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RUNNING	TITLE	(60	characters	and	spaces)	

A	targeted	MS	strategy	for	developing	proteomic	biomarkers	

	

ABBREVIATIONS	

SRM	–	Selected	reaction	monitoring	

ELISA	–	Enzyme-linked	immunosorbent	assay	

EOC	–	Epithelial	ovarian	cancer	

FDA	–	Food	and	Drug	Administration	

GEMM	–	Genetically	engineered	mouse	model	

LC-MS	–	Liquid	chromatography	coupled	to	mass	spectrometry	

TMA	–	Tissue	microarray	

HGSC	–	High	grade	serous	ovarian	cancer	

DDA	–	Data-dependent	acquisition	

FDR	–	False	discovery	range	
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ABSTRACT	

Protein	biomarkers	 for	 epithelial	ovarian	 cancer	are	 critical	 for	 the	early	detection	of	 the	

cancer	 to	 improve	 patient	 prognosis	 and	 for	 the	 clinical	management	 of	 the	 disease	 to	monitor	

treatment	response	and	to	detect	recurrences.	Unfortunately,	the	discovery	of	protein	biomarkers	is	

hampered	by	 the	 limited	availability	of	 reliable	and	 sensitive	assays	needed	 for	 the	 reproducible	

quantification	 of	 proteins	 in	 complex	 biological	 matrices	 such	 as	 blood	 plasma.	 In	 recent	 years,	

targeted	mass	spectrometry,	exemplified	by	Selected	Reaction	Monitoring	(SRM)	has	emerged	as	a	

method,	 capable	 of	 overcoming	 this	 limitation.	 Here,	 we	 present	 a	 comprehensive	 SRM-based	

strategy	for	developing	plasma-based	protein	biomarkers	for	epithelial	ovarian	cancer	and	illustrate	

how	the	SRM	platform,	when	combined	with	rigorous	experimental	design	and	statistical	analysis,	

can	result	in	detection	of	predictive	analytes.	

Our	biomarker	development	strategy	first	 involved	a	discovery-driven	proteomic	effort	 to	

derive	potential	N-glycoprotein	biomarker	candidates	for	plasma-based	detection	of	human	ovarian	

cancer	from	a	genetically	engineered	mouse	model	of	endometrioid	ovarian	cancer,	which	accurately	

recapitulates	 the	 human	 disease.	 Next,	 65	 candidate	markers	 selected	 from	 proteins	 of	 different	

abundance	 in	 the	discovery	dataset	were	reproducibly	quantified	with	SRM	assays	across	a	 large	

cohort	of	over	200	plasma	samples	from	ovarian	cancer	patients	and	healthy	controls.	Finally,	these	

measurements	 were	 used	 to	 derive	 a	 5-protein	 signature	 for	 distinguishing	 individuals	 with	

epithelial	ovarian	cancer	from	healthy	controls.	The	sensitivity	of	the	candidate	biomarker	signature	

in	combination	with	CA125	ELISA-based	measurements	currently	used	 in	clinic,	exceeded	 that	of	

CA125	ELISA-based	measurements	alone.	The	SRM-based	strategy	in	this	study	is	broadly	applicable.	

It	can	be	used	in	any	study	that	requires	accurate	and	reproducible	quantification	of	selected	proteins	

in	a	high-throughput	and	multiplexed	fashion.	
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INTRODUCTION	

Clinical	management	of	aggressive	tumors	requires	sensitive	and	specific	protein	biomarkers	

that	can	be	monitored	in	a	non-invasive	way	(1).	To	establish	the	clinical	value	of	such	biomarkers,	

it	is	imperative	to	reliably	quantify	proteins	of	interest	in	large	subject	cohorts	(2).	Blood	plasma	is	

the	preferred	source	of	protein	biomarkers	as	blood	collection	is	minimally	invasive	(3).	However,	

the	complex	and	large	dynamic	range	of	protein	concentrations	in	plasma	pose	a	technical	challenge	

for	the	accurate,	sensitive	and	reproducible	quantification	of	biomarker	candidates	across	hundreds	

of	samples	(4).	While	affinity-based	assays,	such	as	enzyme-linked	immunosorbent	assay	(ELISA),	

have	traditionally	been	the	method	of	choice,	they	are	constrained	by	their	limited	availability	for	

human	proteins	and	time-consuming	development	of	new	and	reliable	assays.	

