow-up [41, 37]. 

Clearly, even though these efficacious interventions exist, they are only effective and cost-

effective if put into practise correctly. A key priority for public health systems is to use the 

minimal amount of intervention for the maximum amount of gain. In order to maximise the 

effectiveness and cost-effectiveness of interventions, it is crucial to determine where their 

usage would be most beneficial; this may entail targeting a certain geographical location, a 

certain locale (e.g. public houses or churches) or a certain population group. We can 

determine these targets through a good understanding of the biological, environmental and 

social components of TB transmission.  

 TB TRANSMISSION DYNAMICS 

In order to examine TB transmission dynamics (the who, where, when of TB transmission), 

we need to do two things: 

1. Identify transmission – who has infected whom? 

2. Identify patterns by relating data on who infected whom to personal information 

about the individuals 

If we can find patterns, then we can try to identify interventions that might exploit these 

patterns and break the chain of transmission. How we can undertake each of these tasks is 

detailed below.  

 IDENTIFYING TB TRANSMISSION 
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Identifying when transmission has occurred is difficult because we cannot see TB 

macroscopically during transmission and therefore cannot definitively say that person A 

infected person B at time X. Thus, we need to infer the possibility of such transmission 

events using evidence based on the infected individuals (locations visited, length of time 

infected etc.) and their infecting strains of bacteria. 

Traditional epidemiology investigates transmission using evidence based on the individuals; 

examining their demographics, their social lives and their environments and relating these 

factors to the risk of disease [42]. This may involve building a social network of contacts 

(contact network) for the infected individuals, i.e. a “map” of individuals who know those who 

are infected or have some kind of social setting in common with them. These contacts are 

said to have an “epidemiological link”, thus providing a potential for transmission. A lack of 

epidemiological link between infected individuals would then preclude the possibility of them 

having infected each other. This kind of information can be time-intensive to collect as it 

involves fielding questionnaires and sometimes deep investigation in order to identify an 

opportunity where transmission may have occurred, as even brief contact has been found to 

yield the potential for transmission. In addition, it is extremely difficult to obtain a complete 

dataset as some individuals, those who are hard-to-reach in particular (see Section 1.3), will 

not be available or willing to answer the questionnaire, potentially due to illicit activity. To 

compound these difficulties, as it may be decades between infection and active disease [43], 

the likelihood of remembering contacts after so many years is diminished.  

Molecular epidemiology, however, is concerned with the bacteria sampled from the infected 

individuals and tries to determine the possibility of transmission using knowledge of the 

bacterial genomics. The practise uses genotyping data to determine whether bacterial 

samples are genetically similar and therefore may have shared a recent ancestor, this in turn 

suggests that the two individuals the samples were taken from are linked in recent 

transmission [44, 45]. There are a number of difficulties with molecular epidemiology. Firstly, 

it requires a sample, which may not always be obtainable, for example, sputum is the 

primary sample type used for diagnosing TB, but some patients are unable to cough up 

sputum. Secondly, there are numerous types of genotyping methods and they each have 

their own advantages and disadvantages for transmission analysis as explored in the 

following section.  

In Chapter 4, I employ molecular epidemiological techniques on outbreak WGS data to 

explore transmission patterns. 

1.4.1.1 METHODS FOR GENOTYPING TB 

Genotyping involves examining the genetic material of an organism. M. tb. has a DNA 

genome of size roughly 4.4 million base pairs (bp), where variation is mostly generated 

through insertions of small DNA fragments, deletions of small DNA fragments or single base 

mutations (called single nucleotide polymorphisms (SNPs)) as opposed to horizontal gene 
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transfer and recombination. As a result, Mycobacteria are very monomorphic and highly 

clonal, with 99.9% of the DNA sequence of sub-species being identical. An additional 

consequence is that the genome is considered very stable, and slowly changing when 

compared to other bacteria [46], with documented mutation rates from 0.3-0.5 SNP per 

genome per year [45, 47, 48]. 

M.tb. has co-evolved with man over the past 40,000 years, with the oldest known case of 

molecularly confirmed (found mycobacterial DNA) TB disease to have been estimated at 

9,000 years ago [49]. As man migrated from the Horn of Africa, TB migrated also and over 

time the species split into multiple lineages [50]. As a result, different lineages are correlated 

with geography; often resulting in lineages being named after the locations in which they are 

endemic, such as the Euro-American and East Asian lineages [51, 52]. However, as global 

travel has become commonplace, the boundaries around this have become more blurred. 

Three core genotyping methods have historically been used for M. tb: Restriction fragment 

length polymorphism (RFLP), mycobacterial interspersed repetitive units – variable number 

tandem repeats (MIRU-VNTR), and spoligotyping (see Table 1.1). They operate by 

examining certain sections of the mycobacterial genome that form distinct patterns, for 

example the presence of insertion elements (IS6110 RFLP), and then representing these 

patterns in a form, such as a string of numbers (representing the number of repeats present 

at certain loci), which can be used to compare two genomes. 

However, the granularity of these methods and the overall homogeneity of M. tb. means that 

the methods cannot always identify differences between strains, leading to the conclusion 

that potentially unrelated strains are closely related. As a result, transmission between the 

hosts is assumed and transmission is often over-estimated [53]. This is because if the 

genetic marker being studied has not evolved enough over time (in accordance with the 

timescale of transmission) then genotypes from samples not linked in transmission will look 

identical or similar, making it difficult to conclusively rule-out the possibility of transmission 

having taken place [54]. WGS has been considered a solution to this problem.
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Table 1.1 Summary of different genotyping methods used for Mycobacterium tuberculosis strains and their advantages and disadvantages  

Strain typing method What it is? Advantages Disadvantages 

Insertion sequence 6110 

(IS6110) Restriction 

fragment length 

polymorphism (RFLP) 

Determines the position and number 

of copies of IS6110. Digested DNA is 

run on a gel and the copies produce a 

banding pattern 

More discriminatory than 

spoligotyping or MIRU-VNTR 

Requires weeks of culturing. Not very reproducible  

Spacer oligonucleotide 

typing (spoligotyping) 

Looks for presence of spacer 

sequences in a particular region of the 

genome. Produces a binary code that 

is converted to its octal equivalent 

Reproducible. Requires only small 

amount of sample. Quick 

Not very discriminatory 

12/15/24 Mycobacterial 

interspersed repetitive 

units – variable number 

tandem repeats (MIRU-

VNTR) 

Number of tandem repeats (repeats 

adjacent to each other) at 12-, 15- or 

24-loci in the genome. Produces a 

numerical code 

Reproducible. Requires small 

amount of sample. Quick. More 

discriminatory than spoligotyping 

Less discriminatory than IS6110 RFLP 

Whole genome 

sequencing (WGS) 

The nucleotide sequence for the entire 

length of the genome. Samples are 

compared to a reference strain and 

single nucleotide polymorphisms 

(SNPs) determined 

Most discriminatory of all the 

methods 

Analysis requires high skillset and specialist 

software. More expensive than other methods 
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1.4.1.1.1 WHOLE GENOME SEQUENCING 

Whereas other methods look only at certain areas of the genome that may exhibit some 

genomic signal, WGS examines the genome in its entirety at the very finest level of detail - 

the building blocks of the entire genome - therefore any and all differences between two 

genomes can be compared, base by base. At the time of beginning this thesis (October 

2014), the increased availability of WGS was advancing the field of molecular epidemiology 

[55] by permitting discrimination between bacterial (and viral) strains that are 

indistinguishable using other methods and therefore providing a superior method for 

revealing transmission networks. 

Since the advent of WGS into the field of molecular epidemiology, there have been high 

expectations for the insights that it can bring to the understanding of TB [56]. The ability to 

inspect the raw sequence data means that all genomic variation can be identified, giving 

WGS a clear advantage over molecular genotyping methods, which have struggled to 

distinguish between closely related M. tb. strains (due to its slow molecular clock) [43]. The 

increased discrimination is expected to provide better answers to questions of genomic 

relatedness and, by extension, the transmission of strains [57]. 

WGS usually involves first culturing M. tb. from a patient sample, e.g. sputum, and then 

extracting the DNA (although this can be done culture-free [58]). The DNA is then broken up 

into short fragments of known length, which could vary from 50 to 500 bp [59]. Polymerase 

chain reaction (PCR) is then used to amplify the DNA fragments and make many copies, 

which are then sequenced using high-throughput next-generation sequencing technologies 

from companies such as Roche and Illumina [60]. The result after sequencing is millions of 

short sequences of As, Ts, Gs and Cs called “reads”. These then need to be reconstructed 

to recover the original genome sequence using bioinformatics. 

Despite having several advantages over molecular genotyping, WGS is still hindered by the 

homogeneity of the M. tb. genome [61], as even though it is possible to examine the genome 

at the finest scale, if there is no variation between genomes then we are still unable to make 

certain inferences about transmission. As well as this, ambiguity around the best approach 

to bioinformatics analysis and interpretation of diversity in the genome has made it difficult to 

compare studies and produced conflicting results. As a result, WGS has not brought the 

enlightenment that was envisaged for public health. In Chapter 3, this thesis addresses 

some of these issues by reviewing some of the methods of WGS analysis and what results 

we can realistically draw from such analyses for public health interventions. 

1.4.1.1.1.1 PHYLOGENETIC TREES 

WGS data can be used for numerous types of investigation; one can look for mutations that 

confer antibiotic resistance, the number of SNP differences between a group of genomes or 

identify species and/or subtype of an isolate. It can also be used to build a phylogenetic tree, 
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a pictorial way of representing the relationships between multiple whole genome sequences 

which in the past few years, has increasingly been used to investigate transmission. One 

method for doing this is employed in Chapter 4 of this thesis.  

Phylogenetic trees can show how different organisms are related through either shared 

physical characteristics or genetics. The anatomy of a tree consists of branches and tips: 

each tip represents an organism and the tips are at the end of branches. Two branches are 

joined together at a node, which represent their most recent common ancestor (MRCA). 

Some trees also contain a “root”, meaning a unique node where the earliest splitting occurs; 

this denotes the MRCA of all the samples in the phylogenetic tree, if no such root is present 

then the tree is considered unrooted. The most basic interpretation of a phylogenetic tree is 

that the more recent a common ancestor between two organisms is, the more closely related 

they are [62]. 

Phylogenetic trees can be constructed using several different methods and metrics [63]. For 

example, the simpler variety involves calculating the (genomic) difference between all the 

organisms using a certain measure (e.g. SNPs) and constructing a distance matrix. An 

algorithm then seeks to build a tree which minimises the distances between all the 

organisms, for example neighbour-joining. These do not use an evolutionary model, i.e. a 

substitution model that describes how the bases in the sequences change over time and is 

typically stated as rates of change between any two given bases, say from an A to a G. 

These can vary from all being identical to each being different. More complicated methods, 

such as maximum likelihood (ML) trees, do include evolutionary models and work by 

assessing the probability of the sequence data given all possible phylogenetic trees and a 

substitution model, and then choosing the tree that maximises this probability. Finally, there 

are Bayesian methods for building trees, which also assume an evolutionary model but seek 

to construct a tree after sampling. 

Trees can be broadly split into two types: timed versus untimed. Typically, the scale of a 

phylogenetic tree is based on genomic distance (untimed), meaning that the length of a 

branch is proportional to genomic distance. However, timed trees are on a timescale and do 

so by relating genomic distance to evolutionary time via a molecular clock i.e. the idea that 

genomic variation accumulates over time in some consistent way.  

 TB TRANSMISSION PATTERNS 

There are multiple levels at which to examine an outbreak of disease. Firstly, we could think 

about the individual level: the mode of transmission, the host characteristics, the patient’s 

contacts. Then there is the outbreak level: where we can take all the aggregate information 

about the individuals linked in transmission and determine if there are any overarching 

patterns that correlate with other data such as location or drug resistance profile. As an 

example, on an individual level we would want to monitor a patient’s treatment to ensure that 
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they are taking their treatment course correctly. A result of that may be identifying that that 

individual is frequently missing doses or become lost to follow up. If we gather that 

information on all patients, we would get a good idea of the proportion of patients that do not 

take their treatment correctly and therefore are at risk of continuing to be infectious, a useful 

input into a model of the outbreak. It may also be found that the lost to follow up individuals 

are all from the same area or are a similar age; information like this could help refine the 

implementation into the model and potentially identify a way of targeting interventions in this 

population. 

Once we can identify transmission through traditional and molecular epidemiology methods 

as mentioned in Section 1.4.1, we can build transmission networks. Transmission networks 

are a way of presenting infectious disease cases alongside who infected whom, usually 

depicted with the cases as nodes and transmission represented as arrows from one node to 

another. It is then through identifying transmission events and building transmission 

networks that then patterns can be identified by examining the additional information 

available for the cases. These patterns can then be used for targeting interventions, e.g. a 

pattern of TB occurring between patients at hospitals would suggest nosocomial 

transmission is common in TB, thus a potentially effective intervention would be isolation for 

TB patients at hospitals [64].  

 MODELLING APPROACHES 

Once transmission patterns have been identified they can be used to help determine the 

most effective interventions. This can be done speculatively for example, identifying that a 

large proportion of cases in an outbreak are currently in prison and implementing an 

intervention in prisons, e.g. screening. But ultimately it is preferable if the effect of an 

intervention can be quantified in a rigorous way in order to determine whether it is cost- or 

time-effective. Due to constraints on money and time that would be needed for experimental 

studies to test interventions as well as any potential ethically issues, this is often done by 

constructing a mathematical model [65]. A mathematical model will be built that incorporates 

some or all of the transmission patterns and demographic patterns identified in the outbreak 

population and then different interventions can be implemented to examine where and how 

they may produce the largest positive impact on incidence and/or mortality. This is a 

common use of modelling in public health, which has been employed for many infectious 

diseases [66].  

Of course, the development of a mathematical model involves a plethora of decisions 

around model type, structure, parameter choices, and more. For example, a common 

discrepancy in mathematical models of TB transmission is the implementation of latent TB 

infection; some models include only one latent compartment, others include two 
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consecutively whereas some include two but in parallel [67]. All these assumptions will have 

an impact on the outcome and interpretations. 

The most suitable choice of model would depend on the type of patterns that need to be 

incorporated as well as the level of complexity desired. Some examples of how transmission 

patterns potentially determined from transmission data could influence the design of a 

mathematical model of infectious disease are listed in Table 1.2. 

Transmission pattern Example of model implementation 

Number of secondary infections per person 

is larger amongst those who are non-

adherent 

Separate the infectious population into 

adherent and non-adherent, with a higher 

transmission rate for non-adherent 

Infection mostly occurs between individuals 

of a similar age 

Stratify the population by age and set inter- 

and intra-strata transmission rates, with 

intra-strata rates higher than inter-strata   

Time between being infected and infecting 

others is short  

Set the rate of progression from latent to 

active disease to be large, corresponding to 

a shorter latent period 

Table 1.2 Examples of transmission patterns and their possible implementations  in 

a mathematical model 

The most common type of mathematical model for infectious diseases is the compartmental 

model, where a set of individuals who share some characteristic related to the disease (for 

example they are in a certain stage of disease) are grouped together and there is a flow of 

individuals from one compartment to another as their characteristic changes, e.g. disease 

progresses. The most basic of these models is the Susceptible-Infected (SI) model, where 

individuals are either infected with the disease or not; this can then be extended to the 

common Susceptible-Infected-Removed (SIR) model or even further to include more 

disease stages (e.g. latency, vaccinated or immunity) or separate populations in parallel [68, 

69, 70].  

The compartmental model is a population-based, deterministic model. As a contrast to this, 

there are models which can track individuals in the population (individual-based) and models 

which are stochastic i.e. include random effects to better model real-life where stochasticity 

is inherent and can have a big effect. The choice of which type of model is best for the study 

will rest on keeping the complexity low whilst being able to effectively study the outputs of 

interest. 



Introduction 
 

27 
 

 

Figure 1.1 An example workflow of how whole genome sequencing data can be 

used to inform public health decisions around interventions for a tuberculosis 

outbreak 

Data (yellow boxes) feeds into the analysis steps (blue boxes) and produces the final output 

(purple box) 

 SUMMARY 

With all the aforementioned techniques in mind (bioinformatics analysis, transmission 

analysis, mathematical modelling), it is possible to identify a cohesive workflow that draws 

on all the methods and can be used to better understand TB transmission and use WGS and 

epidemiological data to inform public health decisions (Figure 1.1). This workflow requires 

numerous skillsets, numerous different programming software, multiple datasets, and 

experience with different datatypes. Although these are demanding requirements it has 

many advantages; it incorporates complementary datasets, it can be adapted for use with 

different infectious diseases and includes steps in order to assess quality, sensitivity and 

uncertainty. 

During my thesis, I explore each aspect of this workflow. 
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2 AIMS AND OBJECTIVES 

 AIM 

The overall aim of this thesis was to examine the use of WGS, statistical methods and 

mathematical modelling for understanding TB transmission and evaluate how these methods 

can be used for public health applications.  

 OBJECTIVES 

Objective 1: To systematically review the literature for uses of WGS data to understand TB 

transmission, namely, to answer whether we can use WGS to: 

• distinguish relapse from re-infection 

• confirm or rule out transmission events 

• determine direction of transmission 

and therefore, identify transmission patterns. 

Objective 2: To infer a transmission network with infection timings for a TB outbreak in 

British Columbia, Canada from WGS data using a novel Bayesian inference method and 

interpret the findings for public health purposes. 

Objective 3: To analyse WGS data from a drug resistant TB outbreak in London, UK using 

the same Bayesian inference method to reveal information on transmission patterns useful 

for guiding the public health response. 

Objective 4: To build a mathematical model of TB transmission for the same outbreak in 

London and investigate a number of public health interventions. 

 OUTLINE OF THE THESIS 

The outline of the remaining chapters of this thesis are as follows: 

Chapter 3: Literature review of WGS studies 

This chapter contains a systematic review of the literature for different methods used to 

interpret whole-genome sequencing data for TB transmission and comments on the 

advantages and limitations of each method for investigating certain characteristics of 

outbreaks, for example the patterns of drug resistance or determining re-infection from 

relapse. 

Chapter 4: Bayesian inference method on Canadian TB outbreak 
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This chapter introduces the Bayesian inference method used to infer outbreak transmission 

dynamics from whole genome sequences taken from a TB outbreak in Canada. 

Chapter 5: Phylogenetic analysis of WGS data from London TB outbreak 

This chapter presents the methods for a bioinformatic and phylogenetic analysis of whole 

genome sequencing data of a large drug-resistant TB outbreak. 

Chapter 6: Mathematical modelling and analysis of TB outbreak interventions 

This chapter contains an explicit description of a mathematical model used to describe an 

outbreak of TB in London and present the effects of different interventions. 

Chapter 7: Discussion and conclusion 

This chapter discusses the results of all the chapters and the potential for future work and 

presents the conclusions from all aspects of the thesis. 
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3 REVIEW OF APPROACHES USED TO INTERPRET 

WHOLE GENOME SEQUENCING DATA FOR 

TUBERCULOSIS TRANSMISSION (OBJECTIVE 1)  

Since the advent of cheaper and faster genome sequencing, the use of sequencing data in 

epidemiological investigations of infectious diseases has increased dramatically [71]. PHE 

now routinely uses WGS to investigate clusters of potential TB transmission [72] and the use 

of more traditional typing methods has all but been phased out. Whilst more genomic 

information is always better than less, WGS is only useful if we can understand the data and 

what it means for transmission, drug resistance, etc. For sequencing data, this relies on 

having confidence in our bioinformatic and phylogenetic analyses and being aware of the 

consequences of our assumptions, and therefore requires training and retooling for those 

wanting to explore transmission with these data. In this chapter, I aim to understand how 

different bioinformatic and phylogenetic approaches have been used to infer aspects of 

transmission dynamics that are useful for public health purposes and outline the limitations 

of these methods. 

To do this, a systematic review of the literature was performed. This involved comprehensive 

searches of multiple electronic databases for studies that presented methods used to 

interpret WGS data for investigating TB transmission. Two authors independently selected 

studies to be included and extracted data. Due to considerable methodological 

heterogeneity between studies, we present summary data with accompanying narrative 

synthesis rather than pooled statistical analyses. 

This chapter is based on a paper by Hatherell et al. [73]. 

 BACKGROUND 

WGS has been considered an advance in the field of molecular epidemiology; due to its high 

discriminatory power it can distinguish pathogen strains when other typing methods are 

unable [55]. This makes it superior for public health purposes where outbreak surveillance 

(tracking a strain through a population) and outbreak source identification are key goals [74]. 

The increased discriminatory power also allows for better resolution of transmission events 

and their direction, particularly in the case of pathogens that have very little genetic diversity 

[75]. Although WGS can provide these greater insights, it is important to be able to compare 

the results of different WGS studies in order to understand patterns amongst different 

outbreaks. However, the variation in methods for producing, analysing and interpreting 

WGS, in the field of TB epidemiology [57, 76] and infectious disease in general [55, 77, 78], 

makes direct comparison between outbreaks difficult. Here I discuss the different methods 



Review of approaches used to interpret whole genome sequencing data for tuberculosis 
transmission (Objective 1) 

 

31 
 

for examining outbreaks and advantages and disadvantages of methods that may help guide 

the decision to a more standardised method of WGS analysis and interpretation. 

To date, TB molecular epidemiology using WGS has focussed on four aspects [57, 78]: 

identifying chains of transmission; differentiating between relapse and re-infection; 

measuring within-host diversity and its impact on transmission; identifying primary versus 

secondary (acquired) drug resistance. These all play an important role in understanding and 

tackling TB outbreaks in the following ways: 

• Identifying chains of transmission means determining who infected whom within an 

outbreak so that the outbreak progression through the population can be seen. The 

importance of delineating transmission chains for helping to identify larger patterns 

of transmission were briefly discussed in Section 1.4.2. 

• Differentiating between re-infection and relapse involves being able to determine the 

nature of a second case of TB disease and distinguish a new infection separate 

from the original case from a re-activation of the original uncleared case. Both have 

important distinct consequences for public health: re-infection implies ongoing 

transmission, requiring public health action, and suggests a lack of immunity to the 

newly infecting strain or high intensity of exposure [79, 80]. Relapse suggests 

initially inadequate treatment. 

• Measuring within-host diversity refers to being able to detect whether there are 

multiple genomic variants within one host and determine the nature of it, i.e. via 

microevolution or mixed infection. If within-host diversity is not fully captured, 

transmission might be inappropriately ruled out. For example, if an individual co-

infected with two dissimilar strains transmits one of these to a contact, and different 

strains are then sampled from the two patients, these cases would not be identified 

as linked [81]. As a result, it is important we can identify and measure it correctly 

using WGS. 

• Distinguishing between primary and secondary drug resistance. Primary drug 

resistance is defined as an individual who has drug resistant TB because the TB 

strain that is transmitted to them is already drug resistant. Contrarily, secondary or 

acquired drug resistance is when an individual has drug resistant TB because the 

initially drug-sensitive strain they became infected with develops drug resistance 

during the course of their infection. This can have consequences for TB 

interventions as primary drug resistance requires tighter controls to stop 

transmission, whereas secondary drug resistance necessitates improvements 

around treatment. 

Each one of these topic areas requires an awareness of the methodological choices 

available and their limitations, which should underpin the choice of analytical approach. For 

example, if the study is investigating relapse versus re-infection in a population that harbours 
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a TB strain that has a mutator phenotype it would be unwise to use a threshold determined 

from a strain that does not have a mutator phenotype because the strain is likely to evolve 

more quickly than the one used to set the threshold and this will likely rule out possible 

relapses.  

In this review I describe the methods used to analyse WGS data, their limitations and 

implications for clinical application. Although I focus on the use of WGS for investigating TB, 

many of the same methods have been employed in the study of other infectious diseases 

(e.g. Severe Acute Respiratory Syndrome (SARS), Coronavirus [82], methicillin-resistant 

Staphylococcus aureus (MRSA) [83] and Clostridium difficile (C. diff.) [84]).  

 METHODS 

The study was conducted, where relevant, in accordance with the Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses (PRISMA) statement [85]. 

 SEARCH STRATEGY AND STUDY SELECTION 

Multiple databases were searched using the combination of variants of the key terms 

“genome sequencing”, “tuberculosis” and “transmission” with no date or language 

restrictions (see Section 9.1.1 – Appendix 1). For completeness, the references of included 

articles were also checked for any relevant missing articles. Articles were double screened 

by me and a second reviewer and included if they performed WGS data analysis to 

investigate the transmission of M. tb, according to any of the four topics prioritised for this 

review. Disagreements were resolved by a third party. Reviews, opinion pieces, studies in 

non-human subjects and of other Mycobacteria were excluded. The studies which had full 

texts written in a language other than English were excluded based on their abstracts which 

were written in English. 

 DATA EXTRACTION 

Data from each study were extracted by myself and a second party independently into a pre-

designed spreadsheet that included participant characteristics, the protocol for 

bioinformatics analysis, and the definition of mixed infections, in line with STROME-ID 

guidelines [86] (see Section 9.1.2 – Appendix 1). Discrepancies between the reviewers were 

discussed until consensus was reached.  

 DATA SYNTHESIS AND QUALITY ASSESSMENT 

Meta-analysis was considered not feasible due to the heterogeneity in the methods and the 

results of the included studies; thus a narrative synthesis of the main findings is presented. 
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Criteria from STROME-ID and Newcastle-Ottawa [87] were adapted (see Section 9.1.3 – 

Appendix 1) to evaluate the molecular and classical epidemiological aspects of study quality 

as either ‘adequate’, ‘inadequate’ or ‘unknown’. I performed the quality assessment and a 

second party independently confirmed 10% of the results. Discrepancies between the 

reviewers were discussed until consensus was reached. 

 DEFINITIONS 

Base call: The base or allele (A, G, C, or T) assigned to a genomic position. 

Heterozygous (mixed) base call: When multiple bases are called to one genomic position. 

Variant: In the context of one genome, it refers to a genomic position which has a different 

base call to the reference strain. In the context of multiple genomic 

sequences/subpopulations, the variant refers to the genomic sequence/subpopulation which 

has at least one SNP compared to another. 

Strain: A genetic variant of an organism.  

Sample: A specimen retrieved from the patient, typically sputum. This could potentially 

contain a mixture of strains. 

Isolate: An organism cultured from a patient sample. 

Cluster: A group of two or more cases presumed to be linked in transmission due to sharing 

a genotype. 

 PROTOCOL AND REGISTRATION 

This review was registered on PROSPERO (CRD42014015633). 

 RESULTS 

694 papers were found through using my search strategy (Figure 3.1). After de-duplication, 

358 articles remained, with 25 (reporting on 25 studies) meeting our inclusion criteria with 

97% inter-reviewer agreement (see Appendix 1). The main reason for exclusion of a paper 

was that the study was not looking at transmission; rather they were looking at TB cases 

regardless of whether they were part of an outbreak. The studies can be separated 

dependent on which aspect of transmission they investigated, with some studies looking at  

multiple aspects: the possibility of transmission regardless of direction (12 studies) [45, 88, 

89, 90, 91, 92, 93, 94, 95, 96, 97] [48]; the direction of transmission (9 studies) [44, 89, 90, 

91, 92, 98, 99, 100, 101]; the nature of TB recurrences (4 studies) [56, 79, 92, 102]; within-

host strain diversity in the context of transmission (7 studies) [48, 79, 88, 90, 92, 102, 103]; 
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and the emergence of drug resistance (6 studies) [97, 104, 105, 106, 107, 108]. A wide 

range of populations (ages, ethnicities, co-morbidities), countries with varying TB burdens, 

and differing dominant M. tb. lineages were represented amongst the studies.  

 QUALITY OF STUDIES 

In order to assess the quality of the included studies, two reviewers independently reviewed 

ten quality criteria and marked the studies as ‘adequate’, ‘inadequate’ or ‘unknown’ 

(Appendix 1). Inter-reviewer agreement for the quality standards of the studies was 86%.  

 

Only a single study was assessed to have an inadequate case definition [108], this was due 

to the cluster being defined as samples that shared the same spoligotype and spoligotyping 

has been shown to have limited discriminatory power [109]. Ascertainment bias was 

identified in one study [44] as they only assessed the full genomes of three out of 104 

outbreak samples to find eight SNPs. They then examined only these sites in the remainder 

of the samples to obtain a SNP type, potentially excluding variation in the rest of the 

genome.  

Figure 3.1 PRISMA flowchart showing the study selection process 
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The quality assessment also looked at how studies defined mixed infections. Our 

assessment considered using heterozygous base calls to define mixed infections to be 

‘adequate’, given that there is no consensus on how to define mixed infections and we 

wanted to document and comment on how the different studies interpreted heterozygous 

base calls for microevolution and mixed infections. Additionally, the culturing of samples i.e. 

the practise of multiple passaging of the sample to obtain a culture, was not considered 

inadequate for defining mixed infections, as it is not possible to confirm if the process 

affected the presence of multiple strains without comparison WGS data from the non-

passaged culture. 64% of studies did not report finding any mixed infections. Measuring or 

minimising cross-contamination was only documented by seven studies (28%). The 

comparison of WGS and epidemiological data was mixed between studies; with 20% 

commenting on epidemiological data but failing to compare the number of SNPs separating 

epidemiologically linked patients.  

It has been shown that including low quality studies in meta-analyses can influence the 

outcome [110], however, as a meta-analysis was not performed, no studies were excluded 

on the basis of low quality. The aim of this review was to weigh the advantages and 

disadvantages of all approaches that had been used in published studies, and it was felt that 

excluding some due to low quality would potentially bias the outcome of the methods used 

and not present the whole picture. 

 CONFIRMATION OF TRANSMISSION 

Studies attempting to infer transmission amongst cases in an outbreak (irrespective of 

direction) using WGS data used a number of different methods and interpretations [45, 88, 

89, 90, 91, 92, 93, 94, 95, 96, 97] [48]. Chiefly they combined information on SNPs as a 

measure of genetic distance, epidemiological data, and/or phylogeny. These methods are 

described in turn.  

SNP thresholds were used by nine studies to confirm transmission [48, 89, 91, 92, 93, 94, 

96, 97, 98] (Table 3.1). In a study which sequenced all TB cultures obtained from cases 

between 1995 and 2011 held at the Midlands, South Yorkshire and Humberside PHE 

laboratory (390 sequences), Walker et al. [48] investigated SNP differences within 

community and household clusters in the UK. By identifying epidemiological links between 

cases which had samples and then cross-referencing with the number of SNPs between the 

linked samples, they concluded that a five SNP threshold can be used to exclude 

transmission, as no epidemiologically linked pairs of samples exceeded this level of 

difference. An epidemiological link was defined as individuals having shared a space at the 

same time as each other or a third party. 

Clark et al. [97], Kato-Maeda et al. [98], and Roetzer et al. [91] have similarly defined 

thresholds using epidemiologically linked or genotypically clustered cases. In their study to 
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examine the nature of drug resistant TB using 51 TB samples from 41 treatment-

experienced TB patients, Clark et al. declared that a proportion of isolates had an excess of 

50 SNPs variation and thus were not implicated in transmission and only focussed on the 

clusters that had a variation of less than 50 SNPs. However, the reasoning behind the use of 

a 50 SNP threshold is not transparent and it is not clear how the variation is defined, e.g. 

whether they all isolates are more than 50 SNPs different to any other in the cluster, or if the 

maximum number of SNPs between any two isolates is 50. Kato-Maeda et al. determined 

epidemiological links between nine TB cases and, on comparing the sequences amongst 

them, noted that there was a range 0-2 SNPs between all linked cases. Roetzer et al. in a 

study of 86 isolates from a long-term outbreak in Germany, found that a maximum of three 

SNPs was found amongst isolates from confirmed transmission chains and determined this 

to pose a SNP threshold for transmission. Luo et al. [89], Witney et al. [94] and Guerra-

Assunção et al. [92] and Walker et al. [96] employed existing SNP thresholds to define 

transmission clusters.  

An alternative approach by Lee et al. [93], employed in a remote Canadian village 

experiencing an outbreak of 50 TB cases, determined the variation between improbable 

transmission pairs first (those residing in different villages without an epidemiological link) 

and, as no pair had less than two SNPs difference, used 0-1 SNPs between sequences to 

define a cluster. 
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Journal article How was threshold 

defined 

Cut-off Sampling fraction Lineages 

Bryant et al. [102] Own data ≤6 SNPs relapse (same strain), 

>1306 re-infection (different) 

47 sequenced out of 50 chosen 4 major lineages 

Clark et al. [97] Unknown <50 SNPs defined a cluster - CAS, LAM, EAI, T1, T2, Beijing, 

X1 

Guerra-Assunção 

et al. [79] 

Own data ≤10 relapse, >100 re-infection 60 out of 139 WGS confirmed 

recurrences 

4 major lineages 

Guerra-Assunção 

et al. [92] 

Own data (transmission), 

Guerra-Assunção et al. 

[79] (relapse) 

≤10 SNPs confirmed transmission, 

≤10 SNPs defined a relapse  

1687 out of 2332 had WGS 4 major lineages 

Kato-Maeda et al. 

[98] 

Own data 0-2 SNPs per transmission event - - 

Lee et al. [93] Own data 0-1 SNPs confirmed transmission 631 “improbable” transmission pairs 

between outbreak cases and cases in 

other villages 

Outbreak samples were Euro-

American lineage 

Luo et al. [89] Walker et al. [48] 

Roetzer et al. [91] Own data 3 SNPs confirmed transmission 31 out of 2301 (for the threshold). 

Equivalent to 8 transmission chains of 

Haarlem lineage 
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2-7 patients  

Walker et al. [48] Own data ≤5 SNPs cluster, >12 SNPs no 

transmission 

303 out of 609 (for the threshold) All 5 major lineages 

Walker et al. [96] 

(transmission) 

Walker et al. [48]    

Walker et al. [96] 

(relapse versus re-

infection) 

Own data SNP differences of 475, 1032, and 

1096 between the original and 

relapse strain suggested that the 

patient had been secondarily infected 

with a different strain rather than 

within-host evolution. 

Pulmonary vs extra pulmonary pairs 

from 49 patients and 110 longitudinal 

samples from 30 patients 

All 5 major lineages 

Witney et al. [94] Walker et al. [48]    

Table 3.1 Use of single nucleotide polymorphism thresholds within papers reviewed 
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Mutation rates, which display the rate of genetic change of an organism, were also used to 

assess whether transmission was likely given the time between samples or how long ago 

sampling occurred (assuming that the mutation rate is constant over time) [92, 95]. In a 

study that included whole genome sequences from 1687 samples from patients in Malawi 

diagnosed between 1995 and 2010, Guerra-Assunção et al. [92] examined two things: 

construction of transmission networks amongst their clusters and analysis of risk factors for 

transmission. They defined their clusters using a threshold cut-off of 10 SNPs, determined 

by the distribution of SNP distances they found amongst all possible pairs of samples in the 

dataset. For their analysis of risk factors of transmission, cases with a SNP difference of 6-

10 SNPs were classified as having ‘uncertain’ transmission links unless the mutation rate 

between them was less than 0·003 SNPs/day, determined by calculating the number of 

SNPs between two samples that shared the same RFLP type per number of days between 

the dates of their disease onset. 

Other studies used the presence of certain insertions or deletions to help form subclusters 

and then assumed that no transmission could occur between patients that had samples in 

different subclusters [90, 91, 93]. Similarly, Gardy et al. [88] studied an outbreak in British 

Columbia, Canada amongst individuals predominantly with SRFs to determine the source 

case and explore the potential causes of the outbreak. To do so, they assembled a 

phylogenetic tree of their samples, which revealed two lineages. They then precluded 

transmission between patients with samples of different lineages in order to reduce the 

number of transmission pathways. In another study, transmission events between 

epidemiologically linked cases were excluded when the samples involved were not adjacent 

on the phylogenetic tree [45]. 

 DIRECTION  

As mentioned previously WGS can reveal variation between samples that are identical by 

other typing methods (such MIRU-VNTR) [111]. This higher resolution has been used by 

studies to help infer the direction of transmission between cases, i.e. distinguish between the 

infector and the infectee, using only WGS data. Approaches proposed include SNP 

accumulation, Bayesian statistical inference, and determining transmission networks 

alongside epidemiological data. 

