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Abstract. We consider the two dimensional free boundary Stefan problem de-
scribing the evolution of a spherically symmetric ice ball {r ≤ λ(t)}. We revisit
the pioneering analysis of [31] and prove the existence in the radial class of finite
time melting regimes

λ(t) =


(T − t)1/2e−

√
2

2

√
|log(T−t)|+O(1)

(c+ o(1)) (T−t)
k+1
2

|log(T−t)|
k+1
2k

, k ∈ N∗
as t→ T

which respectively correspond to the fundamental stable melting rate, and a
sequence of codimension k ∈ N∗ excited regimes. Our analysis fully revisits a
related construction for the harmonic heat flow in [60] by introducing a new and
canonical functional framework for the study of type II (i.e. non self similar) blow
up. We also show a deep duality between the construction of the melting regimes
and the derivation of a discrete sequence of global-in-time freezing regimes

λ∞ − λ(t) ∼

{
1

log t
1

tk(log t)2
, k ∈ N∗ as t→ +∞

which correspond respectively to the fundamental stable freezing rate, and ex-
cited regimes which are codimension k stable.

1. Introduction

1.1. Setting of the problem. We consider the classical two dimensional one-phase
Stefan problem on an external domain. The unknowns are the moving domain
Ω(t) ⊂ R2 and the temperature function u : Ω(t)→ R which evolve according to: ∂tu−∆u = 0 in Ω(t)

∂nu = V∂Ω(t) on ∂Ω(t)
u = 0 on ∂Ω(t)

(1.1)

where V∂Ω(t) stands for the normal velocity of the moving boundary ∂Ω(t)1. The
temperature u may either be assumed to be positive initially in Ω(0), in which case
the maximum principle and the Dirichlet boundary condition ensure that it will re-
main positive in Ω(t), or on the contrary the data may be undercooled with initially
non positive temperature in some regions in space. The cavity represents a circular
block of ice kept at constant temperature u = 0. If the cavity vanishes at a later
time we refer to this process as melting and if it expands, we refer to it as freezing.

In many applications it is important to include the effects of surface tension into
the description of melting. This is done by replacing the Dirichlet condition in (1.1)

1For any given parametrisation γ(t, ·) : S1 → R2 of ∂Ω(t), the normal velocity is given by the
formula V∂Ω(t) = −∂tγ · n, where n stands for the outward pointing unit normal with respect to
Ω(t).
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by the so-called Gibbs-Thomson correction

u = σκ∂Ω(t) on ∂Ω(t), (1.2)

where σ ≥ 0 is known as the coefficient of surface tension and κ∂Ω(t) is the mean
curvature of the moving boundary ∂Ω(t). For the physical justification of the con-
dition (1.2) we refer the reader to the monograph [64]. When σ > 0 the model
can account for phenomena such as superheating (undercooling), phase nucleation,
crystal growth etc. It is therefore a small scale description of a phase transition
and it adds a σ-dependent energy contribution from the phase interface, while the
classical Stefan problem (corresponding to σ = 0) neglects the energy due to surface
tension and represents a macroscopic description of melting [26].

In this paper we shall only be interested in the description of melting and freezing
within the framework of the one-phase classical Stefan problem σ = 0. While it is
fundamental from the physics point of view to understand the singularity formation
in both cases, the energy concentration phenomenon displays essential differences
related to the type II (for σ = 0) vs type I (for σ 6= 0) singularity formation process
as explained below.

1.2. Cauchy theory for the classical Stefan problem. There exists a large
literature pertaining to the questions of existence, uniqueness, regularity, and well-
posedness for the classical Stefan problem. Weak solutions were first defined and
shown to exist in [33] and their properties were further studied in many works,
see [17, 3, 4, 18, 19, 64] and references therein. The classical Stefan problem lends
itself to a different notion of a weak solution, the so-called viscosity solutions. For an
overview of the seminal works on the regularity theory for such solutions we point
the reader to [5] and references therein, and for further results on existence, unique-
ness, and regularity of viscosity solutions to [34, 35, 7, 6]. In the class of classical
solutions, first existence results are traced back to [28, 45]. For well-posedness re-
sults in energy-based Sobolev-type spaces see [26, 27] and in Lp-type spaces [20, 55].

In this article, we work in a radially symmetric situation and therefore the Cauchy
theory is simpler. The domain Ω(t) is given by

Ω(t) = {x ∈ R2; |x| ≥ λ(t)},

and the Cauchy problem (1.1) becomes:
ut − urr − 1

rur = 0 in Ω(t)

ur(t, λ(t)) = −λ̇(t)
u(t, λ(t)) = 0
u(0, ·) = u0, λ(0) = λ0.

(1.3)

It is well posed in H2: for all (u0, λ0) ∈ H2×R∗+ with u0 radially symmetric, there
exists a unique solution (u(t), λ(t)) ∈ C([0, T ), H2(Ω))×C1([0, T ),R∗+) to (1.3), and

T < +∞ implies
(

lim
t→T
‖u(t)‖H2(Ω(t)) = +∞ or lim

t→T
λ(t) = 0

)
.

We recall the classical proof2 in Appendix D. A simple integration by parts using
the boundary conditions (1.3), see (D.4), ensures the uniform control of the Dirichlet

2see for instance [30, 16] and references therein for a Cauchy theory in the class of Hölder spaces.



3

energy: ∫
|x|≥λ(t)

|∇u(t, x)|2dx ≤
∫
|x|≥λ(0)

|∇u0(x)|2dx (1.4)

in the melting regime λ̇ < 0.

1.3. Previous results on melting. The first description of melting regimes is
given in the pioneering work by Herrero-Velázquez [31] which predicts the existence
of a discrete sequence of melting rates3:

λ(t) ∼


(T − t)1/2e−

√
2

2

√
|log(T−t)|

(T−t)
k+1

2

|log(T−t)|
k+1
2k

, k ∈ N∗.

Their analysis adapts the methodology developed in [29, 32] for the construction of
non self similar type II blow up bubbles. Following in particular the chemotactic
approach [32], the authors first consider a change variable related to some partial
mass, and analyse the problem as a connection problem between a soliton like be-
haviour near the origin, and a far out tail connection. As mentioned by the authors
themselves [30, 65], this approach, which relies on a delicate matching procedure
cannot as such address the question of stability of the corresponding regimes, and
is restricted to radial data.

There has been for the past twenty years an immense activity in the field of
construction of type II blow up bubbles, in both parabolic and dispersive problems,
see for example [54, 46, 37, 59, 48, 60, 61, 62, 41]. The general approach is to split
the energy concentration problem into a finite dimensional part which contains the
leading order dynamics4, and an infinite dimensional part which is controlled using
purely energy methods. In other words, the matching procedure is replaced by the
derivation of the leading order finite dimensional system driving the concentration
mechanism, and the full flow is closed using adapted robust energy estimates. This
scheme allows both for the description of local manifolds of constructed solutions
[8, 42], in particular the stability of the fundamental mode, which is an essential
step for the complete description of the flow near the solitary wave [41, 53], and it
is not in principle restricted to radial data [41, 46, 9] or scalar problems [48].

1.4. Main results. The main result of this paper is the existence and stability of
a discrete sequence of melting rates with k nonlinear instability directions, k ∈ N,
which revisits and completes the pioneering construction of [31].

Theorem 1.1. [Melting dynamics] There exists a set of data (u0, λ0) in H2 ×
R∗+, with u0 arbitrarily small in Ḣ1, such that the corresponding solution (u, λ) ∈
C([0, T ), H2) × C1([0, T ),R+) to the exterior Stefan problem (1.3) melts in finite
time 0 ≤ T = T (u0, λ0) <∞ with the following asymptotics:
1. Stable regime: the fundamental rate is given by

λ(t) = (T − t)1/2e−
√

2
2

√
|log(T−t)|+Ot→T (1) (1.5)

3A different version of (1.5) is computed in [31], but a correction is suggested in [30]. We note
that the rate in [31] arose due to a minor algebraic mistake, and the same proof would yield the
correct rate stated in [30]. We also mention that the correct asymptotic formula is given in [2]. A
similar issue occurs in [32], see the correct law in [62].

4see (1.23) in the strategy of the proof below.
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and is stable by small radial perturbations in H2; this regime corresponds to positive
data u0 > 0.
2. Excited regimes: the excited melting rates are given by

λ(t) = (c∗(u0, λ0) + ot→T (1))
(T − t)

k+1
2

|log(T − t)|
k+1
2k

, k ∈ N∗, (1.6)

for some c∗(u0, λ0) > 0; it corresponds to undercooled initial data lying on a locally
Lipchitz H2 manifold of codimension k.
3. Non concentration of energy: In all cases, there exists u∗ ∈ Ḣ1 such that

lim
t→T
‖∇uχ{|x|≥λ(t)} −∇u∗‖L2(R2) = 0. (1.7)

Comments on the result.

1. Role of the dimension. This paper deals with the case d = 2, which is the energy
critical case, but the higher dimensions d ≥ 3 could be treated by an entirely anal-
ogous approach. In fact, the case d = 2 is the most complicated case, displaying
small logarithmic gains only and strong coupling between the various components
of the solution5.

2. Stefan problem with Gibbs-Thomson correction. As already mentioned in Sec-
tion 1.1, the Stefan problem with Gibbs-Thomson correction (1.2) ( as a replacement
of the classical Dirichlet boundary condition u|∂Ω(t) = 0) is an important phase tran-
sition model taking surface tension effects into account (which are non-negligible at
a certain microscopic spatial scale). Existence (without uniqueness) of global-in-
time weak solutions was shown in deep works [40, 1] relying on the gradient-flow
structure of the problem. In the realm of classical solutions, local well-posedness
results as well as global-in-time stability results can be found in [58, 13, 24, 25, 56].
In the context of melting for the one-phase Stefan problem with surface tension,
to the best of our knowledge the only available result is an important theorem of
Herraiz, Herrero, & Velazquez [30]. The authors show that radius λGT of radially-
symmetric melting solutions in the presence of surface tension in dimensions d = 2
and d = 3 obeys the asymptotic law

λGT(t) ∼t→T (3σ(T − t))
1
3 . (1.8)

The rate (1.8) thus exhibits a very different qualitative behaviour from the Type II
rates observed in [31] (in dimensions d ≥ 2) and in our Theorems 1.1 and 1.2 (in
dimension d = 2). In fact, rate (1.8) honours the self-similar scaling invariance of
the related Hele-Shaw problem with surface tension and it is dimension-independent
see [30], and hence belongs to the setting of type I blow up. This stands in contrast
to the melting rates for the classical Stefan problem in higher dimensions. It is an
important open problem to understand whether the rates (1.8) are stable outside
the class of radially-symmetric solutions. A second important open problem, even
in the class of radial solutions, is to prove the existence and describe melting rates
in the context of the physically important two-phase Stefan problem with Gibbs-
Thomson correction.

3. Nonradial dynamics. Formal asymptotics for finite time melting is presented in [2]
in addition to a wealth of other possible singularity formation scenarios. There the
problem is formulated via the Baiocchi transform and the authors identify ellipses

5see for example (3.32).
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in 2D and ellipsoids in 3D as the asymptotic attractors for the melting dynam-
ics in suitably rescaled variables. We also mention the formal asymptotics derived
in [43, 44], wherein the same melting phenomenology as in [2] is identified for the
Stefan problem confined to a compact domain, melting inwards.

Theorem 1.1 lies in the continuation of the methodology developed for the con-
struction of type II blow up bubbles for both parabolic and dispersive problems
[48, 59, 60, 61, 62, 8]. The strategy consists of two steps: construction of a high
order approximate solution based on the expansion of the blow up/melting solution
with respect to a well chosen small parameter, and development of an energy like
method to control the remaining infinite dimensional part. The main novelty of the
proof of Theorem 1.1 with respect to these previous works however is the derivation
of a new and sharp functional setting for the construction of type II, i.e. non self
similar blow up bubbles, here applied to a melting problem, which we expect is uni-
versal and robust both with respect to the extension to the non radial case and the
full classification of type II scenarios. Our analysis relies on new weighted energy
bounds with a degenerate Gaussian weight based on the spectral decomposition of
the leading order linear operator after a suitable renormalisation, see the strategy
of the proof below. This is conceptually a continuation of the Giga-Kohn approach
[22] to the type I blow up in the energy subcritical range. Our new set of estimates
simplifies both the derivation of the approximate solution and the closure of the
nonlinear energy bounds by using in an optimal way the dissipative structure of the
problem, see in particular (3.48). The existence of a degenerate resonance leading
the blow up rate is reminiscent of the derivation of the celebrated "log-log law" for
the mass critical nonlinear Schrödinger equation, see [39, 54, 47, 46]. A recent series
of works by Merle and Zaag [50, 51, 52] suggest that this approach may be of great
interest for dispersive wave-like problems as well.

Moreover, our approach applies equally well to the construction of freezing so-
lutions (i.e. λ̇ > 0) that asymptotically converge to a steady state (u = 0, λ =
const > 0). The proof exploits a deep underlying duality between the derivation of
the melting and the freezing rates.

Theorem 1.2. [Freezing dynamics] There exists a set of data (u0, λ0) in H2×R∗+,
arbitrarily small in Ḣ1, such that the corresponding solution (u, λ) ∈ C([0, T ), H2)×
C1([0, T ),R+) to the exterior Stefan problem (1.3) exists globally-in-time. Further-
more the solution freezes asymptotically

lim
t→+∞

λ(t) = λ∞ > 0,

where

λ∞ =

√
λ2

0 −
1

π

∫
Ω0

u0(x) dx, (1.9)

and it has the following asymptotic behaviour:
1. Stable regime: the fundamental freezing rate is given by

λ∞ − λ(t) =
c(u0, λ0)(1 + ot→+∞(1))

log t
(1.10)

for some c(u0, λ0) > 0; it is stable with respect to small well localised smooth radial
perturbations; this regime contains negative data u0 < 0.
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2. Excited regimes: excited melting rates are given by

λ∞ − λ(t) =
ck(u0, λ0)(1 + ot→+∞(1))

tk(log t)2
, k ∈ N∗, (1.11)

for some ck(u0, λ0) > 0 and correspond to superheated well localised initial data
lying on a locally Lipchitz manifold of codimension k in some well localised norm.
3. Energy asymptotics: in all cases, the Dirichlet energy dissipates at the rate

‖∇u(t)‖L2(Ω(t)) =
dk(u0, λ0)(1 + ot→+∞(1))

tk+1 log t
, k ∈ N, (1.12)

for some dk(u0, λ0) > 0.

Comments on the result.

1. More melting regimes. In the setting of the Stefan and Hele-Shaw problems, the
authors consider in [57] a melting scenario for the one-phase Stefan problem out-
side a fixed domain containing the origin and kept at a pre-fixed non-negative and
nontrivial temperature, acting as an effective heat source. The liquid thus expands
to infinity for positive initial data and an asymptotic rate of expansion for the free-
boundary radius is obtained. Note that this situation is quite different from our
setting as there is no such heat source in our case, and the freezing/melting process
is driven entirely by the choice of initial conditions.

2. Solitary wave regimes. A non trivial global-in-time dynamics with convergence to
the solitary wave similar to that described by theorem 1.2 has been derived in other
critical settings, see for example [23], [41], [42]. The quantised convergence rates
with logarithmic corrections are reminiscent of some classical nonlinear dynamical
systems scenarios, see for example [21].

The first main open problem following this work is the understanding of the full
non radial stability of the free boundary problem in the stable melting regime k = 0
which should be amenable to our approach. Let us mention that a related problem
in the context of evaporating drops was recently studied and solved in the setting of
a self-similar collapse in the very nice work [15]. The second main open problem is
to give a complete description of the flow for small initial data, and here we expect
that the constructions and underlying functional framework of Theorem 1.1 and
Theorem 1.2 are essential steps.

Acknowledgements. The authors thank the anonymous referees for their help-
ful comments. P.R is supported by the Institut Universitaire de France and the
ERC-2014-CoG 646650 SingWave. M.H. kindly acknowledges the hospitality of the
Laboratoire J.A. Dieudonné, Université de Nice Sophia-Antipolis, where part of this
work has been carried out.

Notations. We denote the ball of radius K by

BK(Rd) := {x ∈ Rd, |x| ≤ K}

and set
Λ := y∂y.

For any α ≥ 0 we denote the external domain:

Ωα := {x ∈ R2
∣∣ |x| ≥ α}.
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When α = 1, we shall simply write Ω1 = Ω. We define the weight

ρ±(z) := e±
|z|2

2

and the scalar product on Ω√b by

〈f, g〉b,± =

∫ ∞
√
b
fgρ±zdz

and the associated norms

‖u‖L2
ρ,b,±

=

(∫ ∞
√
b
u2ρ±zdz

) 1
2

, ‖u‖H1
ρ,b,±

=
(
‖∂zu‖2L2

ρ,b,±
+ ‖u‖2L2

ρ,b,±

) 1
2

and

‖u‖H2
ρ,b,±

=
(
‖∆u‖L2

ρ,b,±
+ ‖∂zu‖2L2

ρ,b,±
+ ‖u‖2L2

ρ,b,±

) 1
2
.

We define for b > 0 the Hilbert space

H1
ρ,b,± = {u : Ω√b → R, u radial with ‖u‖H1

ρ,b,±
< +∞ and u(

√
b) = 0} (1.13)

equipped with the scalar product 〈·, ·〉b,±, and for b = 0:

H1
ρ,0,± = {u : R2 → R, u radial with ‖u‖H1

ρ,0,±
< +∞}

equipped6 with the scalar product 〈·, ·〉0. similarly, we define the renormalised quan-
tities:

(f, g)b,± =

∫ ∞
1

fgρb,±ydy, ρb,± = e±
b|y|2

2

and the norms

‖v‖b,± =

(∫ ∞
1

v2ρb,±ydy

) 1
2

, ‖v‖H1
b,±

= ‖v‖b,±+‖∂yv‖b,±, ‖v‖H2
b,±

= ‖v‖H1
b,±

+‖∆v‖b,±,

and the Hilbert space

H1
b,± = {v : Ω→ R, v radial with ‖v‖H1

b,±
< +∞ and v(1) = 0}. (1.14)

We define the sequence of numbers:

α0 := 0, αj :=

j−1∑
i=0

1

j − i
for j ≥ 1. (1.15)

Throughout the paper, summations over 0 ≤ j ≤ k − 1 are empty for k = 0.

1.5. Strategy of the proof. Problem (1.3) is invariant under an energy critical
scaling: if (u, λ) solves (1.3), then so does

uµ(t, r) := u(µ2t, µr), λµ(t) :=
λ(t)

µ
, (1.16)

and the scaling leaves the Dirichlet energy7 unchanged. We therefore renormalise
the flow

u(t, r) = v(s, y),
ds

dt
=

1

λ2(t)
, y =

x

λ(t)
, (1.17)

6Observe that u(
√
b) = 0 ensures that H1

ρ,b can be isometrically embedded into H1
ρ,0 by consid-

ering the map u 7→ u1z≥
√
b.

7which is dissipated from (1.4) in the melting regime.
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and obtain the renormalised equation with a fixed boundary: ∂sv − λs
λ Λv −∆v = 0, y > 1;

v(s, 1) = 0

vy(s, 1) = −λs
λ

(1.18)

step 1 Perturbative spectral analysis. We start with the description of melting
regimes. Let in a first approximation

b = −λs
λ
, 0 < b� 1,

then for any given b the linear operator driving (1.18) is

Hb = −∆ + bΛ, v(1) = 0.

Our first new input is to diagonalise this operator in a suitable Hilbert space. In-

deed, Hb is self adjoint with respect to the measure e−
b|y|2

2 dy, and has up to a
shift compact resolvent in the Hilbert space H1

b,− (see (1.14)) and hence discrete
spectrum. However, the limit b → 0 is singular in the sense that the limiting op-
erator is the Laplacian with resonant eigenmodes and continuous spectrum. After
a renormalisation (i.e. rescaling the space variable by a multiple of

√
b) , we may

equivalently consider
Hb = −∆ + Λ, v(

√
b) = 0,

which formally is a deformation of the standard harmonic oscillator, but with a
Dirichlet boundary condition. We claim that in these renormalised variables, the
operator Hb can be diagonalised using a perturbative Lyapounov-Schmidt type ar-
gument in the weighted Hilbert space H1

ρ,b,−. The first k eigenvalues are given for
0 < b < b∗(k) by

λb,k = 2k +
2

|logb|
+ o

(
1

|logb|

)
, k ∈ N (1.19)

with a corresponding asymptotic expansion of the eigenmodes, see Proposition 2.3.
Unwinding the above renormalisation, we obtain a family of eigenvectors for the
operator Hb:

Hbηb,k = bλb,kηb,k, ηb,k(1) = 0. (1.20)
step 2 Approximate solution and modulation equations.

The fundamental melting rate k = 0. For pedagogical purposes, we first summarise
our approach specialised to the the case k = 0 - the derivation of the fundamental
melting rate (1.5). Let provisionally

b = −λs
λ
, 0 < b� 1.

Following [59, 60, 48] we look for an approximate solution to (1.18) in the form of
a slowly modulated profile

v(s, y) = vb(s)(y)

and hence (1.18) reduces to

bs∂bvb +Hbvb = 0, vb(1) = 0, ∂yvb(1) = b,

where Hb is given above. The basic observation is that for b = 0, H0 has a bound
state η0 = log y and a continuous spectrum, but for any b > 0, by (1.19)–(1.20) with
k = 0, we are able to compute the bound state for a sufficiently small 0 < b < b∗:

Hbηb = bλb,0ηb, λb,0 =
2

| log b|
[1 + ob→0(1)] , ηb(1) = 0,
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This furnishes an approximate solution to (1.18):

vb = bηb

with the accompanying law
bs + b2λb,0 = 0.

The integration of the leading order dynamical system{
bs + 2b2

| log b| = 0
λs
λ + b = 0, ds

dt = 1
λ2

(1.21)

leads to the finite time melting with the asymptotics (1.5).

