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Summary. Environmental DNA (eDNA) is a survey tool with rapidly expanding applica-

tions for assessing presence of a species at surveyed sites. eDNA methodology is known

to be prone to false negative and positive errors at the data collection and laboratory anal-

ysis stage. Existing models for eDNA data require augmentation with additional sources of

information to overcome identifiability issues of the likelihood function and do not account

for environmental covariates that predict the probability of species presence or the proba-
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bilities of error. We present a novel Bayesian model for analysing eDNA data by proposing

informative prior distributions for logistic regression coefficients that allow us to overcome

parameter identifiability, while performing efficient Bayesian model-selection. Our method-

ology does not require the use of trans-dimensional algorithms and provides a general

framework for performing Bayesian variable selection under informative prior distributions

in logistic regression models.

Keywords: Informative prior distributions, known presences, likelihood symme-

tries, logistic regression, occupancy probability, Pólya-Gamma scheme

1. Introduction

Since the initial proof of concept by Ficetola et al. (2008), the use of environmental

DNA (eDNA) for the assessment of aquatic biodiversity has been rapidly expanding.

In essence, the eDNA survey method isolates DNA that has become separated from

an organism and suspended within the water column, to identify the recent presence

of that species within a waterbody (Jane et al., 2015). Surveyors opt for eDNA over

traditional survey methods for two reasons. First, eDNA offers a rapid assessment

tool with potential cost (Rees et al., 2014) and logistical savings, allowing large-scale

monitoring programs to be implemented, that would be too onerous using traditional

methods such as trapping or electrofishing (Jerde et al., 2011; Biggs et al., 2015). Second,

some studies have indicated a decrease in the probability of a false negative error over

traditional methods, (Jerde et al., 2011; Biggs et al., 2015), particularly for rare and

cryptic species that are difficult to detect (Sigsgaard et al., 2015).

Nevertheless, eDNA methodology is not error-free and both false positive and false

negative errors are possible in the two stages of an eDNA survey: the data collection

stage (Stage 1) and laboratory analysis stage (Stage 2) (Biggs et al., 2014; Tréguier et al.,

2014). (see Fig. 1 for a schematic representation of the stages of eDNA sampling).

The recently developed model for eDNA data by Guillera-Arroita et al. (2017) es-

timates the probability of species presence at a site and the (conditional) probabilities

of error in the two survey stages. However, the model requires augmenting eDNA data

with two additional sources of information and does not take into account site covariates
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that affect the probability of species presence or the probabilities of error in either of

the two stages. Clearly, additional sources of information may not always be available,

especially in large scale surveys targeting several species. Additionally, it is well-known

that probabilities of error may be influenced by environmental and waterbody charac-

teristics (Ficetola et al., 2015). Regarding Stage 1, several pond characteristics such as

dense mats of vegetation or wide shallow drawdown zones around ponds, may prevent

the thorough mixing of eDNA into the water column, potentially resulting in a failure to

collect target DNA (Biggs et al., 2014). Similarly, water flows between ponds may allow

for the transport of eDNA from one pond to another, or the removal of eDNA from a

survey area (Biggs et al., 2014). Regarding Stage 2, errors may result from components

within the water reducing the efficiency of DNA extraction, such as sediment or organic

matter, from poor lab practices or from DNA becoming airborne, allowing amplification

through contamination.

eDNA surveys are now being enshrined within policy and commercial practice. Com-

mercial and political decision-making has started to rely solely on results from eDNA

surveys to assess species presence at surveyed sites, whether this be in management

decisions around the introduction of invasive species of Asian carp in the USA (Jerde

et al., 2011) or development mitigation decisions surrounding protected species such as

the great crested newt in the UK (Natural England, 2017). However, neither the relia-

bility of eDNA methodology with regard to estimating species presence nor the effect of

environmental covariates on the probabilities of error in either Stage have been assessed.

As a result, decisions with prominent commercial and political consequences are being

made with unknown levels of confidence in the results. The ability to identify the degree

of error from eDNA surveys when assessing species presence and to link probabilities

of error to environmental covariates would be hugely valuable in demonstrating the ac-

curacy of the technique and assigning confidence in individual samples (Barnes et al.,

2014; Barnes and Turner, 2016; Willoughby et al., 2016).

In this paper we present a Bayesian formulation of the Guillera-Arroita et al. (2017)

model, but with all model parameters as functions of categorical and continuous covari-

ates within a logistic regression framework. We propose a set of prior distributions for
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the regression coefficients that overcomes the identifiability issues of the model, intro-

duced by the likelihood function, and enables us to estimate site-specific probabilities of

species presence without requiring additional sources of information. We show how in-

formation on verified species presences for a number of sites, when that is available, can

be incorporated in the model. We present an efficient algorithm for performing Bayesian

variable selection (George and McCulloch, 1997; Chipman et al., 2001; O’Hara and Sil-

lanpää, 2009) elegantly, even when the number of possible models to be considered is

large. We exploit the Pólya-Gamma (Polson et al., 2013) data augmentation scheme for

logistic regression models, which allows us to efficiently update the model with regression

coefficients marginalized out. This approach avoids using trans-dimensional algorithms,

such as reversible jump MCMC (Green, 1995), that require careful tuning.

We present our Bayesian model in section 2 and we give details on computational

aspects in section 3. Section 4 presents a simulation study, assessing the effect on the

accuracy of the variable selection process when varying the number of sites, number of

samples, baseline probability of species presence or the proportion of sites with associated

verified species presence. We apply our proposed model to a data set commissioned by

Natural England, collected and extracted using a precipitation in ethanol eDNA method-

ology, with 12 technical polymerase chain reaction (qPCR) replicates in the eDNA anal-

ysis phase as per Biggs et al. (2014). The results of our model are presented in section

5 and the paper concludes in section 6. The associated online supplementary material

presents further details on our model and algorithm and convergence diagnostics.

The eDNA data that motivated the work can be requested by Natural England (Pe-

ter.Brotherton@naturalengland.org.uk) while the methods developed in the paper have

been implemented in an Rshiny app (Chang et al., 2019) https://seak.shinyapps.

io/eDNA/.

