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Introduction 
The application of automated algorithms to imaging requires knowledge of its content, a curatorial task, for 
which we ordinarily rely on the Digital Imaging and Communications in Medicine (DICOM) header as the only 
source of image meta-data. However, identifying brain MRI scans that have full or near-full coverage among a 
large number (e.g. >5000) of scans comprising both head/brain and other body parts is a time-consuming task 
that cannot be automated with the use of the information stored in the DICOM header attributes alone. 
Depending on the clinical scenario, an entire set of scans acquired in a single visit may often be labelled 
“BRAIN” in the DICOM field 0018,0015 (Body Part Examined), while the individual scans will often not only 
include brain scans with full coverage, but also others with partial brain coverage, scans of the spinal cord, and 
in some cases other body parts. DICOM field 0018,1250 (Receive Coil Name) can be used to determine the type 
of receiver coil used, however, the use of a head coil does not guarantee a full-brain MRI scan. At other times 
another type of receiver coil such as a ‘dual coil’ may have been used, or the 0018,1250 (Receive Coil Name) 
attribute may be blank. Similarly, determining the field-of-view from the DICOM attributes is not sufficiently 
informative to detect full or near-full coverage brain scans, even if a brain scan is guaranteed. Furthermore, 
some datasets may have been converted to other formats such as the Neuroimaging Informatics Technology 
Initiative (NIFTI) format, with no access to the source DICOM files, and the associated tags. In other cases, 
DICOM files may be available but with no useful information in their headers, for example, if the DICOM files 
have been produced by the conversion of old plain-films, or as in legacy datasets. The imaging catalogue of the 
average hospital is too large to be manually checked, let alone labelled: a comprehensive framework for 
rendering imaging robustly auditable requires a fully automated process. 

In this article, we introduce Neurosense, a trained, convolutional, deep neural network that efficiently 
performs this task. The network was trained and validated on 31556 image volumes (primarily T1-weighted 
MRI) collated from: The Cancer Imaging Archive (TCIA)1, a public imaging database of low grade gliomas2, 

                                                           
1 Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., et al (2013). The Cancer Imaging Archive 
(TCIA): Maintaining and Operating a Public Information Repository. Journal of Digital Imaging, 26(6), 1045-
1057. 
2 Erickson, B., Akkus, Z., Sedlar, J., Korfiatis, P. (2017). Data From LGG-1p19qDeletion. The Cancer Imaging 
Archive. https://doi.org/10.7937/K9/TCIA.2017.dwehtz9v 
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breast cancer3, prostate cancer4, renal clear cell carcinomas5, and melanomas6; the IXI Brain MRI dataset7, a 
public imaging database of healthy controls; the Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for 
Normal Aging and Alzheimer’s Disease dataset8 (OASIS-3); NCIGT-Harvard-Brigham Neurosurgical 
Intraoperative Image Database (NeuroMRT); and a heterogeneous set of MRI volumes from University College 
London Hospitals (UCLH), obtained at different field strengths, using different scanners, and a variety of 
protocols. These volumes have been manually verified as being full or near-full coverage brain scans (46%) or 
brain scans with partial coverage or scans of other body parts (54%).  
 
Methods 
Neurosense comprises a convolutional neural network of the following architecture: 4x(3D Convolution -> 
Batch Normalisation -> Activation -> Max Pooling) -> Flatten -> Dropout -> 2x(Dense -> Activation) (Figure 1). 
The layers within brackets are repeated 4, and 2 times, respectively, as indicated. The first two 3D 
convolutions have 8 filters of size 33 voxels, while the last two 3D convolutions have 16 filters of the same size. 
All activations of the convolutional layers are rectified linear units (relu), and all max-pooling layers are of size 
23. The dropout layer has a drop-out probability of 0.5. Finally, the dense layers have a simple structure where 
the number of neurons are 32, and 2. The first dense layer is followed by relu activation, while the output layer 
has a normalized exponential function (softMax) activation. 
 
Figure 1 – Network architecture. BN=batch normalization, relu=rectified linear unit, MaxP=max pooling, 
D=dropout, softMax= normalized exponential function. 

 
 
MRI volumes are put into a standard orientation (e.g. x-axis: right to left, y-axis: posterior to anterior, z-axis: 
inferior to superior) using FSL’s fslreorient2std9, scaled down to a size of 643 voxels, and normalized to the 
range -127 to +127 before being input into the network. The latter normalization technique is adopted instead 
of the more conventional method of normalization to a zero mean and unit standard deviation, so that data 
can be held in memory using 8-bit integer, instead of 32-bit floating-point matrices. At 8-bit resolution, 31556 
volumes of 643 voxels occupy 7.7 GB of computer memory, compared with 30.8 GB at 32-bit resolution. This is 
a 75% reduction in the amount of computer memory used for each image volume, and is useful for avoiding 
streaming from disk, and speeding up network training. However, GPU processing was at 32-bit floating point 
resolution. 

