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Abstract

The study of quantum phenomena in biology has received significant attention in the

last decade. One of the problems of most interest is the understanding of quantum

effects during the first steps of photosynthesis. Ultrafast two-dimensional electronic

spectroscopy has revealed that pigment-protein complexes responsible for light-

harvesting and charge separation in photosynthetic organisms can support quantum

coherent dynamics in the excited state, for up to few hundreds of femtoseconds. The

leading hypothesis on the mechanisms supporting this coherent behaviour is quan-

tum interactions between electronic and some specific vibrational motions in the

excited state. This hypothesis, however, awaits unambiguous confirmation. Among

the most powerful techniques to investigate the quantum behaviour of an emitter

is the study of quantum optical properties of the light it emits. This thesis de-

velops theoretical studies showing that frequency-filtered and time-resolved photon

counting statistics of the light emitted by a prototype photosynthetic unit can give

important insight into the quantum coherent nature and the mechanisms underlying

excited state dynamics in single photosynthetic complexes. By developing a pertur-

bative and efficient approach to the computation of frequency- and time- resolved

photon correlation functions, we show that such correlations have the potential to

give unambiguous signatures of coherence contributions to the steady state emis-

sion. For a light-harvesting unit emitting in free space, the signatures of excited

state coherence manifest themselves as non-trivial antibunching. This feature can-

not be probed by measuring unfiltered photon correlations. We then consider the

situation in which a prototype energy transfer unit is embedded in an optical cavity

such that its emission rate is enhanced. In this case we observed a rich behaviour of

the frequency-filtered, second-order photon correlations that allows a clear distinc-

tion of coherence contributions, and their variation, depending of the electronic and

vibrational interactions in the system of interest.
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Impact Statement

The investigations carried out in this thesis have the potential to answer one of

the most relevant questions debated inside the community. In fact, the theoretical

approach developed in Chapter 2 to compute frequency-filtered and time-resolved

correlation functions represents a promising innovative tool to prove, without any

ambiguity, the presence of quantum coherent effects occurring in the first stages of

photosynthesis in living organisms.

Thanks to the development of two-dimensional electronic spectroscopy, a lot of ex-

periments have already been performed on biological systems that seem to show the

presence of such effects. However, the leading hypothesis behind them needs further

confirmations from different experimental techniques. The new proposed formal-

ism, indeed, is based on the calculation of correlation functions, which are able to

overcome some challenges met in spectroscopic experiments.

The research carried out in Chapter 3 contains theoretical simulations of very

potentially promising experiments. Even in simple bio-inspired models, such simu-

lations display that the frequency- and time-resolved correlation functions witness

coherences between the excited states of the system of interest, that can occur only

if it undergoes quantum coherent dynamics. These results are very powerful, since

they pave the way for new potential experiments that can probe unambiguous sig-

natures of the existence of quantum coherence in biological complexes.

The work presented in Chapter 4 goes even more towards the realisation of a

possible photon counting statistics experiment. The introduction of an optical cavity,

in resonance with a characteristic frequency of the electronic system, increases the

light emission. In such a way, the emission from an individual complex allows to

compute photon correlations, which otherwise would not be possible due to the too

weak signal in comparison to the noise level.

Finally, the code written for the computations in this thesis might be used for

future developments in this research field. Some results in this thesis have been

published in a scientific journal and others will be submitted for publication.
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Introduction

Quantum mechanics offers the most accurate description of the microscopic world,

in contrast to classical mechanics which focuses on the investigation of macroscopic

systems. However, thanks to the recent theoretical and experimental developments,

the domain in which quantum mechanical phenomena can be explored has enlarged

significantly. As a result, this has provided technological capabilities to question the

importance of quantum effects in life processes. This is, indeed, the goal of quantum

biology, which is an emerging field of research studying quantum mechanical effects

in biological systems and paving the way to bio-inspired technologies in the near

future.

Biological systems interact with their surrounding environments, they exist at

room temperature and need external energy to guarantee the out of equilibrium

state which characterises life [1]. At first glance, it would seem difficult to think

that non-trivial quantum mechanical effects can survive in biological processes and

have a significant impact on them. However, some biological processes happening at

molecular level can occur on very short time scales and be well localised, thus poten-

tially showing quantum effects before the environment destroys them. Nonetheless,

environmental noise might support the existence of quantum coherence and entan-

glement [2]. This means that the presence of a quantum dynamics in these systems

is not just related to short length and time scales, but it is rather the result of a

more complex and constructive interplay between the environment and the system.

The most fundamental example of quantum phenomena in biology is photosyn-

thesis, in particular its first stages involving the processes of light harvesting and

energy transfer [3]. Such processes occur thanks to specialised antennae, which are

formed of chromophores arranged in specific configurations within protein scaffolds.

The efficiency of the energy transfer in living organisms is exceptionally high: more

than 90% of photons absorbed activate chemical reactions, meaning that almost

every photon initiates a charge separation [4–6]. In photosynthesis certain living

organisms, such as plants and some bacteria, capture light coming from the sun,

17



thanks to collective electronic states, called excitons. This energy is then trans-

ferred within the antenna and used to produce chemical energy [7].

The study of the exciton dynamics and the mechanism of energy transfer from the

light harvesting antenna to the reaction centres has been of interest for different re-

search groups, due to the many optical experiments carried out with photosynthetic

complexes [8–12]. It has been shown that exciton states are delocalised over different

chromophores and that an interesting interaction between quantum processes and

environmental noise is key to understand the exceptionally high efficiency of the

energy transfer process [13–21]. However, it is not clear yet if this process can be

explained through classical equations or, on the contrary, if it involves non-trivial

quantum phenomena [22]. The presence of these phenomena and the biological

function of this quantum behaviour are still open questions in the field of quantum

photosynthesis.

Important steps forward regarding these questions have been made thanks to the

development of two-dimensional electronic spectroscopy [23,24]. Over the last years,

indeed, ultrafast two-dimensional spectroscopy on biological complexes has shown

oscillatory electronic dynamics lasting from a few hundred of femtoseconds [9,25] up

to picoseconds [12]. This is an unexpected long time scale, considering the rapidly

decaying electronic quantum coherence happening on a timescale of tens of fem-

toseconds.

There is an ongoing discussion about the origin of the beating patterns observed

in two-dimensional electronic spectroscopy, which can be illustrated by comparing

three very recent works. Ref. [26] indicates that the observed oscillations correspond

to vibrational coherence in the electronic ground state of Fenna-Matthews-Olson

(FMO) complexes, while Ref. [27] points out that they detect vibronic coherences

in the excited state of FMO. Ref. [28], instead, shows that the oscillations observed

correspond to both electronic and vibrational coherences. While there is yet no con-

sensus, it seems that the leading hypothesis underlying the experimental observation

of long-lived coherent dynamics is the involvement of a vibronic mechanism, that

is the quantum interaction between joint electronic and vibrational degrees of free-

dom [29–34]. In other words, the vibronic coupling could be the reason behind the

quantum energy exchange between electronic states and specific vibrations [22, 35].

Within this interpretation, the interaction with the intramolecular vibration affects

the excited state dynamics of the system. It leads then to the formation of vibronic

states, that is superpositions of quantum states of excitons and vibrations, causing

the long-lived oscillations in the dynamics. However, there is some controversy on
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the origin of these oscillations [36], therefore the need of better understanding the

exciton-vibration interaction.

Although multidimensional spectroscopy represents a powerful tool to investigate

quantum coherent dynamics in biological systems, it does not allow to clearly under-

stand the origin of the beatings observed. One of the main challenges is that these

experiments deal with the average behaviour of a large ensemble of biomolecules,

limiting then the understanding of the quantum behaviour happening at a level of

single molecule. In addition, the observation of the beatings in the dynamics does

not represent an incontrovertible proof of quantum behaviour [22,37].

Given the questions still open in the field of quantum photosynthesis, it be-

comes essential to provide alternative and unambiguous confirmations of the quan-

tum mechanism underlying the energy transfer in biomolecular systems. To this

end, it is fundamental to understand its origin at a level of a single molecule. One

of the most common ways to investigate and define quantum properties of both

light [38–41] and emitters [42–44] is the measurement of photon correlation func-

tions. Indeed, they allow to gain conceptual clarity on the contribution of quantum

coherent processes to the emission statistics and also provide alternative experi-

mental setups to probe non-trivial quantum effects in the dynamics of biological

systems [45].

The aim of this work is to investigate the quantum coherent interaction in

bio-inspired single molecules through the analysis of the coloured photon counting

statistics. Indeed, spectral filtering of optical signals, and the consequent trade-off

between frequency and time resolution, gives insight on many quantum phenom-

ena [46–50], including quantum dynamics of complex molecular systems [49,50].

Thesis outline

This thesis is divided as follows.

The first Chapter describes the context of quantum biology, focusing on the first

stages of photosynthesis. It presents the open quantum system approach used to

study biomolecules and the experimental spectroscopical setups employed to inves-

tigate them. It also introduces the correlation functions, with particular emphasis

on frequency-filtered and time-resolved photon correlations.

The second Chapter develops an alternative technique to the sensor procedure

proposed in [46, 47] to compute coloured correlation functions. This method shows

that frequency- and time-resolved photon correlations can probe coherent contribu-
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tions to the light emitted by the biomolecule. The results here obtained represent

the theoretical scaffolding on which the next chapters are built.

The third Chapter presents the analysis of the statistical properties of the light

emitted by two different bio-inspired toy models, in free space. The results, ob-

tained using the formalism developed in Chapter two, reflect signatures of quantum

coherent dynamics within the excited state manifold, even in the steady state.

Last Chapter examines the same two photosynthetic complexes, now weakly

coupled to a cavity mode. The weak coupling regime assures that the cavity does

not affect the dynamics of the systems. The presence of the cavity guarantees

to selectively increase the emission of photons emitted by the system, due to the

resonance condition with one particular frequency, as shown by the analysis of the

frequency-filtered and time-resolved correlation functions.
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Chapter 1

Background

This chapter gives a brief introduction to the field of quantum biology with partic-

ular emphasis on quantum effects in photosynthesis, the main subject of this thesis.

The chapter presents the theoretical framework and the experimental techniques

used to investigate quantum effects in photosynthetic systems.

We introduce the open quantum system approach that describes quantum dynamics

of molecular systems and which will be used to characterise the prototype photo-

synthetic complexes of interest. The last part of the chapter is dedicated to the

theoretical framework used to examine quantum optical properties of the light emit-

ted by these systems.

1.1 Overview

Quantum biology is an emerging field of research which aims to explore quantum

mechanical effects in the functioning of biological systems and to draw lessons for

the next generation of bio-inspired technologies [1]. The field has gained signifi-

cant attention in the last ten years thanks to the development of new experimental

techniques that have allowed observation of quantum phenomena in biological sys-

tems [8–12]. However, the term “quantum biology” is almost a century old, coined

by Jordan in his book (“The physics and the secret of life”) in 1943 as he wondered

whether quantum mechanics played a role in life [51]. One year later, in his book

“What is life?”, Schrödinger also argued that quantum mechanics must affect the

processes and reactions that happen in living organisms, since it governs the stability

and structure of molecules [52]. He also underlined that every process in life has a

statistical and stochastic nature, meaning that every event is random and that order

is only obtained with the statistical average of disordered situations. In contrast,

Davydov, in his book “Biology and quantum mechanics” (1982) [53] asserts that

21



quantum mechanics is significant only for isolated systems in pure states, hence it

could not be relevant for biological processes happening in open systems at thermal

equilibrium.

For a long time quantum biology was seen as a speculative field. Nowadays,

however, the progress in science and technology has allowed a significant improve-

ment and development of the experimental techniques, which have led to obtain very

promising results on the matter of quantum effects in nature [9–12].

This, in turn, has opened new challenges from a theoretical point of view, such as

the development of advanced models and approaches to understand the physics of

living systems. At this point it is important to clarify what we mean by “quantum

biology” and where its effects become tangible.

1.2 The world of Quantum Biology

In general, quantum phenomena can be observed on microscopic scale in systems

“protected” long enough from the influence of the surrounding environment, thus

allowing quantum coherences to survive sufficiently long across relevant timescales.

Biological systems, even at the protein scale, are the exact opposite by definition:

they constantly interact with their environment, they operate at room temperature

and need to be provided with energy to guarantee the out of equilibrium state that

characterises life [1]. Consequently, it would seem that quantum mechanics does

not affect biological processes, except for the “trivial” quantum effects involving, for

instance, molecular bonds.

However, the reality is more nuanced. First of all, some processes in biologi-

cal systems happen on very short time scales (of the order of picoseconds), and in

very localised regions (over the size of the protein, namely a few nanometers). This

implies that molecular complexes could manifest quantum dynamical behaviour on

the relevant time and length scales, before the environmental fluctuations cancel it.

Secondly, it has been suggested that environmental noise could indeed aid quantum

coherence and entanglement [2, 14, 54, 55]. As a consequence, quantum dynamical

behaviour associated to a biological process in relevant time and length scales is

strongly dependent on non-trivial interactions between the system and its surround-

ings.

Within this scenario there are already some known biological phenomena that

can only be explained through quantum mechanics [56]. The mechanism of vision

is an example: the absorption of light by a chromophore leads to a quantum me-
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chanical arrangement of electronic states with a specific symmetry that produces a

photochemical isomerization. After a series of enzymes and reactions are activated,

an electrical impulse is generated and transferred to a nerve cell [56]. Other ex-

amples of photochemical processes in biology, that can be understood only from a

quantum mechanical point of view, are the deactivation of excited states in DNA to

avoid photodamage into the genetic code [57], photoprotection using melanin [58]

and bioluminescence used by coral [59].

Electron flow (over 15 Å) is another essential process in respiration [60] and pho-

tosynthesis [61]. Since proteins are not electrical conductors, quantum mechanical

tunnelling intervenes to overcome the classical energy barriers thanks to the time un-

certainty principle. Therefore, this tunnelling effect allows electron transfer within

the protein scaffold [62, 63]. More specifically, the presence of the protein provides

electronic states associated with pathways along its structure which help donor and

acceptor wavefunctions to delocalise towards each other, thus speeding up the tun-

nelling rates by 10 orders of magnitude in comparison to the same situation in the

vacuum [63, 64]. Proton tunnelling also has a key role in many enzymatic catalytic

reactions involving the transfer of a proton [65]. Inelastic tunnelling assisted by

specific high-energy vibrations has been suggested to play a role in olfaction. [66]. It

has been proposed that odorants (that is the proteins secreted in the nasal mucus)

are discriminated by some specific olfactory receptors not only through their shapes

but also through their vibrational spectrum. This means that an electron tunnelling

assisted by a phonon happens between two receptors via the protein [67].

Of a different nature is the mechanism of magnetoreception characterising some liv-

ing organisms that use the Earth’s magnetic field [68]. A radical pair mechanism

has been suggested as the built-in magnetic compass that uses the Earth’s magnetic

field. At the same time, various decoherence processes take place, such that the

subsequent signal produced depends on the system’s orientation with respect to the

magnetic field [69].

The most emblematic example of quantum phenomena in biology is photosynthe-

sis, more specifically the processes of light harvesting and energy transfer [3]. Light

harvesting happens in living organisms with a remarkably high efficiency: under con-

ditions of low irradiance, more than 90% of photons absorbed drive photochemistry,

in other words almost every photon initiates a charge separation [4–6]. Given the

importance of this topic for the thesis, this process will be described in the following

both from a classical and quantum point of view.

23



1.2.1 Photosynthesis

Photosynthesis is a biological process where plants, algae and some bacteria capture

light coming from the sun and then convert this energy into biochemical energy,

providing the resources necessary for life [7]. Photosynthetic process involves not

only the well known mechanism of production of biomass based on chlorophylls, but

also other photoreception processes carried out by some bacteria [7].

1.2.2 Classical photosynthesis

In photosynthesis, sunlight is used to initialise a chain of chemical reactions, as it

will be discussed in the following. The sun emission spectrum is very broad, ranging

from gamma rays to radio waves (see Fig.1.1).

Figure 1.1: Solar radiation spectrum as a function of wavelength [70].

However, the light reaching the surface of the Earth is reduced both by scatter-

ing and by the absorption of molecules in the atmosphere, such as carbon dioxide

that absorbs in the infrared region and ozone that absorbs in the ultraviolet [7].

In comparison, many chlorophyll-pigments use visible light (400-700nm) to activate

photosynthesis. In aquatic systems the situation is different: the intensity of light

decreases with depth. Here, water absorbs mainly in the red region of the spectrum,

therefore the wavelengths suited to chlorophyll-pigments do not reach the organisms

at the bottom. Furthermore, water also scatters light: the scattering is inversely

proportional to the fourth power of the wavelength, meaning that this phenomenon

affects mainly blue light. As a consequence, only green light from the middle region

“survives”: chlorophylls do not absorb much in this range, but some other photo-

synthetic pigments, such as carotenoids or chromophores in cryptophyte algae, do

and they are present in many aquatic organisms.
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Photosynthesis can happen in two different ways, oxygenic and anoxygenic, de-

pending on the kind of atom that acts as donor in the chemical reaction. The

oxygenic form of photosynthesis uses the photon energy to produce glucose and oxy-

gen from carbon dioxide and water (6CO2 + 6H2O
light−−−→ C6H12O6 + 6O2). This

is typical of all plants, algae and cyanobacteria. The anoxygenic process, instead,

starts from a molecule of the form H2S (hydrogen sulfide) where the final product

is not oxygen, but another molecule, for example sulphur. This mechanism happens

in purple, green and heliobacteria [7].

Figure 1.2: A photosystem is formed of a reaction centre and an antenna complex. Light is

absorbed by the light-harvesting complex, containing proteins and molecules of chlorophylls

(of type a and b) and carotenoids, and then transferred to the reaction centre. It contains

one or more molecules of chlorophylls, together with the primary electron acceptor: here the

sunlight energy is transformed into chemical energy. Figure taken from Ref. [71].

In plants photosynthesis takes place inside the chloroplasts, subcellular structures

that contain the chlorophyll pigments, and it occurs in four main steps (summarised

in Fig.1.2).

The first is the absorption of energy from sunlight by one of the collective pig-

ments states in the light harvesting complex. Pigments (also called chromophores or

sites) are organised in protein scaffolds that hold them in specific orientations. This

structure is such that the inter-pigment electronic coupling creates delocalised ex-

cited states (called “excitons”) that increase the absorption cross-section. In other

words, the presence of the proteins generates antennae that optimise the absorp-

tion surface and efficiency. Once an electronic excitation is created, the energy is

transferred through the collective states, until it reaches the reaction centre, where,

eventually, it leads to charge separation. The photon absorption process within

antennae works in such a way that excitations are funnelled from higher to lower
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energy excitons.

The second phase of photosynthesis involves primary electron transfer in reaction

centres. These contain pigments, chemically similar to those in the rest of the an-

tenna, but with particular properties due to the surrounding protein environment:

here a chlorophyll dimer, called the special pair, acts as a primary electron donor to

initiate an electron transfer cascade [7]. The excited state of the pigment releases

an electron that binds to an acceptor, generating a ionised molecule: at this stage

the excitation energy has been transformed into chemical energy, but the new state

is very unstable, therefore the electron can be transferred back and the energy can

be converted into heat.

To avoid energy losses, the system enters into the third phase of the photosynthe-

sis, where a series of secondary chemical reactions takes place, in order to separate

positive and negative charges and fight the recombination process. This process

happens in very short time (within one nanosecond) and creates a pH difference, or

electrochemical gradient, which is used to synthesise ATP (adenosine triphosphate).

The last stage sees the production of stable high-energy molecules which will be used

as fuel for processes needed in cells, in particular the ATP produced in the previous

step is needed to reduce carbon dioxide to sugars.

In principle, the whole photosynthesis event seems to involve only trivial quan-

tum effects, such as the formation of collective electronic states. However, other

quantum mechanisms could play a key role during the energy dynamics, as it will

be explained in more detail in the following section.

1.2.3 Quantum photosynthesis

Within the photosynthesis mechanism, it is the first phase that has attracted the

attention regarding the question about the presence of quantum effects. This is

due to the very short time needed for absorption and energy transfer, from femto

to picoseconds (this time is short in comparison to relaxation to the ground state),

and to the high efficiency of the process itself, that is the high probability that an

absorbed photon is converted into a charge-separated state [4–6]. This efficiency is

due to the ultrafast energy transfer to the reaction centre that occurs before the

relaxation to the ground state [72].

In the light absorption event, an incoming photon with a specific frequency in the

visible spectrum is captured by an exciton in the antenna, which is a complex formed

of different kind of chlorophylls or bacteriochlorophylls (for oxygenic organisms or

anoxygenic bacteria, respectively) bound to a protein scaffold.
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In what follows, we summarise the main quantum features of the light absorption

and energy transfer process in the first stages of the photosynthetic process.

1.2.3.1 Excitons (first key quantum effect)

The process of light absorption by a light harvesting complex happens thanks to the

superposition of transition dipoles of the pigments that form the antennae. Within

a simplified model, a pigment inside the antenna complex can be modelled as a two-

state system [73]. This assumption is based on the fact that in the description of

excitation transport it is common to reduce the dynamics of individual molecules to

a single HOMO/LUMO transition. Most of the energy absorbed by photosynthetic

organisms, indeed, comes from the strongest optically allowed transition, which is in

the Qy band of the power spectrum between 750 and 850 nm [74]. Within this model,

an incoming photon with the same energy as the electronic gap causes a transition

from the ground to the excited state which has a lifetime of about 6 ns [72,75].

Chromophores in light harvesting complexes are very close to each other: the

centre-centre distance is around few Angstroms. Therefore, since the electronic

coupling scales as the inverse of chromophore separation cubed (V ∼ 1/r3), pigments

can strongly interact within the antenna, giving rise to the formation of collective

electronic states or excitons. Excitonic states induce broadening or modulation of

the absorption spectrum [3].

Under the condition that all the pigments have a comparable HOMO/ LUMO energy

gap and the transport time is much faster than the absorption rate, it is possible to

assume that the collective state hosts a single excitation at a time [76]. Formally, this

means that the attention can be focused onto the single-excitation subspace. This

hypothesis is particularly reasonable when dealing with photosynthetic bacteria,

such as purple bacteria or green sulphur bacteria, where the photosynthetic process

occurs in extremely low light conditions at the bottom of the sea. However, usually

it also holds for light-harvesting complexes of higher plants [7].

To clarify the importance of excitonic states, let us consider an antenna with two

interacting single chromophores having the same transition energy. This leads to a

situation with three states: a common ground state and two local states. Coulomb

interaction between the last two gives rise to quantum superposition of excitations

coherently delocalised over both sites: these new eigenstates of the system are called

excitons. The dipole moments of the individual chromophores combine in such a

way that the dipole moment of one exciton will be larger (bright exciton), while the

other will be smaller (dark exciton).
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As a result, the bright exciton state couples more strongly to the electromagnetic

field and, therefore, has a higher probability of absorbing a photon at its transition

frequency. For an ensemble of pigments with the same energy, the excitons are delo-

calised over all the sites with the same amplitude of probability. This is the first key

quantum effect in photosynthesis: the collective electronic states, namely the excita-

tions delocalised over the chromophores in the antenna, allow a stronger coupling of

the bright excitons to the electromagnetic field and, therefore, a higher probability

to absorb photons. Of course, in reality, the process is more complicated, because

the chromophores do not have the same transition energy, due to the interactions

with different local environments. This implies that the excitons are delocalised over

some chromophores with higher probability amplitudes (see Fig.1.3).

Figure 1.3: The figure (from Ref. [77]) represents the structural organization of the Fenna-

Matthews-Olson (FMO) pigment-protein complex: it contains seven bacterio-chlorophyll

(BChl) molecules, indicated with italic numbers. The exciton delocalisation over the dif-

ferent chromophores is indicated with bold numbers and coloured shades. For example, exci-

tons 3 and 7 (green, bold numbers) are both delocalised over the same BChls 1 and 2 (italic

numbers). The red and green arrows refer to the main two photoexcitation transfer pathways.

1.2.3.2 Excitons and vibrations (second key quantum effect)

The importance of the excitons for the whole antenna complex can be better un-

derstood through the explanation of other two phenomena, whose relevance is con-

nected to their relation with the electronic coupling V : the energetic disorder and

the electron-phonon coupling [72].

The “energetic disorder” is an effect related to the degree of delocalisation of the

excitons over the sites, which depends on the relation between the energy difference

∆α = αi − αj between sites i and j and their electronic coupling Vij . When this
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energy difference is larger than the electronic coupling, ∆α � Vij , that is when

molecules have off-resonant electronic transitions, the excitons are quasi-localised

over the sites. In the opposite scenario, when transitions are near resonant, namely

∆α� Vij , the excitons have a large degree of delocalisation over the sites.

The research work of this thesis uses models falling into different degrees of exciton

delocalisation over the sites.

Pigments with detuned energies are commonly found in antenna complexes. For

instance, identical molecules that experience different local protein environment can

have different transition energies. Slow protein motions produce random fluctua-

tions in electronic parameters, resulting in the so called “static disorder”. It changes

the electronic parameters in long timescales with respect to the exciton dynamics.

In some antenna complexes, the presence of different types of chromophores, with

different transition energies, increases even more the spectral cross-section for light

absorption. This occurs, for example, in phycobilisomes antenna from cyanobacteria

and red algae, and in the antenna proteins of cryptophyte algae, such as phycoery-

therin 545 (PE545) and phycocyanin 645 (PC645). An example of how the energetic

disorder affects an antenna can be seen in the B850 ring in light harvesting complex

2 (LH2): here, the eigenstates of the system can delocalise over the complex in a

perfectly symmetric way. However, the energetic disorder breaks the symmetry of

the site absorption, which leads to more localised excitons [78,79].

The other phenomenon influencing the extent of delocalisation of the excitons is

the competition between electronic interactions and electron-phonon coupling. This

coupling is due to the interplay between the electronic and vibrational degrees of

freedom, where the latter are affected by the stochastic fluctuations in the envi-

ronment. These fluctuations affect the system destroying phase relations between

the excitations of different chromophores and, therefore, giving rise to an excitation

more localised than that of an isolated electronic system. This interplay generates

the so called “dynamic disorder” as, contrarily to the static disorder, it affects elec-

tronic parameters on a timescale comparable to excitation dynamics.

Some vibrational fluctuations are spectrally narrow in frequency and therefore quasi-

coherent. Depending on their energy scale, collective vibronic effects can emerge

supporting coherence among excitons. In contrast, spectrally broad vibrations lead

to dephasing. This is related to the second key quantum effect in photosynthesis,

since the interaction between electronic and quasi-coherent vibrations allows energy

to transfer between excitons and can create quantum coherence between them.
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1.2.3.3 Optimal balance (third key quantum effect)

At this point it is essential to distinguish between two types of phonon environ-

ments: the coherent and the incoherent vibrational motions. The presence of one or

the other determines the kind of pathway followed by the electronic excitation during

the transfer of energy to the reaction centre [80]. This depends on the ratio between

two characteristic times: the intramolecular (or vibrational) relaxation time, Tg, and

the intermolecular transitions time, TV . When the intermolecular transitions time

is smaller than the vibrational relaxation time, TV < Tg, the excitation can move as

a delocalised state through the antenna, therefore the excitation energy transfer is

a coherent process. Viceversa, if the intermolecular transitions time is larger than

the vibrational relaxation time, TV > Tg, the excitation remains localised and the

excitation energy transfer is called incoherent. Related to these two concepts, we

find the third key quantum effect in photosynthesis, for which nature has found the

optimal balance between these two kinds of vibrations to guarantee the most effi-

cient energy transfer during the photosynthetic process.

QUANTUM SECRETS OF PHOTOSYNTHESIS

1) Excitons

Coulomb interactions between single chromophores lead to

quantum superposition of excitations over the sites. The dipole

moments of the brighter excitons couple stronger to the electro-

magnetic field, giving a higher probability of absorbing photons.

2) Excitons and vi-

brations

The interaction between electronic degrees of freedom and

quasi-coherent vibrations (namely those spectrally narrow in

frequency) generates energy transfer between excitons and can

create quantum coherence between them.

3) Optimal balance

Nature has found the optimal balance between coherent and

incoherent vibrational motions, which guarantees the most ef-

ficient energy transfer during photosynthesis.

Figure 1.4: The table summarises the three quantum secrets involved in the photosynthetic

process.

Photosynthetic complexes exchange energy and information with their surround-

ing environments, which can have a very complex structure. Since these systems

are formed by electronic excitations of pigments coupled to the surrounding chro-

mophore molecules and proteins, they are characterised by many interacting degrees
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of freedom. This kind of scenario falls under the definition of open quantum system.

In addition, experimentally, it is possible to have access to all electronic and vibra-

tional environments that determine excitation dynamics, but usually experiments

probe certain degrees of freedom. For these reasons, the theoretical description of

the energy transfer in biological systems is based on the open quantum systems ap-

proach. The specific tools needed, the various limits in each model and the way to

treat the system, the bath and the interaction between them will be explained in

the following section.