2. Modelling eDNA data

eDNA data on a species result from visiting S independent sites and collecting M inde-

pendent water samples from each site. Each of the SM water samples is subsequently

analysed in K independent eDNA qPCR replicates, with each replicate leading to either

https://seak.shinyapps.io/eDNA/
https://seak.shinyapps.io/eDNA/
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a negative or a positive result for eDNA presence of the species. We denote the number of

positive results (from the K qPCR replicates) in the m-th water sample collected at the

s-th site by ysm. We may also observe confirmed species presences at some sites where

the species is present following incidental observations of the target species, their larvae

or eggs during eDNA sample collection, and we denote a confirmed species presence at

site s by ks = 1 (and ks = 0 otherwise).

Guillera-Arroita et al. (2017) proposed a model for eDNA data that allows for errors

at the data collection (Stage 1) and laboratory analysis (Stage 2) stages. The model is

an extension of the Royle and Link (2006) mixture model that only allows for errors at

the detection stage in occupancy studies (MacKenzie et al., 2002). We aim to identify

the site-specific covariates that affect the probability of species presence as well as the

probabilities of error at the two survey stages and so extend the Guillera-Arroita et al.

(2017) model to allow for site-specific model parameters. We define zs = 1 if the s-th

site is occupied (i.e. the species is present) and zs = 0 otherwise, and wsm = 1 if eDNA

of the species is present in the m-th sample of the s-th site and wsm = 0 otherwise.

We assume that the probability of species presence at site s is ψs and there exists a

common probability π of a confirmed species presence at an occupied site. In Stage

1, the probability of eDNA presence in a water sample from site s is θ11s if the site is

occupied (Stage 1 true positive) and θ10s otherwise (Stage 1 false positive). In Stage

2, the probability of a positive qPCR replicate is p11s if eDNA of the species is present

in a water sample from site s (Stage 2 true positive) and p10s otherwise (Stage 2 false

positive). The model assumes that a positive qPCR replicate is only directly affected

by eDNA presence and not species presence. We assume conditional independence be-

tween replicates, samples and sites and further assume that all K qPCR replicates are

identically distributed. We note that we cannot have confirmed species presence at un-

occupied sites, which motivates modelling ks conditional on species presence, as the data

are missing not-at-random. A schematic representation of the stages of eDNA surveys

and our corresponding model is given in Fig. 1.

The model implies that the marginal distribution of ysm is a two component mixture

model -with components Bi(K, p11s) and Bi(K, p10s) with ψsθ11s+(1−ψs)θ10s the weight
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zs = 1

wsm = 1 wsm = 0

ks = 1
π

ysm K − ysm ysm K − ysm

θ11s 1− θ11s

p11s 1− p11sp10s 1− p10s

zs = 0

wsm = 1 wsm = 0

ysm K − ysm ysm K − ysm

θ10s 1− θ10s

p11s 1− p11sp10s 1− p10s

`
ψs 1− ψs

Species presence

Stage 1

Stage 2

Fig. 1. Schematic representation of the hierarchical model defined in (1). Unobservable states

are represented by ellipses and data by rectangles.

on the first component- and is represented in hierarchical form as

Species presence zs ∼ Bernoulli(ψs),

Confirmed
ks|zs = 1 ∼ Bernoulli(π), P(ks = 1|zs = 0) = 0,species presence

Stage 1 wsm|zs = 1 ∼ Bernoulli(θ11s), wsm|zs = 0 ∼ Bernoulli(θ10s),

Stage 2 ysm|wsm = 1 ∼ Binomial(K, p11s), ysm|wsm = 0 ∼ Binomial(K, p10s).

(1)

The model leads to the following expression for the likelihood function

L(ψ, θ11, θ10, p11, p10, π|y, k)

∝
S∏
s=1

[
ψs(1− π)

{
M∏
m=1

(
θ11sp

ysm
11s (1− p11s)

K−ysm + (1− θ11s)p
ysm
10s (1− p10s)

K−ysm
)}

+ (1− ψs)

{
M∏
m=1

(
θ10sp

ysm
11s (1− p11s)

K−ysm + (1− θ10s)p
ysm
10s (1− p10s)

K−ysm
)}]1−ks

×

[
ψsπ

M∏
m=1

(
θ11sp

ysm
11s (1− p11s)

K−ysm+(1− θ11s)p
ysm
10s (1− p10s)

K−ysm
)]ks

. (2)

where ψ = {ψs}s=1,...,S , θ11 = {θ11s}s=1,...,S , θ10 = {θ10s}s=1,...,S , p11 = {p11s}s=1,...,S ,

and p10 = {p10s}s=1,...,S . The model is only locally identifiable (Cole et al., 2010) since

there are four equally supported solutions in terms of the model parameters which give

rise to the same likelihood function value (see Table 1 in Guillera-Arroita et al. (2017)
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for details, also reproduced here in Table 1.) When the data include confirmed species

Table 1. Parameter values equally supported by the likelihood of equation (2) in the case of

no site-specific covariates and no confirmed species presences, leading to ψs = ψ, θ11s = θ11,

θ10s = θ10, p11s = p11, p10s = p10, ks = 0, ∀s, and π = 0.

Solution ψs θ11s θ10s p11s p10s

1 a b c d e

2 a 1− b 1− c e d

3 1− a c b d e

4 1− a 1− c 1− b e d

presences, the number of solutions with the same support by the likelihood function

reduces to two, since we can now distinguish between solutions (1,2) and (3,4) in Table

1.

This lack of identifiability can be addressed in several ways. Guillera-Arroita et al.

(2017) suggest introducing at least two additional sources of information and consider

aural surveys and laboratory calibration experiments in addition to eDNA data in their

data analysis. Alternatively, as the model can be seen as a product of mixture models,

one could use ad-hoc methods for identifying mixture models, such as label-switching

methods in a Bayesian analysis (see Papastamoulis, 2016, for a review of label-switching

methods and an R package). We consider these inappropriate in this case since they

assume exchangeability of the mixture parameters, which does not hold for the model

introduced here. For a discussion on identifiability of mixtures of binomial models see

Grün and Leisch (2008). Instead, we address the identifiability issue by introducing

an informative prior distribution for the model parameters, which reflects our prior

knowledge about the reliability of each of the eDNA survey stages, and show how this

prior distribution can be extended to allow for variable selection of site-specific covariates.