Targeted	mass	spectrometry	(MS)	based	on	Selected	Reaction	Monitoring	(SRM)	is	a	highly	

sensitive	MS	approach	for	accurate	and	reproducible	protein	quantification	and	for	 fast	and	cost-

effective	development	of	assays.	It	has	been	proposed	several	years	ago	as	an	alternative	method	to	

immune	reagent	based	measurements	for	developing	biomarkers	(2,	3).	A	requirement	for	successful	

application	of	 SRM	 in	 this	 area	 is	 a	 rigorous	 study	design,	 reproducible	 sample	preparation,	 and	

appropriate	 statistical	 analysis	 (5).	 Importantly,	 the	 reliable	 detection	 of	 biomarkers	 requires	

studying	large	subject	cohorts.	Such	large-scale	studies	face	substantial	challenges	on	many	different	

levels.	 First,	 the	 investment	 of	 substantial	 resources	 for	 SRM-based	 quantification	 across	 large	

subject	 cohorts	 requires	 a	 careful	 selection	 of	 protein	 targets.	 Second,	 the	 collection	 of	 clinical	

samples	often	spans	many	years	and	the	duration	and	condition	of	sample	storage	may	confound	

bona	 fide	 biomarkers.	 Third,	 the	 concurrent	 processing	 of	 hundreds	 of	 samples	 is	 typically	

challenging,	requiring	the	sample	set	to	be	processed	in	batches,	thus	potentially	introducing	batch	

effects.	 Finally,	 since	 the	 measurements	 will	 likely	 span	 a	 considerable	 time	 on	 the	 mass	

spectrometer,	controls	such	as	heavy	labeled	internal	standards	should	be	included	to	account	for	

variability	in	instrument	performance.		
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Even	though	SRM	is	now	well	established,	few	studies	have	successfully	applied	it	to	large	

subject	 cohorts	 (6-10)	 and	 there	 is	 currently	no	 consistent	way	 to	deal	with	 the	aforementioned	

challenges	 of	 large-scale	 SRM-based	 studies.	 This	 manuscript	 demonstrates	 the	 importance	 of	

rigorous	experimental	design,	 combined	with	various	controls	 to	account	 for	variabilities	 in	SRM	

measurements,	sample	preparation	and	measurements	across	batches,	when	using	a	case	study	of	

developing	proteomic	biomarkers	of	epithelial	ovarian	cancer	(EOC).	We	found	that	these	controls	

were	key	for	achieving	optimal	predictive	performance	of	the	biomarker	signature	for	detecting	EOC.	

EOC	is	the	fifth	leading	cause	of	cancer	death	in	women	and	the	leading	cause	of	death	from	

gynecological	malignancies	(11).	The	5-year	survival	rate	for	EOC	is	low	as	the	vast	majority	of	cases	

are	diagnosed	with	advanced	stage	 III-IV	disease.	 If	diagnosed	at	an	early	 stage	when	 the	cancer	

remains	confined	to	the	ovaries,	most	patients	can	be	cured	by	a	combination	of	debulking	surgery	

and	platinum-	and	taxane-based	chemotherapy	(11).	However,	only	20%	of	the	patients	with	EOC	

are	 currently	 diagnosed	 with	 early	 stage	 tumors.	 Therefore,	 much	 effort	 is	 invested	 in	 finding	

effective	strategies	for	early	diagnosis.	

Cancer	 antigen	 125	 (CA125)	 (12)	 and	 human	 epididymis	 protein	 4	 (HE4)	 (13,	 14)	 are	

currently	 approved	 by	 the	 Food	 and	 Drug	 Administration	 (FDA)	 as	 blood-based	 biomarkers	 for	

monitoring	 the	disease	and	 treatment	response.	These	 two	markers	are	also	used	 in	 the	clinic	 in	

combination	with	transvaginal	sonography	or	computer	tomography	to	support	the	diagnosis	of	EOC	

in	women	with	a	pelvic	mass.	More	recent	in	vitro	diagnostic	multivariate	index	assays	have	been	

cleared	by	the	FDA	for	assessing	the	EOC	risk	in	women	diagnosed	with	an	ovarian	tumor	prior	to	

surgery,	OVA1	and	ROMA	(14,	15).	However,	these	markers	lack	the	sensitivity	and	the	specificity	

required	 for	 stand-alone	 diagnostic	 use.	 Multiple	 other	 biomarker	 panels	 have	 been	 discovered,	

initially	showing	promising	results	for	the	detection	of	EOC	(16-20).	However,	follow-up	studies	in	a	

large	prospective	cohort	collected	prior	 to	clinical	diagnosis	of	EOC	demonstrated	that	 the	 tested	

biomarkers	combined	with	CA125	showed	only	little	improvement	compared	to	CA125	alone	in	the	
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early	detection	of	EOC	using	prediagnostic	samples	(21).	The	challenge	of	detecting	reliable	novel	