1.3 Open quantum system approach

1.3.1 Closed quantum systems

Quantum mechanics provides a mathematical framework capable of describing the

microscopic nature of particles. It is based on some fundamental concepts, which are

the starting points of the theory itself. First of all, every physical system is associated

to a linear space called Hilbert space H, where each state is represented by a ket

|ψ〉, or, alternatively, by a density operator ρ = |ψ〉〈ψ| [56]. Every observable is

described by a Hermitian operator in the Hilbert space and the only possible results

of a measurement are given by the (real) eigenvalues of this operator itself. When

the system is in a specific state |ψ〉, the probability that the observable A gives

the eigenvalue an as a result is the inner product |〈an|ψ〉|2. If the measure of the

observable A on the state |ψ〉 gives the eigenvalue an, the state of the system is

the normalised eigenstate |an〉. Finally, the time evolution of a quantum system

represented by the state |an〉 is described by the Schrödinger equation [81]:

d

dt
|ψ(t)〉 = − i

~
[H(t), |ψ(t)〉], (1.1)

where H(t) is the Hamiltonian of the system. Its solution is obtained in terms of a

unitary evolution operator U(t, t0), which evolves the initial state |ψ(t0)〉 at time t0

to the final state |ψ(t)〉 = U(t, t0)|ψ(t0)〉 at time t. Putting this formal solution into

the Schrödinger equation (1.1), an equation for the time evolution operator can be

obtained as follows:

∂

∂t
U(t, t0) = − i

~
H(t)U(t, t0), (1.2)

with initial condition U(t, t0) = I. Using these last two equations it is possible

to show that U †(t, t0)U(t, t0) = U(t, t0)U †(t, t0) ≡ I, therefore U(t, t0) is a unitary

31



operator. For an isolated system with a Hamiltonian that does not depend on time,

the evolution operator is given by:

U(t, t0) = e−
i
~H(t−t0). (1.3)

However, if the system is closed with a time-dependent Hamiltonian, its form changes

in:

U(t, t0) = T← e
− i

~
∫ t
t0
dsH(s)

, (1.4)

where T← indicates the chronological time-ordering operator for which the time

arguments in time-dependent operators increase from right to left.

If the system under scrutiny is in a mixed state, it can be described by the

density matrix ρ. Its dynamical evolution can be determined by the Schrödinger

equation (1.1), starting from the initial condition:

ρ(t0) =
∑

i

κi |ψi(t0)〉〈ψi(t0)|, (1.5)

where κi are positive weights and |ψi(t0)〉 are normalised state vectors. At time t,

the state of the system will be:

ρ(t) =
∑

i

κi U(t, t0)|ψi(t0)〉 〈ψi(t0)|U †(t, t0)

= U(t, t0) ρ(t0) U †(t, t0).

(1.6)

Differentiating this equation with respect to time, it is possible to obtain the equation

of motion for the density matrix:

d

dt
ρ(t) = − i

~
[H(t), ρ(t)], (1.7)

which is called Liouville-von Neumann equation and can be also written as

d

dt
ρ(t) = Lρ(t), (1.8)

to stress the analogy with the equation of motion for probability density in classical

statistics. L is defined as Liouville super-operator since it acts on an operator (ρ(t))

to give another operator (L = −i[H(t), · ]). Again, for an isolated system, the time

evolution operator is given by:

ρ(t) = eL(t−t0)ρ(t0), (1.9)

while for a closed system the density matrix has the form:

ρ(t) = T← e
∫ t
t0
dsL(s)

ρ(t0). (1.10)
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In the Schrödinger picture, where the states evolve, the dynamics of the density

matrix is characterised by the Liouville-von Neumann equation (1.8). The evolution

can also be described through the evolution of the operators of the system, using in

this case the Heisenberg representation. At the initial time t0, the states coincide

in both pictures, such that ρ(t0) = ρH(t0). The operators at time t, instead, are

related through the canonical transformation:

AH(t) = U †(t, t0)A(t)U(t, t0), (1.11)

where here the operator in Schrödinger picture explicitly depends on time. At

the initial time t0, the Schrödinger and Heisenberg pictures also coincide for the

operators: AH(t0) = A(t0). The equivalence of the two pictures can be seen through

the calculation of the expectation value of an observable:

〈A(t)〉 = tr{A(t)ρ(t)} = tr{AH(t)ρH(t0)}. (1.12)

The equation of motion for an operator in Heisenberg picture can be obtained dif-

ferentiating Eq.(1.11) with respect to time:

d

dt
AH(t) =

∂

∂t
AH(t) +

i

~
[HH(t), AH(t)], (1.13)

where HH(t) = U †(t, t0)H(t)U(t, t0) is the Hamiltonian in the Heisenberg picture.

The partial derivative in Eq.(1.13) is given by ∂
∂tAH(t) = U †(t, t0) ∂∂tA(t)U(t, t0). If

dAH(t)
dt = 0, then AH is a constant of motion. An important special case is given

when A = H: for an isolated system ∂
∂tH(t) = 0 and the time evolution operator

has the form of Eq.(1.3), meaning that the Hamiltonian commutes with it. In this

case the Heisenberg picture Hamiltonian is a constant of motion: d
dtHH = 0.

In addition, if the operator in Schrödinger picture does not depend explicitly on

time and the system is isolated, the equation of motion (1.13) becomes:

d

dt
AH(t) =

i

~
[HH(t), AH(t)]. (1.14)

1.3.2 Open quantum systems

An open system is a quantum system coupled to an environment: the interaction

between them causes correlations leading to non-unitary system evolution. If the

Hilbert space of the system is denoted by HS and that of the environment by HE ,
the total Hilbert space is given by the tensor product of the two H = HS ⊗ HE ,
while the total Hamiltonian is

H = HS +HE +HSE , (1.15)
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where HS is the Hamiltonian of the system only, HE is the free environment Hamil-

tonian and HSE characterises the interaction between them. An environment that

has an infinite number of degrees of freedom (such that the frequencies of the modes

form a continuum) is called reservoir. If the reservoir is in thermal equilibrium, it

is called a bath.

It is possible to study the dynamics of the system only by tracing over the environ-

ment degrees freedom:

ρS(t) = TrE {ρ(t)} (1.16)

and the expectation values of observables acting on the system Hilbert space are

given by

〈A〉 = TrS {AρS}. (1.17)

The interaction with the environment affects the dynamics of the system, which,

therefore, needs to be treated differently with respect to the case of a closed system.

1.3.3 Born-Markov master equation: weak coupling limit

Since in the rest of this thesis the bio-inspired systems will be analysed in the

Markovian regime, it is useful to see which approximations lie behind this model.

The most important condition is the weak coupling between the system and the

reservoir and we are going to explain it with two different approaches.

The first is more formal and passes through the calculation of the eigenoperators of

the interaction Hamiltonian. This calculation can be quite complicated for systems

with many interactions, but it is worth going through the formalism because it shows

very clearly at what stage and how the Markov approximation takes place in the

evolution.

The second approach is more phenomenological and relies on the formalism of Kraus

operators to write the master equation: this is the method we are going to use to

describe our bio-inspired systems.

1.3.3.1 Markov approximation with eigenoperators approach:

the Redfield master equation

To understand in more detail the formal procedure to write the master equation for

a system, it is necessary to focus on the Hamiltonian describing the whole system

(in Eq.(1.15)). The starting point is the Schrödinger equation (1.7), that can be

transformed into the interaction picture, separating the rapid motion generated by

HS +HE from the slow motion generated by the interaction HSE [81, 82]:
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d

dt
ρ̃I(t) = − i

~

[
H̃I , ρ̃I(t)

]
, (1.18)

where ρ̃I(t) is the density matrix of the whole system in the interaction picture,

that takes the form ρ̃I(t) = e(i/~)(HS+HE)t ρ(t) e−(i/~)(HS+HE)t, and H̃I is given by

H̃I(t) = e(i/~)(HS+HE)tHSEe
−(i/~)(HS+HE)t. From now on, the tilde and the subscript

in ρ̃I will be omitted for sake of simplicity, therefore the integral form of the previous

equation is:

ρ(t) = ρ(0)− i

~

∫ t

0
ds [HSE(s), ρ(s)] . (1.19)

The next step is to assume that at the initial time t = 0 there are no correlations

between the system and the reservoir (the interaction has been switched on at that

instant). This leads to the following factorised form for the total density matrix

ρ(0) = ρS(0) ⊗ ρE . The substitution of this expression in the commutator within

the master equation and the trace over the reservoir degrees of freedom give:

d

dt
ρS(t) = −

∫ t

0
ds TrE

[
HSE(t), [HSE(s), ρ(s)]

]
. (1.20)

Here, it has been assumed that TrE [HSE(t), ρ(0)] = 0, which is guaranteed if the

reservoir has zero mean in the state ρE : this can always be achieved by including

the term TrE [HSEρE ] in the system Hamiltonian.

Even if the total density matrix is factorised at time t = 0, this does not mean that

at later times the interaction with the reservoir leaves this condition unchanged.

However, the model relies on the condition of weak coupling, meaning that the

reservoir is a very large system that is not affected by the coupling to the system,

hence:

ρ(t) ≈ ρS(t)⊗ ρE . (1.21)

This is the first main approximation within this model which is called Born approx-

imation. Substituting this expression in the equation above, an integro-differential

equation for the reduced density matrix can be obtained:

d

dt
ρS(t) = −

∫ t

0
ds TrE

[
HSE(t), [HSE(s), ρS(s)⊗ ρE ]

]
. (1.22)

At this stage, the future behaviour of ρ(t) still depends on its past through the
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integration over s. Here, the second main approximation within the weak coupling

regime is performed: the Markovian approximation asserts that the future evolution

of the system only depends on its present, therefore replacing ρ(s) with ρ(t) in the

equation above, this condition is guaranteed:

d

dt
ρS(t) = −

∫ t

0
ds TrE

[
HSE(t), [HSE(s), ρS(t)⊗ ρE ]

]
. (1.23)

This equation is called Redfield equation: it is local in time but the evolution of the

reduced density matrix still depends on the choice of the initial state. To avoid this,

the relaxation time scale τr over which the state of the system changes significantly

has to be very large in comparison to the time scale τc over which the environment

correlation functions decay (τr � τc). This condition can mathematically be satisfied

by letting the upper limit of the integral go to infinity and substituting s with t− s
to obtain:

d

dt
ρS(t) = −

∫ ∞

0
ds TrE

[
HSE(t), [HSE(t− s), ρS(t)⊗ ρE ]

]

= +

∫ ∞

0
ds TrE

{
−HSE(t)HSE(t− s)ρS(t)⊗ ρE +HSE(t− s)ρS(t)⊗ ρE HSE(t)

}
+ h.c.

(1.24)

At this point a further approximation needs to be made, the rotating wave ap-

proximation, in which the rapidly oscillating terms in the master equation can be

neglected. To explain this, we write the Hamiltonian in the interaction picture in

the general form:

HSE =
∑

α

Aα ⊗Bα, (1.25)

where A†α = Aα and B†α = Bα. The secular approximation mentioned above can be

easily seen if the interaction Hamiltonian is decomposed into eigenoperators of the

system Hamiltonian HS . Indicating the eigenvalues of HS with ε and the projection

on the eigenspace belonging to ε with 1(ε), it is possible to decompose the operators

as:

Aα(ω) =
∑

ω=ε′−ε
1(ε)Aα 1(ε′), (1.26)

where the sum acts over all fixed energy difference ω between two eigenvalues ε and

ε′. As a consequence:

[HS , Aα(ω)] = −ωAα(ω)

[HS , A
†
α(ω)] = +ωA†α(ω).

(1.27)
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Hence, the operators Aα(ω) and A†α(ω) are called eigenoperators of HS belong-

ing to the frequencies ±ω, respectively. Using the completeness relation, the sum

over all the energy differences gives
∑

ω Aα(ω) =
∑

ω A
†
α(ω) = Aα. Therefore, the

interaction Hamiltonian (1.25) can be rewritten as: HSE =
∑

α,ω Aα(ω) ⊗ Bα =
∑

α,ω A
†
α(ω)⊗B†α .

In turn, the interaction Hamiltonian in the interaction picture can be expressed as:

HSE(t) =
∑

α,ω

e−iωtAα(ω)⊗Bα(t) =
∑

α,ω

e+iωtA†α(ω)⊗B†α(t), (1.28)

where Bα(t) = eiHEtBαe
−iHEt are the environment operators in the interaction

picture. Replacing Eq.(1.28) in the master equation (1.24) and rearranging the

terms, the following form can be obtained:

d

dt
ρS(t) =

∑

ω,ω′

∑

α,β

ei(ω
′−ω)t Γαβ(ω)

(
Aβ(ω) ρS(t)A†α(ω′)−A†α(ω′)Aβ(ω) ρS(t)

)
+h.c.

(1.29)

where h.c. indicates the Hermitian conjugate of the previous expression and

Γαβ(ω) ≡
∫ ∞

0
dseiωs 〈B†α(t)Bβ(t−s)〉 =

∫ ∞

0
dseiωs TrE

{
B†α(t)Bβ(t−s) ρE

}
(1.30)

is the one-sided Fourier transform of the environment correlation functions. If the

environment is in a stationary state ρE , then [HE , ρE ] = 0, which means the reser-

voir correlation functions do not depend explicitly on time, but only on the time

difference: 〈B†α(t)Bβ(t − s)〉 = 〈B†α(s)Bβ(0)〉. As already stated, the Markov ap-

proximation relies on the condition that the environment correlation functions decay

faster than the system relaxation time (τc � τr). This condition is verified only for

a reservoir which has an infinite number of degrees of freedom and a continuum

spectrum of frequencies (if the spectrum is discrete, the correlation functions are

quasi-periodic). At this stage, it is possible to introduce the rotating wave approxi-

mation. Let us denote by τS the time scale of the intrinsic evolution of the system,

which is of the order of the inverse of the energy differences involved. If this time

is smaller than the relaxation time, that is τS ∼ 1
|ω′−ω| � τr, then terms for which

ω 6= ω′ oscillate very rapidly during the time τr over which the system varies ap-
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preciably. This implies that only terms with ω = ω′ survive in the master equation

(1.29): this condition is satisfied for optical quantum systems. Therefore we obtain:

d

dt
ρS(t) =

∑

ω

∑

α,β

Γαβ(ω)
(
Aβ(ω) ρS(t)A†α(ω)−A†α(ω)Aβ(ω) ρS(t)

)
+ h.c. (1.31)

At this point, some calculations have to be performed, introducing a decomposition

for the Fourier transform of the reservoir correlation functions and also adding and

subtracting certain quantities. This allows to rewrite the expression above as:

d

dt
ρS(t) = − i [HLS , ρS(t)] +D

(
ρS(t)

)
, (1.32)

where the following definition has been used

HLS =
∑

ω

∑

α,β

Sαβ(ω)A†α(ω)Aβ(ω), (1.33)

with Sαβ(ω) = 1
2i

(
Γαβ(ω) − Γ∗βα(ω)

)
. The Hermitian operator HLS is often called

the Lamb-shift Hamiltonian, as it gives a renormalization of the unperturbed sys-

tem energies caused by the coupling to the reservoir. It also commutes with the

unperturbed Hamiltonian, [HS , HLS ] = 0. The second term in Eq.(1.32) reads as:

D
(
ρS(t)

)
=
∑

ω

∑

α,β

γαβ(ω)
(
Aβ(ω) ρS(t)A†α(ω)− 1

2

{
A†α(ω)Aβ(ω), ρS(t)

})
, (1.34)

with γαβ(ω) = Γαβ(ω)+Γ∗βα(ω) =
∫∞
−∞ dseiωs 〈B†α(s)Bβ(0)〉. With these definitions,

Eq.(1.32) is the master equation in the interaction picture describing a system weakly

coupled to a reservoir, under the specific approximations explained above and cal-

culating explicitly the eigenoperators of the Hamiltonian.

1.3.3.2 Markov approximation with Kraus operators approach:

the Linblad master equation

A different approach to obtain a phenomenological master equation relies on the

formalism of Kraus operators [83]. The purpose is to write a master equation with

time-independent coefficients for the density matrix of the system.

First of all, any superoperator in quantum mechanics can be written in the form:

Lδt[ρ] =
∑

µ

Kµ(δt) ρK†µ(δt), (1.35)
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where δt is the infinitesimal time interval and Kµ are linear operators, such that
∑

µKµK
†
µ = 1. Eq.(1.35) is called Kraus representation. To write the master

equation, the idea is to express the transformation from ρS(t) to ρS(t + δt) as a

Kraus sum. If at time t the environment is in a steady state ρE and the state of

the whole system is separable ρ(t) ≈ ρS(t) ⊗ ρE (as in Eq.(1.21)), then the Kraus

formalism can be applied to obtain the density matrix of the system at time t+ δt:

ρS(t+ δt) = Lδt[ρS(t)] =
∑

µ

Kµ(δt) ρS(t)K†µ(δt), (1.36)

where the Kraus operators Kµ depend on time δt, on the interaction between the

system and the environment and on the state of the environment ρE . This expression

leads to the master equation we are looking for. However, before proceeding, it

is important to notice that a significant physical assumption has been made in

Eq.(1.21), since two physical processes have been neglected. One of them is related

to the environment: at time t its state is subjected to a fluctuation δρE(t) around

its steady state, because of the previous interaction with the system S. Secondly,

such interaction also implies that system and environment can be in an entangled

state, which manifests in an additional term δρSE(t) in the total density matrix.

This means that the exact form of Eq.(1.21) would be:

ρ(t) = ρS(t)⊗ [ρE + δρE(t)] + δρSE(t). (1.37)

However, this exact expression carries some issues. First of all, the presence of corre-

lations between the system and the environment would make difficult to link linearly

ρS(t) and ρS(t+ δt). In addition, even if this was possible, the Kraus operators Kµ

would depend on time t, due to the fluctuating initial state of the environment, and

this would lead to time-dependent coefficients in the master equation.

However, the Markovian approximation helps solve these problems. In fact, if the

environment is big enough, the system S evolves over the finite time interval δt as

if it was not entangled with the environment, allowing a description of the total

density matrix as given in Eq.(1.21). When the environment is very large, its levels

span a wide range of energy ∆ω. As a consequence, the correlation time of its ob-

servable is very short, being of the order of τc = ~/∆ω. For time intervals smaller

than τc, the observables of the environment remain constant, and the system and
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the environment undergo a coherent evolution. During the next time interval τc, the

phase relations between them are lost and a new coherent evolution starts again.

This implies that the environment fluctuation δρE and the correlations between the

system and the environment δρSE have a very short correlation time, of the order

of τc. Therefore, products of two matrix elements of these quantities, taken at times

differing by more than τc, vanish on average.

Based on the previous discussion, it is possible to estimate the time scale τr of the

evolution of the system S. Every step in the evolution of ρS has duration τc and each

element in it undergoes a quantum phase variation of gτc/~, being g the coupling

between the system and the environment, with order of magnitude of HSE . After a

time t, namely after a number of t/τc steps, and considering that steps corresponding

to successive τc intervals add quadratically, the quantum phase accumulated is:

[∆Φ(t)]2 =

(
gτc
~

)2 t

τc
=

t

τr
, (1.38)

where the evolution time scale τr is defined as:

τr =

(
~
gτc

)2

τc. (1.39)

The Markov condition of an environment that does not have memory of its past

is: τc � τr meaning that gτc/ � 1. Choosing a time δt such that τc � δt � τr,

the value of ρS(t + δt) does not change significantly with respect to ρS(t), if the

reservoir fluctuations and correlations between the system and the environment are

neglected. Therefore, under Markovian approximation, Eq.(1.37) can be replaced

by Eq.(1.21).

At this point it is easier to go back to the goal of this formulation: to find a

phenomenological expression of the master equation. Using Eq.(1.36), the derivative

of the density matrix of the system can be written as:

dρS(t)

dt
=
Lδt[ρS(t)]− ρS(t)

δt
. (1.40)

Since Lδt[ρS(t)] = ρS(t+ δt) = ρS(t) +O(δt) is a first order contribution in δt, it is

reasonable to say that one of the Kraus operators should be of the order of unity,

that is:
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K0 = 1− iAδt+O(τ2), (1.41)

where A is an operator independent on time that can be defined as:

A =
H

~
− iJ. (1.42)

The Hermitian and anti-Hermitian operators of A have been divided in the two

Hermitian operators

H = ~
A+A†

2
, J = i

A−A†
2

. (1.43)

Substituting Eq.(1.42) into the first order in δt, we obtain:

K0(δt) ρSK
†
0(δt) = ρS −

i

~
δt [H, ρS ]− δt(JρS + ρSJ). (1.44)

In the right-hand side, it can be noticed a commutator with a Hamiltonian-like term

H, which describes a unitary evolution of the system ρS . This term is the sum of the

free Hamiltonian HS and the energy shift contributions induced by relaxation, due

to the coupling of the system with the environment. They describe a renormalization

of the energy levels of the system and are assumed included in the “naked” energy

levels, therefore H in Eq.(1.44) can be replaced by HS .

The other terms in Kraus sum are of the order of δt, hence:

Kµ(δt) =
√
δt Lµ. (1.45)

The normalisation condition on Kraus operators requires
∑

µK
†
µ(δt)Kµ(δt) = 1 −

2Jδt+
∑

µ6=0 δtL
†
µLµ = 1, from which it is possible to define J as:

J =
1

2

∑

µ 6=0

L†µLµ. (1.46)

Reorganising all terms, the Linblad master equation can be obtained in the form:

dρS(t)

dt
= − i

~
[HS , ρS ] +

∑

µ6=0

(
LµρSL

†
µ −

1

2
L†µLµρS −

1

2
ρSL

†
µLµ

)
, (1.47)

where Lµ are called jump operators and represent processes due to the interaction

with the environment. This derivation of the master equation is based only on the
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assumptions that the evolution of the system occurs under Markovian approximation

and that it is described through the Kraus sum formulation.

For completeness, it can be noticed that, as for closed systems, also for open

quantum systems it is possible to define an operator in the Heisenberg picture for

each operator in the Schrödinger picture. In the limit of Markovian approximation,

this leads to the following equation:

d

dt
AH(t) = V †(t, 0){L†(t)A}, (1.48)

which is called adjoint master equation. If the generator L† does not depend ex-

plicitly on time, it commutes with V †(t, 0), therefore the equation above takes the

following simpler form:

d

dt
AH(t) = {L†(t)A}

= − i
~

[H,AH(t)] +
∑

k

γk

(
AkAH(t)A†k −

1

2
A†kAkAH(t)− 1

2
AH(t)A†kAk

)
.

(1.49)

In conclusion, a phenomenological master equation in the form of Eq.(1.47) is

expressed in terms of operators acting on the system and related to the quantum

jumps it could undergo. It is not based on a rigorous derivation (as it happens in the

formalism described in the previous section), but represents a deductive approach,

which relies on physical guesses to write down the form of the operators. Although

the Linblad master equation is able to reproduce the correct dynamics observed

in experiments and it is independent on the nature of the environment, it does

not predict the values of the damping rates in the decoherent term of the master

equation, as it happens instead in the Redfield master equation.

This procedure to write the master equation is often used in the study of energy

transfer in photosynthetic systems: this is precisely the approach we are going to

use to describe our bio-inspired toy models. In particular, we assume that the jump

operators have a general form Lµ =
√
γcµ cµ, where γcµ is the rate at which a specific

process occurs, and cµ is the operator involved in that process. Therefore, in the

next chapters we will rewrite Eq.(1.47) as:

dρS(t)

dt
= − i

~
[HS , ρS ] +

∑

µ6=0

γcµ
2
Lcµ(ρS), (1.50)
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where:

Lcµ(ρS) = 2cµρSc
†
µ − c†µcµρS − ρSc†µcµ. (1.51)

For sake of completeness, we highlight that the analysis in the following chapter

was carried out also using the Redfield master equation. However, since the results

were analogous to those obtained with the Linblad master equation, we reported

only the latter and performed the other calculations choosing the phenomenological

approach.

1.3.4 Lindblad dynamics represented by a matrix-vector notation

To numerically solve the Markovian master equation, the dynamics is represented

in a matrix-vector notation [84]. This is equivalent to describing the dynamics of

the system through a differential equation of the form

d~rs
dt

= L~rs, (1.52)

with L a matrix and ~rs the vector representing the state of the system. (For sake of

simplicity the symbol of vector will be omitted in the following.)

If the density matrix of the system ρS is a n × n matrix, the Hilbert space is built

starting from the scalar product ρ1 · ρ2 = Tr{ρ†1ρ2}. Within the vec-ing method,

the n× n matrix ρ is flattened in a n2 vector and the super-operator L is a n2 × n2

matrix. This can be done by putting the columns of the matrix ρ one below the

other, hence the element in position (a, b) in the matrix goes in position (b−1)n+a

in the vector representation. To find the right representation for the super-operator

L, it is necessary to remember that:

- A left multiplication of the density matrix ρ by a n× n matrix A, that is Aρ,

can be obtained multiplying the vector ~r by the n2 × n2 matrix 1⊗A, where

1 is the n× n identity matrix.

- In a similar way, a right multiplication of the matrix ρ by an n× n matrix B,

namely ρB, is equivalent to multiplying the vector ~r by the n2 × n2 matrix

BT ⊗ 1, where T indicates the transpose of the matrix.

- Finally, a simultaneous multiplication on the left and right side, i.e. AρB, is

performed multiplying the vector ~r by the n2 × n2 matrix BT ⊗A.
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Hence, numerically, the general form of the Linblad master equation (1.47) can be

written as follows. The commutator takes the form:

[H, ρ]→
(

1⊗H −HT ⊗ 1
)
~r, (1.53)

while the dissipator becomes:

cµρc
†
µ →

((
c†µ
)T ⊗ cµ

)
~r

c†µcµρ→
(

1⊗ c†µcµ
)
~r

ρc†µcµ →
((
c†µcµ

)T ⊗ 1
)
~r.

(1.54)

This means that the form for L in Eq.(1.52) is given by:

L = 1⊗H −HT ⊗ 1 +
∑

i

γi

((
c†µ
)T ⊗ cµ −

1

2

(
1⊗ c†µcµ +

(
c†µcµ

)T ⊗ 1
))

. (1.55)

1.4 Hamiltonian of bio-inspired light harvesting systems

We have described light-harvesting systems and the open systems formalism re-

quired to treat them properly. At this point the attention will be focused onto the

detailed description of the Hamiltonian characterising the bio-inspired light harvest-

ing systems of interest, with particular emphasis on the specific models used in this

thesis.

As already mentioned, a light harvesting antenna is formed of chromophores

interacting between them and bound to proteins. Every chromophore molecule

is formed of electrons and nuclei, the latter being represented as a collection of

quantised harmonic oscillators given their slow vibrational motion. The Hamiltonian

describing such system comprising N chromophores is given by [85]:

H =
N∑

k=1

[
1

2
ω2
k x

2
k |G〉〈G|+

(
Uk +

1

2
ω2
k (xk − qk)2

)
|k〉〈k|+ 1

2
p̂2
k

]

+
1

2

N∑

k,k′=1 k 6=k′
Vkk′

(
|k〉〈k′|+ |k′〉〈k|

)
,

(1.56)

Here, it has been assumed that ground and excited states are described by the
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same normal mode coordinates xk [80]. In Eq.(1.56) ωk represents the frequency

of mode k, xk is the position operator of the same mode and qk indicates the shift

in its equilibrium position due to the electronic excited state |k〉. Uk is the bare

energy of the electronic state k at the equilibrium position (xk = qk), while pk is the

momentum operator of mode k. As already explained in Sec.(1.2.3.1), the simplest

way to treat electronic excitations in biological systems is to model them as two-level

systems, therefore |k〉 represents the state with chromophore k in the excited state

and the others in the ground. Finally, Vkk′ is the electronic coupling between the

two chromophores k and k′ (assuming a locally balanced charge distribution in each

of them, Vkk = 0), which will be explained in more detail in Sec.1.4.1.

It is important to underline that in the description given by Eq.(1.56) every site

is locally coupled only to one high-energy, localized vibrational mode. This quasi-

resonant mode (intramolecular vibration) gives the most relevant contribution to the

coherent dynamics of the system. All the other low-frequency modes, representing

the vibrational environment of the protein and solvent, are far from the condition of

resonance with the electronic degrees of freedom and for this reason can be treated

phenomenologically, using the Linblad formulation presented in Sec.1.3.3.2, within

the Markovian regime, as explained in Secs.1.3.3.2 and 2.6.