Additionally, we note that this prior can be used with or without additional data, such

as confirmed species presences.

In our case study, we want to understand the effects of covariates on the parameters

ψ, θ11, θ10, p11 and p10, which can be accomplished using Bayesian variable selection

(BVS) within a logistic regression model for each parameter. The model including all
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potential covariates will most likely be unnecessarily complicated, therefore the use of

BVS will address the danger of over-fitting given the limited amount of data available

for each site and account for the possibility that different covariates may be important in

each of the five logistic regression models. For ξ ∈ {ψ, θ11, θ11, p11, p10}, we assume that

there are Dξ available covariates and introduce γξ, a Dξ–dimensional vector for which

γξk = 1 if the k-th available covariate is included in the linear predictor for parameter

ξ and 0 otherwise. We define dξ =
∑Dξ

j=1 γ
ξ
j to be the number of included covariates

for parameter ξ and Xξ to be an (S × dξ)-dimensional design matrix of the included

covariates for parameter ξ. The logistic regression model for ξ is

logit(ξs) = ηξs = µξ +

dξ∑
j=1

Xξ
s,jβ

ξ
j .

We assume that all continuous covariates have been centred and are measured on the

same scale (for example, by standardizing the covariates so that the sample variance

is 1) and dummy variables for categorical covariates were defined relative to a baseline

class. The prior distribution for µξ, βξ and γξ has the standard form

f(µξ, βξ, γξ) = f(µξ, βξ|γξ)f(γξ).

The prior distribution on the included covariates γξ follows the suggestion of Ley and

Steel (2009),

γξk
i.i.d.∼ Bernoulli(τ ξ) and τ ξ ∼ Be

(
1,
Dξ − d̄ξ

d̄ξ

)
. (3)

This implies that the prior mean of dξ is d̄ξ, which can be chosen to reflect prior beliefs

about the number of important covariates. The structure implies a beta-binomial prior

distribution for dξ, which robustifies the analysis to misspecification of d̄ξ. The prior

distribution for the intercept and regression coefficients is

µξ ∼ N
(
µξ0, ∆ξ φξα

)
, βξ ∼ N

(
0dξ , ∆ξ φξβ C

ξ
)

(4)

where 0m represents an (m×1)-dimensional vector of 0’s, ∆ξ is a scaling hyperparameter

defined below, and Cξ are prior correlation matrices for the included regression coeffi-

cients in each case. The hyperparameters φξα and φξβ control the relative prior variance

of the intercept and the regression coefficients. There are several commonly used prior
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covariance structures in BVS. The g-prior and various mixtures of g priors and their use

in generalized linear models are reviewed by Li and Clyde (2018). Here, we will use a

prior distribution that is independent across covariates. For a given model γξ with d1

continuous covariates and d2 categorical covariates (where the k-th categorical covariate

has Lk + 1 levels), we use

Cξ =


Id1

0d1×L1
· · · 0d1×Ld2

0L1×d1

1
2 (JL1

+ IL1
) · · · 0L1×Ld2

...
...

. . .
...

0Ld2
×d1

0Ld2×L1
· · · 1

2

(
JLd2

+ ILd2

)


where Jk is a k-dimensional matrix of 1’s, Ik is the k-dimensional identity matrix and

Ok×m is a (k×m)-dimensional matrix of 0’s. This choice of prior correlation matrix for

the regression coefficients associated with categorical covariates makes the prior distri-

bution invariant to the choice of the baseline class (Fearn et al., 1999).

In the absence of any prior information on ψ, we will use µψ0 = 0 and ∆ψ = 1. For

the parameters θ11, θ11, p11 and p10, an informative prior distribution will be used to

overcome the likelihood symmmetries. Table 1 shows that it is natural to think about

the parameters in pairs (θ11, θ10) and (p11, p10) since the likelihood is symmetric with

respect to these pairs. Our proposed prior distributions will encode the idea that the

true positive probabilities in both stages (θ11 and p11) are highly likely to be larger than

their corresponding false positive probabilities (θ10 and p10), which was shown to be

true in all cases considered by Guillera-Arroita et al. (2017). We will describe a prior

distribution for the pair p11 and p10 but the same idea is also used with the pair θ11 and

θ10. To introduce our proposed prior distribution, we first consider the model without

covariates. We will say that p11 and p10 are a priori ε well-ordered if P(p11 < p10) = ε.

If we choose ε to be small, there will be negligible probability that p10 > p11. In this

case, an a priori ε well-ordered prior is

logit(p11) ∼ N

(
logit(a),

(logit(a)− logit(b))2

2(Φ−1(ε))2

)
(5)

and

logit(p10) ∼ N

(
logit(b),

(logit(a)− logit(b))2

2(Φ−1(ε))2

)
(6)
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where a > b and a and b are the prior medians of p11 and p10 respectively (further details

are given in the Online Supplementary Material).
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(d)
Fig. 2. First row: the prior density for p10 when b = 0.1 (black solid line) and for p11 when

a = 0.95 (gray dashed line), a = 0.9 (gray dotted line) and a = 0.8 (gray solid line) with ε = 0.023

(a) and ε = 0.0013 (b). Second row: the prior density for p11 when a = 0.9 (black solid line) and

for p10 when b = 0.2 (gray dashed line), b = 0.1 (gray dotted line) and b = 0.05 (gray solid line)

with ε = 0.023 (c) and ε = 0.0013 (d).

Fig. 2 shows examples of this prior. For fixed a and b, as ε decreases, the overlap

between the prior densities of p11 and p10 decreases. For fixed ε and a, as b increases,

the median of the prior distribution for p10 shifts to the right. There is the opposite

effect for p11 as a increases with fixed ε and b.