EOC	 plasma	 biomarkers	 is	 due	 in	 part	 to	 the	 molecular	 and	 cellular	 heterogeneity	 of	 EOC.	 In	

particular,	 EOC	 is	 characterized	 by	 disease	 heterogeneity	 as	 it	 relates	 to	 its	 multiple	 histotypes	

(serous,	endometrioid,	mucinous,	and	clear	cell)	and	cellular		grade	(low	and	high	grade	for	serous	

and	endometrioid	EOC)	(22,	23).	The	heterogeneity	of	EOCs	indicates	that	not	a	single	biomarker,	but	

a	multivariate	protein	panel,	is	required	for	accurate	tumor	detection	of	multiple	histotypes.		

This	manuscript	presents	a	biomarker	development	strategy	that	consists	of	three	phases.		

The	first	phase	is	the	generation	of	a	discovery	list	of	EOC	biomarker	candidates.	The	second	phase	

is	their	SRM-based	quantification	in	blood	plasma.	The	third	phase	is	the	development	and	validation	

of	a	protein	biomarker	signature	for	EOC	in	patient	samples	(Figure	1)	(6,	7,	24).	The	discovery	list	

of	EOC	biomarker	candidates	was	compiled	using	data	from	global	quantitative	MS	measurements	of	

tumors	 collected	 from	 a	 genetically	 engineered	 mouse	 model	 (GEMM)	 of	 endometrioid	 ovarian	

cancer	(25).	The	list	was	further	augmented	with	biomarker	candidates,	either	previously	discovered	

or	from	ongoing	cancer	biomarker	studies	(26-30).	Next,	the	biomarker	candidates	were	quantified	

using	a	multiplexed,	targeted	MS	method	in	a	cohort	of	more	than	200	plasma	samples	from	EOC	

patients	and	healthy	controls.	The	SRM	data	was	then	used	to	develop	and	evaluate	the	performance	

of	a	5-protein	signature,	consisting	of	IGHG2,	LGALS3BP,	DSG2,	L1CAM,	and	THBS1.	The	5-protein	

signature	in	combination	with	CA125	detected	EOC	with	a	sensitivity	of	94%,	which	outperformed	

CA125	alone	that	had	a	sensitivity	of	87%,	albeit	at	a	lower	specificity	(94%	vs	97%).	At	a	specificity	

of	 97%	 the	 combined	 panel	 showed	 an	 improved	 sensitivity	 of	 94%.	 Finally,	 we	 correlated	 the	

abundance	differences	observed	for	LGALS3BP	in	blood	plasma	samples	to	protein	levels	in	patient	

tumors.	

Below	we	describe	the	step-by-step	experimental	design	needed	for	large-scale	SRM-based	

biomarker	development	studies	and	we	focus	specifically	on	EOC.	However,	these	considerations	are	

broadly	applicable	and	can	be	used	in	large-scale	studies	of	other	diseases	or	biological	systems.	 	
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EXPERIMENTAL	PROCEDURES	

Experimental	design	and	statistical	rationale.	For	the	discovery	of	biomarker	candidates,	

we	selected	tissue	samples	from	OC	bearing	mice	(n	=	5)	and	control	samples	(n	=	4)	each	of	them	

representing	8	ovaries	pooled	from	non-tumor	bearing	mice.	All	tissue	samples	were	measured	in	

technical	 triplicates	 on	 the	 mass	 spectrometer.	 For	 quantification	 of	 biomarker	 candidates,	 we	

obtained	blood	plasma	from	124	patients	with	EOC	and	110	healthy	controls.	Healthy	controls	were	

age	and	gender	matched	to	EOC	patients	and	had	no	previous	cancer	disease.		

Collection	and	preparation	of	murine	tissue	samples.	We	chose	a	genetically	engineered	

mouse	model	 for	endometrioid	OC,	which	accurately	 recapitulates	 the	human	disease,	 to	 identify	

biomarker	 candidates	 for	 detection	 of	 OC	 in	 blood	 plasma.	 For	 the	 conditional	 endometrioid	OC	

mouse	model,	the	generation	of	LSL-K-RasG12D/+;	PtenloxP/loxP	mice	and	adenoviral	induction	of	ovarian	

tumors	 was	 accomplished	 as	 previously	 described	 (25).	 Control	 mice	 were	 littermates	 that	

underwent	the	same	surgical	procedure	but	were	injected	with	Adeno-empty	virus	instead	of	Adeno-

Cre.	 At	 12	 weeks	 following	 Adeno-Cre	 induction,	 mice	 were	 sacrificed	 and	 tumor-bearing	 mice	

showed	large	ovarian	tumors	that	had	metastasized	to	pelvic	or	peritoneal	locations	as	previously	

described	(25).	Murine	ovarian	tumors	and	controls	were	dissected	and	snap	frozen.	In	order	to	get	

sufficient	amount	of	starting	material,	8	murine	control	ovaries	were	pooled	into	one	control	sample.	