The general case k ∈ N. The computation of the excited melting regimes is techni-
cally more challenging. Due to the new degrees of freedom, it is too much to ask for
the slowly varying variable b to be approximately equal to −λs

λ . Instead, we now
fix

−λs
λ

= a, 0 < a� 1 (1.22)

and rewrite the renormalised flow (1.18) in the form

∂sv +Hbv + (a− b)Λv = 0, v(s, 1) = 0, ∂yv(s, 1) = a

for a parameter b which will be chosen later. We look for an approximate solution
of the form

Q(s, y) =
k∑
j=0

bj(s)ηb(s),j(y),

where we recall the definition of ηb,j (1.19). After projecting onto each eigenmode,
we obtain the leading order dynamical system:{

(bj)s + bbjλb,k +
2(a−b)bj
| log b| +

jbj
b Φ = 0, 0 ≤ j ≤ k

Φ = bs + 2b(a− b).
(1.23)

This system is complemented by the renormalised nonlinear free boundary condition
∂yv(1) = a which forces the leading order relationship

a =

k∑
j=0

bj

(
1 +

2αj
| log b|

)
+ lower order terms

with (αj)0≤j≤k given by (1.15). It remains to chose b(a) which is done through the
choice

Φ = 0 (1.24)
which will be motivated below. If bk dominates over the remaining bj-s, j =
0, . . . , k − 1, the integration of the dynamical system

(bk)s +
(

2k + 2
| log b|

)
bbk + 2(a−b)bk

| log b| = 0

bs + 2b(a− b) = 0

a = bk

(
1 + 2αk

| log b|

)
ds
dt = 1

λ2 , −λs
λ = a

(1.25)

leads to finite time melting with the rate (1.5) for k = 0 and (1.6) for k ≥ 1, which
as solutions to (1.25) possess k unstable directions.
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step 3 Energy estimate. We now construct a solution of the form

v(s, y) =
k∑
j=0

bj(s)ηb(s),j(y) + ε(s, y)

with
(ε, ηb,j) = 0, 1 ≤ j ≤ k (1.26)

and close an energy estimate for the remainder ε. Here we note that for a solution
to the linear problem

∂sε+Hbε+ (a− b)Λε = 0,

the time dependance of b(s) yields a modified energy identity
1

2

d

ds

∫
ε2e−

b|y|2
2 dy = −(Hbε, ε) + (bs + 2b(a− b))︸ ︷︷ ︸

=Φ

∫
|y|2ε2e−

b|y|2
2 dy

and hence the choice of b (1.24) to cancel the second term in the energy identity8.
To the leading order, thanks to the orthogonality conditions (1.26) and the spectral
gap estimate in weighted spaces associated to the knowledge of the kernel of Hb, we
obtain the fundamental energy estimate:

1

2

d

ds

∫
ε2e−

b|y|2
2 dy = −(Hbε, ε) ≤ −(2k + 2)b

∫
ε2e−

b|y|2
2 dy.

An integration-in-time will produce the necessary decay to close the bound on the
dissipative part of the solution, i.e. ε. The situation is however more complicated
since the problem cannot close at the level of H1 Sobolev regularity, and instead
forces us to take one more derivative. However, at the H2 level the corresponding
energy identity produces dangerous boundary terms. These come with a particular
structure and may beautifully enough be handled through time integration9, see
Proposition 3.10. This part of the analysis is a replacement for the polynomially
weighted estimates in [60], and uses in an optimal way the dissipative structure of
the equation10 and the nonlinear algebra induced by the free boundary.
The construction of the manifold of initial data to avoid the codimension k instabili-
ties of the system of ODE’s (1.23) is finally performed using a now classical Brouwer
type argument as in [11, 8, 62, 49].

step 4 Freezing. These regimes correspond to an expansion of the circular ice block,
reflected in a change of sign in (1.18), (1.22):

λs
λ

= A > 0.

This causes a modification in the spectrum of the operator

HB = −∆−BΛ, v(
√
B) = 0, B > 0,

which admits the eigenvalues:

λB,k = 2k + 2 +
2

|logB|
+ o

(
1

|logB|

)
, k ∈ N.

8which involves a different type of norm for which the spectral gap constant is not explicit and
would thus lead to severe difficulties.

9This is reminiscent of similar essential issues in [47].
10whereas the energy method in [60, 59, 48] works in both the dissipative and dispersive settings,

but barely uses the dissipative terms in the energy estimates.
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Computations parallel to the melting case lead to the dynamical system
(Bk)s +

(
2k + 2

| log b|

)
BBk + 2(B−A)Bk

| logB| = 0

Bs + 2B(B −A) = 0

A = Bk

(
1 + 2αk

| logB|

)
ds
dt = 1

λ2 ,
λs
λ = A

which after integration-in-time produces the global-in-time freezing regimes (1.10).
The energy method is run along similar lines for very well localised initial data,

since the energy spaces are naturally weighted with the confining measure e
By2

2 dy,
B > 0. The analysis is slightly simpler thanks to the better decay of the Bk mode
which induces a stronger decoupling from the remaining modes.

1.6. Plan of the paper. In section 2, we use a Lyapounov-Schmidt like argument
to compute the bound state ofHb and the associated spectral gap in weighted norms
in both the melting regime λs

λ < 0, Lemma 2.6, and the freezing regime λs
λ > 0,

Lemma 2.8. In section 3, we construct the melting regimes. We introduce the
nonlinear decomposition of the flow, section 3.1, compute the modulation equations
using the free boundary geometry, sections 3.2 and 3.3, and close the key energy
bound, Proposition 3.2. The proof of Theorem 1.1 now follows from a classical
shooting argument à la Brouwer detailed in section 3.6. In section 4, we deliberately
follow a parallel plan for the construction of the global-in-time freezing regimes.

2. Spectral analysis in weighted spaces

We compute in this section the k first eigenvalues of the linear operator

Hb,± = −∆∓ bΛ with boundary condition u(1) = 0

and the associated spectral gap estimate in the perturbative regime 0 < b < b∗(k),
b∗(k)� 1 . The proof relies on a Lyapunov-Schmidt type bifurcation argument at
b = 0 performed in weighted Sobolev spaces.

To ease notations, we fix

± = −, Hb = Hb,−, ρ = ρ− = e−
|z|2

2 , b > 0, in sections 2.2, 2.3, 2.4 (2.1)

and we omit the − subscript for the sake of simplicity. The case b < 0 with the ρ+

weight and the operator Hb,+ is addressed in section 2.5.

2.1. Coercivity for the harmonic oscillator. We recall in this section without
proof the classical estimates for the harmonic oscillator.

Melting case: consider −∆ + Λ on (H1
ρ−,0, 〈·, ·〉0). This operator is self adjoint for

the 〈·, ·〉0,− scalar product as is easily seen by writing

−∆ + Λ = − 1

ρ−z
∂z (ρ−z∂z) . (2.2)

The normalised Laguerre polynomials [63]

Lk(x) =
ex

k!

dk

dxk
(e−xxk), k ∈ N, (2.3)

solve
XL′′k + (1−X)L′k + kLk = 0
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and hence

Pk(r) = Lk

(
r2

2

)
(2.4)

diagonalises the harmonic oscillator:

(−∆ + Λ)Pk = 2kPk, 〈Pn, Pm〉ρ,0 = 1. (2.5)

Moreover, they satisfy the double normaliaation condition:∫ +∞

0
LnLme

−xdx = δnm, Ln(0) = 1

or equivalently

〈Pj , Pk〉0,− = δjk, Pk(0) = 1, (2.6)

and the classical induction formula

ΛPk = 2k(Pk − Pk−1), k ≥ 1. (2.7)

An extensive overview of Laguerre polynomials can be found in [63]. We recall the
standard sharp Poincaré inequality for the harmonic oscillator: ∀u ∈ H1

ρ−,0 with

〈u, Pj〉0,− = 0, 0 ≤ j ≤ k,

there holds:

‖∂zu‖L2
ρ−,0
≥ (2k + 2)‖u‖2L2

ρ−,0
. (2.8)

Freezing case: Consider −∆− Λ on (H1
ρ+,0

, 〈·, ·〉0). Then the map

L2
0,+ → L2

0,−

v 7→ w = e
|z|2

2 v

is an isometry and integrating by parts:∫
|∇v|2e

|z|2
2 ρ+dz =

∫
|∇w|2ρ−dz + 2B

∫
|w|2ρB,−dz (2.9)

or equivalently:

(−∆− Λ)v = (−∆w + Λw + 2w) e−
|z|2

2 . (2.10)

Hence the family of eigenvectors

P̂j = Pje
− |z|

2

2

diagonalises the operator, and there holds the spectral gap estimate: ∀u ∈ H1
ρ+,0

with

〈u, P̂j〉0,+ = 0, 0 ≤ j ≤ k,

there holds:

‖∂zu‖L2
ρ+,0
≥ (2k + 4)‖u‖2L2

ρ+,0
. (2.11)

Remark 2.1. The shift 2 = d in (2.11), where d stands for the dimension of the
ambient space, will be crucial for the computation of the freezing rates.
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2.2. Almost invertibility of the renormalised operator. Recall the notational
convention (2.1). We consider the renormalised operator

Hb = −∆ + Λ with boundary condition u(
√
b) = 0

in the radial sector and for 0 < b < b∗ small enough. Thanks to the boundary
condition u(

√
b) = 0 and (2.2), Hb is self adjoint for the scalar product 〈·, ·〉b on

the Hilbert space H1
ρ,b given by (1.13). We claim a near invertibility property of Hb

which is the starting point of the Lyapunov Schmidt argument.
Before stating the lemma, we introduce some notations. We first fix a frequency

size
K ∈ N

and a sufficiently small parameter

0 < b < b∗(K)� 1.

Universal constants in the sequel may depend on K, but are uniform in b ∈
(0, b∗(K)). We define the Gramm matrix

Mb,k = (〈Pi, Pj〉b)0≤i,j≤k, k ≤ K. (2.12)

Observe from (2.5) that

〈Pi, Pj〉b = 〈Pi, Pj〉0 +O(

∫
|z|≤
√
b
zdz) = δij +O(b) (2.13)

and hence
Mb,k = Id+O(b) is invertible (2.14)

for 0 ≤ b < b∗(k) small enough. We introduce the vector:

Pk = (Pj)0≤j≤k

and consider the function

mk(b, z) = (M−1
b,kPk(

√
b),Pk(z)), (2.15)

which by (2.3) and (2.14) satisfies:

mk(b, z) =

k∑
j=0

[1 +O(b)]Pj(z). (2.16)

We now claim:

Lemma 2.2 (Near inversion of Hb − 2k). Let k ∈ N and 0 < b < b∗(k) small
enough. Then for all f ∈ L2

ρ,b with

〈f, Pj〉b = 0, 0 ≤ j ≤ k, (2.17)

there is a unique solution u ∈ H1
ρ,b to:{

H̃b,ku = f where H̃b,ku = (Hb − 2k)u−
√
bmk(b, z)∂zu(

√
b)

〈u, Pj〉b = 0, 0 ≤ j ≤ k. (2.18)

Moreover,

‖∆u‖L2
ρ,b

+ ‖∂zu‖L2
ρ,b

+ ‖Λu‖L2
ρ,b

+ ‖u‖L2
ρ,b

+ |logb|
∣∣√b∂zu(

√
b)
∣∣ . ‖f‖L2

ρ,b
. (2.19)
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Proof of Lemma 2.2. We use a Lax Milgram type argument in H1
ρ,b. Let k ∈ N and

define the constraint set

C := {u ∈ H1
ρ,b

∣∣〈u, Pj〉b = 0, 0 ≤ j ≤ k}.

We consider the problem of minimising the functional F : H1
ρ,b → R :

F(u) =

∫
z≥
√
b
|∂zu|2ρzdz − 2k

∫
z≥
√
b
u2ρzdz − 〈f, u〉b

over the constraint set u ∈ C. Let
Ib = inf

u∈C
F(u).

We recall from the standard Poincaré inequality for the harmonic oscillator (2.8)
and the compactness estimate (A.1) that for spherically symmetric v ∈ H1

ρ,0 with
〈v, Pj〉0 = 0, 0 ≤ j ≤ k, there holds:∫

|∂zv|2ρzdz − 2k

∫
v2ρzdz &

∫
(1 + |z|2)|v|2ρzdz. (2.20)

Applying this to v(z) = u1z≥
√
b ∈ H1

ρ,0, we conclude that Ib > −∞ and that
any minimising sequence un is uniformly bounded in H1

ρ,b. Therefore, up to a subse-
quence, using the compact Sobolev embedding H1

ρ,b ↪→ L2
ρ,b and (2.20), we conclude:

un ⇀ u in H1
ρ,b, un → u in L2

ρ,b.

In particular, using the local compactness of the embedding H1(R) ⊂ L∞(R), this
implies

u(
√
b) = 0, 〈u, Pj〉b = 0, 0 ≤ j ≤ k

and u is a minimiser of F over C. By a standard variational argument, there exist
Lagrange multipliers λj ∈ R such that

Hbu = f −
k∑
j=0

λjPj . (2.21)

Hence from standard regularity argument, u ∈ H2
loc(r ≥

√
b). We may then take

the scalar product with Pi and compute:

〈Hbu, Pi〉b = −
∫
z≥
√
b

1

zρ
∂z(zρ∂zu)Piρzdz =

√
be−b/2Pj(

√
b)∂zu(

√
b) + 〈u,HbPi〉b

=
√
be−b/2Pi(

√
b)∂zu(

√
b) + 2i〈u, Pi〉b =

√
be−b/2Pi(

√
b)∂zu(

√
b).

We conclude from (2.21), (2.17), (2.12) that
√
be−b/2∂zu(

√
b)
(
Pi(
√
b)
)

0≤i≤k
= −Mb,k(λi)0≤i≤k

or equivalently
(λi)0≤i≤k = −

√
be−b/2∂zu(

√
b)M−1

b,kPk(
√
b)

and hence u solves (2.18) from the definition (2.15) and (2.21). We now observe
that u ∈ C ensures

〈mk(b, ·), u〉b = 0

and hence taking the scalar product of (2.18) with u, using (2.20) with v = u1z≥
√
b,

and the identity 〈Hbu, u〉b = ‖∂zu‖2L2
ρ,b

yields:

‖u‖2L2
ρ,b
. ‖∂zu‖2L2

ρ,b
− 2k‖u‖2L2

ρ,b
= 〈f, u〉b
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and hence
‖u‖L2

ρ,b
+ ‖∂zu‖L2

ρ,b
. ‖f‖L2

ρ,b
. (2.22)

We now integrate by parts to compute:

〈Hbu, logz〉b = 〈u, 1〉b −
1

2
|logb|

√
be−b/2∂zu(

√
b). (2.23)

We estimate from (2.16)
‖mk(b, ·)‖L2

ρ,b
. 1 (2.24)

and hence (2.23), (2.18) ensure∣∣√b∂zu(
√
b)
∣∣ . 1

|logb|

(
‖Hbu‖L2

ρ,b
+ ‖u‖L2

ρ,b

)
.

1

|logb|

(
‖f‖L2

ρ,b
+
∣∣√b∂zu(

√
b)|
)

which together with (2.22) yields

‖∂zu‖L2
ρ,b

+ ‖u‖L2
ρ,b

+ |logb|
∣∣√b∂zu(

√
b)
∣∣ . ‖f‖L2

ρ,b
.

We now use the equation (2.18) again and teh bound (2.24) which yield

‖Hbu‖L2 . ‖f‖L2
ρ,b
.

We then use a Pohozhaev type integration by parts to compute:∫
z≥
√
b
z∂zu(Hbu)zρdz = −

∫
z≥
√
b
∂z(zρ∂zu)zρ∂zu

dz

ρ

= −
[

1

2
z2ρ2(∂zu)2 1

ρ

]+∞

√
b

− 1

2

∫
z≥
√
b
z2ρ2(∂zu)2∂zρ

ρ2
dz

=
1

2
be−b/2|∂zu(

√
b)|2 +

1

2

∫
z≥
√
b
(Λu)2zρdz

= O
(
‖f‖2L2

ρ,b

)
+

1

2

∫
z≥
√
b
(Λu)2zρdz.

which after a simple application of the Cauchy-Schwarz inequality yields ‖Λu‖L2
ρ,b
.

‖f‖L2
ρ,b

and (2.19) is proven. �

2.3. Partial diagonalisation of Hb. We are now in position to diagonalise Hb for
frequencies 0 ≤ k ≤ K under the smallness 0 < b < b∗(K).

Proposition 2.3 (Eigenvalues for Hb). Let K ∈ N. Then for all 0 < b < b∗(K)
small enough, Hb admits a sequence of eigenvalues

Hbψb,k = λb,kψb,k, ψb,k ∈ H1
ρ,b, 0 ≤ k ≤ K, (2.25)

such that for each 0 ≤ k ≤ K, the following properties hold:
(i) Expansion of eigenvalues: there holds the expansion of the eigenvalue

λb,k = 2k +
2

|logb|
+ λ̃b,k, λ̃b,k = O

(
1

|logb|2

)
, |∂bλb,k| .

1

b|logb|2
. (2.26)

(ii) Expansion of eigenvectors: there holds the expansion{
ψb,k = Tb,k(z) + ψ̃b,k(z)

Tb,k(z) = Pk(z)
[
logz − log(

√
b)
]

+
∑k−1

j=0 µb,jkPj(z)
[
logz − log(

√
b)
] (2.27)

with

µb,jk =
2

(k − j)|logb|
+µ̃b,jk, µ̃b,jk = O

(
1

|logb|2

)
, b∂bµ̃b,jk = O

(
1

|logb|3

)
(2.28)
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and

‖∆ψ̃b,k‖L2
ρ,b

+ ‖z2ψ̃b,k‖L2
ρ,b

+ ‖ψ̃b,k‖H1
ρ,b

+ ‖Λψ̃b,k‖L2
ρ,b

+ ‖b∂bψ̃b,k‖L2
ρ,b

+ |logb|
∣∣√b∂zψ̃b,k(√b)∣∣ . 1

|logb|
, (2.29)

‖∂bψb,k‖H1
ρ,b

+ |logb||
√
b∂b∂zψb,k(

√
b)| . 1

b
, (2.30)

and
‖Λψb,k‖L2

ρ,b
+ ‖z2ψb,k‖L2

ρ,b
. |logb|. (2.31)

(iii) Spectral gap estimate: let u ∈ H1
ρ,b with

〈u, ψb,j〉b = 0, 0 ≤ j ≤ k,
then

‖∂zu‖2L2
ρ,b
≥
[
2k + 2 +O

(
1

|logb|

)]
‖u‖2L2

ρ,b
. (2.32)

Moreover,

λb,0 = inf
u∈H1

ρ,b

‖∂zu‖2L2
ρ,b

‖u‖2
L2
ρ,b

(2.33)

and
ψb,0(z) > 0 for z >

√
b. (2.34)

(iv) Further identities: there hold the algebraic identities for 0 ≤ j ≤ k:

〈ψb,k, ψb,k〉b =
|logb|2

4

[
1 +O

(
1

|logb|

)]
. (2.35)

〈b∂bψb,j , ψb,k〉b
〈ψb,k, ψb,k〉b

= − 1

|logb|
δjk +O

(
1

|logb|2

)
, (2.36)

Moreover,

‖Λψb,k − 2k(ψb,k − ψb,k−1)‖H2
ρ,b
. 1, (2.37)

‖b∂bψb,k +
1

|logb|
ψb,k‖H2

ρ,b
.

1

|logb|
, (2.38)

‖z2ψb,k + (2k + 2)ψb,k+1 − (4k + 2)ψb,k + 2kψb,k−1‖H2
ρ,b
. 1. (2.39)

Remark 2.4. From standard Sturm-Liouville oscillation argument, ψb,k vanishes k
times on z >

√
b, and hence only the ground state ψb,0 is nonnegative.

Remark 2.5. Constants in Lemma 2.3 depend on the frequency K but are uniform
in 0 < b < b∗(K).

Proof of Proposition 2.3. The argument is of Lyapunov-Schmidt type. We remove
the b subscript as much as possible to simplify notations.

step 1 The Lyapunov-Schmidt argument. Let Tk(z) ∈ H1
ρ,b be given by (2.27), and

introduce the universal profile

Tb(z) := logz − log(
√
b).

Then{
(Hb − 2k)Tk(z) = Qk(z) +

∑k−1
j=0 µjk [2(j − k)Tb(z)Pj(z) +Qj ]

Qj = −2
P ′j(z)

z + Pj(z).
(2.40)
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Observe from (2.4) that Qj = Q̃j(r
2) with deg Q̃j ≤ j − 1 and hence

∀0 ≤ j ≤ k, Qj ∈ Span(Pj)0≤j≤k. (2.41)

We solve the eigenvalue problem

(Hb − 2k)ψ = µkψ, (2.42)

by representing ψ in the form

ψ = Tk + ψ̃. (2.43)

and hence (2.42), (2.43) give an equation for ψ̃ :

(Hb − 2k)ψ̃ = −(Hb − 2k)Tk + µk(Tk + ψ̃)

= −Qk(z)−
k−1∑
j=0

µjk [2(j − k)Tb(z)Pj(z) +Qj ] + µk(Tk + ψ̃)

=: f(ψ̃). (2.44)

We define (µj(ψ̃))0≤j≤k by imposing the relations:

〈f(ψ̃), Pi〉b
〈Pi, Pi〉b

=
√
b∂zψ̃(

√
b)
(
M−1
b,kPk(

√
b)
)
i
, i = 0, . . . , k, (2.45)

which is proved below to correspond to an invertible linear system on ((µj,k)0≤j≤k−1, µk).
Observe that (2.45) allows us to rewrite (2.44) as:

H̃b,kψ̃ = f −
k∑
j=0

〈f, Pj〉b
‖Pj‖2L2

ρ,b

Pj = F (ψ̃) (2.46)

with H̃b,k given by (2.18). Thus to find ψ̃, by Lemma 2.2 we are left with solving
the fixed point equation

ψ̃ = H̃−1
b,kF (ψ̃).

and we indeed claim that the operator H̃−1
b,k ◦ F is a strict contraction from the

closed ball

Bα :=
{
ψ̃ ∈ H1

ρ,b

∣∣∣ ‖∆ψ̃‖L2
ρ,b

+
√
b|∂zψ̃(

√
b)|+ ‖ψ̃‖H1

ρ,b
≤ α

|logb|
,

ψ̃(
√
b) = 0, 〈ψ̃, Pj〉b = 0, 0 ≤ j ≤ k

}
, (2.47)

to itself for α universal large enough.
Computation of µjk, µk: We invert (2.45). Indeed, we rewrite

f(ψ̃) = −Qk +
|logb|

2
µkPk

[
1 +

2logz

|logb|

]
+ µkψ̃

−
k−1∑
j=0

|logb|
2

µjk

{
[2(j − k)− µk]Pj

[
1 +

2logz

|logb|

]
+

2Qj
|logb|

}
.