Rearranging the terms, it is possible to rewrite Eq.(1.56) as sum of three parts

(electronic, vibrational and interaction Hamiltonian):

H = Hel +Hvib +Hel-vib, (1.57)

where

Hel =
N∑

k=1

[
1

2
ω2
k x

2
k |G〉〈G|+

(
Uk +

1

2
ω2
k q

2
k

)
|k〉〈k|

]

+
1

2

N∑

k,k′=1 k 6=k′
Vkk′

(
|k〉〈k′|+ |k′〉〈k|

)
(1.58)

Hvib =
N∑

k=1

(
1

2
p̂2
k +

1

2
ω2
k x̂

2
k

)
(1.59)

Hel-vib = −
N∑

k=1

ω2
k xk qk |k〉〈k|. (1.60)

At this point, we focus the attention on each contribution separately in order to

arrive at the final expression used in the rest of the thesis.
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1.4.1 Electronic Hamiltonian

In Eq.(1.58) it is possible to define the reorganisation energy λk = 1
2 ω

2
k q

2
k = ωk Sk,

where Sk represents the Huang-Rhys factor. It is related to the Stokes shift and can

be measured experimentally by comparing the peak shift between absorption and

fluorescence spectra [80]. The reorganisation energy λk represents the contribution

of mode k to the site energy k, that will be indicated with αk = Uk + λk.

It is important to point out that when the vibrational modes have all the same

frequency ωk and the displacements of the equilibrium position qk are identical for

each chromophore, the reorganisation energy gives the same contribution to each

site. This means that it only shifts the site energies by the same amount, thus

having no effect on the dynamics. This is the case we will consider in the models

used in our work, therefore the contribution of the reorganisation energy to each site

will be neglected and αk = Uk will corresponds to the bare energy of the electronic

states only.

Substituting the expression above in the Hamiltonian in Eq.(1.58), one obtains

[80,86]:

Hel = α0 |G〉〈G|+
N∑

k=1

αk|k〉〈k|+
1

2

N∑

k,k′=1 k 6=k′
Vkk′(|k〉〈k′|+ |k′〉〈k|), (1.61)

where α0 =
∑N

k=1
1
2 ω

2
k x

2
k has been defined as the electronic aggregate ground state

energy and 1 is the unity matrix. The energies of the sites αk and the strength of

the interaction Vkk′ depend on the pigment structure and on the charge distribution.

The Coulomb interaction between the sites is given by:

Vkk′ = ke

∫∫
dr dr′

ρk(rk) ρk′(rk′)

|rk − rk′ |
, (1.62)

where ke = 1
4πε0

is the Coulomb constant (with ε0 the vacuum permittivity), and

ρk(rk) and ρk′(rk′) are the charge distributions of molecules k and k′, respectively.

This charge density indicates the amount of unbalanced charge distribution in the

neutral molecule, due to the continuous spatial distribution of the negative electron

charge and the localized positive charge of the nuclei [80]. The Coulomb interac-

tion can be expressed in terms of the multiple moments of the respective charge

distributions [86]. In the dipole-dipole approximation and in the case of uncharged

molecules, the interaction has the following form:
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V dip
kk′ =

Dk ·D′k − 3 (Dk · r̂kk′)(Dk′ · r̂kk′)
|rkk′ |3

, (1.63)

where rkk′ = rk − rk′ is the distance between the two molecules, r̂kk′ is the corre-

sponding unit vector and Dk is the dipole moment:

Dk =

∫
dr (r− rk) ρk(r). (1.64)

The dipole-dipole interaction is reasonable when the intermolecular distance r is

larger than the size of the molecule, but also when r is larger than the dipole radius

a (which is of the order of a few angstroms). As a consequence, in many cases, the

dipole-dipole coupling term determines spectroscopic and excitation energy transfer

properties. Higher order terms fall off more rapidly with distance, hence they are

negligible.

On the whole, intermolecular interactions cause very significant changes in the

energy spectra, by affecting exciton formation. Excitons, quantum superpositions

of excitations that are coherently delocalised over sites, are used to explain energy

transfer through the molecular system. These are the eigenstates of Hamiltonian in

Eq.(1.61) and can be expressed as a superposition of the sites:

|Xi〉 =
∑

k

cik|k〉, (1.65)

where cik indicates the amplitude probability of exciton i over site k. This can

significantly change the electronic excitation spectrum of molecular aggregates with

respect to the spectrum of an isolated molecule [86], creating new absorption bands

and affecting also the energy transfer dynamics. Indeed, the induced dipole moment

of the transitions is accordingly redistributed as:

µXi =
∑

k

cikµk. (1.66)

In normal light conditions, the absorption of sunlight corresponds to a low flux of

photons, hence it is possible to consider only one excitation over the chromophores

at any time [76].

In terms of the localized states, the Hamiltonian for a dimer is given by Eq.(1.61)

with N = 2. Rearranging some terms and assuming the ground state energy of the

aggregate equal to zero (α0 = 0), it can be rewritten as:

Hel = αM +
∆α

2
σz + V σx, (1.67)
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where α = (α1+α2)/2 is the mean energy of the sites, and ∆α = α1−α2 is the energy

difference between the excited electronic states, assuming that site 1 has the highest

energy. In addition, M = |1〉〈1|+ |2〉〈2|, σz = |1〉〈1|− |2〉〈2| and σx = |1〉〈2|+ |2〉〈1|.
Let us indicate the eigenstates of Hel in Eq.(1.67) with |X1〉 and |X2〉 and their corre-

sponding eigenvalues with E1 and E2 (with E1 > E2). As a result, the Hamiltonian

in the exciton basis and its eigenvalues take the form:

Hexc = EM̃ +
2∑

k=1

Ek |Xk〉〈Xk|

E1,2 = ±V
√

1 +
∆α2

4V 2
,

(1.68)

where E = (E1 + E2)/2 is the average energy and M̃ = |X1〉〈X1| + |X2〉〈X2|.
Here, the ground state |G〉 has been explicitly introduced in the electronic basis

{|G〉, |X2〉, |X1〉}, with energy set to zero. The excitons |X2〉 and |X1〉 are symmetric

and anti-symmetric linear combinations of the localized excited states:


|X2〉
|X1〉


 = U


|2〉
|1〉


 with U =


 cos θ sin θ

− sin θ cos θ


 , (1.69)

where U is the unitary matrix that diagonalises the electronic Hamiltonian. The

angle θ is called “mixing angle” and is such that

tan(2θ) =
2V

∆α
=⇒ θ =

1

2
arctan

(
2|V |
∆α

)
with 0 < θ <

π

4
. (1.70)

Therefore the exciton Hamiltonian assumes the form:

Hexc = EM̃ +
∆E

2
σ̃z, (1.71)

where σ̃z indicates that we are in the exciton basis, with σ̃z = |X1〉〈X1| − |X2〉〈X2|
and ∆E =

√
∆α2 + 4V 2 the energy difference between the eigenstates of the elec-

tronic Hamiltonian.

These concepts represent the formal explanation of the first key quantum effect

in photosynthesis from Sec.1.2.3.
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1.4.2 Vibrational Hamiltonian

We now focus our attention on Eq.(1.59). The position and momentum operators can

be expressed in terms of creation and annihilation operators by using the following

expressions:

x̂ =

√
~

2mω
(d̂† + d̂),

p̂ = i

√
~mω

2
(d̂† − d̂).

(1.72)

Substituting in Eq.(1.59) and using the coordinate-momentum commutator identi-

ties, it is possible to rewrite the vibrational Hamiltonian as:

Hvib =

N∑

k=1

ωk

(
d̂†kd̂k +

1

2

)
, (1.73)

in which ~ = m = 1. The normal modes (phonons) represent the quantized vibra-

tional motions of the chromophores themselves.

In presence of only two modes (N = 2) with the same frequency ω1 = ω2 = ωvib,

each coupled to one site, and neglecting the zero point energy, the equation above

reads as:

Hvib = ωvib(d†1d1 + d†2d2). (1.74)

where the symbol of operator has been omitted for sake of simplicity. In this case,

it is possible to introduce the collective mode coordinates defined as

D
(†)
− =

1√
2

(d
(†)
1 − d

(†)
2 ),

D
(†)
+ =

1√
2

(d
(†)
1 + d

(†)
2 ).

(1.75)

They correspond to the relative displacement coordinates and to the mode centre of

mass, respectively [22,80]. Neglecting the zero point energy, Eq.(1.73) can be rewrit-

ten as Hvib = ωvib(D†+D+ +D†−D−). However, only the relative displacement mode

D
(†)
− couples to the excitonic system and, therefore, is relevant for the dynamics,

leaving the vibrational Hamiltonian in the form:

Hvib = ωvibD
†
−D−. (1.76)
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The form of this Hamiltonian in the exciton basis does not change, since the matrix

U in Eq.(1.69) does not affect it.

1.4.3 Interaction Hamiltonian

Finally, we focus the attention on the interaction Hamiltonian. As explained in

Sec.1.2.3, the third key quantum effect in photosynthesis is related to the most

relevant source of exciton localisation, which is the interaction between electronic

degrees of freedom and vibrational modes. The excitons can be delocalised over sev-

eral sites, thanks to the Coulomb interaction between them. In opposition, the cou-

pling to the vibrational degrees of freedom tends to destroy phase relations between

the electronic excitations over different chromophores and leads to more localised

excitons over the sites.

The Hamiltonian describing this coupling between the electronic and vibrational

parts (assuming ~ = 1) is given in Eq.(1.60). Replacing the expression for the

position operator in Eq.(1.72), it becomes:

Hel-vib =
N∑

k=1

gk |k〉〈k|(d†k + dk), (1.77)

where gk = −ωk
√
Sk = −√ωkλk is the linear coupling strength between the exci-

tation at site k and its phonon mode, which depends on the reorganisation energy.

This interaction generates the so called “dynamic disorder” and causes a dynam-

ical modulation of the electronic transition energies, shifting them in and out of

equilibrium.

As already mentioned in Sec.1.2.3.3, the presence of the environment can have a

twofold impact on the excitons, due to the nature of the vibrational motions. In fact,

when the transitions time between the molecules is smaller than the intramolecular

relaxation time, TV < Tg, the electronic interactions are stronger than the coupling

to the vibrational environment, namely V � λ. In this case coherent electronic

energy transfer takes place and the excitation moves as a delocalised state through

the aggregate. This implies that in thermal equilibrium the system is in a statistical

mixture of electronic eigenstates: this regime is described by the Redfield model

[87]. On the other hand, in the limit of weak electronic coupling, V � λ, the

intermolecular transitions time is larger than the vibrational relaxation time, TV >

Tg. This condition induces incoherent electronic energy transfer and the excitonic

states that diagonalise the density matrix in the steady state (vibronic states) are
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more localised than the electronic eigenstates (the excitons). Such situation leads to

the formation of polaritons, electronic states dressed by phonon modes. In thermal

equilibrium, single sites are populated according to a Boltzmann distribution: this

regime is described by the Forster theory [88].

All these arguments are related to the second and third quantum key effects in

photosynthesis mentioned before.

In the simplest case of two sites with identical coupling to the modes (each

coupled to one site), the interaction Hamiltonian is written as:

Hel-vib =

2∑

k=1

g |k〉〈k|(d†k + dk), (1.78)

which, within the collective mode formulation, becomes:

Hel-vib =
1√
2
g σz (D†− +D−). (1.79)

Here, the coupling related to the centre of mass term has been neglected, since it

does not affect the dynamics of the system.

On the basis of the previous considerations, it is possible to use the unitary

matrix U in Eq.(1.69) to obtain the interaction Hamiltonian in the exciton basis:

H
(e)
el-vib = U †Hel-vibU =

1√
2
g
(

cos(2θ) σ̃z − sin(2θ) σ̃x

)
(D− +D†−), (1.80)

where σ̃z has been defined before and σ̃x = |X1〉〈X2| + |X2〉〈X1|. For sake of sim-

plicity, we will omit the apex “e” (indicating the exciton basis) in the following.

1.4.4 Full Hamiltonian

At this point we present the full Hamiltonian used in this thesis. The total Hamil-

tonian in the exciton basis, considering only two sites and the same vibrational

frequency at each of them, can be written as:

H = EM̃+
∆E

2
σ̃z+ωvibD

†
−D−+

1√
2
g
(

cos(2θ) σ̃z−sin(2θ) σ̃x

)
(D−+D†−). (1.81)

Here, the coupling g/
√

2 cos(2θ)σ̃z(D−+D†−) causes transitions between vibrational
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Figure 1.5: The figure shows the system under study before and after diagonalising the

electronic Hamiltonian, both for the electronic part only (a), and for the collective exciton-

vibration description (b).

states inside the same excitonic state |Xi, n〉 → |Xi, n + 1〉, with i = 1, 2; while

the term g/
√

2 sin(2θ)σ̃x(D− + D†−) causes transitions between both exciton and

vibrational states |X1, n〉 → |X2, n + 1〉 (Fig.1.5). In Eq. (1.81) it is interesting

to notice that the bigger the mixing angle is, the more delocalisation the system

experiences: in particular, for the limit case of an homodimer, where ∆α = 0 and

θ = π/4, we recover the Jaynes-Cummings Hamiltonian. The opposite limit of θ = 0

gives excitons completely localised on the sites.

Since in Chap.4, we will use the Hamiltonian in the site basis, here we also

report its expression in the case where only two sites are taken into account and

without decoupling the mode centre of mass coordinates and the relative displace-

ment coordinates. It can be obtained by combining together Eqs.(1.67), (1.74) and

(1.78):

H = αM +
∆α

2
σz + V σx + ωvib

2∑

k=1

d†kdk +
2∑

k=1

g |k〉〈k|(d†k + dk). (1.82)
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1.5 Probing quantum coherence

Witnessing quantum coherence is not a simple matter. Before explaining this con-

cept, it is crucial to answer questions such as: “What is quantum coherence?”, “How

is it possible to measure it?”. Once this will be clarified, it will be possible to un-

derstand the major issues hidden behind the concept of quantum photosynthesis

and the main problems researchers are trying to deal with. Answering the questions

above, from both a theoretical and experimental point of view, is the aim of the

following sections.

1.5.1 Theoretical approach

Quantum coherences can be defined, in the simplest way, as the off-diagonal elements

of the density matrix describing the system under study, which depends on the choice

of the basis [56]. Let us consider the Hamiltonian eigenbasis, since this choice carries

two simplifications. First of all, it links well with the spectroscopic procedures used

to measure the transition energies: the populations in the density matrix depict

the probability for the system to have a specific energy. Moreover, the Hamiltonian

establishes the evolution of the quantum system, meaning that in the basis chosen

the interpretation is quite simple. The equation of motion describing the system in

any basis is given in Eq.(1.7), and written in the Hamiltonian eigenbasis becomes:

d

dt
ρij = − i

~
(Ei − Ej)ρij , (1.83)

where Ei is the energy of the ith eigenstate. This means that, under unitary evolu-

tion, populations (i = j) are constant in time, whereas coherences (i 6= j) oscillates

in time as follows:

ρij(t) = e−
i
~ (Ei−Ej)tρij(0). (1.84)

Up to this point, it seems that the way to identify quantum coherence in the Hamil-

tonian eigenbasis is to observe oscillatory beating signals. This idea is also supported

by the fact that such oscillations do not generally come from coherence in other ba-

sis: for instance, delocalisation (that is coherence in the site basis) can exist without

showing any beating. Within the density matrix formalism, making an observa-

tion means to calculate the mean value of the corresponding operator. The first

measurement one could think of is the energy of the system:
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〈E〉 = Tr{Hρ} =
∑

i

Ei ρii. (1.85)

However, notice that in Eq.(1.83), under unitary evolution, the energy of the system

is conserved: it is independent of the coherences and, therefore, there are no oscil-

lations. This implies that quantum coherences cannot be probed by measurements

of energy. For this purpose, it is convenient to choose an operator that does not

commute with the Hamiltonian: this guarantees that they do not have the same

eigenvectors, hence the observable is not diagonal in the Hamiltonian eigenbasis.

For the spectroscopic analysis, the dipole operator is the most suitable candidate,

therefore we focus on this choice. This operator causes the transition between the

ground and an excited state of a system after the interaction with light. In spec-

troscopic observations, the coherences of the dipole operator manifest as periodic

oscillations in the intensity of the signal: these amplitudes are called quantum beats.

1.5.2 Experimental approach

One of the most used techniques to observe quantum coherence is ultra-fast multidi-

mensional spectroscopy. For these experiments, the main methods more commonly

used to perform measurements are pump-probe, two photon echo and two dimen-

sional spectroscopy. They are all nonlinear methods of the third order polarization,

used to study ultrafast electronic dynamics. The first two, in their simplest form,

employ two laser pulses to measure either populations or coherences, while 2D spec-

troscopy involves the use of three lasers and it is considered the most powerful

procedure, since it is able to investigate both populations and coherences [9, 89].

In a pump-probe scheme (Fig.1.6), a first laser “pump” pulse is used to excite

the sample, generating a non-equilibrium state which is free to evolve. During this

evolution the system undergoes both incoherent relaxation, because of the inter-

action with the environment, and coherent coupling with other excited states that

facilitates energy transfer. These changes are monitored by a second “probe” pulse,

following the first after a specific delay time. At this point, if the system was in an

excited state, it will decay, otherwise it will populate.

The measurement of the fluorescence as a function of time delay between the pump

and probe pulses yields information about the relaxation of electronic states in the

system. More specifically, if coherent population transfer has happened in the dy-

namics, it will be witnessed by oscillations in the spectrum with frequency propor-

tional to the coupling between the excited states and attenuated by the incoherent
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relaxation.

Figure 1.6: Representation of the pump-probe setup [90].

The first suggestion of possible coherence between excited states in a photosynthetic

system (the Fenna-Matthews-Olson complex) came just from a pump-probe experi-

ment performed in 1997 [91]. Here, measurements of anisotropy showed oscillations

in the pump-probe signals, meaning that they had to be caused by quantum beatings

between exciton levels, and not simply from coherent nuclear motion. However, this

method measures coherences only indirectly, extrapolating the information about

them from populations. As a result, it is very sensitive to any form of disorder,

causing the laser pulse to go out of resonance and potentially introduce incoherent

oscillations.

To directly measure coherence in the system, it is more convenient to use photon-

echo spectroscopy [92]. In the simplest form, two pulses can be sent to the sample.

The first laser pulse generates a phase rotation of π/2 (see Fig.1.7), giving rise to a

coherent superposition of excited states. The system is then free to evolve, but due

to inhomogeneous disorder, the phases of the coherences will oscillate with slightly

different frequencies (see Eq.(1.84)). To avoid this situation, a second pulse with

phase π is sent on the system and, as a consequence, it flips the time evolution of

the coherences (see Eq.(1.84)).

Figure 1.7: Representation of the geometry for a two-pulse photon echo experiment [93].

This phenomenon is called rephasing, since it recreates the same coherence in the
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state that was obtained after the first pulse. More specifically, the system will be

found in that state after a time equals to the time separation between the pulses.

The signal emitted at this point contains information about the coherence created

with the first pulse and this is the reason why it is called photon echo.

In addition, the interaction with the environment causes a relaxation of the system

and, therefore, a decay of the coherences at a specific dephasing rate. This rate can

be measured by varying the time between pulses, thus also acquiring information

about the system-environment interaction.

One of the main advantages of this spectroscopic technique is that it is unaffected

by inhomogeneous disorder. However, despite measuring coherence, this technique

is unable to provide information about its origin: be it electronic, vibrational, or

vibronic.

The most powerful method used nowadays to recover full information about the

dynamics of the system is the 2D spectroscopy. Indeed, the first direct probe of

quantum coherence in biological system was obtained thanks to a 2D spectroscopic

experiment in 2007 on the Fenna-Matthews-Olson complex [9].

In 2D spectroscopy three laser pulses interact with the sample, following the schematic

representation in Fig.1.8.

Figure 1.8: Representation of the scheme for a 2D spectroscopy experiment [94], where τ

corresponds to the coherence time passing until the first laser pulse, T is the waiting time

between the second and third pulse, and t is the time delay with respect to the second pulse.

The first laser generates a coherent excited state. Such a coherence between the

ground and the resonant excited states is free to evolve, undergoing dephasing and

relaxation: this first time delay is called coherence time and is usually indicated with

τ . The second pulse changes the coherence into populations of both the excited and

ground states, or in coherences between excited states. The latter occurs in pres-

ence of multi-chromophoric systems: the pulses, in fact, have a broad bandwidth,

meaning that after the first excitation of a coherence between ground and excited

state, the second pulse could interact with a different state, leaving a coherence and

not a population. Such coherent evolution happens with phase equal to the energy
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difference between the excitonic states. The time between the second and third pulse

is called waiting time (T ). Last pulse causes rephasing in the system, the time delay

with respect to the third one is called rephasing time (t) and the signal emitted is a

photon echo, as described in the previous method.

The main advantage of this technique is that it gives information about the en-

ergy levels in the system. More specifically, a 2D spectrum is actually a 3D figure

where the intensity is function of two frequencies. However, in a 2D experiment

the intensity is omitted and the dimensions of reference are the two frequencies.

These are computed through the acquisition of two temporal functions (see Fig.1.8),

then transformed in frequencies using the Fourier transform. As a consequence,

the position and the intensity of the fluorescence peaks are different depending on

the frequencies of the components excited in the system. This enables to distin-

guish the origin and the dynamics of these components [95]. Indeed, the use of 2D

spectroscopy with different geometries of the laser pulses and detectors has found

evidence of both electronic [11,12,25,96] and vibrational coherences [97,98], at low

and ambient temperature. Thanks to two-dimensional spectroscopy, it has been

experimentally proved that the interplay between the pigments and the protein en-

vironment allows quantum coherence to last longer [99]. Moreover, oscillations of

excited-state population have been observed, implying that quantum energy transfer

happens in photosynthetic complexes.

Although many steps forward have been made, the study of quantum photo-

synthesis is far from completed. The quantum interaction between electronic and

vibrational degrees of freedom seems to be the reason behind the observed coherent

dynamics. Some theoretical studies have shown non-classical fluctuations of col-

lective chromophore motions [22]. The signature of this non-classicality lies in the

negativity of the quasi-probability distribution of the collective mode coupled to the

electronic degrees of freedom. However, alternative confirmations of these hypothe-

sis are needed, using experimentally accessible techniques.

This is precisely the aim of this thesis: trying to provide tools which can be useful

for the investigation of non-trivial quantum effects in the process of photosynthesis

with alternative theoretical and experimental techniques. Our proposal relies on the

theory of correlation functions: for this reason, in the next section, we will briefly

outline the main concepts behind it and the basis of our idea.
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1.6 Blind and coloured photon counting statistics

1.6.1 Blind correlation functions

One of the most common ways to investigate and define quantum properties of

both light [38–41] and emitters [42–44], from a theoretical and experimental point

of view, is the measurement of photon correlation functions. Any photon detection

experiment requires the calculation of the correlation function of the field operators

in normal- and time- order. The general average light intensity at a specific point r

and time t is [100]:

〈I(r, t)〉 = 〈Â†(r, t) Â(r, t)〉, (1.86)

where A(†) is the field operator with positive e negative frequencies, respectively:

Â(r, t) =
∑

k

ε̂k Ek ake−iνkt+ik·r ; Â†(r, t) =
∑

k

ε̂k Ek a†keiνkt−ik·r. (1.87)

More specifically, the lowest order of these correlations (the second order) has been

analysed as a tool to probe non-classical phenomena [39]. This second normally-

and temporally-ordered correlation takes the following formal expression [101]:

g(2)(t1, t2) =
〈T−[Â†(t1)Â†(t2)]T+[Â(t2)Â(t1)]〉
〈Â†(t1)Â(t1)〉〈Â†(t2)Â(t2)〉

, (1.88)

with T− and T+ the time-ordering and antiordering superoperators needed to guar-

antee a physical description [101]. In particular, T− increases time arguments to the

right in products of creation operators, while T+ increases time arguments to the

left in products of annihilation operators. The form of the equation above becomes

easier if the radiation field consists of only a single mode:

g(2)(τ) =
〈a†(t) a†(t+ τ) a(t+ τ) a(t)〉
〈a†(t)a(t)〉〈a†(t+ τ)a(t+ τ)〉 . (1.89)

Based on the value of the zero and time dependent correlation function, it is possible

to classify light in three different ways. The most common classification sees [102]:

- coherent light for which g(2)(0) = 1. Perfectly coherent light has g(2)(τ) = 1

for all values of τ and it has a classical counterpart that is the coherent light

with constant intensity. It has Poissonian photon statistics, with random time

intervals between photons, hence the probability of detecting a photon is the

same for all values of τ .
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- bunched light for which g(2)(0) > 1. As the name suggests, it consists of a

stream of photons, clumped together in bunches. This means that if we detect

a photon at time t = 0, there is a higher probability of detecting another

photon at short times than at long times, therefore g(2)(τ) > g(2)(∞). Its

classical description is the thermal or chaotic light, with a super-Poissonian

distribution.

- antibunched light for which g(2)(0) < 1. In this case, the probability of ob-

serving a photon counting event after detecting a photon is small for small

values of τ and then increases with τ , so g(2)(0) < g(2)(τ). This kind of light is

only possible in the photon interpretation and is thus a clear signature of the

quantum nature of light. The antibunching is related to the sub-Poissonian

distribution.

To calculate the correlation functions, a solution of the density matrix is not suffi-

cient and the transition probability distribution is required. However, the quantum

regression theorem allows to calculate a two-time correlation function from a single-

time correlation function, under some conditions. The crucial assumption necessary

for applying the theorem is the Markovian approximation, already explained in

Sec.(1.3.3). This condition implies that the reservoir density matrix ρR(0) is uncou-

pled from the system density matrix ρS(0) at the initial time t = 0, meaning that

ρ(0) = ρS(0) ⊗ ρR(0). A general statement of the quantum regression theorem is

that if, for some operator Ô, the single-time correlation function is known as

〈Ô(t+ τ)〉 =
∑

j

aj(τ) 〈Ôj(t)〉, (1.90)

then it is easily possible to derive the two-time correlation function using the ex-

pression

〈Ôi(t) Ô(t+ τ) Ôk(t)〉 =
∑

j

aj(τ) 〈Ôi(t) Ôj(t) Ôk(t)〉. (1.91)

In particular, it is possible to show that (for τ ≥ 0) [103]:

〈Ô1(t) Ô2(t+ τ)〉 = TrS
{
Ô2(0) eLτ

[
ρS(t) Ô1(0)

]}

〈Ô1(t+ τ) Ô2(t)〉 = TrS
{
Ô1(0) eLτ

[
Ô2(0) ρS(t)

]}
.

(1.92)
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The calculation of a correlation function between three operators, 〈Ô1(t) Ô2(t +

τ) Ô3(t)〉, for τ ≥ 0, occurs as follows:

〈Ô1(t) Ô2(t+ τ) Ô3(t)〉 = TrS
{
Ô2(0) eLτ

[
Ô3(0) ρS(t) Ô1(0)

]}
. (1.93)

Having done this introduction, it is now possible to go back to the explanation

of the motivation behind our work. We would like to investigate the quantum

coherent interplay between electronic and vibrational degrees of freedom within a

prototype photosynthetic complex, by analysing the photon counting statistics of

the light emitted by the excitons. The biggest advantage of using this technique is

the concrete possibility to investigate the problem experimentally. Until recently,

the low fluorescence efficiency of light-harvesting complexes had impeded the study

of individual molecules at room temperature. However, a recent paper [45] has

demonstrated an over 500-fold fluorescence enhancement of a single molecule of

light harvesting complex 2 (LH2). Therefore this is very promising for the project

we aim to carry out, thanks to the realistic ability to measure eventual quantum

effects in photosynthetic systems by using the second order correlation function.

1.6.2 Frequency-filtered correlation functions

In photodetection experiments, the light to be analysed often passes through a

series of optical devices, such as spectral filters, before being registered by pho-

todetectors [101]. In literature, the various authors who dealt with the problem of

the frequency-filtered correlation function have given different names to this kind

of correlation, such as “physical spectrum” [104], “time-resolved correlation spec-

trum” [105], “spectral time correlation function” [106], “frequency-filtered intensity

correlation function” [107]. Despite the different names, the filtered two-time correla-

tion function can be written as g
(2)
F1,F2

(T1, T2) and is formally defined as in Eq.(1.88),

but with the substitutions Â(†)(t1)→ Â
(†)
F1

(T1) and Â(†)(t2)→ Â
(†)
F2

(T2), where

ÂF (t) =

∫ ∞

0
F (t′)Â(t− t′)dt′

Â†F (t) =

∫ ∞

0
F (t′)Â†(t− t′)dt′

(1.94)

are the filtered emission operators and F (t′) is the time and space filter function
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for each detector [101, 105, 107–109]. However, the calculation of these spectrally

resolved correlations is not straightforward, because of the presence of a four dimen-

sional integral. Higher-order correlations g
(n)
F1...Fn

(T1 . . . Tn) are similarly defined, but

their theoretical computation becomes even more complicated.