In a study of a TB outbreak in the Netherlands, Schürch et al. [44] examined transmission 

direction using the accumulation of SNPs between three sample sequences from 

epidemiologically linked patients, one sample from three separate patients. The method 

assumes that, over time, a strain will acquire new SNPs and retain existing ones, and 

direction of transmission is to the case with the additional SNPs. This approach has since 

been applied by others, combined with patients’ TB histories and contact tracing data (Table 

3.2) [90, 98, 101] to make it more robust, as this information can help exclude certain 



Review of approaches used to interpret whole genome sequencing data for tuberculosis 
transmission (Objective 1) 

 

40 
 

transmission pathways. The other studies employing this method generally examined only a 

small number of samples and found small numbers of SNPs (eight SNPs amongst three 

samples [44], seven amongst nine [98], and two amongst 12 [101]). As this method requires 

manual examination of all the SNP sites in all of the sample genomes included in the study it 

is time and labour intensive and as such is only suitable for small studies with small SNP 

numbers.
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Journal article How was direction of transmission determined 

Didelot et al. [99] Epidemiological data and WGS used in a Bayesian inference framework to construct a transmission tree 

Gardy et al. [88] Social network analysis and contact tracing posed putative transmission, timing of infection and smear status was used to 

narrow down possible direction and WGS to remove transmission events involving cases with different lineages 

Kato-Maeda et al. [98] Contact tracing and accumulation of SNPs 

Luo et al. [89] Epidemiological links and timing of infection and symptoms helped propose direction of transmission between samples in 

the same WGS-based cluster. Transmission of mutant alleles from case with mixed base calls 

Mehaffy et al. [90] Genomic and epidemiological information (i.e. SNP pattern, contact information, year of diagnosis and infectiousness 

based on smear and chest x-ray results). 

Pérez-Lago et al. [103] In one case direction was proposed by the transmission of mutant alleles from a case with mixed base calls 

Roetzer et al. [91] Contact tracing revealed transmission chains and accumulation of variation is mentioned, although not clear if this 

resolved the order of the chain 

Schürch et al. [44] Accumulation of SNPs 

Smit et al. [101] Accumulation of SNPs and period of infectiousness  

Table 3.2 Methods used by studies to determine direction of transmission 
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Statistical frameworks provide an altogether different approach by integrating WGS data with 

epidemiological information to estimate the probabilities of hypothesised transmission 

chains, rather than strictly define transmission events [82, 112]. A Bayesian framework of 

this kind was employed by Didelot et al. to infer transmission events and their direction from 

a phylogenetic tree, whilst taking into account within-host diversity [99], for a TB outbreak of 

33 cases in British Columbia, Canada [88]. The study found that genomic data alone could 

produce transmission trees which capture the known epidemiology: the most likely source 

case and several key transmission clusters were correctly inferred by the method. Such an 

approach allows for identification of transmission events that a direct analysis from 

epidemiological and sequence data might not, as it assesses the probability of all 

possibilities, instead of immediately excluding some through clear cut thresholds etc. 

However, the fact that the Canadian outbreak was heavily sampled is a key assumption of 

the method which may make it impractical for other outbreaks where there is known to be 

many unsampled cases. 

Alternatively, studies have used networks to visualise transmission using genomic data 

without including epidemiological data [100, 91, 89, 103]. These networks are generally 

created using algorithms that are run on the SNP distances between all the samples. Some 

examples are minimum spanning, neighbour joining or median joining networks. Three 

studies also created transmission networks but did include epidemiological data alongside 

the genomic data: Walker et al. [48, 96] used their own algorithm to create a similar network, 

which involved choosing the epidemiological links between cases that had the smallest SNP 

distance or shortest time between sampling; Schürch et al. [44] used temporal and contact 

tracing data to assign an index to SNP clusters and resolve a transmission network.  

Inferring direction of transmission was rendered impossible between some samples in at 

least 18 of the 25 studies where some proportion of samples were identical, either because 

there was no diversity, or because they were unable to capture it due to stringent variant 

calling thresholds or stringent sampling/culturing methods. 

 RECURRENCES 

Relapses and re-infections represent the two ways in which an individual can experience a 

recurrent episode of TB. The ability to distinguish the nature of recurrent TB disease can 

have important repercussions for public health and treatment and requires being able to 

compare the genomic data from the samples for the first and recurrent episode. In an ideal 

scenario, a relapse would be easily distinguishable from a re-infection as a relapse would be 

an infection with the same strain whereas a re-infection would be with a strain distinct from 

the first episode. However, it is possible to be re-infected with a genetically identical strain, 

especially in a highly endemic TB area, and these re-infections would likely be 

misinterpreted as relapses.  
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Several studies have investigated this area and have used SNP differences to attempt to 

distinguish between relapse and reinfection. Analyses of data from the REMox trial [102, 

113] and the Karonga Prevention Study [79], found a bimodal distribution of pairwise SNP 

differences between longitudinal samples: 0-6 versus >1306 SNPs [102] and 0-8 versus 

>100 SNPs [79]. Given the very clear-cut bimodal results, both studies decided that the 

individuals with the smaller number of SNPs between samples were as a result of relapse, 

and those with a large number were a result of re-infection. Both found SNP distances larger 

than 1000 when they recovered different TB lineages from the two episodes, clearly 

representing re-infection. Influenced by this work, Guerra-Assunção et al. [92] used these 

results to classify recurrent cases of TB in their Malawian cohort, defining them as relapses 

if they differed by less than 10 SNPs from the initial strain. By comparison, in another study, 

Schürch et al. [44] classified a recurrent case as re-infection because the recurrent strain 

differed by one SNP from the initial infecting strain. This was determined because another 

individual in the outbreak, with whom there was an epidemiological link, had the same strain 

as the one determined to be the cause of the re-infection. 

 WITHIN-HOST DIVERSITY 

Within-host diversity can arise via exposure to a mixed infection (a single infection event with 

multiple distinct strains), repeated infection events with distinct strains (i.e. superinfection) or 

microevolution (within-host evolution). Given that we are likely to just have one sample from 

one point in time, it is unlikely that we would be able to distinguish between superinfection 

and mixed infection, however using WGS, studies have attempted to distinguish between 

infection with multiple distinct strains and the microevolution of one infecting strain. 

There were three approaches identified amongst the WGS studies for defining multiple co-

infecting TB strains. Heterozygous base calls were one method some used to indicate the 

presence of two (or more) strains, by assuming each of the base calls was related to a 

different strain [48, 79, 89, 92, 94, 97, 98, 100, 102, 103]. However, the definition of a 

heterozygous base call has varied amongst the studies (Table 3.3), with some studies 

applying strict criteria on the minimum proportion of reads that must support the variant or 

the minimum number of heterozygous base calls there must be across the genome. As well, 

whether the presence of heterozygous base calls indicates microevolution or a mixed 

infection has been a source of discrepancy.  

Another method used to identify patients with multiple infecting TB strains was through 

comparing multiple cross-sectional or longitudinal samples. Walker et al. [48] examined 

multiple cross-sectional or longitudinal samples of 79 patients and identified 3 patients as 

having samples differing by ≥400 SNPs with the remaining 76 having samples with 11 SNPs 

or less. These results led them to conclude that those with a small SNP distance between 

multiple samples were as a result of microevolution, whereas those with a large SNP 
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distance (>400) were classed as a mixed infection. If we compare this to the findings of 

Schürch et al. [44] where a single SNP difference between two samples from the same 

patient was classified as a re-infection, we may consider that by Walker et al.’s definitions 

such a small difference would be considered the result of microevolution.  

The final method used to identify the presence of multiple co-infecting TB strains was the 

use of phylogenetic analysis. By constructing multiple phylogenetic trees with their samples, 

Gardy et al. [88] noticed that some of their sequences appeared to move between lineages 

within different tree constructions, which they believed signified that the sample had two 

different genomic signals corresponding to two different strains. This method was also 

employed by three other studies included in this review [90, 79, 102].
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Journal article Interpretation of heterozygous base 

calls 

Definition of heterozygous base calls 

Bryant et al. 

[102] 

Mixed infection Heterozygous base calls were identified if each allele was supported by at least 5% of reads (minimum 

read depth of four). The sites also had to satisfy quality and coverage conditions. Heterozygous sites were 

excluded if they were within 200 base pairs of other heterozygous sites to reduce the possibility of a 

mapping error. Samples were classified as a mixed infection in they had more than 80 heterozygous base 

calls  

Guerra-

Assunção et al 

[79] 

Mixed infection A position was classified as heterozygous if >1 allele accounted for ≥30% of the reads (and there were 

>30 reads). Samples were classified as a mixed infection if they had more than 140 heterozygous base 

calls 

Kato-Maeda et 

al. [98] 

Mixed infection A heterozygous base call was reported when 38% of reads supported the variant, the remainder 

supported reference 

Luo et al [89] Microevolution A position was classified as heterozygous if the variant (“less frequent allele”) was present in at least five 

reads of high-quality and the overall coverage was at least 10  

Pérez-Lago et 

al. [103] 

Mixed infection Heterozygous base calls were distinguished by the presence of a variant nucleotide (“less frequent 

nucleotide”) in at least five reads 

Walker et al. [48] Microevolution The presence of heterozygous base calls was seen as suggestive of “sub-populations” i.e. microevolution. 

No formal definition of heterozygous base calls was presented 

Table 3.3 How included studies interpreted heterozygous base calls for classifying diversity 
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The studies were assessed for whether they accounted for diversity when investigating 

transmission. Through collecting multiple cross-sectional and longitudinal patient samples, 

Pérez-Lago and colleagues [103] were able to refine their transmission network. They did 

this by first building within-host networks for each patient from the multiple samples which 

depicted how the bacterium had evolved within the patients. Then when linking patients in 

transmission they were able to compare each of the multiple samples (instead of just one 

supposedly representative sample) to see if any reasonably suggested transmission. In a 

similar, but more simplified version, Walker et al. [48] refined their transmission networks by 

comparing multiple samples per patient and only including the sample that minimised the 

SNP distances in transmission chains. 

Within their cohort, Kato-Maeda et al. [98] identified one patient sample containing a ‘mixed 

population’ of TB strains. On investigation, the two TB strains within the sample seemed to 

be present in two other earlier diagnosed patients’ samples. Given the timing restrictions, the 

authors concluded that the most likely explanation was that one of the patients who had 

been diagnosed earlier was infected by both strains (one not being present in their sample) 

and had transmitted the disease to both of the other patients. By investigating the diversity of 

multiple TB strains within patients they were able to better resolve the picture of 

transmission.  

Heterozygous base calls were also used by studies to help elucidate transmission events 

[89, 103]. Where one sequence has a heterozygous base call in one position and another 

has the same or similar sequence but either the reference or alternative allele is fixed at the 

heterozygous base, this can suggest transmission between them and even indicate direction 

of transmission. One explanation is that there may have been transmission from a source 

patient with the reference allele followed by microevolution in the infected case giving rise to 

an alternative allele or microevolution in the source patient giving rise to an alternative allele 

followed by transmission where the alternative allele becomes fixed. 

Another method for estimating the probability of transmission between patients is to use 

knowledge of the within-host mutation rate to assess the likelihood of the amount of genomic 

differences found between their samples given the sampling dates. A study by Colangeli et 

al. [114] found that TB mutates less in its latent state than during active disease. 

Considering this finding, Mehaffy et al. [90] concluded that the presence of zero SNPs 

between multiple clusters of patients infected over the course of more than five years was an 

indication that the patients must have reactivated TB i.e. a long latency period followed their 

infection by one common source during which there was no mutation. The limitation to this 

method, however, is the debate around the true value of the mutation rate of TB and how 

this may vary over time in one patient versus during transmission chains: using longitudinal 

patient data, Walker et al. [48] found the within-host mutation rate to be lower than mutation 

rate during household outbreaks (0.3 vs 0.6 SNPs/genome/year respectively; conversely, 

Guerra-Assunção et al. [92] found that the within-host mutation rate was higher than 
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between linked pairs in their transmission networks (0.45 vs 0.26 SNPs/genome/year 

respectively). 

 DRUG RESISTANCE 

The primary purpose of investigating the emergence of drug resistance is to determine its 

nature i.e. is a resistant strain being transmitted (primary resistance), requiring better 

transmission control; or is resistance arising separately within individuals (secondary or 

acquired resistance), suggesting poor treatment adherence, inadequate dosing, or individual 

variability in drug metabolism. Six studies included in this review investigated drug 

resistance using WGS. 

One method employed by two studies involved constructing phylogenetic trees and 

examining the presence of drug-resistant strains within a clade [105, 106]. The conclusion of 

transmission of a drug-resistant strain was determined only if all samples in a clade had the 

same resistance-conferring mutation (i.e. the resistance was gained by an ancestor of the 

clade); otherwise drug resistance was considered to have been as a result of secondary 

resistance. Patterns of drug-resistance-conferring mutations were also used to investigate 

likely transmission patterns: in one clade, isoniazid and rifampicin resistance was common 

amongst all samples (suggesting transmission of a MDR strain) but resistance to 

fluoroquinolones was not, suggesting that the acquisition of fluoroquinolone resistance was 

secondary within those samples [105]. 

In contrast, Clark et al. [97] allowed for the conclusion of transmission amongst a proportion 

of samples within a clade, even when not all samples within a clade had the same 

resistance mutation. For example, in one clade of three samples, two had the same 

resistance mutations for isoniazid and rifampicin and were therefore considered a 

transmission pair, whilst the third was not considered to be in the same chain of 

transmission as the other two. Similarly, Casali et al. [104], in their study of 1,000 samples 

from Russia applied a principle of assuming acquired resistance when only one case in a 

phylogenetic clade had a certain resistance-conferring mutation.  

Phylogenetic trees were not used for the examination of drug resistance in the other two 

studies, instead resistance-conferring mutations alone were examined. In a study of eight 

samples from an outbreak in Haiti, six of the eight samples were available for WGS. These 

six samples had the same rpoB and katG resistance mutations for rifampicin and isoniazid 

resistance and thus Ocheretina and colleagues [108] concluded that the outbreak 

represented primary resistance. Although no mention was made of how common these 

resistance mutations were in the setting. In a similar approach, Regmi et al. [107] 

investigated an MDR-TB outbreak in Thailand, however only four of the 54 samples were 

examined for resistance mutations. 
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 DISCUSSION 

 MAIN FINDINGS: IMPLICATIONS OF ANALYTIC APPROACHES ON 

WGS INFERENCES 

This review has identified a range of analytical approaches for interpreting WGS data to 

understand different aspects of TB transmission. Chief amongst them have been SNP 

thresholds, calculating mutation rates and phylogenetic methods. The impacts of these 

methods are now discussed. 

A common approach amongst WGS studies to define transmission, distinguish relapse and 

re-infection, and distinguish microevolution and mixed infections was to use SNP thresholds. 

Whilst SNP thresholds are an attractive method due to their extreme simplicity, this is also 

one of their drawbacks: they cannot be applied to all situations. Many studies vary in their 

determination of a SNP, due to factors such as the definition of a ‘quality’ read and the 

number of amplification steps [99, 45, 96, 103, 112], and as such different genomics 

pipelines may uncover a different number of SNPs even within the same cohort. This can 

then dramatically affect the chosen number for a SNP cut-off. This may also partially explain 

the conflicting results in the number of SNP differences found between linked cases: three 

studies found epidemiological links between cases with larger than 12 SNP differences [45, 

96, 103], the number considered by Walker et al. to be the cut-off for transmission. 

A preferable alternative would be to consider the mutation rate and the time between the 

sampling dates to decide whether the number of SNP differences could have plausibly 

occurred during such time and therefore make transmission probable. This would then allow 

for transmission events where a large number of SNPs has accumulated over a long time 

period when they may otherwise be erroneously excluded by a strict threshold. One such 

alternative is an approximation to the pairwise distribution of genetic distances [115]. Despite 

good agreement for the mutation rate of M. tb across epidemiological studies [91, 45, 92, 

48], it would be important to consider the presence of factors which may affect the mutation 

rate, such as drug resistance [45, 90].  

A more rigorous method for including the mutation rate in a probabilistic framework is 

through the use of Bayesian inference [99]. An additional advantage of this method is that it 

can infer unsampled cases and also include epidemiological data, such as smear positivity 

and individuals’ locations, which can help strengthen inferences of transmission.  

One method used to determine the direction of transmission was examining the process of 

accumulating SNPs across patient genomes. This method is likely more suitable when there 

are few SNPs between samples, ideally one. A need for such small numbers of SNPs 

therefore highlights the need to minimise sequencing errors, as their presence, if 

misinterpreted as SNPs, can have a big impact on this type of inference [116]. On the other 
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hand, limited genomic variation i.e. no SNPs between samples due to the slow M.tb 

mutation rate [101, 90, 117], would also hinder this method. In the case of determining 

direction, if transmission between a pair has already been identified, information on timing of 

exposure and infectiousness for contacts is likely to be the best aide [101, 89]. 

Methods used for distinguishing between primary and secondary drug resistance have 

mostly relied on generating phylogenetic trees and examining whether or not clades shared 

the same resistance-conferring mutation [105, 106]. A limitation with this method lies in the 

fact that phylogenetic trees are not equivalent to transmission trees and therefore cases 

linked in transmission may not always be paired together in the tree. In addition, should 

resistance arise in the middle of a sequential transmission chain and many of the 

susceptible ancestral cases are sampled along with the resistant descendant cases, these 

may indeed still cluster together in the phylogenetic tree. However, in the case of some of 

these approaches, primary resistance for the resistant descendant would not be 

acknowledged. A perhaps more effective approach would be to first identify a transmission 

network amongst the cases, from there the data on drug resistance can be examined to 

identify if the drug resistance seen in a case is present in the one transmitting the infection 

and therefore whether it is being transmitted versus acquired. 

Within-host diversity was investigated through the placing of samples in the phylogenetic 

tree and, primarily, through the examination of heterozygous base calls. The use of 

heterozygous base calls to distinguish microevolution and mixed infections represents the 

most discriminatory method, however, similarly to SNP thresholds, the studies used a variety 

of thresholds for the number of calls used to categorise mixed infections and often these 

were arbitrarily defined. One key issue with using a phylogenetic tree to identify mixed 

infections lies in the possibility of co-infection with strains of the same lineage [79]; this 

would not produce the effect of samples switching between lineages of the phylogenetic tree 

and therefore such types of mixed infections would go unnoticed [88].  

Ideally, more diversity needs to be captured through sampling, as often only one sputum 

sample is available and this may not capture the pockets of different strains of TB that may 

be residing in the lungs [118, 119]. In this case, multiple samples from different timepoints 

could be a potential solution [76, 120]. Once samples are taken, the process of subculturing 

and selecting single colonies for sequencing may affect the amount of diversity found [121, 

122, 123], although methods exist for sequencing from primary culture plates [124]. Methods 

for identifying more diversity at the sequencing level involve deep sequencing and 

examining minor variants [125].  

 STRENGTHS AND LIMITATIONS  

A strength of the review is the use of a comprehensive search strategy in multiple databases 

without language restrictions, meaning that a wide range of studies were found with a 
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smaller risk of bias. Double screening was employed and is considered a strength as it helps 

ensure that the included studies are reflective of what was required for the review [126]. This 

is augmented by the fact that there was good inter-reviewer agreement. As well, the 

identified studies were generally good quality (Table 9.9). 

A limitation is that due to the nature of the investigation, the studies included are all 

observational and thus a more rigorous analysis of the data, such as meta-analysis, is not 

tractable.  

 CONCLUSION 

This review has served to summarise the approaches that have been employed to analyse 

WGS for investigating TB as well as highlight the limitations and complications of these 

approaches.  

Several conclusions can be drawn from this review: firstly, SNP thresholds have a wide 

range of applications, but their application to confirming transmission should be considered 

in light of local TB incidence, strain diversity, the time between the samples, potential 

hitchhiking, homoplasy and more. Consideration of factors that affect mutation rates is 

essential. Secondly, epidemiological data and clinical history remain critical to outbreak 

investigations, especially when sequence data lacks variation. Finally, knowing how diversity 

arises will help resolve transmission. Better characterisation of microevolution and mixed 

infection will require better sampling, deeper sequencing and investigation of the within-host 

mutation rate. 
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4 BAYESIAN INFERENCE USED TO UNCOVER 

INFECTION DATES FOR PUBLIC HEALTH 

PURPOSES (OBJECTIVE 2) 

In this chapter, using a dataset from a TB outbreak in British Columbia, Canada, an existing 

Bayesian inference method used to infer transmission networks from epidemiological and 

genomic data is adapted to improve its use for studying TB, namely being able to infer 

infection dates. From the resulting transmission network, the aim was to identify how long 

ago the last transmission event occurred within this outbreak and to use that information to 

determine whether the outbreak could be declared over. The following chapter is based on a 

paper by Hatherell et al [127]. 

 INTRODUCTION 

As described in Chapter 3, being able to infer when infection occurred for a TB case is an 

extremely difficult task given the long and variable latency period [26]. However, such 

knowledge is critical for deciding whether new cases are a result of recent infection or 

reactivation; it is generally considered that an individual who presents with active TB within 

two years of being infected is as a result of recent infection, any longer and the case is 

considered a result of reactivation [128]. This differentiation has a knock-on effect for public 

health control of an outbreak: if there are cases arising due to recent infection it is important 

to look for cases of active TB in the community and perform contact tracing to ensure we 

can find the source of transmission and forestall the outbreak by quickly preventing any 

already latently infected individuals from progressing to active disease. If cases are being 

identified as a result of reactivation then interventions may focus more on improvement of 

treatment or identifying further latently infected individuals, for example through community-

wide LTBI screening [129]. In addition, public health practitioners consider an outbreak ‘over’ 

if the last transmission event was more than two years ago, i.e. no new cases have been 

identified for two years.  

One way to identify when infection may have occurred is to identify a possible infector and 

determine when their infectious period was. Potential infectors would be contacts (friends, 

family, colleagues) that have been diagnosed with TB, however there are numerous issues 

that may occur when trying to identify the potential timing of the transmission event in this 

way: individuals may not identify all their possible contacts or contacts diagnosed with TB 

may not remember when their symptoms started (start of infectious period). In addition, 

there is the possibility that multiple contacts may have been diagnosed with TB and there 

are multiple different transmission pathways, especially if the individuals all live in a tight-knit 
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community and there is a high-incidence of disease, meaning we would not be able to 

definitively identify the correct infector.  

As a potential solution to the problem of multiple possible infectors, genomic data provides 

extra discriminatory information that helps reduce the possible number of transmission 

pathways and thus narrow down the possibility of who infected whom and therefore when 

infection occurred. Examining an outbreak of Foot and Mouth Disease in the UK in 2001, 

Cottam et al [130] were one of the first to publish a method that used genomic data to 

determine an infectious disease transmission network, by creating a phylogeny and then 

determining the ML of each possible tree in relation to the known data of infection dates and 

infectious periods for the infected farms. Using the same outbreak, Ypma et al [112] and 

Morelli et al [131] then built on this method. However, these early studies were not required 

to infer infection date as Foot and Mouth disease has short, well-defined infectious and 

latent periods and thus the date of infection can be narrowed down to a range of a few days 

merely from knowing the date of symptom onset and subtracting the latent period. 

Subsequently, Jombart et al [82] used a Bayesian method to infer infection dates for 2003 

SARS outbreak in Singapore, however it does not consider within-host diversity, thereby 

making it unsuitable for studying TB. 

In 2013, Didelot et al [99] extended the above by developing a Bayesian statistical inference 

framework, TransPhylo, which takes into account within-host diversity and thus can be used 

for TB. The framework accounts for the fact that the bacterium present in each host can 

evolve from the one that seeded the infection and diverge into multiple distinct strains. Each 

strain can generate onward infections resulting in divergent strain profiles in subsequent 

cases. This diversity is important to account for if the method is to be used for TB as, even 

though it is generally believed that M. tb. evolves at a slow rate, there has been evidence of 

large genomic diversity [132], which may be going undetected with current sampling 

methods. Didelot et al.’s method was applied to the British Columbia data concerning an 

outbreak amongst 52 individuals presented by Gardy et al. [88] to demonstrate the uses of 

this approach versus the original analysis, which relied more heavily on a social network 

analysis to construct a transmission network. The re-analysis of the data looked to 

demonstrate whether the method captured known transmission events and identified the 

source case in order to test its validity. 

The premise behind the method is to be able to draw information about a transmission 

network from a phylogenetic tree. Unfortunately, phylogenies cannot be translated directly 

into transmission networks, as even if two sequences are paired on a phylogenetic tree and 

we therefore assume they are linked in transmission, there is no way to determine the 

direction of transmission, a key aspect of transmission networks. Additionally, we expect that 

internal branching events represent ancestors of the samples at the tips, however in an 

outbreak where infectors and their infectees are sampled all cases will appear as tips of the 

phylogenetic tree despite some being ancestors of others and so internal branching events 
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are also associated with sampled hosts [133]. In order to change a phylogenetic tree into a 

transmission network we need to know where on the tree transmission happened and 

between whom. To do this we need the phylogenetic tree to be on a real-time scale, i.e. 

lengths of branches correspond to length of time, not on a genetic scale. These timed trees 

can be created in BEAST [134] using information on sampling time and the molecular clock 

of the bacterium. The latter demonstrates the timescale for evolution in the bacterium. 

To depict the idea of a transmission network on a phylogenetic tree, Didelot et al used a 

colouring approach (Figure 4.1). Each tip (end of branch) belongs to a host and is a unique 

colour; a star denotes a transmission event where the first colour infects the second colour, 

going forward in time. The colour of the source case can be traced back to the root of the 

tree as the lineage was present in that host in the beginning. Because the tree is timed and 

the time of the tip denotes when the case was sampled and presumably treated and made 

non-infectious, a host’s colour cannot appear in the tree past their sampling date.  

An issue with the TransPhylo method was the assumption that the generation time (the time 

between being infected and infecting others) and sampling time (the time between being 

infected and sampled) were exponentially distributed, a consequence of using a common 

compartmental transmission model comprising of individuals in SIR disease stages to 

describe the underlying infectious disease dynamics [135]. An exponentially distributed 

generation time then suggests that the time from being infected with TB to becoming 

infectious is also exponentially distributed, which is widely considered not to be true for TB; 

Figure 4.1 Phylogenetic tree with transmission network colouring to demonstrate 

statistical inference output (Adapted from Didelot et al. [99]) 

The root of the tree is coloured dark blue which corresponds to patient A (the dark blue tip). 

The dark blue colour changes to green and red at the yellow stars, denoting a transmission 

event. This represents A infecting B and D. Red then changes to light blue, denoting D 

infecting C. Time is increasing down the tree: the first colour change/yellow star is when A 

infects B, thus this happens earlier than the other transmission events. Similarly, the green 

tip terminates earlier than the others, denoting B being sampled earlier than the others 
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SIR models are considered a poor fit for TB modelling [136]. The effect of this assumption 

could be that the infection times inferred by TransPhylo are incorrect. As this was the key 

output of the model for being able to declare the outbreak over, a more suitable method to 

mitigate this was then explored within this work.  

In order to test the changes, we revisited the Kelowna outbreak data analysed by Didelot et 

al. to identify any new insights the modified inference framework might bring with regards to 

the inferred infection dates of the cases and as a result answer the question of when the 

method postulates the date of the last transmission event, in order to assist public health 

measures in British Columbia, Canada. Given the new changes made, we also wanted to 

investigate the role of prior choice and phylogenetic uncertainty in the inference of trees and 

whether they affected certain characteristics of the outbreak, such as posterior generation 

time and sampling distributions, and the timing of the last transmission event. 

 

The chapter is structured as follows: in Section 4.2, the outbreak is briefly introduced along 

with some description of the available data. Section 4.3 includes the basics of the original 

method and the mathematics of the extension to include the branching model. Section 4.4  

presents both the analysis of the newly inferred infection dates of the cases and the impact 

of prior sampling and generation time distribution and phylogenetic uncertainty. Finally, 

section 4.5 contains a discussion of how the results can be used in a public health context to 

combat an outbreak and avenues for further research.  

 OUTBREAK AND DATA 

In 2006, an outbreak of drug-sensitive tuberculosis was discovered in British Columbia, 

Canada [137]. The outbreak, uncovered using MIRU-VNTR typing, was relatively small, with 

just 41 cases in three years [88]. However, with such a low rate of background TB (the 

outbreak cases increased the annual incidence rate for the region by a factor of more than 

10) even such a small outbreak was a big concern for the Canadian territory.  

A social network questionnaire was carried out by the local health authorities to help 

elucidate a transmission network, aid case finding and identify who may have been the 

source case. The results of the questionnaire revealed that a large proportion of the 

outbreak population were without a fixed abode, using crack cocaine and abusing alcohol. 

There was no available data on uptake of treatment or treatment delay amongst the cases; 

however, 85% of the first 41 cases were recorded as cured or finishing treatment. 

Overall, there were 48 out of 52 cases that had samples available for sequencing (four were 

diagnosed out of the province or via post-mortem). The last reported case believed to be 

part of the outbreak occurred in July 2013. The outbreak curve can be seen in Figure 4.2 
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Figure 4.2 Incidence curve for Canadian outbreak 

The samples were sequenced using the Illumina MiSeq platform, and the short read data for 

the 48 genomes is accessible via the European Nucleotide Archive; accession number: 

PRJEB12764 (http://www.ebi.ac.uk/ena/data/view/PRJEB12764). 

 METHODS 

The method used for the Bayesian inference is an adaptation of the one presented by 

Didelot et al. [99]. Here a branching process is used to model the epidemic process as 

opposed to a stochastic, continuous time Markov chain version of the general SIR epidemic 

model. This circumvents the assumption of an exponentially distributed generation time by 

allowing the generation time distribution and the sampling distribution to be specified as a 

prior in the inference ensuring that the potential error introduced by the exponential 

distribution assumption is avoided.  

To mitigate this, a branching model was used to model the number of secondary infections 

caused by an infected individual as Poisson-distributed with the mean connected to the 

generation time and the individual’s infectious period.  

In this section, I describe the original Bayesian method as well as the alterations made, the 

methods used to examine the output of the Bayesian inference, namely the timing of the last 

transmission event, and how we examined the effect of the generation time and sampling 

distribution priors on the Bayesian output. 

4.3.1.1 BRANCHING PROCESS 

Branching processes, also known as the Galton-Watson process, are a type of stochastic 

process that are normally used to describe some kind of reproduction, i.e. there are 
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generations of individuals and each individual in a generation produces some random 

number of individuals in the next generation according to a fixed probability distribution (the 

offspring distribution). They can generally be depicted as a tree (Figure 4.3). 

In TransPhylo, the population being described by the branching process is that of individuals 

infected with TB, where the individuals in generation n+1 are those that have been infected 

by the individuals of generation n. 

Using a branching process allows: 

• Calculation of the estimated size of generation n, according to the mean number of 

offspring each individual in a generation has, 𝜇. 

• Specification of an offspring distribution. 

4.3.1.2 MODEL DESCRIPTION 

The inference works by running a Monte Carlo Markov chain (MCMC) to sample a space of 

transmission trees. For each transmission tree proposed, the algorithm evaluates its 

likelihood (as specified later), uses a Metropolis-Hastings accept/reject step to determine if 

the current state updates or not and then proposes a new tree and so on and so forth. The 

chain is run until it is considered to have converged. The final set of sampled trees is then 

used for inference analysis e.g. finding the most sampled tree (i.e. the one with the highest 

likelihood), credible intervals and summary statistics. As mentioned earlier, the transmission 

tree is considered as a “colouring” of the phylogenetic tree on which the inference is being 

performed and the new proposed transmission tree is a change in the colouring, i.e. a 

change in the placement of the transmission events on the tree. 

The probability which is evaluated for each proposed transmission tree is the posterior, 

which is the probability of the transmission tree given the data we have i.e. the phylogenetic 

tree. This can be formulated using Bayes’ theorem i.e. the probability of a transmission tree 

𝑇 given the phylogeny 𝐺 is expressed as  

Figure 4.3 Branching process where the average number of offspring, 𝜇, is 2. 
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𝑃(𝑇, 𝜀, 𝑁𝑒𝑔|𝐺) ∝ 𝑃(𝐺|𝑇, 𝜀, 𝑁𝑒𝑔)𝑃(𝑇, 𝜀, 𝑁𝑒𝑔) ( 4.1 ) 

where 𝜀 represents the parameters of the epidemiological model used to describe the 

outbreak and 𝑁𝑒𝑔 represents the within-host parameter, which defines how much the 

bacterium is mutating, where 𝑁𝑒 is the effective population size and 𝑔 is generation time. 

What is therefore required in order to calculate the posterior is the likelihood (the probability 

of the phylogeny given a transmission tree 𝑃(𝐺|𝑇, ε, 𝑁𝑒𝑔)), and the priors for the 

transmission tree, epidemiological parameters, and within-host diversity parameter 

(𝑃(𝑇, 𝜀, 𝑁𝑒𝑔)).  

Equation 4.1 can then be decomposed into: 

𝑃(𝑇, 𝜀, 𝑁𝑒𝑔|𝐺) ∝ 𝑃(𝐺|𝑇, 𝑁𝑒𝑔)𝑃(𝑇|𝜀)𝜋(𝜀, 𝑁𝑒𝑔) ( 4.2 ) 

as 𝐺 is conditional on 𝜀 through 𝑇 and where 𝜋 represents the priors for 𝜀 and 𝑁𝑒𝑔. The 

likelihood, 𝑃(𝐺|𝑇, 𝑁𝑒𝑔), is unchanged from its original description [99]. 

The second term on the right-hand side of Equation 4.2 represents the probability of the 

transmission tree given the branching model. We specify this by considering the probability 

of 𝑖 having 𝑁𝑖 infections (Poisson offspring distribution), the probability of 𝑖 being sampled at 

𝑡𝑠𝑎𝑚𝑝
𝑖  (sampling distribution), and the probability of 𝑖 infecting each offspring 𝑗 at 𝑡𝑖𝑛𝑓

𝑗
 

(generation time distribution). 

By assuming that the secondary infections of an individual occur as Poisson process, we 

can describe the expected number of secondary infections, 𝑁𝑖, seeded by individual 𝑖 as  

𝑁𝑖     =  ∫ 𝑅𝑜
𝑡𝑠𝑎𝑚𝑝
𝑖 −𝑡𝑖𝑛𝑓

𝑖

0
𝑓𝑔(𝜏)𝑑𝜏 ( 4.3 ) 

=
𝑅0

Γ(𝑘𝑔)
𝛾(𝑘𝑔 ,

𝑡𝑠𝑎𝑚𝑝
𝑖

− 𝑡𝑖𝑛𝑓
𝑖

𝜃𝑔
) 

This is dependent on how long the individual is infectious for and their infectivity which is 

related to the generation time 𝑓𝑔. Equation 4.3 then is the mean of the offspring distribution 

𝑓𝑜 [138]. 

We then consider the probability of 𝑇 to be  

𝑃(𝑇|𝜀) =  ∏ 𝑓𝑜(𝑁𝑖)𝑓𝑠(𝑡𝑠𝑎𝑚𝑝
𝑖 − 𝑡𝑖𝑛𝑓

𝑖𝑛
𝑖=1 )∏

𝑓𝑔(𝑡𝑖𝑛𝑓
𝑗
−𝑡𝑖𝑛𝑓

𝑖 )

𝐹𝑔(𝑡𝑠𝑎𝑚𝑝
𝑖 −𝑡𝑖𝑛𝑓

𝑖 )

𝑁𝑖
𝑗=1  ( 4.4 ) 

where 𝑓𝑠 represents the probability density function for the sampling distribution and 𝐹𝑔 is the 

cumulative distribution function for the generation time distribution. The sampling distribution 
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was also set to be Gamma. Equation 4.3 describes the probability for each individual 𝑖 =

1,… , 𝑛 in the tree of having 𝑁𝑖 offspring in total, specifically infecting offspring 𝑗 at 𝑡𝑖𝑛𝑓
𝑗

 and 

being sampled at 𝑡𝑠𝑎𝑚𝑝
𝑖  conditional on when they were infected and sampled. Thus whereas 

before the transmission tree prior depended on the transmission parameters of the SIR 

model (𝛼 and 𝛽, infection and removal rate respectively), it now depends on the parameters 

that determine the sampling and generation time distributions, namely 𝑘𝑔, 𝜃𝑔, 𝑘𝑠 and 𝜃𝑠; the 

shapes and scales of the Gamma distributions, as well as 𝑅0. 