Let

~µ = (µ0k, . . . , µ(k−1)k, µk) and |~µ|∞ := max{|µjk|0≤j≤k−1, |µk|}.
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Using the almost orthogonality (2.13) and the 〈·, ·〉b-orthogonality of ψ̃ and Pj ,
j = 0, . . . k, we obtain:

〈f(ψ̃), Pj〉b
〈Pj , Pj〉b

= (k − j)|logb|µjk − 〈Qk, Pj〉0 + (C~µ)j + µk

k−1∑
`=0

µ`k〈Pj , P`Tb〉b +O(|b|),

(2.48)

〈f(ψ̃), Pk〉b
〈Pk, Pk〉b

= µk
|logb|

2
− 〈Qk, Pk〉0 + µk

k−1∑
`=0

µ`k〈Pk, P`Tb〉b + (C~µ)k +O(|b|),

(2.49)

where C = (Cij)i,j=0,...k = O(1), is a (k+ 1)× (k+ 1)-matrix with bounded entries
in the regime where b is small and (C~µ)i =

∑k−1
`=0 Ci`µ`k + Cikµk is the i-th entry

of the vector C~µ, i = 0, . . . , k. The above system contains quadratic terms and
it can be solved for ~µ by the following simple iteration argument. Given ~̃µ =
(µ̃0k, . . . .µ̃(k−1)k, µ̃k), consider the system

〈f(ψ̃), Pj〉b
〈Pj , Pj〉b

= (k − j)|logb|µj,k − 〈Qk, Pj〉0 + (C̃~µ)j +O(|b|),

〈f(ψ̃), Pk〉b
〈Pk, Pk〉b

= µk
|logb|

2
− 〈Qk, Pk〉0 + (C̃~µ)k +O(|b|),

where C̃ij = Cij + δik
∑k−1

`=0 µ̃ik〈Pj , P`Tb〉b, j = 0, . . . k−1. Assuming that |~̃µ|∞ ≤ 1,

we have C̃ = O(1) and we can invert the above system to obtain

µjk =
〈Qk, Pj〉0

(k − j)|logb|
+O

(
1

|logb|2
+

√
b|∂zψ̃(

√
b)|

|logb|

)
, 0 ≤ j ≤ k − 1, (2.50)

µk =
2〈Qk, Pk〉0
|logb|

+O

(
1

|logb|2
+

√
b|∂zψ̃(

√
b)|

|logb|

)
(2.51)

and therefore |~µ|∞ . 1
|logb| ≤ 1 for b < b∗ sufficienty small, where we used (2.47).

Contractive property follows easily in a similar manner and for a given ψ̃ ∈ Bα we
obtain the unique solution ~µ. We may moreover integrate by parts and use (2.6) to
compute:

〈Qk, Pk〉0 = 〈−2
P ′k
z

+ Pk, Pk〉0 = P 2
k (0) = 1.

similarly for j ≤ k − 1:

〈Qk, Pj〉0 = −2〈
P ′k
z
, Pj〉0 = 2 + 〈

P ′j
z
, Pk〉0 = 2

since
P ′j
z is a polynomial of r2 of degree ≤ j− 1 < k. Note that by (2.50) and (2.51)

we additionally have the bound

|~µ|∞ .
1

|logb|
+

√
b|∂zψ̃(

√
b)|

|logb|
. (2.52)

Estimating F (ψ̃): Let us introduce the approximate projection operator:

Pkf :=

k∑
j=0

〈f, Pj〉b
‖Pj‖2L2

ρ,b

Pj .
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Observe that (I − Pk)Pj = O(b) and by (2.41) (I − Pk)Qj = O(b) for any j ∈
{0, 1, . . . , k} and the almost orthogonality relation (2.13). From (2.47) we have that
(I− Pk)ψ̃ = ψ̃. Thus, from (2.44) and (2.46) we obtain that

F (ψ̃) = µk(I− Pk)
[
Pklogz + Pk

|logb|
2

]
+ µkψ̃

+

k−1∑
j=0

µj,k [2(k − j) + µk] (I− Pk)
[
Pj logz + Pj

|logb|
2

]
+O(b(1 + |~µ|∞))

= µk(I− Pk) [Pklogz] + µkψ̃ +
k−1∑
j=0

µj,k [2(k − j) + µk] (I− Pk) [Pj logz]

+O (b(1 + |~µ|∞) + b|logb||~µ|∞) .

Therefore

‖F (ψ̃)‖L2
ρ,b
. |~µ|∞

(
1 + ‖ψ̃‖L2

ρ,b

)
+O (b(1 + |~µ|∞) + b|logb||~µ|∞)

≤ C 1 +
√
b|∂zψ̃(

√
b)|

|logb|

(
1 +

α

|logb|

)
, (2.53)

for 0 < b < b∗ with b∗ sufficiently small and a universal constant C > 0. Applying
Lemma 2.2 and using (2.53) we conclude from (2.46)

‖∆ψ̃‖L2
ρ,b

+ ‖ψ̃‖H1
ρ,b

+ |logb||
√
b∂zψ̃(

√
b)| . ‖F (ψ̃)‖L2

ρ,b

≤ C 1 +
√
b|∂zψ̃(

√
b)|

|logb|

(
1 +

α

|logb|

)
and hence

‖∆ψ̃‖L2
ρ,b

+ ‖ψ̃‖H1
ρ,b

+ |logb||
√
b∂zψ̃(

√
b)|+ ‖F (ψ̃)‖L2

ρ,b
≤ α

|logb|

and ψ̃ ∈ Bα for α > 0 universal large enough and 0 < b < b∗(k) small enough.
Therefore ψ̃ ∈ Bα.
Contractive property: To show the contractive property, note that for any φ1, φ2 ∈
Bα by (2.44) we have that

f(φ1)− f(φ2)

=
|logb|

2
(µk(φ1)− µk(φ2))Pk

[
1 +

2logz

|logb|

]
+ (µk(φ1)− µk(φ2))φ1 + µk(φ2) (φ1 − φ2)

−
k−1∑
j=0

|logb|
2

(µjk(φ1)− µjk(φ2))

{
[2(j − k)− µk]Pj

[
1 +

2logz

|logb|

]
+

2Qj
|logb|

}
.

By a calculation analogous to (2.48) and (2.49), we can evaluate the 〈·, ·〉b-inner
product of f(φ1) − f(φ2) with Pj , j = 0, 1, . . . , k and thereby estimate |µjk(φ1) −
µjk(φ2)|, |µk(φ1)− µk(φ2)|. Using (2.47), we arrive at

‖f(φ1)− f(φ2)‖L2
ρ,b
.

1

|logb|
‖φ1 − φ2‖L2

ρ,b
,

which together with F = (Id−Pk)f gives ‖F (φ1)−F (φ2)‖L2
ρ,b
. 1
|logb|‖φ1−φ2‖L2

ρ,b
.

The operator H̃−1
b is continuous by Lemma 2.2 and therefore for a sufficiently small

0 < b < b∗ the operator H̃−1
b ◦ F is a strict contraction. By the Banach fixed point
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theorem, there exists a unique ψb,k ∈ H1
ρ,b satisfying (2.25). The Fréchet differen-

tiability of ψb with respect to b at any fixed b > 0 follows similarly, the classical
details are left to the reader.

step 2 Proof of (2.31). We estimate from (2.28), (2.27):

‖ΛTb,k‖L2
ρ,b
. |logb|

and (2.29) now implies
‖Λψb,k‖L2

ρ,b
. |logb|. (2.54)

We may now apply (A.1) to zψb and (2.31) follows from (2.54).

step 3 Spectral gap estimate. Let u ∈ H1
ρ,b satisfy

〈u, ψb,j〉b = 0, 0 ≤ j ≤ k.
Let

v = u1z≥
√
b −

k∑
j=0

〈u, Pj〉b
‖Pj‖L2

ρ,0

Pj ∈ H1
ρ,0

then by the Poincaré inequality (2.8):

‖∂zv‖2L2
ρ,b
≥ (2k + 2)‖v‖2L2

ρ,b
. (2.55)

We now compute from (2.27) for 0 ≤ j ≤ k:

0 = 〈u, ψj〉b =

〈
u, Pj(z)Tb(z) +

j−1∑
i=0

µi

[
Pi(z)− Pi(

√
b)
]

+ ψ̃b,k

〉
b

and hence using (2.28), (2.29):

|〈u, Pj〉b| .
1

|logb|
‖u‖L2

ρ,b
, 0 ≤ j ≤ k

from which

‖u− v‖H1
ρ,b
.
‖u‖L2

ρ,b

|logb|
.

Injecting this into (2.55) implies

‖∂zu‖2L2
ρ,b
≥
[
2k + 2 +O

(
1

|logb|

)]
‖u‖2L2

ρ,b
. (2.56)

To prove (2.33), (2.34), let

µb = inf
u∈Cb

‖∂zu‖2L2
ρ,b

‖u‖2
L2
ρ,b

.

Then any minimizing sequence normalised by ‖un‖L2
ρ,b

= 1 is bounded in H1
loc(r ≥√

b). By the compactness of radial Sobolev and trace embeddings and (A.1) it
strongly converges in L2

ρ,b. Hence the infimum is attained and from Lagrange mul-
tiplier theory:

Hbφb = µbφb.

Moreover, since |φb| is also an infimum, we may assume φb ≥ 0. If µb 6= λb, then
〈φb, ψb,0〉b = 0 and hence from (2.32):

µb = ‖∂zφb‖2L2
ρ,b
& 1.
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Note that λb,0 =
‖∂zψb‖2

L2
ρ,b

‖ψb‖2
L2
ρ,b

≥ µb by the definition of µb. Together with (2.26) this

contradicts the definition of µb for 0 < b < b∗ small enough. Hence λb,0 = µb is
the bound state. The simplicity of the first eigenvalue follows from a classical ar-
gument [14]- and hence ψb ≡ φb ≥ 0. Note that ψb > 0 for z >

√
b by the strong

maximum principle.

step 4 Estimate for ∂bλb,k. Applying ∂b to (2.25), we obtain

Hb∂bψb,k = ∂bλb,kψb,k + λb,k∂bψb,k. (2.57)

Evaluating the 〈·, ·〉b inner product of (2.57) with ψb,k and integrating by parts we
obtain

∂bλb,k‖ψb,k‖2L2
ρ,b

+ λb,k〈∂bψb,k, ψb,k〉b = 〈Hb∂bψb,k, ψb,k〉b

= 〈∂bψb,k, Hbψb,k〉b − ∂bψb,k(
√
b)∂zψb,k(

√
b)ρ(
√
b)
√
b

= λb,k〈∂bψb,k, ψb,k〉b − ∂bψb,k(
√
b)∂zψb,k(

√
b)ρ(
√
b)
√
b.

Therefore

∂bλb,k = −
∂bψb,k(

√
b)∂zψb,k(

√
b)ρ(
√
b)
√
b

‖ψb,k‖2L2
ρ,b

. (2.58)

From ψb,k(
√
b) = 0 it follows that ∂bψb,k(

√
b) = − 1

2
√
b
∂zψb,k(

√
b) and therefore

from (2.58)

∂bλb,k =
|∂zψb,k(

√
b)|2ρ(

√
b)

2‖ψb,k‖2L2
ρ,b

. (2.59)

In particular, since |∂zψb,k(
√
b)| = O( 1√

b
) by (2.27) and (2.29), and ‖ψb,k‖2L2

ρ,b
&

|logb|2 by (2.28) - (2.29) it follows that

|∂bλb,k| .
1

b|logb|2
. (2.60)

which is the last claim of (2.26).

step 5 Estimate for |∂bµb,ik|, i = 0, . . . , k − 1. From (2.27) we obtain

∂bTb,k = − 1

2b
Pk +

k−1∑
j=0

∂bµb,jkPjTb −
1

2b

k−1∑
j=0

µb,jkPj . (2.61)

From (2.27) and (2.57) it follows that

Hb∂bψ̃b,k = Fk + λb,k∂bψ̃b,k, (2.62)

where
Fk = −Hb∂bTb,k + ∂b(λb,kTb,k) + ∂bλb,kψ̃b,k. (2.63)

Rewriting (2.62) in the form Hb∂bψb,k = (∂bλb,kψ̃b,k + λb,k∂bψ̃b,k) + λb,k∂bTb,k and
evaluating the 〈·, ·〉b-inner product with Pj , j = 0, . . . , k − 1, we obtain

〈Hb∂bψb,k, Pj〉b = λb,k〈∂bTb,k, Pj〉b (2.64)
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since 〈ψ̃b,k, Pj〉b = 〈∂bψ̃b,k, Pj〉b = 0. On the other hand, from (2.61) we have that

〈∂bTb,k, Pj〉b = − 1

2b
Mjk +

k−1∑
i=0

∂bµb,ik

(
Mji
|logb|

2
+ 〈Pilogz, Pj〉b

)
− 1

2b

k−1∑
i=0

µb,ikMji

=
|logb|

2
∂bµb,ikδji +

k−1∑
i=0

cji∂bµb,ik +O(
1

b|logb|
), (2.65)

where (cij)i,j=0,...,k−1 = O(1) and we used Mji = δji +O(b) for j = 0, . . . , k− 1 and
the first two claims of (2.28) which have already been proven above. On the other
hand, observe that by integration-by-parts and the orthogonality 〈∂bψ̃b,k, Pj〉b = 0
we have

〈Hb∂bTb,k, Pj〉b = ρ(
√
b)
√
b
(
∂z∂bTb,k(

√
b)Pj(

√
b)− ∂bTb,k(

√
b)∂zPj(

√
b)
)
. (2.66)

By (2.61) |∂bTb,k(
√
b)| . 1/b and

∂z∂bTb,k = − 1

2b

∂zPk(√b) +
k−1∑
j=0

µb,jk∂zPj(
√
b)

+
1√
b

k−1∑
j=0

∂bµb,jkPj(
√
b),

which together with (2.66) leads to

〈Hb∂bTb,k, Pj〉b = ρ(
√
b)

k−1∑
j=0

∂bµb,jkPj(
√
b) +O(1), (2.67)

where we note that ∂zPk(
√
b) =

√
bL′k(

b
2) = O(

√
b) implying 1√

b
maxj=0,...,k |∂zPk(

√
b)| =

O(1). To see that L′k(
b
2) = O(1) observe that by the definition (2.3) of the k-th La-

guerre polynomial, it follows that L′k is a polynomial of degree k−1. From (2.64), (2.65),
and (2.67) we conclude that

|logb|
2

∂bµb,ikδji + c∗ji∂bµb,ik = O(
1

b|logb|
), c∗ji = O(1), i, j = 0, . . . , k − 1. (2.68)

The system (2.68) is invertible for 0 ≤ b ≤ b∗ sufficiently small, and as a consequence

sup
i=0,...,k−1

|∂bµb,ik| .
1

b|logb|2
, (2.69)

which completes the proof of (2.28).

step 5 Estimate for ‖∂bψ̃b,k‖b. Recalling that 〈ψ̃b,k, Pj〉b = 0, j = 0, 1, . . . k, by
the construction of ψ̃b,k, we conclude that 〈∂bψ̃b,k, Pj〉b = 0 since ψ̃b,k(

√
b) = 0.

Moreover, the spectral gap estimate (2.8) with u = ∂bψ̃b,k1z≥
√
b+∂bψ̃b,k(

√
b)10≤z<

√
b

together with the bound λb,k = 2k + λ̃b,k imply

λb,k‖∂bψb,k‖2L2
ρ,b
.

2k +O( 1
|logb|)

2k + 2 +O( 1
|logb|)

‖∂z∂bψb,k‖2L2
ρ,b

+ C|∂bψ̃b,k(
√
b)|2. (2.70)

Evaluating the 〈·, ·〉b inner product of (2.62) with ∂bψ̃b,k, integrating-by-parts, using
Cauchy-Schwarz, and the Poincaré-type inequality (2.70) we obtain

‖∂z∂bψ̃b,k‖2L2
ρ,b
. ‖Fk‖2L2

ρ,b
+
√
b|∂z∂bψ̃b,k(

√
b)∂bψ̃b,k(

√
b)|+ |∂bψ̃b,k(

√
b)|2. (2.71)
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From ψ̃b,k(
√
b) = 0 it follows after differentiating with respect to b that

|∂bψ̃b,k(
√
b)| . 1√

b
|∂zψ̃b,k(

√
b)| . 1

b|logb|2
. (2.72)

To estimate
√
b|∂z∂bψ̃b,k(

√
b)| we note that

0 = 〈∂bψ̃b,k, 1〉b = 〈∂bψ̃b,k, Hblogz〉b

= 〈Hb∂bψ̃b,k, logz〉b + e−b/2∂bψ̃b,k(
√
b) +

1

2
|logb|

√
b∂z∂bψ̃b,k(

√
b)e−b/2.

Therefore∣∣√b∂z∂bψ̃b,k(√b)∣∣ . 1

|logb|

(
‖Fk‖L2

ρ,b
+ |λb,k|‖∂bψ̃b,k‖L2

ρ,b
+

1

b|logb|2

)
.

1

|logb|
‖Fk‖L2

ρ,b
+

1

|logb|
‖∂z∂bψ̃b,k‖L2

ρ,b
+

1

b|logb|3
,

where we used (2.62) in the first estimate and the Poincaré inequality (2.70) in
the last. Using the Cauchy-Schwarz inequality and plugging this bound and (2.72)
into (2.71) we obtain

‖∂z∂bψ̃b,k‖L2
ρ,b
. ‖Fk‖L2

ρ,b
+

1

b|logb|2
. (2.73)

From (2.61) and (2.69) we conclude that ‖Tb,k‖L2
ρ,b
. 1

b . To estimate ‖Fk‖L2
ρ,b

note
that from (2.40) we have the identity:

Hb∂bTb,k = 2k∂bTb,k +

k−1∑
j=0

∂bµb,jk [2(j − k)TbPj +Qj ] +
1

b

k−1∑
j=0

µb,jk(k − j)Pj

and therefore using (2.61) and (2.26) we have

−Hb∂bTb,k + λb,k∂bTb,k = O(
1

|logb|
)∂bTb,k

+
k−1∑
j=0

∂bµb,jk [2(j − k)TbPj +Qj ] +
1

b

k−1∑
j=0

µb,jk(k − j)Pj .

Hence, using (2.69) and (2.28):

‖ −Hb∂bTb,k + λb,k∂bTb,k‖L2
ρ,b
.

1

b|logb|
.

Thus, using the definition (2.63) of Fk, bounds (2.60), (2.29), and the previous
bound we obtain

‖Fk‖L2
ρ,b
.

1

b|logb|
+ |∂bλb,k|

(
‖Tb,k‖L2

ρ,b
+ ‖ψ̃b,k‖L2

ρ,b

)
.

1

b
+

1

b|logb|2

(
|logb|+ 1

|logb|

)
.

1

b|logb|
.

Plugging this back into (2.73) we get

‖∂z∂bψ̃b,k‖L2
ρ,b
.

1

b|logb|
and therefore, by the spectral gap estimate (2.8), just like in (2.70), we obtain

‖∂bψ̃k,b‖L2
ρ,b
.

1

b|logb|
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and the proof of (2.29) is completed.

step 6 Proof of (2.35) - (2.39).
Proof of (2.35). We estimate from (2.27), (2.29):

〈ψb,k, ψb,k〉b =
|logb|2

4

[
〈Pk, Pk〉0 +O

(
1

|logb|

)]
(2.74)

and (2.35) follows from the normalisation (2.6).
Proof of (2.36). We compute from (2.61), (2.28), (2.29):∥∥∥∥b∂bψb,k +

1

2
Pk

∥∥∥∥
H2
ρ,b

.
1

|logb|
(2.75)

and hence using (2.35):
〈b∂bψb,j , ψb,k〉b
〈ψb,k, ψb,k〉b

=
4

(logb)2

[
1 +O

(
1

logb

)][
〈−Pk

2
, ψb,j〉b +O(1)

]
=

4

(logb)2

[
−1

4
|logb|〈Pj , Pk〉b +O(1)

]
= − 1

|logb|
+O

(
1

|logb|2

)
,

this is (2.36).
Proof of (2.37): We compute from (2.27), (2.7):

Λψb,k = ΛPkTb + Pk +

k−1∑
j=0

µb,jkΛ(PjTb) + Λψ̃b,k

= 2k[Pk − Pk−1]Tb + Pk +

k−1∑
j=0

µb,jkΛ(PjTb) + Λψ̃b,k

= 2k(ψb,k − ψb,k−1) + Eb,k
where the remainder estimate

‖Eb,k‖H2
ρ,b
. 1

holds due to (2.28), (2.29) and (2.37) is proved.
Proof of (2.38). Note that

Pk =
2

|logb|

{
ψb,k − ψ̃b,k − Pklogz −

k−1∑
i=0

µb,jkPjTb

}
and therefore

‖b∂bψb,k +
1

|logb|
ψb,k‖H2

ρ,b

. ‖b∂bψb,k +
1

2
Pk‖H2

ρ,b
+

1

|logb|
‖ψ̃b,k + Pklogz +

k−1∑
i=0

µb,jkPjTb‖H2
ρ,b

.
1

|logb|
,

where we used (2.75) and (2.28), (2.29). This concludes the proof of (2.38).
Proof of (2.39). We have from (2.27), (2.29):

‖z2ψb,k −
| log b|

2
z2Pk‖H1

b
. 1.

Let Φk = z2Pk, then

(−∆ + Λ)Φk = (2k + 2)Φk − 4Pk − 4ΛPk = (2k + 2)Φk − 4Pk − 8k(Pk − Pk−1)
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and hence the relation

2k〈Φk, Pk〉0 = (2k + 2)〈Φk, Pk〉0 − 4− 8k ie 〈Φk, Pk〉0 = 2 + 4k

(2k − 2)〈Φj , Pk−1〉0 = (2k + 2)〈ΦK , Pk−1〉0 + 8k ie 〈Φk, Pk〉0 = −2k

〈Φk, Pj〉0 = 0, 0 ≤ j ≤ k − 2.

Since Pk is a polynomial we conclude that there exists a ck ∈ R such that

z2Pk = ckPk+1 + (4k + 2)Pk − 2kPk−1.

Since Pk(0) = 1, we obtain by plugging in z = 0 into the above relationship:

z2Pk = −2(k + 1)Pk+1 + (4k + 2)Pk − 2kPk−1,

which yields (2.39). �

2.4. Diagonalisation of Hb. We are now position to derive the bound state and
the spectral gap estimate for the operator Hb.

Lemma 2.6 (Renormalised eigenfunction). Let K ∈ N. Then for all 0 < b < b∗(K)
small enough, the renormalised operator

Hb = −∆ + bΛ with boundary value u(1) = 0

has a family of eigenstates ηb,k satisfying:

Hbηb,k = bλb,kηb,k, 0 ≤ k ≤ K, (2.76)
with the following properties:
(i) Structure of the eigenmodes: there holds the expansion{

ηb,k = Sb,k(y) + η̃b,k(y)

Sb,k(y) = Pk(
√
by)logy +

∑k−1
j=0 µb,jkPj(

√
by)logy

(2.77)

with
‖∆η̃b,k‖L2

b√
b

+ ‖∂yη̃b,k‖b +
√
b‖η̃b,k‖b +

√
b‖Λη̃b,k‖b + |logb||∂yη̃b,k(1)| . 1

|logb|
, (2.78)

(ii) Further estimates on the eigenvector: there holds

‖yηb,k‖b .
|logb|
b

, ‖y2ηb,k‖b .
|logb|
b
√
b

(2.79)

‖b∂bηb,k‖b .
|logb|√

b
. (2.80)

Moreover:

‖Ληb,k − 2k(ηb,k − ηb,k−1)‖b +
1√
b
‖∂y[Ληb,k − 2k(ηb,k − ηb,k−1)]‖b

+
1

b
‖Hb [Ληb,k − 2k(ηb,k − ηb,k−1)] ‖b .