When the spectral filters are Lorentzian, the general formula for the Mth nor-

mally ordered correlation function is given by [101]:

S
(M)
Γ1...ΓM

(ω1, T1; ...;ωM , TM ) =

∫ ∞

−∞
dt′1

∫ ∞

−∞
dt′M+1 F ∗1 (T1 − t′1) F1(T1 − t′M+1)

...

∫ ∞

−∞
dt′M

∫ ∞

−∞
dt′2M F ∗M (TM − t′M ) FM (TM − t′2M )

〈T−
[
a

(+)
1 (t′1) ... a

(+)
M (t′M )

]
T+

[
a

(−)
1 (t′M+1) ... a

(−)
M (t′2M )

]
〉,

(1.95)

where

Fm(t) = θ(t)
Γm
2

e−(Γm/2 + iωm)t, (1.96)

with θ(t) the Heaviside function. This means that the spectral filter is replaced by

a Lorentzian density of states of the probe system under the Markov decay process.

Unfortunately, the computation of the Mth order frequency-filtered correlation func-

tion in Eq.(1.95) is very complicated for M > 2, due to all the possible time orderings

of the 2M time correlators. Moreover, every correlator requires the application of

the quantum regression theorem 2M−1 times. On the contrary, the measure of this

quantity is experimentally accessible thanks to devices such as streak cameras, that

are able to detect photon clicks as a function of time and energy [110].

Given the difficulty of numerically calculating the multi-dimensional integrals

in Eq.(1.95), some alternative methods have been recently developed to overcome

the computational complexity of these integrals in the filtered photon correlations

[46,47,111].

1.6.3 Sensor method for spectrally filtered photon correlations

The “sensor method” introduced in [46] is the inspiration for the new formalism we

developed, which will fully be presented in Chap.2.

The sensor method is based on the use of sensors which are weakly coupled to

the quantum emitter. The number of sensors depends on the statistical properties

one is interested to investigate: M sensors are required to compute the Mth order

photon correlations. They are represented as two-level systems with annihilation
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operator ςm = |0m〉〈1m| and transition frequency ωm that is matched to the emission

frequency of the main system. The sensor Hamiltonian is then described as:

Hm = ωmς
†
mςm, (1.97)

while the interaction Hamiltonian between the quantum emitter and the m−th sen-

sor is given by:

He,m = εm
(
amς

†
m + a†mςm

)
, (1.98)

with the coupling strength εm being small enough to justify that the dynamics of the

system is not influenced by the presence of the sensors. The lifetime of each sensor

1/Γm is the inverse detector linewidth. The condition of weak coupling implies that

if γQ is the smallest transition rate within the open quantum system linked to the

cavity mode, the couplings εm to the sensors must satisfy the condition:

εm �
√

ΓmγQ
2

, (1.99)

meaning that losses into the sensors and their back action are negligible. In the limit

of vanishing system-sensor coupling, the sensor population correlations are shown

to quantify the photon correlations of interest.

It is worth noticing that the physical meaning of the sensor linewidth lies in the

frequency-time uncertainty relation. The limit Γ → 0 describes the case of perfect

detectors, with very high resolution in detecting frequencies, but complete indeter-

minacy in time, leading to averaging photons from all possible time delays. The

opposite limit of Γ→∞ corresponds to the case of blind detectors, with very high

resolution in time, leading to photons detected at specific time delays but with

complete indeterminate frequencies.

The main result of the paper [46], which is demonstrated in the Supplemental

Material, is:

g
(M)
Γ1...ΓM

(ω1, t1; ...;ωM , tM ) = lim
ε1,...,εM→0

〈n1(t1)...nM (tM ) 〉
〈n1(t1)〉 ... 〈nM (tM )〉 , (1.100)

where M is the order of the correlation function, ωm are the frequencies to corre-

late, Γm are the linewidths (inverse of the lifetime) of each transition, 〈nm(tm)〉 =

〈ς†m(tm)ςm(tm)〉 is the average population of the m-th sensor and it gives the proba-

bility of detecting a photon with frequency ωm at time tm and 〈n1(t1) ... nM (tM )〉 is
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the probability of detecting M photons, each at different time tm. In Supplemental

Material of [46], the authors prove that for open quantum systems described by

Lindblad type master equations, the M -th frequency-filtered correlation function is

given by:

S
(M)
Γ1...ΓM

(ω1, ..., ωM ; t1, ..., tM ) =
Γ1...ΓM

(2π)M ε21...ε
2
M

〈n1(t1)...nM (tM )〉. (1.101)

Eqs.(1.100) and (1.101) express the equivalence between the traditional integral

approach in Eq.(1.95) and the sensor formalism to compute frequency-filtered and

time-resolved photon correlations. This result reduces the complexity of computing

g
(M)
Γ1...ΓM

(ω1, t1; ...;ωM , tM ) since no integral calculation is required and the quantum

regression theorem has to be applied only M − 1 times. It is also worth observing

that, since the mathematical equivalence with the traditional integral approach has

been proven through Eq.(1.95), the sensor method relies on the choice of Lorentzian

filters.

One of the most peculiar aspects of Ref. [46] is that the result presented in

Eq.(1.100), apparently, does not require the normal order of the sensor operators at

arbitrary time delays. The apparent irrelevance of the normal order for any time

delay seemed very surprising and was one of the points that brought our attention

to this paper. In the initial discussion with the authors, they claimed that, indeed,

the normal order of operators was not required to compute time-resolved correlation

functions. This aspect is remarkable as it seemed that including the sensors in

the analysis could surpass the non-commutativity of the field operators at different

times. The proof presented in the supplementary information of the paper [46]

is quite convoluted. Hence, to analyse the correctness of the claim, we aimed to

reproduce their outcomes and check that we recovered physical results in all cases.

Our general conclusion was that, while at zero time delay the operators of different

sensors commute, and therefore normal order does not matter, this is not the case

for finite time delay, where correlations between such operators emerge necessarily,

leading to non-commutation at different times.

To illustrate the above points, we first consider the Jaynes-Cummings model,

as it was done in Ref. [46], with H0 = g (σ†a + a†σ). The inclusion of the sensors

results in the following Hamiltonian and master equation (~ = 1):
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H = g (σ†a+ a†σ) +
M∑

m=1

(
ωmς

†
mςm + εm (aς†m + a†ςm)

)

∂

∂t
ρ = −i[H, ρ] +

(
γa
2
La(ρ) +

γσ
2
Lσ(ρ) +

Pσ
2
Lσ†(ρ)

)
+

M∑

m=1

Γm
2
Lςm(ρ)

(1.102)

where Lci(O) = (2ciOc
†
i − c

†
iciO − Oc

†
ici), for a system jump operator ci and a re-

laxation process happening at rate γci . γa and γσ are the cavity and emitter decay

rate, respectively, and Pσ is the incoherent pumping of the emitter.
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Figure 1.9: Power spectra of emission probed by weak incoherent excitation (Pσ = γσ =

0.01g) for three cavities of decreasing quality γa = 0.01g (solid line), γa = 0.1g (dashed) and

γa = 0.5g (dotted). The values of the parameters are: g = 1, ε1 = 10−5 and Γ = 0.001g.

The figure is in semilog scale and it is plotted in arbitrary units.
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Figure 1.10: Two-photon correlations at zero delay with ω2 = R. Same parameters as

figure1.9.

We managed to obtain the results of the paper at all the configurations for zero

time delay. As an example, figures 1.9 and 1.10 are the power spectrum and the
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frequency-resolved second order correlation function at zero time delay, respectively.

This assured that our setup was correct.

However, we could not reproduce the results the article reported for the time-resolved

second order correlation function. By following the main outcome they claimed, we

obtained unphysical results, as shown in figure 1.11.
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Figure 1.11: Time-resolved correlation function without using the normal order of the

sensor operators. Positive times correspond to detection of frequencies as reported in the

legend, negative times to the opposite order.

Our conclusion was that the normal order must be important in Eq.(1.100) and

therefore we did the calculations with it: the use of the normal order guarantees

physical results (figure 1.12).
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Figure 1.12: Time-resolved second order correlation function. Positive times correspond

to detection of frequencies as reported in the legend, negative times to the opposite order.

Parameters: Γ = γ2 for both sensors, Pσ = γσ = 0.01g, γa = 0.1g.

After pointing this out to the authors, they indeed acknowledged that the figure

they presented in the paper was actually computed with the normal order of the

sensor operators, even though the theory claims the normal order was not necessary.
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A following erratum to the initial paper was published in 2016 [47].

For clarity, we report here the correct forms of Eqs.(1.100) and (1.101) including the

normal order of the sensor operators:

g
(M)
Γ1...ΓM

(ω1, T1; ...;ωM , TM ) = lim
ε1,...,εM→0

〈: n1(T1)...nM (TM ) : 〉
〈n1(T1)〉 ... 〈nM (TM )〉 (1.103)

S
(M)
Γ1...ΓM

(ω1, ..., ωM ; t1, ..., tM ) =
Γ1...ΓM

(2π)M ε21...ε
2
M

〈: n1(t1)...nM (tM ) :〉. (1.104)

Traditionally, equations include dots representing normal order. However, these

were completely absent from Ref. [46] and also from its Supplemental Material. In

particular, we identified that the following equation (Eq.(42) in the Supplemental

Material of [46]) shows inconsistency:

∂τ 〈n1(0)n2(τ)〉 = −Γ2 〈n1(0)n2(τ)〉+ 2<{iε2〈n1(0)(s2a
†)(τ)〉} 6= ∂τ 〈: n1(0)n2(τ) :〉

(1.105)

Later on, the authors clarified that normal order, while omitted in the notation, was

actually assumed throughout the proof and numerical calculations, as they indicate

in the erratum of the paper [47]. We will go through more details of this issue in

Chap.2.

Because of the inconsistency found in the paper [46] (and the time spent analysing

it in detail), we were inspired to propose an alternative approach of this sensor

method presented for the calculation of frequency-filtered and time-resolved photon

correlations. Our method is based on the perturbative expansion of the steady state

of the whole system (quantum emitter and sensors) with respect to the emitter-sensor

coupling parameter ε, as it will be explained more in detail in the next chapter.
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Chapter 2

Perturbative method for

computing frequency-filtered

and time-resolved photon

correlation

This chapter puts forward an alternative method of the sensor procedure proposed

in [46,47] to compute frequency-filtered and time-resolved correlation functions. The

new formalism relies on an algebraic expansion of the steady state of the whole quan-

tum emitter-plus-sensors system with respect to the coupling parameter ε between

them. This procedure allows to express the photon correlations as a function of the

dynamics of the emitting system only and it also guarantees the independence of the

correlations on the specific choice of the coupling parameter. In addition, the use of

the time-dependent perturbation theory to calculate the time-resolved photon cor-

relation enables to define it as a sum of three contributions, which give insight into

the physical processes dominating at different time scales. The outcomes obtained

are applied to a bio-inspired toy model to show the agreement between the previous

method and our formulation. The results obtained in this chapter are taken from

Ref. [50] and represent the theoretical scaffolding on which the next chapters are

built.

2.1 Introduction

One of the most powerful techniques used to analyse the quantum behaviour of a

system is the study of the optical properties of the emitted light. Within this field,
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the energy-time uncertainty relation plays a fundamental role: it implies that the

arrival time of a photon and its frequency cannot be measured with precision simul-

taneously [104,112]. This uncertainty has not limited the research in the field, on the

contrary it has presented an opportunity for new studies of quantum phenomena,

both to identify new types of photon quantum correlations [46, 47, 113–115] and to

develop new protocols for the preparation of entangled photons [48,116].

In particular, the impact of the spectral filtering of light signals in optical setups has

become more and more relevant. Indeed, it is connected to the frequency and time

resolution of detected light and, therefore, it has opened the way for the investiga-

tion of different phenomena in quantum optics [101,115,117–119]. Frequency-filtered

and time-resolved correlation functions have also provided information about the dy-

namics of solid state systems [120] and complex molecular systems [49,121,122]. In

the latter case, also the coherent multi-dimensional spectroscopy has contributed

with important results [123], since in general ultrafast (femtoseconds) non-linear

spectroscopy is a powerful method to analyse quantum coherence dynamics in many

different biomolecular and chemical systems (see review [124]).

As presented in Sec.1.6.2, the traditional method of dealing with frequency-

filtered and time-resolved photon counting statistics can be very overwhelming, since

it requires the computation of multi-dimensional integrals. For this reason, the in-

troduction of alternative techniques, able to overcome this computational complex-

ity [46,47,111], has been greeted with enthusiasm by the community in the field.

Refs. [46, 47] have been widely introduced in the first chapter (see Sec.1.6.2).

Although the sensor method proposed by the authors does not need to explicitly

compute the multi-dimensional integrals, one of its drawbacks is the requirement

for computing the quantum dynamics of the whole system (including the sensors).

This means that the dimensionality of the Hilbert space can become very big for

quantum systems of large dimension and for higher order correlations.

This problem has been underlined and discussed in [111]. There the authors study

the single-atom fluorescence and develop an interesting approach where filters are

treated as black boxes connected to the output. They obtain higher orders of

coloured correlation functions also resolved in time, where the expressions are de-

fined in the Hilbert space of the atom only. Despite this formalism requiring the

numerical solution of multi-dimensional integrals, some analytical solutions can be

recovered under certain approximations.

The aim of our work is to propose an alternative formulation of the sensor method

[46,47], able to examine the spectral filtered photon counting statistics of the system
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under study, by focusing on the dynamics of the system only, and therefore reducing

the dimension of the Hilbert space to operate on.

Our formalism relies on the algebraic expansion of the whole system-sensors state

with respect to the weak coupling parameter between them. As a result, we find

a hierarchy of auxiliary matrices related to the emitting system, from which it is

possible to efficiently compute correlation functions of any order at zero time delay.

Our approach recovers the analytical expressions presented in the Supplemental

information of Ref. [46] and in Ref. [125] for the one- and two-photon spectrum,

therefore showing full agreement between the methods. We also derive a solution

for the second order time-resolved correlation function, using the time-dependent

perturbation theory. We find that such photon correlation is the sum of three

components, each of which is related to different physical processes happening during

the emission dynamics at different time scales. The procedure can be generalised to

higher order photon correlations, where only one sensor has a time delayed detection.

In the following we will first explain in more detail the motivation behind our

work, then we will apply the perturbative method to the steady state and derive

the photon correlations at zero time delay. After using time-dependent perturba-

tion theory to analyse finite time delay correlations, we will apply the formalism

to compute such quantities for a bio-inspired toy system. We will first show the

agreement between our method and the one presented in [46, 47], then underlining

the advantages of using filtered correlation functions to study quantum dynamics in

biomolecular units.

2.2 Why an alternative sensor method?

The sensor method originally proposed in [46, 47] requires to solve the dynamics of

a quantum emitter weakly coupled to M sensors, as explained in Sec.1.6.3.

For sake of generality, we have considered that the emission operators aj cou-

pled to each sensor can be different. This can occur in different situations, such

as when in a multipartite quantum emitter it is possible to achieve local resolu-

tion or when emitted frequencies can be distinguished via fluorescence polarization

detection. This is the case, for example, of single light-harvesting complexes [126],

where the frequency filters are also polarizing filters: Fig.2.1(a) represents a possible

experimental setup.

Under the hypothesis of Markovian decay processes for both the emitter and the

sensors, the joint emitter-sensors density matrix ρ̂ satisfies the master equation in
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Eq.(1.50), where the Liouvillian reads as (~ = 1):

L(ρ̂) = L0(ρ̂) +
M∑

m=1

(
Lm(ρ̂)− i [He,m, ρ̂]

)
, (2.1)

with

L0(ρ̂) = −i [H0, ρ̂] +
∑

i

γci
2
Lci(ρ̂), (2.2)

Lm(ρ̂) = −i [Hm, ρ̂] +
Γm
2
Lςm(ρ̂). (2.3)

(where L0(ρ̂) is the Liouvillian describing the system only and every other term has

been explained in Sec.1.6.3).
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Figure 2.1: (a) Potential experimental setup to measure frequency-filtered and time-resolved

correlation functions, similar to that used in Ref. [48]. (b) Diagram of the sensor method

proposed in Ref. [46,47] to compute frequency-filtered correlations. Each sensor is modelled

as a two-level system coupled to the quantum emitter through the strength parameter εm, with

m = 1, . . . ,M . Photon correlations are recovered in the limit of small coupling ε1, . . . , εM →

0.

In the limit of small εm, satisfying εm �
√

ΓmγQ/2, and sensor populations satisfy-

ing 〈nm〉 = 〈ς†mςm〉 � 1, intensity-intensity correlations of the form 〈: n1n2 . . . nM :〉
are directly related to the Mth order photon correlation functions in Eq.(1.101)

as [46,47]:

〈: n1(T1)...nM (TM ) :〉 =
ε21...ε

2
M

Γ1...ΓM
(2π)M S

(M)
Γ1...ΓM

(ω1, T1; ...;ωM , TM ), (2.4)

with S
(M)
Γ1...ΓM

(ω1, T1; ...;ωM , TM ) given in Eq.(1.95) for the case in which the filter

70



functions correspond to a Cauchy-Lorentz distribution Eq.(1.96). This situation can

experimentally be realised through a Fabry-Perot interferometer with the reflection

coefficients close to 1 [104]. We report a possible experimental setup in Fig.2.1(a) and

the corresponding theoretical system used to compute the filtered photon counting

statistics is presented in Fig.2.1(b).

The original presentation of Eqs.(1.100) and (1.101) in [46] did not contain the

normal order of the sensor operators. However, its absence leads to unphysical

results for a finite delay time, as shown in Sec.(1.6.3). In an Erratum [47] the authors

clarified that normal order is implied through the proof of Eq.(1.100), nevertheless it

is not necessary for correlations at zero time delay. Our approach is equivalent to the

sensor method, considering the normal order of the sensor operators, therefore we

have made a consistency check of the proof presented in the Supplemental Material

of Ref. [46], which will be presented in Sec.2.5.

Although the formalism introduced in [46] is mathematically equivalent to the

integral form of correlations, its computation involves some numerical challenges.

Under the assumption that all the sensor couplings are the same, εm = ε, the

numerical calculations of correlations depends on the choice of this small system-

sensor coupling ε that, at the same time, does not have to be so small that adding or

subtracting terms of order ε2M to or from terms of order ε0 causes problems within

double arithmetic precision. This means that, in general, this approach requires to

check convergence and stability of the numerical results for different values of ε.

Even more relevant is the fact that to compute the correlation functions at zero

time delay, it is necessary to numerically derive the zero eigenvalue of the Liouvillian

superoperator associated to the whole system plus sensors state. As a result, the

calculation of g
(M)
Γ1...ΓM

(ω1, T ; ... ;ωM , T ) when T →∞, involves the evaluation of the

eigenvector with a zero eigenvalue of a matrix 4M times larger than that of the

quantum emitter alone [113]. The same issue can raise for the calculation of the

time-resolved correlations, as the calculation involves time propagation of the joint

emitter-sensor state. This numerical problem becomes more demanding, the more

the dimension of the system increases.

These issues provided sufficient motivation to develop a method which could over-

come them. In the next section, we show that the algebraic expansion with respect

to the coupling parameter ε can both eliminate the explicit numerical dependence

on ε and reduce the dimensionality of the Hilbert space needed for computation.
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2.3 Frequency-filtered spectrum and photon correlations

at zero time delay

2.3.1 M = 1: power spectrum

The assumption of weakly coupled sensors to the emitting system guarantees that

they do not affect its dynamics. Based on this thought, we wanted to develop

a procedure in which the filtered correlations depend only on the dynamics and

operators of the system.

We start by deriving the expressions of the power spectrum, by considering the

emitting system coupled to only one sensor. We indicate with ρ̂ss the steady state of

the joint emitter-plus-sensor system. From Eq.(2.4), with M = 1, we can calculate

the power spectrum as:

S
(1)
Γ1

(ω1) =
Γ1

2πε2
〈n1〉 =

Γ1

2πε2
Tr [n1ρ̂ss]. (2.5)

The full steady state ρ̂ss can be obtained by using the identity operator in the sensor

Hilbert space (that is 1s1 =
∑

j1=0,1 |j1〉〈j1|) as follows:

ρ̂ss = 1s1 ρ̂ss1s1 =
∑

j1,j′1=0,1

ρ̂
j′1
j1,
⊗ |j1〉 〈j′1| , (2.6)

where the matrices ρ̂
j′1
j1

= 〈j1| ρ̂ss |j′1〉 are traced over the sensor degrees of freedom,

therefore depending only on the degrees of freedom of the quantum emitter. How-

ever, these matrices are conditioned on specific sensor states, hence they can be

interpreted as “auxiliary conditional states”. The Hermitian conjugates are given

by swapping the upper and lower indices. It is relevant to notice that each matrix

ρ̂
j′1
j1

is of order εj1+j′1 . With this definition the power spectrum given in Eq.(2.5)

becomes

S
(1)
Γ1

(ω1) =
Γ1

2πε2
Tr [ρ̂1

1]. (2.7)

We now show how the matrix ρ̂1
1 can be computed through a hierarchy of equations

containing auxiliary matrices of lower order. These matrices bring information on

the emission properties of the steady state probed at the specific sensor frequency ω1.

The steady state of the whole system is calculated through the condition L(ρ̂ss) = 0,

where the Liouvillian in Eq.(2.1) (M = 1) acts on every term in Eq.(2.6):
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L(ρ̂0
0 ⊗ |0〉 〈0|) = L0(ρ̂0

0 ⊗ |0〉 〈0| (2.8)

− iε(a1ρ̂
0
0 ⊗ |1〉 〈0| − ρ̂0

0a
†
1 ⊗ |0〉 〈1|),

L(ρ̂0
1 ⊗ |1〉 〈0|) = (L0 − Γ1/2− iω1)(ρ̂0

1 ⊗ |1〉 〈0| (2.9)

− iε(a†1ρ̂0
1 ⊗ |0〉 〈0| − ρ̂0

1a
†
1 ⊗ |1〉 〈1|),

L(ρ̂1
1 ⊗ |1〉 〈1|) = (L0 − Γ1)(ρ̂1

1 ⊗ |1〉 〈1|) (2.10)

+ Γ1ρ̂
1
1 ⊗ |0〉 〈0| − iε(a†1ρ̂1

1 ⊗ |0〉 〈1| − ρ̂1
1a1 ⊗ |1〉 〈0|) .

Here, the expression for L(ρ̂1
0 ⊗ |0〉 〈1|) is the complex conjugate of Eq.(2.9).

The sum of these expressions can be rewritten in a form similar to Eq.(2.6), associ-

ating together terms related to populations or coherences of the sensor:

L(ρ̂ss) =
∑

j1,j′1=0,1

B̂
j′1
j1,
⊗ |j1〉 〈j′1| = 0 , (2.11a)

B̂
j′1
j1,

= 0, For all j1, j
′
1 , (2.11b)

At this point the solution of the problem can be found solving the set of coupled

equations for ρ̂
j′1
j1,

such that the matrices B̂
j′1
j1,

are equal to zero at every element. For

instance, the equation B̂0
0 = 0 contains terms coming from Eq.(2.8) (that is of zeroth

order in ε) and from Eq.(2.9) and its complex conjugate: they give contributions of

linear order in ε as follows

B̂0
0 = L0(ρ̂0

0)− iε(a†1ρ̂0
1 − ρ̂1

0a1) + Γ1ρ
1
1 = 0. (2.12)

The equation above shows that, for an arbitrary value of ε, ρ̂0
0 depends on terms of

higher orders in this coupling parameter. This means that the presence of the sensors

actually affects the dynamics of the system and the set of equations in Eq.(2.11b)

do not have a simple solution. However, in the limit of weak coupling ε� 1 we are

assuming, sensor populations are very small, that is 〈n1〉 = Tr[ρ̂1
1] � 1. This leads

to neglect terms of the order of ε2 in Eq.(2.12), hence the contribution of the terms

Γ1ρ̂
1
1 and ‖iε(a†1ρ̂0

1 − ρ̂1
0a1)‖ can be discarded. Similarly, the equation for B̂1

0 reads

like:

B̂1
0 =

(
L0 + iω − 1

2
Γ
)
ρ̂1

0 + iερ̂0
0a
†
1 + iεa†1ρ̂

1
1 = 0. (2.13)
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but ‖a†1ρ̂1
1‖ � ‖ρ̂0

0a
†
1‖, therefore the term depending on ρ̂1

1 can be neglected. These

approximations apply to all the coupled equations and can be generalised saying

that the matrices B̂
j′1
j1

receive contributions only from terms of the lower or same

order in ε, that is ρ̂`
′
` with `+`′ ≤ j1 +j′1. This is equivalent to a formal expansion in

ε, since all the ρ̂`
′
` matrices are of order ε`+`

′
. Following this thought, the equations

for the steady state B̂
j′1
j1

= 0 can be rewritten as:

L0(ρ̂0
0) ' 0 (2.14a)

L0(ρ̂0
1)− (Γ1/2 + iω1)ρ̂0

1 − iεa1ρ̂
0
0 ' 0 (2.14b)

L0(ρ̂1
0)− (Γ1/2− iω1)ρ̂1

0 + iερ̂0
0a
†
1 ' 0 (2.14c)

L0(ρ̂1
1)− Γ1ρ̂

1
1 − iε(a1ρ̂

1
0 − ρ̂0

1a
†
1) = 0 . (2.14d)

Notice that Eq.(2.14d) has an equality, because all terms are of the same order,

therefore they all contribute. At this point, it is possible to solve these equations

starting with ρ̂0
0 from top and proceeding to bottom.

Since the problem is solved numerically, it is easier to reformulate it within the Li-

ouville space, where |ρ̂0
0〉〉 is the zero eigenvector of the (square) matrix L0, which

therefore corresponds to steady state of the system without any sensor. The remain-

ing equations can be solved as:

|ρ̂0
1〉〉 ∼

iεa1|ρ̂0
0〉〉

L0 − (Γ1/2 + iω1)1
(2.15a)

|ρ̂1
1〉〉 =

iε
(
a1|ρ̂1

0〉〉 − |ρ̂0
1〉〉a1

†)

L0 − Γ11
, (2.15b)

where a1 and a†1 are written in the Liouville space form, and 1 is the identity operator

in the emitter Hilbert space. There is no need to solve for ρ̂1
0 since it is equal to ρ̂0 †

1 .

In Eq.(2.15) ρ̂0
1 depends on ε and ρ̂1

1 on ε2. As the power spectrum in Eq.(2.7) has

a prefactor 1/ε2, in this expression the dependence on ε disappears algebraically, so

the numerical computation does not rely on the value of the coupling parameter.

In principle, this numerical calculation of the matrices given by Eqs.(2.15) could be

evaluated using a small value for ε. However, this could lead to numerical instabilities

due to the smallness of ε. With our procedure, instead, such instabilities do not

occur thanks to the re-scaled matrices ˜̂ρ
j′1
j1

= ρ̂
j′1
j1
/εj1+j′1 (such that ˜̂ρ0

1 = ρ̂0
1/ε and

˜̂ρ1
1 = ρ̂1

1/ε
2), which are now ε-independent system operators.
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The power spectrum is finally given by:

SΓ1(ω1) =
Γ1

2π
Tr[˜̂ρ1

1] , (2.16)

where ˜̂ρ
j′1
j1

= ρ̂
j′1
j1
/εj1+j′1 .

The substitution of Eq.(2.15) in Eq.(2.16) gives a semi-analytical expression com-

parable to that obtained in Ref. [125] for the one-photon spectrum, but in our case

it is generalised to any open quantum system dynamics described by a superoper-

ator L0. In addition, the hierarchical set of equations in Eq.(2.15) provides some

physical insight on how the sensors are able to measure statistical properties of the

light emitted by the system in the steady state ρ̂0
0. Indeed, the emission operator a1

(a†1) acts on an “auxiliary state” ρ̂1
0(ρ̂0

1), which in turn contains information about

the emitted transitions filtered at frequency ω1.