In the regression case, we define the prior distribution to be a priori ε well-ordered

if the prior predictive distributions of the linear predictors ηp11
s and ηp10

s for a randomly

chosen Xp11
s and Xp10

s have the same mean and variance as the priors in (5) and (6). We

denote the covariance matrices of Xp11 and Xp10 by Σp11 and Σp10 , respectively, which
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suggests that E [ηp11
s ] = logit(a), E [ηp10

s ] = logit(b), and

V
[
ηξs

]
=

φξα + φξβ

dξ∑
i=1

dξ∑
j=1

CξijΣ
ξ
ij

∆ξ

for ξ ∈ {p11, p10}. We obtain an a priori ε well-ordered prior by defining

∆ξ =
(logit(a)− logit(b))2

2(Φ−1(ε))2
(
φξα + φξβ

∑dξ

i=1

∑dξ

j=1C
ξ
ijΣ

ξ
ij

) .
This choice implies that the priors in (4) only depend on φξα and φξβ through the ratio

rξ0 = φξα
φξβ

. Finally, the probability that an occupied site has a record of verified species

presence associated with it, π, is given a uniform prior distribution on (0, 1).

3. Computational Approach

Inference in the model in (2) can be made by employing Markov chain Monte Carlo

methods using the hierarchical representation in (1), which treats zs and wsm as latent

variables. For ξ ∈ {ψ, θ11, θ10, p11, p10}, we group together the regression coefficients

as νξ = (µξ, βξ). We group all regression coefficients as ν = {νψ, νθ11 , νθ10 , νp11 , νp10},

and all variable inclusion parameters as γ = {γψ, γθ11 , γθ10 , γp11 , γp10}. This leads to the

following posterior distribution

f(ν, γ, w, z|y, k) ∝ f(y, w, z, k|ν, γ) f(ν|γ) f(γ) (7)

∝
S∏
s=1

[
πkszs(1− π)(1−ks)zs exp(ηψs )zs

1 + exp(ηψs )

M∏
m=1

[{
exp(ηθ11

s )wsm

1 + exp(ηθ11
s )

}zs
×
{

exp(ηθ10
s )wsm

1 + exp(ηθ10
s )

}(1−zs){ exp(ηp11
s )ysm

(1 + exp(ηp11
s ))K

}wsm { exp(ηp10
s )ysm

(1 + exp(ηp10
s ))K

}(1−wsm)
]]

× f(ν|γ) f(γ) (8)

where, from (4),

f(ν|γ) ∝
∏

ξ∈{ψ,θ11,θ10,p11,p10}

exp

[
− 1

2∆ξ

{
(µξ − µξ0)T (µξ − µξ0)

φξα
+
βξ

T
(Cξ)−1βξ

φξβ

}]
.

and, from (3),

f(γ) ∝
∏

ξ∈{ψ,θ11,θ10,p11,p10}

(
Dξ − d̄ξ

d̄ξ

) Γ(1 + dξ)Γ
(
Dξ − dξ + Dξ−d̄ξ

d̄ξ

)
Γ
(
Dξ + 1 + Dξ−d̄ξ

d̄ξ

) .
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This posterior distribution can be expressed as the product of the posterior distri-

butions of five logistic regression models (for ψ, θ11, θ10, p11 and p10, respectively). We

combine the Pólya-Gamma sampling method for logistic models (Polson et al., 2013) with

the standard Add-Delete-Swap Metropolis-Hastings sampling scheme for BVS (Brown

et al., 1998; Chipman et al., 2001) to define a sampler that avoids using trans-dimensional

algorithms, such reversible jump Markov chain Monte Carlo (Green, 1995).

The Pólya-Gamma sampling method uses the identity

(exp{x})a

(1 + exp{x})b
= 2−b

∫ ∞
0

exp{−ω(x2 − 2κx)/2}f(ω) dω (9)

where κ = a−b/2, ω ∼ PG(b, 0) and PG(b, 0) represents the Pólya-Gamma distribution.

This distribution is defined as an infinite sum, so that if X ∼ PG(b, c) then

X
D
=

1

2π2

∞∑
k=1

gk

(k − 1
2)2 + c2

4π2

where gk
i.i.d∼ Ga(b, 1). Polson et al. (2013) describe efficient methods for simulating

draws from the Pólya-Gamma distribution that overcome the challenges of working with

an infinite sum.

The identity in (9) allows us to write each element of (8) in terms of an integral.

Specifically, for any parameter ξ, with ξ ∈ {ψ, θ11, θ10, p11, p10},

 exp(ηξs)a(
1 + exp(ηξs

)b

c

=

[
2−b

∫ ∞
0

exp
{
−ωξs

(
ηξs

2 − 2(a− b/2)ηξs

)
/2
}
f(ωξs) dω

ξ
s

]c



Modelling environmental DNA data 13

where ωξs ∼ PG(b, 0). This allows us to define the extended posterior density

f(ν, γ, z, ω|y) ∝
S∏
s=1

[
πkszs(1− π)(1−ks)zs2−1 exp

{
−ωψs

(
ηψs

2 − 2(zs − 1/2)ηψs

)
/2
}
f(ωψss )

×
M∏
m=1

{[
2−1 exp

{
−ωθ11

s

(
ηθ11
s

2 − 2(wsm − 1/2)ηθ11
s

)
/2
}
f(ωθ11

s )
]zs

×
[
2−1 exp

{
−ωθ10

s

(
ηθ11
s

2 − 2(wsm − 1/2)ηθ10
s

)
/2
}
f(ωθ10

s )
]zs

×
[
2−K exp

{
−ωp11

s

(
ηp11
s

2 − 2(ysm −K/2)ηp11
s

)
/2
}
f(ωp11

s )
]wsm

×
[
2−K exp

{
−ωp10

s

(
ηp10
s

2 − 2(ysm −K/2)ηp10
s

)
/2
}
f(ωp10

s )
](1−wsm)

}]
× f(ν|γ)f(γ) (10)

where ω = {ωψ, ωθ11 , ωθ10 , ωp11 , ωp10}. The identity in (9) implies that integrating ωψ,

ωθ11 , ωθ10 , ωp10 and ωp10 from the posterior density in (10) leads to the posterior density in

(8). The linear predictors now enter this posterior distribution in a form that implies that

the full conditionals of the regression parameters are normal distributions, allowing us

to integrate out the regression coefficients and perform efficient covariate selection. The

included covariates can be updated using a Metropolis-Hastings step where covariates

are either added to the model, deleted from the model or a covariate currently included

in the model is replaced by one currently excluded from the model. The steps of the

Gibbs sampler are given in the Online Supplementary Material.