Tumor-bearing	ovaries	contained	enough	material	for	individual	analysis.	

Protein	 extraction	 and	 glycopeptide	 enrichment	 from	 tissue.	 Tissue	 samples	 were	

homogenized	in	a	Microdismembranator	(Sartorious),	subjected	to	protein	extraction	in	lysis	buffer	

(50%	PBS	liquid,	pH7.4	(GIBCO,	Invitrogen)	and	50%	2,2,2-Trifluoroethanol	(Fluka,	99.9%	purity))	

and	solubilized	with	1%	Rapigest	(Waters)	in	250mM	ammonium	bicarbonate.	Ultra	sonication	in	a	

vial-tweeter	 ultrasonicator	 (Hielscher)	 at	 4°C	was	 used	 to	 further	 disintegrate	 the	 homogenized	

tissue.	Proteins	were	denatured	at	60°C	for	2h,	reduced	with	5mM	dithiotreitol	(DTT,	Sigma-Aldrich)	

at	60°C	for	30	min,	and	alkylated	with	25mM	iodoacetamide	(IAA,	Sigma-Aldrich)	at	25°C	for	45	min	
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in	the	dark.	Samples	were	diluted	to	15%	TFE	in	100mM	ammonium	bicarbonate	and	proteolyzed	

with	sequencing	grade	porcine	trypsin	(Promega)	at	a	protease	to	substrate	ratio	of	1:100,	at	37°C	

for	15h.	Peptide	mixtures	were	desalted	with	Sep-Pak	tC18	cartridges	(Waters),	eluted	with	50%	

acetonitrile/0.1%	 formic	 acid,	 evaporated	 to	 dryness,	 and	 resolubilized	 in	 100µL	 20mM	 sodium	

acetate,	100mM	sodium	chloride,	pH	5.	Glycopeptides	were	isolated	as	described	previously	(31).	N-

linked	glycosylated	peptides	were	released	with	N-glycosidase	F	(PNGase	F;	Roche	and	New	England	

Biolabs).	Formerly	glycosylated	peptides	were	desalted	as	above	and	resolubilized	in	100µL	HPLC	

grade	water/2%	acetonitrile/0.1%	formic	acid.	

Discovery-driven	 LC-MSMS	 acquisition	 and	 analysis	 of	murine	 tissue	N-glycosites.	 LC-

MS/MS	 analysis	 was	 carried	 out	 on	 a	 Thermo	 hybrid	 LTQ-FT-ICR	 mass	 spectrometer	 (Thermo	

Fischer)	 interfaced	 to	 a	 nanoelectrospray	 ion	 source	 (Thermo	 Fischer)	 and	 coupled	 online	 to	 a	

Tempo	1D-plus	nanoLC	(ABI/MDS	Sciex).	2µL	of	N-glycosite	samples	were	loaded	from	a	cooled	(4°C)	

autosampler	(ABI/MDS	Sciex)	and	separated	on	a	15cm	fused	silica	emitter,	75µm	diameter,	packed	

in-house	with	Magic	C18	AQ	3µm	resin	(Michrom	BioResources)	using	a	linear	gradient	from	5%	to	

35%	 acetonitrile/0.1%	 formic	 acid	 over	 60	 min	 at	 a	 flow	 rate	 of	 0.3	 μl/min.	 To	 obtain	 good	

quantitative	 data	 for	 generating	 a	 biomarker	 candidate	 list,	 the	MS	 instrument	was	 operated	 to	

maximize	the	quality	of	LC-MS	feature	maps	as	opposed	to	maximizing	the	number	of	identifications.	