2.3.2 M = 2: zero-delay correlations

We now focus our attention to the zero time delay second order correlation function

(M = 2), which is given by:

g
(2)
Γ1Γ2

(ω1, ω2) =
S

(2)
Γ1,Γ2

(ω1, ω2)

S
(1)
Γ1

(ω1)S
(1)
Γ2

(ω2)
, (2.17)

where SΓ1(ω1) and SΓ2(ω2) are the mean count rates for the two sensors, as given

in Eq.(2.16), and

S
(2)
Γ1,Γ2

(ω1, ω2) =
Γ1Γ2

(2π)2ε4
〈: n1n2 :〉. (2.18)

When the photon correlations do not depend on time, the sensor operators nj com-

mute, meaning that normal order in Eq.(2.18) is not necessary. Proceeding as we

did before, this time including two sensors, the steady state density matrix can be

written as:

ρ̂ss =
∑

j1,j2,j′1,j
′
2=0,1

ρ̂
j′1,j

′
2

j1,j2
⊗ |j1〉 〈j′1| ⊗ |j2〉 〈j′2| , (2.19)

where {j1, j′1} and {j2, j′2} are counters over the states of sensor 1 and sensor 2,

respectively. Again, the matrices ρ̂
j′1,j

′
2

j1,j2
= 〈j1j2| ρ̂ss |j′1j′2〉 are defined in the Hilbert

space of the emitting system only. This definition leads to the following form of the

second-order photon coincidence:
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S
(2)
Γ1,Γ2

(ω1, ω2) =
Γ1Γ2

(2π)2
Tr
[

˜̂ρ1,1
1,1

]
, (2.20)

with the power spectrum given by

S
(1)
Γ1

(ω1) =
Γ1

2π
Tr[˜̂ρ1,0

1,0] , S
(1)
Γ2

(ω2) =
Γ2

2π
Tr[˜̂ρ0,1

0,1], (2.21)

where ˜̂ρ
j′1,j

′
2

j1,j2
= ρ̂

j′1,j
′
2

j1,j2
/εj1+j′1+j2+j′2 . To compute the matrices ˜̂ρ

j′1,j
′
2

j1,j2
, we need to solve

the equation for the steady state L(ρ̂ss) = 0 with two sensors. Again, the prefactor

for |j1〉 〈j′1|⊗ |j2〉 〈j′2| includes only terms ρ̂
`′1,`

′
2

`1,`2
such that `1 + `2 + `′1 + `′2 ≤ j1 + j2 +

j′1 + j′2. This means we discard matrices depending on powers of ε higher than those

in the matrix in question. The hierarchical set of linearly dependent equations, not

including those that are Hermitian conjugates of others, results:

L0(˜̂ρ0,0
0,0) ' 0 (2.22a)

[L0 −
Γ1

2
− iω1]( ˜̂ρ0,0

1,0) ' ia1
˜̂ρ0,0
0,0 (2.22b)

[L0 −
Γ2

2
− iω2]( ˜̂ρ0,0

0,1) ' ia2
˜̂ρ0,0
0,0 (2.22c)

[L0 − Γ1]( ˜̂ρ1,0
1,0) ' i(a1

˜̂ρ1,0
0,0 − ˜̂ρ0,0

1,0a
†
1) (2.22d)

[L0 − Γ2]( ˜̂ρ0,1
0,1) ' i(a2

˜̂ρ0,1
0,0 − ˜̂ρ0,0

0,1a
†
2) (2.22e)

[L0 −
Γ2 + Γ1

2
− i(ω1 + ω2)]( ˜̂ρ0,0

1,1) ' i(a1
˜̂ρ0,0
0,1 + a2

˜̂ρ0,0
1,0) (2.22f)

[L0 −
Γ2 + Γ1

2
− i(ω1 − ω2)]( ˜̂ρ0,1

1,0) ' i(a1
˜̂ρ0,1
0,0 − ˜̂ρ0,0

1,0a
†
2) (2.22g)

[L0 − (
Γ1

2
+ Γ2)− iω1]( ˜̂ρ0,1

1,1) ' i(a1
˜̂ρ0,1
0,1 + a2

˜̂ρ0,1
1,0 − ˜̂ρ0,0

1,1a
†
2) (2.22h)

[L0 − (
Γ2

2
+ Γ1)− iω2]( ˜̂ρ1,0

1,1) ' i(a1
˜̂ρ1,0
0,1 − ˜̂ρ0,0

1,1a
†
1 + a2

˜̂ρ1,0
1,0) (2.22i)

[L0 − (Γ1 + Γ2)](ρ̃1,1
1,1) = i(a1

˜̂ρ1,1
0,1 − ˜̂ρ0,1

1,1a
†
1 + a2

˜̂ρ1,1
1,0 − ˜̂ρ1,0

1,1a
†
2) . (2.22j)

In a similar way, | ˜̂ρ0,0
0,0〉〉 is the eigenvector with zero eigenvalue for L0 and corresponds

to the steady state of the system without any coupling to the sensors. The solutions
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for the matrices, in analogy to those in Eq.(2.15), are the following:

| ˜̂ρ0,0
1,0〉〉 '

ia1| ˜̂ρ0,0
0,0〉〉

L0 − (iω1 + Γ1/2)1
, (2.23a)

| ˜̂ρ0,0
0,1〉〉 '

ia2| ˜̂ρ0,0
0,0〉〉

L0 − (iω2 + Γ2/2)1
, (2.23b)

| ˜̂ρ1,0
1,0〉〉 '

i (a1| ˜̂ρ1,0
0,0〉〉 − | ˜̂ρ0,0

1,0〉〉a†1)

L0 − Γ11
, (2.23c)

| ˜̂ρ0,1
0,1〉〉 '

i (a2| ˜̂ρ0,1
0,0〉〉 − | ˜̂ρ0,0

0,1〉〉a†2)

L0 − Γ21
, (2.23d)

| ˜̂ρ0,0
1,1〉〉 '

i (a1| ˜̂ρ0,0
0,1〉〉 − a2| ˜̂ρ0,0

1,0〉〉)
L0 − (iω1 + iω2 + Γ1/2 + Γ2/2)1

, (2.23e)

| ˜̂ρ0,1
1,0〉〉 '

i (a1| ˜̂ρ0,1
0,0〉〉 − | ˜̂ρ0,0

1,0〉〉a†2)

L0 − (iω1 − iω2 + Γ1/2 + Γ2/2)1
, (2.23f)

| ˜̂ρ0,1
1,1〉〉 '

i (a1| ˜̂ρ0,1
0,1〉〉+ a2| ˜̂ρ0,1

1,0〉〉 − | ˜̂ρ0,0
1,1〉〉a†2)

L0 − (iω1 + Γ1/2 + Γ2)1
, (2.23g)

| ˜̂ρ1,0
1,1〉〉 '

i (a1| ˜̂ρ1,0
0,1〉〉 − | ˜̂ρ0,0

1,1〉〉a†1 + a2| ˜̂ρ1,0
1,0〉〉)

L0 − (iω2 + Γ2/2 + Γ1)1
, (2.23h)

| ˜̂ρ1,1
1,1〉〉 =

i (a1| ˜̂ρ1,1
0,1〉〉 − | ˜̂ρ0,1

1,1〉〉a†1 + a2| ˜̂ρ1,1
1,0〉〉 − | ˜̂ρ1,0

1,1〉〉a†2)

L0 − (Γ1 + Γ2)1
. (2.23i)

Our derivation agrees with previous results [125], in fact, if we replace Eqs.(2.23i) in

Eq.(2.20), it is possible to find an analytical expression comparable to that presented

in [125] for the two-photon spectrum at zero time delay.

The coupled set of equations in Eq.(2.23) and, in particular, the compact form

obtained for the relevant matrix ˜̂ρ1,1
1,1 in Eq.(2.23i), give some insight into the physical

meaning of measuring the second order correlations through the sensors weakly

coupled to the system. The sensors populations (given by Tr[˜̂ρ1,1
1,1]) contain the

action of the emission operators on “auxiliary conditional states”, in particular a1

on ˜̂ρ1,1
0,1 and a2 on ˜̂ρ1,1

1,0. These “auxiliary conditional states” carry information about

the correlations between the transitions of the system steady state ˜̂ρ0,0
0,0, probed at

frequencies ω1 and ω2.

2.3.3 M > 2: numerical procedure to compute zero time delay cor-

relations at higher orders

Our method allows also to compute photon correlations at zero time delay of orders

higher than the second, providing a compact form of the hierarchical set of equations.

The first step is to write the general steady state for the system-plus-sensors in an
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analogous form of Eqs. (2.6) and (2.19):

ρ̂ss =
∑

j1,j′1,...,jM ,j
′
M=0,1

ρ̂
j′1...j

′
m...j

′
M

j1...jm...jM
⊗ |j1〉 〈j′1| ⊗ . . .⊗ |jM 〉 〈j′M | . (2.24)

where {jm, j′m} are counters over the state of sensor m and

ρ̂
j′1...j

′
m...j

′
M

j1...jm...jM
= 〈j1 . . . jm . . . jM |ρ̂ss|j1 . . . j′m . . . j′M 〉.

The Mth order photon-coincidence at τ = 0 is given in terms of the trace of matrix

with jm = j′m = 1 for all m as follows:

S
(M)
Γ1...ΓM

(ω1, ...ωm, ...ωM ) =
Γ1...Γm...ΓM

(2π)M
Tr
[

˜̂ρ1...1...1
1...1...1

]
. (2.25)

The power spectrum for each sensor m, instead, is given by the trace of the matrix

with jm = j′m = 1 for m and jy = j′y = 0 from y 6= m:

S
(1)
Γm

(ωm) =
Γm
2π

Tr
[

˜̂ρ0...1...0
0...1...0

]
, (2.26)

where ˜̂ρ
j′1...j

′
m...j

′
M

j1...jm...jM
= ρ̂

j′1...j
′
m...j

′
M

j1...jm...jM
/εj1+j′1+...+jm+j′m···+jM+j′M . The matrices ˜̂ρ

j′1...j
′
m...j

′
M

j1...jm...jM

satisfy the following general equation in the steady state L(ρ̂ss) = 0:

[
L0 −

M∑

m=1

{
(jm + j′m)Γm/2 + (jm − j′m)iωm)

}
]

˜̂ρ
j′1...j

′
m...j

′
M

j1...jm...jM

= i
M∑

m=1

[
δjm,1am

˜̂ρ
j′1...j

′
m...j

′
M

j1...jm(1−δjm,1)...jM
− δj′m,1 ˜̂ρ

j′1...j
′
m(1−δj′m,1)...j′M

j1...jm...jM
a†m

]
, (2.27)

where δu,v is the Kronecker delta function, equal to zero if u 6= v or 1 if u = v. The

starting point to derive Eq.(2.27) is to see that in Eq.(2.24), the Mth order photon

correlation at zero time delay for the emitter-plus-M sensors system depends on the

rescaled matrix ˜̂ρ1...1
1...1 = 〈11, . . . , 1M | ˜̂ρss|11, . . . , 1M 〉. This matrix can be obtained

solving the equation for the steady state L(ρ̂ss) = 0 which can be written in analogy

to Eq.(2.11):

L(ρ̂ss) =
∑

j1,j′1...jM ,j
′
M

B̂
j′1...j

′
m...j

′
M

j1...jm...jM
⊗|j1〉 〈j′1| · · ·⊗ |jm〉 〈j′m| · · ·⊗ |jM 〉 〈j′M | = 0 . (2.28)
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The hierarchy of equations satisfying B̂
j′1...j

′
m...j

′
M

j1...jm...jM
= 0 can be derived using the

approximation that neglects the down coupling, as previously explained. This leads

to a set satisfied by the matrices ˜̂ρ
j′1...j

′
m...j

′
M

j1...jm...jM
. A careful look at the expressions in

Eq.(2.14) and Eq.(2.22) allows to derive a general form for such a set. Let us indicate

with J = j1 + j′1 + . . . + jm + j′m · · · + jM + j′M the sum of all matrix indices. For

J = 0 the solution is simply given by L0

(
˜̂ρ0,...,0
0,...,0

)
∼ 0. More in general, the form for

the left hand side terms for each equation is given by

[
L0 −

M∑

m=1

{
(jm + j′m)Γm/2 + (jm − j′m)iωm)

}
]

˜̂ρ
j′1...j

′
m...j

′
M

j1...jm...jM
. (2.29)

This term represents the evolution under the Liouvillian of the emitter and the

decay and phase evolution of the sensors. Each matrix with J ≥ 1 is coupled only

to matrices with J −1. Therefore the solution of the J = 2M matrix ˜̂ρ1,...,1
1,...,1 contains

only matrices with J = 2M − 1 and so on (cf. Eq.(2.22)j). The total number of

tier-below matrices required equals J and each of these matrices differs only in one

index jm or j′m, which will be 0 rather than unity. Let us call this tier-below matrices

˜̂ρ
`′1...`

′
m...`

′
M

`1...`m...`M
. The matrix that differs in the mth component such that jm = 1 and

`m = 0, with all others equal, will add a term of the form iam ˜̂ρ
j′1...j

′
m...j

′
M

j1...jm=0...jM
. Likewise,

if j′m = 1 but `′m = 0 and `′y = j′y and `y = jy for y 6= m, we have a contribution of

the form −i ˜̂ρj
′
1...j

′
m=0...j′M

j1...jm...jM
a†m. Therefore, the right-hand side term, to which Eq.(2.29)

is approximated to, will be of the form:

i
M∑

m=1

[
δjm,1am

˜̂ρ
j′1...j

′
m...j

′
M

j1...jm(1−δjm,1)...jM
− δj′m,1 ˜̂ρ

j′1...j
′
m(1−δj′m,1)...j′M

j1...jm...jM
a†m

]
(2.30)

where δu,v is the Kronecker delta function, equal to zero if u 6= v or unity if u = v.

The importance of this result lies in the fact that it depends only on the Li-

ouvillian L0 of the emitting system and, therefore, allows for computation of the

frequency-filtered multi-photon correlations that scale efficiently with the dimension

of the emitter Hilbert space. This represents an important advantage for quan-

tum emitters where the dimension of the Hilbert space is large, such as multi-

chromophoric complexes [45]. Moreover, although we have supposed a Lindblad

form for L0 (see Eq.(2.2)), the expression in Eq.(2.27) does not explicitly depend

on this assumption. In the Supplemental Material of [46] it was shown the equiva-

lence between the sensor method and the integral method within systems undergoing
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Markovian dynamics, where the quantum regression theorem is applicable. However,

a proof of this equivalence beyond the Markovian and quantum regression restric-

tion would allow to use our result in Eq.(2.27) for open quantum systems undergoing

non-Markovian dynamics.

2.4 Frequency-filtered correlations at finite delay time

For the calculation of the photon correlation functions at finite time delay we will

use time-dependent perturbation theory, focusing on the second order correlation

g
(2)
Γ1Γ2

(ω1, T ;ω2, T + τ). In the steady state ρ̂ss there is no explicit dependence on

time T , hence the photon correlation can be rewritten as g
(2)
Γ1Γ2

(ω1, ω2, τ). In terms

of the sensor operators, it becomes

g
(2)
Γ1Γ2

(ω1, ω2, τ) =
S

(2)
Γ1,Γ2

(ω1, ω2, τ)

S
(1)
Γ1

(ω1)S
(1)
Γ2

(ω2)
, (2.31)

where the numerator has the form

S
(2)
Γ1,Γ2

(ω1, ω2, τ) =
Γ1Γ2

(2π)2ε4
〈ς†1ς†2(τ)ς2(τ)ς1〉 (2.32)

and the functions in the denominator are given in Eq.(2.21). To obtain our result,

we start from correlations in Eq.(2.32) at positive times τ > 0, meaning that sensor

1 records the first detection, followed by sensor 2 that does the same after a time τ .

Here the normal time ordering is of crucial importance as the sensor operators do not

commute at different times. Correlations for negative times τ < 0 can be recovered

by exchanging ς1 → ς2 and ς2(τ)→ ς1(τ). In Liouville space the correlation function

in Eq.(2.32) can be expressed as

〈ς†1ς†2(τ)ς2(τ)ς1〉 = Tr{ς†2ς2 G(τ)ς1ρ̂ssς
†
1}

≡ 〈〈ς†2ς2|G(τ)ς1ρ̂ssς
†
1〉〉 ,

(2.33)

where G(τ) = exp(Lτ) is the time propagator operator for the entire system includ-

ing the sensors, and L is given in Eq.(2.1). The term ς1ρ̂ssς
†
1 represents the initial

condition, where sensor 1 detects a photon, decaying then to its ground state and

leaving the emitter and sensor 2 in a joint “conditional state” of the form:
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ρ̂(0) = ς1ρ̂ssς
†
1 =

∑

j2,j′2=0,1

ρ̂
1,j′2
1,j2
⊗ |j2〉 〈j′2| ⊗ |01〉 〈01| . (2.34)

Notice that ρ̂(0) is not normalised but has a trace equal to 〈ς†1ς1〉. We can define

|ρ̂(τ)〉〉 = G(τ)|ρ̂(0)〉〉 (2.35)

with initial condition |ρ̂(0)〉〉 = |ς1ρ̂ssς†1〉〉. In principle, it would be possible to com-

pute this explicit time-propagation. As sensor 1 is in the ground state, only the

interaction Hamiltonian with sensor 2, He,2 = ε (a2ς
†
2 + a†2ς2), affects the dynamics

of the whole system, requiring in any case a test for convergence in ε. However,

since the regime under study considers a small value of the coupling parameter ε, it

is possible to analyse such dynamics by using time-dependent perturbation theory

with respect to He,2. Therefore, we expand |ρ̂(τ)〉〉 as in [92]

|ρ̂(τ)〉〉 = |ρ̂(0)(τ)〉〉+ |ρ̂(1)(τ)〉〉+ |ρ̂(2)(τ)〉〉+ . . . (2.36)

The zeroth order term corresponds to the dynamics where no interactions happen,

that is:

|ρ̂(0)(τ) 〉〉 = G0(t)|ρ̂(0)〉〉, (2.37)

with G0(t) = exp([L0 + L1 + L2]t) and L0,L1 and L2 as in Eqs. (2.2) and (2.3).

Given the initial condition expressed above, sensor 1 (2) does not contribute to the

dynamics for τ > 0 (τ < 0), hence can be traced over. The kth order solution

implies k interactions with He,2, but time propagation occurs only in terms of G0(t):

|ρ̂(k)(τ)〉〉 = −i
∫ τ

0
dtH×e,2G0(τ − t)|ρ̂(k−1)(t)〉〉, (2.38)

where H×e,2|ρ〉〉 ≡ [He,2, ρ] indicates a commutator in Liouiville space. At this point

it is appropriate to notice that the initial condition ρ̂(0) contains ρ̂
1,j′2
1,j2

which has

terms of order ε2+j2+j′2 , that is, from ε2 up to ε4. This leads to the conclusion

that for the computation of the second order correlation function it is sufficient to

consider only terms up to second order in the perturbation theory, because two
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interactions will bring terms of order ε4 or higher. In fact, third order perturbation

theory would produce terms of order ε5 or higher, which are negligible by our weak

coupling assumption. To clarify even more, for example, to compute the 3rd order

correlation function in a three sensors system, ρ̂(0) would have terms of order ε2 up

to order ε6, hence we would need to go up to the 4th order in the time dependent

perturbation theory, in order to have four interactions carrying a factor ε4.

The time-resolved photon correlation can thus be written as

〈ς†1ς†2(τ)ς2(τ)ς1〉 = 〈〈ς†2ς2|ρ̂(τ)〉〉 = I0(τ) + I1(τ) + I2(τ), (2.39)

where Ik(τ) = 〈〈ς†2ς2|ρ̂(k)(τ)〉〉 = Tr{ς†2ς2ρ̂(k)(τ)}.
The zeroth order term becomes:

I0(τ) = 〈〈n2|G0(τ)ρ̂(0)〉〉 = e−Γ2τTr
[
ρ̂1,1

1,1

]
, (2.40)

which simplifies to I0(τ) = exp(−Γ2τ)〈n2n1〉. It is peculiar to observe that this term

contains the same information as g
(2)
Γ1Γ2

(0) at zero time delay (see Eqs.(2.17) and

(2.20)), while the exponential function is connected to the uncertainty in detection

time and does not give any information about the emitting system dynamics.

The following term, coming from the first order perturbation theory, reads as:

I1(τ) = −i
∫ τ

0
dt1〈〈n2|G0(τ − t1)H×e,2G0(t1)ρ̂(0)〉〉. (2.41)

We proceed considering first the action of G0(τ−t1) to the left, which gives 〈〈n2|G0(τ−
t1) = 〈〈n2| exp[−Γ2(τ − t1)]. To the right the elements that give contribution are

a2ρ̂
1,1
1,0(t1) exp[−(Γ2/2 + iω2)t1] and ρ̂1,0

1,1(t1)a†2 exp[−(Γ2/2− iω2)t1], with

|ρ̂1,j′2
1,j2

(t)〉〉 ≡ Θ[t] exp(L0t)|ρ̂1,j′2
1,j2

(0)〉〉

defined through the evolution of the system only. But these two terms are complex

conjugates, therefore it is possible to express them in the form:

I1(τ) = 2ε Im

(∫ τ

0
dt1e

−Γ2(τ−t1/2)+iω2t1Tr[a2ρ̂
1,1
1,0(t1)]

)
. (2.42)
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This is essentially a finite time Laplace transform of a complex number. Here the

density matrix ρ̂1,1
1,0(t1) evolves under the action of Liouvillian L0.

Finally, the second order term, I2(τ), takes the form:

I2(τ) = −
∫ τ

0
dt2

∫ t2

0
dt1 〈〈n2|G0(τ − t2)H×e,2G0(t2 − t1)H×e,2G0(t1)|ρ̂(0)〉〉 . (2.43)

Since there are two interactions involved, both ρ̂1,0
1,0 ⊗ |02〉 〈02| and ρ̂1,1

1,1 ⊗ |12〉 〈12|
terms can contribute. However, Tr[ρ̂1,1

1,1] � Tr[ρ̂1,0
1,0], therefore we have to consider

only ρ̂1,0
1,0⊗ |02〉 〈02| in our initial condition. The second order contribution therefore

becomes:

I2(τ) = −ε2
∫ τ

0
dt2

∫ t2

0
dt1e

−Γ2(τ−t2)〈〈n2|
−−→
a2ς
†
2G0(t2 − t1)

←−−
a†2ς2G0(t1)|ρ(0)〉〉+ h.c.

= −2ε2Re

∫ τ

t1

dt2

∫ t2

0
dt1e

−Γ2[τ−(t2+t1)/2]+iω2(t2−t1)Tr{a2(t2 − t1)ρ̂1,0
1,0(t1)a†2},

(2.44)

where h.c. indicates the Hermitian conjugate,
−→
O |ρ〉〉 ≡ Ôρ̂ and

←−
O |ρ〉〉 ≡ ρ̂Ô. a2(t)

is written in the Heisenberg picture and represents the time dependent operator,

evolving through the adjoint of L0. The double integral is numerically more complex

but can be solved.

Eq.(2.32) for the time-resolved photon correlations becomes

S
(2)
Γ1,Γ2

(ω1, ω2, τ > 0) =
Γ1Γ2

(2π)2ε4
[I0(τ) + I1(τ) + I2(τ)] . (2.45)

Notice that I0(τ), I1(τ) and I2(τ) will all feature a prefactor ε4. Therefore, the ε

dependence in Eq.(2.45) cancels out algebraically, as expected. The time-resolved

photon-coincidence can therefore be written as:

S
(2)
Γ1,Γ2

(ω1, ω2, τ > 0) =
Γ1Γ2

(2π)2

[
Ĩ0(τ) + Ĩ1(τ) + Ĩ2(τ)

]
, (2.46)

with Ĩk(τ) = ε−4Ik(τ) the kth order term, which requires k interactions with the

coupling Hamiltonian He,2. The final expression for the second-order correlation at

a finite time delay reads:
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g
(2)
Γ1Γ2

(ω1, ω2, τ > 0) =
Ĩ0(τ) + Ĩ1(τ) + Ĩ2(τ)

〈ñ1〉〈ñ2〉
(2.47)

with 〈ñ1〉 = Tr
[

˜̂ρ1,0
1,0

]
and 〈ñ2〉 = Tr

[
˜̂ρ0,1
0,1

]
.

The correlation for τ < 0 is obtained by taking ρ̂(0) = ς2ρ̂ssς
†
2 and doing time-

dependent perturbation theory with respect to He,1. This results in making the

replacements Γ2 → Γ1, ω2 → ω1, a2 → a1, ρ̂1,1
1,0(t1)→ ρ̂1,1

0,1(t1), and ρ̂1,0
1,0(t1)→ ρ̂0,1

0,1(t1)

in Eqs.(2.40), (2.42) and (2.44).

At this point it is relevant to underline that, in general, the time-resolved two-photon

coincidence can show time asymmetry if the two frequencies detected are different

from each other (ω1 6= ω2), even in the case a1 = a2. This can be seen in the

definition of I1 in Eq.(2.42) and I2 in Eq.(2.44): both contributions have exponentials

in their integrands, depending on ω2 or ω1 for positive or negative times, respectively.

Instead, symmetric time-resolved correlation functions are expected whenever we are

in presence of identical system emission operators (a1 = a2), identical frequencies

(ω1 = ω2) and identical sensor decay rates (Γ1 = Γ2).

Finally, we want to bring to the attention that the perturbative method used

to obtain the second order time-dependent correlation can also be applied in the

calculation of higher-order photon correlations when only one sensor has a time

delayed detection, i.e. g
(M)
Γ1,...Γm...ΓM )(ω1, ...ωm, τ....ωM ). However, the generalisation

to multiple time delays is more complex. For instance, computation of the 3rd

order correlations for different delay times implies the application of second-order

perturbation theory with respect to the interactions with sensors 2 and 3, He,2 and

He,3 respectively, but at different times during the evolution. This implies to solve

a four dimensional numerical integration. In this case it is more efficient to compute

the auxiliary matrices that define the steady state (see Eq.(2.27)) and propagate in

time without perturbation.

2.4.1 Behaviours at short time delays

Now we want to analyse the behaviour at short time delay regime. Regarding the

first order contribution, as mentioned above, we have:

Ĩ0(τ) ∝ e−Γ2τ for all τ ≥ 0 (2.48)

meaning that the time dependence simply captures the uncertainty in the detection.

84



As for the other two contributions, when τ is smaller than any relevant system

timescale, to lowest order, we obtain:

Ĩ1(τ) ∼ 2τ Im(Tr[a2
˜̂ρ1,1
1,0])

Ĩ2(τ) ∼ τ2 Re
(
Tr[a2

˜̂ρ1,0
1,0a

†
2]
) (2.49)

for τ ≥ 0. Here, the most interesting information is given by the short time behaviour

of Ĩ2(τ). In this term, after a first iteration with He,2 (see Eq.(2.43)), the system

evolves in time, thus its short-time behaviour can involve contributions from coherent

dynamics inside the excited manifold of the system under scrutiny. Indeed, the

proportionality of Ĩ2(τ) to τ2 hints that quantum speed-up processes can be captured

by this function [127].

For τ < 0, sensors detect photons in the opposite way (sensor 2 detects the first

photon, followed by the detection of an another photon from sensor 1 after a time

τ), then we have:

Ĩ1(τ) ∼ 2τ Im(Tr{a1
˜̂ρ1,1
0,1})

Ĩ2(τ) ∼ τ2 Re(Tr{a1
˜̂ρ0,1
0,1a

†
1})

(2.50)

Generally, Re(Tr{a1
˜̂ρ0,1
0,1a

†
1}) 6= Re(Tr{a2

˜̂ρ1,0
1,0a

†
2}) and analogously Im(Tr{a2

˜̂ρ1,1
1,0}) 6=

Im(Tr{a1
˜̂ρ1,1
0,1}). Therefore, we expect an asymmetry in g

(2)
Γ1,Γ2

(ω1, ω2, τ) for positive

and negative τ , even when a1 = a2.

2.4.2 Behaviours at large time delays

We now examine the contributions Ĩ1(τ) and Ĩ2(τ) in the case of τ large with respect

to the emitter or sensor linewidth timescales. We indicate with γsys the largest

emitter decay rate linked to the field operator a2.

In the regime of γsys � Γ2 and τγsys � 1, we can make the approximation

Ĩ1(τ) ∼ 2e−Γ2τ Im

(∫ ∞

0
dt1e

+Γ2t1/2+iω2t1Tr[a2
˜̂ρ1,1
1,0(t1)]

)
. (2.51)

This integral is now independent of τ and can be identified as the infinite Laplace

transform F (s) of Tr[a2ρ̃
1,1
1,0(t1)] and s = Γ2/2+iω2, i.e. Ĩ1(τ) ∼ 2e−Γ2τ Im{F (Γ2/2+

iω2)}, thus time dependence is only due to uncertainty in the detection time. Since

I1(0) = 0, the contribution Ĩ2(τ) undergoes an initial rise, followed by an exponential

decay.
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On the other hand, if γsys � Γ2, ˜̂ρ1,1
1,0(t) can be approximated as having a sin-

gle dominant coherent transition frequency ωsys, namely ˜̂ρ1,1
1,0(t) ' exp(+γsyst −

iωsyst) ˜̂ρ1,1
1,0(0), and slowly varying. Defining t̃1 = τ − t1, it is possible to write

Ĩ1(τ) = 2 Im

(∫ τ

0
dt̃1 e

−Γ2(t̃1+τ)/2+iω2(t̃1−τ) Tr[a2
˜̂ρ1,1
1,0(τ − t̃1)]

)
(2.52)

' 2 Im

(
e−(Γ2+γsys)τ/2−i(ωsys−ω2)τ − e−Γ2τ

(Γ2 − γsys)/2 + i(ω2 − ωsys)
Tr[a2

˜̂ρ1,1
1,0(τ)]

)
, (2.53)

where, by assumption, the dominant term is the numerator of the fraction resulting

in a damped oscillatory function. The approximation of a single frequency cannot

be applied when the sensor linewidth is smaller than the emission spectrum.