A Gamma distribution was chosen for the generation time distribution as it is positively 

skewed and more centred around the mean than an exponential distribution but also it has a 

long tail which therefore allows for cases of long latency and reactivation. In their attempt to 

characterise the incubation period or latency period of TB (defined as the time between 

infection and active disease), Borgdorff et al [139] found that there was a skewed distribution 

with a median of 1.26 years, and range of 0-12.8 years. Although the generation time is not 

the same as the incubation/latency period, the generation time will follow a similar curve as it 

will have to include the incubation period but also a lag between becoming infectious and 

infecting someone, which is assumed to be constant. 

The full description of the terms is: 

𝑓𝑜(𝑁𝑖) =
1

𝑁𝑖!
(

𝑅0

Γ(𝑘𝑔)
𝛾 (𝑘𝑔,

𝑡𝑠𝑎𝑚𝑝
𝑖 −𝑡𝑖𝑛𝑓

𝑖

𝜃𝑔
))

𝑁𝑖

𝑒
−

𝑅0
Γ(𝑘𝑔)

𝛾(𝑘𝑔,
𝑡𝑠𝑎𝑚𝑝
𝑖 −𝑡𝑖𝑛𝑓

𝑖

𝜃𝑔
)  

 ( 4.5 )  

𝑓𝑠(𝑡𝑠𝑎𝑚𝑝
𝑖 − 𝑡𝑖𝑛𝑓

𝑖 ) =
1

Γ(𝑘𝑠)𝜃𝑠
𝑘𝑠
(𝑡𝑠𝑎𝑚𝑝
𝑖 − 𝑡𝑖𝑛𝑓

𝑖 )
𝑘𝑠−1

𝑒
−
𝑡𝑠𝑎𝑚𝑝
𝑖 −𝑡𝑖𝑛𝑓

𝑖

𝜃𝑠  ( 4.6 ) 

𝑓𝑔(𝑡𝑠𝑎𝑚𝑝
𝑗

−𝑡𝑖𝑛𝑓
𝑖 )

𝐹𝑔(𝑡𝑠𝑎𝑚𝑝
𝑖 −𝑡𝑖𝑛𝑓

𝑖 )
=

1

𝜃𝑔
𝑘𝑔
(𝑡𝑠𝑎𝑚𝑝
𝑗

−𝑡𝑖𝑛𝑓
𝑖 )

𝑘𝑔−1
𝑒
−
𝑡𝑠𝑎𝑚𝑝
𝑗

−𝑡𝑖𝑛𝑓
𝑖

𝜃𝑔

𝛾(𝑘𝑔,
𝑡𝑠𝑎𝑚𝑝
𝑖 −𝑡𝑖𝑛𝑓

𝑖

𝜃𝑔
)

 ( 4.7 ) 

 BIOINFORMATICS 

The bioinformatics pipeline used to analyse the raw genomic data and produce the FASTA 

files for constructing phylogenetic trees is described in [127]. 

 SETTINGS 

4.3.3.1 BEAST 
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Phylogenetic trees were produced in BEAST, initially without constraining the molecular 

clock rate. The resulting trees were showing a root around 1997, which would have 

suggested that the index case was infected then. This was considered too early given that 

the inferred index case was likely infected between June and October 2007 when he was 

visiting Vancouver, as the circulating TB genomes from the Vancouver area had the same 

MIRU-VNTR type as the Kelowna outbreak strain and was likely the ancestor [88]. Once the 

fixed clock rate was constrained to roughly 1𝑒7 per site per year the root was around 2005 

(2003.5-2007, 95% confidence interval), which seemed a better fit.  

Trees were then produced using a fixed clock model set to 1𝑒−7 per site per year (≈ 0.44 

mutations per genome per year), roughly the same posterior mean produced in BEAST by 

Didelot et al, and constant population size model [140]. We considered 100 trees randomly 

sampled from the latter half of a chain of 10,000,000 sampled trees, in order to allow for 

burn-in.  

4.3.3.2 TRANSPHYLO 

Fixed parameters (i.e. parameters that are not sampled by the MCMC) for the model within 

the MCMC inference are: 𝑅0 = 1.5, 𝑘𝑠 = 1, 𝜃𝑠 = 2, 𝑘𝑔 = 2, 𝜃𝑔 = 1. 

The code for the modified version entails one modified program (probTTree.m) found at 

https://github.com/holliehatherell/Thesis/ModifiedTransphylo with the remainder of the code 

available at https://github.com/xavierdidelot/TransPhyloMatlab (substituting the modified 

version of probTTree). 

The MCMC was run using the maximum clade credibility (MCC) tree from the posterior 

phylogenetic trees from BEAST. The MCC tree is one tree picked from the posterior sample, 

chosen because it has the highest product of all its clade probabilities, where each clade 

(see Figure 4.4) in each tree is given a probability based on what proportion of the posterior 

trees contain the same clade (the more times the clade appears, the higher the score). 

Thus, it is a good point estimate in terms of topology for the posterior set of trees. The 

MCMC was run for 250,000 iterations, which was thinned so only every 250th tree from the 

latter half of the posterior was used for analysis, resulting in 501 transmission trees. 

 

Figure 4.4 Graphical presentation of a clade within a phylogenetic tree, defined as 

a group of branches containing an ancestor and all its descendants  

https://github.com/holliehatherell/Thesis/ModifiedTransphylo
https://github.com/xavierdidelot/TransPhyloMatlab
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The blue box within the red box on tree A highlights a clade within a clade. The red 

box on tree B shows a clade, whereas those highlighted in trees C and D are not.  

 EXAMINING THE TRANSMISSION TREES FROM A PUBLIC 

HEALTH VIEW 

In the tree object produced by TransPhylo, there is one column of infection dates, another 

column of sampled dates and a third column of the index of the infector. For example, 

consider a phylogenetic tree that describes case 1 infected case 3 who in turn infected case 

2, this would be described in a tree object as in Table 4.1. 

Infection date Sample date Infector 

𝒊𝒏𝒇𝟏 𝑠𝑎𝑚𝑝1  

𝒊𝒏𝒇𝟐  𝑠𝑎𝑚𝑝2 3 

𝒊𝒏𝒇𝟑 𝑠𝑎𝑚𝑝3 1 

Table 4.1 Example of a tree object in TransPhylo displayed as a table.  

The first row is for case 1; as they are the index case in the outbreak their infector 

is left blank. Case 2 was infected by case 3 so 3 is listed in the infector c olumn for 

row 2 and case 3 was infected by case 1 so 1 is recorded in the infector column for 

row 3. 

The date of the last transmission event, i.e. the latest infection date, was recorded as the 

latest date from column 1 of the tree object from the MCMC consensus transmission tree, a 

tree produced by TransPhylo which only includes transmission pairs above a certain 

probability. To determine whether phylogeny had any effect on the timing of the last 

transmission event, the date was recorded in a vector from over 501 transmission trees 

sampled from the MCC tree. 

 EXAMINING THE EFFECT OF PRIORS 

In order to examine the effect of the prior generation time and sampling distributions on the 

posterior generation time and sampling distributions, a sensitivity analysis was carried out 

using a one-at-a-time method on the shape and scale of the Gamma distributions. To do 

this, the shape and the scale parameter were varied separately and then the MCMC was re-

run on the MCC tree and for each infector-infectee pair inferred in the transmission trees the 

time was recorded between their respective infection dates as well as the time between 

each case’s infection and sample dates.  
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The effect of phylogenetic uncertainty on the time of the last transmission event was also 

examined by running TransPhylo on a posterior sample of 100 BEAST trees. The timing of 

the last transmission event was recorded as the timing of the latest infection date in the 

MCC transmission tree, as mentioned in Section 4.3.4. 

 RESULTS 

 OUTBREAK ANALYSIS 

Examining the infection time for each of the 48 sequenced cases over 50100 transmission 

trees (501 transmission trees for each of 100 phylogenetic trees) revealed that the last 

person-to-person transmission most likely occurred in late July or early August 2012 (Figure 

4.5), with 85% of the trees having a last transmission event in 2012. The point estimate from 

the MCMC consensus tree (run on the MCC tree) was 2012.581, i.e. 0.581 of the year into 

2012, roughly 30 weeks (≈ 0.581 x 52 weeks).  

 

 

Figure 4.5 Date of last transmission event taken from 50100 transmission trees 

(501 posterior trees for each of 100 different phylogenetic trees)  
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Seven cases were identified as having been diagnosed after the last transmission event with 

Figure 4.6 Inferred infection and sampling times for individuals in the Canadian 

outbreak 

Adapted from Hatherell et al. [146]. Cases from bottom to top are in order of diagnosis date 

(white circle), earliest to latest. Infection date inferred from TransPhylo depicted as a grey 

circle. The last transmission event (latest infection date) is denoted by a yellow circle. The 

infection date of the most recently diagnosed case is denoted by a blue circle 
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a range of late 2012 to mid-2013 (Figure 4.6). They are assumed to be instances of delayed 

progression as most of the transmission events leading to these cases occurred in 2010–

2011, meaning their latency period was longer than 2 years.  

 MATHEMATICAL ANALYSIS OF GENERATION AND SAMPLING 

TIME DISTRIBUTION 

Figure 4.7 Violin plots showing posterior sampling distributions 

Violin plots showing the posterior sampling distributions taken f rom the posterior 

transmission trees (time between infection and sampling for all cases) for different 

prior sampling distributions. The boxplots shown within the violin plots represent 

the prior distributions and the mean posterior sampling time is shown above each 

violin plot 

As the generation time and sampling distribution are new parameters to the model, it is 

important to assess the robustness of the model posterior to the prior values. This was done 

by choosing different prior distributions (different scales and shape values) and plotting the 

resulting posterior distribution.  

Figure 4.7 demonstrates the robustness of the sampling distribution to the prior chosen; over 

a wide range of shapes and scales for the prior sampling distribution, the posterior 

distribution remains right skewed and the scale is not much changed. The mean of the 

posterior sampling distribution is determined to be roughly 1.3 years with a maximum 

sampling time roughly between 17-19 years.  

The generation time distribution is robust within a range of values but as the scale increases 

the mean generation time increases (Figure 4.8). However, the distribution remains 

positively skewed throughout. 
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Figure 4.8 Violin plots of posterior generation time distributions  

Posterior generation time distribution for different generation time prior distributions (shown 

as boxplots within the violin plots) and mean posterior generation time shown above each 

violin plot. 

 INFERENCES AND DISCUSSION 

 KEY FINDINGS 

In this work, I aimed to reanalyse WGS data from a TB outbreak with an improved statistical 

inference method and interpret the timings of infection from a public health perspective. The 

improvement involved implementing an alternative model for transmission (i.e. a branching 

model versus SIR model), which then allowed for a more realistic infectious period. As 

shown through analysing multiple trees, even with phylogenetic uncertainty the timing of the 

last transmission event is robust, which makes this method useful for answering public 

health questions related to infection timing. The robustness comes from a robust phylogeny 

and the fact that generation times are constrained by the structure of the trees, namely, by 

tree height and branch length. However, this can lead to issues as seen when an extreme 

prior is used, as in order to compensate for a prior with a short mean generation time, the 

source case is forced to have been infected far in the past and thus has a very long 

generation time and skews the generation time distribution. 

Whilst the phylogenetic tree is generated using WGS data alone, epidemiological data 

played an important part in determining whether the resulting tree ‘fit’ with the information 

known about the outbreak and the cases.  

Although I have not presented data on the subject, intuitively, generation time will also have 

an impact on sampling time as sampling time must always be longer than generation time 
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due to the assumption that an individual cannot infect after they are sampled. This premise 

assumes that treatment is started once an individual is sampled and treatment is effective at 

reducing infectiousness immediately. Although there was no information on the uptake of 

treatment or treatment delay for this outbreak, given a high proportion (85%) of cases were 

classified as having cured, it is not an unreasonable assumption. Thus, by setting a prior 

generation time distribution with a large scale the mean posterior generation time is 

increased and, in turn, the sampling time. These effects must be considered when setting 

prior distributions. 

A secondary output from the analysis of the sampling times was that the mean sampling 

time was roughly 1.3 years after infection. In general, this means that the cases were 

developing active disease quickly after infection, and more often as a result of recent 

infection as opposed to reactivation. This is also reflected by the generation times as the 

distribution remains positively skewed throughout, showing that most cases were fast 

progressors (progression from latent TB infection to active disease in less than 2 years). 

 STRENGTHS 

Given that the method seeks to uncover information for which there is no ground truth, i.e. 

the truth is unknown, the method can only be effectively tested through simulation. The 

original method has been shown to produce accurate results when tested on a simulated 

outbreak [99]. 

A strength of this work was the choice of outbreak; as the outbreak was small and within a 

small territory the previous epidemiological investigation was able to get extremely detailed 

knowledge of the involved individuals. Working closely with the public health team in charge 

of the epidemiological investigation meant the results of the statistical analysis could be 

compared with the epidemiological knowledge and this helped to refine the statistical 

analysis. 

A high sampling coverage (believed to be 48/52) is an advantage as the version of the 

method used in this work does not currently infer missing samples. 

 LIMITATIONS 

A limitation of the method is that we cannot validate the timing of the last transmission event, 

the sampling times or generation times with any data as it is not possible to determine the 

infection date accurately with any other method. This is a fundamental limitation in any 

outbreak reconstruction task, as the ground truth is not known, hence the need for this 

analysis. The best that can be done in these circumstances is a comparison of 

reconstruction with a simulated outbreak as was done with the original version of 

TransPhylo. 
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This version of the method still assumes that every case involved in the outbreak has been 

sampled, which is known to be false given that there were four known cases for which there 

was no genomic data. Missing cases could affect the inference as the generation time is 

highly likely to be wrong if the incorrect infector is chosen. For example, in some cases, with 

the infector of a case missing, the infector’s infector could be imputed as the infector of any 

they have infected. Thus, the observed generation time would, in fact, be the addition of two 

generation times (Figure 4.9). In this scenario, in order to capture the most accurate 

reconstruction (i.e. keep the approximate transmission pathways, meaning the infector of a 

missing case is inferred as the infector of any cases the missing case infected), TransPhylo 

would have to accept potentially quite long generation times, which is unlikely due to the 

choice of a Gamma distribution for the generation time. Since this work, an updated version 

of TransPhylo has been developed which can determine the possibility of unsampled cases 

[141].  

 

Figure 4.9 Diagram depicting effect of incomplete sampling on reconstructed 

transmission chains 

On the left is the true transmission chain with the generation times denoted next to 

the arrows. On the right is the transmission chain as determined when case B is 

not sampled, thus the generation time is assumed to be 4 years  

An additional limitation relates to the sampling of the outbreak. Cases may exist, with either 

latent infection or active disease, who were infected after 2012 (given that some of the 

known cases in the outbreak were still infectious up until 2014) but have not been 

diagnosed. The presence of such cases would nullify the hypothesis that the outbreak is 

over. This is a difficulty with any outbreak of tuberculosis; unless it can be confirmed that 

there are no cases of latent infection in the community, there is still a chance that an 

individual can reactivate in the future and cause a further wave of cases. Despite this, the 
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priority for public health control efforts is to stop sustained transmission, as later cases 

arising through occasional reactivation can be contained more easily. Once ongoing, recent 

transmission has been determined to have ceased then there can be more focus on 

detecting and treating latently infected individuals in order to prevent a recurrence. 

 RECOMMENDATIONS AND CONTEXT 

The use of the method for other TB outbreaks would depend on the sampling proportion of 

the outbreak; this needs to be high in order to use the method as in its current state it does 

not account for unsampled cases. Unsampled cases may be cases that we do not know 

exist or cases we know about but have no available sample/sequencing data. In their 

method for inferring transmission networks from genomic data, Jombart et al. [82] included a 

way of dealing with unsampled cases by introducing a term in the likelihood for the 

probability of observing the number of genetic differences seen between 𝑖 and 𝑗’s genomes 

given that they are separated by 𝑘𝑖 generations. A similar adaptation has since been 

included in the TransPhylo methodology [142] and although the outbreak was considered 

well sampled it could be beneficial to apply the method and confirm this assumption.  

Although it was not included here, it is possible to incorporate epidemiological data into the 

method in order to take advantage of any further information that may help resolve the 

transmission network and the infection dates (see Appendix 2), as was employed by 

Ayabina et al [143]. Such information could include sputum smear results, where cases with 

smear-positive disease are more likely to transmit infection versus those with smear-

negative disease [16, 17]. This could be included in the form of a penalty for transmission 

networks that propose transmission from cases with smear-negative disease. This should, in 

theory, help reduce any uncertainty in transmission events and their timings, however this 

information itself introduces its own uncertainty as people in general are often unreliable in 

their assessment of how long they have been unwell for. This may be compounded by 

issues such as drug abuse or mental health concerns.  

New methods for inferring transmission networks from genomic data are still being 

researched. For example, Klinkenberg et al. [144] and Hall et al. [145] have developed 

methods that can simultaneously infer the phylogeny and transmission tree rather than just 

inferring the transmission tree from the phylogeny. The benefit of this being that 

phylogenetic uncertainty can be accounted for much more easily as opposed to having to 

assume that the phylogeny is absolutely true and simply accounting for the uncertainty 

through sensitivity analysis. Klinkenberg et al.’s method was tested on TB, MRSA, Foot and 

Mouth disease and influenza outbreak data, whereas Hall et al.’s method was only used for 

influenza. However, the method by Hall et al. used a susceptible-exposed-infected-

recovered (SEIR) model for the epidemic process, meaning that it would still be suitable for 

TB. 
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de Maio et al. [146] have developed a Bayesian method that is useful for determining 

transmission when there may be little to no diversity between consensus sequences. This 

could play an important role for TB outbreaks where there have been examples of few SNP 

differences between outbreak genomes [61]. 

To generate a set of phylogenetic trees which are compatible with the known epidemiology 

of the outbreak, the clock rate was fixed to a single value. However, given that a Bayesian 

approach was used, this information could have also been specified as an informative prior 

on the clock rate within BEAST, which then also would have allowed for some variation. 

 CONCLUSION 

In this work, a TB outbreak from Canada was analysed to see if the inferred infection dates 

from the analysis could reveal something about the current state of the outbreak, i.e. was it 

still ongoing? Before doing this analysis, the inference method contained an assumption, 

exponentially distributed generation and sampling times, considered inappropriate for TB. 

Given this assumption would affect the infection dates, it was therefore deemed necessary 

to adapt the method to improve its use for TB. This entailed changing the SIR model, which 

inherently contains the assumption, to a branching model, which allowed a greater freedom 

over the choice of distribution for the generation and sampling times. In doing this, it was 

necessary to assess the effect of the new choices of generation and sampling times through 

sensitivity analyses. The sensitivity analyses showed that as long as the choices for the prior 

generation time and sampling distributions were sensible, in accordance with what is known, 

then the posteriors were largely robust. 

In summary, it was possible to produce a set of infection times for the outbreak cases and 

analyse how long ago the most recently sampled cases had been infected, which led to 

concluding the outbreak was over. This has therefore been proven to be valuable for public 

health investigators to help them decide on real-time public health responses.  
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5 PHYLOGENETIC ANALYSIS OF LONDON TB 

OUTBREAK GENOMES (OBJECTIVE 3) 

 INTRODUCTION 

As WGS becomes a more enticing option for understanding infectious disease outbreaks 

especially in real-time, it becomes important to examine sequencing data from a variety of 

real-world outbreaks. The more data we have, the more we can learn about how best to 

interpret it, and then use those learnings in real-time to analyse current data and help control 

any current outbreaks. Following on from my analysis of the outbreak in British Columbia 

(Chapter 4), my subsequent objective focussed on the largest recorded isoniazid-resistant 

TB outbreak in Europe [147], an outbreak that has been largely centred in London and has 

been ongoing since 1995.  

In this chapter, I aimed to create a timed phylogenetic tree from the raw WGS data for the 

London outbreak, from which statistical inference techniques as per Chapter 4 could be 

employed to reveal the transmission dynamics. Firstly, I describe the sequencing data that 

was available for analysis. Then I describe the bioinformatic analysis pipeline used, including 

software. Finally, I explain the phylogenetic analysis used on the resulting genomic 

alignment. 

 OUTBREAK 

The London isoniazid-resistant TB outbreak is a cluster of over 500 TB cases that have 

been primarily found in London over the past two decades and are resistant to the first-line 

anti-TB drug isoniazid. A number of papers have been published on this cluster over the 

years [147, 148, 149, 150] that have documented the evolution of the outbreak over time. 

This outbreak was first identified when three patients from a north London hospital were 

diagnosed with TB phenotypically resistant to isoniazid within a small timeframe in 2000 

[149]. Genotyping found them to have indistinguishable RFLP patterns and retrospective 

investigation of isoniazid monoresistant samples in the north London hospital and the 

surrounding hospitals found earlier cases with the same RFLP type, with an index case 

diagnosed in 1995. From 2000 onwards, all isoniazid monoresistant cases were genotyped 

using rapid epidemiological typing (RAPET), which is a polymerase chain reaction (PCR)-

based alternative to RFLP, and/or RFLP typing to identify if they were part of the outbreak. 

In 2006, MIRU-VNTR typing was introduced; 24-loci MIRU-VNTR typing demonstrated the 

following outbreak strain, with one untypeable locus: 424332431515321236423-52. 

Searching the MIRU-VNTRplus database [151] for the VNTR showed that it was extremely 
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similar (4 loci different) to a MIRU-VNTR strain-type of the Cameroon lineage that circulates 

in Nigeria, where the first outbreak case originated.  

As the outbreak progressed, MDR-TB was occasionally seen and was assumed to be 

emerging due to the large number of patients adhering poorly to treatment [147]. There were 

concerns that the MDR branch of the strain was being transmitted as some cases were 

infectious and not on treatment [152]. 

Over the course of the outbreak a number of characteristics emerged; firstly, it has remained 

surprisingly contained geographically. The majority of cases have been found in north and 

central London, with a smaller number from south London and the occasional case outside 

of London [153]. The other notable characteristic of the cases is that a large proportion has 

one or more risk factors determining them as ‘hard-to-reach’. These risk factors are prison 

history, history of problem drug use, alcoholism or homelessness. A case control study 

found that the proportion of cases with these characteristics was higher than would be 

expected compared with other cases diagnosed in London during the time of the outbreak 

[147]. 

Extended contact tracing was employed throughout the early stages of the outbreak and 

questionnaires concerning the contacts and social hangouts were regularly distributed to 

clinics and returned by nurses. For these cases there is a clear picture of the treatment 

history and lifestyles for many of these cases; later cases are less well documented.  

Despite a small decrease around 2008, the number of cases notified each year remains 

constant, which highlights the need for a new approach to outbreak control in order to bring 

it to an end (Figure 5.1). This motivates use of genomic epidemiology and phylogenetic 

inference to determine what fresh insights might be available. 
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Figure 5.1 Outbreak curve for London outbreak 

In 2015, the TB samples from outbreak cases kept by the National Mycobacterium 

Reference Laboratory (NMRL) were whole genome sequenced by the Sanger institute for a 

study by Casali et al. [61] to see what the WGS data could reveal that might give some 

insight into the transmission dynamics for the outbreak. As a result, the genomic data are 

freely available on Genbank [154]. Casali et al. used the WGS data to construct a minimum 

spanning tree and compare the SNP differences between cases known to have been 

epidemiologically linked. After considering the approaches laid out in Chapter 3, we sought 

to use the genomic data to examine transmission in more rigorous terms using a statistical 

approach. 

 BIOINFORMATICS 

Producing SNP data firstly involves turning raw sequencing reads, which are short 

sequences (usually 100bp long) in no particular order, into a fully assembled genomic 

sequence. Genetic changes in that sequence such as single nucleotide polymorphisms 

(SNPs) and insertions and deletions (indels), can then be identified when compared with a 

reference sequence. This process often requires numerous steps using different software 

that can handle multiple types of files; the basic steps can be seen in Figure 5.2. There are 

software programs such as Genome Analysis ToolKit (GATK) [155, 156] that attempt to 
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handle all steps within the same package as well as software programs specialised to each 

step, which can be used in succession. 

Before beginning the construction of the sequences and calling variants, the quality of the 

reads must be checked so that reads with poor quality can be discarded and minimise the 

number of errors. FastQC (v0.11.4) [157] assesses the reads using 12 criteria, such as per 

base sequence quality and per sequence GC content, and classes the files as either 

passed, warning or failed. The definitions of these criteria and the meaning of the outcomes 

are listed in the FastQC manual pages.  

After determining the quality of the raw data files, a consensus sequence can be created 

from the reads. This can be done in two ways: mapping to a reference genome or de novo 

assembly.  

De novo assembly entails building a genome from short reads without a guide in the form of 

a reference genome to help determine how the reads should be put together. It is time and 

computationally intensive as every read must be compared with every other read in order to 

determine where there may be overlaps. When overlaps between two reads are found, the 

two reads can be combined together and are then called a contig. Once a few reads have 

been joined to make long contigs, these then act as a scaffold for the remaining reads. 

In comparison, the process of mapping to a reference uses a specific genome as a guide 

and places reads in a certain location according to how well it matches to the reference. 

Mapping to a reference would generally be preferred to de novo assembly if there is a well-

characterised reference genome as it is less computationally intensive. This is the case for 

M. tb. and the monomorphic nature of the bacterium means that there are very small 

amounts of variation across the lineages. 

In order to undertake mapping to a reference, a reference must first be chosen; for M. tb. 

bioinformatics analysis the H37Rv strain is the most commonly used. Once a reference is 

Filter 
(vcftools)

Call variants 
(SAMtools)

Sort and 
index bam 

files 
(SAMtools)

Map to 
reference 

(BWA)

Check 
quality 

(FastQC)

Figure 5.2 Step-by-step bioinformatic analysis process with software used for each 

step given in brackets 
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chosen a mapping software is used to align the reads from a sequenced isolate along the 

reference genome with some probability defined as the mapping quality and alignment 

quality (Table 5.2). After this has been done for all the reads, ideally every single base of the 

reference genome should have at least one read mapped to it i.e. a read depth of at least 

one. However, there is also a possibility that reads can be mapped to more than one 

location and some reads may not be possible to map at all. In order to then construct the 

consensus sequence for the isolate each base must be examined in all the reads and a 

‘consensus base’ is chosen based on the largest proportion of reads and quality etc. For 

example, in Figure 5.3, at position 4, reading from left to right, the reference genome has a 

G, however five of the six reads mapped to the reference have an A at that position. As a 

result, an A is chosen for the consensus sequence at that position with a probability of 0.83. 

 

Figure 5.3 Depiction of the process of mapping to a reference genome  

The aligned sequence alignment map (SAM) files are then converted to binary alignment 

map (BAM) files and sorted and indexed in SAMtools (v.1.2) to allow the program to find 

regions of the genome quickly. Using the mpileup command, it is possible to set a threshold 

for mapping and base quality and any bases failing this criterion will not be counted towards 

the determination of a genotype. The choice of these thresholds has varied across the WGS 

TB literature (Table 5.1) demonstrating the dearth of knowledge around the best approach 

for such analyses. To get a joint prior probability for ML estimations at each site [158], 

variants were jointly called according to a minimum mapping quality threshold and minimum 

base quality threshold set by the user. This uses base alignment quality (BAQ), which 

measures the probability of a read base being wrongly aligned and assigns it a score [159].  
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Study Software WGS quality thresholds 

Bryant et al [45] SAMtools and bcftools Base quality of 50, mapping quality 30 

Casali et al [61] SAMtools No base quality mentioned, mapping quality 

45 

Clark et al [97] Not mentioned Phred score of 30 

Didelot et al [99] SAMtools Variant quality of 222, genotype quality 99, no 

pre-filtering 

Guerra-

Assunção et al 

[79] 

Trimmomatic (pre-

mapping filtering), 

SAMtools 

Removed ‘low quality reads’ with base quality 

<Q27, no SAMtools filters. 

Gardy et al [88] Not mentioned No mention 

Guerra-

Assunção et al 

[92] 

Trimmomatic (pre-

mapping filtering), 

SAMtools 

Removed ‘low quality reads’ with base quality 

<Q27, no SAMtools filters. 

Lee et al [93] Not mentioned Phred score of 50, no pre-filtering 

Luo et al [89] Not mentioned No thresholds mentioned 

Pérez-Lago et al 

[103] 

SAMtools Minimum coverage 10, minimum mapping 

quality 20 

Regmi et al [107] Not mentioned Phred score of quality 20 post-filtering 

Smit et al [101] Not mentioned Mapping quality 45 

Stucki et al [100] Not mentioned Post-calling Phred score of 20 

Walker et al [48] Not mentioned No thresholds mentioned 

Witney et al [94] SAMtools Mapping quality score of 30, site quality score 

of 30 

Table 5.1 A list of TB studies that have undertaken bioinformatic  analysis of 

genomic data alongside the software used and any quality filters used  

An R script, named vcfProcess, (https://www.ucl.ac.uk/computational-biology-

group/research-interests/software/vcfprocess/) can be used to the filter the variants in the 
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Variant Call Format (VCF) file and to convert the SNPs into a FASTA file format that can be 

read into most phylogenetic software, such as RAxML and BEAST. Variants can be filtered 

according to thresholds around read depth or coverage or the Phred-scaled quality score 

(the probability of there being a variant at that site, not the sample level genotype 

confidence) or the location of the variant. Another statistic used by studies to assess the 

quality of base calling and mapping. Read depth or coverage is defined as the number of 

reads that cover each position along the genome. Intuitively, the fewer reads there are 

covering a position, the less confidence we can have in the base calling as there is an 

increased likelihood of errors. 

When performing bioinformatics analyses, it is important to check the quality of the data and 

the alignment. This can be done at various stages of the process and different software and 

pipelines will measure quality with alternative language and thresholds. A brief list and 

explanation of some of the quality metrics that can be done are compiled in Table 5.2. 

Quality measure Definition 

Base quality This assesses the potential that the base has been 

reported incorrectly by the sequencer, assigned by the 

sequencer 

Mapping quality This assesses the potential that the read has been 

mapped incorrectly by the aligner. This is decreased if the 

read has been mapped to more than one position 

Alignment quality This assesses the similarity between the mapped read 

and the reference, assigned by the aligner 

Variant quality This assesses the probability that there is some kind of 

variation at that site  

Genotype quality This assesses the probability that the call assigned at that 

site for that sample is true 

Table 5.2 Definitions of different quality metrics employed in bioinformatics 

analysis. All quality is reported as a Phred score 

 PHYLOGENETICS 

Phylogenetic analysis is the process of building a tree that shows the relationships between 

the strains for which SNP alignments have been generated through a bioinformatics 

pipeline. Like bioinformatics analysis, this process also requires a number of choices and 

steps. There are multiple different types of phylogenetic tree as mentioned in Section 

1.4.1.1.1.1, each useful for a specific purpose and as such a decision must be made about 
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which type of tree is most suitable dependent on the use of the tree. In this case, a timed 

tree was desired for use in further downstream analyses (i.e. TransPhylo transmission 

analyses used in Chapter 4) where timing (of transmission) is the desired goal.  

In order to build reliable timed trees, there must be a clock-like signal in the sequence data, 

meaning that a molecular clock is present. This can be determined. by performing a linear 

regression analysis on the root to tip distance for each sample in the tree and its sampling 

date. This requires a phylogeny and the sampling dates for each genome in the tree. An 𝑅2 

value close to 1 suggests a strong clock-like signal in the data. When building the ML tree 

for this analysis, the main setting choice when performing this type of analysis is the choice 

of a substitution model. This can be set by the user based on knowledge of the data/species 

or chosen using a program such as jModelTest [161, 162] or ModelFinder [163], which 

compares different substitution models using model selection methods, such as Akaike 

Information Criterion (AIC) or Bayesian Information Criterion (BIC). Bootstrapping, which 

involves producing a tree from a random resampling of the input sequences, helps to 

determine some confidence in the tree, whereby bootstrap values determine the percentage 

of trees a node is found in. Values closer to 100 represent greater confidence in the tree. 

Once a clock-like signal has been determined, Bayesian tree sampling software, such as 

BEAST (Bayesian evolutionary analysis sampling trees [134]), can be used to produce a 

timed-tree. The data required are SNPs and the date of collection for each sample. There 

are a number of parameters that need specifying in BEAST, namely the type of molecular 

clock, a tree prior and substitution model. The type of molecular clock will determine whether 

the molecular clock rate (the constant rate of genetic change in a bacterium, usually 

measured in mutations per unit time) is strict or relaxed; strict meaning that the rate is the 

same across lineages versus relaxed which means it can vary across lineages [164]. A tree 

prior reflects how the effective population size, 𝑁𝑒, (of the bacterium) is believed to change 

over time, e.g. does it remain constant or grow exponentially etc. [134].   

To decide on all of these settings, BEAST allows the user to perform a path sampling 

analysis. BEAUti 1.8.1 was used to generate an extensible markup language (XML) file from 

the sequence alignment for use in BEAST 1.8.1. It is within BEAUti that the settings for 

BEAST are chosen, such as the tree prior, substitution model and clock model. As 

recommended by the BEAST developers, initially, a simple substitution model (HKY), a 

coalescent tree prior and relaxed clock model was chosen to first see if the MCMC 

converged before choosing more complex models. Although a relaxed clock model is not 

recommended for intra-species data for several reasons including that large variation is not 

expected between lineages within a species [165], it can be used to check how much 

variation among rates is implied by the data and therefore determine the use of a relaxed or 

strict molecular clock model. To then determine the best choices for the tree prior, clock 

model and substitution model a comparison between these choices was made using 

marginal likelihood estimators (MLE) [166] and Bayes factors (BF). Bayes factors are a 



Phylogenetic analysis of London TB outbreak genomes (Objective 3) 
 

77 
 

statistic calculated by the ratio of MLEs from different models and then used to reject or 

accept one of the models according to a set of thresholds. In BEAST, this involves selecting 

a path sampling (PS)/stepping-stone sampling (SS) analysis, where samples are collected 

not only from the posterior distribution, but also a series of power posteriors [167]. The result 

of these analyses is a log MLE value for the model [168, 169] which can be compared 

between models using Kass and Raftery [170]’s statistic of 2log(BF), where BF is equal to 

the value of one model’s MLE value minus another model’s MLE value. 

BEAST produces three files: one contains trees sampled by the MCMC, ones contains a log 

of all the parameter values over the chain, and one contains a summary of the chain. The 

sampled trees are the main result, but in order to produce a single tree, either one tree from 

the sample must be chosen or a summary tree created. A summary tree is a single point 

estimate tree that tries to represent the entire posterior sample of trees. There are multiple 

types of summary tree produced in different ways: for example, a MCC tree as described in 

Section 4.3.3.2 [171]. A summary tree can be produced from the trees file using 

TreeAnnotator. TreeAnnotator can also include the posterior probabilities of the nodes in the 

summary tree, as well as the highest posterior density (HPD) limits of the node heights. 

The parameter log and summary files can be used to run diagnostics on the MCMC: log files 

are used to check the traces for the parameters (i.e. the sampled values across the chain) 

and the summary file contains the acceptance probabilities for the parameters, both of which 

determine how well the chain is mixing. The Tracer program is a tool for analysing and 

assessing MCMC chains from BEAST using the log files [172]. In Tracer, one can examine 

the trace plots for each parameter, i.e. the sampled value for each iteration in the chain. It is 

possible to import multiple chains and view the sampling for parameters across multiple 

chains simultaneously, which makes assessing convergence easier. Tracer also displays 

effective sample size (ESS) values for each parameter. ESS values are equal to the number 

of effectively independent draws from the posterior distribution to which the Markov chain is 

equivalent [165]. The higher the number, the less correlated the samples are and the larger 

the number of independent draws that are available. Larger ESS values are desired as it is 

only if we have independent samples, that we can apply the law of large numbers and 

conclude that the estimated mean of our samples will converge on the true mean (the one 

we are attempting to sample from) [173]. A value of 200 or more is generally considered a 

‘good’ ESS value, although the larger the better.  

 DATA 

Sequencing data for 415 genomes from the outbreak were downloaded as raw Illumina 

reads in FASTQ format from the European Nucleotide Archive (ENA) (accession number 

ERP003508). The meta-data for the samples were provided by the NMRL and included the 

reference laboratory number, the date of sample collection, patients’ initials, specimen type 

http://www.ebi.ac.uk/ena/data/view/ERP003508
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and drug sensitivity patterns for isoniazid, rifampicin, ethambutol, pyrazinamide and 

streptomycin. 