Therefore,	for	each	peptide	sample	a	standard	data-dependent	acquisition	(DDA)	of	the	three	most	

intense	ions	per	MS-scan	was	performed.	Each	survey	scan	acquired	in	the	ICR	cell	at	100	000	FWHM	

was	followed	by	MS/MS	scans	of	the	three	most	intense	precursor	ions	in	the	linear	ion	trap,	resulting	

in	an	overall	cycle	time	of	approximately	1	second.	Charge	stage	screening	was	employed,	allowing	

fragmentation	of	doubly	and	higher	charged	ions,	and	rejecting	 ions	of	single	or	unknown	charge	

state.	A	threshold	of	200	ion	counts	was	set	to	trigger	an	MS/MS	attempt.	Each	sample	was	analyzed	

in	triplicates.	The	raw	data	acquired	by	the	LTQ-FT	was	converted	to	the	centroid	mzXML	format	

using	 ReAdW	 (version	 4.3.1)	 applying	 default	 parameters	 (32).	 MS/MS	 spectra	 were	 searched	
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against	 the	UniProt/TREMBL	mouse	database	(release_2010-07,	65306	protein	entries)	using	the	

SORCERER-SEQUEST™	v4.0.4	algorithm	(33).	The	search	criteria	were	set	as	 follows:	at	 least	one	

tryptic	terminus	(cleavage	after	lysine	or	arginine	residues,	unless	followed	by	proline);	two	missed	

cleavages	were	 allowed;	 carbamidomethylation	 (C)	was	 set	 as	 fixed	modification;	 oxidation	 (M),	

deamidation	 (N;	 formerly	N-glycosylated	 asparagines	 are	 converted	 to	 aspartic	 acid	 by	 PNGaseF	

release)	 were	 applied	 as	 variable	 modifications;	 monoisotopic	 parent	 and	 fragment	masses	 and	

precursor	ion	mass	tolerance	of	50	ppm.	The	database	search	results	were	further	processed	through	

the	mass	spectrometry	Trans-Proteomic-Pipeline	4.0.2	(TPP).	In	the	TPP,	the	database	search	results	

were	validated	using	the	PeptideProphet	software	(34)	and	ProteinProphet	software	(35).	The	false	

positive	 error	 rate	 was	 set	 to	 1%	 on	 the	 peptide	 and	 on	 the	 protein	 level	 as	 determined	 by	

PeptideProphet	(34)	and	ProteinProphet	(35).	RAW	data	and	search	results	have	been	deposited	to	

the	 ProteomeXchange	 Consortium	 via	 the	 PRIDE	 partner	 repository	 with	 the	 dataset	 identifier	

PXD005665	(36,	37).	

Relative	 quantification	 and	 statistical	 testing	 of	murine	 OC	 tissue	 N-glycosites.	The	

acquired	raw	data	were	converted	to	the	profile	mzXML	format	using	ReAdW	(version	4.3.1)	(32).	

These	files	were	processed	together	with	the	SEQUEST	search	results	by	the	software	tool	SuperHirn	

(version	 3)	 into	 a	 MasterMap	 that	 includes	 the	 MS/MS-spectra	 assignments	 for	 label-free	

quantification	 as	 described	 previously	 (38).	 The	 data	 were	 filtered	 for	 fully	 tryptic	 peptides	

containing	a	deamidation	at	 the	NxST-sequence	motif.	A	 log2	 transformation	was	applied	 to	 raw	

intensities	and	constant	normalization	was	performed	based	on	the	median	of	all	intensities	per	MS	

run	to	reduce	the	run-to-run	variation	(39).	Features	were	removed	that	had	missing	intensities	in	

more	than	12	out	of	the	18	MS	runs	representing	3	biological	replicates	for	both	tumor	and	control	

samples	which	were	measured	in	3	technical	replicates.	For	the	remaining	features	with	at	least	one	

missing	intensity	value,	a	G-test	of	independence	was	used	to	test	for	independence	between	missing	

values	and	conditions	(tumor/control)	(40).	P	values	were	adjusted	to	control	for	the	false	discovery	
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rate	(FDR)	using	the	Benjamini-Hochberg	method	(41).	A	significant	test	result	(i.e.	adjusted	p	value	

<	0.01)	for	a	feature	indicates	that	the	missing	values	appear	more	frequently	in	one	of	the	conditions	

than	it	is	expected	by	random	chance.	These	features	were	assumed	to	be	present	in	the	samples,	but	

below	the	detection	limit	of	the	instrument.	Therefore,	the	missing	values	for	these	features	were	

substituted	by	the	estimated	limit	of	detection.	To	estimate	the	limit	of	detection	for	this	experiment,	

we	calculated	the	minimum	intensities	across	all	 features	 for	each	sample	(total	18	samples)	and	

then	calculated	the	average	of	these	18	minimum	intensities	per	sample.	Statistical	analyses	of	this	

dataset	was	 performed	using	 a	 protein-level	 linear	mixed	 effect	model	 in	 the	MSstats	R	 package	

(v1.0)	(42).	Proteins	with	a	fold	change	>	4	and	an	adjusted	p	value	<	0.01	comparing	tumor	bearing	

to	control	ovarian	tissue	were	selected	as	biomarker	candidates.	