We expect g
(2)
Γ1,Γ2

(ω1, ω2, τ) → 1 when Γ2τ � 1 and γsysτ � 1. Since Ĩ0(τ) and

Ĩ1(τ) decay exponentially in this regime, Ĩ2(τ) has to tend to a constant value. To

see this, it is possible to rewrite Ĩ2 in terms of t̃1 = τ − (t2 + t1)/2 and t̃2 = t2 − t1
as

Ĩ2(τ) = 2Re

∫ τ

0
dt̃2

∫ τ−t̃2/2

0
dt̃1 e

−Γ2 t̃1+iω2 t̃2 Tr[a2(t̃2) ˜̂ρ1,0
1,0(τ − t̃1− t̃2/2)a†2] . (2.54)

As τ →∞, ˜̂ρ1,0
1,0(τ) will approach the form of the original steady state for the emitter,

therefore it is possible to write ˜̂ρ1,0
1,0(τ − t̃1/2− t̃2)→ 〈ñ1〉[ ˜̂ρ0,0

0,0−∆˜̂ρss(τ − t̃1/2− t̃2)].

The trace of the difference term ∆ρss is expected to be exponentially small when

τ → ∞, and the variation in terms of t̃1 and t̃2 to be slow enough to be neglected.

Therefore the integral over t̃1 can be taken to obtain

Ĩ2(τ) ∼ 2 〈ñ1〉
Γ2

Re

∫ τ

0
dt̃2

(
1− e−Γ2(τ−t̃2/2)

)
e+iω2 t̃2 Tr

[
a2(t̃2)

{
ρ̃0,0

0,0 −∆ρ̃ss(τ − t̃2/2)
}
a†2

]
.

(2.55)

Taking the integral over t̃2 to infinity (assuming γsysτ � 1), the term depen-

dent on ˜̂ρ0,0
0,0 will tend to 〈ñ1〉〈ñ2〉 and the remainder term, which is a function

of ∆ρ̃ss(τ − t̃2/2), will tend to zero, giving g
(2)
Γ1,Γ2

(ω1, ω2, τ)→ 1. Assuming ∆ρ̃ss(t)

does not have rapidly oscillating components, we expect Eq.(2.55) to be a good

general approximation for a wide range of τ .
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2.5 Consistency check about the equivalence of the sen-

sor and the integral methods

As part of this project, we also wanted to carry out a consistency check concerning

the equivalence between the original sensor method and the integral method. There-

fore, before applying our procedure to compute frequency-filtered and time-resolved

photon correlations to a biological toy model, we wish to underline the reasons why

the normal and time ordering in Eq.(2.32) are essential to guarantee physical results.

We start considering Eq.(42) in the Supplemental Material of Ref. [46, 47]:

∂τ 〈n1(0)n2(τ)〉 = −Γ2〈n1(0)n2(τ)〉+ 2Re[iε2〈n1(0)(ς2a†)(τ)〉] , (2.56)

where nj = ς†j ςj is the sensor number operator and 〈n1(0)n2(τ)〉 ≡ Tr[n2(τ)ρ̂ssn1].

The equation written in this way does not contain the normal order of the operators,

leading to implausible results, such as negative values in g
(2)
Γ1Γ2

(ω1, ω2, τ). To see this,

we write the steady state density matrix for the whole emitter-plus-sensors system

as in Eq.(2.19). In this way the difference between using or not normally ordered

operators becomes immediately evident:

ς1ρ̂ssς
†
1 =

∑

j2,j′2=0,1

ρ̂
1,j′2
1,j2
⊗ |j2〉 〈j′2| ⊗ |01〉 〈01| (2.57)

ρ̂ssς
†
1ς1 =

∑

j2,j′2=0,1

|j2〉 〈j′2| ⊗
(
ρ̂

1,j′2
1,j2
⊗ |11〉 〈11|+ ρ̂

1,j′2
0,j2
⊗ |01〉 〈11|

)
. (2.58)

First of all, it is worth to mention that, even if the two expressions above are different,

they have equal traces, i.e. Tr[n2ρ̂ssn1] = Tr[n2ς1ρ̂ssς
†
1], implying that at τ = 0 the

normal order for computation of the second-order photon counting statistics is not

necessary. However, the difference in these expressions does affect the correlations at

finite delay times τ 6= 0. The second expression, which does not involve the normal

order, has the term ρ̂
1,j′2
1,j2
⊗ |11〉 〈11| rather than ρ̂

1,j′2
1,j2
⊗ |01〉 〈01| in the first one. It

also contains an additional term ρ̂
1,j′2
0,j2
⊗ |01〉 〈11|, which makes the expression not

Hermitian (the Hermitian conjugate term with |11〉 〈01| vanishes due to the action

of n1).

The effect of this difference appears more visible when we consider the mean value

〈n1(0)n2(τ)〉 ≡ Tr[n2(ρ̂ssn1)(τ)]. Indeed, this equation shows that the population

of sensor 1 decays exponentially in time with a rate Γ1. In terms of derivatives in τ

this implies that the term ρ̂
1,j′2
1,j2
⊗|j2〉 〈j′2| in (ρ̂ssς

†
1ς1)(τ) receives an extra factor −Γ1

when compared to those in (ς1ρ̂ssς
†
1)(τ), which is not included in Eq.(2.56). This

already disproves Eq.(2.56).
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On the other hand, a similar equation that involves the use of the normal order

is valid:

∂τ 〈ς†1(0)n2(τ)ς1(0)〉 = −Γ2〈ς†1(0)n2(τ)ς1(0)〉+ 2Re[iε2〈ς†1(0)(ς2a†)(τ)ς1(0)〉] + O(ε21, ε
2
2) .

(2.59)

The solution of this normally ordered derivative in τ can be obtained starting from

a vector similar to w′[11, µ2ν2](τ) given in Eq.(43) in the Supplemental Material

of [46, 47] but that carries the normal order:

w̃[11, µ2ν2](τ) =




〈ς†1(ς†,µ22 ςν22 )(τ)ς1〉
〈ς†1(ς†,µ22 ςν22 a)(τ)ς1〉
〈ς†1(ς†,µ22 ςν22 a†)(τ)ς1〉
〈ς†1(ς†,µ22 ςν22 a†a)(τ)ς1〉

...




. (2.60)

The time derivatives of the elements in w̃[11, µ2ν2](τ) are of the form

∂τ 〈ς†1(ς†µ22 ςν22 a†νaν
′
)(τ)ς1〉 = Tr{(ς†µ22 ςν22 a†νaν

′
)(τ)L(ς1ρssς

†
1)} , (2.61)

where the Liouvillian is defined as previously in Eq.(2.1). More specifically, we would

like to obtain an equation when µ2 = 0 and ν2 = 1.

Applying the procedure described in the supplemental material of [46, 47] or our

alternative time-dependent perturbation approach, it is possible to prove that, in

the limit 〈n1(2)〉 � 1, the solution for the normally ordered correlation is formally

identical to Eq. (44) in the Supplemental Material in Ref. [46, 47]:

∂τ w̃[11, 01](τ) = [M− (iω2 + Γ2/2)1]w̃[11, 01](τ)− iε2T−w̃[11, 00](τ), (2.62)

where M is the matrix that controls the dynamics of the emitting system. This

means that the normally ordered vector w̃[11, µ2ν2](τ) (in Eq.(2.60)) obeys exactly

the same equations given in the proof in the Supplemental Material [46], according

to the clarification presented in the Erratum [47].
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2.6 Comparison between results obtained with new and

original formalism

At this point we compare the results given by our new formalism with the previous

method involving the sensors. To follow this purpose, we consider a prototype bi-

ological system, formed of a dimer coupled to a collective vibrational mode, as in

Refs [22,34,128]. Our motivation arises from the measurements conducted at ambi-

ent temperature that have shown anti-bunching effects in photon counting statistics

experiments, both in bichromophoric [129,130] and multi-chromophoric systems [45].

The toy model considered is described by the electronic Hamiltonian given in

Eq.(1.61) with N = 2, where the two sites are also coupled to two vibrational

modes of the same frequency, whose Hamiltonian is expressed in Eq.(1.74). This

linear coupling between the electronic and vibrational degrees of freedom is given in

Eq.(1.78). The introduction of the collective coordinates and the transformation into

the exciton basis (explained in detail in Sec.1.4), lead to the form of the Hamiltonian

expressed in Eq.(1.81) and here reported for clarity:

H0 = E M̃ +
∆E

2
σ̃z + ωvibD

†D +
g√
2

(
cos(2θ) σ̃z − sin(2θ) σ̃x

)
(D +D†). (2.63)

All the other operators in the equation above have been previously specified in

Sec.1.4.

At this point, following the procedure presented in Sec.1.3.3.2, we consider en-

ergy transfer dynamics assuming generators of the Lindblad form as in Eq.(1.50) to

describe the system of interest.

Since a light-harvesting complex is formed of pigments organised in protein scaffolds,

the coupling between them and the surrounding vibrational protein environment has

to be taken into account in the dissipation processes. Therefore, as first decoherent

term in Eq.(1.50) (µ = 1), we choose a pure dephasing model in the site basis to

describe such interaction [131]. We assume that the bath fluctuations at different

sites are uncorrelated and that the correlations in the protein environment are inde-

pendent on the sites, meaning that each chromophore undergoes the same coupling

strength γpd to the bath [16]. Therefore, looking at Eq.(1.50), each site is subject

to pure dephasing at a rate γc1 = γpd, with jump operator c1 = Ak = |k〉〈k|, with

k = 1, 2. This term alone would lead to exponential decay of coherences in the den-

sity matrix and to an equalisation of populations at long times, corresponding then
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to the limit of high temperatures [56]. The simulations here presented were also

performed using the Redfield master equation, with dissipator in Eq.(1.34). Since

the results obtained were qualitatively very similar to those obtained using the pure

dephasing model, we chose to perform all the simulations with this simpler model.

Another dissipator term we take into account in the phenomenological master equa-

tion Eq.(1.50) has to do with the phonon modes. Considering the collective mode,

one can assume it experiences thermal relaxation with emission (µ = 2 in Eq.(1.50))

and absorption (µ = 3) rates γc2 = Γth(η(ωvib) + 1) and γc3 = Γthη(ωvib), re-

spectively, and corresponding to jump operators c2 = D and c3 = D†. Here

η(ωvib) =
(
eβωvib − 1

)−1
is the mean phonon number for the vibrational mode and

β = 1/KBT is the thermal energy scale.

Due to the interactions with the zero point fluctuations, the excited vibronic states

are characterised by radiative decay processes (µ = 4 in Eq.(1.50)) to the ground

state at rate γc4 = γ. To define the form of the jump operator, we denote the

vibrational eigenstates of the collective mode operators D†D as |l〉, where l =

0, 1, · · · , L, with L the maximum number set in the numerical simulation. As

a result, the ground electronic-vibrational eigenstates of H (in Eq.(1.81)) can be

written as |G, l〉 ≡ |G〉 ⊗ |l〉. The excited vibronic eigenstates are indicated as

|Fv〉 and expressed as quantum superpositions of states |Xi, l〉 ≡ |Xi〉 ⊗ |l〉 i.e.

|Fv〉 =
∑L

l=0

∑
i=1,2Cil(v)|Xi, l〉. The jump operator describing the emission from

the vibronic states takes then the form c4 = σvl = |G, l〉〈Fv|, where v = 1, ..., 2L and

l = 1...L.

Finally, the highest energy exciton |X1〉 experiences incoherent pumping, which

drives the steady state of the system out of equilibrium. The jump operator de-

scribing such process is c5 = σ†X1
= |X1〉〈G| and it occurs at rate γc5 = PX1 .

These considerations lead to the following form of the Linblad master equation:

L0(ρ̂) = −i [H0, ρ̂] +
∑

k=1,2

γpd
2
LAk(ρ̂) +

Γth(η(ωvib) + 1)

2
LD(ρ̂)

+
Γthη(ωvib)

2
LD†(ρ̂) +

γ

2

2L∑

v=1

L∑

l=1

Lσvl(ρ̂) +
PX1

2
L
σ†
X1

(ρ̂),

(2.64)

We now introduce the sensors in the formalism: their bare Hamiltonian is given

by Eq.(1.97), while their coupling to the emitting system has the form of Eq.(1.98).

Since we couple the sensors to the excitons, we have a = σX1 + σX2 :
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He,m = ε[(σX1 + σX2)ς†m + (σ†X1
+ σ†X2

)ςm], (2.65)

where we have assumed that each sensor is coupled to the emitting system with

equal strength ε. In addition, we suppose they have identical linewidths Γ, so that

the second term for the Liouvillian superoperator in Eq.(2.1) is given by:

LI(ρ̂) =
M∑

m=1

(
Γ

2
Lςm(ρ̂)− i [Hm +He,m, ρ̂]

)
. (2.66)

In the right-hand side of Eqs.(2.64) and (2.66), Lcµ(ρ) has the expression given in

Eq.(1.51).

We analyse a bio-inspired toy model with parameters in Refs. [22, 132], where

the energy difference between the sites is ∆α = 1, 042 cm−1, while the electronic

coupling has value V = 92 cm−1 [22]. The average energy of the two excitons

is E = 18000 cm−1 [132], while the energy difference between them is ∆E =

1, 058.2 cm−1. This energy splitting is of the same order of the vibrational frequency

ωvib = 1, 111 cm−1, whilst the thermal energy KBT = 200 cm−1 is comparable to the

coupling between the electronic and vibrational degrees of freedom g = 267.1 cm−1,

but much smaller than ωvib. This means that a number of L = 4 vibrational lev-

els in the collective mode is sufficient to guarantee converged results. Note that in

our numerical simulations all wavenumbers are multiplied by 2πc, where c is the

speed of light. The value of the electronic pure dephasing is γpd = [1 ps]−1. We

also consider an enhanced radiative decay rate of γ = [0.5 ns]−1 and a pumping rate

PX1 = [0.6 ns]−1. The thermal damping Γth is equal to the sensor linewidth Γ, such

that Γth = Γ = [4.8 ps]−1.

All the computations in this chapter and in the following have been performed

using the Matlab software. Fig.2.2 presents the power spectra SΓ(ω1) for the vibronic

dimer, comparing our formalism and the previous method, with different values of

ε satisfying ε �
√

ΓγQ/2 ∼ 10−1 cm−1. The highest peak can be observed at

frequency ω1 = R3 = 17455 cm−1 and includes transitions from the excited vibronic

states mainly localised on the lowest exciton |X2, l〉 to the ground state with the

same vibrational quanta |G, l〉. It captures also transitions from excited states with

bigger amplitude on the highest exciton |X1, l〉 → |G, l + 1〉. The peak at ω1 =

R4 = 18515 cm−1 accounts for transitions from excited vibronic states quasi-localised

on |X1, l〉 → |G, l〉, as well as transitions from states quasi-localised on |X2, l〉 →
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|G, l − 1〉.
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Figure 2.2: Power spectra SΓ(ω1) for the system under study as a function of the frequency

ω1. The figure is in log scale and compares the results with the new proposed method and

the original sensor method.

In Fig.2.3 (a) it can be seen that the original ε-dependent method tends to

slightly underestimate the spectrum, with differences of the order of ε. The results

converge for ε ∼ 10−3cm−1.
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Figure 2.3: (a) Intensity of power spectrum at a fixed frequency, SΓ(ω1 = R3) in log-

log scale, and (b) zero-delay time second-order correlation g
(2)
Γ (R4, R3) in semilog scale, as

functions of ε. Both functions are calculated with the ε-dependent method for our vibronic

dimer.

Fig.2.4(a) represents the second order correlation function at zero time delay

g
(2)
Γ (ω1, ω2): here, one frequency has been fixed (ω2 = R3), while the other (ω1)

scans over the whole spectrum. We observe anti-bunching over the full regime of

frequencies, with a bigger offset from zero for the pair of frequencies (R5, R3), mean-

ing that transitions between states with these energies are weakly correlated.
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Figure 2.4: (a) Comparison between the second order photon correlations at zero time delay

g
(2)
Γ (ω1, R3) versus ω1 computed with the new method and the ε-dependent sensor method

for different values of ε. (b) |∆g(2)
ε (0)|, the absolute difference value between the predictions

of the two methods, versus ω1 for two values of ε.

The results with the two methods agree up to differences that scale with ε2, as it can

be noted in Fig.2.4(b). This figure plots |∆g(2)
ε (0)|, that is the absolute value of the

difference between the values obtained with our formalism (solving Eq.(2.22)) and

the original ε-dependent method. The latter tends to overestimate the second order

photon correlations as shown in Fig.2.3(b), which plots g
(2)
Γ (R4, R3) as function of

ε.

We now focus the attention to the function g
(2)
Γ (R4, R3, τ) computed in Figs.

2.5(a) and (b), which depict the photon correlations between the frequencies ω1 = R4

and ω2 = R3, as a function of the delay time. We perform the computation of

this time-resolved correlations in two ways. First of all, we compute the numerical

integration for the contributions Ĩ0(τ), Ĩ1(τ) and Ĩ2(τ) in Eq.(2.47) and add them

together (Fig.2.5(a)). Secondly, we follow the ε-dependent method (Fig.2.5(b)). The

two approaches show agreement for both short-time (main panels) and long-time

regimes (inset (ii) in Fig.2.5(a) and inset in Fig.2.5(b)).
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Figure 2.5: Frequency- and time-resolved correlation function g
(2)
Γ (R4, R3, τ) versus τ pre-

dicted with (a) the perturbative method and (b) the ε-dependent method. Inset (i) in panel

(a) depicts the short time behaviour of νĨ0(τ) as defined in the text. Inset (ii) in (a) and

inset in (b) report long time regime of g
(2)
Γ (ω1, ω2, τ).

The figures put in evidence the asymmetry of g
(2)
Γ (R4, R3, τ) with respect to τ , which

appears in the time scale of the vibronic decoherence in our model (set mainly by

Γth). The components νĨk(τ) (k = 0, 1, 2), with ν = [〈ñ1〉〈ñ2〉]−1, are also plotted

in Fig.2.5(a). As predicted, Ĩ0(τ) decays exponentially from the initial value set

by g
(2)
Γ (R4, R3, τ = 0). Ĩ1(τ) is linear in τ in the short time regime and becomes

negative for bigger times (see inset (i) in Fig.2.5(a)). This reflects an overdamped

oscillation that decays to zero in the long-time regime, in agreement with the be-

haviours discussed in Section 2.4.2. Even if Ĩ1(τ) takes negative values at some times,

they are counteracted by Ĩ0(τ) and Ĩ2(τ), so that g
(2)
Γ (R4, R3, τ) has always physical

meaning. Fig.2.5 also highlights that the short-time asymmetry in g
(2)
Γ (R4, R3, τ) is

related to Ĩ1(τ) and Ĩ2(τ), meaning that the correlation function is capturing coher-

ent processes in this time scale. Depending on which frequency is probed first, such

coherent processes set a different rate for approaching the uncorrelated steady-state

emission at large times (see inset (ii) in Fig.2.5(a)).

In summary, we have shown that the formalism we proposed is equivalent to

the ε-dependent sensor method to compute frequency-filtered correlation functions.
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However, within our method there is no dependence of correlation functions on ε,

hence it does not need to test the convergence of results for different values of ε, and

it avoids possible numerical instabilities associated to the smallness of this factor.

An eventual identification of possible instabilities with the ε-dependent method can

be difficult, since it depends on the system analysed.

2.7 Conclusion

Using the sensor method, we have presented an alternative approach for the cal-

culation of the frequency-filtered and time-resolved correlation functions, both at

zero time delay and at finite delay time. Our main results are summarised by Eqs.

(2.25)-(2.27) and Eq.(2.47).

The formulation is based on the perturbation theory and allows to solve the

problem of computing photon correlations using a series of auxiliary matrices defined

in the Hilbert space of the emitter only. This set of matrices gives some insight

into the physical processes involved in the measure of photon correlations through

the weak coupling to the sensors. We recover some analytical results previously

obtained for the power spectrum and the zero time delay second order correlation

function [46,47,113,125], which confirm the validity of our approach.

In addition, in Refs. [46, 47] the quantum regression theorem was at the basis of

the proof for the equivalence between the sensor and integral methods to calculate

M -photon correlations. Instead, our relations in Eqs.(2.25)-(2.27) and Eq.(2.47), in

principle, are valid for a general non-Markovian, non-perturbative open quantum

dynamics of the emitter.

Another advantage of our method is that the numerical computation of the photon

correlations does not depend explicitly on the choice of the small coupling parameter

ε, therefore there is no need to check the convergence and the stability of the results.

Recently, it has been demonstrated the equivalence between the results obtained

with the weak and coherent coupling to the sensors in Refs. [46,47] and a cascaded

incoherent coupling of finite strength between the emitter and the sensors [133,134].

This represents another way to compute photon correlations and implies equivalence

also with our approach.

Our formulation to evaluate time-resolved correlations uses the time-dependent

perturbation theory to obtain the equation of the second-order correlation function

g
(2)
Γ1Γ2

(ω1, ω2, τ) in Eq.(2.47). It is expressed as a sum of three components Ĩ0, Ĩ1 and

Ĩ2, each giving an idea of the physical processes ruling the correlations at different
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timescales. It is important to notice that the theoretical approach here developed

recovers the limit of g
(2)
Γ1Γ2

(ω1, ω2, τ) → 1 for large times, as seen in Sec.2.4.2. The

computation of two of these components needs numerical integration of single and

double integrals.

This formalism can be extended to higher-order but when there is delay in only one

of the detectors. The generalisation to multiple time delays is more complicated.

In this case, it could be best to compute the auxiliary matrices given in Eq.(2.27)

and then propagate in time without perturbation, therefore combining the main

advantages of both our method and the previous sensor formalism.

We also showed the agreement between the two methods comparing the outcomes

for the frequency-filtered and time-resolved photon correlations of a bio-inspired

prototype system, simulating a light-harvesting vibronic dimer.

Our goal, at this point, was to prove the equivalence between the predictions of the

two formalisms, therefore we did not provide a detailed analysis of the physics behind

the system under consideration. However, it is important to highlight that the results

obtained suggest that frequency-filtered and time-resolved photon-counting statistics

can offer a powerful tool to measure coherent contributions to the emission dynamics

in biomolecular complexes [45]. A more detailed analysis of the frequency-filtered

photon counting statistics for this bio-inspired toy model will be displayed in the

following chapters.
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Chapter 3

Frequency-filtered and

time-resolved photon counting

statistics of prototype light

harvesting dimers

We now apply the theoretical setup developed in Chap.2 to compute frequency-

filtered and time-resolved correlation functions for the light emitted by prototype

photosynthetic complexes in free space. The aim is to assess the extent to which

these frequency-filtered photon correlations allow to probe the quantum interactions

between electronic and vibrational degrees of freedom in prototype light-harvesting

units. In particular, we assess whether such photon correlations carry out a signature

of steady-state quantum coherence within the excited state manifold.

3.1 Introduction

Two-photon correlations are one of the most widely used tools to observe quantum

behaviour in photon detection processes [100,102,135]. In particular, a value of the

correlation function less than 1 implies that the system under study is subject to sub-

Poissonian statistics, which can usually be related to antibunching effects [136,137].

The presence of this property has enabled identification of the quantum interplay

of composite systems in different scenarios which include cavity [138–140] and cir-

cuit [141,142] quantum electrodynamics and optomechanics [143].

More recently, it has also been applied in the field of quantum biology to mea-

sure photon antibunching of a single light-harvesting complex [122, 144]. Within
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this area, researchers have been looking for tools that could unequivocally prove

the presence of non-trivial quantum effects in certain biomolecular processes. In

the last decade ultrafast two-dimensional spectroscopy techniques have been able to

show oscillatory behaviour in the electronic dynamics of photosynthetic complexes,

lasting several picoseconds [9,12,25,29,30]. It has been suggested that the coherent

dynamics happening within these photosynthetic systems witnesses the interaction

between the electronic and vibrational degrees of freedom [1, 22, 29–35]. Neverthe-

less, this hypothesis requires further confirmation with different approaches, since

there are some controversial debates in the community about this matter [36].

Multidimensional spectroscopy, indeed, presents some challenges due to both the

difficulty of investigating individual molecules and on the unambiguous understand-

ing of the origin of the beating patterns observed in the coherent dynamics of light

harvesting systems.

From a theoretical perspective, the quantum coherent dynamics involving this vi-

bronic mechanism has been argued to lead to truly non-trivial quantum behaviour,

such as non-classical fluctuations of collective molecular motions [22]. Photon cor-

relations of the light emitted by single systems could test such theoretical predic-

tions [45].

In this context, it is interesting to see whether or not second order correlation

functions can complement and confirm the presence of coherent dynamics suggested

by ultrafast two-dimensional spectroscopy [49, 121]. The aim of this work is to

find complementary experimental signatures of this quantum interaction between

electronic and vibrational degrees of freedom, by analysing the photon counting

statistics of the light emitted by the excitons of two different prototype dimers. The

biggest advantage of using this technique is the concrete possibility to investigate

the problem experimentally.

Experiments on individual molecules of light-harvesting complexes at room temper-

ature had shown until recently very low fluorescence emission. However, in [45], a

single molecule of light harvesting complex 2 (LH2) has been weakly coupled to a

gold nanoantenna, giving raise to an over 500-fold fluorescence enhancement. There-

fore this is very promising thanks to the tangible possibility to probe quantum effects

in photosynthetic systems by measuring frequency-filtered and time-resolved second

order correlation functions.

In photodetection experiments the light under study usually passes through fil-

ters which select specific frequencies relevant to understand particular spectral prop-

erties of the system. The effects of the filters have been studied both from a theoreti-
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cal and experimental point of view [46,47,109,111,115,133]. In one of the formalisms

recently developed [50] these filters are replaced by sensors weakly coupled to the

system under scrutiny. This method is based on time dependent perturbation theory

up to the order of the correlation one wants to compute: it has been described in

Chap.2 and it is the approach we will follow for the analysis of the two prototype

models of interest.

We will proceed as follows. In Sec.3.2 we describe the system: a prototype

vibronic dimer within two different regimes, one with the excitons quasi-localised

over the sites and the other exhibiting more delocalised excitons. Sec.3.3 analyses the

dynamics of the two configurations. Then, Secs.3.4 and 3.5 present the investigation

of the related counting statistics. Finally, Sec.3.6 is devoted to concluding remarks.

3.2 Model in free space

We focus our analysis on a prototype vibronic dimer [22,34,128] within two slightly

different regimes. The choice of the dimer is due to the fact that it is the mini-

mal unit needed to observe such effects. In addition, this choice has been pushed

forward by experimental measurements of correlation functions in similar bichro-

mophoric systems [129, 130] and multi-chromophoric systems [45] that have shown

anti-bunching at room temperature.

The system under study is a dimer where each chromophore has an excited elec-

tronic state |k〉 with energy αk (k = 1, 2), and the electronic Coulomb interaction

is given by Vkk′ . As already explained in Sec.1.2.3.1, under normal light condi-

tions, the flux of photons is very low with respect to its transport time through the

aggregate, meaning that the dynamics of the system can be studied in the single

excitation manifold [76]. Each site is individually coupled to a quantised vibra-

tional mode of frequency ωvib much larger than the thermal energy scale KBT , with

coupling strength g. The vibrational modes are described by the operators dk and

d†k), which annihilates and creates, respectively, a phonon of the vibrational mode

of chromophore k. Following the rationale in Chap.1 (Sec.1.4), introducing the col-

lective mode and transforming into the exciton basis, the effective Hamiltonian for

the prototype dimer takes the form of a generalised quantum Rabi model [145], as

shown in Eq.(1.81) and here reported for clarity:

H = EM̃ +
∆E

2
σ̃z +ωvibD

†
−D−+

1√
2
g
(

cos(2θ) σ̃z − sin(2θ) σ̃x

)
(D−+D†−) (3.1)
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The size of the mixing angle θ determines the degree of localisation of the excitons

over the sites. In particular, here, we analyse two different situations close to the

limit cases: “dimer 1”, that is the standard central dimer in PE545 cryptophyte

antenna (illustrated in Fig.3.1(a)) quasi-localised on the sites and “dimer 2”, which

undergoes a slightly bigger delocalisation.