Of these 415 sequences, the meta-data revealed that 17 outbreak cases had two samples 

sequenced, 2 cases had 3 samples sequenced and one patient sample had 27 colonies 

from a single culture sequenced. In the cases where multiple sequences belonged to the 

same patient (excluding the one with 27 sequences) the samples were retrieved at different 

times with a range of 8 to 1469 days between the earliest and the latest. 

 METHODS 

 BIOINFORMATICS 

By running FastQC on all the forward and reverse read files and marking a pass as 1, 

warning as 0 and a fail as -1, the quality of these files can be represented in a matrix. Of the 

samples within this study, every file passed on the basic statistics, per sequence quality 

scores, per base N content, sequence length distribution, sequence duplication levels, and 

adapter content measures. The files overall did worse on per base sequence content and 

kmer content. It is unsurprising that these samples failed on the per base sequence content 

criteria as M. tb is well known to have a GC-rich genome, meaning that the difference 

between the number of G/Cs and A/Ts is larger than 10%, which this criteria checks.  

BWA (v0.7.12) [174] was used as the mapping software using the mem command. This then 

produces sequence alignment map (SAM) files.  

Variants were called using a minimum mapping quality threshold of 45 and minimum base 

quality threshold of 30; these are Phred scores (Q-scores) and thus correspond to an error 

of 1 in 55000 and 1 in 1000, respectively. 

vcfProcess was used to the filter the variants in the Variant Call Format (VCF) file. The 

variants were filtered out if depth was lower than 5 reads or if the Phred-scaled quality score 

(the probability of there being a variant at that site, not the sample level genotype 

confidence) was below 20, or if they were in the proline-glutamate (PE), proline-glutamate 

polymorphic guanine-cytosine (GC)-rich sequences (PE-PGRS) or proline-proline-glutamate 

(PPE) genes as defined in TubercuList [175]. It is common practice to remove variants in 

these genes as they are high GC content regions [160] that make mapping reads difficult 

and consequently complicate the task of distinguishing true SNPs from mapping errors. 

The script used to map reads and call variants is available at GitHub 

(http://github.com/holliehatherell/Thesis). 

 PHYLOGENETICS 
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In order to determine the substitution model to build a ML tree, the IQ-TREE ModelFinder 

program was run on the FASTA file of only the variant sites (command can be found in 

Appendix 3). The Bayesian Information Criterion (BIC) (a criterion for choosing between 

different statistical models) was used to determine the best substitution model.  

A ML tree was then created in IQ-TREE using the best model as determined by 

ModelFinder. Bootstrapping was performed with 1000 iterations to assess the validity of the 

resulting tree. Full details and commands are listed in Section 9.3.1 – Appendix 3. 

The program TempEst [176] was then used to determine whether there is clock-like signal in 

the data from the tree produced by IQ-TREE. The selection ‘best-fit’ root position was 

chosen, which roots the tree such that the sum of squared residuals from the regression line 

is minimised (i.e. maximises the linearity), as the tree from IQ-TREE is arbitrarily rooted. A 

positive correlation coefficient value, 𝑅2, was taken as the sign of a clock-like signal in the 

data. 

BEAST was then run on the sequence alignment. As only variant sites (SNPs) were used, 

an ascertainment bias correction had to be used by specifying how many invariant sites 

there were amongst the sequences. The values specified were the base counts for the TB 

reference strain H37Rv: A: 758565; C: 1449985; T: 758379; G: 1444603 [177]. 

Initially, simple settings for the substitution model, tree prior, clock model and rate of 

heterogeneity were chosen (i.e. an HKY substitution model, a coalescent tree prior and 

relaxed clock model) and the convergence of the model was checked via the traces of the 

parameters and ESS values. Then, path sampling was performed alongside the MCMC in 

order to compare the suitability of different choices for the settings. Firstly, different 

substitution models were compared, then clock models, then rates of heterogeneity, then 

tree priors. In each case, an MCMC chain was run for 100,000,000 iterations and then a 

path sampling analysis was run for 100,000,000 iterations also. 

Once the path sampling results were analysed, the optimal settings were determined, and 

these were used to produce the final tree. The final tree was determined by running three 

separate MCMC chains with the chosen optimal model for 100,000,000 iterations. Once 

these could be assessed for convergence and mixing by checking ESS values and traces 

and were deemed suitable, the resulting trees from the chains were thinned by resampling at 

a frequency of 30,000, removing a burn-in of 40,000,000 trees and combined in 

LogCombiner. TreeAnnotator was then used to produce an MCC tree with posterior 

probabilities from the combined and thinned log. Trees have been visualised using FigTree. 

 RESULTS 

 BIOINFORMATICS 
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Manual inspection of the concatenated SNPs in Aliview showed that seven of the 415 

samples had large numbers of variants and heterozygous calls in comparison to the other 

samples and were determined to be mixed samples or a different strain i.e. not part of the 

outbreak. Four more samples failed sequencing, i.e. were largely returning missing data 

across the sequence due to extremely low coverage. One further sequence was removed 

due to it being a ‘repeat submission’, leaving 403 sequences.  

 

There were 980 SNPs present between at least one sample and the reference. Of these, 

261 sites varied amongst the samples i.e. 719 SNPs were present in all the samples but not 

the reference. At 157 sites there existed a heterozygous variant in at least one of the 

sequences, meaning that there were calls to two variants at the site, these were given the 

character ‘N’, which denotes ‘any base’ as per the IUPAC code [178]. Figure 5.4 shows the 

pairwise distance between all of the samples. 116 samples were identical to at least one 

other, corresponding to 13 pairs, six groups of three, one group of four, one group of five, 

one group of 12, one group of 11, one group of 14 and one group of 26. The most common 

distance was five SNPs between any two pairs with a maximum of 20 SNPs.  

There were 275 indels between samples and reference. These were excluded for 

phylogenetic analyses. 

 PHYLOGENETICS 

5.4.2.1 IQ-TREE RESULTS 

Figure 5.4 A histogram showing the distribution of the number of SNPs between 

every possible pair of sequences in the outbreak data  
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After running IQ-TREE on the sequences, the substitution model TMVe + ASC was 

determined to be the best fitting for the data according to the BIC. This substitution model is 

the transversion model, where AG=CT and there are equal base frequencies. The full set of 

parameters is listed in Section 9.3.1.  

All models that included ASC were ranked above those without ASC. 

IQ-TREE then produces a phylogenetic tree based on the results of the substitution model 

fitting (Figure 5.5). 
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Figure 5.5 Consensus phylogenetic tree produced using IQ-TREE with a TMVe+ASC substitution model from 1000 bootstrapping replicates 
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The bootstrap value of each node represents the percentage of replicates that contain that node. The values are coloured according to the scale displayed in  the legend 
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5.4.2.2 TEMPEST RESULTS 

 

Figure 5.6 Results from TempEst for the phylogenetic tree produced by IQ-TREE. 

Figure 5.6 depicts the plot of sampling date versus root-to-tip divergence in the tree without 

selecting a best-fitting root. The results of the TempEst analysis show a positive correlation 

between the time the samples were collected and the root-to-tip distance in the ML tree 

which implies that the data is potentially ‘heterochronous’ i.e. the range of time the data has 

been collected over is long enough to measure a reasonable amount of diversity and 

therefore it is possible to perform molecular clock analyses.  

5.4.2.3 BEAST RESULTS 

Before starting a BEAST analysis to find the best settings for the data, it is recommended by 

the developers that the data be first run with very simple choices (a HKY substitution model 

+G+I, relaxed clock and constant coalescent tree prior) to see if convergence can be 

achieved. 

5.4.2.3.1 INITIAL SIMPLE MODEL CONVERGENCE RESULTS 
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Figure 5.7 Trace of likelihood 

After running the simple model for 100,000,000 states, the resulting log file can be imported 

into Tracer and assessed for convergence. The recommended way of assessing 

convergence is looking for the high ESS values (>200) for the model parameters and by 

looking at the traces for the parameters, i.e. the sampled values at each state. Figure 5.7 

shows the trace for the likelihood and demonstrates that, after removing the burn-in (10% of 

number of total sampled states), the sampled values are fluctuating but are tightly around a 

mean. All ESS values are larger than 200 for this run (see Appendix 3). These two results 

together confirm that there is convergence and therefore these data should be suitable for 

BEAST analysis.  

5.4.2.3.2 BAYES FACTOR ANALYSIS 

Bayes factor analyses were then performed to compare models with different tree priors, 

substitution models, rates of heterogeneity, and clock models. The results were as follows. 

5.4.2.3.2.1 SUBSTITUTION MODEL 

BEAST allows for a generalised time-reversible (GTR) [179], HKY [180], or TN93 [181] 

substitution models. To compare between these three models, BEAST was run three times 

each with a different clock model with the rest of the model choices kept identical: no rate of 

heterogeneity, an exponential relaxed clock and a constant coalescent tree prior. 

Substitution model Path sampling log MLE 

GTR -5903372.370 
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TN93 -5903176.708 

HKY -5903156.489 

Table 5.3 Log marginal likelihood estimator values for different substitution models  

To compare between the models we must compute the value proposed by Kass and Raftery 

[170], i.e. 2logMLE1 − 2logMLE2, where MLEi is the marginal likelihood estimator for model 𝑖. 

They then proposed a set of ranges for when model 1 may be preferred to model 2. 

Using the results of Table 5.3, if we compare the HKY model with the GTR model, we find 

2logMLE1 − 2logMLE2 = 2 × −5903156.489 − 2 × −5903372.370 ≈ 432 

A result of 432 is greater than 10, which is the lower threshold for which Kass and Raftery 

propose should be used as very strong evidence for model 1 (HKY). 

Comparing the TN93 model with the HKY model then, we find 

2logMLE1 − 2logMLE2 = 2 × −5903156.489 − 2 × −5903176.708 ≈ 40 

Again, this is still larger than 10 and therefore the HKY model is considered the most fitting 

for the data. 

5.4.2.3.2.2 CLOCK MODEL 

The next step was the comparison of a strict clock, exponential relaxed clock and lognormal 

relaxed clock. Here, all other settings remained consistent: HKY substitution model with 

Gamma and Invariant sites, and a constant coalescent tree prior. 

Clock model Log MLE for PS 

Strict -5902809.593 

Lognormal relaxed -5902798.270 

Exponential relaxed -5902791.317 

Table 5.4 Log marginal likelihood estimator values for different clock models  

To compare the models, we must compute the difference between the log MLE values 

(Table 5.4) as before. First, we compare the exponential relaxed model with the lognormal 

relaxed: 

2 × −5902791.317 − 2 × −5902798.270 ≈ 13.906 

As this value is larger than 10, we would consider that there is strong evidence for the 

exponential relaxed model being preferable to the lognormal relaxed. 
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Next, the exponential relaxed model and the strict model: 

2 × −5902791.317 − 2 × −5902809.593 = 36.552 

Again, the exponential relaxed model is preferable to the strict clock model. 

5.4.2.3.2.3 RATE OF HETEROGENEITY 

With the HKY model chosen as the substitution model it was then important to decide on the 

rate of heterogeneity that should be included. BEAST provides four options: no 

heterogeneity, Gamma only, Invariant sites only or both Gamma and Invariant sites. The 

model settings between the BEAST runs remained constant: HKY substitution model, an 

exponential relaxed clock model and a constant coalescent tree prior. 

Rate heterogeneity Log MLE for PS 

None -5903156.489 

Gamma + Invariant sites -5902791.317 

Gamma only -3281.630 

Invariant sites -3274.557 

Table 5.5 Log marginal likelihood estimator values for different rate of 

heterogeneity 

Comparing as before using the values in Table 5.5, invariant sites only and no rate 

heterogeneity: 

2 × −3274.557 − 2 × −5903156.489 ≈ 11799764 

A result of larger than 10, indicates the invariant sites only is preferable to no rate 

heterogeneity. 

Comparing invariant sites only and to both Gamma and invariant sites: 

2 × −3274.557 − 2 × −5902791.317 ≈ 11799033.52 

As before, the invariant sites only model is also preferable to a model that includes both a 

Gamma rate of heterogeneity and invariant sites. 

Finally, we compare the invariant sites only model to a Gamma only model: 

2 × −3274.557 − 2 × −3281.630 ≈ 14.146 

We can also conclude that the invariant sites only model is better suited than the Gamma 

only model. 
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5.4.2.3.2.4 TREE PRIOR 

Lastly, there is the choice of tree prior. BEAST provides many choices for this model so in 

order to reduce computation time, only a few representative models were chosen for 

comparison. There are two primary categories of tree prior: coalescent and non-coalescent. 

For the non-coalescent prior, the birth-death serially sampled prior [182, 183] was chosen. 

The coalescent priors are then divided into parametric and non-parametric. From the non-

parametric models, the Bayesian SkyGrid prior [184, 183] was chosen (default settings of 50 

parameters and 140 time at last point). Finally, as there are a wide number of parametric 

coalescent priors a second (exponential coalescent with doubling time [185, 183]) was 

chosen to compare to the constant tree prior [140, 183]. The other settings were kept 

consistent as: exponential relaxed clock model, HKY substitution model with invariant sites. 

Tree prior Log MLE for PS 

Constant coalescent -3274.557 

Exponential coalescent -5902717.382 

Birth-Death serially sampled Failed 

Bayesian SkyGrid -5902693.505 

Table 5.6 Log marginal likelihood estimator values for different tree priors  

Comparing the constant coalescent with the exponential coalescent using th values in Table 

5.6, we find 

2 × −3274.557 − 2 × −5902717.382 ≈ 11798885.65 

This indicates that the constant coalescent tree prior is more favourable than the exponential 

coalescent. 

Next, we compare the constant coalescent prior with Bayesian SkyGrid prior: 

2 × −3274.557 − 2 × −5902693.505 ≈ 11798837.896 

Again, the constant coalescent prior is preferable.  

The Birth-Death tree prior, when used to generate a BEAST run, failed and returned an error 

stating that the initial tree state has a zero probability. 

5.4.2.3.2.4.1 CHOSEN MODEL 

As a result of the Bayes factor model comparison, the final model was an HKY with invariant 

sites only substitution model, a relaxed exponential molecular clock, and a constant 
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coalescent tree prior. This model was then used to generate the final tree by running three 

chains and combining the results.  

5.4.2.3.2.4.2 MIXING 

To assess mixing, we can look at the acceptance rates and traces for the parameters. The 

acceptance rates for each chain are given in Table 9.13. The majority of parameters (8/14) 

have an acceptance rate within a good range. The parameters: 

swapOperator(branchRates.categories), uniformInteger(branchRates.categories), Narrow 

Exchange(treeModel), Uniform(nodeHeights(treeModel)) have high acceptance rates. 

Whereas, Wide Exchange (treeModel) and WilsonBalding(treeModel) both have low 

acceptance rates. 

One set of traces for a parameter from all three chains is displayed in Figure 5.11. The lines 

‘jump’ frequently and there is no suggestion of ‘sticking’, where the chain repeatedly 

samples the same value. This is suggestive of a well-mixing chain and is repeated across 

the rest of the parameters (see Figure 9.1 - Figure 9.17). 

5.4.2.3.2.4.3 CONVERGENCE 

The ESS values for each of the three MCMC chains are listed in Table 9.14. In chains 1 and 

2, there are a number of parameters, prominently likelihood and prior, that have very low 

ESS values. However, in chain 3, all ESS values exceed 200, considered to be a good ESS 

value.  

Assessing the traces for the parameters across the chains, convergence should be seen as 

all chains would roughly end up sampling in a similar space towards the end of the chain. In 

Figure 5.11, although the chains start sampling from different spaces (the lines are spaced 

out), towards the 20,000,000th iteration of the chains, they appear to overlap suggesting they 

are converging. This is repeated across all of the parameters (see Figure 9.1 - Figure 9.17). 

In order to improve the sampling, the three chains were resampled at a lower frequency of 

300000 and a burn in of 40000000 states was removed from each of the log files and they 

were then combined. The resulting log file contained 541 samples. The resulting ESS values 

are listed in Table 5.7. 

Operator (parameter) Combined 

chain 

Operator (parameter) Combined 

chain 

joint 310 frequencies3 446 

prior 245 frequencies4 541 

llikelihood 254 pInv 492 
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treeModel.rootHeight 541 uced.mean 339 

age(root) 541 meanRate 335 

treelength 316 coefficientOfVariation 541 

constant.popSize 253 covariance 541 

kappa 541 treeLikelihood 254 

frequencies1 541 branchRates - 

frequencies2 541 coalescent 245 

Table 5.7 ESS values for the parameters of the combined chain  

These are all higher than 200, the accepted threshold for a well-converged chain. 

5.4.2.3.2.4.4 RESULTING TREE 

The corresponding tree files were also resampled and combined identically to the log files. 

The combined tree file was then used to produce the MCC tree.  

The resulting tree from the combined trees file is shown in Figure 5.8. The root node and 

some of the nodes at the tips show high posterior support, however the majority of the 

central nodes show very low posterior support (0.0017). There are also a number of 

negative branch lengths, which is indicative of the clades occurring at an extremely low 

frequency within the posterior sample [186].  

If the combined tree file is imported into DensiTree it is possible to see whether there is 

much uncertainty in the posterior sample, which would explain some of the low posterior 

support. As can be seen in Figure 5.9, there is a large amount of uncertainty, expressed by 

the ‘messiness’ of the lines. Where there is less uncertainty, the lines separate, for example, 

the inset in Figure 5.9, is a zoomed in section of the posterior sample of trees; here the 

clades are clearer and more obvious, which correlates with the higher posterior support 

values seen in the MCC tree, as demonstrated by the four clades highlighted in the posterior 

sample and MCC tree in Figure 5.10.
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Figure 5.8 Maximum clade credibility tree from BEAST with some clades collapsed.  

The posterior support for each node is shown as a node label, coloured according to the legend . A node with negative branch length is circled 

in red. 
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Figure 5.9 Posterior sample of BEAST trees displayed in DensiTree, where each sampled tree is one set of green lines.  

(Inset) The top right-hand corner is zoomed in to show clades with more certainty  
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Figure 5.10 Comparison of clades from the posterior sample of trees and maximum clade credibility tree.  

Left-hand figure is the posterior sample of trees, right -hand figure is the maximum clade credibility tree. Four clades are highlighted by 

coloured boxes in the posterior sample and correspondingly in the maximum clade credibility tree.
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 DISCUSSION 

In this chapter, I analysed TB outbreak genomes using bioinformatic and phylogenetic 

techniques in order to produce a timed phylogenetic tree for use within TransPhylo.  

 KEY FINDINGS 

After mapping the raw sequencing files to a genome and identifying SNPs from the 

assembled sequences, I attempted to construct a ML phylogenetic tree however with little 

success. The ML tree had extremely small bootstrap values, some as low as 5. This 

indicates little confidence in the tree, which can be an indication of not enough informative 

sites and too many taxa. Despite this, the data were determined to have a clock-like signal 

and a phylogenetic analysis in BEAST was performed. 

Despite high ESS values and seemingly well-mixed and converged MCMC chains, when a 

summary tree was produced, it appeared again to have overall low posterior support for the 

nodes in the tree. Additionally, there were a number of branches with negative length at 

central nodes, which is suggestive of low sampling frequency, i.e. the clade is not well 

represented amongst the posterior sample. The presence of negative branch lengths in the 

MCC tree render it inappropriate for analyses such as TransPhylo as it would negatively 

impact the timings inference. 

On examination of a posterior sample of trees using DensiTree, it was evident that there was 

a large amount of uncertainty demonstrated by a lack of clarity and definition in the overlap. 

When there is agreement between the sample of trees (implying more certainty), the 

structure of the tree is clearer. 
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As TransPhylo only infers transmission trees from one phylogenetic tree it is crucial that the 

tree be highly reliable and well-resolved, else results such as times of infection, which were 

key in the analysis of the Canadian outbreak (Chapter 4), will be also be highly unreliable. 

The consequence of the unresolved phylogenetic analysis reveals that there is either an 

issue with the analysis techniques used or that the data is not conducive to such 

phylogenetic analyses potentially due to a lack of divergence amongst the samples. 

Unfortunately, any inferences made with TransPhylo from the MCC tree produced would 

likely be highly uncertain. 

If we compare the findings in this chapter with those found by Casali et al [61], we see that 

we found more diversity amongst the samples (largest group of identical sequences: 96 

versus 26, maximum SNP distance: 9 versus 20) but because Casali et al.’s phylogenetic 

analysis was limited to producing a minimum-spanning tree which merely graphs the number 

of SNPs between samples and does not require any consideration of diversity over time and 

evolutionary rates etc. it is not a fair comparison.  

Further phylogenetic analysis has since been attempted on these sequences [141] but using 

a sample set of 50 phylogenetic trees from the BEAST posterior to run TransPhylo on 

instead of a singular tree, in order to reduce some uncertainty from the phylogenetic tree. 

The authors make no comment on the reliability of the trees chosen; however, they are 

successful in determining 16 well-supported transmission pairs amongst the cohort, and an 

additional 9 pairs which involve an unsampled infector.  

 POTENTIAL CAUSES/SOLUTIONS 

Figure 5.11 Traces for the ‘likelihood’ for all three MCMC chains  
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There are a number of potential causes of the failure to produce a high confidence 

phylogenetic tree with the outbreak genomes. As highlighted by the number of identical 

genomes in the sample and only an average of 5 SNPs difference, the diversity amongst the 

outbreak genomes is very low. There are potential methods that could be used to find more 

diversity in the sequences. Potential areas of diversity that were not included in this analysis 

were the PE, PPE, and PE-PGRS genes, due to the increased potential for mapping errors 

given these are highly repetitive areas of the genome. Therefore, a possible solution to the 

lack of diversity could be using de novo assembly for the bioinformatics analysis which 

attempts to create sequences without the use of a reference genome and therefore allows 

for inclusion of these areas. This then requires deeper sequencing, which means the sample 

is sequenced more times than normal, perhaps even hundreds or thousands of times, and 

would mean resequencing the genomes. The feasibility of de novo assembly on M. tb 

genomes has been demonstrated before by Bryant et al. [102] and therefore is a viable 

solution In the context of the samples that they used, however, Bryant et al. found no SNPs 

within the PE, PPE, and PE-PGRS genes and thus we may not within our data. 

Alternatively, using different pipelines with different filtering thresholds will potentially 

increase the number of SNPs found in the data [187], as explored in Chapter 3. In addition, 

mixed bases i.e. potential sites of SNPs that are present only in certain coinfecting strains, 

could be represented using IUPAC codes instead of ‘N’, emphasising within-host diversity.  

 STRENGTHS 

Whilst the resolution of finding a singular tree that could adequately describe the 

phylogenetic data was not reached, the analysis possesses several strengths. Firstly, the 

data was assessed for quality at several stages and SNPs of a low quality were removed 

using filtering techniques commonly used for bioinformatics analysis of TB genomes. 

The settings for the maximum likelihood tree were chosen using a model finding program 

which involves comparison between numerous different models instead of choosing a model 

at random. Bootstrapping was also used to determine the confidence in the tree. 

Another strength of this analysis is the use of path sampling and Bayes Factor analysis to 

compare multiple model settings in BEAST. This approach then allows for a rigorous, 

unbiased decision for which MCMC settings are best for the data, as opposed to merely 

choosing one at random without comparison. 

Additionally, the convergence and mixing of chains was checked and optimised through 

lengthened MCMC chains and combining multiple chains, resulting in well-mixed and 

converged MCMC chains with high ESS values. 

 LIMITATIONS 
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Although the choice of models and settings in BEAST was done through thorough model 

comparison, ideally, the choice of models and settings should be made such that they 

explain the data well. The premise of comparing the models to each other and choosing the 

best one does not necessarily mean that the chosen one is a good fit, merely that it is not as 

bad as the others.  

Another limitation is that not every setting choice is possible in BEAST, for example, the 

substitution models are relatively limited and the TMVe model, that was determined as the 

best for the data by ModelFinder, is not available in BEAST.  

 CONCLUSION 

In this chapter, I aimed to create a timed phylogenetic tree from the raw WGS data for 415 

samples available from a London TB outbreak. The resulting tree would then be available for 

use with the statistical inference technique as per Chapter 4 to reveal the transmission 

dynamics amongst the cases. The sequencing data that was available for analysis was 

overall good quality with only 12 samples that were unable to be sequenced. The 

bioinformatics pipeline used revealed a total 261 SNPs amongst the samples, with a 

maximum distance of 20 SNPs between any two samples. After determining the SNPs in the 

dataset, ML phylogenetic analysis was performed and used to assess the presence of a 

temporal signal in the data. Finally, after determining there was temporal signal in the data, 

BEAST was used to produce timed phylogenetic trees, following some analyses to 

determine the best settings.  

Following the analysis, a summary tree was produced in order to run TransPhylo analyses 

on, however, the posterior support for the tree was very low for many of the nodes in the 

tree, suggesting little confidence in the tree. After examining the posterior sample of trees, it 

is likely that there was too much uncertainty in the placement of the samples, to produce a 

confident summary tree. More investigation would be needed in order to determine the exact 

reason for the large amount of uncertainty, but one possibility is that the genomes were too 

closely related, leaving not enough diversity to make confident assumptions about their 

relationships. The result of this is that there are limitations to using WGS data to track 

transmission if cases are too closely related.  
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6 MODELLING AND INTERVENTIONS (OBJECTIVE 4) 

 INTRODUCTION 

Whilst WGS data can help us to understand patterns of transmission retrospectively [73], 

mathematical modelling provides a way to investigate hypotheses surrounding long-term 

future outbreak dynamics and potential interventions. The ability to do so has led 

mathematical modelling to become a valuable tool within the skillset of public health teams 

and outbreak investigations worldwide [66, 188]. 

In this chapter, I describe the construction and analysis of an original compartmental model 

used to describe the transmission and disease progression of TB. With the model calibrated 

using data from the London outbreak introduced in Chapter 5, I then introduce three 

interventions, including them from the beginning of the outbreak, and determine which of 

them could be considered the most effective in reducing the number of TB cases for this 

outbreak. 

 METHODS 

 DATA 

In addition to using the TB modelling literature, there were parameters for the mathematical 

modelling that needed to be derived from the public health data.  

The Field Epidemiological Services at PHE Victoria have been involved in the management 

and monitoring of the outbreak throughout and have a bespoke database created by 

identifying cases from various sources: an earlier, abandoned database specifically for this 

cluster before the London TB Register (LTBR) was started; a cluster investigation database 

of cases from all clusters and cases in ETS and LTBR with the correct cluster ID, as 

determined by their MIRU-VNTR type. The database contains 532 cases diagnosed from 

1995 to the end of 2013. In the database, there is information on social risk factors as well 

as the date symptoms started, the date they were diagnosed, the date they started treatment 

and the date they finished treatment. From these variables, the length of time between 

symptoms starting and being diagnosed can be calculated and used within the model, as 

well as the time spent on treatment. 

6.2.1.1 ETHICS 

Due to the use of sensitive surveillance data for this work, I applied for ethical approval and 

this was granted by the UCL Research Ethics Committee (UCL Ethics Project ID number 

6255/001). 
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 COMPARTMENTAL MODEL  

6.2.2.1 DESCRIPTIVE SUMMARY 

A compartmental model was built for the TB outbreak in London. Individuals are “born” into 

the population susceptible to TB (i.e. into compartment 𝑆) at a rate equal to the baseline 

death rate (𝜇). We assume everyone is susceptible when entering the population as we are 

only interested in individuals who are infected with the outbreak TB strain and we assume 

that having an existing TB infection with another strain does not afford any 

immunity/increase in obtaining a second infection or progression to active TB. Individuals 

are then infected and progress to a latent state (𝐿𝑓) at rate 
𝛽𝐼

𝑁
, where 𝛽 represents the 

transmission parameter, 𝑁 represents the total population and 𝐼 represents all the 

individuals who are infectious and therefore contribute to the transmission potential (i.e. 

those present in the early active disease, late active disease and lost to follow-up stages). 

Whilst 𝑁 is described as the total population size, the underlying population for this outbreak 

is not straightforward to define, i.e. should it be the entire population of London or just the 

size of the hard-to-reach population of London. As a result, the “birth rate” describes the rate 

of people entering the outbreak population as opposed to the real birth rate. 

The first latent state compartment represents individuals who have been recently infected, 

defined as the period two years after infection due to the fact that during the first two years 

after infection individuals are at the highest risk of developing active disease [189] thus the 

average duration in the early latent compartment is defined as 2 years. From there they can 

either progress to active disease or contain the infection and enter a second latent state that 

can last decades (𝐿𝑠), eventually resulting in disease via reactivation. Individuals in the 

second latent state can also return to the first latent state via re-infection at rate 𝑘𝛽𝐼, where 

𝑘 represents immunity to re-infection given that they are already infected [190]. Having two 

latent phases is common practice in TB modelling [136] and serves the purpose of 

approximately modelling the phenomenon of a very variable latent period by splitting 

individuals into two groups: those progressing to disease very quickly or much later in life 

[139].  

In the model there are two stages to active disease: “early” active (𝐴𝑒) where the individual 

is symptomatic and infectious but not sick enough to seek care and is therefore not on 

treatment and can transmit the infection; and “late” active (𝐴𝑙), where the symptoms are 

much worse and seeking care is inevitable. This phenomenon, where active disease is 

considered a spectrum, has been biologically described by Dowdy [191] and used in 

modelling by Dowdy [192]. Those in the early active stage contribute to transmission at a 

lower proportion than those in the late active stage, as they are defined as less infectious, 

but could be important in the spread and containment of disease as they represent an 

infectious source that is harder to target. Once in the late active stage, individuals progress 
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to being on treatment (𝑇). This transition accounts for the time to diagnosis and time from 

diagnosis to commencing an effective treatment regimen (as it is assumed that the time 

between diagnosis and treatment is negligible). 

Given that once an individual is on treatment their ability to transmit the infection is 

considered to diminish within two weeks [193] those at this stage are not considered to 

contribute to the transmission potential. Those on treatment can progress to one of three 

states: susceptible (i.e. we assume no immunity to subsequent infection) having completed 

treatment successfully; lost to follow-up (𝐿) where they are no longer being treated and are 

as infectious as before they started treatment; or active late disease representing a relapse 

i.e. treatment failure. The difference between becoming lost to follow-up and relapsing 

depends on where the individual is in the health system i.e. if they are lost to follow-up we do 

not know their location but assume they are no longer on treatment, whereas a return to 

active TB means that they are still in the health system, albeit switched to another (effective) 

treatment. 

Whilst in the lost to follow-up state, individuals can return to being on treatment. This was 

included as there were examples of individuals who were lost to follow up at 12 months but 

returned to complete treatment (Table 6.5) and individuals who were lost to follow up at final 

outcome but had a second notification several years later, possibly the same episode. 

All states experience a baseline death rate of 𝜇, and those in the late active and lost to 

follow-up states experience an additional death rate due to TB, 𝜇𝑡𝑏. 

6.2.2.2 MODEL EQUATIONS AND PARAMETERS 
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In this section the mathematical description of the model is presented alongside the 

definition of the parameters in the model (Table 6.1). The code used to build the model and 

can be found at GitHub (https://github.com/holliehatherell/Thesis/London Outbreak Model). 

The determination of the parameter values was made using a combination of the TB 

literature, epidemiological data analysis, Bayesian inference and modelling rules (described 

in Section 6.2.2.3). All rates are per person per year. 

 

Figure 6.1 Diagram of compartmental model 

Rates for moving from one compartment to another (excluding death rates and 

case finding rate) are denoted by a letter next to an arrow. Case -finding would be 

represented as an arrow from active early disease (𝐴𝑒) to on treatment (𝑇) with rate 

𝑐𝑓. Each compartment experiences a baseline death of 𝜇. Additionally, 𝐴𝐿 and 𝐿 

experience a death rate due to tb, 𝜇𝑡𝑏 

https://github.com/holliehatherell/Thesis/London


Modelling and interventions (Objective 4) 
 

102 
 

𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − 𝜇𝑆 + 𝑐𝑇 −

𝛽𝑆(𝐴𝑙 + 𝐿 + 𝜙𝐴𝑒)

𝑁
 

𝑑𝐿𝑓

𝑑𝑡
=
𝛽𝑆(𝐴𝑙 + 𝐿 + 𝜙𝐴𝑒)

𝑁
− 𝜇𝐿𝑓 − (𝑝𝑓 + 𝑝𝑠)𝐿𝑓 +

𝑘𝛽𝐿𝑠(𝜙𝐴𝑒 + 𝐴𝑙 + 𝐿)

𝑁
 

𝑑𝐿𝑠
𝑑𝑡

= 𝑝𝑠𝐿𝑓 − 𝜇𝐿𝑠 −
𝑘𝛽𝐿𝑠(𝜙𝐴𝑒 + 𝐴𝑙 + 𝐿)

𝑁
− 𝑟𝑎𝐿𝑠 

𝑑𝐴𝑒
𝑑𝑡

= 𝑟𝑎𝐿𝑠 + 𝑝𝑓𝐿𝑓 − 𝜇𝐴𝑒 − 𝑠𝐴𝑒 

𝑑𝐴𝑙
𝑑𝑡

= 𝑠𝐴𝑒 − 𝑑𝐴𝑙 − (𝜇 + 𝜇𝑡𝑏)𝐴𝑙 + 𝑓𝑇 

𝑑𝑇

𝑑𝑡
= 𝑑𝐴𝑙 + 𝑟𝑒𝐿 − 𝜇𝑇 − 𝑐𝑇 − 𝑓𝑇 − 𝑙𝑇 

𝑑𝐿

𝑑𝑡
= 𝑙𝑇 − 𝑟𝑒𝐿 − (𝜇 + 𝜇𝑡𝑏)𝐿 

 
 

Parameter Definition How it is 
calculated 

𝜷 Rate of transmission  Bayesian inference 

𝝓 Relative rate of transmission by individuals in 
early active disease compared to late active 
disease 

Literature/Bayesian 
inference 

𝝁 Baseline death rate (due to causes other than 
TB) 

Modelling 
rules/outbreak data 

𝒄 Cure rate Modelling 
rules/outbreak data  

𝒌 Immunity parameter (relative probability of 
reinfection for a latently infected individual versus 
susceptible individual) 

Modelling TB 
literature 

𝒑𝒔 Rate of slow progression from latent to active 
disease 

Bayesian inference 

𝒑𝒇 Rate of fast progression from latent to active 
disease 

Modelling 
rules/outbreak data 

𝒓𝒂 Rate of re-activation Bayesian inference 

𝝁𝒕𝒃 Death rate due to TB Bayesian inference 

𝒅 Rate of diagnosis Modelling 
rules/outbreak data 

𝒇 Rate of treatment failure Modelling 
rules/outbreak data 

𝒔 Rate of becoming symptomatic Modelling 
rules/outbreak data  

𝒍 Rate of LFU Modelling 
rules/outbreak data  
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𝒓𝒆 Rate of re-engagement with health services Modelling 
rules/outbreak data 

Table 6.1 Parameters featured in the model and what they represent as well as the 

method of how their value has been determined 

The rate of transmission is traditionally defined as the product of contact rate between 

susceptible and infectious individuals and the probability of infection given a contact event 

[68]. 

6.2.2.3 DETERMINING PARAMETER VALUES 

The parameter values used in the model were calculated using three methods: simple rules 

of deterministic compartmental models that govern the rates in conjunction with data on the 

outbreak (see Subchapter 6.2.1), the TB literature and Bayesian inference.  

Two rules used to calculate rates are: 

• The average duration spent in a compartment is equal to the inverse of the sum of 

the rates out of the compartment 

• The proportion that moves from compartment 𝑖 to compartment 𝑗 is equal to the ratio 

of the rate from 𝑖 to 𝑗 over the sum of all the rates out of compartment 𝑖 

The immunity parameter 𝑘 was fixed to a value of 0.5 [190]. 

As determined in the data analysis (Table 6.4), the average time spent on treatment is 352.9 

days (0.97 years). Using this and known proportions of outcomes (Table 6.5) will determine 

cure rate (𝑐), LFU rate (𝑙), relapse rate (𝑓) and death rate (𝜇). 