1√
b

(2.81)

and

‖2b∂bηb,j − Ληb,j +
2

|logb|
ηb,j‖b +

1√
b
‖∂y[2b∂bηb,j − Ληb,j +

2

|logb|
ηb,j‖b

+
1

b
‖Hb

[
2b∂bηb,j − Ληb,j +

2

|logb|
ηb,j

]
‖b .

1√
b|logb|

. (2.82)

(iii) Normalisation:

(ηb,k, ηb,k)b =
|logb|2

4b

[
1 +O

(
1

|logb|

)]
. (2.83)
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Remark 2.7. Observe that (2.81), (2.82), (2.83) imply the bound:

‖b∂bηb,k − k(ηb,k − ηb,k−1)‖b +
1√
b
‖∂y[b∂bηb,k − k(ηb,k − ηb,k−1)]‖b

+
1

b
‖Hb [b∂bηb,k − k(ηb,k − ηb,k−1)] ‖b .

1√
b
. (2.84)

Proof of Lemma 2.6. Given u : Ω → R, let v(y) = u(
√
by), it is straightforward to

check that

Hbv = b(Hbu)(
√
by), ‖∂`yv‖b = b

`−1
2 ‖∂`zu‖L2

ρ,b
, ` ∈ N. (2.85)

We therefore let
ηb,k(y) = ψb,k(z), z = y

√
b. (2.86)

and (2.76) follows. The estimate (2.81) follows by rescaling (2.37), and (2.83) by
rescaling (2.35). The decomposition (2.77) follows from (2.27), and (2.29) implies
(2.78). The bounds (2.79) follow by rescaling the bounds:

‖zψb,k‖L2
ρ,b

+ ‖z2ψb,k‖L2
ρ,b
. |logb|.

Directly from the definition (2.86), we compute:

b∂bηb,k =

[
Λψb,k

2
+ b∂bψb,k

]
(
√
by), (2.87)

which together with (2.30), (2.31) yields:

‖b∂bηb,k‖b .
|logb|√

b
,

thus proving (2.80). From (2.87):

2b∂bηb,k − Ληb,k = 2 [b∂bψb,k] (
√
by)

and hence from (2.38):∥∥∥∥2b∂bηb,k − Ληb,k +
2

|logb|
ηb,k

∥∥∥∥
b

.
1√
b
‖b∂bψb,k +

1

|logb|
ψb,k‖L2

ρb
.

1

|logb|
√
b

and similarly for higher derivatives. �

2.5. Diagonalisation of HB. We now change sign and consider the operator for
B > 0

HB = −∆−BΛ with boundary value u(1) = 0, (2.88)
which is a self adjoint operator on H1

B,+ given by (1.14).

Lemma 2.8 (Renormalised eigenfunction). Let K ∈ N. Then for all 0 < B <
B∗(K) small enough, the renormalised operator

HB = −∆−BΛ with boundary value u(1) = 0

has a family of eigenstates

η̂B,k = e−
B|y|2

2 ηB,k, HB η̂B,k = Bλ̂B,K η̂B,k, λ̂B,k = λB,k + 2, 0 ≤ k ≤ K, (2.89)

with ηB,k, λB,k given by Lemma 2.6. Furthermore, there hold the following proper-
ties:
(i) Structure of the eigenmodes: there holds the expansion{

η̂B,k = SB,k(y)e−
B|y|2

2 + ˜̂η

SB,k(y) = Pk(
√
By)logy +

∑k−1
j=0 µB,jkPj(

√
By)logy

(2.90)
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with

‖∆˜̂ηB,k‖L2
B√

B
+ ‖∂y ˜̂ηB,k‖B +

√
B‖˜̂ηB,k‖B +

√
B‖Λ˜̂ηB,k‖B + | logB||∂y ˜̂ηB,k(1)|

.
1

|logB|
, (2.91)

(ii) Further estimates on the eigenvector: there holds

‖yη̂B,k‖b .
|logB|
B

, ‖y2η̂B,k‖B .
|logB|
B
√
B

(2.92)

‖B∂B η̂B,k‖b .
|logB|√

B
. (2.93)

Moreover:

‖B∂B η̂B,k − (k + 1)[η̂B,k+1 − η̂B,k]‖B

+
1√
B
‖∂y[B∂B η̂B,k − (k + 1)[η̂B,k+1 − η̂B,k]‖B

+
1

B
‖HB [B∂B η̂B,k − (k + 1)[η̂B,k+1 − η̂B,k]] ‖B .

1√
B

(2.94)

and

‖2B∂B η̂B,j − Λη̂B,j +
2

|logB|
η̂B,j‖b +

1√
B
‖∂y[2B∂B η̂B,j − Λη̂B,j +

2

|logB|
η̂B,j‖B

+
1

B
‖HB

[
2B∂B η̂B,j − ΛηB,j +

2

|logB|
η̂B,j

]
‖B .

1√
B|logB|

. (2.95)

(iii) Normalisation:

(η̂B,k, η̂B,k)B =
| logB|2

4B

[
1 +O

(
1

| logB|

)]
. (2.96)

Proof of Lemma 2.97. This is a direct consequence of Lemma 2.6. Indeed, the map

L2
B,+ → L2

B,−

v 7→ w = e
B|y|2

2 v
is an isometry (2.97)

and integrating by parts:∫
|∇v|2e

B|y|2
2 ρB,+dy =

∫
|∇w|2ρB,−dy + 2B

∫
|w|2ρB,−dy (2.98)

or equivalently:

HBv = (−∆w +BΛw + 2Bw) e−
B|y|2

2 .

Together with Lemma 2.6, this yields (2.89). We now renormalise (A.1) which
yields:

B
k+1

2 ‖ykw‖B,− . ‖∂yw‖B,− +
√
B‖w‖B,−. (2.99)

The isometric relation (2.98) and (2.99) imply the following comparison of norms:

‖∂yv‖B,+ . ‖∂yw‖B,− +
√
B‖w‖B,+ (2.100)

‖Λv‖B,+ = ‖Λw −By2w‖B,− . ‖Λw‖B,− +
1√
B
‖∂yw‖B,− + ‖w‖B,−(2.101)

‖ykv‖B,+ . ‖ykw‖B,−. (2.102)
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Using (2.99):

‖∆v‖B,+ . ‖∆w‖B,− +B‖w‖B,− +B‖Λw‖B,− +B2‖y2w‖B,−
. ‖∆w‖B,− +B‖w‖B,− +B‖Λw‖B,− +

√
B‖∂yw‖B,−. (2.103)

We also observe that

|∂yw(1)| . |∂yv(1)| if w(1) = 0.

Using the above bounds together with (2.89), (2.90), (2.78), (2.79), and (2.83) yields
(2.91), (2.92), and (2.96). Moreover,

∂B η̂B,k =

(
∂BηB,k −

|y|2

2
ηB,k

)
e−

By2

2 .

Hence (2.93) follows from (2.80), (2.79). We now observe the fundamental conjuga-
tion

Λη̂B,j − 2B∂B η̂B,j = (ΛηB,j − 2B∂BηB,j) e
−B|y|

2

2 ,

and hence (2.95) follows from (2.82). Moreover from (2.39):

B|y|2ηB,k = z2ψB,k = −(2k+2)ηB,k+1+(4k+2)ηB,k−2kηB,k−1+Fk, ‖Fk‖B .
1√
B

and hence using (2.84):

B∂BηB,k −B
|y|2

2
ηB,k = k(ηB,k − ηB,k−1)− 1

2
[−(2k + 2)ηB,k+1 + (4k + 2)ηB,k − 2kηB,k−1] + F̃k

= (k + 1) [ηB,k+1 − ηB,k] + F̃k with ‖F̃k‖B .
1√
B

and similarly for higher derivatives, and (2.94) is proved. �

3. Finite time melting regimes

This section is devoted to the existence and stability of the melting process. In
all the section, we let

± = −, ρ = ρ−, b > 0.

3.1. Renormalised equations and initialisation. We start with the classical
modulated nonlinear decomposition of the flow. We let

u(t, x) = v(s, y), y =
r

λ(t)
, λ(0) = 1, (3.1)

where λ(0) = 1 is assumed without loss of generality thanks to the scaling symmetry
(1.16). We define the renormalised time

s(t) = s0 +

∫ t

0

dτ

λ2(τ)
, s0 � 1, (3.2)

and obtain the renormalised flow:{
∂sv +Hav = 0, a = −λs

λ ,
v(s, 1) = 0, ∂yv(s, 1) = a.

(3.3)

We now prepare our initial data in the following way:

case k = 0: We first claim that given 0 < b∗ � 1 and ε∗ with

‖ε∗‖2b∗ .
b∗

| log b∗|2
,
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there exists a locally unique decomposition

b∗ηb∗,0 + ε∗ = bηb,0 + ε with (ε, ηb,0)b = 0, |b− b∗| . b∗

| log b∗|2
. (3.4)

Indeed, we define the map

F (b, ε∗) = (b∗ηb∗,0 − bηb,0 + ε∗, ηb,0)b

which satisfies F (b∗, 0) = 0 and

∂bF (b∗, 0) = −(ηb∗,0 + b∗(∂bηb,0)|b=b∗ , ηb∗,0)b∗ = −| log b∗|2

4b∗

[
1 +O

(
1

| log b∗|

)]
< 0

from (2.83) and the degeneracy (2.84) for k = 0. The claim then follows from a
standard application of the implicit function theorem. A Taylor expansion of F
about (b, ε∗) ≡ (b∗, 0) yields the bound

|b− b∗| | log b∗|2

4b∗

[
1 +O

(
1

| log b∗|

)]
. ‖ε∗‖b∗‖ηb∗,0‖b∗ . ‖ε∗‖b∗

| log b∗|
2
√
b∗

and hence

|b− b∗| .
√
b∗

| log b|∗

√
b∗

| log b|∗

which concludes the proof of (3.4).
We therefore pick an initial datum

v∗0 = b∗0ηb∗0 + ε∗0, ‖ε∗0‖2b∗ .
b∗

| log b∗|2

and decompose the solution

v(s, y) = b0(s)ηb0(s),0 + ε(s, y) with b(s) = b0(s) and (ε, ηb,0)b = 0 (3.5)

which makes sense as long as ε(s, y) is small enough in the L2 weighted sense. We
let

ε2 = Hbε (3.6)

and define the energy
E := ‖Hbε‖2b ,

which is a coercive norm thanks to the orthogonality condition (3.5), see Appendix
A. We assume the initial smallness

E(0) ≤ b3(0)

|logb(0)|2
. (3.7)

case k ≥ 1: Let

ck,1 = −k + 1

2k2
, ck,2 = ck,1 −

(k + 1)αk
k

. (3.8)

Then we freeze the explicit value

b(s) :=
1

2ks
+

ck,1
slogs

(3.9)

and the sequence {
bek = k+1

2ks +
ck,2
slogs ,

bej = 0, 0 ≤ j ≤ k − 1,
(3.10)

where the index “e" stands for exact.
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Remark 3.1. Letting

ae =
k + 1

2ks
+

ck,1
slogs

, (3.11)

then (ae, b, bek) satisfy
(bek)s + bbek

[
2k + 2

| log b|

]
+

2(ae−b)bek
| log b| = O

(
1

s2(logs)2

)
bs + 2b(ae − b) = O

(
1

s2(logs)2

)
ae − bek

(
1 + 2αk

| log b|

)
= O

(
1

s(log s)2

)
.

(3.12)

We define

Qβ(y) =

k∑
j=0

bjηb,j(y) (3.13)

and introduce the dynamical decomposition

v(s, y) = Qβ(s) + ε(s, y), (ηb,j(s), ε)b = 0, 0 ≤ j ≤ k. (3.14)

We let again
ε2 = Hbε, E := ‖Hbε‖2b ,

which due to the orthogonality conditions (3.14) is a coercive norm, see Appendix
A. We assume the initial smallness

E(0) ≤ b3(0)

|logb(0)|
. (3.15)

For k ≥ 1, the set of initial data will be built as a codimension k manifold. To this
end and in order to prepare the data, we consider the decomposition

bj(s) = bej(s) + b̃j(s), b̃j(s) =
Vj(s)

s(logs)
3
2

, j = 0, . . . , k. (3.16)

Let the (2× 2)-matrix Ak be given by

Ak :=

(
−1 −1
1 1 + dk

)
, dk :=

1

k(k + 1)
. (3.17)

The matrix Ak is diagonalisable with one strictly positive µk1 > 0 and one strictly
negative eigenvalue µk2 < 0. Let Pk be an orthogonal matrix diagonalizing Ak, i.e.

Ak = P−1
k ΛkPk, Λk :=

(
µk1 0
0 µk2.

)
We define the new unknowns Wk,Wk−1 by setting(

Wk

Wk−1

)
:= Pk

(
Vk
Vk−1

)
(3.18)

and now assume the initial bound

|Wk(0)| ≤ 1 (3.19)

|Wk−1(0)|2 +

k−2∑
j=0

∣∣∣∣Vj(0)

δ

∣∣∣∣2 ≤ K2 (3.20)

for some universal constants K > 0, 0 < δ(k) � 1 to be chosen later. We then
consider the bootstrap bounds

E ≤

{
Db3

|logb|2 for k = 0,
Db3

|logb| for k ≥ 1
(3.21)
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for some large enough universal D = D(k) to be chosen later, and
• for k = 0

0 < b0(s) < b∗ (3.22)
• for k ≥ 1,

|Wk(s)| ≤ K (3.23)
and

|Wk−1(s)|2 +

k−2∑
j=0

∣∣∣∣Vj(s)δ

∣∣∣∣2 ≤ K2 (3.24)

and define

s∗ =

{
sups≥s0{(3.21), (3.22) hold on [s0, s]} for k = 0,
sups≥s0{(3.21), (3.23), (4.13) hold on [s0, s]} for k ≥ 1.

The main ingredient of the proof of theorem 1.1 is the following:

Proposition 3.2 (Bootstrap estimates on b and ε). The following statements hold:
1. Stable regime: for k = 0, s∗ = +∞.
2. Unstable regime: for k ≥ 1, there exist constants K, δ = δ(K) � 1 and
(V0(0), . . . , Vk−2(0),Wk−1(0)) depending on ε(0) satisfying (3.15), (3.19) and (3.20),
such that s∗ = +∞.

Remark 3.3. Let us observe that our set of initial data is non empty and contains
compactly supported arbitrarily small data in Ḣ1, see Appendix C.

Remark 3.4. The proof of the Proposition 3.2 is presented in section 3.5.

From now on and for the rest of this section, we study the flow in the bootstrap
regime s ∈ [s0, s

∗). Note in particular the rough bounds

|bk| . b, |bj | .
b

|logb|
, 0 ≤ j ≤ k − 1 and E ≤ b3√

|logb|
(3.25)

for s0 ≥ s0(K) large enough.

3.2. Extraction of the leading order ODE’s driving the melting. We derive
in this section the main dynamical constraint on the parameters (a, b, (bj)0≤j≤k)
which lead to the leading order modulation equations, and are a combination of the
linear diagonalisation of the Hb operator and the nonlinear boundary conditions.

We start with the constraint induced by the boundary conditions.

Lemma 3.5 (Boundary conditions). There holds:

a =

k∑
j=0

bj

[
1 +

2αj
|logb|

]
+O

(
b

|logb|2
+

√
E

|logb|
√
b

)
, (3.26)

ε2(1) = −a(a− b), (3.27)

∂yε2(1) = −as −
k∑
j=0

λb,jbbj

[
1 +

2αj
|logb|

]
+O

(
b2

|logb|2

)
. (3.28)

Proof of Lemma 3.5. We compute from (2.77), (2.78), (2.28) and recalling the def-
inition (1.15):

∂yηb,j(1) = 1 +

j−1∑
i=0

2

(j − i)|logb|
+O

(
1

|logb|2

)
= 1 +

2αj
|logb|

+O

(
1

|logb|2

)
. (3.29)
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This implies that

∂yQβ(1) =
k∑
j=0

bj∂yηb,j(1) =
k∑
j=0

bj

[
1 +

2αj
|logb|

]
+O

(
b

|logb|2

)
.

Since v = Qβ + ε, it follows that

εy
∣∣
y=1

= vy
∣∣
y=1
− ∂yQβ

∣∣
y=1

= −λs
λ
− ∂yQβ(1)

= a−
k∑
j=0

bj

[
1 +

2αj
|logb|

]
+O

(
b

|logb|2

)
,

which together with (A.10) yields (3.26). From (3.3), v(s, 1) = 0 and ∂yv(s, 1) =

−λs
λ = a:

0 = Hav(1) = (Hbv + (a− b)Λv)(1) = ε2(1) + a(a− b),
this is (3.27). Now from ∂yv(s, 1) = a, we have

∂s∂yv(s, 1) = as.

On the other hand, taking ∂y of (3.3), we have:

0 = ∂s∂yv + ∂y(Hbv + (a− b)Λv) = ∂s∂yv + ∂yε2 + ∂yHbQβ + (a− b)y∆v.

We evaluate the above identity at y = 1. From (3.3) and ∂sv(s, 1) = 0, ∂yv(s, 1) = a:

∆v(1) = aΛv(1) = a2.

By construction,

∂yHbQβ =
k∑
j=0

λb,jbbj∂yηb,j ,

and hence:

as + ∂yε2(1) +
k∑
j=0

λb,jbbj

[
1 +

2αj
|logb|

]
+ a2(a− b) = O

(
b2

|logb|2

)
.

We inject into the estimate the rough bound

|a| . b (3.30)

which follows from (3.25), (3.26) and (3.28) is proved. �

We now show how Qβ is prepared to generate an approximate solution to (3.3)
with the suitable leading order dynamical system for (β, λ) induced by the spectral
diagonalisation of Hb.

Proposition 3.6 (Leading order modulation equations). Under the a priori bounds
of Proposition 3.2, there holds

∂sQβ +HaQβ = Mod + Ψ (3.31)

where we defined the modulation vector

Mod :=

[
(bk)s + bbkλb,k +

2(a− b)bk
|logb|

+
kbk
b

Φ

]
ηb,k (3.32)

+

k−1∑
j=0

[
(bj)s + bbjλb,j +

2(a− b)bj
|logb|

+
jbj − (j + 1)bj+1

b
Φ

]
ηb,j ,

the deviation
Φ := bs + 2b(a− b), (3.33)
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and the remaining error satisfies the bound:

‖Ψ‖b +
1√
b
‖∂yΨ‖b +

1

b
‖HbΨ‖b .

b
3
2

|logb|
+
|Φ|√
b
. (3.34)

Proof of Proposition 3.6. By definition

Ha = Hb + (a− b)Λ
and we therefore compute from (3.13):

∂sQβ(s)(y) +HaQβ =

k∑
j=0

[
(bj)sηb,j + bs

bj
b
b∂bηb,j + bbjλb,jηb,j + (a− b)bjΛηb,j

]

=

k∑
j=0

{
[(bj)s + bbjλb,j ]ηb,j + (a− b)bj [Ληb,j − 2b∂bηb,j ] +

bj
b
b∂bηb,jΦ

}

=
k∑
j=0

{[
(bj)s + bbjλb,j +

2(a− b)bj
|logb|

]
ηb,j +

jbjΦ

b
[ηb,j − ηb,j−1]

+ (a− b)bj [Ληb,j − 2b∂bηb,j −
2

|logb|
ηb,j ] +

bj
b

Φ [b∂bηb,j − j(ηb,j − ηb,j−1)]

}
.

The bounds (2.82), (2.84), (3.25), (3.30) now yield (3.34). �

Remark 3.7. The presence of the |logb| in the denominator on the right-hand side
of (3.34) makes it a true error term with respect to our bootstrap regime, and
this term is one of the leading order errors when closing the energy estimates in
sections 3.3 and 3.4.

3.3. Modulation equations. From (3.3), (3.31) we obtain the equation satisfied
by the perturbation ε :

∂sε+Haε = F (3.35)
where

F = −Mod−Ψ. (3.36)
The nonlinear decomposition and the orthogonality conditions (3.14) generate a
differential equation for the modulation vector β = (bj)0≤j≤k in the setting of the
bootstrap lemma 3.2 which we now compute exactly.

Lemma 3.8 (Modulation equations for bj). 1. k = 0: the b law is given by:∣∣∣∣bs +
2b2

|logb|

∣∣∣∣ . b2

|logb|2
(3.37)

2. k ≥ 1: the modulation dynamical system for the vector (b̃j)0≤j≤k is given by∣∣∣∣∣∣(b̃k)s +
1

s

b̃k + (k + 1)

k∑
j=0

b̃j

∣∣∣∣∣∣+

∣∣∣∣∣∣(b̃k−1)s +
1

s

k − 1

k
b̃k−1 − (k + 1)

k∑
j=0

b̃j

∣∣∣∣∣∣
+

k−2∑
j=0

∣∣∣∣(b̃j)s +
j

ks
b̃j

∣∣∣∣ . b2

|logb|2
+

√
b
√
E

| log b|
. (3.38)

Remark 3.9. The constants in Lemma 3.8 are independent of D,K, see also Re-
mark 3.13. We need to keep track of the coupling between the modes in (3.38) in
order to study the linearised system close to bje and close the shooting argument,
see (3.59).
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Proof of Lemma 3.8. This lemma follows from the orthogonality conditions (3.14)
and the boundary conditions of lemma 3.5.

step 1 Computation of Mod. The Mod estimate follows from the sharp choice of
orthogonality conditions (3.14). Indeed, for any 0 ≤ j ≤ k, we take the scalar
product of (3.35) with ηb,j and use the orthogonality condition (3.14) to compute:

−(ε, ∂sηb,j)b +
bs
2

(ε, |y|2ηb,j)b = (F , ηb,j)− (a− b)(Λε, ηb,j).

We now integrate by parts and use (3.14) again to compute:

−(ε, ∂sηb,j)b +
bs
2

(ε, |y|2ηb,j)b + (a− b)(Λε, ηb,j)

= (ε,−bs
b
b∂bηb,j +

bs
2
|y|2ηb,j + (a− b)[−Ληb,j + by2ηb,j ])

= (ε,
Φ

b

[
−b∂bηb,j +

by2

2
ηb,j

]
+ (a− b)[2b∂bηb,j − Ληb,j ])

We evaluate all terms in the above expression. From (2.79), (2.80), (A.10):

|(ε, Φ

b

[
−b∂bηb,j +

by2

2
ηb,j

]
)| . |Φ|

b
‖ε‖b
| log b|√

b
.
|Φ|| log b|

b2

√
E√
b
.