                                                           
3 David, N., Nola, H. (2016). Single site breast DCE-MRI data and segmentations from patients undergoing 
neoadjuvant chemotherapy. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2016.QHsyhJKy 
4 Choyke, P., Turkbey, B., Pinto, P., Merino, M., Wood, B. (2016). Data From PROSTATE-MRI. The Cancer 
Imaging Archive. https://doi.org/10.7937/K9/TCIA.2016.6046GUDv 
5 Akin, O., Elnajjar, P., Heller, M., Jarosz, R., Erickson, B. J., Kirk, S., et al. (2016). Radiology Data from The 
Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma [TCGA-KIRC] collection. The Cancer Imaging Archive. 
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6 Anti-PD-1 Melanoma Dataset. The Cancer Imaging Archive. 
7 IXI dataset, Imperial College London. https://brain-development.org/ixi-dataset/ 
8 The Open Access Series of Imaging Studies (OASIS). http://www.oasis-brains.org/ 
9 Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M. (2012). FSL. NeuroImage, 62, 782-
90, 2012. 
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The data used for training and validation was augmented by randomly cropping volumes down to half size, 
either from the top, the bottom, or the middle of the volume, along either one of the three primary axes 
randomly, and by randomly cropping down to individual slices in the primary acquisition direction. Cropped 
volumes were subsequently scaled back up to 643 voxels without the use of padding. 

We used a Stochastic Gradient Descent optimiser with a time-based learning schedule, and a Nesterov 
momentum of 0.9. The learning rate decayed from an initial value of 0.001. After 8 epochs, a step reduction in 
learning rate of 1/10 was introduced. Cross entropy was adopted as the cost function, and the batch size was 
8.  

The network was trained on a randomly selected 70% subset of the dataset (22089 scans) and validated on the 
remaining 30% (9467 scans). The process was bootstrapped five times, with different values for the random 
number generator.  

Testing was performed, on three separate test sets, collated from the same sources, having no overlap 
amongst, or with respect to the main training and validation dataset. These three test sets, test sets A, B, and 
C, comprised 3592, 1000, and 494 scans, respectively. In test set A, the proportion of full and near-full 
coverage brain MRI scans was 53%, while that of brain scans with partial coverage and scans of other body 
parts was 47%. Test set B comprised 50% full and near-full coverage brain MRI scans, and 50% brain scans with 
partial coverage and scans of other body parts. Test set C comprised 64% full and near-full coverage brain MRI 
scans, and 36% brain scans with partial coverage and scans of other body parts. Additionally, test set C 
comprised not only T1-weighted MR images, but also images of other MRI contrasts (11.1% FLAIR, 27.7% T2), 
as well as images that were not MRI (5.3% CT). 
 
Results 
Network training took approximately 7.8 hours per bootstrap on an NVIDIA GeForce GTX 960 GPU with 4GB of 
memory (NVIDIA, Santa Clara, CA, USA). After 9 epochs, the network achieved an accuracy of 99.991% (95% 
confidence interval: 99.986-99.995%) on the training dataset, with a mean residual cross-entropy loss of 10-4. 
On the validation dataset, the accuracy was 99.973% (95% confidence interval: 99.951-99.994%), with a 
similarly small mean cross-entropy loss of 10-3. 

Accuracy on test set A was 99.733% (95% confidence interval: 99.694-99.772). There were an average of ten 
(out of 3592) misclassifications per model (resulting from each of the five bootstrap runs), all of which were 
related to limited coverage brain scans, which were labelled as not having sufficient brain coverage but were 
classified as having enough coverage by the network, and vice versa. Examples of MRI volumes classified as full 
or near-full coverage brain scans and limited coverage brain scans or scans of other body parts are shown in 
Figure 2.  
 
Figure 2 – Examples of MRI volumes classified as brain scans with full or near-full coverage (accepted), and 
those not so classified (rejected). Volumes are shown in their original orientation. 

 
Accepted (good coverage, TCIA) 

 
Rejected (non-brain, TCIA) 
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Rejected (limited coverage, NeuroMRT) 

 
Rejected (non-brain, TCIA) 

 
Accepted (good coverage, OASIS-3) 

 
Rejected (non-brain, TCIA) 

 
Accuracy, sensitivity, and specificity on test set B, using the model from the first bootstrap run, were 99.5%, 
99.8%, and 99.4%, respectively. The corresponding precision, and recall values were 99.4%, and 99.8%. The 
optimal threshold value was 0.01. 

Accuracy, sensitivity, and specificity on test set C, also using the model from the first bootstrap run, were 
95.3%, 95.5%, and 96.1%, respectively. The corresponding precision, and recall values were 97.7%, and 95.5%. 
The optimal threshold value was 0.01, as for test set B. We note that this dataset comprised not only T1-
weighted MR image volumes (as the network was primarily trained on), but also scans of other MRI contrasts 
(e.g. T2 and FLAIR), as well as image volumes that were not MRI (e.g. CT).  

The average speed of testing was 963 seconds per 1000 volumes in a virtual machine which had access to 4 
Intel Core i7-4870HQ CPU cores running at 2.50GHz and 4096 MB of RAM. Only 88 seconds were spent on the 
actual network inference with the remaining 875 seconds spent on data loading and preparation (e.g. 
reorientation to a standard orientation). 
 
Summary 
We present Neurosense, a trained convolutional neural network that efficiently identifies full and near-full 
coverage brain MRI scans in large MRI datasets. The network displays value in classifying MRI volumes 
acquired using a diverse range of acquisition parameters. We believe Neurosense could be an important tool 
for the curation of large-scale neuroimaging data. It is made available for use as a virtual machine from 
CMIClab. 
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Neurosense is available for use as a virtual machine from CMIClab. The datasets used during development are 
publicly available except for the UCLH dataset which is not a public database. 
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