 
1

𝑐 + 𝑙 + 𝑓 + 𝜇
= 0.97 

Rearranging gives 

 
𝑐 + 𝑙 + 𝑓 + 𝜇 ≈ 1.031 

 
 
453 have a final outcome of either death, treatment completion, LFU or treatment stopped 

(other outcomes such as unknown, still on treatment or transferred not accounted for). 371 

are listed as completing treatment at final outcome (not LFU at any point) and 363 of those 

completed without relapsing, defined as cure, thus 

 
𝑐

𝑐 + 𝑙 + 𝑓 + 𝜇
= 363/453 

 
          ⟹ 𝑐 = 0.826 
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The remaining 8 completed treatment at some point but had a second episode with the 

same TB strain, thus 

𝑓

𝑐 + 𝑙 + 𝑓 + 𝜇
= 8/453  

 
               ⟹ 𝑓 =  0.018 

 
45 are listed as lost to follow up or treatment stopped at 12 months and another 17 are listed 

as LFU at final outcome (not LFU or treatment stopped at 12 months). Thus, 62/453 

individuals were listed as LFU at some point regardless of final outcome. Thus 

𝑙

𝑐 + 𝑙 + 𝑓 + 𝜇
= 62/453 

 
             ⟹ 𝑙 = 0.141 

 
The remaining 20 individuals died without being lost to follow up or curing. 

𝜇

𝑐 + 𝑙 + 𝑓 + 𝜇
= 20/453 

               ⟹ 𝜇 = 0.045 

This is roughly equal to 
1

22
 thus representing that individuals in the outbreak population stay 

in the community for an average of 22 years. 

With the period of early latent infection defined as 2 years, constraints can be ascertained 

for the rates of fast and slow progression to active disease using the rules on leaving the 

early latent infection compartment i.e. 

1

𝑝𝑓 + 𝑝𝑠 + 𝜇
= 2 

 
Rearranging and substituting in the value for 𝜇 implies 

 
𝑝𝑓 ≈ 0.454 − 𝑝𝑠 

 
The duration spent in the early active disease compartment was assumed to be 9 months 

(0.75 years), based on previous modelling work [191]. This and the death rate determine the 

rate of becoming symptomatic (progressing to late disease), as: 

1

𝑠 + 𝜇
= 0.75 

 
Rearranging and substituting in the value for 𝜇 implies 
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𝑠 ≈ 1.288 
 
As determined in the data analysis, the average time between onset of symptoms and 

starting treatment is 117 days (0.32 years). This then defines how long individuals spend in 

the late active disease compartment i.e. determines the diagnosis rate, 𝑑: 

1

𝑑 + 𝜇 + 𝜇𝑡𝑏
= 0.32 

 
Rearranging and substituting in the value for 𝜇 implies 

𝑑 ≈ 3.079 − 𝜇𝑡𝑏 
 
Average time spent lost to follow up is 1 year, thus using rule 1 

1

𝑟𝑒 + 𝜇𝑡𝑏 + 𝜇
≈ 1 

Rearranging and substituting in the value for 𝜇 implies 

𝑟𝑒 ≈ 0.954 − 𝜇𝑡𝑏 

 
 

6.2.2.4 BAYESIAN PARAMETER INFERENCE 

Once relationships for the parameters had been determined using the outbreak data and 

modelling rules, Bayesian parameter inference with the relationships built in was used to 

estimate the remaining free parameters. The analysis was performed using R package 

deBInfer [194] using an MCMC method to sample from the target distribution, similar to in 

Chapter 4. The MCMC visits different values within a parameter space and the result is a 

posterior distribution of visited parameter values. A Gaussian likelihood model with a 

Gaussian random walk proposal distribution was used. The ranges for the free parameters 

i.e. 𝛽, 𝜙, 𝑝𝑠, 𝑟𝑎 , 𝑁, 𝜇𝑡𝑏 , were then set so that the pre-determined values could not be 

negative e.g. as 𝑝𝑓  =  0.454 − 𝑝𝑠, the maximum value for 𝑝𝑠 is 0.454. If it is any larger 

than this then 𝑝𝑓 becomes negative. The ranges for 𝛽 and 𝑁 were set wide enough that it 

would encompass all most likely values.  

For Bayesian inference, it is necessary to propose a prior distribution from which the 

algorithm samples parameter values. Uniform priors were chosen for all the parameters 

essentially implying that there is little prior knowledge about these parameter values. 

 

Parameter Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 

𝜷 40 20 25 30 35 
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𝝓 1 0.1 0.3 0.5 0.8 

𝝁𝒕𝒃 0.45 0.1096 0.1596 0.2096 0.3096 

𝒑𝒔 0.4 0.2 0.25 0.3 0.35 

𝒓𝒂 0.024 0.00049 0.00099 0.0159 0.0199 

𝑵 3000 100 800 1500 2500 

Table 6.2 Initial parameter values for each chain 

Multiple chains were run using different starting values (see Table 6.2) to ensure this was 

not affecting the result. Manual tuning of the proposal variances was done until the chains 

were mixing sufficiently as measured by the acceptance rate i.e. the proportion of values 

proposed by the MCMC that are accepted. The chains were run for 100,000 samples and 

then were combined using the 𝑚𝑐𝑚𝑐. 𝑙𝑖𝑠𝑡 function from the coda package [195]. The 

convergence of the chains was then examined using the Gelman-Rubin diagnostic [196]. 

The calculation of the Gelman-Rubin diagnostic requires multiple chains with different 

starting values and random seed numbers, which are then combined. By using the 

gelman.plot function in the R package coda on the combined MCMC chain, the chains are 

compared in order to determine if they have converged. If the median and 97.5% lines 

decrease to 0 and remain there i.e. there are no large peaks seen over the iterations, then 

the chain can be considered to have converged 

 
6.2.2.5 UNCERTAINTY ANALYSIS 

Uncertainty can be approached by using the posterior distributions generated by the MCMC; 

it is possible to look at the 95% highest posterior density (HPD) interval for all the model 

variables. The model is run 100 times using 100 different parameter samples taken from the 

posterior parameter distributions. The 95% HPD interval is calculated for all the variables 

across the 100 model simulations at each time point; it tells us the credible value for the 

variable and the range of the variable. This can reveal how uncertainty in the model 

parameters can propagate through the model by looking at the range of values for the model 

variables over a range of input parameter values. For example, if the model variables do not 

vary much when using a range of different input parameter values, then it would signify that 

uncertainty in the parameter values does not have a large impact on the output, and thus we 

have robust interpretations. 

This analysis was performed using the post_sim function from the deBInfer package. 

6.2.2.6 SENSITIVITY ANALYSIS 
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In order to assess the sensitivity of certain outputs to the parameters and hence uncover 

which parameters have the largest effect on the outputs, sensitivity analysis was performed. 

The two outputs examined here were 𝑅0 (the basic reproduction number) and incidence over 

time. These outputs were chosen because they are two important measures of the severity 

of outbreaks: the basic reproduction number gives a way of computing if an outbreak will die 

out or become an epidemic if introduced into a fully susceptible population [197]; and the 

incidence (the number of cases per unit time) gives a measure of the outbreak that is more 

easily interpretable from a public health point of view. 

6.2.2.6.1 CALCULATION OF R0 

An expression for the basic reproduction number was determined using the next generation 

method detailed by Yang [198]. Firstly, the states-at-infection and infectiousness are 

defined, in this case (𝐿𝑠, 𝐿𝑓) and (𝐴𝑒 , 𝐴𝐿 , 𝐿) respectively. The disease-free equilibrium of the 

ODE system is (𝑁, 0,0,0,0,0,0). Then, following Yang: 

 

𝑓 =

(

  
 

𝛽𝑆(𝜙𝐴𝑒 + 𝐴𝑙 + 𝐿

𝑁
0
0
0
0 )

  
 

 

 

𝑣 =

(

 
 
 
 
 
𝜇𝐿𝑓 + 𝑝𝑓𝐿𝑓 + 𝑝𝑠𝐿𝑓 +

𝑘𝛽𝐿𝑠(𝜙𝐴𝑒 + 𝐴𝑙 + 𝐿)

𝑁

𝜇𝐿𝑠 + 𝑟𝑎𝐿𝑠 +
𝑘𝛽𝐿𝑠(𝜙𝐴𝑒 + 𝐴𝑙 + 𝐿)

𝑁
− 𝑝𝑠𝐿𝑓

−𝑟𝑎𝐿𝑠 + 𝜇𝐴𝑒 + 𝑠𝐴𝑒 − 𝑝𝑓𝐿𝑓 + 𝑐𝑓𝐴𝑒
−𝑠𝐴𝑒 + (𝜇 + 𝜇𝑡𝑏)𝐴𝑙 + 𝑑𝐴𝑙 − 𝑓𝑇

(𝜇 + 𝜇𝑡𝑏)𝐿 − 𝑙𝑇 + 𝑟𝑒𝐿 )

 
 
 
 
 

 

 

Differentiating 𝑓 and 𝑣 with respect to each variable yields: 

𝐹 =
𝜕𝑓

𝜕𝑥
|
(𝑁,0,0,0,0,0,0)

=

(

 
 

0 0
0
0
0
0

0
0
0
0

𝛽𝜙 𝛽
0
0
0
0

0
0
0
0

𝛽
0
0
0
0)

 
 

 

𝑉 =
𝜕𝑣

𝜕𝑥
|
(𝑁,0,0,0,0,0,0)

=

(

 
 

𝜇 + 𝑝𝑠 + 𝑝𝑓 0 0

−𝑝𝑠 𝜇 + 𝑟𝑎 0
−𝑝𝑓
0
0

−𝑟𝑎
0
0

𝜇 + 𝑠 + 𝑐𝑓
−𝑠
0

0 0
0 0
0

𝜇 + 𝜇𝑡𝑏 + 𝑑
0

0
0

𝜇𝑡𝑏 + 𝜇 + 𝑟𝑒)
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𝐸 = 𝐹 ∗ 𝑖𝑛𝑣(𝑉)

=

(

 
 
 
 

𝛽(𝜇𝑝𝑓 + 𝑝𝑓𝑟𝑎 + 𝑝𝑠𝑟𝑎)𝑥

(𝜇 + 𝑟𝑎)(𝑐𝑓 + 𝜇 + 𝑠)(𝜇 + 𝑝𝑓 + 𝑝𝑠)𝑦

𝛽𝑟𝑎𝑥

(𝜇 + 𝑟𝑎)(𝑐𝑓 + 𝜇 + 𝑠)𝑦

𝛽𝑥

(𝑐𝑓 + 𝜇 + 𝑠)𝑦

𝛽

𝑦

𝛽

𝜇 + 𝜇𝑡𝑏 + 𝑟𝑒

0 0 0 0 0
0
0
0

0
0
0

0 0 0
0 0 0
0 0 0 )

 
 
 
 

 

 

where 𝑥 = 𝑠 + 𝑑𝜙 + 𝜇𝜙 + 𝜇𝑡𝑏𝜙 and 𝑦 = 𝑑 + 𝜇 + 𝜇𝑡𝑏. The non-zero eigenvalue of the matrix 𝐸 

is then the definition of 𝑅0: 

𝑅0 =
𝛽(𝜇𝑝𝑓+𝑝𝑓𝑟𝑎+𝑝𝑠𝑟𝑎)(𝑠+𝑑𝜙+𝜇𝜙+𝜇𝑡𝑏𝜙)

(𝜇+𝑟𝑎)(𝜇+𝑝𝑓+𝑝𝑠)(𝑐𝑓+𝜇+𝑠)(𝜇+𝑑+𝜇𝑡𝑏)
  ( 6.1 ) 

6.2.2.6.2 DEFINITION OF INCIDENCE 

Incidence in terms of the model is defined as 𝑑𝐴𝑙  i.e. the rate of diagnosis, 𝑑, multiplied by 

the number of individuals with late active disease, overall this expresses the number of 

individuals being diagnosed. This definition is used because it is necessary to have a 

measure from the model that can be compared to a quantity that was recorded for the 

outbreak. As it is not possible to know the true incidence for the outbreak because not 

everyone will be diagnosed/microbiologically confirmed/genotyped, the best available 

measure of disease incidence is the number of cases that were confirmed as part of the 

outbreak using genotyping. 

6.2.2.6.3 RELATIONSHIPS BETWEEN OUTPUTS AND PARAMETER VALUES 

To qualitatively get an idea of the relationships between the outputs (𝑅0 and incidence) and 

the model parameters, scatterplots were generated from parameter sets determined by Latin 

hypercube sampling (LHS) [199]. In general, LHS works as follows: if there are N 

parameters for which there needs to be M sets of values sampled and each parameter has a 

range within which sampling must be done then each parameter range would be split into M 

smaller equal length intervals, each with equal probability. One parameter value is then 

chosen at random from each of the M sampling intervals. LHS was performed using the pse 

package in R, set to sample 200 different sets of parameters (for bootstrapping) from a 

uniform distribution where the ranges were the HPD intervals from the MCMC chains. As 

incidence is a time series variable, scatterplots were plotted at multiple time points to see 

whether different parameters are important at different time points in the outbreak. 

Partial rank correlation coefficient (PRCC) analysis was then used for sensitivity analysis 

using the plotprcc function on the same LHS samples used for the scatterplots. The PRCC is 

more informative than the scatterplots as it considers the effect of varying the other 

parameters simultaneously, rather than keeping them fixed [200]. The result, a value 
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between -1 and 1, signifies the strength of the correlation between the input and output, 

meaning the model is more sensitive to parameters with a PRCC value closer to -1 or 1. 

6.2.2.7 INTERVENTIONS 

The model was then used to evaluate the effectiveness of three interventions: an active case 

finding service, a reduction in the rate of loss to follow-up and an increase in the rate of re-

engagement. Active case finding was modelled by a transition from early active disease to 

on treatment (𝐴𝑒 → 𝑇) at rate 𝑐𝑓. This is assuming that a service that actively goes into the 

community to screen for TB, such as Find and Treat [37], would identify disease at an earlier 

stage than passive case finding, i.e. before an individual’s symptoms were serious enough 

to seek care and potentially even before they become symptomatic, therefore hopefully 

treating the individual before they become fully infectious or infectious at all. This premise 

was demonstrated by Storey et al [201] where those found via active case finding were more 

likely to be sputum smear negative than those presenting via passive case finding. By 

introducing an active case finding rate to model the effect of an organisation like Find and 

Treat we are ignoring the inevitable increase in rate of diagnosis and re-engagement that 

would come from screening the community. Reducing loss to follow-up was modelled by a 

decrease in the parameter 𝑙, and increasing re-engagement was modelled by an increase in 

the parameter 𝑟𝑒.  

To examine the impact of interventions on 𝑅0 and incidence, a second sensitivity analysis 

was performed on the model, solely varying the intervention parameters, 𝑟𝑒 , 𝑙, and 𝑐𝑓 [189]. 

Ranges for the parameters are detailed in Table 6.3. 

 

Parameter Baseline (no 

intervention) 

Intervention 

value 

Justification of intervention value 

𝒄𝒇 0 1.513 Curtis et al [202] 

𝒓𝒆 0.563 1.127  

𝒍 0.141 0 Maximum effect of stopping LFU (i.e. no 

one becoming LFU) vs LFU rate 

determined from data 

Table 6.3 Intervention parameters and their  range of values and the source of the 

values. 

 RESULTS 
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In the following chapter, the results of sensitivity and uncertainty analyses for model are 

presented, alongside the results of the MCMC analysis. Finally, the results of the 

interventions in the model are presented. 

 OUTBREAK EPIDEMIOLOGY 

In this section, the results on the time from symptom onset to treatment initiation and 

treatment outcome as determined from the outbreak data are presented. 

The average time spent on treatment for the cases in this outbreak, 352.9 days (Table 6.4), 

is longer than the standard 6 months for drug-susceptible TB [203] because the outbreak 

strain is isoniazid-resistant meaning isoniazid cannot be used in the drug regimen and a 

longer regimen with an alternative drug must be used instead. The recommendation for this 

outbreak was 1 year of treatment [147].  

Mean duration between onset of symptoms and starting 

treatment 

117 days (0.32 years) 

Mean treatment duration 352.9 days (0.97 years) 

Table 6.4 Mean time symptoms were present before starting treatment and average 

time on treatment before final outcome within the outbreak.  

PHE determined the median length of time from diagnosis to starting treatment for 

pulmonary TB cases diagnosed in 2017 to be 79 days (interquartile range 39-143) [1], 

showing that the cases in this outbreak took slightly longer to start treatment.  

68 records (12.8%) were missing both a start and end of treatment date and 148 records 

were missing a symptom onset date (27.8%). 

The treatment outcomes after 1 year of treatment and the final known outcome for 

individuals in the outbreak are shown in Table 6.5. Overall, the rate of completing treatment 

within the outbreak is high with 70% of individuals in the outbreak having finished treatment 

at the final known outcome. Roughly 7% of individuals were LFU at 1 year, although 5.6% of 

those then went on to finish treatment having re-engaged. 21 individuals (3.9%) had a final 

outcome of death. 49 individuals had no data on their 1 year or final outcome. 
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Outcome at 1 year N (%) Final outcome N (%) Final outcome N (%) Outcome at 1 year N (%) 

Completed 213 (40) Completed 213 (100) Completed 374 (70.2) Completed 213 (57) 

Unknown 177 (33.2) Completed 99 (55.9)   Unknown  99 (26.5) 

  Unknown 49 (27.7)   On treatment 59 (15.8) 

  Lost to follow up 13 (7.3)   Lost to follow up 2 (0.5) 

  Died 6 (3.4)   Treatment stopped 1 (0.3) 

  Transferred out 5 (2.8) Unknown 49 (9.2) Unknown 49 (100) 

  Treatment stopped 3 (1.7) Lost to follow up 44 (8.26) Lost to follow up 30 (68.2) 

  On treatment 2 (1.1)   Unknown 13 (29.5) 

On treatment 72 (13.5) Completed 59 (82)   On treatment 1 (2.3) 

  On treatment 11 (15.3) Died 21 (3.9) Died 14 (66.7) 

  Treatment stopped 1 (1.4)   Unknown 6 (28.6) 

  Lost to follow up 1 (1.4)   Lost to follow up 1 (4.8) 

Lost to follow up 36 (6.8) Lost to follow up 30 (83.3) Transferred out 18 (3.4) Transferred out  11 (61.1) 

  Transferred out 2 (5.6)   Unknown 5 (27.8) 

  Completed 2 (5.6)   Lost to follow up 2 (11.1) 

  Died 1 (2.8) On treatment 13 (2.4) On treatment 11 (84.6) 

  Treatment stopped 1 (2.8)   Unknown 2 (15.4) 

Died 14 (2.6) Died 14 (100) Treatment stopped 13 (2.4) Treatment stopped 8 (61.5) 

Transferred out 11 (2.1) Transferred out 11 (100)   Unknown 3 (23.1) 

Treatment stopped 9 (1.7) Treatment stopped 8 (88.9)   On treatment 1 (7.7) 
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  Completed 1 (100)   Lost to follow up 1 (7.7) 

Table 6.5 Treatment outcomes for outbreak cases.  

In the first column, the outcomes known at one year for the cases are listed. The second column lists the final known outcome s broken down 

within each outcome at one year i.e. it states the final outcome for each case that was ‘on treatment’ at one year an d so on. The third and 

fourth columns are similar but the opposite: the final outcome is listed in the third column and then broken down by outcome at one year. 
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 BAYESIAN INFERENCE 

During the first round of MCMC runs it became apparent that the chain was sticking and not 

sampling the full parameter space. After some investigation, it was identified that the 

proposal function was often proposing values outside of the prior distributions for the 

parameters and thus many proposals were not being accepted. By changing the standard 

deviation of the Gaussian random walk proposal distribution, there was a vast improvement 

in the mixing of the chain as evidenced in Figure 6.2. 

 

Figure 6.2 Resolution of chain sticking in the initial outbreak model  

Comparison of chain mixing with standard deviation of the proposal distribution set  

to 1 (left) and 8 (right).  

In order to fine tune the standard deviation, the value was also sampled in the first set of 

MCMC chains. The inferred value for the standard deviation that provided the best chain 

mixing was determined to be ≈ 8. The chains were then re-run with the standard deviation 

fixed at 8. 

Parameter Value Acceptance rate Parameter Value Acceptance rate 

𝜷 27.458 0.451 𝑝𝑠 0.259 0.343 

𝝓 0.430 0.351 𝑟𝑎 0.012 0.363 

𝝁𝒕𝒃 0.391 0.358 𝑁 408 0.466 

Table 6.6 Results from the combined MCMC chain.  
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Value is the most likely value of each parameter as determined by the MCMC chain 

(the chain ‘visits’ this value the most when sampling the parameter space) and the 

final column shows the acceptance rate of each parameter, which correlates to how 

well the chain is mixing for that parameter (i.e. the proportion of times the chain 

accepts and moves to the proposed value)  

Once the standard deviation was fixed, the MCMC was re-run and the results are tabulated 

in Table 6.6. The ‘value’ column shows the most likely values of the parameters, i.e. the 

value the chain ‘visits’ most when sampling the parameter space. This then provides the 

parameter values for the model. 

The next step was to check how well the chain was mixing, i.e. how well it sampled the 

parameter space, using the acceptance rate. A ‘good’ acceptance rate is generally 

considered to be between 0.2 and 0.3, corresponding to 20-30% of proposed values being 

accepted. This is to facilitate the right amount of mixing: a high acceptance rate would mean 

the chain is jumping around too much and not revealing the underlying distribution and a low 

acceptance rate would mean the chain would often get stuck and mix slowly. Whilst not all 

the parameters have acceptance rates between 0.2 and 0.3, the rates are sufficiently far 

away from both extremes. 

Figure 6.3 Graphs showing the prior density (red line) and posterior density (b lack 

line) for each parameter sampled by the MCMC (chain 1).  
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The prior densities are all uniform, which is why the density remains the same for all values 

over the possible range. The posterior densities vary across the parameters: 𝑓 and 𝑟𝑎 both 

have fairly uniform posterior densities which suggests there is some uncertainty around 

these parameters, whereas 𝜇𝑡𝑏 and 𝑁 have clearly defined peaks (Figure 6.3). 

Figure 6.4 shows that all the chains converged. 

 UNCERTAINTY ANALYSIS 

As can be seen in Figure 6.5, the variables 𝑆, 𝐿𝑓 and 𝐿𝑠 all have wide 95% highest density 

intervals, meaning that there is more uncertainty around these variables as opposed to the 

others. 

 SENSITIVITY ANALYSIS 
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Both scatterplots and PRCC values expressing the relationship between the parameters and 

𝑅0 both demonstrate that 𝛽, 𝑟𝑎 and 𝜙 all have strong positive correlations with 𝑅0, meaning 

that an increase in the effective contact rate, reactivation rate and the infectiousness of 

individuals with early active TB disease would increase the chances of an epidemic 

occurring (Figure 6.6 and Figure 6.7). On the other hand, 𝑝𝑆 and 𝑠 are both strongly 

negatively correlated with 𝑅0 meaning that increasing the rate of slow progression and 

becoming symptomatic would decrease the chances of an epidemic occurring. If the rate of 

slow progression is increased and 𝑟𝑎 remains small this would mean that more individuals 

have extremely long latent periods, potentially dying of non-TB related causes before 

reactivating and transmitting the infection, hence the strong negative correlation.  

 

Figure 6.4 Gelman-Rubin plot showing convergence between the five MCMC chains  
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Figure 6.5 Sensitivity analysis of model using MCMC posterior samples for 

parameters 

The red lines indicate the median posterior trajectory (the trajectory using the 

median values) and the dashed grey lines indicate the 95% highest posterior density 

interval for all model variables from 100 simulations using 100 posterior parameter 

samples (chain 4) 
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Figure 6.6 Scatterplots for all parameters versus 𝑅0 
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Figure 6.7 PRCCs for each parameter with respect to the basic reproduction 

number.  

The confidence intervals shown in this plot by lines are generated by bootstrapping 

Figure 6.8 shows how the parameters affect incidence over time. A number of the 

parameters, namely the reactivation rate, 𝑟𝑎, and the treatment failure rate, 𝑓, have very little 

correlation with incidence at any time. Other parameters, such as the transmission rate, 𝛽, 

relative transmission rate, 𝜙, and the progression to late active disease rate, 𝑠, are initially 

positively correlated with incidence but over time become uncorrelated. Interestingly, the 

positive correlation between 𝑠 and incidence is converse to the negative correlation found 

with 𝑅0. Similarly to 𝑅0, incidence is negatively correlated with the rate of slow progression to 

Figure 6.8 PRCCs for each parameter over time with respect to incidence 
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active disease, 𝑝𝑠, throughout the course of the simulation. 

 
Figure 6.9 PRCCs for the three intervention parameters with respect to 𝑅0, all other 

parameters held fixed.  

Confidence intervals determined via bootstrapping are demonstrated with vertical 

lines  

The results of the sensitivity analysis performed on the intervention parameters with respect 

to 𝑅0 can be seen in Figure 6.9. The active case finding rate, 𝑐𝑓, is extremely negatively 

correlated with 𝑅0, with a PRCC value of almost 1, implying that an increase in the case 

finding rate will decrease 𝑅0. The LFU rate, 𝑙, and re-engagement rate, 𝑟𝑒, have little to no 

correlation with 𝑅0, which is expected as they do not appear in the expression for 𝑅0.  
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 MODEL 

Firstly, it is important to examine the fit of the model to data, which can be examined using 

Figure 6.10.  

The model seems to fit the data well in the first five years during the growth of the outbreak 

(1995-2000), suggesting the transmission rate has been well fitted. However, the model then 

appears to diverge slightly from the data, not quite recapitulating the peak seen. The 

incidence levels (number of new cases) in 2016 are 15 (data) and 29 (model). 

When examining the different model compartments over time without interventions (Figure 

6.11) it is apparent that the population are quickly infected but, due to the low rate of 

progression to disease, the majority of individuals remain latent. 

Figure 6.10 Incidence from model compared to number of cases confirmed as part 

of the outbreak  
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6.3.5.1 INTERVENTION ANALYSIS 

After the above work, a model had been established into which the interventions could be 

added. These are now explored in the following sections. 

Figure 6.12 Model results with the re-engagement intervention parameter 𝑟𝑒 set to 

the baseline value (0.563) and increased re-engagement value (1.127) 

Figure 6.11 Different compartmental groups using baseline para meter values 
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Firstly, the re-engagement parameter was altered to explore the effect of increasing re-

engagement versus the baseline. Figure 6.12 depicts the model variables when the re-

engagement parameter is set to the minimum and maximum values as mentioned in Table 

6.3.  

Figure 6.13 Comparison of the number of lost to follow up individuals over time 

with baseline re-engagement and increased re-engagement as an intervention 

Figure 6.14 Model results without any interventions (left) and with the case finding 

intervention parameter 𝑐𝑓 set to 1.513 (right) 

There is a small decrease in the number of LFU individuals when the re-engagement is 

increased versus baseline re-engagement (5.39 versus 3.54 in 2005, see Figure 6.13) as 

they are being reintroduced back onto treatment and potentially completing their treatment.  

When case finding is introduced as an intervention, the number of individuals in the active 

early and late disease compartment inevitably is reduced year on year (e.g. active early: 
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34.15 versus 13.33 in 2002; active late: 14.17 versus 5.40 in 2002, see Figure 6.14), as they 

are moved at a faster rate from active early onto treatment, circumnavigating the active late 

stage. The number of individuals in the latent slow and susceptible compartments is 

increased compared to at baseline (e.g. in 2015 latent slow: 35.42 versus 68.03; 

susceptible: 16.06 versus 34.51). 

Figure 6.15 Model results without interventions (left) and with the loss to follow up 

intervention parameter 𝑙 set to 0 (right) 

By reducing the rate of loss to follow up to zero, the number of latent slow, susceptible and 

on treatment individuals is increased versus at baseline (e.g. in 2015, susceptible: 60.03 

versus 16.06, latent slow: 101.35 versus 35.42, on treatment: 35.40 versus 32.05, see 

Figure 6.15). 

As lost to follow up and re-engagement do not appear in the expression for 𝑅0, it is not 

possible to reduce 𝑅0 to below the threshold for an epidemic (i.e. < 1) through these 

interventions. However, the active case finding parameter 𝑐𝑓 does appear in the expression 

for 𝑅0, meaning that we can find a value for 𝑐𝑓 that would prevent the outbreak from 

occurring. If we solve the inequality 𝑅0 < 1 using Equation 6.1 with all parameter values 

substituted save 𝑐𝑓, we find 𝑐𝑓 > 12.1871. Employing a case finding rate of 12.871 is 

equivalent to having to actively case find 90% of all cases with early active disease within 9 

months before they progress to late active disease. 

Model Number of new cases in 

2015 

Percentage change from 

baseline (no intervention) 

No intervention 26 - 

Case finding intervention 15 -42% 
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Lost to follow up 

intervention 

31 +19% 

Re-engagement 

intervention 

30 
 

+15% 

Table 6.7 Comparison of the number of new cases in 2015 predicted by the model 

under different intervention scenarios  

Given the results displayed in Table 6.7, we can conclude that active case finding is more 

effective than reducing the LFU rate or increasing re-engagement rate of LFU individuals.  

 DISCUSSION 

In this chapter, a compartmental model was developed and fit to incidence data from an 

ongoing outbreak centred in London. Using sensitivity and uncertainty analyses, I 

determined which parameters most affected the outcomes of 𝑅0 and incidence. Finally, I 

looked at the effect of including three different interventions: active case-finding, reducing 

loss to follow up, and increasing re-engagement into the model and examined the effect on 

incidence. 

 KEY FINDINGS 

When fitting the model to incidence data, the model does not recapitulate the second peak 

seen in the real-life incidence curve (Figure 6.10). This is not possible when using such a 

simple model and would require perhaps a time-dependent transmission parameter or 

multiple populations being modelled however there is not enough evidence in the data to 

suggest what the mechanism behind the second peak might be, without further investigation. 

Smith et al. [153] suggested that the initial peak may represent infections which rapidly 

progressed to disease and the second represents infections with a longer period of latency 

or alternatively, the second wave of cases may have resulted from a second period of 

intensive transmission. These hypotheses could be better tested if a transmission tree could 

be constructed. As a result, this was not explored, and the model essentially averages out 

the peaked data. 

The main finding of the intervention analysis is that increasing re-engagement and reducing 

loss to follow up seem to have very little impact on the control of the outbreak. This is likely 

because the number of individuals who are lost to follow up are quite a small proportion of 

the population. Increasing the active case finding rate makes the largest difference to the 

incidence of cases, likely because it impacts upon the early active disease compartment and 

helps to avoid a period of infectiousness.  
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Increasing re-engagement and case-finding rates results in an increase in the number of 

individuals who are in the latent slow (𝐿𝑠) compartment (and susceptible, but only very 

slightly for re-engagement). Presumably this is because increasing the re-engagement and 

case-finding leads to an increased number of individuals completing treatment and returning 

to the susceptible compartment, where they are then able to be re-infected and this then 

leads to a build-up in the latent slow compartment as individuals are more likely to progress 

slowly than quickly and stay there for a long amount of time.   

In the early stages of the outbreak, active case finding is associated with an increase in 

incidence, as intuitively, it is increasing the number of individuals who are diagnosed. 

However, this quickly drops off after a few years and becomes associated with a decrease in 

incidence as more individuals are being treated and becoming susceptible and the number 

of infectious individuals decreases.  

When examining the results of the intervention analysis the sensitivity and uncertainty 

analysis results must be considered. Rate of failure of treatment (𝑓) and rate of re-activation 

(𝑟𝑎) are uncertain as the posteriors from the Bayesian inference are relatively uniform over a 

large period of values meaning those values are equally likely. However, both 𝑅0 and 

incidence seem relatively insensitive to both parameters (Figure 6.7 and Figure 6.8) most 

likely because they are such small rates, thus we can be confident that they should have 

little effect on the outcome of the interventions. This is similarly concluded by Fojo et al. 

[204] who also employ a Bayesian parameter inference method for a TB transmission model 

but for New York City and find that for most of their rates of progression to active disease 

after long latency periods (2+ years) their posterior distributions are similarly as uniform. 

Fojo et al.’s PRCC analysis shows rate of progression to active plays a small role in driving 

TB incidence (for foreign-born at least).  

 STRENGTHS 

One strength of the study is that the design of the compartmental model has been built 

specifically for the outbreak and therefore includes the key patterns seen in the data e.g. re-

infection, loss to follow up and re-engagement. The structure was also formed based on key 

features of good TB models, i.e. the implementation of latency was determined after taking 

into consideration the findings of Menzies et al. [67], who determined that models that 

included two latency compartments in series outperformed models that included them in 

parallel or no latency at all, in terms of model predictions versus empirical data. Even though 

it was built specifically for the London outbreak, TB outbreaks and populations usually share 

similar dynamics and structures that the model should be suitable for other TB outbreaks. 

Another strength of the study was the determination of parameter values directly from the 

data instead of exclusively from the literature.  
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Where there were no data to directly estimate parameter values, Bayesian inference was 

performed to sample within a range of parameter values. The inference was performed 

rigorously, with multiple MCMC chains and convergence and mixing assessed. The use of 

MCMC provided the opportunity to investigate the uncertainty of the parameter values and 

test the robustness of the model predictions [205].  

As well as assessing uncertainty, it is important to assess the sensitivity of the important 

model outputs to the parameter values. This not only helps to test the robustness of the 

model but also highlights which parameters may be key targets for interventions [205]. 

PRCC sensitivity analysis was chosen as it accounts for the variability of other parameters to 

help temper interaction effects, provides a quantitative measure that can be easily compared 

between parameters and it allows for temporal assessment of parameters too.   

Finally, another strength of the study is the investigation of realistic interventions i.e. 

interventions that are currently implemented as part of the strategy the UK uses to tackle TB. 

This then allows us to effectively translate the findings of this analysis directly into public 

health outbreak investigations tools.  

 LIMITATIONS 

Some limitations to the modelling study stem from the parameters and their values. Firstly, it 

is difficult to evaluate the “accuracy” of the value used for 𝛽. However, Fojo et al.’s values for 

𝛽 ranged from 5 to 68.74 per person with active TB per year in their various scenarios, with 

a value of 31·5 per person with active TB per year for their scenario which modelled the 

1980s increase closest to the value used in this study. Given that New York City is 

comparable to London in that it is a high TB incidence metropolis with high immigration rates 

within a low TB incidence country and that the value found from the Bayesian inference sits 

within their range, it seems to be a valid estimate. 

Additionally, birth rate is not equal to overall mortality rate as death due to TB is not included 

in the birth rate. This helps when fitting to incidence data as the model is not forced 

mathematically to reach equilibrium but does mean that the total population number will 

fluctuate over the course of time. 

Another potential issue with data fitting is the assumption that the number of individuals 

starting on treatment is equal to the number diagnosed. This is not always true as some 

diagnosed individuals do not start treatment, thus the number of cases within the outbreak is 

underestimated and these cases are likely to be infectious as they remain untreated. In 

addition, it is possible that individuals in the outbreak were initially treated with an ineffective 

treatment (with isoniazid) if the resistance to isoniazid had not been tested for. In the data, 

12.8% were without a recorded start or end of treatment date, defining the upper limit on the 

proportion of individuals who did not have any treatment at all (we cannot rule out that the 
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dates may just not have been recorded). There is no information in the data on whether a 

case was initially given the incorrect treatment regimen. The effect of an untreated 

contingent could be investigated in the model by including a rate from active late disease to 

lost to follow up. This would of course increase the number of lost to follow up individuals. A 

similar structure has been explored in the TB literature: Mandal et al. [206] included a 

compartment for individuals who never seek treatment.  

The model structure was determined by a need to include elements of the stages of TB 

infection and disease as well as the characteristics of the outbreak, i.e. lost to follow up and 

re-engagement. Other additions to TB models include some form of immunity to TB either 

innate or post-treatment and development of further drug resistance but the lack of available 

data on these factors did not justify the additional model complexity. The inclusion of 

immunity is known to reduce the incidence as it provides protection from infection however 

there is debate around the extent of protection provided by previous infection and measures 

such as the Bacille Calmette-Guerin vaccination, which makes implementing it in a model 

difficult. Including further drug resistance requires twice the number of compartments to 

represent an individual at every stage but with a different strain, this obviously increases 

complexity. Given that there is only knowledge of a very small number of cases with an MDR 

version of the strain (11 patients), it was not deemed a necessary inclusion. 

There are also issues with the data that could impact on the outcome of the model. 

Symptom start date was self-reported and therefore relies on the memory of the individual, 

thus the calculation of the time from becoming symptomatic to starting treatment, which 

determines the rate of diagnosis, is likely to be imprecise. 