Similarly from (2.82), (2.83), and (3.30):

|(ε, (a− b)[2b∂bηb,j − Ληb,j ])| .
|b− a|√

b
‖ε‖b .

√
E√
b
.

We now estimate the F terms given by (3.36). From (3.34), (2.83):

|(Ψ, ηb,j)b| . ‖Ψ‖b‖ηb,j‖b .

[
b

3
2

|logb|
+
|Φ|√
b

]
|logb|√

b
. b+

|Φ||logb|
b

.

The collection of above bounds together with (2.83) and (3.36) yields

|(Mod, ηb,j)b|
(ηb,j , ηb,j)b

.
b

|logb|2

[
b+
|Φ||logb|

b
+

[
1 +
|Φ|| log b|

b2

] √
E√
b

]
. (3.39)

We now argue differently depending on k.

step 2 Case k = 0. In this case, b = b0 and thus from (3.26):

Φ = (b0)s + 2b0(a− b0) = bs +O

(
b2

| log b|2
+

√
b
√
E

| log b|

)
.

This together with (3.25) implies the bound:

|Φ| . b2

| log b|
+ |bs| (3.40)

and thus (3.39), (3.32), and (3.26) imply:

|bs + b2λb,0| .
b2

|logb|2
+
|bs|
|logb|

+

[
1 +
|bs|| log b|

b2

] √
b
√
E

|logb|2
. (3.41)

Using the rough bound (3.25), this gives:∣∣∣∣bs [1 +O

(
1

|logb|

)]
+

2b2

|logb|

[
1 +O

(
1

|logb|

)]∣∣∣∣ . b2

|logb|2
(3.42)
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and (3.37) follows.

step 3 Case k ≥ 1. In this case, we have from (3.9):

|bs| . b2

and we therefore need to estimate Φ:

Φ = bs + 2b(a− b) = bs + 2b

a− k∑
j=0

bj

(
1 +

2αj
|logb|

)
+ 2b

k∑
j=0

(bj − bej)
(

1 +
2αj
|logb|

)
+ 2b

[
bek

(
1 +

2αj
|logb|

)
− b
]

= 2b
k∑
j=0

b̃j +O

(
b2

|logb|2
+

√
b
√
E

| log b|

)
(3.43)

where we used (3.26), (3.12) and the bootstrap bounds (3.23), (4.13) in the last
step. This implies in particular the rough bound

|Φ| ≤ b2

| log b|
(3.44)

From (3.39) it follows that:

|(Mod, ηb,j)b|
(ηb,j , ηb,j)b

.
b2

|logb|2
+

√
b
√
E

|logb|2
.

b2

| log b|2
. (3.45)

We now recall (3.11) and compute from (3.26), (3.12):

a =
k∑
j=0

(bej + b̃j)

[
1 +

2αj
| log b|

]
+O

(
b

| log b|2
+

√
E

| log b|
√
b

)

= ae +
k∑
j=0

b̃j +O

(
b

| log b|2
+

√
E

| log b|
√
b

)
. (3.46)

We now use (3.43), (3.12), (3.46) to compute explicitly:

(bk)s + bbkλb,k +
2(a− b)bk
| log b|

+
kbk
b

Φ

= (bek + b̃k)s + b(bek + b̃k)

[
2k +

2

| log b|
+O

(
1

| log b|2

)]
+

2(ae − b)(bek + b̃k)

| log b|

+
2(a− ae)bk
| log b|

+ k(bek + b̃k)

2

k∑
j=0

b̃j +O

(
b

|logb|2
+

√
E√

b| log b|

)
= (b̃k)s +

1

s

b̃k + (k + 1)

k∑
j=0

b̃j

+O

(
b2

|logb|2
+

√
b
√
E

|logb|

)
.
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similarly for j = k − 1:

(bk−1)s + bbk−1λb,k−1 +
2(a− b)bk−1

|logb|
+

(k − 1)bk−1 − kbk
b

Φ

= (b̃k−1)s + bb̃k−1

[
2(k − 1) +

2

| log b|
+O

(
1

| log b|2

)]
+

2(ae − b)b̃k−1

|logb|

+
2(a− ae)b̃k−1

|logb|
+
[
(k − 1)b̃k−1 − k(bek + b̃k)

]2
k∑
j=0

b̃j +O

(
b

|logb|2
+

√
E√

b| log b|

)
= (b̃k−1)s +

1

s

k − 1

k
b̃k−1 − (k + 1)

k∑
j=0

b̃j

+O

(
b2

|logb|2
+

√
b
√
E

|logb|

)
.

Finally for 0 ≤ j ≤ k − 2:

(bj)s + bbjλb,j +
2(a− b)bj
|logb|

+
jbj − (j + 1)bj+1

b
Φ

= (b̃j)s +
j

ks
b̃j +O

(
b2

|logb|2
+

√
b
√
E

|logb|

)
.

Injecting the above bounds into (3.45) yields (3.38). �

3.4. Energy bound. We now arrive at the second main feature of the analysis
which is the derivation of suitable energy bounds for ε. The key here is the dissi-
pation embedded in the problem and its geometry which feeds back into the energy
estimates through the boundary conditions. A careful analysis of this interaction
will allow us to close the energy estimates.

Proposition 3.10 (Energy bound). There holds the pointwise control:
1. for k = 0:

1

2

d

ds

{
E +O

(
b3

|logb|2

)}
+ cbE . b4

|logb|2
; (3.47)

2. for k ≥ 1:

1

2

d

ds

{
E +O

(
b3

|logb|5/4

)}
+ [3k + c] bE . Kb4

|logb|
(3.48)

for some universal constant c > 0.

Remark 3.11. The sharp coercivity constant 3k in (3.48) which follows from the
sharp Poincaré estimate (A.3) is essential to close the energy bound, see (3.58).

Proof of Proposition 3.10. We compute the energy identity for E and estimate all
terms.

step 1 Algebraic energy identity. Recalling from (3.6) that ε2 = Hbε, it follows
from (3.35):

∂sε2 +Haε2 = [∂s,Hb]ε+ [Ha,Hb]ε+HbF .

To compute the commutators [∂s,Hb], [Ha,Hb] we use

[∆,Λ] = 2∆ (3.49)
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which yields:

[∂s,Hb]ε+ [Ha,Hb]ε = bsΛε+ [Hb + (a− b)Λ,Hb]ε = bsΛε+ (a− b)[Λ,−∆]

= bsΛε+ 2(a− b)∆ε = (bs + 2b(a− b))Λε− 2(a− b)[−∆ε+ bΛε]

= ΦΛε+ 2(b− a)ε2.

Hence the ε2 equation:

∂sε2 +Haε2 = ΦΛε+ 2(b− a)ε2 +HbF . (3.50)

We now compute the modified energy identity:

1

2

d

ds
E =

1

2

d

ds

∫
y≥1

ε2
2e
− by

2

2 ydy = −bs
4

∫
y≥1

y2|ε2|2e−
b|y|2

2 ydy + (∂sε2, ε2)b

= −bs
4
‖yε2‖2b + (ΦΛε+ 2(b− a)ε2 +HbF −Haε2, ε2)b.

We carefully integrate by parts to compute:

−
∫
y≥1

ε2Haε2e
− by

2

2 ydy = −
∫
y≥1

ε2[Hbε2 + (a− b)Λε2]e−
by2

2 ydy

=

∫
y≥1

∂y(ρby∂yε2)ε2dy + (b− a)

∫
ε2y∂yε2e

− by
2

2 ydy

= −ρb(1)ε2(1)∂yε2(1)−
∫
y≥1
|∂yε2|2e−

by2

2 ydy

−b− a
2

ρb(1)ε2
2(1)− b− a

2

∫
y≥1

ε2
2

[
2− by2

]
e−

by2

2 ydy

= −‖∂yε2‖2b + (a− b)‖ε2‖22 −
b(a− b)

2
‖yε2‖2b − ρb(1)ε2(1)

[
∂yε2 +

b− a
2

ε2

]
(1).

This yields the algebraic energy identity:

1

2

d

ds
E = −‖∂yε2‖2b − (a− b)‖ε2‖22 −

Φ

4
‖yε2‖2b − ρbε2

[
∂yε2 +

b− a
2

ε2

]
(1)

+ Φ(Λε, ε2)b + (HbF , ε2)b. (3.51)

We now estimate all terms in the right-hand side of (3.51).

step 2 Nonlinear estimates. From (A.10), (3.44), (3.25):

|Φ||(Λε, ε2)b| .
b2

|logb|

√
E
b

√
E . b E

|logb|
.

Moreover from (3.14) (HbMod, ε2)b = 0, and from (3.34), (3.44):

|(HbΨ, ε2)b . b
√
E b

3
2

|logb|
.

We now estimate from (A.12), (3.44), (3.27), (3.30):

|Φ‖yε2‖2b .
b2

|logb|

[
‖∂yε2‖2b
b2

+ b3
]
.
‖∂yε2‖2b
|logb|

+
b4

|logb|2
.

It now remains to treat the boundary term in (3.51) and we argue differently de-
pending on k.
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step 3 Conclusion for k = 0. We compute from (3.28), (3.37):

∂yε2(1) = −as −
2b2

|logb|
+O

(
b2

|logb|2

)
= −(a− b)s − (bs +

2b2

|logb|
) +O

(
b2

|logb|2

)
= −(a− b)s +O

(√
b
√
E

|logb|
+

b2

|logb|2

)

and hence using (3.27):

ρb(1)ε2(1)

[
∂yε2 +

b− a
2

ε2

]
(1)

= e−
b
2a(a− b)

[
−(a− b)s +

a(a− b)2

2
+O

(√
b
√
E

|logb|
+

b2

|logb|2

)]

= e−
b
2
[
−(a− b)2(a− b)s − b(a− b)(a− b)s

]
+O

(
b
b

3
2

√
E

|logb|
+

b4

|logb|2

)

= − d

ds

{
e−

b
2

(a− b)3

6
+ e−

b
2
b(a− b)2

2

}
− bse

− b
2

2

(a− b)3

6

+e−
b
2
b(a− b)2

2

[
−bs

2
+
bs
b

]
+O

(
b
b

3
2

√
E

|logb|
+

b4

|logb|2

)

= − d

ds

{
e−

b
2

(a− b)3

6
+ e−

b
2
b(a− b)2

2

}
+O

(
b
b

3
2

√
E

|logb|
+

b4

|logb|2
+
b2(a− b)2

|logb|

)
.

We now observe from (3.26), (3.25) that

|a− b| . b

|logb|
, (3.52)

and hence the collection of above bounds yields the control:

1

2

d

ds

{
E +O

(
b3

|logb|2

)}
= −‖∂yε2‖2b +O

(
‖∂yε2‖2b + ‖ε2‖2b

|logb|
+ b

b
3
2

√
E

|logb|
+

b4

|logb|2

)
.

We now inject (3.27), (A.11) with k = 0 and (3.47) follows.

step 4 Conclusion for k ≥ 1. Let

ã = ae +
k∑
j=0

b̃j
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be the leading order part of a, see (3.46). Then from (3.38), (4.13), (3.12):

ãs +

k∑
j=0

λb,jbbj

[
1 +

2αj
|logb|

]

= (ae)s +

k∑
j=0

(b̃j)s +

k∑
j=0

λb,jb(b
e
j + b̃j)

[
1 +

2αj
|logb|

]

=

(
ae − bek

[
1 +

2αk
| log b|

])
s

+

(
1 +

2αk
| log b|

)
[(bek)s + λb,jbb

e
k] +O

(
b2

| log b|2

)
+ O

(
Kb2

|logb|3/2
+

√
b
√
E

|logb|

)
= −2

(ae − b)bke
| log b|

+O

(
Kb2

|logb|3/2
+

√
b
√
E

|logb|

)

= − k + 1

2ks2| log s|
+O

(
Kb2

|logb|3/2
+

√
b
√
E

|logb|

)
.

We therefore estimate using Lemma 3.5:

−ρbε2

[
∂yε2 +

b− a
2

ε2

]
(1)

= −e−
b
2a(a− b)

as +
k∑
j=0

λb,jbbj

[
1 +

2αj
|logb|

]
+O

(
b2

|logb|2

)
= −e−

b
2a(a− b)

[
(a− ã)s −

k + 1

2ks2logs
+O

(
Kb2

|logb|3/2
+

√
b
√
E

|logb|

)]

= −e−
b
2a(a− b)(a− ã)s + e−

b
2a(a− b) k + 1

2ks2logs
+O

(
Kb4

|logb|3/2
+
bb

3
2

√
E

|logb|

)
= −e−

b
2 (a− ã)s

[
(a− ã)2 + (a− ã)(2ã− b) + ã(ã− b)

]
+O(

b4

|logb|
) +O

(
Kb4

|logb|3/2
+
bb

3
2

√
E

|logb|

)

= − d

ds

{
−e−

b
2

[
(a− ã)3

3
+

(a− ã)2

2
(2ã− b) + (a− ã)ã(ã− b)

]}
+O

(
b4

|logb|
+

Kb4

|logb|3/2
+
bb

3
2

√
E

|logb|
+ b3|a− ã|

)
.

We have the bound from (3.46):

a− ã = O

(
b

|logb|
+

√
E

|logb|
√
b

)
.

Injecting the above bounds into (3.51) and using the rough bound (3.25) we obtain
the bound:

1

2

d

ds

{
E +O

(
b3

|logb|

)}
= −‖∂yε2‖2b − (a− b)‖ε2‖22

+O

(
‖∂yε2‖2b + ‖ε2‖2b

|logb|
+ b

b
3
2

√
E

|logb|
+

b4

|logb|

)
.



40 M. HADŽIĆ AND P. RAPHAËL

We now estimate from (3.46):

a− b =
1

2s
+O

(
b

|logb|

)
= kb+O

(
b

|logb|

)
(3.53)

and (3.48) now follows from (A.11) with (3.27). �

3.5. Proof of Proposition 3.2. We are now in position to give a sharp descrip-
tion of the singularity formation for our set of initial data. The key is to close the
bootstrap bounds of Proposition 3.2. We distinguish the cases k = 0 and k ≥ 1.

step 1 Closing the bootstrap bounds. Our goal is to show that the bounds (3.21),
(3.22) improve in the case k = 0 and similarly for the bounds (3.21), (3.23), (4.13)
in the case k ≥ 1. The improvement of the energy bound (3.21) will follow from
proposition 3.10, while the bounds (3.23), (4.13) will be improved for a suitable set
of initial data constructed via a topological argument.

k = 0. First observe that (3.37) ensures

bs < 0 and hence b(s) < b0 ≤ b∗.
From (3.52),

λs
λ

+ b = b− a = O

(
b

|logb|

)
(3.54)

and hence:

logλ(s) = −
∫ s

0
b

[
1 +O

(
1

|logb|

)]
dσ < +∞ implies λ(s) > 0. (3.55)

We now rewrite (3.48) (with k = 0) as

d

ds

{
1

2
E +O

(
b3

|logb|2

)}
+ bc

[
E +O

(
b3

|logb|2

)]
.

b4

|logb|2

with c > 0. Using (3.54) we obtain:

d

ds

{
1

λc

[
1

2
E +O

(
b3

|logb|2

)]}
.

b4

λc|logb|2
. (3.56)

We now integrate in time. To evaluate the right hand side, we integrate by parts
using (3.37):∫ s

0

b4

λc|logb|2
dσ =

∫ s

0

[
−λs
λ

b3

λc|logb|2
+O

(
b4

|logb|3

)]
dσ

=

[
1

c

b3

λc|logb|2

]s
0

− 1

c

∫ s

0

bs
λc

[
3b2

|logb|2
+

2b2

|logb|3

]
dσ +

∫ s

0
O

(
b4

λc|logb|3

)
dσ.

Using the smallness of b we get:∫ s

0

b4

λc|logb|2
dσ .

b3

λc|logb|2
(s).

Hence (3.1), (3.15) and the time integration of (3.56) ensure:

E(s) .
b3

|logb|2
(s) + λc(s)

[
E(0) +

b30
|logb0|2

]
.

b3

|logb|2
(s) + λc(s)

b30
|logb0|2

. (3.57)

We moreover estimate from (3.37):

d

ds

{
b3

λc|logb|2

}
=

b3

λc|logb|2

[
3bs
b

+
2bs

b|logb|
− cλs

λ

]
=

b3

λc|logb|2

[
cb+O

(
b

|logb|2

)]
> 0
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and hence using (3.1) again:

λc(s)
b30

|logb0|2
≤ λc(s0)

b3

|logb|2
(s)

which together with (3.55) implies b(s) > 0 and closes the bound (3.22). Injecting
this into (3.57) improves the energy bound (3.21) for D universal large enough,
which concludes the proof of Proposition 3.2 for k = 0.

k ≥ 1. This case requires a shooting argument to build the nonlinear manifold of
perturbations (Vj)0≤j≤k−1. We first rewrite (3.48) using (3.9):

d

ds

{
E +O

(
b3

|logb|

)}
+
[
3 +

c

k

] 1

s
E . K

s4|logs|
.

Using (3.15), an integration-in-time yields:

E(s) ≤ s
3+ c

k
0

s3+ c
k

[
E0 +

b30
| log b0|

]
+

b3

| log b|
+

1

s3+ c
k

∫ s

s0

Kσ3+ c
k

σ4|logσ|
dσ

.
K

s3(logs)
. K

b3

|logb|
. (3.58)

This means that there exists a C̃ > 0 universal large enough such that if D = C̃K,
the bound (3.21) gets improved, and we assume it now. We inject this relation into
(3.38) and conclude:∣∣∣∣∣∣(b̃k)s +

1

s

b̃k + (k + 1)
k∑
j=0

b̃j

∣∣∣∣∣∣+

∣∣∣∣∣∣(b̃k−1)s +
1

s

k − 1

k
b̃k−1 − (k + 1)

k∑
j=0

b̃j

∣∣∣∣∣∣
+

k−2∑
j=0

∣∣∣∣(b̃j)s +
j

ks
b̃j

∣∣∣∣ .
√
Kb2

|logb|3/2
.

√
K

s2(logs)3/2
.

Equivalently using the change of variables (3.16):∣∣∣∣∣(Vk)s +
(k + 1)

∑k
j=0 Vj

s

∣∣∣∣∣+

∣∣∣∣∣∣(Vk−1)s +
1

s

−1

k
Vk−1 − (k + 1)

k∑
j=0

Vj

∣∣∣∣∣∣
+

k−2∑
j=0

∣∣∣∣(Vj)s +
j − k
ks

Vj

∣∣∣∣ .
√
K

s
. (3.59)

The bootstrap bound (4.13) implies that |Vj | ≤ δK, j = 0, . . . k − 2. Therefore,
from the first two bounds in (3.59) we conclude that for a sufficiently large K the
following bound holds∣∣∣∣(Vk)s +

(k + 1)

s
(Vk + Vk−1)

∣∣∣∣+

∣∣∣∣(Vk−1)s −
k + 1

s
(Vk + (1 + dk)Vk−1)

∣∣∣∣ . δK

s
,

where we remind the reader that dk = 1
k(k+1) . Recalling the definition (3.17) of the

matrix Ak, the above inequalities can be succinctly rewritten in the form

∂s

(
Vk
Vk−1

)
=
k + 1

s
Ak

(
Vk
Vk−1

)
+O

(
δK

s

)
,

which in turn leads to∣∣∣∣(Wk)s +
(k + 1)µk1

s
Wk

∣∣∣∣+

∣∣∣∣(Wk−1)s +
(k + 1)µk2

s
Wk−1

∣∣∣∣ . δK

s
, (3.60)
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where Wk,Wk−1 are defined in (3.18) and µk2 < 0 < µk1 are the eigenvalues of Ak.
This first yields the control of the stable directionWk, since after integrating-in-time
the first bound in (3.60), we arrive at

|Wk(s)| ≤ |Wk(0)|s
(k+1)µk1
0

s(k+1)µk2
+

1

s(k+1)µk1

∫ s

s0

δKσ(k+1)µk1

σ
dσ ≤ 1 + CδK,

where we used (3.19) and the positivity of µk1. This improves (3.23) for K suffi-
ciently large and δ < 1

2C . We now argue by contradiction and assume that for
all (V0

δ , . . . ,
Vk−2

δ ,Wk−1) ∈ BK(Rd−1), the bootstrap time s∗ is finite, so that from
(4.13):

|Wk−1(s∗)|2 +

k−2∑
j=0

∣∣∣∣Vj(s∗)δ

∣∣∣∣2 = K2. (3.61)

We claim that this contradicts the Brouwer fixed point theorem. Indeed, us-
ing (3.59), (3.60), and the strict negativity of µk2:

1

2

d

ds

|Wk−1(s)|2 +

k−2∑
j=0

∣∣∣∣Vj(s)δ

∣∣∣∣2
 (s∗)

=
1

s∗

|µk2|(k + 1)W 2
k−1(s∗) +

k−2∑
j=0

k − j
δ2k

V 2
j (s∗) +O

(
δK2 +K3/2

)
≥ c

s∗
[
K2 − CδK2

]
,

for some universal constants c, C > 0. Hence

d

ds

|Wk−1(s∗)|2 +

k−2∑
j=0

∣∣∣∣Vj(s∗)δ

∣∣∣∣2
 (s∗) > 0 (3.62)

for 0 < δ � 1 universal small enough in (4.13). Let

Ṽ = (
V0

δ
, . . . ,

Vk−2

δ
,Wk−1),

then this implies from standard from standard argument that the map

BK(Rd−1) 3 Ṽ (0) 7→ s∗
(
Ṽ (0)

)
is continuous, and hence the map

BK(Rd−1)→ BK(Rd−1)

Ṽ (0) 7→ Ṽ
[
s̃∗(Ṽ (0))

]
is continuous and the identity on the boundary sphere Sd−1(K), a contradiction
to Brouwer’s fixed point theorem. This concludes the proof of Proposition 3.2 for
k ≥ 1.