4. Simulation

We performed a simulation study to assess the ability of our BVS procedure to identify

important predictors for each model parameter, while quantifying the effect on perfor-

mance of changing q, which is the proportion of occupied sites with confirmed species

presences, and M , which is the number of water samples from each site.

We considered M being set equal to 1 or 5, S (the number of sites) being set equal to

200 or 500, and q being set equal to 0, 0.2, 0.4, 0.6, or 0.8 with the baseline probability

of species presence being 50% or 75%. Finally, K, the number of qPCR samples was set

equal to 12. We note that for the newt data analysed in section 5, M = 1, S = 189,
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q = 0.0794 and K = 12.

The comparison in each case is based on the covariate selection performance of the

model by looking at the proportion of covariates that are correctly included for each

of the model parameters. The data were simulated using 10 covariates, with five being

important predictors for ψ, six for θ11 and θ10, and seven for p11 and p10. More details

on the simulation study are presented in the Online Supplementary Material.

Fig. 3 presents the mean proportion of correctly identified species presences and the

mean proportion of covariates, obtained over five simulation runs, that are correctly

included in the model for each of the five parameters. The results suggest that when

M = 5, inference on species presence is consistently good, regardless of q, while it

improves considerably as q increases when M = 1. When the overall occupancy rate is

around 50%, inference on ψ is good, regardless of q, while when occupancy rate is around

75%, inference improves as the proportion of sites with verified species presence data

increases, especially in the M = 1, S = 200 case. Inference on p11 and p10 is consistently

good when M = 5, regardless of q, while when M = 1 and especially in the S = 200

case, we can expect to identify around half of the important covariates for either p11 or

p10. Inference on θ11 and θ10 is more challenging, with the power to detect important

covariates for the latter being lower when the baseline probability of species presence is

high, since in that case the potential occurrence of a Stage 1 false positive error is low.

The difficulty in inferring important predictors for the probabilities of Stage 1 error,

compared to the probability of species presence, is due to the fact that occupancy status

of sites remains unchanged throughout Stage 1, while eDNA presence can change between

samples. Additionally, inference on species presence is based on data from all sites, while

for θ11 and θ10 only on occupied and unoccupied sites, respectively. Similarly, compared

to the probabilities of Stage 2 error, the difficulty in identifying important effects in

Stage 1 error probabilities is due to the smaller number of repetitions, since K = 12 but

M is either equal to 1 or 5 in this case.

As expected, increasing the number of sites, S, is also beneficial, but, it is interesting

to note that increasing the number of samples collected from each site, M , is generally

at least as beneficial as increasing S, which suggests that from a study design point of
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Fig. 3. The average proportion of correctly identified species presences and the average pro-

portion of covariates correctly identified for ψ, θ11, θ10, p11, p10 with M = 1 (solid lines) or M = 5

(dashed lines) and S = 200 (crosses) or S = 500 (circles). The baseline probability of occu-

pancy is either 50% (left column) or 75% (right column). The proportion of confirmed species

presence records in each case is denoted by q.
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view, it is preferable to allocate resources to collect more water samples from each site

rather than increase the number of sites sampled.

5. Great crested newt eDNA data

Samples were collected as part of a national distribution modelling assessment for great

crested newts, commissioned by Natural England (Bormpoudakis et al., 2016). Sample

collection and analysis followed a precipitation in ethanol protocol, exactly following

those outlined in Biggs et al. (2014, 2015). Twelve quantitative real-time PCR (qPCR)

replicates were performed per sample following the assay outlined in Biggs et al. (2014,

2015) using primers TCCBL and TCCBR, with hydrolysis probe TCCB developed by

Thomsen et al. (2012). Appropriate positive, negative and inhibition control samples

were included. An amplification replicate was considered to be positive if an exponential

phase was observed during qPCR.

Surveyors were asked to collect information on additional pond-specific environmental

covariates, which we list in Table S3 of the Online Supplementary Material. These pond-

specific covariates were predominantly taken from the habitat suitability index for the

species (Oldham et al., 2000), widely used for the prediction of the suitability of a pond

for the target species, with some covariates, such as terrestrial habitat quality, expanded

to give more detail, and some additional covariates, such as pond dimension and water

flow also included. Here, we consider all available covariates as potential predictors for

species presence as well as the probabilities of error at the two stages.

The following choices of hyperparameters were used. The prior variance of the inter-

cept, φψµ , was set to 4 and the prior variance of the regression coefficients, φψβ , was set to

0.25. The prior distribution of the intercept reflects a belief that the probability of species

presence is roughly uniformly distributed and the prior on the regression coefficients rep-

resents a belief that the regression effects will be in (−1, 1) with high probability. For

the hyperparameters in Stage 1, we used µθ11

0 = logit(0.8), µθ10

0 = logit(0.2), ε = 0.025,

rθ11

0 = 1 and rθ10

0 = 1, while in Stage 2 we used µp11 = logit(0.9), µp10

0 = logit(0.1),

ε = 0.001, rp11

0 = 1 and rp10

0 = 1. These reflected the prior belief of our collaborators

that false positives were more likely at data collection stage and that half the variation
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at each level can be explained by the covariates. For all parameters, the prior expected

number of included covariates was chosen to be 4.