The definition of “lost to follow-up” here refers to those who are known to have had an 

interruption in their treatment. This therefore relies on accurate recording of loss to follow up 

by diagnosticians. Because of the low granularity of the treatment outcomes (only outcomes 

at 12 month and final outcome available) it is possible that individuals had treatment 

interruptions in between the recorded datapoints. There is also a matter of individuals who 

were non-adherent but may not have been lost. Whilst there were data on this recorded in 

the bespoke database for the outbreak from handwritten notes made by nurses, the data are 

difficult to categorise and mostly incomplete, especially in later years. Non-adherence could 

perhaps have been crudely included by splitting the population into those who are adherent 

and those who are not and giving those who are not adherent some infection potential, but 

this would have required including additional complexity based on limited data.  

 FURTHER WORK 

In addition to the above, extensions to this modelling work could be undertaken. Another 

intervention used to tackle the TB epidemic in the UK is treatment for LTBI, which consists of 

either rifampicin and isoniazid for three months or isoniazid only for six months [19]. It is 
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usually only administered to close contacts of patients with TB, healthcare workers, 

immunosuppressed patients or migrants for high-incidence countries [207]. One 

consideration for this outbreak might have been implementing an LTBI screening 

programme in areas such as homeless shelters and prisons in order to seek out some of the 

hard-to-reach LTBI cases with this outbreak strain. This can be included in the model via a 

rate from the latent slow and latent fast compartments into the susceptible compartment or 

even into a separate compartment which denotes some immunity to those who have been 

on LTBI treatment, that would eventually wane, returning individuals to the susceptible state. 

The rate of LTBI treatment (rate from latently infected to the susceptible/immune 

compartment) would need to account for the proportion of LTBI individuals who would be 

started on treatment, complete it, and the efficacy. It must be noted that for this outbreak, 

due to the isoniazid-resistant nature of the strain, the LTBI treatment would ideally be a 

rifampicin-based regimen. 

The inclusion of LTBI treatment would impact the number of individuals with active disease 

by reducing the number of individuals who progress from latently infected to active disease. 

However, by returning to the susceptible compartment there is the possibility they can be re-

infected. Thus, unless LTBI can be highly effective and employed with a high coverage, it 

may be unlikely to end the outbreak. 
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7 DISCUSSION 

In this thesis, I set out to achieve four objectives to contribute to our understanding of how 

we can use whole genome sequencing data, statistical inference and mathematical 

modelling to understand certain aspects of tuberculosis transmission and use these insights 

in a public health setting to help control outbreaks. Firstly, I explored the current literature to 

uncover what could be determined about the approaches available for interpreting whole 

genome sequencing in the setting of tuberculosis transmission (Chapter 3). In light of the 

need for considering genomic diversity when interpreting WGS data for transmission 

highlighted by the literature review, a statistical inference method, TransPhylo, was used to 

analyse WGS data from a real-world outbreak (Chapter 4). Using bioinformatic and 

phylogenetic methods I then analysed WGS data from a large isoniazid-resistant TB 

outbreak to determine if a timed-tree could be produced for analysis with TransPhylo and the 

implications of this for public health interventions in this setting (Chapter 5). Finally, I 

developed a novel mathematical model to describe TB transmission for the same outbreak, 

with a population that experiences loss-to-follow-up (Chapter 6) to examine the effects of 

three different public health interventions for combatting the outbreak. The main findings of 

the thesis can be summarised under three themes: 

1. WGS data analysis: results around how to analyse and interpret WGS in order to 

extract meaningful information for use in TB transmission.  

2. TB transmission: findings directly related to TB transmission, such as how we can 

use WGS data to determine the possibility of transmission between cases. 

3. Public health: important results for TB public health. 

 WGS DATA ANALYSIS FINDINGS 

From my systematic review, a key finding that emerged from the examination of studies 

involving bioinformatics analysis of TB WGS data is that bioinformatics pipelines, i.e. the 

programs and methods used to firstly assemble genomes and then analyse them, vary 

hugely. The evidence can be seen in Chapter 3 where the settings used by the studies in the 

review, such as filtering thresholds, are compared. The impact of different bioinformatics 

pipelines on the number of SNPs determined was explored by Altmann et al [187] who found 

a difference of up to 20,000 SNPs between different pipelines. With some studies relying on 

the finding of singular SNPs in order to distinguish transmission from not transmission, it is 

important that the full effect of bioinformatic choices are considered, and if possible, a unified 

code of practise is drawn up for future studies. 

The second result related to WGS analysis was that producing a timed phylogenetic tree 

from London TB outbreak genomes for use in phylogenetic inference of transmission trees 

proved untenable. Both trees produced with the ML and Bayesian methods had little 
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confidence, shown through low bootstrap values and posterior values. One possible cause 

could be that there is a lack of variation amongst the data and therefore a lack of 

information. The lack of information in the data could be down to much of the variation being 

in genes that were removed for analysis (a standard procedure) due to the potential 

introduction of errors from mapping to highly repetitive areas of the genome. Alternatively, it 

may be that the molecular clock for this strain is much too slow and therefore not enough 

divergence had occurred over time, or at least in comparison to the number of cases that 

were infected and sampled. To compare, Roetzer et al. [91], when analysing WGS data from 

TB cases in an outbreak from 1997 to 2010, found 85 SNPs amongst 86 samples, versus 

261 amongst 403 samples in the London outbreak, suggesting very limited diversity in this 

setting.  

Given that our interpretations of WGS data are dependent upon the ability to produce 

reliable consensus sequences, we should be aware of the effect of analytical choices we 

make upon our findings and that some data may not be suited to certain types of analyses. 

 TUBERCULOSIS TRANSMISSION FINDINGS  

As identified through the different studies in this thesis, there are clearly numerous ways in 

which WGS and epidemiological data can be used to enhance our understanding of TB 

transmission. Many such methods were identified in the systematic review (Chapter 3) and 

two methods were explored in more detail in Chapters 4 and 6. One important finding that 

was highlighted from the systematic review of these methods was that the use of fixed SNP 

thresholds had been used multiple times to either exclude transmission or identify possible 

transmission. Despite this being a very attractive prospect as it is easy to apply, especially 

over large, complex datasets, the data and findings identified by studies looking at diversity 

of TB with WGS data drew attention to the fact that a TB strain can mutate significantly in a 

fairly short time, potentially complicating the use of a fixed threshold across all situations. 

This limitation therefore suggests caution should be exercised when interpreting data in this 

way. 

 PUBLIC HEALTH FINDINGS 

An important public health finding from this thesis was that we can use WGS data and 

statistical inference to determine the infection timings of the outbreak cases and use that 

information to establish whether recent cases have been a result of recent infection or 

reactivation. In British Columbia, the most recent cases within an ‘outbreak’ were 

demonstrated to be the result of reactivation, suggesting that there is no more transmission 

occurring and allowing for the outbreak to be declared as complete. 
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The caveat to this finding is that there could be unsampled cases, which if not found before 

becoming infectious would lead to a re-emergence of the outbreak. As Kelowna, the area in 

which the outbreak took place, is quite small the public health team were able to get detailed 

information of each of the outbreak cases and track the outbreak very carefully, meaning 

they were confident all cases had been sampled. However, this is unlikely to be the case in 

many other circumstances, such as in a much larger city. For example, Kühnert et al [208] 

investigated an outbreak of a strain imported into California from Thailand, with an estimate 

of only 9% sampling coverage. Even though the method can be adapted to impute where 

there are missing cases, the method is unable to impute onward transmission from a case, 

i.e. it can only impute where there are missing ancestors not descendants, and thus it would 

have to be used in conjunction with contact tracing to ensure all contacts of the most recent 

case had been tested for active/latent TB to bring the outbreak to a full close.  

A second important public health finding from the thesis was that the use of active case 

finding within a large TB outbreak in London was considered a more effective intervention in 

terms of decreasing the number of cases in 2015 than reducing loss to follow up or 

increasing re-engagement with treatment after loss to follow up as determined by the 

modelling study (Chapter 6). Such use of mathematical modelling for comparing 

interventions not only helps to direct public health efforts and reduce the amount of 

resources that are wasted on ineffective interventions, but also reveals more about the 

transmission dynamics of the outbreak, e.g. we can assume that LFU individuals were not 

contributing greatly to the infectious potential of the outbreak compared to the individuals 

with late active disease, mostly like due to a smaller magnitude of individuals.  

 STRENGTHS 

Throughout the thesis a diverse set of research tools and approaches have been employed, 

each with their own strengths. In Chapter 3 a systematic literature review was undertaken. 

Systematic literature reviews are performed with the intention of capturing information from 

all possible studies that are within the scope of the review subject, as opposed to a general 

literature review which does not require undertaking a comprehensive search of online 

databases and therefore may miss key studies. This rigour (i.e. multiple search engines 

used, general keywords and synonyms used, extraction and inclusion done independently 

by multiple individuals, pre-determined data points for extraction) means that the results of 

the literature review undertaken in Chapter 3 are thorough. 

The work undertaken using TransPhylo used a novel version of the method which improved 

the inferences of timings of infection. The ability to assess the infection dates and determine 

the recent transmission dynamics for the outbreak allowed the public health investigation 

team to declare the outbreak over, a first for TB. 
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Within the modelling chapter, uncertainty in model assumptions and parameters was 

addressed through a range of sensitivity and uncertainty analyses. These analyses provided 

a rigorous way to assess the effects of parameter choices and hence allow the 

dimensionality of the problem to be reduced should certain parameters be relatively 

insensitive, i.e. to an extent, parameters may make little to no difference to the outcome. In 

addition, it can be reassuring in the case of unknown parameter values, should the effect of 

altering the parameter value not have an impact on the outcome of the model, e.g. as was 

seen for the reactivation rate. 

An additional strength of these studies is the availability of data from multiple sources to 

inform the parameterisation of models and to help understand transmission. Combination of 

literature reviews (modelling and epidemiological studies) and data. 

Another significant strength is the application of the phylogenetic, bioinformatic and 

inference tools to real-world data, firstly the Canadian outbreak and then the London 

outbreak. Being able to analyse real-world data means that it is possible to assess whether 

the tools are practical for the use in which they are intended. We are attempting to assess 

tools for use in public health settings meaning they must be usable in real-world settings 

(specifically must be able to deal with uncertainty, missing data etc.) and ideally in real-time, 

i.e. are relatively fast at providing results, not just for idealised simulated data. 

 LIMITATIONS 

Limitations of each individual study have been summarised in the relevant chapter. This 

section reflects on some of these limitations and highlights potential approaches that may 

improve future analyses. 

Furthermore, there were limitations associated with data availability, which is not uncommon 

in the analysis of observational data largely collected to support service provision, including 

paucity of appropriate parameters for the London TB outbreak, e.g. 9.2% had no available 

information on their treatment outcome and 12.8% lack information about their symptom 

onset date. This is linked to the method of data collection, which largely was via a paper 

questionnaire sent to TB nurses and doctors who had seen the patient; these were often not 

returned. Public health officials and outbreak and surveillance staff should endeavour to 

collect better quality data to support investigations in future studies.  

 FUTURE WORK  

As discussed in the relevant chapters there are numerous avenues for expanding upon the 

work undertaken in this thesis. Firstly, the TransPhylo method could be re-performed on the 

Canadian outbreak data (Chapter 4) after some adjustments such as including 

epidemiological data that may improve the ability to determine transmission, as seen in the 
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original TransPhylo study [99]. It would be a useful exercise to compare the results with and 

without including epidemiological data to see if this has an impact on the outcome of timing 

of infection. In addition, it may be worthwhile to use the version of TransPhylo that allows 

imputation of potentially unsampled cases to assess if there were any missing cases and if 

this has any effect on the results of infection timing.  

Secondly, an attempt at re-analysing the London outbreak genomes (Chapter 5) using de 

novo assembly and/or including SNPs in the PE/PPE genes to see if that helps resolve any 

issues with the trees would be recommended. If this should produce a phylogenetic tree with 

greater confidence, then it would be an interesting exercise to perform TransPhylo analysis 

on the tree and potentially reveal transmission dynamics that could inform the model in 

Chapter 6. Alternatively, if a timed phylogenetic tree still cannot be reliably produced with 

these methods, attempting to use a method that simultaneously infers the phylogenetic and 

transmission tree would be the next method to try. 

Finally, the mathematical model presented in Chapter 6 can be modified by considering 

immunity (innate or acquired), multiple strains with different drug resistance patterns to 

account for the cases that were found to be multi-drug resistant [209], or demography [210]. 

Other interventions could also be assessed, for instance, LTBI treatment. 

 CONCLUSION  

Overall, in this thesis I have demonstrated ways in which WGS and mathematical modelling 

can both be used to inform public health practices with respect to TB transmission. WGS 

can be used alone or alongside epidemiological data to determine whether transmission has 

occurred or distinguish between re-infection and relapse and thereby enlighten public health 

departments as to where transmission is coming from and therefore what interventions might 

be most appropriate. When used in combination with statistical inference, more detailed 

information can be inferred around the timing of transmission, which in turn can inform public 

health departments as to whether transmission is still occurring or if recent cases are a 

result of reactivation, again informing practices. Finally, mathematical modelling can help 

inform public health practices by providing a tool for intervention evaluation, thus helping to 

decide which would be the most effective in an outbreak.  

  



Bibliography 
 

135 
 

8 BIBLIOGRAPHY 

 

[1]  Public Health England, “Tuberculosis in England 2018 report: presenting data to the 

end of 2017,” 2018. [Online]. Available: 

https://www.gov.uk/government/publications/tuberculosis-in-england-annual-report. 

[2]  Public Health England, “Tuberculosis in London: Annual review (2017 data),” 2018. 

[Online]. Available: https://www.gov.uk/government/publications/tuberculosis-tb-

regional-reports. 

[3]  R. Riley, “Airborne infection,” Am J Med, vol. 57, pp. 466-75, 1974.  

[4]  M. Golden and H. Vikram, “Extrapulmonary Tuberculosis: An Overview,” Am Fam 

Physician, vol. 72, no. 9, pp. 1761-1768, 2005.  

[5]  J. Flynn and J. Chan, “Immunology of tuberculosis,” Annu Rev Immunol, vol. 19, pp. 

93-129, 2001.  

[6]  M. Behr, P. Edelstein and L. Ramakrishnan, “Revisiting the timetable of tuberculosis,” 

BMJ, vol. 362, 2018.  

[7]  R. Sloot, M. van der Loeff, P. Kouw and M. Borgdorff, “Risk of Tuberculosis after 

Recent Exposure. A 10-Year Follow-up Study of Contacts in Amsterdam,” American 

Journal of Respiratory and Critical Care Medicine, vol. 190, no. 9, 2014.  

[8]  J. Flynn and J. Chan, “Tuberculosis: Latency and Reactivation,” Infection and 

Immunity, vol. 69, no. 7 , pp. 4195-4201, 2001.  

[9]  A. Zumla, P. Malon, J. Henderson and J. Grange, “Impact of HIV infection on 

tuberculosis,” Postgraduate Medical Journal, vol. 76, pp. 259-268, 2000.  

[10]  M. Lerm and M. Netea, “Trained immunity: a new avenue for tuberculosis vaccine,” 

Journal of Internal Medicine, vol. 279, no. 4, pp. 337-46, 2016.  

[11]  A. Bandera, A. Gori, L. D. E. A. Catozzi, G. Marchetti, C. Molteni, G. Ferrario, L. 

Codecasa, V. Penati, A. Matteeli and F. Franzetti, “Molecular Epidemiology Study of 

Exogenous Reinfection in an Area with a Low Incidence of Tuberculosis,” Journal of 

Clinical Microbiology, vol. 39, no. 6, pp. 2213-2218, 2001.  

[12]  C.-Y. Chiang and L. Riley, “Exogenous reinfection in tuberculosis,” Lancet Infect Dis, 



Bibliography 
 

136 
 

vol. 5, p. 629–36, 2005.  

[13]  L. Campos, M. Rocha, D. Willers and D. Silva, “Characteristics of Patients with Smear-

Negative Pulmonary Tuberculosis (TB) in a Region with High TB and HIV Prevalence,” 

PLoS One, vol. 11, no. 1, 2016.  

[14]  W.-C. Chao, Y.-W. Huang, M.-C. Yu, W.-T. Yang, C.-J. Lin, J.-J. Lee, R.-M. Huang, C.-

C. Shieh, S.-T. Chien and J.-Y. Chien, “Outcome correlation of smear-positivity but 

culture-negativity during standard anti-tuberculosis treatment in Taiwan,” BMC 

Infectious Diseases, vol. 15, no. 67, 2015.  

[15]  M. Asghar, S. Mehta, H. Cheema, R. Patti and W. Pascal, “Sputum smear and culture-

negative tuberculosis with associated pleural effusion: a diagnostic challenge,” Cureus, 

vol. 10, no. 10, 2018.  

[16]  J. Shaw and N. Wynn-Williams, “Infectivity of pulmonary tuberculosis in relation to 

sputum status,” Am Rev Tuberc, vol. 69, pp. 724-32, 1954.  

[17]  S. Grzybowski, G. Barnett and K. Styblo, “Contacts of cases of active pulmonary 

tuberculosis,” Bull Int Union Tuberc, vol. 50, pp. 90-106, 1975.  

[18]  A. Nachiappan, K. Rahbar, X. Shi, E. Guy, E. Mortani Barbosa Jr, G. Shroff, D. 

Ocazionez, A. Schlesinger, S. Katz and M. Hammer, “Pulmonary Tuberculosis; Role of 

radiology in Diagnosis and Management,” RadioGraphics, vol. 37, no. 1, 2017.  

[19]  National Institute for Health and Care Excellence, “Tuberculosis [NG33],” 2016. 

[Online]. Available: https://www.nice.org.uk/guidance/ng33. 

[20]  World Health Organization, Treatment of Tuberculosis: Guidelines for National 

Programmes, fourth edition, 2010.  

[21]  R. Shi, N. Itagaki and I. Sugawara, “Overview of Anti-Tuberculosis (TB) Drugs and 

Their Resistance Mechanisms,” Mini-reviews in Medicinal Chemistry, vol. 7, no. 11, pp. 

1177-1185, 2007.  

[22]  J. Zeyland and E. Piasecka‐Zeyland, “Antituberculous immunity produced by BCG 

vaccine,” Acta Paediatrica, vol. 27, no. 3, pp. 393-401, 1940.  

[23]  Y. J. Ryu, “Diagnosis of Pulmonary Tuberculosis: Recent Advances and Diagnostic 

Algorithms,” Tuberculosis and Respiratory Diseases, vol. 78, no. 2, pp. 64-71, 2015.  

[24]  World Health Organisation, “Global tuberculosis report 2017,” [Online]. Available: 



Bibliography 
 

137 
 

http://www.who.int/tb/publications/global_report/en/. [Accessed 1 6 2018]. 

[25]  M. Berry and O. M. Kon, “Multidrug- and extensively drug-resistant tuberculosis: an 

emerging threat,” European Respiratory Review, vol. 18, no. 114, pp. 195-197, 2009.  

[26]  H. Esmail, C. Barry, D. B. Young and R. J. Wilkinson, “The ongoing challenge of latent 

tuberculosis,” Philosophical Transactions of the Royal Society B, vol. 369, no. 1645, 

pp. 20130437-20130437, 2014.  

[27]  S. Valway, M. Sanchez, T. Shinnick, I. Orme, T. Agerton, D. Hoy, J. Jones, H. 

Westmoreland and I. Onorato, “An outbreak involving extensive transmission of a 

virulent strain of Mycobacterium tuberculosis,” N Engl J Med, vol. 338, no. 24, p. 1783, 

1998.  

[28]  M. Uplekar, D. Weil, K. Lönnroth, E. Jaramillo, C. Lienhardt, H. M. Y. Dias, D. Falzon, 

K. Floyd, G. Gargioni, H. Getahun, C. Gilpin, P. Glaziou, M. Grzemska, F. Mirzayev, H. 

Nakatani and M. Raviglione, “WHO's new end TB strategy.,” The Lancet, vol. 385, no. 

9979, pp. 1799-1801, 2015.  

[29]  “The Zero TB Initiative,” [Online]. Available: https://www.zerotbinitiative.org. [Accessed 

5 10 2018]. 

[30]  “Stop TB Partnership - Home Page,” , . [Online]. Available: http://www.stoptb.org/. 

[Accessed 2 7 2018]. 

[31]  J. A. Caylà and A. Orcau, “Control of tuberculosis in large cities in developed 

countries: an organizational problem,” BMC Medicine, vol. 9, no. 1, pp. 127-127, 2011.  

[32]  G. de Vries, R. W. Aldridge, J. A. Caylà, W. Haas, A. Sandgren, N. van Hest and I. 

Abubakar, “Epidemiology of tuberculosis in big cities of the European Union and 

European Economic Area countries,” Eurosurveillance, vol. 19, no. 9, p. 20726, 2014.  

[33]  M. Kruijshaar, I. Abubakar, M. Dedicoat, G. H. Bothamley, H. Maguire, J. Moore, J. 

Crofts and M. Lipman, “Evidence for a national problem: continued rise in tuberculosis 

case numbers in urban areas outside London,” Thorax, vol. 67, pp. 275-277, 2012.  

[34]  K. Lönnroth, G. Migliori, I. Abubakar, L. D'Ambrosio, G. de Vries, R. Diel, P. Douglas, 

D. Falzon, M. Gaudreau, D. Goletti, E. González Ochoa, P. LoBue, A. Matteelli, H. 

Njoo, I. Solovic, A. Story, T. Tayeb, M. van der Werf, D. Weil and J. Zellweger, 

“Towards tuberculosis elimination: an action framework for low-incidence countries,” 

Eur Respir J, vol. 45, no. 4, pp. 928-52, 2015.  



Bibliography 
 

138 
 

[35]  Public Health England, “Collaborative tuberculosis strategy for England: 2015-2020,” 

2015. [Online]. Available: https://www.gov.uk/government/publications/collaborative-

tuberculosis-strategy-for-england. 

[36]  A. Shaghaghi, R. Bhopal and S. A, “Approaches to recruiting 'hard-to-reach' 

populations into research: A review of the literature,” Health Promot Perspect, vol. 1, 

no. 2, pp. 86-94, 2011.  

[37]  M. Jit, H. R. Stagg, R. W. Aldridge, P. White and I. Abubakar, “Dedicated outreach 

service for hard to reach patients with tuberculosis in London: observational study and 

economic evaluation,” BMJ, vol. 343, 2011.  

[38]  C. Mulder, E. Klinkenberg and D. Manissero, “Effectiveness of tuberculosis contact 

tracing among migrants and the foreign-born population,” Eurosurveillance, vol. 14, no. 

11, 2009.  

[39]  N. Bock, R. Sales, T. Rogers and B. DeVoe, “A spoonful of sugar...: improving 

adherence to tuberculosis treatment using financial incentives [Notes from the Field],” 

IJTLD, vol. 5, no. 1, pp. 96-98, 2011.  

[40]  N. Martin, P. Morris and P. Kelly, “Food incentives to improve completion of 

tuberculosis treatment: randomised controlled trial in Dili, Timor-Leste,” BMJ, 2009.  

[41]  Q. Liu, K. Abba, M. Alejandria, V. Balanag, R. Berba and M. Lansang, “Reminder 

systems and late patient tracers in diagnosis and management of tuberculosis,” 

Evidence-based Child Health: A Cochrane Review Journal, vol. 5, no. 3, pp. 1206-

1245, 2010.  

[42]  K. Rainwater-Lovett, I. Rodriguez-Barraquer and W. Moss, “Viral Epidemiology: 

Tracking Viruses with Smartphones and Social Media,” in Viral Pathogenesis: From 

Basics to Systems Biology, Academic Press, 2016, pp. 241-252. 

[43]  B. Mathema, J. R. Andrews, T. Cohen, M. W. Borgdorff, M. A. Behr, J. R. Glynn, R. 

Rustomjee, B. J. Silk and R. Wood, “Drivers of Tuberculosis Transmission,” The 

Journal of Infectious Diseases, vol. 216, 2017.  

[44]  A. C. Schürch, K. Kremer, O. Daviena, A. Kiers, M. J. Boeree, R. J. Siezen and D. van 

Soolingen, “High-Resolution Typing by Integration of Genome Sequencing Data in a 

Large Tuberculosis Cluster,” Journal of Clinical Microbiology, vol. 48, no. 9, pp. 3403-

3406, 2010.  

[45]  J. M. Bryant, A. C. Schürch, H. van Deutekom, S. R. Harris, J. de Beer, V. de Jager, K. 



Bibliography 
 

139 
 

Kremer, S. A. F. T. van Hijum, R. J. Siezen, M. W. Borgdorff, S. D. Bentley, J. Parkhill 

and D. van Soolingen, “Inferring patient to patient transmission of Mycobacterium 

tuberculosis from whole genome sequencing data.,” BMC Infectious Diseases, vol. 13, 

no. 1, pp. 110-110, 2013.  

[46]  S. Duchêne, K. Holt, F.-X. Weill, S. Le Hello, J. Hawkey, D. Edwards, M. Fourment and 

E. Holmes, “Genome-scale rates of evolutionary change in bacteria,” Microb Genom, 

vol. 2, no. 11, 2016.  

[47]  C. B. Ford, P. L. Lin, M. R. Chase, R. R. Shah, O. Iartchouk, J. E. Galagan, N. 

Mohaideen, T. R. Ioerger, J. C. Sacchettini, M. Lipsitch, J. L. Flynn and S. M. Fortune, 

“Use of whole genome sequencing to estimate the mutation rate of Mycobacterium 

tuberculosis during latent infection,” Nature Genetics, vol. 43, no. 5, pp. 482-486, 

2011.  

[48]  T. Walker, C. Ip, R. Harrell, J. Evans, G. Kapatai, M. Dedicoat, D. Eyre, D. Wilson, P. 

Hawkey, C. DW and e. al, “Whole-genome sequencing to delineate Mycobacterium 

tuberculosis outbreaks: a retrospective observational study,” The Lancet Infectious 

diseases, vol. 13, no. 2, pp. 137-146, 2013.  

[49]  I. Hershkovitz, H. Donoghue, D. Minnikin, G. Besra, O. Y.-C. Lee, A. Gernaey, E. 

Galili, V. Eshed, C. Greenblatt, E. Lemma, G. Bar-Gal and M. Spigelman, “Detection 

and Molecular Characterization of 9000-Year-Old Mycobacterium tuberculosis from a 

Neolithic Settlement in the Eastern Mediterranean,” PLoS One, vol. 3, no. 10, 2008.  

[50]  S. Gagneux, “Host–pathogen coevolution in human tuberculosis,” Philos Trans R Soc 

Lond B Biol Sci, vol. 367, no. 1590, p. 850–859, 2012.  

[51]  D. Brites and S. Gagneux, “Co-evolution of Mycobacterium tuberculosis and Homo 

sapiens,” Immunological Reviews, vol. 264, no. 1, pp. 6-24, 2015.  

[52]  L. Fenner, M. Egger, T. Bodmer, H. Furrer, M. Ballif, M. Battegay, P. Helbling, J. Fehr, 

T. Gsponer, H. Rieder, M. Zwahlen, M. Hoffmann, E. Bernasconi, M. Cavassini, A. 

Calmy, M. Dolina, R. Frei, J. Janssens, S. Borrell, D. Stucki, J. Schrenzel and Bottger, 

“HIV Infection Disrupts the Sympatric Host–Pathogen Relationship in Human 

Tuberculosis,” PLoS Genetics, vol. 9, no. 3, 2013.  

[53]  D. Stucki, M. Ballif, M. Egger, H. Furrer, E. Altpeter, M. Battegay, S. C. Droz, T. 

Bruderer, M. Coscolla, S. Borrell, K. Zürcher, J.-P. Janssens, A. Calmy, J. M. Stalder, 

K. Jaton, H. L. Rieder, G. E. Pfyffer, H. H. Siegrist, M. Hoffmann, J. Fehr, M. Dolina, R. 

Frei, J. Schrenzel, E. C. Böttger, S. Gagneux and L. Fenner, “Standard genotyping 

overestimates transmission of Mycobacterium tuberculosis among immigrants in a low 



Bibliography 
 

140 
 

incidence country,” Journal of Clinical Microbiology, vol. 54, no. 7, pp. 1862-1870, 

2016.  

[54]  N. A. Rosenberg, A. G. Tsolaki and M. M. Tanaka, “Estimating change rates of genetic 

markers using serial samples: applications to the transposon IS6110 in Mycobacterium 

tuberculosis,” Theoretical Population Biology, vol. 63, p. 347–363, 2003.  

[55]  R. R. Kao, D. T. Haydon, S. Lycett and P. R. Murcia, “Supersize me: how whole-

genome sequencing and big data are transforming epidemiology,” Trends in 

Microbiology, vol. 22, no. 5, pp. 282-291, 2014.  

[56]  A. C. Schürch and D. van Soolingen, “DNA fingerprinting of Mycobacterium 

tuberculosis: from phage typing to whole-genome sequencing.,” Infection, Genetics 

and Evolution, vol. 12, no. 4, pp. 602-609, 2012.  

[57]  T. M. Walker, P. Monk, E. G. Smith and T. Peto, “Contact investigations for outbreaks 

of Mycobacterium tuberculosis: advances through whole genome sequencing,” Clinical 

Microbiology and Infection, vol. 19, no. 9, pp. 796-802, 2013.  

[58]  R. Doyle, C. Burgess, R. Williams, R. Gorton, H. Booth, J. Brown, J. Bryant, J. Chan, 

D. Creer, J. Holdstock, H. Kunst, S. Lozewicz, G. Platt, E. Romer, G. Speight, S. 

Tiberi, I. Abubakar, M. Lipman, T. McHugh and J. Breuer, “Direct Whole-Genome 

Sequencing of Sputum Accurately Identifies Drug-Resistant Mycobacterium 

tuberculosis Faster than MGIT Culture Sequencing,” J Clin Microbiol, vol. 56, no. 8, 

2018.  

[59]  C. Pareek, R. Smoczynski and A. Tretyn, “Sequencing technologies and genome 

sequencing,” J Appl Genet, vol. 52, no. 4, p. 413–435, 2011.  

[60]  E. van Dijk, H. Auger, Y. Jaszczyszyn and C. Thermes, “Ten years of next-generation 

sequencing technology,” Trends in Genetics, vol. 30, no. 9, pp. 418-426, 2014.  

[61]  N. Casali, A. Broda, S. R. Harris, J. Parkhill, T. Brown and F. Drobniewski, “Whole 

Genome Sequence Analysis of a Large Isoniazid-Resistant Tuberculosis Outbreak in 

London: A Retrospective Observational Study,” PLOS Medicine, vol. 13, no. 10, 2016.  

[62]  D. Baum, “Reading a Phylogenetic Tree: The Meaning of Monophyletic Groups,” 

Nature Education, vol. 1, no. 1, p. 190, 2008.  

[63]  Z. Yang and B. Rannala, “Molecular phylogenetics: principles and practice,” Nature 

Reviews Genetics, vol. 13, pp. 303-314, 2012.  



Bibliography 
 

141 
 

[64]  Centers for Disease Control and Prevention, “Tuberculosis Outbreak Associated With 

a Homeless Shelter - Kane County, Illinois, 2007-2011,” MMWR, vol. 61, pp. 186-189, 

2012.  

[65]  G. Garnett, S. Cousens, T. Hallett, R. Steketee and N. Walker, “Mathematical models 

in the evaluation of health programmes,” The Lancet, vol. 378, no. 9790, pp. 515-525, 

2011.  

[66]  J. Lessler and D. Cummings, “Mechanistic Models of Infectious Disease and Their 

Impact on Public Health,” American Journal of Epidemiology, vol. 183, no. 5, 2016.  

[67]  N. A. Menzies, E. Wolf, D. Connors, M. Bellerose, A. N. Sbarra, T. Cohen, A. N. Hill, R. 

Yaesoubi, K. Galer, P. White, I. Abubakar and J. A. Salomon, “Progression from latent 

infection to active disease in dynamic tuberculosis transmission models: a systematic 

review of the validity of modelling assumptions,” Lancet Infectious Diseases, 2018.  

[68]  J. Blackwood and L. Childs, “An introduction to compartmental modeling for the 

budding infectious disease modeler,” Letters in Biomathematics, vol. 5, no. 1, pp. 195-

221, 2018.  

[69]  J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, V. Colizza, L. Isella, C. Régis, J.-F. Pinton, 

N. Khanafer, W. Van den Broeck and P. Vanhems, “Simulation of an SEIR infectious 

disease model on the dynamic contact network of conference attendees,” BMC 

Medicine, vol. 9, 2011.  

[70]  R. Almeida, A. Brito da Cruz, N. Martins and M. Monteiro, “An epidemiological MSEIR 

model described by the Caputo fractional derivative,” International Journal of Dynamics 

and Control, vol. 7, no. 2, pp. 776-784, 2019.  

[71]  European Centre for Disease Prevention and Control, “Monitoring the use of whole-

genome sequencing in infectious disease surveillance in Europe 2015-2017,” ECDC, 

Stockholm, 2018. 

[72]  Public Health England, “England world leaders in the use of whole genome 

sequencing to diagnose TB,” 2017. [Online]. Available: 

https://www.gov.uk/government/news/england-world-leaders-in-the-use-of-whole-

genome-sequencing-to-diagnose-tb. 

[73]  H.-A. Hatherell, C. Colijn, H. R. Stagg, C. Jackson, J. R. Winter and I. Abubakar, 

“Interpreting whole genome sequencing for investigating tuberculosis transmission: a 

systematic review,” BMC Medicine, vol. 14, no. 1, p. 21, 2016.  



Bibliography 
 

142 
 

[74]  Y. H. Grad and M. Lipsitch, “Epidemiologic data and pathogen genome sequences: a 

powerful synergy for public health,” Genome Biology, vol. 15, no. 11, pp. 538-538, 

2014.  

[75]  S. Sreevatsan, X. Pan, K. E. Stockbauer, N. D. Connell, B. N. Kreiswirth, T. S. Whittam 

and J. M. Musser, “Restricted structural gene polymorphism in the Mycobacterium 

tuberculosis complex indicates evolutionarily recent global dissemination,” 

Proceedings of the National Academy of Sciences of the United States of America, vol. 

94, no. 18, 1997.  

[76]  C. B. Ford, K. Yusim, T. Ioerger, S. Feng, M. R. Chase, M. Greene, B. T. Korber and 

S. M. Fortune, “Mycobacterium tuberculosis – Heterogeneity revealed through whole 

genome sequencing,” Tuberculosis, vol. 92, no. 3, pp. 194-201, 2012.  

[77]  D. J. Wilson, “Insights from Genomics into Bacterial Pathogen Populations,” PLOS 

Pathogens, vol. 8, no. 9, 2012.  

[78]  E. R. Robinson, T. M. Walker and M. J. Pallen, “Genomics and outbreak investigation: 

from sequence to consequence,” Genome Medicine, vol. 5, no. 4, pp. 36-36, 2013.  

[79]  J. A. Guerra-Assunção, R. M. Houben, A. C. Crampin, T. Mzembe, K. Mallard, F. Coll, 

P. Khan, L. Banda, A. Chiwaya, R. P. Pereira, R. McNerney, D. Harris, J. Parkhill, T. 

G. Clark and J. R. Glynn, “Recurrence due to Relapse or Reinfection With 

Mycobacterium tuberculosis: A Whole-Genome Sequencing Approach in a Large, 

Population-Based Cohort With a High HIV Infection Prevalence and Active Follow-up,” 

The Journal of Infectious Diseases, vol. 211, no. 7, pp. 1154-1163, 2015.  

[80]  M.-L. Lambert, E. Hasker, A. V. Deun, D. Roberfroid, M. Boelaert and P. van der 

Stuyft, “Recurrence in tuberculosis: relapse or reinfection?,” Lancet Infectious 

Diseases, vol. 3, no. 5, pp. 282-287, 2003.  

[81]  M. Wlodarska, J. C. Johnston, J. L. Gardy and P. Tang, “A Microbiological Revolution 

Meets an Ancient Disease: Improving the Management of Tuberculosis with 

Genomics,” Clinical Microbiology Reviews, vol. 28, no. 2, pp. 523-539, 2015.  

[82]  T. Jombart, A. Cori, X. Didelot, S. Cauchemez, C. Fraser and N. M. Ferguson, 

“Bayesian Reconstruction of Disease Outbreaks by Combining Epidemiologic and 

Genomic Data,” PLOS Computational Biology, vol. 10, no. 1, 2014.  