Clinical	 cohort.	 Patients	 with	 suspected	 adnexal	 tumor	 that	 underwent	 surgery	 at	 the	

gynecological	department,	Skåne	University	Hospital	between	2004	and	2013	were	included	in	the	

Skåne	University	Hospital	ovarian	 tumor	biobank.	Until	November	2011,	when	 the	current	 study	

started,	461	patients	had	been	included	in	the	biobank.	The	blood	samples	of	healthy	controls	were	

collected	between	January	2004	and	June	2008.	Controls	were	age	and	gender	matched	to	EOC	cases	

and	had	no	previous	cancer	disease.	All	individuals	gave	written	informed	consent	for	participation.	

Ethical	permission	 for	 the	biobank	was	obtained	 from	 the	Lund	University	Ethics	Committee.	All	

blood	samples	were	drawn	into	EDTA-tubes	and	centrifuged	at	2000	x	g	for	10	minutes.	The	plasma	

samples	were	 stored	 at	 -80	Celsius	degrees	within	 approximately	 two	hours	 from	sampling.	 The	

current	 study	 included	 blood	 plasma	 from	 patients	 in	 the	 biobank,	 124	 patients	 with	 epithelial	

ovarian	cancer	(EOC)	and	110	healthy	controls.	Patients	with	borderline	tumors	were	excluded	from	

this	study,	due	 to	 the	uncertain	malignant	potential	of	 these	benign	tumors.	The	healthy	controls	

were	voluntary	partners	to	cancer	patients	at	Skåne	University	Hospital.	

Glycoprotein	enrichment	from	plasma.	Formerly	N-linked	glycosylated	peptides	from	each	

plasma	 sample	were	 isolated	using	 the	N-linked	glycopeptide	 capture	procedure	as	described	by	
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Zhang	et	al	(31).	Enrichment	of	N-glycosylated	peptides	is	performed	once	for	each	subject	except	

for	 the	 subjects	 that	were	 included	 in	 both	 batches.	 Glycoproteins	were	 first	 oxidized	 by	 adding	

sodium	 periodate	 (Perbio);	 thereafter,	 the	 sample	 was	 conjugated	 to	 the	 hydrazide	 resin.	 Non-

glycoproteins	 were	 then	 extensively	 washed	 off	 the	 resin.	 Trypsin	 was	 added	 to	 digest	 the	

glycoproteins	directly	on	the	solid-phase	resin.	The	trypsin-released	peptides	were	removed	by	a	

second	washing	 procedure.	N-linked	 glycopeptides	 were	 released	 enzymatically	 using	 PNGase	 F	

(Roche	and	New	England	Biolabs).	The	whole	protocol	was	adapted	to	be	performed	in	96-well	plate	

format.	Additionally,	two	bovine	standard	N-glycoproteins	(Fetuin,	Alpha-1-acid	glycoprotein)	were	

added	 prior	 to	 the	 glycopeptide	 enrichment	 to	 each	 plasma	 sample	 in	 the	 same	 amount	

(10pmol/protein)	to	follow	the	relative	losses	due	to	the	SPEG	procedure.	Samples	were	prepared	

using	 a	 block	 randomized	 design	 according	 to	 their	 clinical	 features	 to	 prevent	 introduction	 of	

experimental	bias.	Since	samples	were	prepared	in	96-well	plate	format	and	a	plate	was	treated	as	a		

block.	To	remove	plate	bias,	we	assigned	a	similar	number	of	samples	per	condition	in	each	plate	and	

a	similar	distribution	of	ages	in	each	condition.	The	location	of	samples	was	randomized	within	a	

plate.	

Targeted	LC-SRM	analysis	of	plasma	N-glycosites.	SRM	assays	were	retrieved	from	the	N-

glycoprotein	SRM	atlas	(http://www.srmatlas.org/)	(43),	reanalyzed	to	select	the	best	transitions	

for	endogenous	detection	in	plasma,	split	to	multiple	SRM	methods,	or	used	to	optimize	a	single	SRM	

method.	 Tier	 2	 SRM	 assays	 were	 used	 to	 quantify	 the	 N-glycosites	 employing	 internal	 standard	

peptides	labeled	with	heavy	isotopes	at	the	C-terminal	lysine	or	arginine,	+8	or	+10	Da,	respectively	

(Thermo	Scientific,	Sigma-Aldrich,	or	JPT	Peptide	Technology)	to	identity	peptides	based	on	analogy	

of	chromatographic	and	fragmentation	properties	to	the	reference	and	quantify	peptides.	