To understand the potential of eDNA data in this case in discriminating between

species presence and absence, we calculated the posterior conditional probability of

species absence given x positive qPCR replicates at the modal combination of the avail-

able covariates (Table 2). As expected, the posterior probability of absence is high if

Table 2. Posterior conditional probability of species absence given x positive qPCR repli-

cates, 1 − ψ(x), (first row) and posterior conditional probability of x positive qPCR repli-

cates given species presence, q(x), (second row), at the modal combination of the available

covariates.

x 0 1 2 3 4 5 6 7 8 9 10 11 12

1− ψ(x) 0.93 0.93 0.93 0.93 0.88 0.58 0.54 0.54 0.53 0.53 0.53 0.53 0.53

q(x) 0.159 0.093 0.026 0.005 0.001 0.004 0.014 0.039 0.087 0.151 0.192 0.161 0.069

there is a low number of positives in the sample, and decreases with the number of

positives. However, it asymptotes at 53% and, so, even if all qPCR replicates return a

positive result, the posterior probability of species presence is (just) below 50%. This

is due to the overall low probability of species presence, with the posterior median es-

timated equal to 14% at the modal combination of available covariates (see Table 3 for

posterior summaries of all model parameters at the modal combination of the available

covariates). The posterior probability of 0 positive qPCR replicates given species pres-

ence is 16% (Table 2), which reflects the number of sites in the sample with confirmed

species presence but no positive qPCR results. Specifically, the number of positives with

their corresponding frequencies in parentheses are 0(5), 3(1), 5(1), 6(1), 11(1) and 12(6).

Hence, there is a clear U-shape pattern, suggesting that the high number of occupied

sites with 0 positives is mostly due to a Stage 1 false negative error instead of a Stage 2

error, as also supported by the results in Table 3.

The inference about covariate selection in terms of posterior inclusion probabilities

(PIP’s) is shown in Fig. S1 of the Online Supplementary Material. The results using

our prior distribution are shown as dots with three other hyperparameter settings used

to understand the sensitivity of our conclusions to the prior settings (the values are
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Table 3. Posterior mean and 95% credible interval for all model parameters at the modal combination

of the available covariates.

Parameter Posterior mean 95% posterior credible interval

ψ 0.14 (0.04, 0.42)

θ11 0.73 (0.45, 0.89)

θ10 0.15 (0.05, 0.27)

p11 0.81 (0.71, 0.90)

p10 0.05 (0.03, 0.07)

given in Table S4 of the Online Supplementary Material). Firstly, we consider results

using our prior distribution. We have not identified any covariates that are linked to the

probability of species presence, ψ, or to the probabilities of a Stage 1 error, as they all

have PIP well below 50%. This is not surprising given our simulation results presented

in section 4, which suggested that when M = 1 and q is low, as is the case here, the

average proportion of important predictors identified for ψ, θ11 and θ10 is low. On the

other hand, four covariates with PIP > 50% have been identified for p11 (maximum

pond depth, PIP: 1.00, and pond length, PIP: 0.63, presence of macrophytes, PIP: 0.71

and pond density, PIP: 0.91) and one for p10 (fish presence, PIP: 0.97). Summaries of

the posterior distributions of the regression coefficients for p11 and p10 are presented in

Fig. S2 of the Online Supplementary Material. Maximum pond depth and presence

of macrophytes have a positive effect on Stage 2 true positive probability, while pond

length and pond density have a negative effect. Finally, the presence of fish decreases the

probability of a Stage 2 false positive result. We offer no ecological explanation for this

at this Stage. However, these results are hugely important in an applied context. They

suggest to practitioners that samples collected from ponds with low levels of macrophytes

or shallow depths may have reduced Stage 2 true positive probabilities. Additionally

high densities of fish may reduce the instances of Stage 2 false positive results. It is

imperative that practitioners are armed with this information to allow them to take

probabilities of error into account when interpreting eDNA data sets.

Considering the other hyperparameter settings, we find that many PIPs are robust

to the choice of prior and our BVS results in terms of predictors with PIP > 0.5 are
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unchanged in most cases, apart from cases where the PIP is around the 0.5 cut-off point

(for example, Macrophytes in the model for ψ and Woodland, Rough Grass, Length and

Area in the model for p11).

Fig. S3 of the Online Supplementary Material shows the posterior probabilities that

p10 > p11 or θ10 > θ11 at each site. On average under the prior distribution, these

probabilities are 0.001 and 0.025 respectively. Clearly, there are similar average rates

under the posterior distribution. There are two sites with high probabilities that p10 >

p11 (sites 77 and 179). In both cases, the posterior means of both p10 and p11 are

extremely low leading to a large amount of “crossing”.

6. Conclusions

We presented a general framework for modelling eDNA data using a Bayesian model that

provides estimates of species presence and of the probabilities of error in the two Stages

of eDNA surveys as functions of covariates. Our novel prior formulation overcomes

identifiability issues introduced by symmetries in the likelihood function without the

need to augment eDNA data with additional data sets. The use of the Pólya-Gamma

sampler allows us to define an efficient MCMC algorithm for posterior inference where

the models for all model parameters can be updated using a Metropolis-Hastings step.

Our simulation results demonstrated that using our modelling approach we can cor-

rectly assess species presence and identify important predictors for all model parameters

using eDNA data, with inference improving when data on verified species presence are

also incorporated for some of the sites. Additionally, the results highlighted that the

added gain, in terms of identifying important predictors, from increasing the number of

visited sites is generally smaller than that obtained from increasing the number of water

samples collected from each site.

The probabilities of a false negative error are estimated as higher than we anticipated

(posterior means equal to 0.27 and 0.19 in Stage 1 and 2, respectively), while the proba-

bility of a Stage 1 false positive error is estimated as three times as high as that in Stage

2 (posterior means equal to 0.15 and 0.05 in Stage 1 and 2, respectively). Therefore,

our results clearly show that, like traditional methods, eDNA analyses are subject to
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imperfect detection at different stages of the analytical protocol, and this needs to be

taken into account when interpreting survey results. Although the model also shows how

covariates of detection can be identified, further work is needed from a wider range of

sampling sites to explore the ecological drivers of false positive and false negative errors.

Our proposed model can be simplified to the Royle and Link (2006) model where

only Stage 2 errors are allowed (by setting the probability of a Stage 1 error equal to

0), and hence it is generally applicable to occupancy studies where the probability of

a false species detection is greater than 0. In addition, our model can be extended

using standard regression techniques, for example to account for heterogeneity caused

by differences in water collection protocols or lab practices.
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Online Supplementary Material

Royle and Link (2006) mixture model

Each of S sites are visited K times and the data are in vector y, with entry ys indicating

the number of times the species of interest was detected at site s.