[83]  C. U. Köser, M. T. G. Holden, M. J. Ellington, E. J. Cartwright, N. Brown, A. Ogilvy-

Stuart, L. Y. Hsu, C. Chewapreecha, N. J. Croucher, S. R. Harris, M. Sanders, M. C. 

Enright, G. Dougan, S. D. Bentley, J. Parkhill, L. Fraser, J. R. Betley, O. Schulz-



Bibliography 
 

143 
 

Trieglaff, G. P. Smith and S. J. Peacock, “Rapid whole-genome sequencing for 

investigation of a neonatal MRSA outbreak.,” The New England Journal of Medicine, 

vol. 366, no. 24, pp. 2267-2275, 2012.  

[84]  C. W. Knetsch, T. R. Connor, A. Mutreja, S. van Dorp, I. Sanders, H. P. Browne, D. 

Harris, L. Lipman, E. Keessen, J. Corver, E. J. Kuijper and T. D. Lawley, “Whole 

genome sequencing reveals potential spread of Clostridium difficile between humans 

and farm animals in the Netherlands, 2002 to 2011,” Eurosurveillance, vol. 19, no. 45, 

pp. 20954-20954, 2014.  

[85]  “The PRISMA statement,” [Online]. Available: www.prisma-statement.org. [Accessed 

2014 11 10]. 

[86]  N. Noah, “Strengthening the reporting of molecular epidemiology for infectious 

diseases (STROME-ID): an extension of the STROBE statement,” Epidemiology and 

Infection, vol. 142, no. 07, pp. 1343-1343, 2014.  

[87]  C. Luchini, B. Stubbs, M. Solmi and N. Veronese, “Assessing the quality of studies in 

meta-analyses: Advantages and limitations of the Newcastle Ottawa Scale,” World J 

Meta-Anal, vol. 5, no. 4, pp. 80-84, 2017.  

[88]  J. L. Gardy, J. C. Johnston, S. J. H. Sui, V. J. Cook, L. Shah, E. Brodkin, S. Rempel, 

R. G. Moore, Y. Zhao, R. A. Holt, R. Varhol, I. Birol, M. Lem, M. K. Sharma, K. Elwood, 

R. C. Brunham and P. Tang, “Whole-Genome Sequencing and Social-Network 

Analysis of a Tuberculosis Outbreak,” The New England Journal of Medicine, vol. 364, 

no. 8, pp. 730-739, 2011.  

[89]  T. Luo, C. Yang, Y. Peng, L. Lu, G. Sun, J. Wu, X. Jin, J. Hong, F. Li, J. Mei, K. 

DeRiemer and Q. Gao, “Whole-genome sequencing to detect recent transmission of 

Mycobacterium tuberculosis in settings with a high burden of tuberculosis.,” 

Tuberculosis, vol. 94, no. 4, pp. 434-440, 2014.  

[90]  C. Mehaffy, J. L. Guthrie, D. C. Alexander, R. Stuart, E. Rea and F. B. Jamieson, 

“Marked Microevolution of a Unique Mycobacterium tuberculosis Strain in 17 Years of 

Ongoing Transmission in a High Risk Population,” PLOS ONE, vol. 9, no. 11, 2014.  

[91]  A. Roetzer, R. Diel, T. A. Kohl, C. Rückert, U. Nübel, J. Blom, T. Wirth, S. Jaenicke, S. 

Schuback, S. Rüsch-Gerdes, P. Supply, J. Kalinowski and S. Niemann, “Whole 

Genome Sequencing versus Traditional Genotyping for Investigation of a 

Mycobacterium tuberculosis Outbreak: A Longitudinal Molecular Epidemiological 

Study,” PLOS Medicine, vol. 10, no. 2, 2013.  



Bibliography 
 

144 
 

[92]  J. A. Guerra-Assunção, A. C. Crampin, R. Houben, T. Mzembe, K. Mallard, F. Coll, P. 

Khan, L. Banda, A. Chiwaya, R. Pereira, R. McNerney, P. Fine, J. Parkhill, T. G. Clark 

and J. R. Glynn, “Large-scale whole genome sequencing of M. tuberculosis provides 

insights into transmission in a high prevalence area,” eLife, vol. 4, 2015.  

[93]  R. Lee, “Re-emergence and Amplification of Tuberculosis in the Canadian Arctic.,” The 

Journal of infectious diseases, 2015.  

[94]  A. A. Witney, K. A. Gould, A. Arnold, D. Coleman, R. Delgado, J. Dhillon, M. Pond, C. 

F. Pope, T. Planche, N. G. Stoker, C. A. Cosgrove, P. D. Butcher, T. S. Harrison and J. 

Hinds, “Clinical Application of Whole-Genome Sequencing To Inform Treatment for 

Multidrug-Resistant Tuberculosis Cases,” Journal of Clinical Microbiology, vol. 53, no. 

5, pp. 1473-1483, 2015.  

[95]  O. M. Williams, T. Abeel, N. Casali, K. A. Cohen, A. S. Pym, S. B. Mungall, C. A. 

Desjardins, A. K. Banerjee, F. Drobniewski, A. M. Earl and G. S. Cooke, “Fatal 

Nosocomial MDR TB Identified through Routine Genetic Analysis and Whole-Genome 

Sequencing,” Emerging Infectious Diseases, vol. 21, no. 6, pp. 1082-1084, 2015.  

[96]  T. M. Walker, M. K. Lalor, A. Broda, L. S. Ortega, M. Morgan, L. Parker, S. Churchill, 

K. Bennett, T. Golubchik, A. Giess, C. d. O. Elias, K. Jeffery, I. Bowler, I. Laurenson, A. 

Barrett, F. Drobniewski, N. D. McCarthy, L. F. Anderson, I. Abubakar, H. L. Thomas, P. 

Monk, E. G. Smith, A. S. Walker, D. W. Crook, D. W. Crook, T. Peto and C. Conlon, 

“Assessment of Mycobacterium tuberculosis transmission in Oxfordshire, UK, 2007-12, 

with whole pathogen genome sequences: an observational study.,” The Lancet 

Respiratory Medicine, vol. 2, no. 4, pp. 285-292, 2014.  

[97]  T. G. Clark, K. Mallard, F. Coll, M. D. Preston, S. A. Assefa, D. Harris, S. Ogwang, F. 

Mumbowa, B. Kirenga, D. M. O’Sullivan, A. Okwera, K. D. Eisenach, M. Joloba, S. D. 

Bentley, J. J. Ellner, J. Parkhill, E. C. Jones-López and R. McNerney, “Elucidating 

emergence and transmission of multidrug-resistant tuberculosis in treatment 

experienced patients by whole genome sequencing,” PLOS ONE, vol. 8, no. 12, 2013.  

[98]  M. Kato-Maeda, C. Ho, B. Passarelli, N. Banaei, J. Grinsdale, L. L. Flores, J. 

Anderson, M. Murray, G. Rose, L. M. Kawamura, N. Pourmand, M. A. Tariq, S. 

Gagneux and P. C. Hopewell, “Use of Whole Genome Sequencing to Determine the 

Microevolution of Mycobacterium tuberculosis during an Outbreak,” PLOS ONE, vol. 8, 

no. 3, 2013.  

[99]  X. Didelot, J. L. Gardy and C. Colijn, “Bayesian Inference of Infectious Disease 

Transmission from Whole-Genome Sequence Data,” Molecular Biology and Evolution, 



Bibliography 
 

145 
 

vol. 31, no. 7, pp. 1869-1879, 2014.  

[100]  D. Stucki, M. Ballif, T. Bodmer, M. Coscolla, A.-M. Maurer, S. C. Droz, C. Butz, S. 

Borrell, C. Längle, J. Feldmann, H. Furrer, C. Mordasini, P. Helbling, H. L. Rieder, M. 

Egger, S. Gagneux and L. Fenner, “Tracking a Tuberculosis Outbreak Over 21 Years: 

Strain-Specific Single-Nucleotide Polymorphism Typing Combined With Targeted 

Whole-Genome Sequencing,” The Journal of Infectious Diseases, vol. 211, no. 8, pp. 

1306-1316, 2015.  

[101]  P. Smit, “Enhanced tuberculosis outbreak investigation using whole genome 

sequencing and IGRA,” European Respiratory Journal, vol. 45, no. 1, pp. 276-279, 

2015.  

[102]  J. M. Bryant, S. R. Harris, J. Parkhill, R. Dawson, A. H. Diacon, P. D. van Helden, A. 

Pym, A. A. Mahayiddin, C. Chuchottaworn, I. M. Sanne, C. Louw, M. J. Boeree, M. 

Hoelscher, T. D. McHugh, A. Bateson, R. D. Hunt, S. Mwaigwisya, L. Wright, S. H. 

Gillespie and S. D. Bentley, “Whole-genome sequencing to establish relapse or re-

infection with Mycobacterium tuberculosis: a retrospective observational study,” The 

Lancet Respiratory Medicine, vol. 1, no. 10, pp. 786-792, 2013.  

[103]  L. Pérez-Lago, I. Comas, Y. Navarro, F. González-Candelas, M. Herranz, E. Bouza 

and D. García-de-Viedma, “Whole Genome Sequencing Analysis of Intrapatient 

Microevolution in Mycobacterium tuberculosis: Potential Impact on the Inference of 

Tuberculosis Transmission,” The Journal of Infectious Diseases, vol. 209, no. 1, pp. 

98-108, 2014.  

[104]  N. Casali, V. Nikolayevskyy, Y. Balabanova, S. R. Harris, O. Ignatyeva, I. Kontsevaya, 

J. Corander, J. M. Bryant, J. Parkhill, S. Nejentsev, R. D. Horstmann, T. Brown and F. 

Drobniewski, “Evolution and transmission of drug-resistant tuberculosis in a Russian 

population,” Nature Genetics, vol. 46, no. 3, pp. 279-286, 2014.  

[105]  T. R. Ioerger, Y. Feng, X. Chen, K. M. Dobos, T. C. Victor, E. M. Streicher, R. M. 

Warren, N. C. G. van Pittius, P. D. van Helden and J. C. Sacchettini, “The non-clonality 

of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the 

Western Cape of South Africa.,” BMC Genomics, vol. 11, no. 1, pp. 670-670, 2010.  

[106]  F. Lanzas, P. C. Karakousis, J. C. Sacchettini and T. R. Ioerger, “Multidrug-Resistant 

Tuberculosis in Panama Is Driven by Clonal Expansion of a Multidrug-Resistant 

Mycobacterium tuberculosis Strain Related to the KZN Extensively Drug-Resistant M. 

tuberculosis Strain from South Africa,” Journal of Clinical Microbiology, vol. 51, no. 10, 

pp. 3277-3285, 2013.  



Bibliography 
 

146 
 

[107]  S. M. Regmi, A. Chaiprasert, S. Kulawonganunchai, S. Tongsima, O. O. Coker, T. 

Prammananan, W. Viratyosin and I. Thaipisuttikul, “Whole genome sequence analysis 

of multidrug-resistant Mycobacterium tuberculosis Beijing isolates from an outbreak in 

Thailand,” Molecular Genetics and Genomics, vol. 290, no. 5, pp. 1933-1941, 2015.  

[108]  O. Ocheretina, L. Shen, V. E. Escuyer, M.-M. Mabou, G. Royal-Mardi, S. Collins, J. W. 

Pape and D. W. Fitzgerald, “Whole Genome Sequencing Investigation of a 

Tuberculosis Outbreak in Port-au-Prince, Haiti Caused by a Strain with a “Low-Level” 

rpoB Mutation L511P – Insights into a Mechanism of Resistance Escalation,” PLOS 

ONE, vol. 10, no. 6, 2015.  

[109]  M. Kato-Maeda, J. Z. Metcalfe and L. L. Flores, “Genotyping of Mycobacterium 

tuberculosis: application in epidemiologic studies.,” Future Microbiology, vol. 6, no. 2, 

pp. 203-216, 2011.  

[110]  M. Egger, P. Juni, C. Bartlett, F. Holenstein and J. Sterne, “How important are 

comprehensive literature searches and the assessment of trial quality in systematic 

reviews? Empirical Study,” Health Technol Assess, vol. 7, pp. 1-76, 2003.  

[111]  S. Niemann, C. U. Köser, S. Gagneux, C. Plinke, S. Homolka, H. R. Bignell, R. J. 

Carter, R. K. Cheetham, A. J. Cox, N. A. Gormley, P. Kokko-Gonzales, L. Murray, R. 

Rigatti, V. P. Smith, F. P. Arends, H. S. Cox, G. Smith and J. A. Archer, “Genomic 

Diversity among Drug Sensitive and Multidrug Resistant Isolates of Mycobacterium 

tuberculosis with Identical DNA Fingerprints,” PLOS ONE, vol. 4, no. 10, 2009.  

[112]  R. J. Ypma, W. M. van Ballegooijen and J. Wallinga, “Relating Phylogenetic Trees to 

Transmission Trees of Infectious Disease Outbreaks,” Genetics, vol. 195, no. 3, pp. 

1055-1062, 2013.  

[113]  S. H. Gillespie, A. M. Crook, T. D. McHugh, C. M. Mendel, S. Meredith, S. Murray, F. 

Pappas, P. P. J. Phillips and A. Nunn, “Four-Month Moxifloxacin-Based Regimens for 

Drug-Sensitive Tuberculosis,” The New England Journal of Medicine, vol. 371, no. 17, 

pp. 1577-1587, 2014.  

[114]  R. Colangeli, V. L. Arcus, R. T. Cursons, A. Ruthe, N. Karalus, K. Coley, S. D. 

Manning, S. Kim, E. Marchiano and D. Alland, “Whole genome sequencing of 

Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent 

infections in humans.,” PLOS ONE, vol. 9, no. 3, 2014.  

[115]  C. J. Worby, H.-H. Chang, W. P. Hanage and M. Lipsitch, “The Distribution of Pairwise 

Genetic Distances: A Tool for Investigating Disease Transmission,” Genetics, vol. 198, 



Bibliography 
 

147 
 

no. 4, pp. 1395-1404, 2014.  

[116]  Q. Liu, Y. Guo, J. Li, J. Long, B. Zhang and Y. Shyr, “Steps to ensure accuracy in 

genotype and SNP calling from Illumina sequencing data.,” BMC Genomics, vol. 13, 

2012.  

[117]  H. David, “Probability Distribution of Drug-Resistant Mutants in Unselected Populations 

of Mycobacterium-Tuberculosis.,” Appl Microbiol, vol. 20, no. 5, p. 810, 1970.  

[118]  G. Kaplan, A. Moreira, H. Wainwright, B. Kreiswirth, M. Tanverdi, B. Mathema, S. 

Ramaswamy, G. Walther, L. Steyn and C. Barry 3rd, “Mycobacterium tuberculosis 

growth at the cavity surface: a microenvironment with failed immunity.,” Infect Immun, 

vol. 71, no. 12, pp. 7099-108, 2003.  

[119]  Q. Liu, L. Via, T. Luo, L. Liang, X. Liu, S. Wu, Q. Shen, W. Wei, X. Ruan, X. Yuan and 

e. al, “Within patient microevolution of Mycobacterium tuberculosis correlates with 

heterogeneous responses to treatment.,” Sci Rep, vol. 5, 2015.  

[120]  R. van den Berg, COMMUNICABLE MEDICAL DISEASES: A holistic and social 

medicine perspective for healthcare providers, Balboa Press, 2014.  

[121]  T. Cohen, P. van Helden, D. Wilson, C. Colijn, M. McLaughlin, I. Abubakar and R. 

Warren, “Mixed-strain mycobacterium tuberculosis infections and the implications for 

tuberculosis treatment and control.,” Clin Microbiol Rev, vol. 25, no. 4, pp. 708-719, 

2012.  

[122]  P. Black, M. de Vos, G. Louw, R. van der Merwe, A. Dippenaar, E. Streicher, A. 

Abdallah, S. Sampson, T. Victor and T. Dolby, “Whole genome sequencing reveals 

genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis 

isolates,” BMC Genomics, vol. 16, 2015.  

[123]  D. Warner, A. Koch and V. Mizrahi, “Diversity and disease pathogenesis in 

Mycobacterium tuberculosis.,” Trends in Microbiology, vol. 23, no. 1, pp. 14-21, 2015.  

[124]  C. Köser, L. Fraser, A. Ioannou, J. Becq, M. Ellington, M. Holden, S. Reuter, M. Estée 

Török, S. Bentley, J. Parkhill, N. Gormley, G. Smith and S. Peacock, “Rapid single-

colony whole-genome sequencing of bacterial pathogens,” J Antimicrob Chemother, 

vol. 69, no. 5, p. 1275–1281, 2014.  

[125]  C. Worby, M. Lipsitch and W. Hanage, “Shared genomic variants: identification of 

transmission routes using pathogen deep sequence data.,” bioRxiv, 2015.  



Bibliography 
 

148 
 

[126]  S. Waffenschmidt, E. Hausner, W. Sieben, T. Jaschinski, M. Knelangen and I. 

Overesch, “Effective study selection using text-mining or a single-screening approach: 

a study protocol,” Systematic Reviews, vol. 7, no. 166, 2018.  

[127]  H.-A. Hatherell, X. Didelot, S. Pollock, P. Tang, A. Crisan, J. C. Johnston, C. Colijn and 

J. L. Gardy, “Declaring a tuberculosis outbreak over with genomic epidemiology,” 

Microbial Genomics, vol. 2, no. 5, 2016.  

[128]  K. Toman, “Tuberculosis case-finding and chemotherapy: questions and answers,” 

1979.  

[129]  Center for Disease Control, “Controlling Tuberculosis in the United States: 

Recommendations from the American Thoracic Society, CDC, and the Infectious 

Diseases Society of America,” Morbidity And Mortality Weekly Report: 

Recommendations and Reports, vol. 54, no. RR12, pp. 1-81, 2005.  

[130]  E. M. Cottam, G. Thébaud, J. Wadsworth, J. Gloster, L. Mansley, D. J. Paton, D. P. 

King and D. T. Haydon, “Integrating genetic and epidemiological data to determine 

transmission pathways of foot-and-mouth disease virus,” 2008. [Online]. Available: 

http://rspb.royalsocietypublishing.org/content/275/1637/887. [Accessed 24 9 2018]. 

[131]  M. J. Morelli, G. Thébaud, J. Chadœuf, D. P. King, D. T. Haydon and S. Soubeyrand, 

“A Bayesian Inference Framework to Reconstruct Transmission Trees Using 

Epidemiological and Genetic Data,” PLOS Computational Biology, vol. 8, no. 11, 2012.  

[132]  T. D. Lieberman, D. Wilson, R. Misra, L. L. Xiong, P. Moodley, T. Cohen and R. 

Kishony, “Genomic diversity in autopsy samples reveals within-host dissemination of 

HIV-associated Mycobacterium tuberculosis,” Nature Medicine, vol. 22, no. 12, pp. 

1470-1474, 2016.  

[133]  E. Kenah, T. Britton, M. E. Halloran and I. M. Longini, “Molecular Infectious Disease 

Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission 

Trees,” PLOS Computational Biology, vol. 12, no. 4, 2016.  

[134]  A. Drummond and A. Rambaut, “BEAST: Bayesian evolutionary analysis by sampling 

trees,” BMC Evolutionary Biology, vol. 7, p. 214, 2007.  

[135]  O. Krylova and D. J. Earn, “Effects of the infectious period distribution on predicted 

transitions in childhood disease dynamics.,” Journal of the Royal Society Interface, vol. 

10, no. 84, pp. 20130098-20130098, 2013.  

[136]  R. Ragonnet, J. M. Trauer, N. Scott, M. T. Meehan, J. T. Denholm and E. S. McBryde, 



Bibliography 
 

149 
 

“Optimally capturing latency dynamics in models of tuberculosis transmission,” 

Epidemics, vol. 21, pp. 39-47, 2017.  

[137]  J. Cheng, L. Hiscoe, S. Pollock, P. Hasselback, J. Gardy and R. Parker, “A clonal 

outbreak of tuberculosis in a homeless population in the interior of British Columbia, 

Canada, 2008-2015.,” Epidemiology and Infection, vol. 143, no. 15, pp. 3220-3226, 

2015.  

[138]  N. C. Grassly and C. Fraser, “Mathematical models of infectious disease 

transmission,” Nature Reviews Microbiology, vol. 6, no. 6, pp. 477-487, 2008.  

[139]  M. W. Borgdorff, M. M. G. G. Sebek, R. B. Geskus, K. Kremer, N. A. Kalisvaart and D. 

van Soolingen, “The incubation period distribution of tuberculosis estimated with a 

molecular epidemiological approach,” International Journal of Epidemiology, vol. 40, 

no. 4, pp. 964-970, 2011.  

[140]  J. Kingman, “The coalescent,” Stoch Proc Appl, vol. 13, no. 3, pp. 235-248, 1982.  

[141]  Y. Xu, H. Topliffe, J. Stimson, H. Stagg, I. Abubakar and C. Colijn, “Transmission 

analysis of a large TB outbreak in London: mathematical modelling study using 

genomic data,” bioRxiv, 2019.  

[142]  X. Didelot, C. Fraser, J. Gardy and C. Colijn, “Genomic Infectious Disease 

Epidemiology in Partially Sampled and Ongoing Outbreaks,” Mol Biol Evol, vol. 34, no. 

4, pp. 997-1007, 2017.  

[143]  D. Ayabina, J. Ronning, K. Alfsnes, N. Debech, O. Brynildsrud, T. Arnesen, G. 

Norheim, A.-T. Mengshoel, R. Rykkvin, U. Dahle, C. Colijn and V. Eldholm, “Genome-

based transmission modelling separates imported tuberculosis from recent 

transmission within an immigrant population,” Microb Genom, vol. 4, no. 10, 2018.  

[144]  D. Klinkenberg, J. A. Backer, X. Didelot, C. Colijn and J. Wallinga, “Simultaneous 

inference of phylogenetic and transmission trees in infectious disease outbreaks.,” 

PLOS Computational Biology, vol. 13, no. 5, 2017.  

[145]  M. Hall, M. Woolhouse and A. Rambaut, “Epidemic reconstruction in a phylogenetics 

framework: transmission trees as partitions of the node set,” PLoS Comput Biol, vol. 

11, no. 12, 2015.  

[146]  N. De Maio, C. J. Worby, D. J. Wilson and N. Stoesser, “Bayesian reconstruction of 

transmission within outbreaks using genomic variants,” PLOS Computational Biology, 

vol. 14, no. 4, p. 213819, 2018.  



Bibliography 
 

150 
 

[147]  H. Maguire, S. Brailsford, J. Carless, M. Yates, L. Altass, S. Yates, S. Anaraki, A. 

Charlett, S. Lozewicz, M. Lipman and G. Bothamley, “Large outbreak of isoniazid-

monoresistant tuberculosis in London, 1995 to 2006: case-control study and 

recommendations.,” Eurosurveillance, vol. 16, no. 13, p. 19830, 2011.  

[148]  F. Neely, H. Maguire, F. Le Brun, A. Davies, D. Gelb and S. Yates, “High rate of 

transmission among contacts in large London outbreak of isoniazid mono-resistant 

tuberculosis,” Journal of Public Health, vol. 32, no. 1, pp. 44-51, 2010.  

[149]  M. Ruddy, A. Davies, M. Yates, S. Balasegaram, Y. Drabu, B. Patel, S. Lozewicz, S. 

Sen, M. Bahl, E. James, M. Lipman, G. Duckworth, J. Watson, M. Piper, F. 

Drobniewski and H. Maguire, “Outbreak of isoniazid resistant tuberculosis in north 

London,” Thorax, vol. 59, no. 4, pp. 279-285, 2004.  

[150]  M. Ruddy, A. Davies, M. Yates, F. Drobniewski, B. Patel, S. Yates, S. Balasegaram, S. 

Lozewicz, S. Sen, Y. Drabu, G. Duckworth, J. Watson, M. Piper and H. Maguire, “A 

continuing outbreak of isoniazid resistant tuberculosis in North London,” Journal of 

Infection, vol. 44, no. 2, p. 108, 2002.  

[151]  T. Weniger, J. Krawczyk, P. Supply, S. Niemann and D. Harmsen, “MIRU-VNTRplus: a 

web tool for polyphasic genotyping of Mycobacterium tuberculosis complex bacteria,” 

Nucleic Acids Research, vol. 38, pp. W326-W331, 2010.  

[152]  H. Maguire, M. Ruddy, G. Bothamley, B. Patel, M. Lipman, F. Drobniewski, M. Yates 

and T. Brown, “Multidrug resistance emerging in North London outbreak,” Thorax, vol. 

61, no. 6, pp. 547-548, 2006.  

[153]  C. Smith, S. Trienekens, C. Anderson, M. Lalor, T. Brown, A. Story, H. Fry, A. 

Hayward and H. Maguire, “Twenty years and counting: epidemiology of an outbreak of 

isoniazid-resistant tuberculosis in England and Wales, 1995 to 2014,” 

Eurosurveillance, vol. 22, no. 8, 2017.  

[154]  B. F. F. Ouellette, “The GenBank Sequence Database,” 2006. [Online]. Available: 

http://bioon.com/book/biology/bioinformatics/chapter-3.pdf. [Accessed 6 1 2019]. 

[155]  A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. 

Garimella, D. Altshuler, S. B. Gabriel, M. J. Daly and M. A. DePristo, “The Genome 

Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA 

sequencing data,” Genome Research, vol. 20, no. 9, pp. 1297-1303, 2010.  

[156]  G. Van der Auwera, M. Carneiro, C. Hartl and e. al, “From FastQ data to high 

confidence variant calls: the Genome Analysis Toolkit best practices pipeline.,” Current 



Bibliography 
 

151 
 

Protocols in Bioinformatics, vol. 11, 2013.  

[157]  S. Andrews, “FastQC: A Quality Control tool for High Throughput Sequence Data,” 

[Online]. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 

[Accessed 6 1 2019]. 

[158]  R. Nielsen, J. Paul, A. Albrechtsen and Y. Song, “Genotype and SNP calling from next-

generation sequencing data,” Nat Rev Genet, vol. 12, no. 6, pp. 443-451, 2011.  

[159]  H. Li, “Improving SNP discovery by base alignment quality,” Bioinformatics, vol. 27, no. 

8, pp. 1157-1158, 2011.  

[160]  J. Phelan, F. Coll, I. Bergval, R. Anthony, R. Warren, S. Sampson, N. Gey van Pittius, 

J. Gylnn, A. Crampin, A. Alves, T. Bessa, S. Campino, K. Dheda, L. Grandjean, R. 

Hasan, Z. Hasan, A. Miranda, D. Moore, S. Panaiotov, J. Perdigao and I. Portugal, 

“Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium 

tuberculosis lineages,” BMC Genomics, vol. 17, no. 151, 2016.  

[161]  D. Posada, “jModelTest: phylogenetic model averaging,” Mol Biol Evol, vol. 25, no. 7, 

pp. 1253-6, 2008.  

[162]  D. Darriba, G. Taboada, R. Doallo and D. Posada, “jModelTest 2: more models, new 

heuristics and parallel computing,” Nature Methods, vol. 9, p. 772, 2012.  

[163]  S. Kalyaanamoorthy, B. Minh, T. Wong, A. von Haeseler and L. Jermiin, “ModelFinder: 

fast model selection for accurate phylogenetic estimates,” Nature Methods, vol. 14, pp. 

587-589, 2017.  

[164]  S. Ho, “The molecular clock and estimating species divergence,” Nature Education, 

2008.  

[165]  A. Drummond and R. Bouckaert, Bayesian evolutionary analysis with BEAST, 

Cambridge: Cambridge University Press, 2015.  

[166]  M. Suchard, R. Weiss and J. Sinsheimer, “Bayesian selection of continuous-time 

Markoc chain evolutionary models,” Mol Biol Evol, vol. 18, pp. 1001-1013, 2001.  

[167]  N. Friel and A. Pettitt, “Marginal Likelihood Estimation via Power Posteriors,” Journal of 

the Royal Statistical Society. Series B (Statistical Methodology), vol. 70, no. 3, pp. 589-

607, 2008.  

[168]  G. Baele, P. Lemey, T. Bedford, A. Rambaut, M. Suchard and A. Alekseyenko, 

“Improving the accuracy of demographic and molecular clock model comparison while 



Bibliography 
 

152 
 

accommodating phylogenetic uncertainty,” Mol. Biol. Evol., vol. 29, no. 9, pp. 2157-

2167, 2012.  

[169]  G. Baele, W. Li, A. Drummond, M. Suchard and P. Lemey, “Accurate model selection 

of relaxed molecular clocks in Bayesian phylogenetics,” Mol. Biol. Evol., vol. 30, no. 2, 

pp. 239-243, 2013.  

[170]  R. Kass and A. Raftery, “Bayes Factors,” Journal of the American Statistical 

Association, vol. 90, no. 430, pp. 773-795, 1995.  

[171]  J. O’Reilly and P. Donoghue, “The Efficacy of Consensus Tree Methods for 

Summarizing Phylogenetic Relationships from a Posterior Sample of Trees Estimated 

from Morphological Data,” Syst Biol, vol. 67, no. 2, pp. 354-362, 2018.  

[172]  A. Rambaut, A. Drummond, D. Xie, G. Baele and M. Suchard, “Posterior 

summarisation in Bayesian phylogenetics using Tracer 1.7,” Systematic Biology, vol. 

67, no. 5, pp. 901-904, 2018.  

[173]  E. Nummelin, “MC's for MCMC'ists,” International Statistical Review, vol. 70, no. 2, pp. 

215-240, 2002.  

[174]  H. Li and R. Durbin, “Fast and accurate short read alignment with Burrows–Wheeler 

Transform,” Bioinformatics, vol. 25, no. 14, p. 1754–1760, 2009.  

[175]  J. M. Lew, A. Kapopoulou, L. Jones and S. T. Cole, “TubercuList - 10 years after,” 

Tuberculosis, vol. 91, no. 1, pp. 1-7, 2011.  

[176]  A. Rambaut, T. T.-Y. Lam, L. M. Carvalho and O. G. Pybus, “Exploring the temporal 

structure of heterochronous sequences using TempEst (formerly Path-O-Gen),” Virus 

Evolution, vol. 2, no. 1, 2016.  

[177]  V. Rangannan and M. Bansal, “PromBase: a web resource for various genomic 

features and predicted promoters in prokaryotic genomes,” BMC Research Notes, vol. 

4, no. 257, 2011.  

[178]  A. Cornish-Bowden, “Nomenclature for incompletely specified bases in nucleic acid 

sequences: recommendations,” Nucleic Acids Res, vol. 13, pp. 3021-3030, 1985.  

[179]  S. Tavaré, “Some Probabilistic and Statistical Problems in the Analysis of DNA 

Sequences,” Lectures on Mathematics in the Life Sciences, vol. 17, pp. 57-86, 1986.  

[180]  M. Hasegawa, H. Kishino and T. Yano, “Dating of human-ape splitting by a molecular 

clock of mitochondrial DNA,” Journal of Molecular Evolution, vol. 22, no. 2, pp. 160-



Bibliography 
 

153 
 

174, 1985.  

[181]  K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the 

control region of mitochondrial DNA in humans and chimpanzees,” Mol Biol Evol, vol. 

10, no. 3, pp. 512-526, 1993.  

[182]  T. Stadler, “Birth-Death with Serial Samples,” J Theor Biol, vol. 267, pp. 396-404, 

2010.  

[183]  A. Drummond, G. Nicholls, A. Rodrigo and W. Solomon, “Serially Sampled Data,” 

Genetics, vol. 161, pp. 1307-1320, 2002.  

[184]  M. Gill, P. Lemey, N. Faria, A. Rambaut, B. Shapiro and M. Suchard, “SkyGrid 

Coalescent,” Mol Biol Evol, vol. 30, pp. 713-724, 2013.  

[185]  R. Griffiths and S. Tavare, “Parametric Coalescent,” Phil Trans R Soc Lond B Biol Sci, 

vol. 344, pp. 403-410, 1994.  

[186]  J. Heled and R. Bouckaert, “Looking for trees in the forest: summary tree from 

posterior samples,” BMC Evolutionary Biology, vol. 13, no. 221, 2013.  

[187]  A. Altmann, P. Weber, D. Bader, M. Preuss, E. Binder and B. Mueller-Myhsok, “A 

beginners guide to SNP calling from high-throughput DNA-sequencing data,” Hum 

Genet, vol. 131, pp. 1541-1554, 2012.  

[188]  Z. Dembek, T. Chekol and A. and Wu, “Best practice assessment of disease modelling 

for infectious disease outbreaks,” Epidemiology and Infection, vol. 146, p. 1207–1215, 

2018.  

[189]  H. Hartman-Adams, K. Clark and G. Juckett, “Update on Latent Tuberculosis 

Infection,” American Family Physician, vol. 89, no. 11, pp. 889-896, 2014.  

[190]  R. Ragonnet, J. M. Trauer, E. S. McBryde, R. Houben, J. T. Denholm, A. Handel and 

T. Sumner, “Is IPT more effective in high-burden settings? Modelling the effect of 

tuberculosis incidence on IPT impact.,” International Journal of Tuberculosis and Lung 

Disease, vol. 21, no. 1, pp. 60-66, 2017.  

[191]  D. W. Dowdy, S. Basu and J. R. Andrews, “Is passive diagnosis enough? The impact 

of subclinical disease on diagnostic strategies for tuberculosis.,” American Journal of 

Respiratory and Critical Care Medicine, vol. 187, no. 5, pp. 543-551, 2013.  

[192]  D. W. Dowdy, J. R. Andrews, P. J. Dodd and R. H. Gilman, “A user-friendly, open-

source tool to project impact and cost of diagnostic tests for tuberculosis,” eLife, vol. 3, 



Bibliography 
 

154 
 

no. 3, 2014.  

[193]  D. Ahmad and W. Morgan, “How long are TB patients infectious,” Canadian Medical 

Association Journal, vol. 163, no. 2, pp. 157-158, 2000.  

[194]  P. H. Boersch-Supan, S. J. Ryan and L. R. Johnson, “deBInfer: Bayesian inference for 

dynamical models of biological systems in R,” Methods in Ecology and Evolution, vol. 

8, no. 4, pp. 511-518, 2017.  

[195]  M. Plummer, N. Best, K. Cowles and K. Vines, “CODA: Convergence Diagnosis and 

Output Analysis for MCMC,” R News, vol. 6, pp. 7-11, 2006.  

[196]  A. Gelma and D. Rubin, “Inference from Iterative Simulation using Multiple 

Sequences,” Statistical Science, vol. 7, pp. 457-511, 1992.  

[197]  K. Dietz, “The estimation of the basic reproduction number for infectious diseases,” 

Statistical Methods in Medical Research, vol. 2, no. 1, pp. 23-41, 1993.  

[198]  H. Yang, “The basic reproduction number obtained from Jacobian and next generation 

matrices - A case study of dengue transmission modelling,” Biosystems, 2014.  

[199]  M. D. McKay, R. J. Beckman and W. Conover, “A comparison of three methods for 

selecting values of input variables in the analysis of output from a computer code,” 

Technometrics, vol. 42, no. 1, pp. 55-61, 2000.  

[200]  S. Marino, I. Hogue, C. Ray and D. Kirschner, “A methodology for performing global 

uncertainty and sensitivity analysis in systems biology,” J Theor Biol, vol. 254, no. 1, 

pp. 178-96, 2008.  

[201]  A. Story, R. Aldridge, I. Abubakar, H. Stagg, M. Lipman, J. Watson and A. Hayward, 

“Active case finding for pulmonary tuberculosis using mobile digital chest radiography: 

an observational study,” International Journal of Tuberculosis and Lung Disease, vol. 

16, no. 11, pp. 1461-1467, 2012.  

[202]  J. Curtis, “Impact of x-ray screening programmes for active tuberculosis in homeless 

populations: a systematic review of original studies,” Journal of Public Health, vol. 38, 

no. 1, pp. 106-114, 2016.  

[203]  W. W. Yew, C. Lange and C. C. Leung, “Treatment of tuberculosis: update 2010,” 

European Respiratory Journal, vol. 37, no. 2, pp. 441-462, 2011.  

[204]  A. T. Fojo, N. Stennis, A. S. Azman, E. A. Kendall, S. Shrestha, S. D. Ahuja and D. W. 