(a)

General parameters

∆E = 1058.2 cm−1 γ = (0.5 ns)−1

E = 18000 cm−1 γpd = (1 ps)−1

ωvib = 1111 cm−1 PX1 = (0.6 ns)−1

g = 267.1 cm−1 Γth = (1 ps)−1

β = (KBT )−1 = 0.0048 cm Γ = (4.8 ps)−1

(b)

Dimer 1 Dimer 2

g > V1 g ∼ V2

ζ1 = 2V1
∆α1

= 0.1 ζ2 = 2V2
∆α2

= 0.5

V1 = 92 cm−1 V2 = 236.6 cm−1

∆α1 = 1042 cm−1 ∆α2 = 946.5 cm−1

(c)

Figure 3.1: Picture (a) represents the dimer under study and is based on the protein struc-

ture of PE545. Table (b) reports the set of parameters common to both the regimes analysed,

while table (c) indicates the parameters for the two specific configurations.

Table in Fig.3.1(b) shows the values of parameters characterising both configura-
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tions, while the table in Fig.3.1(c) highlights the differences between them. (For

clarity, in our numerical calculations all wavenumbers given in the tables are mul-

tiplied by 2πc, where c is the speed of light.) More specifically, the two regimes

present different degrees of delocalisation of the excitons over the sites, that we

indicate with:

ζi = tan(2θi) =
2Vi
∆αi

with: i = 1, 2 (3.2)

For the first model (dimer 1), we have chosen parameters inspired by the central

dimer in the cryptophyte antennae PE545 [22, 132] (see table in Fig.3.1(c)): in this

case the degree of delocalisation is ζ1 = 0.1.

We build the model for dimer 2 maintaining the same resonance condition between

the exciton energy splitting and the vibrational energy (∆E1 = ∆E2 = ∆E) and

fixing the degree of delocalisation at the value ζ2 = 0.5. Given these conditions, the

coupling between the sites in dimer 2 becomes V2 = ζ2 ∆E/

(
2
√

1 + ζ2
2

)
and the

energy splitting between them ∆α2 = ∆E/
√

1 + ζ2
2 .

The interaction between the chromophores and the environment (protein and sol-

vent) involves many degrees of freedom, which makes the exact solution challenging.

Here, we address the problem by accounting, at a Hamiltonian level, for the relevant

exciton-vibration interactions, while including dephasing and relaxation channels in

a phenomenological manner as described in Sec.1.3.3.2. Under the hypothesis of

weak system-bath coupling, the interaction between the electronic and vibrational

degrees of freedom leads to dynamics characterised by dephasing and relaxation. In

addition, the energy transfer dynamics of the system only is described by generators

of the Linblad form expressed in Eq.(2.64) and here reported for clarity:

L0(ρ̂) = −i [H0, ρ̂] +
∑

k=1,2

γpd
2
LAk(ρ̂) +

Γth(η(ωvib) + 1)

2
LD(ρ̂)

+
Γthη(ωvib)

2
LD†(ρ̂) +

γ

2

2L∑

v=1

L∑

l=1

Lσvl(ρ̂) +
PX1

2
L
σ†
X1

(ρ̂).

(3.3)

The sensors and their decoherent terms in the master equation are described by Eqs.

(1.97), (1.98) and (2.66), respectively, and rewritten here for clarity:

Hm +Hem = ωmς
†
mςm + εm

(
amς

†
m + a†mςm

)
(3.4)
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LI(ρ̂) =

M∑

m=1

(
Γ

2
Lςm(ρ̂)− i [Hm +He,m, ρ̂]

)
. (3.5)

3.3 Dynamics

For our analysis we have chosen bio-inspired dimers that satisfy the condition

∆E ∼ ωvib � KBT , meaning that the intramolecular mode of interest has en-

ergy comparable to the energy difference between the excitons, but much larger

than the thermal energy scale (cf. the table in Fig.3.1(b)). In such a case the ef-

fects of underdamped high-energy vibrational motions are expected to be the most

important [31, 146]. In nature many light-harvesting complexes comprise pairs of

chromophores which fall in this regime. Two examples are the central dimer PEB50c-

PEB50d in the cryptophyte antennae PE545 [147], and the Chlb601-Chla602 pair in

the light-harvesting complex II (LH II) of higher plants [147].

The dynamics and non-classical features of these systems have previously been in-

vestigated [22] and spectroscopy of photosynthetic complexes, including such a pro-

totype, has revealed long-lived quantum beating signals [12].

t(ps)

Dimer 1

t(ps)

Dimer 2
(a) (b)

Figure 3.2: Dynamics (populations and coherences) of the electronic system only without the

sensors: (a) for dimer 1 (quasi-localised model) and (b) dimer 2 (more delocalised model),

with parameters in Fig.3.1(b) and 3.1(c) and ρel = Trvib{ρ(t)}.

Fig.3.2 shows the dynamics of the electronic degrees of freedom for the two

regimes of dimer 1 (a) and dimer 2 (b). For both models, the initial condition chosen

for the electronic part is the exciton with highest energy, namely ρel(0) = |X1〉〈X1|.
The initial state considered for the vibrational part, instead, is a thermal distribution

ρvib(0) = ρth =
∑∞

n=0 P (n) |n〉〈n|, where n denotes the phonon occupation number

of the relative displacement mode coupled with the exciton dynamics, while P (n)

is the thermal occupation of the nth level given by P (n) =
(

1 − e−
~ω
KBT

)
e
− ~ωn
KBT .
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Therefore, the total initial state reads:

ρtot(0) =
∞∑

n=0

P (n) |X1〉〈X1| ⊗ |n〉〈n|. (3.6)

The plots depict both the population of the lowest exciton and the coherence be-

tween the two excitons, with ρel = Trvib{ρ(t)}. As we can see in Fig.3.2, both

populations and coherences oscillate with a frequency related to the electronic inter-

action V (∼ (0.4ps)−1 for dimer 1 and ∼ (0.2ps)−1 for dimer 2). The smallest value

of the period of oscillation for dimer 2 (see Fig.3.2(b)) is related to the fact that

in this configuration the excitons are more delocalised over the sites. Coherences,

instead, are also modulated by a higher frequency of the order of the energy differ-

ence between the excitons ∆E (∼ (0.03ps)−1), which is the same for both dimers.

In addition, it can be noticed that for dimer 2 populations oscillate with a larger

amplitude, meaning that more coherent energy transfer happens in this more delo-

calised configuration.

It is also worth mentioning that the oscillations in both populations and coherences

of the order of V are observed because the value of the pure dephasing rate has been

set at γpd = (1ps)−1. Increasing this value would destroy such oscillations, bringing

the system to the equilibrium faster and making the coherences decay in shorter

time [31].

t(ps)

Dimer 1

t(ps)

Dimer 1 t(ps)

Dimer 2

t(ps)

Dimer 2

(a)

(c)

(b)

(d)

Figure 3.3: Vibronic dynamics of the system without the sensors. The figure represents

some populations (a) and coherences (c) for dimer 1 (quasi-localised model) and for dimer

2 (b) and (d) (more delocalised model), with parameters in Fig.3.1(b) and 3.1(c).
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As a further analysis, we also present the vibronic populations and coherences in

Figs. 3.3(a)(b) and 3.3(c)(d), respectively. In this case the amplitude of oscillations

for both populations and coherences is much smaller, though their frequencies are

similar, as expected. This is due to the fact that every eigenstate of the vibronic

system |Fν〉 is a linear superposition of the exciton-vibrational states |Xi, l〉. There-

fore, when we calculate, for example, the population 〈Fν |ρ|Fν〉 and expand |Fν〉 in

terms of |Xi, l〉, we obtain different terms oscillating with different frequencies, that

almost cancel out. The same considerations apply to the coherences. It can also

be noticed that, within configuration 1, coherences decay faster (lasting up to 3 ps)

than in configuration 2, where they last up to 4 ps (cf. Figs. 3.3(c) and 3.3(d)).

Converged results have been obtained restricting the vibrational Hilbert space to

L = 4. However, even using only two excitations in the collective vibrational mode

(L = 2) gives results for the statistics qualitatively and quantitatively very close to

those that converge, as shown in Appendix A.

3.4 Counting statistics in free space

We now focus on the computation of the frequency-filtered and time-resolved photon

correlations using the formalism presented in Chap.2.

3.4.1 First order correlations

First of all, we compute the power spectra according to Eq.(2.16). Fig.3.4 shows the

frequencies emitted by the system of interest for both configurations. In the case of

dimer 1 (Fig.3.4(a)) the frequencies emitted by the system are: R1 = 15220 cm−1,

R2 = 16330 cm−1 and R3 = 17450 cm−1, R4 = 18480 cm−1, R5 = 19600 cm−1.

We concentrate our attention on the peaks at frequencies R3 and R4, because they

correspond to the highest frequencies emitted and, for this reason, they were chosen

for the further analysis of frequency-filtered ant time-resolved correlation functions.

The highest peak at frequency R3 is mainly due to the transitions |X2, 0〉 → |G, 0〉
and |X1, 0〉 → |G, 1〉, but it also includes contributions deriving from all the transi-

tions with the same energy, such as |X2, l〉 → |G, l〉 or |X1, l〉 → |G, l+1〉. One of the

other relevant peaks can be seen at frequency R4 and it is related to the transitions

|X1, 0〉 → |G, 0〉 and |X2, 1〉 → |G, 0〉, plus other contributions from transitions with

the same energy.

The examination of the model with more delocalisation of the excitons (dimer 2)

leads to the power spectrum in Fig.3.4(b), which exhibits peaks at the same fre-
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quencies as dimer 1, but with more splittings in some of them, due to enhanced

delocalisation over the sites.

Dimer 1

Dimer 2

(a)

(b)

Figure 3.4: Power spectra of the exciton emission for: (a) dimer 1 (quasi-localised model)

and (b) dimer 2 (more delocalised model), with parameters in Fig.3.1(b) and 3.1(c). The

figure is in log scale.

3.4.2 Second order correlations: zero time delay

To compute the frequency-filtered correlation function at zero time delay, we fixed

the frequency at the peak ω2 = R3 (the highest peak in both power spectra in

Fig.3.4), whereas the other photon has variable frequency ω1 which scans the spectral

range. The results in Fig.3.5 seem to suggest that one would observe antibunching

for all emitting states within the pure dephasing model, however we will provide a

deeper analysis later on, which will not necessarily lead to this conclusion.
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Dimer 1
(a)

Dimer 2
(b)

Figure 3.5: Two color-photon correlations at zero time delay for (a) dimer 1 (quasi-localised

model) and (b) dimer 2 (more delocalised model), with parameters in Fig.3.1(b) and 3.1(c).

The figure is in semilog scale.

3.4.3 Second order correlations: finite time delay

We now present the results for the computation of the time-resolved second order

correlation function at finite time delay, for both the auto-correlations R4 −R4 and

the cross-correlations R4 −R3, again within both regimes.

First of all, we computed the standard g(2)(τ), to see what kind of information it

could provide. In the simulation presented in Fig.3.6 the emission operator consid-

ered are the exciton operators (σX1 +σX2). As it can be noticed, the blind detectors

analysis of these models gives the standard behaviour of g(2)(τ) for a single quantum

system emitting photons of any frequency, as presented in Fig.3.6. This implies that

the blind photon correlations are not able to distinguish among different regimes.

Notice that g(2)(τ) is identical for the two situations. This is because the approach

of g(2)(τ) to the uncorrelated emission unit is dominated by the radiative decay

mechanism over a time scale which is the same for both systems.

To confirm this, we also investigated the standard g(2)(τ) for a third configuration:

the central dimer in PC645 algae. In this case the energy gap between the excitons

is different from that in the two dimers under study, since ∆E = 645cm−1. How-

ever, the two-photon correlation exhibits exactly the same behaviour seen in the two
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Dimer 1

Dimer 2

(a)

(b)

Figure 3.6: Blind two-photon correlations at finite time delay for (a) dimer 1 (quasi-localised

model) and (b) dimer 2 (more delocalised model), with parameters in Fig.3.1(b) and 3.1(c).

previous regimes (this is the reason why the plot has not been reported here). This

behaviour is due to the fact that in all three regimes the exciton lifetime is of the

order of 1ns and the standard g(2)(τ) reaches uncorrelated emission just in that time

scale. Therefore, we can conclude that such color blind analysis of the second order

correlation function is not able to capture the differences between two configurations

exhibiting a different degree of exciton delocalisation.

In contrast, the time-resolved second order correlation function, reveals specific

features for the two dimers, as depicted in Figs.3.7 and 3.8. They show the depen-

dence of the correlations both at positive and negative delay times. The statistics

describing the system under study is sub-Poissonian, since g
(2)
Γ (τ) < 1, but inter-

preting the nature of the light emitted in this case requires more analysis.

Photon antibunching is signified by a normalised two-time correlation function that

increases from the initial value at τ = 0, namely g(2)(t, t + τ) > g(2)(t, t). Equiva-

lently, its characterisation for a well behaved function g(2)(t, t+ τ) (continuous and

with derivatives at every order), relies on having positive derivative at τ = 0 [148].

However, these definitions are ambiguous when g(2)(t) shows oscillatory or struc-

tured features [149–151] and deducing the nature of the light emitted in these cases

requires more analysis.
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Dimer 1

Dimer 2

(a)

(b)

Figure 3.7: Frequency- and time-resolved auto-correlation function g
(2)
Γ (R4, R4, τ) versus τ

predicted for (a) dimer 1 (quasi-localised model) and (b) dimer 2 (more delocalised model),

with parameters in Fig.3.1(b) and 3.1(c). The inserts in panels (a) and (b) show the short

time behaviour of νĨ1(τ) and νĨ2(τ) (with ν = [〈ñ1ñ2〉]−1).

The auto-correlations shown in Fig.3.7 fall precisely in this situation: they do not

exhibit anti-bunching within either model, independently on the degree of delocalisa-

tion of the excitons. In fact, there are periods where g
(2)
Γ (0) > g

(2)
Γ (τ), meaning that

the light is not necessarily antibunched [137, 152], despite showing sub-Poissonian

statistics. To be able to establish this, investigation of higher order correlations are

needed [152], but they are beyond the scope of this work.

As expected, given that we are detecting the same frequency R4, the photon corre-

lation is symmetric for positive and negative times. In addition, Fig.3.7(a) witnesses

a peculiar behaviour given by the oscillations observed around τ = 0: this kind of

oscillations has also been observed in other systems [133]. The frequency of these

oscillations is ω = (1ps)−1, but they cannot be directly related to the dynamics ob-

served in Figs.3.2 and 3.3. Those figures, indeed, describe ultrafast dynamics with

initial state given in Eq.(3.6), which is different from the steady state that represents

the initial condition in the counting statistics analysis. These oscillations, more ev-

ident in Fig.3.7(a), have to do with internal coherent dynamics, but with current

technologies they cannot be resolved experimentally.

What Fig.3.7 seems to suggest is that the frequency-filtered and time-resolved auto-
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correlations could give information about the degree of delocalisation of the system.

Indeed, the oscillations around τ = 0 quickly average to zero for dimer 2, that ex-

periences more delocalisation.

Dimer 1

Dimer 2

(a)

(b)

Figure 3.8: Frequency- and time-resolved cross-correlation function g
(2)
Γ (R4, R3, τ) for (a)

dimer 1 (quasi-localised model) and (b) dimer 2 (more delocalised model), with parameters

in Fig.3.1(b) and 3.1(c). The inserts in panels (a) and (b) show the short time behaviour of

νĨ1(τ) and νĨ2(τ).

Fig.3.8 represents the second-order, time delayed cross-correlations. The dip in

the time-resolved g
(2)
Γ (R4, R3, τ) does not go to zero, while it does in the condition

of colour blind filters (Fig.3.6). This off-set is related to the loss of time resolution

due to the presence of the filters. Even more importantly, it is possible to notice

that the minimum of the correlation function is not at τ = 0 ns: again the system

is characterised by sub-Poissonian statistics, but it is not possible to assert that the

light is antibunched without further analysis.

The most remarkable aspect displayed in Fig.3.8 is the asymmetry between positive

and negative times, contrary to what is shown for auto-correlations. Therefore we

are interested in quantifying the asymmetry of the correlation function with respect

to the y-axis. We define the function:

f− = ‖ f(x)− f(−x) ‖ . (3.7)

If f− = 0, the function is fully symmetric, while if f− > 0 , the function is not
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symmetric. In our case f(x) corresponds to the values of g
(2)
Γ (R4, R3, τ) for positive

times τ > 0, namely when the frequency R4 is detected before than R3. Viceversa,

f(−x) corresponds to the values of g
(2)
Γ (R4, R3, τ) for negative times τ < 0, that is

when the first frequency detected is R3. The norm used is the functional norm given

by ‖ f− ‖=
√
h
∑

k |f−k|2, where h = (τmax − τmin)/Npoints. Here τmax and τmin are

the maximum and minimum of the time interval considered in Fig.3.8, and Npoints

is the number of points in the numerical vector g
(2)
Γ (R4, R3, τ). This analysis gives

f− = 0.6 for the correlation function describing the quasi-localised excitons model,

and f− = 0.11 for the more delocalised configuration. Hence, dimer 1 exhibits more

asymmetry than dimer 2.

These results highlight an important feature: the asymmetry of the correlation

function is an indication of the emission dynamics being dependent on which photon

is detected first. This feature results to be more notorious in the system where the

vibronic mechanism involves quasi-localised excitons.

We now investigate whether g
(2)
Γ (R4, R3, τ) witnesses coherence in the excited

state by analysing the specific processes that I1 and I2 capture (their formal expres-

sions are given in Eqs.(2.42) and (2.44)). Regarding the contribution I1 given in

Eq.(2.42), within the approximation of t2 − t1 ' 0, we can write:

Tr[a2
˜̂ρ1,1
1,0(t1)] =

2∑

i=1

L∑

l=0

〈Xi, l| ˜̂ρ1,1
1,0(t1)|G, l〉, (3.8)

meaning that this contribution is related to the interference of coherence elements

between the ground and the excited states. Notice also that I1 tends to zero in

the intermediate-time regime, as shown in our numerical results presented in Fig.3.8

(a) and (b) (insets). This means that in the intermediate- to long-time regimes,

the frequency-filtered and time-resolved correlations are dominated by I2. This has

important consequences in using this technique to witness excited-state coherences

as we analyse below.

For very small times (t2 − t1 ' 0), the trace that appears in I2 (cf. Eq.(2.44)) can

be approximated as:

Tr[a2(t2 − t1) ˜̂ρ1,0
1,0(t1) a†2] '

2∑

i=1

2∑

j=1

L∑

l=0

〈Xi, l| ˜̂ρ1,0
1,0(t1)|Xj , l〉. (3.9)

This result indicates that I2 tracks superpositions of excited states which arise only

when the excitonic states are subjected to quantum coherent dynamics. Notice also

that the oscillatory pattern, both in I1 and I2, changes from dimer 1 to dimer 2,

indicating that this must come from coherent vibronic evolution rather than solely

from coherent vibrational dynamics.
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The above analysis shows that frequency- and time-resolved photon correlations

are sensitive to the exciton-vibration interactions and that these correlation functions

witness coherences within the excited state manifold of the systems under study.

To support this hypothesis, we have also performed a simulation with the same

parameters in Fig.3.8(a), but decreasing the coupling to the effective vibrational

mode (g = (33ps)−1 = 1cm−1). The dotted plot in Fig.3.9 shows a behaviour closer

to the perfect quantum emitter, with a smaller asymmetry f− = 0.54. This result

suggests that the statistics is affected by the vibronic dynamics.

Dimer 1

Figure 3.9: Frequency- and time-resolved cross-correlation functions g
(2)
Γ (R4, R3, τ) for

dimer 1 comparing different couplings g to the phonon bath (other parameters in Fig.3.1(b)

and 3.1(c)).

The asymmetry observed in Fig.3.8 has also another non-trivial implication. In gen-

eral, time symmetry of the cross-correlations of two different state variables around

equilibrium are a fundamental aspect bringing to the Onsager relations [153]. The

symmetry comes from the microscopic reversibility (two different state variables are

assumed to be symmetric under time-reversal), and, very importantly, it requires

that the detailed balance is respected. This means that transitions between any

two states take place with equal frequency in either direction at equilibrium. In

a Markovian process, this further implies that the equilibrium probability current

vanishes [154]. On the other hand, in open quantum systems, one is usually inter-

ested in the steady state out of equilibrium. Here, correlation functions of the light

emitted by an open system are probed with different detection techniques, which

is the situation studied in this Chapter. Generally, in all these cases, the fluctu-

ations around the steady state may have a specific time order, thus breaking the

symmetry and the detailed balance. Nonetheless, even if the detailed balance is

not guaranteed to hold out of equilibrium [155], there are several cases where the

particular boundary conditions and the symmetry of the problem allow it still to
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hold [156–160]. Therefore, it is not trivial when we find a situation in which there is

a breakdown of the detailed balance. In our case, the steady state system is out of

equilibrium because of the incoherent pumping of the highest exciton. Furthermore,

we have observed that the correlation function is asymmetric, thus reporting the

breakdown of the detailed balance. In the situation analysed, the asymmetry can

be traced back to the particular form of the contribution I2 in Eq.(2.44), which has

two different frequencies, ω2 and ω1 in the exponential factor for positive or negative

times, respectively.

3.5 Relations between coherent contribution dynamics

and filtering analysis

To gain a better understanding of the features shown by the study of the frequency-

filtered and time-resolved correlation functions, we now present the plots for dif-

ferent pumping rates P = (0.3, 0.6, 0.9ns)−1 of the highest exciton (Figs. 3.10

and 3.11) and for different values of the thermal damping of the collective mode

Γth = (1, 3, 6.7ps)−1 (Figs. 3.12 and 3.13). In nature this damping rate has a fixed

value, however, it is possible to change it within superconducting circuits [161].

Dimer 1

Dimer 2
(b)

(a)

Figure 3.10: Frequency- and time-resolved auto-correlation functions g
(2)
Γ (R4, R4, τ) for

(a) dimer 1 (quasi-localised model) and (b) dimer 2 (more delocalised model), for different

pumping rates P , with the other parameters in Fig.3.1(b) and 3.1(c).
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In both Figs. 3.10 and 3.11 it can be observed that a larger pumping rate gives

a higher intensity of the correlation function. Additionally, the auto-correlations in

Fig.3.10(a) show the same oscillatory features observed in Fig.3.7.

Dimer 1

Dimer 2

(a)

(b)

Figure 3.11: Frequency- and time-resolved cross-correlation functions g
(2)
Γ (R4, R3, τ) for

(a) dimer 1 (quasi-localised model) and (b) dimer 2 (more delocalised model), for different

pumping rates P , with the other parameters in Fig.3.1(b) and 3.1(c).

The same analysis discussed before to evaluate the asymmetry of g
(2)
Γ (R4, R3, τ)

reveals that in Fig.3.11(a) f− = 0.85, 0.60, 0.53, for the yellow, blue and red curve,

respectively. In Fig.3.11(b), instead, f− = 0.16, 0.11, 0.10, for the yellow, blue and

red curve, respectively. This means that within both models, the cross-correlations

exhibit more asymmetry when the pumping rate is bigger, namely when the system

is pumped more often, being then driven towards classical conditions. Dimer 1

displays more asymmetry due to the quasi-localised nature of the excitons, which

implies a light emission behaviour further from the purely quantum.

The analysis of the auto-correlations for different damping rates of the mode

reveals that, within the model of dimer 1 (Fig.3.12(a)), the intermediate value of

Γth (blue curve) guarantees the achievement of the equilibrium earlier, while the

intensity of the correlation around τ = 0 ns increases when the coherences decay

faster. In the case of more delocalisation (dimer 2), instead, a closer look at larger

times shows that the smaller the damping rate is, the slower the system reaches the

equilibrium (see Fig.3.12(b)).
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Dimer 1

Dimer 2

(a)

(b)

Figure 3.12: Frequency- and time-resolved auto-correlation functions g
(2)
Γ (R4, R4, τ) for

(a) dimer 1 (quasi-localised model) and (b) dimer 2 (more delocalised model), for different

damping rates Γth for the mode, with the other parameters in Fig.3.1(b) and 3.1(c).

Dimer 1

Dimer 2

(a)

(b)

Figure 3.13: Frequency- and time-resolved cross-correlation functions g
(2)
Γ (R4, R3, τ) for

(a) dimer 1 (quasi-localised model) and (b) dimer 2 (more delocalised model), for different

damping rates Γth for the mode, with the other parameters in Fig.3.1(b) and 3.1(c).

114



Regarding the cross-correlation analysis, in Fig.3.13(a) some similar features can be

observed within the two regimes. In fact the values for the function f− in Fig.3.13(a)

are f− = 0.6, 0.46, 0.3, for the yellow, blue and red curve, respectively. This means

that within the model of dimer 1 the asymmetry is more evident for bigger values

of Γth (see yellow curve). The direct implication of this result is that the more

the asymmetry is emphasised in the cross correlation functions, the further the

behaviour of the emitting system is from the perfect quantum emitter. Also the

configuration for dimer 2 in Fig.3.13(b) displays that the asymmetry affects the

correlation function slightly more when the thermal damping rate increases, with

f− = 0.0491, 0.0482, 0.0440, for the yellow, blue and red curve, respectively.

The comparison of these values for dimer 1 and dimer 2 highlights a very impor-

tant aspect: a more evident asymmetry is a feature describing the quasi-localised

nature of the excitons, while a cross-correlation function exhibiting more symmetry

characterises the collective nature of the emission due to the bigger delocalisation

of the excitons over the sites.

It is also worth noting that, in particular for dimer 1, we can observe two different

rates of approaching the uncorrelated emission for positive and negative times. As

already pointed out, positive and negative times correspond to detection of frequen-

cies with inverted order. In other words, the first frequency probed at positive times

is the second frequency detected at negative times. Different transitions correspond

to different coherences: in this sense the peculiar behaviour shown by the correla-

tion function witnesses that different coherences approach the equilibrium state at

different rates.

3.6 Conclusion

In Chap.2 it has been highlighted that the theoretical approach developed to com-

pute the frequency-filtered and time-resolved photon correlations allows to recover

the correct behaviour of g
(2)
Γ (ω1, ω2, τ) for long times. In this chapter, this method

has been used to study some statistical properties of two prototypes of light har-

vesting complexes.

It has been proved that this photon counting analysis does capture features that

colour blind detectors do not, reflecting the effects of the exciton-vibration inter-

action. The technique is also very promising, given the possibility to apply the

theoretical approach to experimental setups. This would allow to focus on individ-
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ual complexes in order to overcome the challenge dealt with the average behaviour

of biomolecules ensembles in spectroscopic experiments.

To examine the effects of different electronic delocalisation, two different regimes

have been investigated. The simulations show two fundamental aspects.

One is that the asymmetry observed in the cross correlation functions is more evi-

dent in the configuration of quasi-localised excitons, while a bigger delocalisation of

the excitons over the sites, and then a more collective behaviour in the light emis-

sion, manifest themselves in a more symmetric shape of the correlation function.

Equally relevant is that in both configurations more asymmetry can be observed

when vibronic coherences decay faster. This seems to suggest that a more symmet-

ric correlation function characterises a system where a longer quantum interaction

between these degrees of freedom takes place. However, this hypothesis needs further

investigation.

In conclusion, even in such simple systems and in the steady state condition, this

kind of study provides evidence of the exciton-vibration interaction. Frequency- and

time-resolved photon correlation measurements can, indeed, probe coherent contri-

butions to the emission statistics of light-harvesting complexes. Such correlations are

affected by the vibronic coupling characterising biomolecules, witnessing coherences

within the excited state manifold of the systems of interest. This implies that corre-

lation functions carry clear signatures of quantum coherent dynamics and, therefore,

they can be a very useful tool to investigate new features in simple systems as well

as in more complicated biological antennae.

The results presented in this Chapter are in preparation for submission to a

peer-review journal.
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Chapter 4

Coloured photon counting

statistics of bio-inspired dimers

coupled to a cavity

In this chapter we consider the same bio-inspired vibronic dimers considered in

Chap.3 but now in interaction with the confined mode of an optical cavity. We

analyse the frequency-filtered and time-resolved statistics of the combined system-

cavity, using the perturbative formalism developed in Chap.2. We consider the weak

system-cavity coupling such that the presence of the cavity in this configuration has

the effect of increasing the rate of light emission by our systems of interest. At the

same time, the regime of weak coupling guarantees that the cavity does not affect

significantly the internal quantum mechanical structure of the system of interest.

4.1 Introduction

In Chap.3 we have analysed how the frequency-filtered and time-resolved correla-

tion functions can reveal important information about the dynamics of the system

under study in free space. However, this configuration suffers from very low photon

emission, which makes the measurements of such photon-statistics challenging. To

improve this aspect the system can be coupled to a cavity mode, in order to enhance

the photons detected [162–164].