The component weights of the mixture model are ψ and 1−ψ, while the corresponding

component-specific parameters are p11 and p10, respectively. The likelihood function is

given by

L(ψ, p|y) =

S∏
s=1

{
ψpys11(1− p11)K−ys + (1− ψ)pys10(1− p10)K−ys

}

Calculating the prior probability that p11 < p10

P(p11 < p10) = P(logit(p11) < logit(p10)) = P(logit(p11)− logit(p10) < 0)

Clearly,

logit(p11)− logit(p10) ∼ N

(
logit(a)− logit(b),

(logit(a)− logit(b))2

δ2

)
and so

P(p11 < p10) = P(logit(p11)− logit(p10) < 0) = Φ(−δ).

Markov chain Monte Carlo algorithm

In this appendix, we give further details of the computational approach discussed in

Section 3. Since the model can be represented in terms of five logistic regressions, it is

useful to define a consistent notation for the various quantities needed in these logistic

regressions. We define vector n of length S and with sth entry given by ns =
∑M

m=1wsm.

For the generic parameter ξ with ξ ∈ {ψ, θ11, θ10, p11, p10}, we define Xξ to be the design

matrix (including a first column of ones for the intercept), nξ and yξ to be the numbers

of trials and positive responses for each site, respectively, and Ωξ to be a diagonal matrix

whose entries arise from the Pólya-gamma sampling scheme. The exact forms of all of

these quantities are given in Table 4. We define κp11 = (µp11 , βp11), κp10 = (µp10 , βp10),

κθ11 = (µθ11 , βθ11), κθ10 = (µθ10 , βθ10) and κψ = (µψ, βψ). The Gibbs sampler involves

updating parameters using the full conditionals for: (γp11 , κp11), (γp10 , κp10), (γθ11 , κθ11),

(γψ, κψ), ωp11 , ωp10 , ωθ11 , ωθ10 , ωψ, w, z, and π.
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Table S1. The forms of various quantities for the five logistic regressions, with ωp11
s =∑M

m=1 wsmω
p
sm and ωp10

s =
∑M
m=1(1− wsm)ωpsm.

ξ Xξ nξ yξ Ωξ

ψ X 1S z diag(ωψ)

θ11 Xs,·|zs = 1 M1∑
zs ns|zs = 1 diag(ωθs |zs = 1)

θ10 Xs,·|zs = 0 M1S−
∑
zs ns|zs = 0 diag(ωθs |zs = 0)

p11 Xs,·|ns > 0 ns|ns > 0 yp11
s =

∑M
m=1 ysmwsm diag(ωp11

s |ns > 0)

p10 Xs,·|ns < M (M1S − ns)|ns < M yp10
s =

∑M
m=1 ysm(1− wsm) diag(ωp10

s |ns < M)

Updating (γp11 , κp11), (γp10 , κp10), (γθ11 , κθ11), (γθ10 , κθ10), (γψ, κψ)

We describe the method for updating the model γξ and parameters κξ for the generic

regression for parameter ξ for ξ ∈ {ψ, θ11, θ10, p11, p10} with a vector of responses yξ

denoting the number of successes from nξ trials with design matrix Xξ. The parameter

γξ is updated integrating over κξ using a standard Add-Delete-Swap Metropolis-Hastings

sampler. In this sampler, a proposed value cξ is sampled by either: an Add move, where

j such that γξj = 0 is chosen at random and cξj = 1 and cξk = γξk for k 6= j, a Delete move,

where j such that γξj = 1 is chosen at random and cpj = 0 and cpk = γξk for k 6= j, or a

Swap move, where j such that γξj = 0 is chosen at random and m such that γξm = 1 is

chosen at random then cξj = 1, cξm = 0 and cξk = γξk for k 6= j,m. The proposed value is

accepted with the following probabilities


min

{
1, L(cξ)

L(γξ)
Dξ−dξ

Dξ−dξ−1+Dξ−d̄ξ
d̄ξ

}
Add

min

{
1, L(cξ)

L(γξ)

Dξ−dξ+Dξ−d̄ξ

d̄ξ

Dξ−dξ+1

}
Delete

min
{

1, L(cξ)
L(γξ)

}
Swap

where

L(γξ) =
|Bξ|1/2

|XξTΩξXξ +Bξ|1/2

exp

{
−1

2

[
bξ
T
Bξbξ −

(
XξTκξ +Bξbξ

)T (
XξTΩξXξ +Bξ

)−1 (
XξTκξ +Bξbξ

)]}
,
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where bξ and Bξ are the prior mean and precision matrix for ξ The parameters θξ are

sampled from their conditional distribution

θξ ∼ N

((
XξTΩξXξ +Bξ

)−1 (
XξTκξ +Bξbξ

)
,
(
XξTΩξXξ +Bξ

)−1
)
.

Updating ωψ, ωθ and ωp

The full conditional distributions are ωψs ∼ PG(1, |µψ + Xψ
s βψ|), ωθ11

s ∼ PG(M, |µθ11 +

Xθ11
s βθ11 |) if zs = 1, ωθ10

s ∼ PG(M, |µθ10 + Xθ10
s βθ10 |) if zs = 0, ωp11

sm ∼ PG(K, |µp11 +

Xp11
s βp11 |) if wsm = 1, and ωp10

sm ∼ PG(K, |µp10 +Xp10
s βp10 |) if wsm = 0.

Efficient algorithms for simulating Pólya-Gamma random variables are provided in

Polson et al. (2013).