Dowdy, “Current and future trends in tuberculosis incidence in New York City: a 



Bibliography 
 

155 
 

dynamic modelling analysis,” The Lancet. Public health, vol. 2, no. 7, 2017.  

[205]  J. Wu, R. Dhingra, M. Gambhir and J. Remais, “Sensitivity analysis of infectious 

disease models: methods, advances and their application,” Journal of the Royal 

Society Interface, vol. 10, no. 86, 2013.  

[206]  S. Mandal and N. Arinaminpathy, “Transmission modeling and health systems: the 

case of TB in India,” International Health, vol. 7, no. 2, pp. 114-20, 2015.  

[207]  Public Health England, “Latent TB Testing and Treatment for Migrants: A practical 

guide for commissioners and practitioners,” 2015. [Online]. Available: 

https://www.gov.uk/government/publications/latent-tb-infection-ltbi-testing-and-

treatment. 

[208]  D. Kuhnert, M. Coscolla, D. Stucki, J. Metcalfe, L. Fenner, S. Gagneux and T. Stadler, 

“Tuberculosis outbreak investigation using phylodynamic analysis,” Epidemics, vol. 25, 

pp. 47-53, 2018.  

[209]  J. Trauer, J. Denholm and E. McBryde, “Construction of a mathematical model for 

tuberculosis transmission in highly endemic regions of the Asia-pacific,” Journal of 

Theoretical Biology, vol. 358, pp. 74-84, 2014.  

[210]  S. Arregui, M. Iglesias, S. Samper, D. Marinova, C. Martin, J. Sanz and Y. Moreno, 

“Data-driven model for the assessment of the Mycobacterium tuberculosis 

transmission in evolving demographic structures,” Proc Natl Acad Sci, vol. 115, no. 14, 

2018.  

  
 

   

   

   

   

   

   

   



Bibliography 
 

156 
 

   

 
 

   

   

   

   

   

   

   

   

   

   

   

  

 

 

  



Appendices 
 

157 
 

9 APPENDICES 

 APPENDIX 1 – SYSTEMATIC REVIEW TABLES 

 SEARCH STRATEGIES FOR EACH DATABASE 

Order of 
search 

Search terms Number 
of results 

#1 Tuberculosis[MeSH exploded] or Mycobacterium 

Tuberculosis[MeSH exploded] or tuberculosis or TB 

230591 

#2 Disease Transmission, Infectious[MeSH exploded] or Disease 

Outbreaks[MeSH exploded] or Epidemics[MeSH exploded] or 

epidemiology or Epidemiology[MeSH exploded] or transmi* or 

outbreak* or pandemic* or spread* or epidemic* or endemic 

926226 

#3 ((whole genome OR full genome OR entire genome OR complete 

genome OR next generation) ADJ3 sequenc*) OR NGS OR WGS 

22826 

#4 #1 AND #2 AND #3 116 

Table 9.1 Search strategy for MEDLINE (14.07.15) 

 

Order of 
search 

Search terms Number 
of results 

#1 Tuberculosis[MeSH exploded] or TB or tuberculosis or 

Mycobacterium tuberculosis[MeSH exploded] 

317110 

#2 Bacterial transmission[MeSH exploded] or Disease 

transmission[MeSH exploded] or transmi* or spread* or pandemic* 

or outbreak* or endemic or epidemic* or Epidemic[MeSH exploded] 

or Epidemiology[MeSH exploded] or epidemiolog* 

3372564 

#3 ((whole genome OR full genome OR entire genome OR complete 

genome OR next generation) ADJ3 sequenc*) OR NGS OR WGS 

29589 

#4 #1 AND #2 AND #3 160 

Table 9.2 Search strategy for EMBASE+classic EMBASE (14.07.15)  

Order of 
search 

Search terms Number 
of results 
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#1 epidemiolog* or transmi* or spread* or epidemic* or endemic or 

pandemic* or outbreak* or epidemiology[MeSH terms] or disease 

transmission, infectious[MeSH terms] or disease outbreaks[MeSH 

terms] or epidemics[MeSH terms] or pandemics[MeSH terms] 

2511303 

 

#2 tuberculosis[MeSH Terms] or tuberculosis or TB or mycobacterium 

tuberculosis[MeSH terms] or mycobacterium tuberculosis 

231531 

 

#3 ((full genome or complete genome or entire genome or next 

generation or whole genome) and (sequencing or sequence or 

sequences)) or NGS or WGS 

101329 

 

#4 #1 AND #2 AND #3 197 

Table 9.3 Search strategy for PubMed (14.07.15)  

 

Order of 
search 

Search terms Number of 
results 

#1 Epidemiolog* or outbreak* or transmi* or pandemic* or 

epidemic* or endemic 

1489972 

#2 Tuberculosis or TB or “mycobacterium tuberculosis”  151403 

#3 ((“full genome” OR “whole genome” OR “complete genome” OR 

“entire genome” OR “next generation”) NEAR/3 sequenc*) OR 

NGS OR WGS 

30603 

 

#4 #1 AND #2 AND #3 184 

Table 9.4 Search strategy for Web of Science Core collection (14.07.15)  

 

Order of 
search 

Search terms Number of 
results 

#1 Disease Transmission[MeSH exploded] or Disease 

Outbreaks[MeSH] or Epidemiology[MeSH exploded] or transmi* 

or epidemiolog* or spread* or outbreak* or epidemic* or 

endemic 

632323 

 

#2 Tuberculosis[MeSH exploded] or Mycobacterium 

tuberculosis[MeSH] or TB or tuberculosis 

17827 
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#3 ((full genome or complete genome or whole genome or entire 

genome or next generation) N3 sequenc*) OR NGS OR WGS 

720 

 

#4 #1 AND #2 AND #3 12 

Table 9.5 Search strategy for CINAHL (14.07.15) 

 

Order of 
search 

Search terms Number of 
results 

#1 ((“full genome” or “whole genome” or “complete genome” or 

“entire genome” or “next generation”) W/3 sequenc*) or WGS or 

NGS 

893820 

#2 Tuberculosis or TB or “mycobacterium tuberculosis”  189310 

#3 Epidemiolog* or outbreak* or spread* or pandemic* or 

epidemic* or transmi* or endemic 

3244319 

#4 TITLE-ABSTR-KEY(#1 AND #2 AND #3) 16 

Table 9.6 Search strategy for ScienceDirect (14.07.15)  

 

Order of 
search 

Search terms Number of 
results 

#1 ((whole genome OR full genome OR entire genome OR 

complete genome OR next generation) AND sequenc*) OR 

WGS OR NGS 

311853 

#2 Tuberculosis or tb or “mycobacterium tuberculosis”  221222 

#3 Epidemiolog* or transmi* or spread* or epidemic* or pandemic* 

or outbreak* or endemic 

1770174 

#4 Abstract(#1 AND #2 AND #3) 9 

Table 9.7 Search strategy for WILEY (14.07.15)  
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 DATA ITEMS FOR EXTRACTION 

 

General Bioinformatics Phylogenetic tree Mixed infections Relapses Direction Limitations 

Aim % of the genome 
covered by reads 

Method (maximum 
likelihood, Bayesian 
etc.) 

How were mixed 
infections defined 

How were relapses 
defined? 

How was 
direction 
determined? 

Small sample 

Theme Reference genome Software What was the effect on 
transmission? 

  Culturing method 

Number of individuals in study Software How were SNPs used    Missing samples 
How were the samples identified Sequencing 

machine 
    Other 

Country Other information      
Incidence rate classification (High 
≥40 cases per 100,000, Low <40 
cases per 100,000) 

      

Type of study       
Sample type       
Was epidemiological/contact tracing 
data used 

      

Population type (convenience, 
representative, 
epidemiologically/genotypically 
clustered, other) 

      

Exclusion criteria       
When and how were samples 
collected 

      

Length of period of collection       
How long was follow-up (for 
recurrent disease) 

      

Table 9.8 Predetermined data for extraction 
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 QUALITY ASSESSMENT 

 

 Was the 
infectious-
disease case 
definition 
appropriate? 
Did they used 
appropriate 
diagnosis 
methods? 
 

Were measures 
taken to 
minimise and 
measure cross-
contamination?  
 

Was the 
timeframe of 
the study 
appropriate? 
(3 years 
minimum set 
as a 
threshold 
where 
transmission 
examined) 
 

Were the 
participants 
representative?  
 

If the study 
investigates 
molecular 
clusters, did 
they state 
the 
sampling 
fraction? 

Were 
methods 
used to 
detect 
multiple-
strain 
infections 
appropriate? 
Was their 
effect on the 
study 
findings 
included? 
 

Were efforts 
made to 
address 
discovery or 
ascertainment 
bias? 
 

Did the study 
consider 
alternative 
explanations for 
findings when 
transmission 
chains are 
being 
investigated, 
and report the 
consistency 
between 
molecular and 
epidemiological 
evidence? 
 

Was follow-
up time 
long 
enough for 
outcomes 
to occur? 
(≥1year) 
 

Was 
sample 
size 
justified, 
where a 
number 
was 
decided 
before the 
study was 
undertake
n? (for 
hypothesi
s driven 
studies) 
 

Bryant et al. 
(BMC 
Infectious 
Diseases, 
2013)   

Adequate Unknown Adequate Adequate Inadequate Unknown Adequate Adequate/Adequ
ate 

N/A N/A 

Bryant et al. 
(The Lancet 
Resp Med, 
2013) 

Adequate Adequate N/A Unknown N/A Adequate/Ade
quate 

Adequate N/A Adequate N/A 

Casali et al. Adequate Unknown Inadequate Adequate N/A Unknown Adequate N/A/Adequate N/A N/A 
Clark et al. Adequate Adequate Adequate Unknown Adequate Adequate/Inad

equate 
Adequate N/A/Adequate N/A N/A 

Didelot et 
al.  

Unknown Unknown Unknown Unknown Unknown Unknown Unknown Adequate/Adequ
ate 

N/A N/A 

Gardy et al.  Adequate Unknown Adequate Adequate Adequate Inadequate/In
adequate 

Adequate Adequate/Inadeq
uate 

N/A N/A 

Guerra-
Assuncao et 
al. (2015)  

Adequate Adequate Adequate Adequate Adequate Adequate/N/A Adequate Adequate/Adequ
ate 

Adequate N/A 

Guerra-
Assuncao et 
al. (2014)  

Adequate Adequate N/A Adequate N/A 
 

Adequate/Ade
quate 

Adequate N/A Adequate N/A 
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Ioerger et 
al. 

Adequate Unknown Unknown Unknown Inadequate Unknown Adequate N/A N/A N/A 

Kato-Maeda 
et al.  

Adequate Unknown Inadequate Adequate Adequate Adequate/Ade
quate 

Adequate Adequate/Adequ
ate 

N/A N/A 

Lanzas et 
al.  

Adequate Adequate Adequate Unknown N/A Unknown Adequate N/A N/A N/A 

Lee et al.  Adequate Adequate Adequate Adequate Adequate Unknown Adequate Inadequate/Adeq
uate 

N/A N/A 

Luo et al.  Adequate Unknown Inadequate Adequate Adequate Unknown Adequate Inadequate/Adeq
uate 

N/A N/A 

Martin 
Williams et 
al.  

Adequate Unknown Adequate N/A N/A Unknown Adequate Inadequate/Adeq
uate 

N/A N/A 

Mehaffy et 
al.  

Adequate Unknown Adequate Adequate Adequate Adequate/N/A Adequate Inadequate/Inad
equate 

N/A N/A 

Ocheretina 
et al.  

Inadequate Unknown Adequate Adequate Adequate Unknown Adequate Inadequate/Adeq
uate 

N/A N/A 

Perez-Lago 
et al. 

Adequate Unknown Adequate Adequate Adequate Unknown Adequate Inadequate/Adeq
uate 

N/A N/A 

Regmi et al.  Adequate Unknown Adequate Inadequate Adequate Unknown Adequate N/A N/A N/A 
Roetzer et 
al.  

Adequate Unknown Adequate Adequate Adequate Unknown Adequate Inadequate/Inad
equate 

N/A N/A 

Schürch et 
al.  

Adequate Unknown Adequate Adequate Adequate Unknown Inadequate Adequate/Inadeq
uate 

Adequate N/A 

Smit et al.  Adequate Unknown Inadequate Adequate Adequate Unknown Adequate Inadequate/Adeq
uate 

N/A N/A 

Stucki et al.  Adequate Unknown Adequate Adequate Adequate Adequate/Inad
equate 

Adequate Inadequate/Inad
equate 

N/A N/A 

Walker et 
al. (2014) 

Adequate Adequate Adequate Adequate Adequate Unknown Adequate Inadequate/Adeq
uate 

N/A N/A 

Walker et 
al. (2013)  

Adequate Unknown Adequate Adequate for 
clusters/Unknow
n for cross-
sectional/longitu
dinal patients 

Inadequate Unknown Adequate Inadequate/Adeq
uate 

N/A N/A 

Witney et al.  Adequate Unknown Adequate Adequate N/A Adequate/N/A Adequate N/A/Adequate N/A N/A 

Table 9.9 Quality assessment of included studies   

Unknown = not mentioned, Adequate = considered to not be at r isk of bias, Inadequate = considered to be at risk of bias, N/A = due to the nature of the study this is not able 

to be considered 
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 INCLUDED STUDIES AND EXTRACTED DATA 

 
 

  

Journal 
article 

Participants Country 
(TB 

burden*)  

Sample 
size 

Type of study Length of 
study 

Focus Sequencing 
machine 

Reference 
genome 

Patient 
characteristic

s 

Lineages Quality of SNP Read 
length 

Max no. of 
SNPs 

Bryant et 
al.  

RFLP clusters with 
epidemiological links 

Netherlands 
(Low) 

 

199 Retrospective - Confirmati
on 

Illumina 
Genome 

Analyzer IIx 

H37Rv Drug resistant Four Global 
lineages 
(Euro-
American, 
East-African 
Indian, East 
Asian, Indo-
Oceanic) 

Alleles need 
support of ≥75% 
of reads on each 
strand, base 
quality score ≥ 50 
and mapping 
quality score ≥30. 
Repetitive regions 
are avoided. 

76/108 
bp 

Pairwise 
SNP 
distances: 
range 0-
149, mean 
3.42. 
11,879 
variable 
positions 
found over 
all samples 

Bryant et 
al.  

RCT participants: 
previously untreated, 
drug-sensitive, 
smear-positive 
pulmonary TB 
without severe co-
morbidities 

Malaysia, 
South Africa 

and 
Thailand 
(High) 

 

47 pairs Retrospective 
observational 

Patients 
were 
observed 
for 18 
months, 
including 
treatment 
and 
follow-up 

Recurrenc
es and 

Diversity 

Illumina 
HiSeq 

H37Rv No severe co-
morbidities. 
Drug sensitive 

Four Global 
lineages 
(Euro-
American, 
East-African 
Indian, East 
Asian, Indo-
Oceanic) 

SNPs in the PE 
and PPE genes 
that differed 
between the 
relapse pairs were 
discounted. SNP 
quality as above. 

100 bp Pairwise 
SNP 
distances: 
range 0-
1419, 
mean 
113.278 
(relapse/re
-infection 
pairs). 
10,354 
variable 
positions. 

Casali et 
al. 

Representative 
sample of patients 
with pulmonary 
disease. Culture-
proven. 

Russia 
(High) 

 

1000 Prospective 2 years Resistance Illumina 
Genome 

Analyzer IIx 
or HiSeq 

2000 

H37Rv Drug 
resistance 
(MDR and 
XDR) 

Beijing, 
Central Asian 
Strain, Euro-
American and 
East-African 
Indian 

Alleles need 
support of >70% 
of reads, including 
≥ 5 in each 
direction and 
mapping quality ≥ 
45. Repetitive 
regions were 
avoided.  

54/75/ 
100 bp 

SNP 
distances 
between 
linked 
cases: 
range: 0-
183 SNPs. 

32,445 
variable 
positions  
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Clark et 
al.  

Convenience sample 
of treatment 
experienced TB 
patients (69% of 
MDR-TB cases in 
Uganda) 

Uganda 
(High) 

 

51 
samples 

(41 
patients) 

 4 years Resistance 
and 
Confirmati
on 

Illumina 
HiSeq 2000 

H37Rv HIV present. 
Age: 19-50, 
Males and 
females. MDR 

Central Asian 
Strain, 
Beijing, East-
African Indian 

Only variants of 
high quality 
(≥Q30) and 
supported by bi-
directional reads 
were retained. 
Variants in 
PPE/PE loci were 
excluded. 

76 bp Range 0-
1060 
(compared 
to 
reference). 
6857 
variable 
positions in 
total. SNP 
distances 
between 
linked 
cases: 0-
32  

Didelot et 
al.  

Outbreak cases, 
defined by the same 
MIRU-VNTR and 
contact tracing 

Canada 
(Low) 

 

33   Direction Illumina 
HiSeq 

CDC1551 - - Retained positions 
called with quality 
score of 222, 
genotype quality 
of 99, and no 
indication of 
strand basis or 
low depth of 
coverage. SNV 
excluded if 
located within 
50bp of another 
SNV. 

  

Gardy et 
al.  

Outbreak cases, 
defined by the same 
MIRU-VNTR and 
contact tracing 

Canada 
(Low) 

 

32 
sequence

d 

Retrospective 2 years Confirmati
on and 

Diversity 

Illumina 
Genome 

Analyzer II 

CDC1551 Age: 1-71, 
Males and 
Females 

- Excluded: i) SNPs 
with quality scores 
<30; ii) SNPs 
occurring in 
clusters (i.e. within 
10 bp of each 
other); iii) SNPs 
identical across all 
36 samples; and 
iv) 15 SNP 
positions at which 
one or more 
samples displayed 
an ambiguous 

50 bp 204 SNPs 
amongst 
all samples 
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residue call 

Guerra-
Assunçã
o et al.  

Culture confirmed 
cases in Karonga 
district 

Malawi 
(High) 

1687 
sequence
d with 
high 
quality 
data 

 15 years Diversity, 
Direction, 
Recurrenc
es and 
confirmatio
n 

Illumina 
HiSeq 2000 

H37Rv Age: <20-50+. 
HIV present. 
Males and 
females 

East Asian, 
Euro 
American, 
Indo-
Oceanic, 
East-African 
Indian 

Removed low-
quality sequences 
and low-quality 3′ 
ends of reads, 
retaining only 
reads ≥ 50 bp 
long, with 
nucleotides above 
quality score Q27. 
Excluded samples 
with coverage less 
than 10-fold or 
with >15% 
missing 
genotypes. 
Excluded genome 
positions with 
>15% missing 
genotypes and 
those in highly 
repetitive regions. 

100 bp Paired 
SNP 
distances: 
0-almost 
2000 

Guerra-
Assunçã
o et al.  

Laboratory confirmed 
TB cases who had 
completed treatment 

Malawi 
(High) 

 

60 pairs 
with 

WGS 

Population-
based 

14 years Recurrenc
es and 

Diversity 

Illumina 
HiSeq 2000 

H37Rv HIV present. 
Age: <30 – 
50+, Males 
and Females 

East Asian, 
Euro 
American, 
Indo-
Oceanic, 
East-African 
Indian 

Removed low-
quality sequences 
and low-quality 3′ 
ends of reads, 
retaining only 
reads ≥ 50 bp 
long, with 
nucleotides above 
quality score Q27. 
Excluded SNPs 
with >15% 
missing 
genotypes and 
those in highly 
repetitive regions. 

100 bp Paired 
SNP 
distances: 
0-1000+ 

Ioerger 
et al.  

Two RFLP drug 
resistant clusters 

South Africa 
(High) 

14   Resistance Illumina 
Genome 

H37Rv/HN87
8 

Drug 
resistance. 

Beijing  36 bp 1546 SNPs 
in sample  
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Analyzer II 

Kato-
Maeda et 

al.  

Individuals found 
through contact 
tracing to be involved 
in a transmission 
chain 

USA (Low) 

 

9 Population-
based 

22 months Direction Illumina 
Genome 
Analyzer 

H37Rv HIV absent. 
Hispanic 
males. Age: 
18 – 34. Drug 
susceptible. 

- SNPs in PE, PE-
PGRS, PPE 
genes and mobile 
elements were 
excluded. 25 
putative SNPs, 
(≥85% of reads 
supported one 
base call and ≥ 12 
reads depth), 
were analysed 
with PCR Sanger 
method. 7 
confirmed as true 
SNPs. 

 7 SNPs 
between all 

samples 

Lanzas 
et al.  

66 MDR and 31 drug 
sensitive patients 

Panama 
(High) 

 

97  10 years Resistance Illumina 
Genome 

Analyzer IIx 

H37Rv HIV present. 
Age: 14 – 81. 
Males and 
females. MDR 
and drug 
susceptible. 

Mainly Latin 
American-
Mediterranea
n 

Needed depth of 
coverage ≥25% 
of the mean, and 
the majority 
nucleotide 
represented in 
>70% of reads; 
gaps and regions 
with clusters of 
SNPs were 
excluded. 

36-54 
bp 

6,890 
variable 
positions 

Lee et al.  Outbreak cases Canada 
(Low) 

78 
sequence
d (out of 

82) 

 22 years Confirmati
on 

Illumina 
MiSeq 250 

H37Rv  Euro-
American 

Excluded SNPs 
with Phred score 
<50 

50+ bp  

Luo et al.  Two clusters based 
on MIRU-VNTR and 
SNP typing 

China 
(High) 

 

32 
sequence

d 

Population-
based 

1 year Confirmati
on and 

Direction 

Illumina 
HiSeq 

H37Rv Age: 17 – 79. 
Males and 
females. MDR 
and non-MDR. 

Beijing SNPs with 
coverage <3 and 
SNPs in the 
PE/PPE, PE-
PGRS and drug-
resistance 
associated genes 

300 bp SNP 
distances 
for linked 
cases: 0-

100+ 
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were filtered 

Martin 
Williams 

et al.  

Patients with identical 
MIRU-VNTR to first 
identified case 

UK (Low) 4 (plus 
outbreak 
strain and 
36 South 

Africa 
strains for 
comparis

on) 

  Confirmati
on 

Illumina 
MiSeq 

H37Rv      

Mehaffy 
et al.  

Cluster based on 
spoligotyping and 
MIRU-VNTR  

Canada 
(Low) 

56 
samples 

(53 
patients) 

 17 years Direction, 
Diversity 

and 
Confirmati

on 

Illumina H37Rv Age: 20 – 74. 

Males and 
females. HIV 
present. All 
drug 
susceptible. 

 SNPs required a 
minimum read 
depth of 20X and 
a variant 
frequency of at 
least 75. SNPs in 
the PE, PPE and 
PE_PGRS gene 
were excluded. 

 722 SNPs 
compared 
to H37Rv 

Ochereti
na et al.  

Samples sharing the 
same drug-resistance 
mutation 

Haiti (High) 7 
sequence

d 

 5 years Resistance Illumina 
HiSeq 2000 

H37Rv   Excluded SNPs in 
PPE, PE-PGRS 
and wag22 genes 
and where one or 
more samples 
displayed an 
ambiguous 
residue with over 
20% match with 
reference alleles 

50 bp 755 variant 
positions 
compared 
to H37Rv, 
22 SNPs 
and 1 
deletion 
between 6 
samples 

Pérez-
Lago et 

al.  

Epidemiologically 
supported MIRU-
VNTR and RFLP 
clusters with at least 
one clonal variant 

Spain (Low) 

 

36  7 years Diversity 
and 

Direction 

Illumina 
HiSeq 

MRCA of the 
MTBC 

- Euro-
American 

SNP calls of low 
quality: minimum 
coverage 10, 
minimum mapping 
quality of the SNP 
20 

51-101 
bp 

Within 
cluster 
SNP 
distances: 
0-18 

Regmi et 
al.  

Cluster define by 
MIRU-VNTR and 

Thailand 
(High) 

4 
samples 

sequence

 6 years Resistance Illumina 
HiSeq 2000 

H37Rv - Beijing Phred quality 
score of ≤20 and 
SNVs with 

100 bp 1242 
common 
SNPs 
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spoligotyping d (54 
total) 

coverage of fewer 
than 10 reads 
were discarded. 
Additionally, 
heterozygous 
SNVs with allele 
frequencies of 
<75 % that were 
commonly present 
in all four samples 
were discarded 

between 
outbreak 
samples 
and 
reference 

Roetzer 
et al.  

Large strain cluster 
(Haarlem lineage), 
identified by RFLP 
and MIRU-VNTR 

Germany 
(Low) 

 

86 Prospective 
population-

based 

14 years Confirmati
on and 

Direction 

Illumina H37Rv HIV present. 
Age: 2 – 83. 
Males and 
females. Drug 
susceptible. 

Haarlem SNPs needed a 
minimum 
coverage of 10 
reads and a 
minimum allele 
frequency of 80% 
as thresholds for 
detection. 

 85 SNPs in 
sample. 
SNP 
distances 
between 
linked 
cases: 0-3 

Schürch 
et al.  

Harlingen cluster 
(RFLP with contact 
tracing) 

Netherlands 
(Low) 

 

3 
sequence

d (104 
checked 

for 8 
SNPs) 

 16 years Direction 
and 

Recurrenc
es 

GS FLX 
Titanium 

 - - 8 polymorphic 
SNPs were 
verified by 
subsequent 
resequencing on 
an ABI 3730xl 
sequencer 

400 bp 8 SNPs 
between 3 
samples 

Smit et 
al.  

Clustered with 
spoligotype and 
MIRU-VNTR 

Finland 
(Low) 

12 
outbreak 

+ 7 
historical 
sequence
d (14 in 
total) 

 1 year Direction - - Age: 16-23 
years 

- Single-nucleotide 
polymorphisms 
(SNPs) were 
considered valid if 
supported by at 
least two and 70% 
of mapped reads 
on each strand 
with a minimum 
mapping quality of 
45 

  

Stucki et Cluster samples 
identified with SNP 

Switzerland 69 
samples 

 20 years Direction Illumina Inferred 
common 

Age: 34-53 - SNPs with a 
coverage of ≥10 

- 133 
variable 
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al.  typing (Low) sequence
d 

ancestor of all 
MTBC 

lineages 

years. 

HIV present. 

Males and 
females. 

reads and Phred-
score≥20. SNPs 
in 
“PE/PPE/PGRS,” 
“maturase,” 
“phage,” “insertion 
sequence,” or 
“13E12 repeat 
family protein” 
genes or with 
missing nucleotide 
calls in at least 3 
samples were 
excluded. The 
short-read 
alignment tool 
SMALT was also 
used to call SNPs. 
Only positions 
called by both 
after filtering were 
included. 

positions 
amongst 
the 69 
samples  

Walker et 
al.   

Random cross-
sectional and 
longitudinal samples 
from single patients. 
Samples from 
community MIRU-
VNTR and household 
clusters 

UK (Low) 390 
samples 

(254 
patients) 

Retrospective 
observational 

Archived 
between 
1994 and 

2011 

Confirmati
on and 

Diversity 

Illumina 
HiSeq 

H37Rv - Beijing, 
European 
American, 
Central 
Asian, East-
African Indian 

>75% of reads 
needed to support 
variant calls, 
which had to be 
homozygous in a 
diploid model. 
Only variants 
supported by ≥5 
reads, including 
one in each 
direction that did 
not occur at sites 
with unusual 
depth and were 
not within 12 bp of 
another nucleotide 
variant, were 
accepted. 

75 bp Pairwise 
SNP 
distances: 
0-5 for 
linked 
cases, 0-
150 for 
unlinked 
cases 

1,096 
SNPs was 
the largest 
pairwise 
distance 
between 
longitudinal 
samples 

Walker et Unselected, UK (Low) 247 Observational 6 years Confirmati Illumina H37Rv Age: 1-89  - Variant calls in  SNP 
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al.  geographically 
restricted population 

on HiSeq non-repetitive 
regions were 
made providing 
they were 
supported by ≥5 
reads, including 
one in each 
direction.  Sites 
where minority 
variants 
represented >10% 
of read depth 
were defined as 
mixed and no 
base called. 

distances 
between 
linked 
cases: 0-7 
(median 1). 
Median 
pairwise 
SNP 
distances 
1106 (857-
1715) 
without 
secondary 
cases from 
each 
genomic 
cluster 

Witney et 
al.  

Six hospital patients 
with suspected XDR-
TB 

UK (Low) 16 
samples 

(6 
patients) 

 7 years Confirmati
on 

Ion Torrent 
personal 
genome 
machine 

H37Rv - Beijing Mapping quality of 
>30, site quality 
score of >30, 
≥4 reads covering 
each site with ≥2 
reads mapping to 
each strand but 
with a maximum 
depth of coverage 
of 200x, ≥75% of 
reads supporting 
the site, and an 
allelic frequency 
of 1. 

 33-297 
pairwise 
SNP 
distances 

Table 9.10 Data extraction for the included studies 

bp = base pairs, MRCA = Most recent common ancestor, MTBC = M. tb complex. *TB burdens of countries were taken from World Health 

Organization [24] with high burden defined as >40 cases/100,000 
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 FACTORS AFFECTING THE NUMBER OF POLYMORPHISMS DETECTED IN SEQUENCES  

Study factors Effect on number of SNPs detected 

Study duration Assuming that mutations occur and become fixed as time evolves, the longer the duration of study the more 

polymorphisms that will have occurred and been fixed in the population (so this affects the number of SNPs found in 

the study overall not between related cases) 

Strain diversity  If there are highly diverse strains in the population then large SNP distances will be found between pairs of sequences 

Sequencing machine Sequencing machines (e.g. Illumina) require the sample to be cultured before it is sequenced. This can reduce the 

number of polymorphisms detected by causing a bottleneck 

Length of reads The longer the read, the more SNPs found [211] 

Coverage The deeper the coverage, the more polymorphisms likely to be found 

Definition of quality read/SNP The definition of a quality read will affect the number of SNPs ‘confirmed’ as the definition relies on support from a 

certain number of reads. Thus, more stringent rules on quality reads will mean fewer reads to support variants. 

Stringent definitions of SNPs requiring high confidence in variants will result in fewer SNPs found.  

Bioinformatics software Factors such as the internal filtering criteria may affect the number of polymorphisms found [212] 

Number of amplification steps The more amplification steps, the more errors are likely to be introduced [55] resulting in polymorphisms  
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Table 9.11 The effect of study specific factors on the number of polymorphisms detected in sequences 
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  APPENDIX 2 - TRANSPHYLO WITH EPIDEMIOLOGICAL 

DATA 

When including epidemiological data on the individuals, such as locations and 

infectiousness, Equation 4.1 becomes: 

𝑃(𝑇, 𝜀, 𝑁𝑒𝑔|𝐺, 𝐴) ∝ 𝑃(𝐺, 𝐴|𝑇, 𝜀, 𝑁𝑒𝑔)𝑃(𝜀, 𝑁𝑒𝑔, 𝑇) 

Assuming that 𝐺 and 𝐴 are independent given 𝑇, this can be re-written as 

𝑃(𝑇, 𝜀, 𝑁𝑒𝑔|𝐺, 𝐴) ∝ 𝑃(𝐺|𝑇, 𝑁𝑒𝑔)𝑃(𝐴|𝑇, 𝜀)𝑃(𝑇|𝜀)𝜋(𝜀, 𝑁𝑒𝑔) 

The second term represents the probability of the epidemiological data given that the 

transmission events are fixed in the tree, for example, the probability that 𝑖 and 𝑗 are in 

locations A and B respectively given they infected each other. Our description of 

𝑃(𝐴|𝑇, 𝜀)assumes an open population and merely that we are dealing with the observed 

samples. 

This could be implemented into the MCMC inference in the same way Didelot et al. [99] did 

using a penalty system for when transmission events in the proposed transmission tree do 

not correspond well with the known epidemiological information. 
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 APPENDIX 3 – BIOINFORMATIC AND PHYLOGENETIC 

ANALYSIS 

 IQ-TREE COMMANDS 

In order to determine the best substitution model and produce a ML tree, IQ-TREE was run 

via the web server provided by the Center for Integrative Bioinformatics Vienna, Austria at 

http://iqtree.cibiv.univie.ac.at/. The command that was run using the FASTA file containing 

the SNPs across all the genomes (londonOutbreakSNPs.fa) was the following: 

path/to/iqtree -s londonOutbreakSNPs.fa -st DNA -m TEST+ASC -bb 1000 -alrt 1000 

 IQ-TREE RESULTS 

Rate parameter R:  

Substitution Rate 

A-C 1.3066 

A-G 2.9982 

A-T 0.1512 

C-G 1.3563 

C-T 2.9982 

G-T 1.0000 

Table 9.12 Substitution rates determined by IQ-TREE for the genomic data 

State frequencies: (equal frequencies) 

Rate matrix Q: 

  A   -0.9084    0.2664    0.6112   0.03082 

  C    0.2664    -1.154    0.2765    0.6112 

  G    0.6112    0.2765     -1.092    0.2039 

  T   0.03082    0.6112    0.2039   -0.8459 

Model of rate heterogeneity: Uniform 

http://iqtree.cibiv.univie.ac.at/
http://iqtree.cibiv.univie.ac.at/
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 BEAST RESULTS 

Operator (parameter) Chain 1 Chain 2 Chain 3 

Scale (kappa) 0.2376 0.2364 0.2367 

Frequencies 0.2322 0.2319 0.2317 

pInv 0.2332 0.2335 0.2335 

Scale (uced.mean) 0.235 0.2354 0.2348 

Up:nodeHeights(treeModel) down:uced.mean 0.2316 0.2318 0.2314 

swapOperator(branchRates.categories) 0.7439 0.7442 0.744 

uniformInteger(branchRates.categories) 0.824 0.8236 0.8235 

subtreeSlide(treeModel) 0.2334 0.2332 0.2329 

Narrow Exchange(treeModel) 0.4486 0.4487 0.4489 

Wide Exchange (treeModel) 0.0441 0.0435 0.0451 

WilsonBalding(treeModel) 0.1237 0.1231 0.125 

Scale(treeModel.rootHeight) 0.2403 0.2402 0.2402 

Uniform(nodeHeights(treeModel)) 0.7419 0.7418 0.7421 

Scale(constant.popSize) 0.2343 0.2344 0.2344 

Table 9.13 Acceptance rates for the parameters of the MCMC model for each chain using the optimal model settings  
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Figure 9.1 Trace plot for the parameter age(root) for all three chains  
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Figure 9.2 Trace plot for the parameter coalescent for all three chains  
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Figure 9.3 Trace plot for the parameter covariance for all three chains  
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Figure 9.4 Trace plot for the parameter coefficientOfVariation for all three chains  
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Figure 9.5 Trace plot for the parameter frequencies1 for all three chains  
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Figure 9.6 Trace plot for the parameter frequencies2 for all three chains  
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Figure 9.7 Trace plot for the parameter frequencies3 for all three chains  



Appendices 
 

183 
 

  

Figure 9.8 Trace plot for the parameter frequencies4 for all three chains  
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Figure 9.9 Trace plot for the parameter joint for all three chains  
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Figure 9.10 Trace plot for the parameter kappa for all three chains 
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Figure 9.11 Trace plot for the parameter meanRate for all three chains  
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Figure 9.12 Trace plot for the parameter pInv for all three chains 
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Figure 9.13 Trace plot for the parameter constant.popSize for all three chains  
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Figure 9.14 Trace plot for the parameter prior for all three chains  
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Figure 9.15 Trace plot for the parameter treeModel.rootHeight for all three chains  
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Figure 9.16 Trace plot for the parameter treeLength for all three chains  
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Figure 9.17 Trace plot for the parameter uced.mean for all three chains  
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Operator (parameter) Chain 1 Chain 2 Chain 3 Operator (parameter) Chain 1 Chain 2 Chain 3 

joint 198 97 288 frequencies3 901 901 789 

prior 36 13 268 frequencies4 901 828 774 

llikelihood 11 7 374 pInv 301 46 801 

treeModel.rootHeight 537 901 901 uced.mean 98 23 333 

age(root) 537 901 901 meanRate 52 22 343 

treelength 45 21 348 coefficientOfVariation 624 725 827 

constant.popSize 44 14 320 covariance 845 901 790 

kappa 901 901 640 treeLikelihood 11 7 374 

frequencies1 901 901 901 branchRates - - - 

frequencies2 901 901 901 coalescent 36 13 267 

Table 9.14 Effective Sample Size (ESS) values for the parameters of the MCMC model for each chain using the optimal model setting
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