SRM	analyses	for	pilot	batch	1	was	performed	on	a	4000QTRAP	and	5500QTRAP	(AB-Sciex)	

equipped	 with	 a	 nanoelectrospray	 ion	 source.	 All	 samples	 were	 analyzed	 on	 both	 instruments,	

biomarker	candidates	that	were	not	detected	on	the	4000QTRAP	were	targeted	on	the	5500QTRAP.	
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Chromatographic	separations	of	peptides	were	performed	by	a	Tempo	nano	LC	system	(Eksigent)	

coupled	 to	a	15cm	fused	silica	emitter,	75	µm	diameter,	packed	with	a	Magic	C18	AQ	5	µm	resin	

(Michrom	BioResources).	For	each	peptide,	the	best	3-4	transitions	for	the	internal	standard	as	well	

as	the	endogenous	peptide	were	monitored	in	a	scheduled	fashion	with	a	retention	time	window	of	

4	min	and	a	cycle	time	fixed	to	2.75	sec	(4000QTRAP)	and	2	sec	(5500QTRAP).	Peptides	were	loaded	

on	the	column	from	a	cooled	(4°C)	Tempo	autosampler	(Eksigent)	and	separated	in	35	min	by	a	linear	

gradient	of	acetonitrile	(5	–	35%)	and	water,	containing	0.1%	formic	acid	at	a	flow	rate	of	300	nL	

min-1.	 SRM	 acquisition	was	 performed	with	Q1	 and	Q3	 operated	 at	 unit	 resolution	 (0.7	m/z	 half	

maximum	peak	width).	

Samples	from	batch	2	were	analyzed	on	TSQ	Vantage	(Thermo	Fischer	Scientific)	equipped	

with	a	nanoelectrospray	ion	source.	Chromatographic	separation	of	peptides	was	carried	out	on	a	

nano	LC	system	(Eksigent).	In	each	injection,	peptides	were	loaded	onto	a	75µm	diameter	and	15cm	

long	fused	silica	microcapillary	reverse	phase	column,	in	house	packed	with	Magic	C18	AQ	material	

(200	Å	pore,	5µm	diameter;	Michrom	BioResources).	For	peptide	separation,	a	linear	40	min	gradient	

from	2	to	40%	solvent	B	(solvent	A:	98%	water,	2%	acetonitrile,	0.1%	formic	acid;	solvent	B:	98%	

acetonitrile,	 2%	 water,	 0.1%	 formic	 acid)	 at	 a	 300	 nl/min	 flow	 rate	 was	 applied.	 The	 mass	

spectrometer	was	operated	in	the	positive	ion	mode	using	ESI	with	a	capillary	temperature	of	270	

degrees	Celsius,	a	spray	voltage	of	1,350	V,	and	a	collision	gas	pressure	of	1.5	mTorr.	SRM	transitions	

were	monitored	with	a	mass	window	of	0.7	half	maximum	peak	width	(unit	resolution)	in	Q1	and	Q3.	

All	of	the	measurements	were	performed	in	scheduled	mode,	applying	a	retention	time	window	of	

3min	and	a	cycle	time	of	2s.	To	prevent	bias	during	data	collection	we	measured	the	samples	in	the	

same	randomized	order	which	was	used	for	the	sample	preparation	(see	above).	

Data	processing	and	normalization	for	targeted	LC-SRM	of	plasma	N-glycosites.	Raw	data	

files	from	both	datasets	were	uploaded	to	Skyline	(v1.3)	to	perform	automatic	SRM	peak	integration,	

detect	interferences	and	extract	single	transition	intensities	(44).	SRM	data	can	be	accessed,	queried,	
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and	downloaded	via	Panorama	(https://panoramaweb.org/ovarian_cancer_biomarker.url)	(45)	and	

have	been	deposited	to	the	ProteomeXchange	Consortium	via	the	PRIDE	partner	repository	with	the	

dataset	identifier	PXD014474	(36,	37).	Peak	intensity	datasets	were	exported	from	Skyline	into	the	