Remark 3.12. Note that (V0(ε0), . . . .Vk−2(ε0),Wk−1(ε0)) are by construction lying
on a nonlinear codimension k manifold of initial data. The fact that the set of such
initial data forms a Lipschitz manifold in the H2 topology reduces to a local unique-
ness problem in the class of solutions satisfying the a priori bounds of Proposition
3.2. Such a uniqueness problem has been recently solved in a related framework
in the more complicated case of the wave equation [8] and the KdV equation [42],
see also [12, 10], and a completely analogous approach can be applied here. We
therefore omit the details.
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Remark 3.13. Note that the presence of
√
K on the right-hand side of (3.59)

is essential to the closure of the estimates. It originates from the bound (3.38),
where we carefully tracked the constants and proved that only

√
E appears on the

right-hand side of (3.38).

step 2 Global H2 control. From Proposition 3.2, the solution remains in the boot-
strap regime of Proposition 3.2 as long as it exists in H2 which requires: ∀s ≥ 0,

‖u(s)‖L2(|x|≥λ(s)) + ‖∇u(s)‖L2(|x|≥λ(s)) + ‖∆u(s)‖L2(|x|≥λ(s)) < +∞ (3.63)

and
λ(s) > 0. (3.64)

In the case k = 0, the positivity of λ follows from the time integration of (3.37)
which implies

|logλ(s)| .
∫ s

0
b

(
1 +O(

1

|logb|
)

)
dσ < +∞,

while in the case k ≥ 1 we use a = −λs/λ and the estimate (3.53), which implies
the above bound again. The global L2-bound follows from the basic dissipation law
satisfied by the solutions of (1.1):

1

2

d

dt
‖u‖2L2(Ω(t)) + ‖∇u‖2L2(Ω(t)) = 0,

which immediately implies that ‖u(s)‖L2(|x|≥λ(s)) < ∞. The global Ḣ1-bound fol-
lows directly from the dissipation of the Dirichlet energy (1.4). For the global
Ḣ2-bound, we take a cut off function χ = 0 for r ≤ 1 and r = 1 for r ≥ 2, then the
weighted control (3.21) ensures

‖∆u(s)‖L2(λ(s)≤r≤2) < C(s) < +∞ for s ≥ 0

since the exponential weight is uniformly bounded from below and above in λ(s) ≤
r ≤ 2. To obtain the bound in the region r ≥ 2 we compute:

1

2

d

dt

∫
χ|∆u|2 =

∫
χ∆∂tu∆u =

∫
χ∆2u∆u

= −
∫
χ|∇∆u|2 +

1

2

∫
∆χ|∆u|2 (3.65)

and hence∫
χ|∆u|2(s) . ‖χ∆u(0)‖2L2 +

∫ s

0

1

λ2(σ)
‖∆u(s)‖2L2(λ(σ)≤r≤2)dσ < +∞.

Hence s∗ = +∞ which concludes the proof of Proposition 3.2.

3.6. Proof of Theorem 1.1. We are now in position to conclude the proof of
Theorem 1.1.

step 1 Finite time melting. We claim that the solution melts in finite time with the
law (1.5), (1.6) as a consequence of the time integration of the modulation equa-
tions.
case k = 0: From (3.37), (3.21), we obtain the following pointwise differential in-
equality for b :

bs +
2b2

|logb|
= O

(
b2

|logb|2

)
. (3.66)
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We now follow [59, 62] to derive the melting speed of λ and sketch the proof for the
sake of clarity. Multiplying (3.66) by logb

b2
we obtain

bslogb

b2
= 2 +O

(
1

|logb|

)
.

The primitive of logu
u2 is − logu

u −
1
u and therefore

logb

b
+

1

b
= −2s+O(

∫ s

0

1

|logb|
dτ)

which implies
logs

s
. b .

logs

s
.

Hence:

b = −1 + logb

2s

[
1 +O

(
1

s

∫ s

0

1

|logb|
dτ

)]
= −1 + logb

2s

[
1 +O

(
1

|logb|

)]
(3.67)

Taking the log yields

logb = −log2− logs+ log(−logb) +O

(
1

|logb|

)
which reinserted into (3.67) ensures:

b =
logs

2s

[
1 +O

(
loglogs

logs

)]
, logb = loglogs− log2− logs+O

(
loglogs

logs

)
. (3.68)

Injecting this into (3.67) again yields:

b = −
−logs+ loglogs− log2 + 1 +O

(
loglogs

logs

)
2s

[
1 +O

(
1

logs

)]
=

logs

2s
− loglogs

2s
+O

(
1

s

)
. (3.69)

Recalling from (3.26) that

b = −λs
λ

+O

(
b

|logb|2

)
, (3.70)

we conclude that

−(logλ)s =
logs

2s
− loglogs

2s
+O(

1

s
),

which gives

−logλ =
1

4
(logs)2 − 1

2
logsloglogs+O(logs),

which in turn gives

−2log(λ2) = (logs)2

[
1− 2

loglogs

logs
+O

(
1

logs

)]
.

This leads to √
−2log(λ2) = logs

[
1− loglogs

logs
+O

(
1

logs

)]
= logs− loglogs+O(1) (3.71)

from which
e
√
−2log(λ2) =

s

logs
eO(1)
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and hence from (3.70), (3.69):

−λλt = −λs
λ

= b+O

(
1

slogs

)
=

logs

2s
eO(1) = e−

√
2|logλ2|+O(1).

This yields the pointwise ode:

−e
√

2|logλ2|+O(1)(λ2)t = 1

which integration in time yields:

λ2(t) = (T − t)e−
√

2|log(T−t)|+O(1) (3.72)

and (1.5) is proved.

case k ≥ 1: We estimate from (3.21), (3.8):

−λs
λ

= a =
k + 1

2ks
− k + 1

2k2slogs
+O

(
1

s(logs)3/2

)
(3.73)

and hence there exists c∗ = c∗(u0) such that

−logλ(s) =
k + 1

2k
logs− k + 1

2k2
loglogs+ c∗ + os→+∞(1)

or equivalently:

λ(s) = c(u0)(1 + o(1))
(logs)

k+1

2k2

s
k+1
2k

, c(u0) > 0. (3.74)

We conclude that

T =

∫ +∞

0
λ2(s)ds < +∞

and

T − t =

∫ +∞

s
λ2(σ) dσ =

∫ +∞

s
(c2 + o(1))

(logσ)
k+1

k2

σ
k+1
k

dσ = (kc2 + o(1))
(logs)

k+1

k2

s
1
k

.

This implies
1

s
=

(T − t)k

|log(T − t)|
k+1
k

(c+ o(1)) (3.75)

which together with (3.74) yields the melting law:

λ(t) = (c∗(u0) + ot→T (1))
(T − t)

k+1
2

|log(T − t)|
k+1
2k

,

this is (1.6).

step 2 Non-concentration of the energy. Pick R > 0 and a cut-off function

χR(x) = χ
( x
R

)
=

{
0 for x ≤ R
1 for x ≥ 2R.

Then for t sufficiently close to the melting time T :
1

2

d

dt

∫
χR|∇u|2 dx =

∫
χR∇u · ∇∂tu dx =

∫
χR∇u · ∇∆u dx

= −
∫

∆u [χR∆u+∇χR · ∇u] dx

= −
∫
χR|∆u|2 +

1

2

∫
|∇u|2r ∂

∂r

(
χ′R
r

)
dx (3.76)
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and hence the uniform bound on the Dirichet energy ensures:

∀R > 0,

∫ T

0
χR|∆u|2dx < +∞.

Hence for all 0 < τ < T − t,∫
χR|∇u(t+ τ)−∇u(t)|2dx =

∫
χR

∣∣∣∣∫ t+τ

t
(∂t∇u)(σ, x)dσ

∣∣∣∣2 dx
. τ

∫ T

0
χR|∂t∇u|2dx . τ

∫ T

0
χR|∇∆u|2dx ≤ C(R)τ,

where the last estimate follows by integrating-in-t equation (3.65) with χ = χR and
using (3.76). Hence for all R > 0, ∇u(t, x) is a Cauchy sequence in L2(|x| ≥ 2R) as
t → T . We conclude from a simple diagonal extraction argument that there exists
u∗ ∈ Ḣ1(R2) such that

∀R > 0, ∇u(t)→ ∇u∗ in L2(|x| ≥ 2R) as t→ T. (3.77)

Moreover, the uniform bound on the Dirichlet energy (1.4) ensures

∇u∗ ∈ L2, ∇u(t) ⇀ ∇u∗ weakly in L2 as t→ T. (3.78)

Pick now

R(t) =

{
λ(t)B(t), B2(t)b(t) = 1

2 |logb(t)| for k = 0
λ(t)B(t), B2(t)a(t) = λ(t)|loga(t)| for k ≥ 1.

(3.79)

Note that in both cases we have B(t)� 1. Then from (3.76):∣∣∣∣ ddτ
∫
χR(t)|∇u(τ)|2dx

∣∣∣∣ . 1

R2(t)

∫
|∇u(τ)|2 dx+

∫
χR(t)|∆u(τ)|2 dx

and hence integrating over [t, T ) and using (3.77), (3.79), (1.4):∣∣∣∣∫ χR(t)|∇u(τ)|2dx−
∫
χR(t)|∇u∗|2dx

∣∣∣∣ . T − t
R2(t)

+

∫ T

t

∫
r≥λ(t)

|∆u(τ)|2dxdτ.

If k = 0, we use (1.5) to estimate
T − t
R2(t)

=
2b(t)(T − t)

λ2(t)

1

|logb(t)|
−→ 0 as t→ T.

The above limit holds since by (3.72)

2b(t)(T − t)
λ2(t)

1

|logb(t)|
.
b(t)e

√
2|log(T−t)|

|logb(t)|
.
b(t)e2

√
|λ(t)|

|logb(t)|
.

1

|logb(t)|
→ 0, as t→ T,

where the last bound follows from (3.68) and (3.71). If k ≥ 1, then
T − t
R2(t)

=
a(t)(T − t)
λ2(t)

1

c|loga(t)|
−→ 0 as t→ T.

The above limit holds since by (3.72)

a(t)(T − t)
λ2(t)

1

|loga(t)|
.

(T−t)k

|log(T−t)|
k+1
k

(T − t)

(T−t)k+1

|log(T−t)|
k+1
k

|loga(t)|
.

1

|loga(t)|
→ 0, as t→ T,

where we used (3.73) and (3.75). Letting t→ T , we conclude:∫
|∇u∗|2 = lim

t→T

∫
χR(t)|∇u(τ)|2dx. (3.80)
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We now claim that

lim
t→T

∫
{|x|≥λ(t)}

(1− χR(t))|∇u(τ)|2dx = 0 (3.81)

which together with (3.80), (3.78) concludes the proof of (1.7). Indeed, in the case
k = 0, from (2.78), (A.10), (3.21), and (3.79) we obtain:∫

{|x|≥λ(t)}
(1− χR(t))|∇u(t)|2dx ≤

∫
λ(t)≤|x|≤2R(t)

|∇u(t)|2dx

=

∫
1≤|y|≤2B(t)

|∇v(t, y)|2dy

. e2bB2(t)

[∫
1≤y≤2B(t)

|b∂yηb0 |2ρbydy + ‖∂yε‖2b

]

= e2bB2(t)

[
b2|logb|2 +

b2

|logb|

]
. b|logb|2 → 0 as t→ T,

and (3.81) is proved. A similar algebra holds for k ≥ 1. This concludes the proof of
Theorem 1.1.

4. Infinite time freezing regimes

This section is devoted to the existence and stability of the freezing process
emerging from strongly localised initial data. Throughout the section, we let

± = +, ρ = ρ+, B > 0.

4.1. Renormalised equations and initialisation. We let

u(t, x) = v(s, y), y =
r

λ(t)
, λ(0) = 1, (4.1)

with the renormalised time

s(t) = s0 +

∫ t

0

dτ

λ2(τ)
, s0 � 1, (4.2)

and obtain the renormalised equation:{
∂sv +HAv = 0, A = λs

λ ,
v(s, 1) = 0, ∂yv(s, 1) = −A. (4.3)

We now prepare our initial data in the following way. We let

B(s) =
1

2s
, Be

k =
1

sk+1(log s)2
(4.4)

so that with Ae = Be:

(Be
k)s +Be

kB

(
2k + 2 +

2

log s

)
+

2(B −Ae)Be
k

log s
= O

(
1

sk+2(log s)3

)
.(4.5)

We define

Qβ(y) := −
k∑
j=0

Bj η̂B,j(y) (4.6)

and introduce the dynamical decomposition

v(s, y) = Qβ(s) + ε(s, y), (η̂B,j(s), ε)B = 0, 0 ≤ j ≤ k. (4.7)

We let again
ε2 = HBε, E := ‖HBε‖2B,
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which due to the orthogonality conditions (3.14) is a coercive norm, see Appendix
A. We assume the initial smallness

E(0) ≤
B(Be

k)
2(0)

|logB(0)|
(4.8)

and consider the bootstrap bound

E ≤
DB(Be

k)
2

| logB|
(4.9)

for some large enough universal D = D(k) to be chosen later. Moreover, we assume
initially

Bk(s0) = Be
k(s0), s0 � 1 (4.10)

and bootstrap the bound
|Bk(s)| ≤ 10Be

k(s). (4.11)

For k ≥ 1, we also let

Bj(s) =
Vj(s)

sk+1(log s)
5
2

, j = 0, . . . , k − 1. (4.12)

and assume
k−1∑
j=0

|Vj(s)|2 ≤ K2. (4.13)

We define

s∗ =

{
sups≥s0{(4.9), (4.11)hold on [s0, s]} for k = 0,
sups≥s0{(4.9), (4.11), (4.13) hold on [s0, s]} for k ≥ 1.

The main ingredient of the proof of Theorem 1.2 is the following:

Proposition 4.1 (Bootstrap estimates on B and ε). The following statements hold:
1. Stable regime: for k = 0, s∗ = +∞.
2. Unstable regime: for k ≥ 1, there exist constants K, δ = δ(K) � 1 and
(V0(0), . . . , Vk−2(0), Vk−1(0)) depending on ε(0) such that s∗ = +∞.

From now on and for the rest of this section, we study the flow in the bootstrap
regime s ∈ [s0, s

∗). Note in particular the rough bounds

|Bj | . |Be
k|, 0 ≤ j ≤ k and E ≤

B(Be
k)

2√
|logB|

(4.14)

for s0 ≥ s0(K) large enough.

4.2. Extraction of the leading order ODE’s driving the freezing. We start
with the constraint induced by the boundary conditions:

Lemma 4.2 (Boundary conditions). There holds:

A =

k∑
j=0

Bj

[
1 +

2αj
|logB|

+O

(
1

|logB|2

)]
+O

( √
E

|logB|
√
B

)
, (4.15)

ε2(1) = A(B −A), (4.16)

∂yε2(1) = As −A2(B −A) +
k∑
j=0

λ̂B,jBBj

[
1 +

2αj
|logB|

+O

(
1

|logB|2

)]
(4.17)
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Remark 4.3. Note that (4.15), (4.14) imply

|A| . Be
k +

√
E

|logB|
√
B
. Be

k. (4.18)

Proof of Lemma 3.5. We compute from (2.89) (3.29):

∂yη̂B,j(1) = ∂yηB,j(1)e−
B
2 = 1 +

2αj
|logB|

+O

(
1

|logB|2

)
. (4.19)

This implies that

∂yQβ(1) = −
k∑
j=0

Bj∂yηB,j(1) = −
k∑
j=0

Bj

[
1 +

2αj
|logB|

+O

(
1

|logB|2

)]
.

Since v = Qβ + ε, it follows that

εy
∣∣
y=1

= vy
∣∣
y=1
− ∂yQβ

∣∣
y=1

= −λs
λ
− ∂yQβ(1)

= −A+

k∑
j=0

Bj

[
1 +

2αj
|logB|

+O

(
1

|logB|2

)]
,

which together with (B.2) yields (4.15). From (4.3), v(s, 1) = 0 and ∂yv(s, 1) =

−λs
λ = −A:

0 = HAv(1) = (HBv + (B −A)Λv)(1) = ε2(1) +A(A−B),

this is (4.16). Now from ∂yv(s, 1) = −A, we have

∂s∂yv(s, 1) = −As.
On the other hand, taking ∂y of (4.3), we have:

0 = ∂s∂yv + ∂y(HBv + (B −A)Λv) = ∂s∂yv + ∂yε2 + ∂yHBQβ + (B −A)y∆v.

We evaluate the above identity at y = 1. From (4.3) and ∂sv(s, 1) = 0, ∂yv(s, 1) =
−A:

∆v(1) = −AΛv(1) = A2.

By construction,

∂yHbQβ = −
k∑
j=0

λ̂B,jBBj∂yη̂B,j ,

and hence:

−As + ∂yε2(1)−
k∑
j=0

λ̂B,jBBj

[
1 +

2αj
|logB|

+O

(
1

| logB|2

)]
+A2(B −A) = 0.

�

We now compute the leading order modulation equations.

Proposition 4.4 (Leading order modulation equations). Under the a priori bounds
of Proposition 4.1, there holds

∂sQβ +HAQβ = Mod + Ψ (4.20)

where we defined the modulation vector

Mod := −
k∑
j=0

[
(Bj)s +BBj λ̂B,j +

2(B −A)Bj
|logB|

]
η̂B,j , (4.21)
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and the remaining error satisfies the bound:

‖Ψ‖b +
1√
B
‖∂yΨ‖B +

1

B
‖HBΨ‖B .

√
BBe

k

| logB|
. (4.22)

Proof of Proposition 3.6. Let the deviation

Φ := Bs + 2B(B −A).

By definition
HA = HB + (B −A)Λ

and we therefore compute from (4.6):

−∂sQβ(s)(y)−HAQβ

=

k∑
j=0

[
(Bj)sη̂B,j +Bs

Bj
B
B∂B η̂B,j +BBj λ̂B,j η̂B,j + (B −A)BjΛη̂B,j

]

=
k∑
j=0

{
[(Bj)s +BBj λ̂b,j ]η̂B,j + (B −A)Bj [Λη̂B,j − 2B∂B η̂B,j ] +

Bj
B
B∂B η̂B,jΦ

}

=
k∑
j=0

{[
(Bj)s +BBj λ̂B,j +

2(B −A)Bj
| logB|

]
η̂B,j

+ (B −A)Bj

(
Λη̂B,j − 2B∂B η̂B,j −

2

|logB|
η̂B,j

)
+
Bj
B

ΦB∂B η̂B,j

}
.

We now estimate from (4.18):

|Φ| . |AB| . BBe
k (4.23)

and hence using (4.14), (2.93):

‖Bj
B

ΦB∂B η̂B,j‖B .
| logB|√

B
(Be

k)
2 .

√
BBe

k

| logB|
and similarly for higher derivatives. Moreover from (2.95), (4.14):∥∥∥∥(B −A)Bj

[
Λη̂B,j − 2B∂B η̂B,j −

2

|logB|
η̂B,j

]∥∥∥∥
B

.
1√

B|logB|
BBe

k .

√
BBe

k

| logB|

and similarly for higher derivatives, and (4.22) is proved. �

4.3. Modulation equations. The relations (4.3), (4.20) yield

∂sε+HAε = F , F = −Mod−Ψ (4.24)

and we now compute the exact modulation equations.

Lemma 4.5 (Modulation equations for Bj). There holds for 0 ≤ j ≤ k:∣∣∣∣(Bj)s +BjB

(
2j + 2 +

4

| logB|

)∣∣∣∣ . BBe
k

| logB|2
. (4.25)

Proof of Lemma 4.5. Let 0 ≤ j ≤ k and take the scalar product of (4.24) with η̂B,j
and use the orthogonality condition (4.7) to compute:

−(ε, ∂sη̂B,j)B −Bs(ε,
|y|2

2
η̂B,j)B = (F , η̂B,j) + (A−B)(Λε, η̂B,j).
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We integrate by parts using (4.7):

−(ε, ∂sη̂B,j)B −Bs(ε,
|y|2

2
η̂B,j)B + (B −A)(Λε, η̂B,j)B

= −(ε, ∂sη̂B,j)B −Bs(ε,
|y|2

2
η̂B,j)B − (B −A)(ε,B|y|2η̂B,j + Λη̂B,j)B

= −(ε,
1

2
(Bs + 2B(B −A))|y|2η̂B,j)B − (ε,

Bs + 2B(B −A)

B
B∂B η̂B,j)B

+(B −A)(ε, 2B∂B η̂B,j − Λη̂B,j)B

= −(ε,
Φ

B
[
1

2
B|y|2η̂B,j +B∂B η̂B,j ])B + (B −A)(ε, 2B∂B η̂B,j − Λη̂B,j)B.

We now estimate from (B.2), (2.92), (2.93), (4.23):∣∣∣∣−(ε,
Φ

B
[
1

2
B|y|2η̂B,j +B∂B η̂B,j ])B

∣∣∣∣ . ‖ε‖B |Φ|B | logB|√
B
.

√
E

| logB|
√
B

and using (2.95) and (4.7):

|(B −A)(ε, 2B∂B η̂B,j − Λη̂B,j)B| .
B√
B
‖ε‖B .

√
E

| logB|
√
B
.

We now estimate the F terms given by (4.24). From (4.22):

|(Ψ, η̂B,j)B| . ‖Ψ‖B‖η̂B,j‖B .
√
BBe

k

| logB|
| logB|√

B
. Be

k.

The collection of above bounds together with (2.96) and (4.24) yields

|(Mod, η̂B,j)B|
(η̂B,j , η̂B,j)B

.
B

|logB|2

[ √
E

| logB|
√
B

+Be
k

]
=

BBe
k

| logB|2

or equivalently:
k∑
j=0

∣∣∣∣(Bj)s +BBj λ̂B,j +
2(B −A)Bj
| logB|

∣∣∣∣ . BBe
k

| logB|2
. (4.26)

We conclude from (4.26), (4.18), (2.89):∣∣∣∣(Bj)s +BjB

[
2j + 2 +

4

| logB|
+O

(
1

| logB|2

)]∣∣∣∣ . BBe
k

| logB|2
,

this is (4.25). �

4.4. Energy bound. We now derive the energy estimate in the freezing regime

Proposition 4.6 (Energy bound for freezing). There holds the pointwise control

1

2

d

ds

{
E +O

(
B(Be

k)
2

| logB|

)}
+B(2k + 4 + c)‖ε2‖2B . B

B(Be
k)

2

| logB|
(4.27)

for some universal constant c > 0.

Proof of Proposition 4.6. We compute the energy identity for E and estimate all
terms.

step 1 Algebraic energy identity. Recall ε2 = HBε. We compute from (4.24):

∂sε2 +HAε2 = [∂s,HB]ε+ [HA,HB]ε+HBF .
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and hence using (3.49):

[∂s,HB]ε+ [HA,HB]ε = −BsΛε+ [HB + (B −A)Λ,HB]ε

= −BsΛε+ (B −A)[Λ,−∆] = −BsΛε+ 2(B −A)∆ε

= −(Bs + 2B(B −A))Λε− 2(B −A)[−∆ε−BΛε] = −ΦΛε− 2(B −A)ε2.

Hence the ε2 equation:

∂sε2 +HAε2 = −ΦΛε− 2(B −A)ε2 +HBF . (4.28)

We now compute the modified energy identity:
1

2

d

ds
E =

1

2

d

ds

∫
y≥1

ε2
2e

By2

2 ydy =
Bs
4

∫
y≥1

y2|ε2|2e
B|y|2

2 ydy + (∂sε2, ε2)B

=
Bs
4
‖yε2‖2B + (−ΦΛε− 2(B −A)ε2 +HBF −HAε2, ε2)B.