Updating z

If ks = 1, then zs = 1. If ks = 0, the full conditional distribution of zs is

p(zi = 1) =
(1− π)ψsθ

ws
11s(1− θ11s)

M−ws

(1− π)ψsθ
ws
11s(1− θ11s)M−ws + (1− ψs)θws10s(1− θ10s)M−ws

.

where ws =
∑M

m=1ws,m

Update w

The full conditional distribution of ws,m is

p(ws,m = 1) =
θzs11sθ

1−zs
10s p

ys,m
11s (1− p11s)

K−ys,m

θzs11sθ
1−zs
10s p

ys,m
11s (1− p11s)K−ys,m + (1− θ11s)zs(1− θ10s)1−zsp

ys,m
10s (1− p10s)K−ys,m

Update π

The full conditional distribution of π is Be
(

1 +
∑S

s=1 zsks, 1 +
∑S

s=1 zs(1− ks)
)

.

Simulated data

The data for the simulated examples were generated from the model in (1). We generated

ten data sets with K = 12, M = 5, S = 500 and different values of π. Data sets with

fewer sites, fewer Stage 1 replicates or no known species presences can be generated from
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these larger data sets. The covariates were generated using the distributions shown in

Table 6. The scaling of variables 4 and 5 guarantees that all continuous variables have

Table S2. Distributions of covariates in the simulated data

Variable Range Distribution Variable Range Distribution

1 {0, 1} Be(0.3) 6 {0, 1} Be(0.8)

2 {1, 2, 3} Mu(0.3, 0.3, 0.4) 7 (−∞,∞) N(0, 1)

3 {1, 2, 3, 4} Mu(0.3, 0.1, 0.2, 0.4) 8 {1, 2, 3, 4} Mu(0.1, 0.1, 0.4, 0.4)

4 (−2, 2)
√
3
2 U(−2, 2) 9 {1, 2, 3} Mu(0.3, 0.3, 0.4)

5 (−3, 3) 2
3
√
3
U(−3, 3) 10 {0, 1} Be(0.1)

mean 0 and variance 1. We performed two sets of simulations: set 1 has approximately

50% of sites being occupied while set 2 has 75% of sites being occupied.

In set 1,

ηψ = −2 I(X2 = 2)+I(X2 = 3)−X4+X5+0.5 I(X8 = 2)−0.7 I(X8 = 3)+I(X8 = 4)−X10

and, in set 2,

ηψ = 2 I(X2 = 2) + I(X2 = 3)−X4 +X5 + 0.5 I(X8 = 2) + 0.7 I(X8 = 3) + I(X8 = 4)−X10.

In both data sets, the other parameters had the same linear predictors for the other

parameters:

ηθ11 = 2.197 + 0.747X1 − 0.374 I(X2 = 2)− 0.747 I(X2 = 3) + 0.075 I(X3 = 2)

+ 0.187 I(X3 = 3) + 0.374 I(X3 = 4) + 0.374X4 + 0.374X6 − 0.374 I(X9 = 2)

− 0.747 I(X9 = 3)

ηθ10 = − 2.197− 0.792X1 + 0.198 I(X2 = 2) + 0.396 I(X2 = 3) + 0.198 I(X3 = 2)

+ 0.396 I(X3 = 3) + 0.792 I(X3 = 4)− 0.198X5 − 0.040 I(X8 = 2)

− 0.158 I(X8 = 3)− 0.277 I(X8 = 4) + 0.792X10

ηp11 = 2.197 + 0.057 I(X3 = 2) + 0.287 I(X3 = 3) + 0.574 I(X3 = 4)− 0.574X4

+ 0.287X5 − 0.287X6 + 1.149X7 + 0.115 I(X9 = 2) + 0.230 I(X9 = 3) + 0.345X10
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ηp10 = − 2.197− 0.044 I(X3 = 2)− 0.218 I(X3 = 3)− 0.435 I(X3 = 4) + 0.870X4

+ 0.218X5 − 0.218X6 + 0.435X7 + 0.435 I(X9 = 2) + 0.870 I(X9 = 3)− 0.435X10

GCN data

Table S3. List and description of pond-specific covariates.

No. Covariate Type

1 Permanence Discrete (Never Dries, (R)arely Dries, (S)ometimes Dries, Dries (A)nnually)

2 Water Quality Discrete (Bad, (P)oor, (M)oderate, (G)ood)

3 Water Fowl Discrete (Absent, (Mi)nor, (Ma)jor)

4 Fish Discrete (Absent, (P)ossible, (Mi)nor, (Ma)jor)

5 Woodland Discrete (None, (S)ome, (I)mportant)

6 Rough Grass Discrete (None, (S)ome, (I)mportant)

7 Scrub Hedge Discrete (None, (S)ome, (I)mportant)

8 Ruderals Discrete (None, (S)ome, (I)mportant)

9 Inflow Discrete (Absent, (P)resent)

10 Outflow Discrete (Absent, (P)resent)

11 Pollution Discrete (Absent, (P)resent)

12 Max Depth Continuous

13 Width Continuous

14 Length Continuous

15 Area Continuous

16 Macrophytes Continuous

17 Overhang Continuous

18 Shade Continuous

19 Pond Density Continuous
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Fig. S1. Posterior inclusion probabilities of each covariate for ψ, θ11, θ10, p11, p10 using the four

hyperparameter settings in Table S4.

ψ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5

1

P
IP

θ11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5

1

P
IP

θ10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5

1

P
IP

p11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5

1

P
IP

p10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5

1

P
IP



30 Griffin et al.

p11
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Fig. S2. Inference about the regression coefficients (shown as posterior median and 95%

highest probability density region) for p11 (top row) and p10 (bottom row) with the label of the

x-axis showing the covariate number underneath the levels of each covariate as indicated in

Table 2.
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Table S4. Hyperparameter settings used in the senitivity analysis

Symbol µθ11
0 µθ10

0 ε (Stage 1) µp11

0 µp10

0 ε (Stage 2)

. logit(0.8) logit(0.2) 0.025 logit(0.9) logit(0.1) 0.001

� logit(0.9) logit(0.1) 0.001 logit(0.9) logit(0.1) 0.001

+ logit(0.8) logit(0.2) 0.025 logit(0.8) logit(0.2) 0.025

x logit(0.9) logit(0.1) 0.001 logit(0.8) logit(0.2) 0.025
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Fig. S3. Posterior probabilities that p10 > p11 or θ10 > θ11 at each site.
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