Big steps forward have been made in the field of quantum optical phenomena,

especially at single photon level [165], thanks to the use of optical cavities with high

quality factors to analyse light-matter interaction for single atoms [166] or quantum

dots [167]. Quantum optical phenomena have been explored also in the strong

117



system-cavity coupling [168], as well as in the ultra-strong [168–171] and in the deep

strong [172] coupling regimes. The feature common to these three situations is that

the coupling strength gc between the system and the cavity dominates any decay

rate γi involved in the dynamics [173], that is gc > γi. However, the relationship

between the coupling strength and the frequency of the cavity mode is different in

each of these cases. In the ultra-strong regime the coupling strength is of some

order of magnitude comparable to or larger than fractions of the cavity frequency,

namely gc & 0.1ωc [168–171]. In the deep strong regime, instead, the coupling is

comparable to or larger than the cavity frequency, that is gc & ωc [172]. In all these

regimes system and cavity become interwoven and the system does not couple to its

environment in an independent form. This means that they cannot be treated as

separate systems and the master equation governing the dynamics has to be written

in the dressed basis to have consistency in thermodynamics [174].

The presence of incoherent internal vibrations within biological molecules has

made difficult to use them in quantum optical applications. Indeed, these molecules

are characterised by specific transitions, with wavelength spanning from the mi-

crowave to the ultraviolet, depending on what they are related to (rotational, vi-

brational and electronic degrees of freedom). In the past few decades, the study

of single molecules in solid state has been achievable thanks to high spatial and

spectral resolutions, but these systems are still characterised by some decoherence

due to the phononic coupling [175]. Nonetheless, it has recently been demonstrated

that an organic molecule located inside a microcavity exhibits the same behaviour

of a two-level quantum system [176]. Moreover, within the quantum biology field,

the strong coupling between excitons of a photosynthetic light-harvesting antennae

and a confined optical cavity mode has been investigated [177]. This strong coupling

regime implies the formation of polariton states, whose energy differs from both the

exciton and photon. As a consequence, the pathway of the energy transfer in pho-

tosynthetic antenna can be modified, yet without altering the molecular structure

of the complex.

However, in this work we are not interested in cavity-system settings that mod-

ify the transfer pathways, but in settings where the weak coupling between the

bio-inspired models and the optical cavity allows to investigate the dynamics of

individual light-harvesting systems.
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4.2 Motivation

The aim of this chapter is to analyse how the presence of a weakly coupled cavity

affects the correlation functions of the system under scrutiny. We will apply the

sensor formalism developed in Chap.2, coupling the sensors to the cavity mode,

in order to examine the one- and two-coloured photon spectrum and extrapolate

information about the dynamics of the vibronic system of interest. The system we

envision is represented in Fig.4.1.

From a theoretical view point, cavity quantum electrodynamics setups have al-

ready been employed to investigate the excitation energy transfer dynamics in pho-

tosynthetic complexes in weak coupling regime [178]. This study considers the FMO

(Fenna-Matthews-Olson) pigment-protein complex subject to coherent pumping and

interacting with an optical microcavity, in order to analyse the statistical proper-

ties of the emitted photons. The goal was to gain information about the coherent

quantum dynamics of the light harvesting system looking at the counting statistics

associated with it. The authors claim that the zero time delay second order cor-

relation g(2)(0) depends on the amount of the dephasing involved in the dynamics,

which could help understand the strength of interaction between the biomolecule

and its environment.

Incoherent
pumping

sensors

Figure 4.1: Representation of the system we analyse in this chapter: a bio-inspired system,

undergoing incoherent pumping, is located inside a cavity weakly coupled to sensors, which

detect outcoming photons at specific frequencies.

The reason behind our choice of weakly coupling the biological system to a cavity

is to increase the emission of the photons coming out of the system. In a recent

work [179], indeed, the authors have been able to create quantum dots single-photon

sources, interacting with confined optical modes, that register a Purcell factor three
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times bigger than the analogous situation in free space. We consider the two model

systems described in the previous chapter (see Sec.3.2), so as to show the effect of a

different delocalisation of the excitons over the sites.

4.3 Model: vibronic system coupled to a cavity

We focus the attention on the prototype biological dimers introduced in Sec.3.2, in-

vestigating two different regimes of exciton delocalisation. We consider the vibronic

system with Hamiltonian given in Eq.(1.82) and fully explained in Sec.1.4. Here, we

report its expression for clarity:

Hel-vib = αM +
∆α

2
σz + V σx + ωvib(d†1d1 + d†2d2) +

2∑

k=1

g |k〉〈k|(d†k + dk). (4.1)

We remind the reader that in this case σz has been defined as σz = |1〉〈1| − |2〉〈2|,
that is the population difference between local excited states. Similarly

σx = |1〉〈2|+ |2〉〈1|.
The choice of operating in the site basis is due to the presence of the cavity introduced

in the new setup, which does not allow to decouple the coordinates related to the

mode centre of mass from those related to its relative displacement.

The cavity mode is described as a quantum harmonic oscillator of frequency ωc

and creation and annihilation operators bk and b†k, respectively. The cavity excitation

has been assumed on resonance with the highest exciton transition (ωc = E1 =

18529 cm−1). We also suppose local electronic states of the vibronic dimer coupled

to the cavity with strength gc, so that the cavity-system interaction is described by

the Hamiltonian:

Hel-c = ωcb
†b+

1

2

2∑

k,k′=1 k 6=k′
gc[(σk + σk′)b

† + (σ†k + σ†k′)b]. (4.2)

Here, it has been assumed that the electronic degrees of freedom are weakly coupled

to the cavity mode, therefore the rotating wave approximation has been applied

in the equation above (the coupling is very weak in comparison to the electronic

transitions).

As the system under scrutiny is a multilevel system, coupling it to a cavity mode

in resonance with the exciton transitions allows to selectively increase such specific

emission. Therefore, the analysis of the statistical properties of the light emitted by
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the cavity in resonance with some characteristic frequency of the system of interest

allows to gain information about it. Hence we assume the hypothetical sensors are

weakly coupled to the cavity with a Hamiltonian taking the form given in Eqs. (1.97)

and (1.98) and here reported:

Hc-m =
∑

m

[ωmς
†
mςm + εm(bς†m + b†ςm)]. (4.3)

Dissipations and dephasing channels for the system-cavity are introduced via

a phenomenological master equation in the Lindblad form (see Sec.1.3.3.2). More

specifically, the Linblad master equation (see Eqs.(2.64) and (2.66)) is used to express

the dephasing and relaxation processes happening during the evolution. Here, we

report both Eqs. (2.64) and (2.66) together (adapted to the site basis we are working

on), including also the relaxation term for the cavity:

L(ρ̂) =− i [Hel-vib +Hel-c +Hc-m, ρ̂]

+
∑

k=1,2

γpd
2
LAk(ρ̂) +

γ

2

2z∑

v=1

z∑

r=1

Lσvl(ρ̂) +
PX1

2
L
σ†
X1

(ρ̂)

+

2∑

k=1

Γth (η(ωvib) + 1)

2
Lbk(ρ̂) +

Γth η(ωvib)

2
L
b†k

(ρ̂)

+
Γc
2
Lc(ρ̂) +

∑

m

Γ

2
Lςm(ρ̂),

(4.4)

where all the parameters are specified in Tables 3.1(b) and 3.1(c), in Sec.3.3. Since

we are working in the site basis, we denote the vibrational eigenstates of the phonon

modes with |l〉 for mode 1 and |l′〉 for mode 2, where l = 0, 1, · · · , L and l′ =

0, 1, · · · , L′, with L and L′ the maximum numbers set in the numerical simulation

(we assumed L = L′). We also indicate the eigenstate of the cavity mode with

|l′′〉 where l′′ = 0, 1, · · · , L′′, with L′′ the maximum number set in the numerical

simulation. In the Eq. above z = L ∗ L′ ∗ L′′ = L2 ∗ L′′. Γc is the cavity decay rate

and the choice of its value has been based on parameters used for cavity quantum

electrodynamics experiments [180], considering an intermediate situation between a

“good” or “bad” cavity, and with low dispersions and relatively high quality factor

Q. The latter is defined as Q = ωc/Γc and for a realistic good cavity its value can be

of the order of 106 [180]. The value of the cavity frequency has been chosen equal

to the energy of the highest exciton ωc = E1 = 18529cm−1, therefore for a quality

factor of Q = 6 · 106, the corresponding decay rate is Γc = (10ns)−1 = 108Hz.
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The size of the mixing angle θ determines the degree of localisation of the exci-

tons over the sites, through the expression displayed in Eq.(3.2). Here, our purpose

is to investigate again two cases close to the two limits of quasi-localised and more

delocalised excitons over the sites (more details are given in Sec.3.3). This delocali-

sation is expressed through the parameter ζ = tan(2θ) = 2|V |/∆α. The parameters

related to these two situations are reported in table 3.1(b), that shows the common

values in the two regimes, and in table 3.1(c), where the differences between them

have been highlighted. For clarity, we specify that in our numerical calculations all

wavenumbers given in the tables are multiplied by 2πc, where c is the speed of light.

Dimer 1 is inspired to the central dimer in the cryptophyte antennae PE545 [22,132],

where ζ1 = 0.1. The second model instead, dimer 2, exhibits the same energy differ-

ence between the excitons (∆E1 = ∆E2 = ∆E), as well as the same resonance condi-

tion between them and vibrational energy (∆E ∼ ωvib). However, the degree of delo-

calisation has been chosen to be slightly bigger, ζ2 = 0.5. Starting from these condi-

tions, the coupling between the sites in dimer 2 is given by V2 = ζ2 ∆E/

(
2
√

1 + ζ2
2

)

and the energy splitting between them by ∆α2 = ∆E/
√

1 + ζ2
2 .

4.4 Counting statistics in the cavity

4.4.1 Numerical simulations

Before presenting the results obtained, it is important to specify some aspects that

make the numerical performance quite challenging. The main difficulty is due to

the fact that, in principle, bosonic modes requires infinite excitations, then causing

an exponential growth of the Hilbert space. However, in practice, it is necessary to

restrict the Hilbert spaces of both the phonon modes and the cavity mode.

Regarding the vibrational modes, based on the analysis presented in Sec.3.3, we

know that a maximum number of excitations L = 2 suffices to analyse the photon

statistics associated to the vibronic systems of interest, as shown in Appendix A.

The situation for the Hilbert space associated to the cavity mode requires a more

careful thought. To show the reason behind this assertion, in Appendix B, we anal-

yse the power spectra and the time-resolved correlation functions for both dimers,

considering two different values of the coupling strength (gc = (1.33ps)−1 = 25 cm−1

in Fig.B.1 and gc = (0.67ps)−1 = 50 cm−1 in Fig.B.2). The figures compare the

results obtained with two different values for the maximum number of excitations

in the cavity mode, L′′ = 3, 4.

As it can be noticed in Figs.B.1(a) and (b) and Figs.B.2(a) and (b), the power spec-
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tra for both dimers and both values of couplings show convergence for L′′ = 3. It has

been verified that the same conclusion holds for the computation of the second order

correlation at zero time delay. Concerning the cross correlation function at finite

time delay, Fig.B.1(d) and Fig.B.2(d) show that for dimer 2 a maximum number of

L′′ = 3 guarantees results qualitatively close to the those that converge. However,

for dimer 1 such value of L′′ does not suffice to assure convergence at short time

delays for either of the two gc values considered. We therefore consider L′′ = 4.

4.4.2 First order correlations S
(1)
Γ (ω1)

We now investigate the statistical properties of the two bio-inspired systems of in-

terest. First of all, we analyse the power spectra for different values of the coupling

between the electronic degrees of freedom and the cavity. The aim is to highlight

similarities with the power spectra found in free space (see Fig.3.4), in order to

guarantee a condition for the cavity coupling that does not alter significantly the

emission frequencies of the system under study.

The one-photon correlations reported in Fig.4.2 describe the situations for the

two different models: dimer 1, with quasi-localised excitons (see Fig.4.2(a)), and

dimer 2, with more delocalised excitons (see Fig.4.2(b)). It shows the frequen-

cies emitted by the system of interest for both configurations: the main peaks are

about the same and the feature common to both is that the larger the coupling,

the more structured the spectrum becomes. In presence of the cavity the main fre-

quencies emitted by the systems are: R2 = 16330 cm−1 and R3 = 17450 cm−1,

R4 = 18480 cm−1. When the system experiences more delocalisation, it can be

observed a more emphasised splitting of the peak at R3 and a slightly different

structure for the peak at R4 (see Fig.4.2(b)). The power spectrum exhibiting a

more similar structure to that observed in free space (cf.Fig.3.4) is obtained for

gc = (1.33ps)−1, and therefore we choose this value to perform further simulations

for the time-resolved analysis. In fact, although the condition of weak coupling for

the decay rates gc < γi is not met by the value gc = (1.33ps)−1, it is still good

enough to be considered for the purpose of this work, since gc � ωc.
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Dimer 1

Dimer 2

(a)

(b)

Figure 4.2: Power spectra for: (a) the quasi-localised model in dimer 1 and (b) the more

delocalised in dimer 2, with parameters given in Tables 3.1(b) and 3.1(c). The yellow line

corresponds to the spectrum with the largest value of coupling. The plots are in arbitrary

units and the spectra have been translated with respect each other to better distinguish their

features. The figure is in log scale.

4.4.3 Zero time delay second order correlations g
(2)
Γ (ω1, R3)

The computation of the second order frequency-filtered correlations at zero time

delay in Fig.4.3 is carried out by fixing the frequency at the peak ω2 = R3 (one of

the main peaks in both power spectra in fig.(4.2)), and letting the frequency of the

other photon ω1 vary over the whole spectral range. In this case, the comparison

among the three different coupling parameters gc is reported again for completeness.

Fig.4.3 seems to suggest that antibunching is observed within both models for in-

termediate and smaller coupling, as well as for the largest system-cavity coupling

in the more delocalised system. The only exception can be observed for the quasi-

localised model, when the coupling parameter is the largest (gc = (0.67ps)−1). In

this case, the correlation between frequency R3 and frequencies slightly smaller than

R4 shows bunching. Moreover, within this regime, the overall values of g
(2)
Γ (ω1, R3)

are closer to zero, indicating that such cross-correlated emission is more antibunched.

Fig.4.3 also highlights that the correlation computed with gc = (1.33ps)−1 is overall

closer to zero for the more delocalised model, again meaning that the system in this

configuration exhibits more antibunching.
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Dimer 1

Dimer 2

(a)

(b)

Figure 4.3: Second order correlations at zero time delay for: (a) dimer 1 and (b) dimer

2, with parameters in Fig.3.1(b) and 3.1(c). The figure is in semilog scale. The yellow line

corresponds to the spectrum with the largest value of coupling.

4.4.4 Finite time delay second order correlations g
(2)
Γ (R4, R3, τ)

(a)

(b)

Figure 4.4: Frequency- and time-resolved cross-correlation function g
(2)
Γ (R4, R3, τ) for: (a)

the quasi-localised configuration in dimer 1 and (b) the more delocalised model in dimer 2,

with parameters in Fig.3.1(b) and 3.1(c).
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To better understand the nature of light emitted, the time-resolved second or-

der cross-correlations R4 − R3 have been computed at finite time delay, again for

both configurations. Fig.4.4 seems to suggest that both dimers are emitting anti-

bunched light, although the statistics observed is not trivial. In both regimes the

presence of the cavity does alter the statistics of the light emitted by the system very

significantly. In particular, the photon correlation observed for dimer 2 exhibits a

completely different behaviour with respect to that shown in free space (cf. Fig.3.8),

being now very far from the characteristic perfect quantum emitter correlation. It

is also worth noticing that in both Figs.4.4(a) and (b) the derivatives at long times

are positive, meaning that the correlation functions will eventually tend to 1, as

expected (see Sec.2.4.2).

(a)

(b)

Figure 4.5: Frequency- and time-resolved cross-correlation functions g
(2)
Γ (R4, R4, τ) for: (a)

the quasi-localised configuration in dimer 1 and (b) the more delocalised model in dimer 2,

for different damping rates Γth for the modes, with the other parameters in Fig.3.1(b) and

3.1(c).

As a further investigation, we examine the cross-correlation comparing different val-

ues of the thermal damping rates, to gain an insight of the effect of the vibrational

relaxation on the statistical properties of the light emitted by the systems. Fig.4.5

represents the time-resolved correlation function within both regimes and for two

values of the thermal damping: Γth = (1ps)−1 and Γth = (6.67ps)−1. For slower

vibrational relaxation, the photon statistics of dimer 1 changes from sub-Poissonian
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to super-Poissonian as can be seen in Fig.4.5 (square markers).

To understand better the implications of this change from sub- to super-Poissonian

statistics, we now analyse the Cauchy-Schwarz inequality (CSI) for these correla-

tions [181]. The CSI states that correlations of the product of two variables X and

Y are bounded by the product of the auto-correlations, namely |〈XY 〉|2 ≤ 〈X2〉〈Y 2〉.
However, when the two variables are quantum observables, a violation of this in-

equality can occur [182–188]. This means that correlations between the observables

can be strong enough to overcome the product of auto-correlations. In this context,

the CSI inequality can be expressed through the correlators between the sensors.

More specifically, we define g
(2)
Γ,ij(τ) as in Eq.(2.31), considering the same linewidth

for both sensors, that is:

g
(2)
Γ,ij(τ) = g

(2)
Γ (ωi, ωj , τ) =

S
(2)
Γ (ωi, ωj , τ)

S
(1)
Γ (ωi)S

(1)
Γ (ωj)

=
〈ς†i ς

†
j (τ)ςj(τ)ςi〉
〈ς†i ςi〉〈ς

†
j ςj〉

. (4.5)

The CSI in time is then expressed through the ratio [189]:

RΓ,ij =
[g

(2)
Γ,ij(τ)]2

g
(2)
Γ,ii g

(2)
Γ,jj

=
〈ς†i ς

†
j (τ)ςj(τ)ςi〉2

〈(ς†i ςi)2〉 〈(ς†j ςj)2〉
< 1. (4.6)

The calculation of this ratio for the quasi-localised configuration in dimer 1, with the

smallest value of the thermal damping Γth = (6.67ps)−1, shows violation of the CSI

for τ < 0, implying the presence of nonclassical effects when frequency R3 is detected

before R4. This means that, although the statistics exhibits partial super-Poissonian

distribution, the nature of the light emitted is quantum and presents antibunching.

This effect has also been found in Ref. [139], where a two-level system was strongly

coupled to a single mode of an optical cavity undergoing coherent pumping. The

signature of the quantum nature of the emitter in our model is more evident when

the thermal damping is smaller, namely when the vibronic coherences survive longer.

The quantum behaviour of the light emitted reflects the quantum character of the

interaction between the electronic degrees of freedom and the vibrational modes.

Finally, it is worth underlining an important point. In all the results presented

above, we have coupled the sensors to the cavity mode. However, one could ask

what happens if the sensors had been coupled to the electronic degrees of freedom.

We have verified that the second order photon correlations remain qualitatively the

same, but having coupled the sensors to the cavity has the advantage of increas-

ing the intensity of the signal emitted. This has motivated our choice, as already

mentioned at the beginning of this Chapter.
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4.5 Conclusion

In this Chapter we aimed to complement the study of the second order photon

correlation in free space, carried out in Chap.3. We have predicted frequency-filtered

and time-resolved correlation functions of bio-inspired systems weakly coupled to a

cavity mode, which probe coherent contributions to the emission statistics.

Having coupled the system to a cavity mode is often a good strategy to enhance

the signal carrying out the quantum features of the emitter [83]. The use of the

cavity has revealed to be very effective in our case. In fact, the light emitted by

the system in free space can be difficult to capture, due to the low emission. The

presence of the cavity allows to overcome this difficulty: increasing the coupling of

the system to the cavity, the intensity of the emitted light is significantly enhanced.

In principle this effect would continue when increasing the coupling even further.

However, this would also alter the inner dynamics of the prototype photosynthetic

complex, hybridising the states of the cavity and the system. For this reason the

coupling strength has not been increased above a certain value, which guarantees a

condition of weak coupling.

Moreover, the fact that we couple the system to the cavity has shown another

interesting effect. The computation of the second order correlation function has,

indeed, displayed super-Poissonian behaviour of the light emitted when the thermal

damping of the phonon modes is reduced, meaning that the vibronic coherences

of the system are more protected (see Fig.4.5). Even though a super-Poissonian

distribution of the light emitted seems to be an indicator of classical light, one still

needs to verify whether or not the correlation functions violate the CSI. In our case,

we have indeed verified that the CSI is violated, which implies the quantum character

of the light emitted. Therefore we have generated a beam of light that violates the

CSI despite its super-Poissonian properties. This implies that the analysis of the

statistics of the light emitted by the biomolecule of interest can provide information

about the coherent contributions to the emission.

Our approach is very promising for the research in this field, since it could

open the way to new experimental investigations that might be able to clarify and

finally answer the main question debating in the community, that is whether or

not photosynthetic complexes are characterised by non-trivial quantum coherence

processes.
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Conclusions and outlook

In the field of quantum biology, photosynthesis has become the most paradigmatic

process studied to understand the extremely high efficiency in the light harvesting

process and energy transfer.

Experimentally, such effects have been investigated thanks to the development of

two-dimensional electronic spectroscopy. In particular, it has revealed that the dy-

namics of biological systems presents oscillatory behaviour lasting up to picoseconds.

These beatings survive for a surprising long time, given that electronic dephasing

was expected to happen in a few hundreds of femtoseconds. One of the explanations

proposed for these observations is intermolecular vibronic coupling, where excitons

and some vibrational motions interact in a coherent form, promoting long-lasting

coherent oscillations of quantum superpositions of excited states.

However, confirmations of this hypothesis with alternative techniques that can pro-

vide unambiguous signatures of these effects are needed.

Since one of the most powerful tools to identify quantum properties of light and

emitters is the analysis of correlation functions, the aim of this thesis was to employ

quantum optics techniques to explore quantum coherence interplay within prototype

photosynthetic complexes.

Our first step (Chapter 2) has been to develop an alternative formulation of the

sensor method to compute frequency-filtered and time-resolved correlation functions,

both at zero and finite time delay. This method treats perturbatively the coupling

between the system of interest and the sensors, and defines the photon correlations

through a series of auxiliary matrices determined in the Hilbert space of the emitter

only. These matrices also offer an insight into the physical processes involved in the

measure of correlations. The expression for the time-resolved second order correla-

tion function contains the sum of three contributions. Each of them gives an insight

on the physical processes governing the correlations at different timescales.

The advantages of using this approach are several. First of all, the dimension of the

Hilbert space results reduced, since the detectors are not included in the expression
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of the photon correlations. Secondly, the results obtained do not rely on any as-

sumption, meaning that they are valid also for non-Markovian systems. Moreover,

within this approach correlation functions do not depend on the coupling parameter

to the sensors, thus not requiring check for convergence of the results.

A further development of this research could be to prove the equivalence between the

sensor method and the integral standard method used to compute photon correla-

tions, without relying on quantum regression theorem and, therefore, on Markovian

approximation. In such a case, we would be able to use the results obtained in our

research even for non-Markovian quantum systems.

The following step (Chapter 3) has been to apply the method developed in

Chapter 2 to compute frequency-filtered and time-resolved photon correlations to

two different prototype photosynthetic complexes, in free space. This kind of anal-

ysis does capture features that the standard correlation function does not, therefore

already proving the potential power of this tool. The two studied configurations

differ for the degree of delocalisation of the excitons over the sites. The analysis

shows important aspects.

Firstly, although the time-resolved correlation function exhibits sub-Poissonian statis-

tics, it is not trivial to associate it to antibunching effects. Indeed, the cross-

correlation shows asymmetry in the regime where the vibronic mechanism involves

quasi-localised excitons, whereas the dimer characterised by more delocalisation

presents a more symmetric correlation function. This is connected to the fact that

the latter configuration is defined by a more collective behaviour in the light emission,

therefore exhibiting features closer to the perfect quantum emitter. Nonetheless, the

observed time-asymmetric fluctuations do indicate that the vibronic mechanism still

affects the emission in this more delocalised system.

Secondly, but even more importantly, this frequency- and time-resolved photon cor-

relation analysis is affected by the interplay between electronic and vibrational de-

grees of freedom. Indeed, it witnesses coherences, together with populations, within

the excited state manifold of the system under study.

We have shown that frequency-filtered and time-resolved correlations capture quan-

tum coherent contributions to excited states dynamics. This includes both popula-

tions and coherences. A further interesting investigation could be to understand the

weight of each of these components. In addition, the computation of higher order

correlations may shed light on the nature of the signal emitted by these biological

complexes.

Finally (in Chapter 4), measurements of the frequency-filtered and time-resolved
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correlation functions have been performed on the same two bio-inspired toy models,

now weakly coupled to a cavity mode. Indeed, one of the main challenges in experi-

ments when analysing single biomolecules using photoluminescence, is the weakness

of the signal emitted. The presence of the cavity, however, enables to selectively

increase the light emitted. In particular, as it is in resonance with one of the char-

acteristic frequencies of the system, it allows to witness the electronic dynamics

happening inside the biomolecule.

In principle, the larger the coupling, the more enhanced the light emitted. However,

this coupling strength cannot be too large, due to the alteration it would cause to

the internal dynamics of the system of interest. For this reason, a regime of weak

coupling has been chosen for the purpose of this work. Nevertheless, exploring the

regime of strong coupling could be interesting for a future investigation, since the

emitted signal would probably increase even more. We point out that in this case

one should consider a different master equation, as the two systems (cavity and vi-

bronic part) would not be independently coupled to the different baths.

The coupling of the system to the cavity has shown interesting behaviours of the

time-resolved cross-correlations. First of all, the signal emitted has increased due to

the presence of the cavity. It exhibits super-Poissonian statistics, more evident in

the configuration characterised by quasi-localised excitons and under a small ther-

mal damping of the vibrational modes, meaning when the vibronic coherences of the

system survive longer. Despite a super-Poissonian distribution of the light emitted

seems to suggest a classical behaviour, a deeper analysis on the correlation function

has been performed and we verified that the CSI is violated, implying the quantum

nature of the light emitted.

Future works could analyse these correlations for more complex biological systems

embedded in optical cavities. This approach appears, indeed, very promising thanks

to the concrete possibility to experimentally measure filtered correlation functions

of the light emitted by single molecules. The combination of such predictions with

the experiments have the potential to unravel novel signatures of quantum coherent

processes within biomolecules.

In conclusion, the research carried out in this thesis could pave the way to fi-

nally provide unambiguous proofs of quantum coherent processes occurring in the

dynamics of single photosynthetic complexes.
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Appendix A

Convergence for L in free space

The analysis of both the power spectra (Fig.A.1(a)) and the zero (Fig.A.1(b)) and

time resolved photon correlations (Fig.A.1(c)) for the system in free space shows

that converged results can be obtained considering a maximum number of vibra-

tional excitations of L = 4. However, even using only two excitations L = 2 in the

collective vibrational mode it is possible to obtain correct qualitative and quantita-

tive results.

Dimer 1

Dimer 1

Dimer 1

(c)

(b)(a)

Figure A.1: The figure represents (a) the power spectra, (b) the zero time delay and (c) the

time-resolved photon correlations for dimer 1, considering different values of the maximum

number of excitations L in the collective vibrational mode.
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Appendix B

Numerical checks in the cavity

configuration

Fig.B.1 and Fig.B.2 analyse the power spectra and the time-resolved correlation

functions for both dimers, considering two different values of the coupling strength

(gc = (1.33ps)−1 = 25 cm−1 and gc = (0.67ps)−1 = 50 cm−1, respectively. The fig-

ures compare the results obtained with two different values for the maximum number

of excitations in the cavity mode, L′′ = 3, 4.

It can be observed that the power spectra for both dimers and both values of cou-

plings show convergence for L′′ = 3. The same consideration holds for the cross

correlation function of dimer 2 at finite time delay, as shown in Fig.B.1(d) and

Fig.B.2(d). In this case, indeed, a maximum number of L′′ = 3 guarantees results

qualitatively close to the those that converge. However, a different analysis needs to

be done for dimer 1, since the value of L′′ = 3 does not suffice to assure convergence

at short time delays for either of the two gc values considered. We therefore consider

L′′ = 4.
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Dimer 1 (c)

Dimer 2

(a)

(b) (d)

Figure B.1: Power spectra (a) and (b) and time-resolved correlation functions (c) and (d)

for both dimers, with coupling to the cavity gc = (1.33ps)−1 = 25 cm−1 and other parameters

given in Tables 3.1(b) and 3.1(c), comparing different values of the maximum number of

excitations L′′ in the cavity mode. (The figure for the power spectra is in log scale.)

Dimer 1

Dimer 2

(a)

(b)

(c)

(d)

Figure B.2: Power spectra (a) and (b) and time-resolved correlation functions (c) and (d)

for both dimers, with coupling to the cavity gc = (0.67ps)−1 = 50 cm−1 and other parame-

ters given in Fig.3.1(b) and 3.1(c), comparing different values of the maximum number of

excitations L′′ in the cavity mode. (The figure for the power spectra is in log scale.)
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