We carefully integrate by parts to compute:

−
∫
y≥1

ε2HAε2e
By2

2 ydy = −
∫
y≥1

ε2[HBε2 + (B −A)Λε2]e
By2

2 ydy

=

∫
y≥1

∂y(ρBy∂yε2)ε2dy − (B −A)

∫
y≥1

ε2y∂yε2e
By2

2 ydy

= −ρB(1)ε2(1)∂yε2(1)−
∫
y≥1
|∂yε2|2e

By2

2 ydy

+
B −A

2
ρB(1)ε2

2(1) +
B −A

2

∫
y≥1

ε2
2

[
2 +By2

]
e
By2

2 ydy

= −‖∂yε2‖2B + (B −A)‖ε2‖22 +
B(B −A)

2
‖yε2‖2B − ρB(1)ε2(1)

[
∂yε2 −

B −A
2

ε2

]
(1).

This yields the algebraic energy identity:

1

2

d

ds
E = −‖∂yε2‖2B − (B −A)‖ε2‖22 +

Φ

4
‖yε2‖2B − ρBε2

[
∂yε2 −

B −A
2

ε2

]
(1)

− Φ(Λε, ε2)B + (HBF , ε2)B. (4.29)

We now estimate all terms in the right-hand side of (4.29).

step 2 Nonlinear estimates. From (B.12), (4.23):

|Φ||(Λε, ε2)B| . BBe
k

E
B
. B

E
|logB|

.

Moreover from (4.7), (4.21), (HBMod, ε2)b = 0, and from (4.22), (4.14):

|(HBΨ, ε2)B . B
√
E
√
BBe

k

| logB|
. B

B(Be
k)

2

| logB|
.

We now estimate from (B.14), (4.23), (4.16), (4.18):

|Φ‖yε2‖2B . BBe
k

[
‖∂yε2‖2B
B2

+
ε2

2(1)

B

]
.
‖∂yε2‖2B
| logB|

+
B3A2

| logB|

.
‖∂yε2‖2B
| logB|

+
B3

| logB|

[
(Be

k)
2 +

E
B|logB|2

]
.
‖∂yε2‖2B
| logB|

+B
B(Be

k)
2

| logB|2
.
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step 3 Boundary term and conclusion. It now remains to treat the boundary term
in (4.29). First from (4.16), (4.17), (4.18):

|B −A||ε2(1)|2 . |B|(AB)2 . B3(Be
k)

2.

Let

Ã =
k∑
j=0

Bj

(
1 +

2αj
| logB|

)
,

and observe the bounds from (4.15), (4.14), (4.25):

|Ã−A| .
Be
k

| logB|
, |Ãs| . BBe

k (4.30)

We now rewrite (4.17) using (4.25), (4.18), (4.26):

∂yε2(1) =
(
A− Ã

)
s

+
k∑
j=0

(
1 +

2αj
| logB|

)[
(Bj)s + λ̂B,jBBj

]
+O

(
BBe

k

| logB|2

)

= (A− Ã)s +O

(
BBe

k

| logB|

)
from which:

ρB(1)ε2(1)

[
∂yε2 −

B −A
2

ε2

]
(1)

= ρB(1)A(B −A)

[
(A− Ã)s +O

(
BBe

k

| logB|
+B2Be

k

)]
= O

(
B

(
B(Be

k)
2

| logB|

))
+ ρB(1)A(B −A)(A− Ã)s.

We now compute using (4.30):

−ρB(1)A(B −A)(A− Ã)s = ρB(1)(A− Ã)s

[
(A− Ã)2 + (A− Ã)(Ã−B)− Ã(B −A)

]
= − d

ds

{
ρB(1)

[
(A− Ã)3

3
+

(A− Ã)2(Ã−B)

2
− (A− Ã)redÃ(B −A)

]}

−Bs
2
ρB(1)

[
(A− Ã)3

3
+

(A− Ã)2(Ã−B)

2
− (A− Ã)Ã(B −A)

]

+ρB(1)

[
(A− Ã)2

2
(Ãs −Bs)− (A− Ã)(Ãs(B −A) + (Bs −As)Ã)

]

=
d

ds

{
O

(
B(Bk

e )2

| logB|2

)}
+O

(
B2(Be

k)
2

| logB|

)
Injecting the collection of above bounds into (4.29) yields:

1

2

d

ds

{
E +O

(
B(B2

k)2

| logB|

)}
= −‖∂yε2‖2B − (B −A)‖ε2‖2B +O

(
‖∂yε2‖2B
| logB|

+B
B(Be

k)
2

| logB|

)
and hence using the coercivity (B.13), (4.16), (4.4) and (4.18):

1

2

d

ds

{
E +O

(
B(B2

k)2

| logB|

)}
+B

[
2k + 5 +O

(
1

| logB|

)]
‖ε2‖2B .

B(Be
k)

2

| logB|
,
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and (4.27) is proved. �

4.5. Proof of Proposition 4.1 and Theorem 1.2. We may now close the boot-
strap estimates of Proposition 4.1.

step 1 Closing the energy bound. First observe
∣∣λs
λ

∣∣ = |A| . B and thus |logλ(s)| .
C(s) implies λ(s) > 0 on [0, s∗]. The control of the E norm easily implies the H2

control ‖u(s)‖H2 . C(s) and hence the solution is well defined from the point of
view of the H2 Cauchy theory on [0, s∗]. We now integrate in time the bound (4.27)
and obtain for some c > 0

E(s) ≤
(s0

s

)2k+3+c
E(0) + C

B(s)(Be
k(s))

2

| log s|
+ C

1

s2k+3+c

∫ s

s0

B2(Be
k)

2

| logB|
σ2k+3+c dσ

≤
(s0

s

)2k+3+c
E(0) + C

B(s)(Be
k(s))

2

| log s|
.
B(s)(Be

k(s))
2

| log s|
.

Hereby we used the explicit formulas (4.4) to infer that 1
s2k+3+c

∫ s
0

B2(Bek)2

| logB| σ
2k+3+c dσ .

B(s)(Bek(s))2

| log s| and in the last inequality the initial data assumption (4.8). This closes
the energy bound (4.9).

step 2 Control of Bj . We estimate from (4.25):∣∣∣∣(Bk)s +BBk

(
2k + 2 +

4

| logB|

)∣∣∣∣ . BBe
k

| logB|2

from which ∣∣∣∣ dds(sk+1(log s)2Bk)

∣∣∣∣ . 1

s(log s)2
.

An integration-in-time yields:

Bk(s) =
1

sk+1(log s)2

[
Bk(s0)

Be
k(s0)

+O

(
1

log s0

)]
(4.31)

and the initial data assumption (4.10) now improves (4.11).
For k ≥ 1, we now argue by contradiction and assume that for all (Vj)0≤j≤k−1 with∑k−1

j=0 |Vj(0)|2 ≤ K2, there holds s∗ < +∞ i.e.

k−1∑
j=0

|Vj(s∗)|2 = K2.

We estimate using the variables (4.12) and (4.25):∣∣∣∣(Vj)s − k − j
s

Vj

∣∣∣∣ . 1

s
√

log s
, j = 1, . . . , k − 1.

Hence at the exit time:

1

2

d

ds

k−1∑
j=0

|Vj |2
 (s∗) &

1

s∗

k−1∑
j=0

|Vj(s∗)|2 > 0

and a contradiction follows as in the melting case using Brouwer fixed point theorem.
This concludes the proof of Proposition 4.1.
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4.6. Proof of Theorem 1.2. The proof of Theorem 1.2 now follows from a simple
time integration of the modulation equations.
We estimate from (4.25)∣∣∣∣(Bk)s +

Bk
s

(
k + 1 +

2

log s

)∣∣∣∣ . Be
k

s(log s)2

and hence ∣∣∣∣ dds(sk+1(log s)2Bk)

∣∣∣∣ . 1

s(log s)2

which implies for s large enough:

Bk(s) =
c(u0)(1 + o(1))

sk+1(log s)2

for some universal constant c = c(u0). We conclude from (4.15):

λs
λ

= A =
c(u0)(1 + o(1))

sk+1(log s)2

from which there exists λ∞ ≥ λ∞(u0) > 0 with

λ∞ − λ(s) =

{
c(u0)(1+os→+∞(1))

log s if k = 0,
c(u0)(1+os→+∞(1))

sk(log s)2 if k ≥ 1.

Since for large s � 1 we have ds
dt ∼

1
λ2
∞
, (1.10) and (1.11) follow. Finally, recalling

that η̂B,j = e−
By2

2 ηB,j we estimate:∫
|y|≥1

|∇(η̂B,j)|2 =

∫
y≥1
|∂yηB,j −ByηB,j |2 e−By

2
y dy =

∫
z≥
√
B
|∂zψB,j − zψB,j |2 e−z

2
z dz

= |logB|2[
1

4
+ o(1)]

∫
z≥0
|P ′j − zPj |2e−z

2
z dz = ck [1 + o(1)] | logB|2

for some universal constant ck > 0. Note that we used (2.27). Hence using (B.2):∫
|∇(v −Bkη̂B,k)|2 . | logB|2

k−1∑
j=0

B2
j + ‖∇ε‖2L2 . (Be

k)
2.

Therefore, since the self-similar rescaling preserves the Dirichlet energy, it follows
that ∫

Ω(t)
|∇u|2 =

∫
|y|≥1

|∇v|2 = B2
k

∫
|y|≥1

|∇η̂B,k|2 +O((Be
k)

2)

which yields (1.12). To prove (1.9), note that by integrating (1.1) and using the
Stokes theorem, we arrive at the following conservation law:

d

dt

(∫
Ω(t)

u(t, x) dx− πλ2(t)

)
= 0, (4.32)

which holds as long as u ∈ L1(Ω(t)). To see this and evaluate limt→∞ ‖u‖L1(Ω(t))

first observe that v satisfies

‖v‖L1(Ω) =

∫
y≥1
|v| ydy ≤ ‖v‖B

(∫
y≥1

e−
By2

2 ydy

)1/2

.
1√
B
‖v‖B.
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On the other hand by (4.7) it follows that

‖v‖B ≤
k∑
j=0

|Bj |‖ηB,j‖B + ‖ε‖B .
B

| logB|2
| logB|√

B
+

1

B
‖HBε‖B,.

√
B

| logB|

where we used (4.4), (2.96), (4.12), (B.12), and (4.9). The two previous inequalities
lead to

‖v‖L1(Ω) .
1

| logB|
→ 0 as s→∞.

Therefore
‖u‖L1(Ω(t)) = λ2(t)‖v‖L1(Ω) → 0 as t→∞

since |λ(t)| remains bounded. It follows in particular that the conservation law (4.32)
holds and formula (1.9) follows.
This concludes the proof of Theorem 1.2.

Appendix A. Coercivity estimates in the melting case

This appendix is devoted to the derivation of various coercivity estimates in the
melting regime

± = −, ρ = ρ−, b > 0

which are used along the proof. We start with the standard compactness of the
harmonic oscillator.

Lemma A.1 (Weighted L2 estimate). Let u, ∂zu ∈ L2
ρ(R2). Then ∀k ≥ 0,∫

z2ku2zρdz .k

∫
(∂zu)2ρzdz +

∫
u2zρdz. (A.1)

Proof of Lemma A.1. Indeed, we use ∂zρ = −zρ and integrate by parts to compute:∫
(∂zu− δzku)2ρzdz =

∫
(∂zu)2ρzdz + δ2

∫
z2ku2ρzdz − 2δ

∫
zk+1u∂zuρzdz

=

∫
(∂zu)2ρzdz + δ2

∫
z2ku2ρzdz − δ[zk+1ρu2]+∞0 + δ

∫
u2[(k + 1)k−1zρ− z2kρ]dz

and hence for 0 < δ = δ(k)� 1 small enough:∫
z2ku2ρzdz .k

∫
(∂zu)2ρzdz +

∫
u2ρzdz +

∫
u2z2k−2ρzdz

and (A.1) follows by induction on k ≥ 1. �

We now claim the main coercivity property at the heart of the energy estimate.

Lemma A.2 (Coercivity of Hb). Let k ∈ N and 0 < b < b∗(k) small enough. Let
u ∈ H3

ρ (r ≥
√
b) satisfy

u(
√
b) = 0, 〈u, ψb,j〉b = 0, 0 ≤ j ≤ k.

Then the following inequality holds:

‖Hbu‖2L2
ρ,b
& ‖∆u‖2L2

ρ,b
+ ‖(1 + z)∂zu‖2L2

ρ,b
(A.2)

+ ‖(1 + z)u‖2L2
ρ,b

+ b|logb|2(∂zu)2(
√
b).

Moreover, there exists a constant ck > 0 such that

‖∂zHbu‖2L2
ρ,b
≥
[
2k + 2 +O

(
1

|logb|

)]
‖Hbu‖2L2

ρ,b
− ckb2|Hbu(

√
b)|2 (A.3)
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and
‖zHbu‖2L2

ρ,b
. ‖∂zHbu‖2L2

ρ,b
+ b|Hbu(

√
b)|2. (A.4)

Proof of Lemma A.2. This lemma is a simple perturbative consequence of the har-
monic oscillator estimate (2.8), (2.32), and a careful integration by parts to track
the boundary term in (A.2).

step 1 Proof of (A.2). Pick a small constant δ > 0, then from u(
√
b) = 0, we may

integrate by parts and compute:

‖(Hb − δ)u‖2L2
ρ,b

= 〈(Hb − δ)u, (Hb − δ)u〉b = ‖Hbu‖2L2
ρ,b
− 2δ〈Hbu, u〉b + δ2‖u‖2L2

ρ,b
.

We may now use the spectral gap bound (2.32) with (A.1) and conclude that for δ
small enough:

‖Hbu‖2L2
ρ,b
& ‖∂zu‖2L2ρ,b + ‖(1 + z)u‖2L2

ρ,b
+ ‖(Hb − δ)u‖2L2

ρ,b
. (A.5)

We integrate by parts using the general formula

〈∂zu, v〉b = −
√
bu(
√
b)v(
√
b)ρ(
√
b)− 〈u, ∂zv〉b − 〈u,

v

z
〉b + 〈u, zv〉b (A.6)

to compute:

‖Hbu‖2L2
ρ,b

= ‖∆u‖2L2
ρ,b
− 2〈uzz +

∂zu

z
, z∂zu〉b + ‖Λu‖2L2

ρ,b

= ‖∆u‖2L2
ρ,b
− 〈∂z(∂zu)2, z〉b − 2‖∂zu‖2L2

ρ,b
+ ‖Λu‖2L2

ρ,b

= ‖∆u‖2L2
ρ,b

+ b(∂zu)2(
√
b)ρ(
√
b) + 〈(∂zu)2, 1〉b + 〈(∂zu)2, 1〉b

− ‖Λu‖2L2
ρ,b
− 2‖∂zu‖2L2

ρ,b
+ ‖Λu‖2L2

ρ,b

= ‖∆u‖2L2
ρ,b

+ b(∂zu)2(
√
b)ρ(
√
b). (A.7)

On the other hand, integrating by parts:

〈Hbu, logz〉b = 〈u, 1〉b +
√
b∂zu(

√
b)log(

√
b)

and thus:

b|∂zu(
√
b)|2 . 1

|logb|2
[
‖Hbu‖2L2

ρ,b
+ ‖u‖2L2

ρ,b

]
.

1

|logb|2
‖Hbu‖2L2

ρ,b
,

where we used (A.5). Together with (A.7), (A.5), claim (A.2) follows.

step 2 Proof of (A.3), (A.4). Define the radially symmetric function

v(z) =

{
Hbu(

√
b) for 0 ≤ z ≤

√
b

Hbu(z) for z ≥
√
b

(A.8)

and note that v ∈ H1
ρ,0. Consider

w := v −
k∑
j=0

〈v, Pj〉0
〈Pj , Pj〉0

Pj .

Then from (2.8):∫
z≥0
|∂zw|2e−

z2

2 zdz ≥ (2k + 2)

∫
z≥0
|w|2e−

z2

2 zdz ≥ (2k + 2)

∫
z≥
√
b
|w|2e−

z2

2 zdz.

(A.9)
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On the other hand, from (2.27):∥∥∥∥Pk − 2

|logb|
ψb,k

∥∥∥∥
H2
ρ,b

.
1

|logb|

from which for 0 ≤ j ≤ k:

〈v, Pj〉0 = Hbu(
√
b)

∫
0≤z≤

√
b
Pje
− z

2

2 zdz + 〈Hbu,
2

|logb|
ψb,j〉b +O

(
‖Hbu‖L2

ρ,b

|logb|

)

=
2

|logb|
〈u, λb,jψb,j〉b +O

(
b|Hbu(

√
b)|+

‖Hbu‖L2
ρ,b

|logb|

)
= O

(
b|Hbu(

√
b)|+

‖Hbu‖L2
ρ,b

|logb|

)
,

where we used the orthogonality 〈u, ψb,j〉b = 0, 0 ≤ j ≤ k. Therefore

‖v − w‖H1
ρ,b
. b|Hbu(

√
b)|+

‖v‖L2
ρ,b

|logb|
.

Injecting this into (A.9) yields (A.3). We now apply (A.1) to v and conclude from
(A.3), (A.8):

‖zHbu‖2L2
ρ,b
. ‖zv‖2L2

ρ,0
+ b2|Hbu(

√
b)|2 . ‖∂zv‖2L2

ρ,0
+ ‖v‖2L2

ρ,0
+ b2|Hbu(

√
b)|2

. ‖∂zHbu‖2L2
ρ,b

+ ‖Hbu‖2L2
ρ,b

+ b|Hbu(
√
b)|2 . ‖∂zHu‖2L2

ρ,b
+ b|Hbu(

√
b)|2

and (A.4) is proved. �

We now renormalise Lemma A.2 by letting ε(y) = u(
√
by) which yields exactly:

Lemma A.3 (Coercivity of Hb). Let k ∈ N and 0 < b < b∗(k) small enough. If
ε ∈ H3

ρb
(y ≥ 1) satisfies

ε(1) = 0, (ε, ηb,j)b = 0 for 0 ≤ j ≤ k,

then

‖Hbε‖2b & ‖∆ε‖2b + b‖∂yε‖2b + b2‖Λε‖2b (A.10)

+ b2‖(1 +
√
by)ε‖2b + b|logb|2(∂yε)

2(1).

Moreover,

‖∂yHbε‖2L2
ρ,b
≥
[
2k + 2 +O

(
1

|logb|

)]
b‖Hbε‖2b − ckb2|Hbε(1)|2 (A.11)

and

b‖yHbε‖2b .
1

b
‖∂yHbε‖2b + |Hbε(1)|2. (A.12)

Appendix B. Coercivity estimates in the freezing case

We now consider the freezing regime

± = +, ρ = ρ+, B > 0

and the operator
HB = −∆− Λ, u(

√
B) = 0.

We claim the analogue of Lemma A.2:



59

Lemma B.1 (Coercivity of HB). Let k ∈ N and 0 < B < B∗(k) small enough. Let

ψ̂B,j = ψB,je
−B|y|

2

2 (B.1)

and u ∈ H3
ρ (r ≥

√
B) satisfy

u(
√
B) = 0, 〈u, ψ̂B,j〉B = 0, 0 ≤ j ≤ k,

then the following inequality holds:

‖HBu‖2L2
ρ,B

& ‖∆u‖2L2
ρ,B

+ ‖(1 + z)∂zu‖2L2
ρ,B

(B.2)

+ ‖(1 + z)u‖2L2
ρ,B

+B|logB|2(∂zu)2(
√
B).

Moreover, there exists a constant ck > 0 such that

‖∂zHbu‖2L2
ρ,B
≥
[
2k + 4 +O

(
1

|logb|

)]
‖HBu‖2L2

ρ,B
− ckB2|Hbu(

√
B)|2 (B.3)

and
‖zHBu‖2L2

ρ,B
. ‖∂zHBu‖2L2

ρ,B
+B|HBu(

√
B)|2. (B.4)

Proof. We follow the proof of Lemma (A.3).

step 1 Proof of (A.2). Pick a small constant δ > 0, then from u(
√
B) = 0, we may

integrate by parts and compute:

‖(HB−δ)u‖2L2
ρ,b

= 〈(HB−δ)u, (HB−δ)u〉B = ‖HBu‖2L2
ρ,B
−2δ〈HBu, u〉B+δ2‖u‖2L2

ρ,B
.

We now use the isometry (2.97) and (2.9). We first obtain from (2.32) the spectral
gap:

∀u with 〈u, ψB,j〉B = 0, 0 ≤ j ≤ k,
then

〈HBu, u〉B ≥
[
2k + 4 +O

(
1

| logB|

)]
‖u‖2L2

ρ,B
, (B.5)

and similarly from (A.1):∫
z2u2zρdz .

∫
(∂zu)2ρzdz +

∫
u2zρdz. (B.6)

We therefore conclude that for δ small enough:

‖HBu‖2L2
ρ,B
& ‖∂zu‖2L2ρ,B + ‖(1 + z)u‖2L2

ρ,B
. (B.7)

We integrate by parts using the general formula

〈∂zu, v〉B = −
√
Bu(
√
b)v(
√
B)ρ(

√
B)− 〈u, ∂zv〉B − 〈u,

v

z
〉B − 〈u, zv〉B (B.8)

to compute:

‖HBu‖2L2
ρ,B

= ‖∆u‖2L2
ρ,B

+ 2〈uzz +
∂zu

z
, z∂zu〉B + ‖Λu‖2L2

ρ,B

= ‖∆u‖2L2
ρ,B

+ 〈∂z(∂zu)2, z〉B + 2‖∂zu‖2L2
ρ,B

+ ‖Λu‖2L2
ρ,B

= ‖∆u‖2L2
ρ,B
−B(∂zu)2(

√
b)ρ(
√
b)− 〈(∂zu)2, 1〉B − 〈(∂zu)2, 1〉b

− ‖Λu‖2L2
ρ,B

+ 2‖∂zu‖2L2
ρ,B

+ ‖Λu‖2L2
ρ,B

= ‖∆u‖2L2
ρ,B
−B(∂zu)2(

√
B)ρ(

√
B). (B.9)
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On the other hand, let

χ(z) =

{
1 for

√
B ≤ z ≤ 1

0 for z ≥ 2

then integrating by parts:

〈HBu, χ(z)logz〉B = −〈u,HB(χ(z) log z)〉B +
√
B∂zu(

√
B)log(

√
B)

and thus:

B|∂zu(
√
B)|2 . 1

|logB|2
[
‖HBu‖2L2

ρ,B
+ ‖u‖2L2

ρ,B

]
.

1

| logB|2
‖HBu‖2L2

ρ,B
,

where we used (B.7). Together with (B.9), (B.7), claim (B.2) follows.

step 2 Proof of (B.3), (B.4). Define the radially symmetric function

v(z) =

{
HBu(

√
B) for 0 ≤ z ≤

√
B

HBu(z) for z ≥
√
B

(B.10)

and note that v ∈ H1
ρ,0. Consider

w := v −
k∑
j=0

〈v, P̂j〉0
〈P̂j , P̂j〉0

P̂j .

Then from (2.11):∫
z≥0
|∂zw|2e

z2

2 zdz ≥ (2k + 4)

∫
z≥0
|w|2e

z2

2 zdz

≥ (2k + 4)

∫
z≥
√
b
|w|2e

z2

2 zdz. (B.11)

On the other hand, from (2.27), (B.1):∥∥∥∥P̂k − 2

|logB|
ψ̂B,k

∥∥∥∥
H2
ρ,B

.
1

|logB|

from which for 0 ≤ j ≤ k:

〈v, P̂j〉0 = HBu(
√
B)

∫
0≤z≤

√
B
P̂je

z2

2 zdz + 〈HBu,
2

|logB|
ψ̂B,j〉B +O

(
‖HBu‖L2

ρ,B

|logB|

)

= O

(
B|HBu(

√
B)|+

‖HBu‖L2
ρ,B

|logB|

)
,

where we used the orthogonality 〈u, ψ̂B,j〉B = 0, 0 ≤ j ≤ k. Therefore

‖v − w‖H1
ρ,B
. B|HBu(

√
B)|+

‖v‖L2
ρ,B

|logB|
.

Injecting this into (B.11) yields (B.3). We now apply (B.6) to v and conclude from
(A.11), (B.10):

‖zHBu‖2L2
ρ,B
. ‖zv‖2L2

ρ,0
+B2|HBu(

√
B)|2 . ‖∂zv‖2L2

ρ,0
+ ‖v‖2L2

ρ,0
+B2|HBu(

√
B)|2

. ‖∂zHBu‖2L2
ρ,B

+ ‖HBu‖2L2
ρ,B

+B|HBu(
√
B)|2 . ‖∂zHBu‖2L2

ρ,B
+B|HBu(

√
B)|2

and (B.4) is proved. �
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In analogy to Lemma A.3, we now renormalise Lemma A.3 by letting ε(y) =

u(
√
By) and obtain:

Lemma B.2 (Coercivity of HB). Let k ∈ N and 0 < B < B∗(k) small enough. If
ε ∈ H3

ρB
(y ≥ 1) satisfies

ε(1) = 0, (ε, ηB,j)b = 0 for 0 ≤ j ≤ k,
then

‖HBε‖2B & ‖∆ε‖2B + b‖∂yε‖2B +B2‖Λε‖2B (B.12)

+ B2‖(1 +
√
By)ε‖2B +B| logB|2(∂yε)

2(1).

Moreover,

‖∂yHBε‖2L2
ρ,B
≥
[
2k + 4 +O

(
1

| logB|

)]
B‖HBε‖2B − ckB2|HBε(1)|2 (B.13)

and
B‖yHBε‖2B .

1

B
‖∂yHBε‖2B + |HBε(1)|2. (B.14)

Appendix C. Non trivial melting initial data

In this appendix, we show that our set of initial data for melting is non empty
and contains compactly supported data arbitrarily small in Ḣ1. We show the con-
struction for k = 0, an analogous construction holds for k ≥ 1 and is left to the
reader.
To see this define a cut-off function χ(y) = 1 for y ≤ 1 and χ(y) = 0 for y ≥ 2, and
set χB = χ( yB ), where

B2 =
|logb0|

2b0
.

By abuse of notation, we denote by b0 the initial value of b0 in this section. Let

α :=
‖ηb0‖b20

(χBηb0 , ηb0)b0
. (C.1)

Note that α− 1 =
((1−χB)ηb0 ,ηb0 )b0

(χBηb0 ,ηb0 )b0
. Furthermore∣∣((1− χB)ηb0 , ηb0)b0

∣∣ . ∫
y≥B

η2
b0ρb0 .

∫
y≥B

log2(y)ρb0 + ‖ηb0,1‖2b

=
1

b0

∫ ∞
√
b0B

log2(
√
b0z)ρ(z) dz +

1

b0|logb0|2

.
log2b0
b0

∫ ∞
√
b0B

ρ(z) dz +
1

b0

∫ ∞
√
b0B

√
ρ(z) dz +

1

b0|logb0|2

.
log2b0
b0

e−b0B
2/2 +

1

b0
e−b0B

2/4 +
1

b0|logb0|2

.
log2b0
b0

e−|logb0|/4 +
1

b0
e−|logb0|/8 +

1

b0|logb0|2
.

1

b0|logb0|2
, (C.2)

where we used (2.77) and (2.78). Therefore

|α− 1| .
1

b0|logb0|2

‖ηb0‖2b0 − ((1− χB)ηb0 , ηb0)b0
.

1
b0|logb0|2

‖ηb0‖2b0
.

1
b0|logb0|2
|logb0|2
b0

=
1

|logb0|4
, (C.3)
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where we used (C.2) and (2.78). Consider the initial data

u(0) = v(0) = b0αχBηb0 .

Note that by (C.2) we have the bound |α| . 1. Then using (2.77), (2.78):∫
|∂yu(0)|2 . b20

[∫
1≤y≤2B

|∂yηb0 |2 +

∫
B0≤y≤2B0

|ηb0 |2

B2

]
. b20e

b0B2/2

[
‖∂yηb0‖2b0 +

b0
K
‖ηb0‖2b0

]
. b20e

|logb0|
4

[
|logb0|+

b0
K

|logb0|
2b0

]
� 1.

On the other hand, we have by definition ε(0) = −(1−αχB)b0ηb0 = −(1−α)b0ηb0−
α(1− χB)b0ηb0 and hence:

‖Hb0ε(0)‖2b .b20
∫
y≥B
|b0λb0ηb0 |2ρb0y dy + |1− α|2b40λ2

b0‖ηb0‖
2
b0

+ b20

∫
B≤y≤2B

[
|∂yηb0 |2

y2
+
η2
b0

y4
+ b20η

2
b0

]
ρb0y dy.

Using (C.2) we can estimate the first term:

b20

∫
y≥B
|b0λb0ηb0 |2ρb0ydy . b40λ2

b0 . b
4
0λ

2
b0

1

b0|logb0|2
.

b30
|logb0|4

,

For the second term we use (C.3) and (2.78) and readily obtain

|1− α|2b40λ2
b0‖ηb0‖

2
b0 .

b30
|logb0|8

.

similarly using the decomposition (2.77) (with k = 0), we have

b20

∫
B≤y≤2B

|∂yηb0 |2

y2
ρb0y dy . b

2
0

∫
B≤y≤2B

1

y4
ρb0y dy + b20

∫
B≤y≤2B

|∂yηb0,1|2

y2
ρb0y dy

. b20B
−4e−b0B

2/2 + b20B
−2‖∂yηb0,1‖2b0

.
b40

|logb0|4
+

b30
|logb0|4

.
b30

|logb0|4
,

where we used (2.78) in the last line. In a similar fashion

b20

∫
B≤y≤2B

η2
b0

y4
ρb0y dy . b

2
0

∫
B≤y≤2B

|logy|2

y4
ρb0y dy + b20

∫
B≤y≤2B

η2
b0,1

y4
ρb0y dy

. b20B
−4|logB|2

∫
B≤y≤2B

ρb0y dy + b20B
−4‖ηb0,1‖2b0

.
b30

|logb0|2
e−b0B

2/2 +
b30

|logb0|6

.
b30

|logb0|2
e−|logb0|/4 +

b30
|logb0|6

.
b30

|logb0|6
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if b0 is sufficiently small. Finally,

b20

∫
B≤y≤2B

b20η
2
b0ρb0y dy . b

4
0

∫
B≤y≤2B

(logy)2ρb0y dy + b40‖ηb0,1‖2b0

. b40|logB|2 1

b0
e−b0B

2/2 + b40
1

b0|logb0|2

. b30|logb0|2e−
|logb0|

4 + b30
1

|logb0|2
.

b30
|logb0|2

.

and hence (3.15) is satisfied. Moreover,

(ε(0), ηb0)b0 = (−(1− αχB)b0ηb0 , ηb0)b0 = −b0‖ηb0‖2b0 + αb0(χB0ηb0 , ηb0) = 0

by (C.1), and therefore the orthogonality condition from (3.14) is satisfied.

Remark C.1. Observe that by our construction, the initial temperature u0 is non-
negative in Ω. In this case, the solution u(t, ·) remains non-negative by the maximum
principle.

Appendix D. Cauchy theory in Ḣ1 × Ḣ2

Theorem D.1 (Well-posedness in H2). Let u0 ∈ H2(Ω(0)), λ0 > 0, u0(λ0) = 0.
Then there exists a time T = T (‖u0‖H2(Ω), λ0) > 0, a constant C > 0, and a
solution (u, λ) to the Stefan problem (1.3) on the time interval [0, T ] such that

u ∈ C([0, T ), H2(Ω)) ∩ L2([0, T ), H3(Ω)),

ut ∈ C((0, T ), L2(Ω)) ∩ L2([0, T ], H1(Ω)),

λ ∈ C1([0, T ),R), (D.1)

and the following bounds hold:

‖u‖H2(Ω(t)) ≤ C = C(‖u0‖H2(Ω(0)),λ0
), λ(t) >

λ0

2

for some universal polynomial function C of the initial data. Moreover, if T is the
maximal time of existence of a solution (w, λ) satisfying (D.1), then

either lim
t→T −

‖u(t, ·)‖H2(Ω(t)) =∞ or lim
t→T −

λ(t) = 0.

Remark D.2. The Stefan problem allows for an instant smoothing effect. It is
well-known that the solution u becomes infinitely smooth on (0, T ) in both the
time- and the space variable, see for instance [38, 55, 36].

The proof of Theorem D.1 is presented at the very end of this section, as a simple
consequence of Theorem D.5.

We start by pulling-back the problem (1.3) onto the fixed domain Ω := {y ∈
R2, |y| ≥ 1}. We denote the points in Ω by bold y, while the radial coordinate |y|
is denoted by y. We define the pull-back temperature function w : Ω→ R by

w(t, y) = u(t, λ(t)y)
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A simple application of the chain rule gives the following system of equations for
w :

wt −
λ̇

λ
Λw − 1

λ2
∆w = 0 in Ω ; (D.2a)

wy(t, 1) = −λ̇(t)λ(t); (D.2b)
w(t, 1) = 0, (D.2c)

w(0, ·) = w0 , λ(0) = λ0. (D.2d)

Lemma D.3 (Energy identities). Assume that (w, λ) is a smooth solution to the
Stefan problem (D.2) on some interval [0, T ]. Assume that λ(0) > 0, w0

∣∣
y=1

= 0,

and that w(t, ·) ∈ H2(Ω) for t ∈ [0, T ]. Then on the interval [0, T ] the following
energy identities hold:

1

2

d

dt
‖w‖2L2(Ω) +

1

λ2
‖∇w‖2L2(Ω) = − λ̇

λ
‖w‖2L2(Ω), (D.3)

1

2

d

dt
‖∇w‖2L2(Ω) +

1

λ2
‖∆w‖2L2(Ω) = πλλ̇3, (D.4)

1

2

d

dt
‖∆w‖2L2(Ω) +

2π

3

d

dt

(
λ|λ̇|

)3
+

1

λ2
‖∇∆w‖2L2(Ω)

=
2λ̇

λ
‖∆w‖2L2(Ω) + πλ̇5λ3. (D.5)

Proof. Multiply (D.2a) by w and integrate over Ω. We obtain

0 =
1

2

d

dt

∫
Ω
w2 dy − λ̇

λ

∫
Ω

Λww dy +
1

λ2
‖∇w‖2L2(Ω)

=
1

2

d

dt
‖w‖2L2(Ω) −

λ̇

2λ

∫ ∞
1

y2∂y(w
2) dy +

1

λ2
‖∇w‖2L2(Ω)

=
1

2

d

dt
‖w‖2L2(Ω) +

λ̇

λ
‖w‖2L2(Ω) +

1

λ2
‖∇w‖2L2(Ω),

which is precisely (D.3). Multiply (D.2a) by −∆w and integrate by parts. We
obtain

0 =

∫
Ω
∇w · ∇wt dy − 2π(∂nwwt)

∣∣
y=1

+
λ̇

λ

∫
Ω

Λw∆w dy +
1

λ2
‖∆w‖2L2(Ω)

=
1

2

d

dt
‖∇w‖2L2(Ω) + 2π(wywt)

∣∣
y=1

+ 2π
λ̇

λ

∫ ∞
1

Λw∂yΛw dy +
1

λ2
‖∆w‖2L2(Ω)

=
1

2

d

dt
‖∇w‖2L2(Ω) − π

λ̇

λ
(Λw)2

∣∣
y=1

+
1

λ2
‖∆w‖2L2(Ω)

=
1

2

d

dt
‖∇w‖2L2(Ω) − πλλ̇

3 +
1

λ2
‖∆w‖2L2(Ω),

where we used the fact that wt(t, 1) = 0, ∆w = 1
y∂yΛw, and Λw

∣∣
y=1

= wy
∣∣
y=1

=

−λλ̇. Note also that ∂nw|y=1 = −∂yw|y=1.This proves (D.4). To prove (D.5) we
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apply ∇ to (D.2), multiply by −∇∆w and integrate-by-parts. We obtain

0 = −
∫

Ω
∇wt · ∇∆w dy +

λ̇

λ

∫
Ω
∇Λw · ∇∆w dy +

1

λ2
‖∇∆w‖2L2(Ω)

=
1

2

d

dt

∫
Ω

(∆w)2 dy + 2π(∂ywt∆w)
∣∣
y=1
− λ̇

λ

∫
Ω

∆Λw ·∆w dy

− 2π
λ̇

λ
(∂yΛw∆w)

∣∣
y=1

+
1

λ2
‖∇∆w‖2L2(Ω). (D.6)

From (D.2b) it follows that

∂ywt
∣∣
y=1

= −∂t(λλ̇)

Restricting (D.2a) to y = 1 we conclude that − λ̇
λwy

∣∣
y=1
− 1

λ2 (∆w)
∣∣
y=1

= 0. Us-
ing (D.2b) this implies that

(∆w)
∣∣
y=1

= λ2λ̇2. (D.7)
The previous two boundary identities imply that

2π(∂ywt∆w)
∣∣
y=1

= −2π

3

d

dt

(
λλ̇
)3
. (D.8)

Note that ∂yΛw = wy + ywyy and therefore, when restricted to y = 1 we conclude
that (∂yΛw)

∣∣
y=1

= (∆w)
∣∣
y=1

. From (D.7) we infer that

(∂yΛw)
∣∣
y=1

= λ2λ̇2.

Therefore

−2π
λ̇

λ
(∂yΛw∆w)

∣∣
y=1

= −2πλ3λ̇5. (D.9)

It remains to evaluate the term − λ̇
λ

∫
Ω ∆Λw ·∆w dy. A direct calculation yields

∆Λw = Λ∆w + 2∆w.

Therefore

− λ̇
λ

∫
Ω

∆Λw ·∆w dy = −2λ̇

λ
‖∆w‖2L2(Ω) − 2π

λ̇

λ

∫ ∞
1

∂y∆w∆w dy

= −2λ̇

λ
‖∆w‖2L2(Ω) + π

λ̇

λ
(∆w)2

∣∣
y=1

. (D.10)

Plugging (D.8), (D.9), and (D.10) into (D.6), we obtain (D.5). �

Let us define the energy-like quantities

E(t) = sup
0≤s≤t

{1

2
‖w(s, ·)‖2L2(Ω) +

1

2
‖∇w(s, ·)‖2L2(Ω) +

1

2
‖∆w(s, ·)‖2L2(Ω)

}
, (D.11)

D(t) =
1

λ(t)2
‖∇w(t, ·)‖2L2(Ω) +

1

λ(t)2
‖∆w(t, ·))‖2L2(Ω) +

1

λ(t)2
‖∇∆w(t, ·)‖2L2(Ω).

(D.12)

Lemma D.4 (A priori estimate). Assume that (w, λ) is a smooth solution to (D.2)
on some interval [0, T ∗]. Assume that λ0 > 0, w0

∣∣
y=1

= 0, and that w(t, ·) ∈ H2(Ω)

for t ∈ [0, T ∗]. Then there exists a T = T (E(0), λ0) > 0, T ≤ T ∗, such that for any
t ∈ [0, T ] the following a priori bounds hold:

E(t) ≤ 4E(0), (D.13)

λ(t) >
λ0

2
. (D.14)



66 M. HADŽIĆ AND P. RAPHAËL

Proof. From Lemma D.3 we infer that

E(t) +

∫ t

0
D(s) ds ≤E(0) +

2π

3
λ3

0λ̇(0)3 − 2π

3
λ(t)3λ̇(t)3 +

∫ t

0

|λ̇(s)|
λ(s)

dsE(t)

+ π

∫ t

0

(
λ3(s)|λ̇(s)|5 + λ(s)λ̇(s)3

)
ds (D.15)

Note that
w2
y

∣∣
y=1
. ‖∆w‖2L2(Ω) + ‖∇w‖2L2(Ω).

Therefore

|λ̇(t)|2 ≤ C

λ2
E(t), C > 1. (D.16)

Using (D.16) we obtain

E(t)

∫ t

0

|λ̇(s)|
λ(s)

ds+ π

∫ t

0

(
λ3(s)|λ̇(s)|5 + λ(s)|λ̇(s)|3

)
ds

≤ C ′t
(
E2(t) + E3/2(t) + E5/2(t)

)
sup

0≤s≤t

1

λ2(s)
. (D.17)

To bound the error term −2π
3 λ(t)3λ̇(t)3 we need a more refined estimate than (D.16)

due to the absence of the integral-in-time. Note that by the trace inequality and
the interpolation between fractional Sobolev spaces, we have

|wy(1)| . ‖∇w‖H1/2(Ω) . ‖∇w‖
1/2
L2(Ω)

‖∇w‖1/2
H1(Ω)

.

Therefore, upon using the Young inequality

|λλ̇|3 . ‖∇w‖3/2
L2(Ω)

‖∇w‖3/2
H1(Ω)

≤ δ‖∇w‖2H1(Ω) + Cδ‖∇w‖6L2(Ω)

≤ δE + Cδ‖∇w‖6L2(Ω). (D.18)

Integrating (D.4) over [0, t], we have

sup
0≤s≤t

‖∇w‖2L2(Ω) ≤ ‖∇w0‖2L2(Ω) + π

∫ t

0
λ(s)|λ̇(s)|3 ds

≤ E0 + C∗tE3/2(t) sup
0≤s≤t

1

λ2(s)
.

Therefore, we obtain from (D.18) that

|λλ̇|3 ≤ C0 + δE + Ctp(E)q( sup
0≤s≤t

1

λ2(s)
)

where p and q are increasing polynomial functions of their arguments. Plugging this
bound back into (D.15), using (D.17), and the definition of E(t) we conclude that

E(t) +

∫ t

0
D(s) ds ≤ C0 + Ctp(E(t))q( sup

0≤s≤t

1

λ2(s)
), (D.19)

where C0 = C0(E(0), λ0). Since λ(t) = λ(0) +
∫ t

0 λ̇(s) ds, it follows that

λ(t) ≥ λ0 − t sup
0≤s≤t

|λ̇(s)| ≥ λ0 −
Ct

λ
E1/2(t).

Let
T ′ = sup{t ≥ 0

∣∣E(t) ≤ 4E(0), λ(t) > λ0/2}.
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By the continuity of E(·) and λ(·) it follows that T ′ > 0. On [0, T ′] we therefore
have

E(t) +

∫ t

0
D(s) ds ≤ C0 + Ctp(E(t))q(

1

λ0 − 4
√
C

λ(0) tE(0)1/2
) (D.20)

By a standard continuity argument, there exists a sufficiently small T = T (E(0), λ0),

T ≤ λ0

16
√
CE(0)1/2

such that

E(t) ≤ 2C0, t ∈ [0, T ].

By the choice of T, we also have the bound λ(t) ≥ 3
4λ0 >

1
2λ0 for t ∈ [0, T ] and this

concludes the proof of the lemma. �

Theorem D.5 (Local well-posedness). Let w0 ∈ H2(Ω), λ0 > 0, and w0

∣∣
y=1

= 0.

Then there exists a time T = T (‖w0‖H2(Ω), λ(0)) > 0 and a solution (w, λ) to the
Stefan problem (D.2) on the time interval [0, T ] such that

w ∈ C([0, T ], H2(Ω)) ∩ L2([0, T ], H3(Ω)),

wt ∈ C((0, T ], L2(Ω)) ∩ L2([0, T ], H1(Ω)),

λ ∈ C1([0, T ],R), (D.21)

satisfying the energy estimate

E(t) ≤ C0 = C0(E(0)), t ∈ [0, T ]

and the lower bound

λ(t) >
λ(0)

2
t ∈ [0, T ],

where the energy E(·) is defined by (D.11). Moreover, if T is the maximal time of
existence of a solution (w, λ) satisfying (D.21), then

either lim
t→T −

‖w(t, ·)‖H2(Ω) =∞ or lim
t→T −

λ(t) = 0.

Proof. The proof of existence follows a standard iteration argument for the sequence
of approximations (λn(t), wn(t)), n ∈ N. For a given λn(·) we define wn+1 by solving

∂twn+1 −
∂tλn
λn

Λwn+1 −
1

λ2
n

∆wn+1 = 0 in Ω ; (D.22a)

wn+1(t, 1) = 0.

We then update λn+1(·) by solving

∂ywn+1(t, 1) = −∂tλn+1(t)λn(t).

Estimates analogous to the a priori estimates of Lemma D.4 can be used to ob-
tain uniform bounds on E(wn, λn) +

∫ t
0 D(wn, λn) ds, where E and D are defined

by (D.11) and (D.12) respectively. Note that we can also get uniform bounds
on ‖∂twn‖L∞([0,T ],L2(Ω)) + ‖∂twn‖L2([0,T ],H1(Ω)) as the latter norms are controlled
by E(wn, λn) +

∫ t
0 D(wn, λn) ds from (D.22a). Upon passing to the limit, we ob-

tain a solution to which the energy estimate of Lemma D.4 applies. The proof of
uniqueness is standard. The breakdown criterion is a simple consequence of (D.11),
and (D.16). �

Proof of Theorem D.1. Let w be the solution to (D.2) as given by Theorem D.5.
It is easy to check that ‖w(t, ·)‖H2(Ω) . E(t), t ∈ [0, T ). Theorem D.1 now follows
from the change of variables u(t, r) = w(t, r

λ(t)) and Theorem D.5.
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