MSstats	report	format.	All	the	transition	intensities	were	log2	transformed	to	more	closely	conform	

to	 Normal	 distribution	 and	 better	 satisfy	 the	 statistical	 modeling	 assumptions	 for	 downstream	

analysis	(5).	The	normalization	consisted	of	three	steps,	as	follows	(Figure	3A,	Figure	S1).	The	first	

and	second	step	of	the	normalization	were	conducted,	separately	by	batch	1	and	batch	2,	to	remove	

systematic	 variation	 due	 to	 the	 instrument	 performance	 and	 losses	 in	 the	 sample	 preparation	

process.	The	first	normalization	step	(Figure	S1A)	was	based	on	the	isotopically	labelled	synthetic	

peptides	(heavy	peptides)	with	sequence	matching	the	targeted	endogenous	peptides,	spiked	in	each	

sample	 to	 account	 for	 systemic	 shifts	 in	 peak	 intensities	 between	mass	 spectrometric	 runs.	 The	

normalization	was	performed	on	the	log2	transformed	intensities	using	the	following	steps:	(1)	The	

median	of	 the	 log2	 transformed	heavy	 reference	 intensities	 for	 each	 run	were	 calculated,	 (2)	An	

overall	median	was	calculated	of	the	medians	of	each	run,	(3)	The	difference	between	the	median	for	

each	run	and	the	median	of	the	median	was	calculated,	(4)	Then,	these	differences	were	added	to	

log2-intensities	 from	 heavy	 and	 endogenous	 peptides	 in	 the	 corresponding	 run.	 The	 second	

normalization	(Figure	S1B)	used	two	bovine	(standard)	proteins,	AIAG	and	FETUA,	spiked	with	the	

same	 amount	 in	 each	 sample,	 to	 account	 for	 other	 potential	 artifacts	 that	 could	 occurred	during	

sample	 preparation,	 prior	 to	 data	 acquisition.	 The	 endogenous	 peak	 intensities	 of	 two	 standard	

proteins	in	each	MS	run	were	summarized	in	a	single	value	per	run	per	protein	using	MSstats	(v3.6.0)	

(42).	The	means	of	two	summarized	peak	intensities	from	two	standard	proteins	per	MS	run	were	

equalized	 across	 the	 runs,	 and	 endogenous	 peak	 intensities	 of	 the	 other	 proteins	 in	 the	

corresponding	run	were	shifted	by	the	same	amount.	The	third	normalization	step	(Figure	S1C)	was	

conducted	 to	 account	 for	 batch	 effects.	 With	 the	 assumption	 that	 subjects	 included	 in	 multiple	

batches	have	the	same	protein	abundance,	batch	effects	could	be	removed	by	equalizing	their	relative	
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abundance	of	peptides	and	transitions.	 	Samples	from	38	patients,	which	we	refer	to	as	 ‘repeated	

samples’,	were	measured	twice	(once	in	batch	1	and	once	in	batch	2).	The	repeated	samples	were	

used	to	account	for	differences	in	scale	between	the	datasets.	The	difference	between	the	median	of	

peak	intensities	among	the	repeated	samples	for	each	feature	(peptides	×	transitions)	in	batch	2	and	

that	in	batch	1	was	added	to	the	corresponding	feature	in	the	batch	1,	separately	for	reference	and	

endogenous	intensities.	The	repeated	samples	were	removed	from	batch	1	after	normalization,	and	

batch	1	and	batch	2	were	merged	into	one	dataset.	

Division	 into	 training	 set	 and	 validation	 set	 and	 relative	 quantification.	 234	 unique	

subjects	 were	 divided	 randomly	 into	 training	 set	 with	 173	 subjects	 and	 validation	 set	 with	 61	

subjects,	while	keeping	a	similar	distribution	of	age	and	EOC	stage	(early	or	late	stage)	between	the	

sets.	We	first	determined	the	required	number	of	subjects	for	subgroup	(combination	of	stage	and	

age	group)	for	either	training	set	or	validation	set.	We	then	selected	the	corresponding	number	of	

subjects	randomly	within	each	subgroup.	The	normalized	transition	peak	intensities	for	each	subject	

were	 summarized	 using	MSstats	 (v3.6.0,	 without	 the	 internal	 decision	 for	 the	 censored	missing	

values	by	the	option,	maxQuantileforCensored=NULL)	on	a	relative	scale	into	a	single	number	per	

subject,	separately	in	the	training	and	validation	set	(42).	The	summarized	protein	abundance	per	

subject	was	used	for	the	predictive	analysis.	

CA125	measurements	in	human	plasma	samples.	For	batch	1,	CA125	plasma	concentration	

was	measured	by	sandwich	ELISA	following	the	manufacturer’s	instructions	for	the	CA125	(Human)	

ELISA	 Kit	 (Abnova).	 Samples	 were	 diluted	 1/3	 in	 sample	 buffer	 [1/1	 LowCross	 Buffer	 (Candor	

Bioscience),	1%	BSA	in	PBS].	The	CA125	standards	and	the	samples	were	incubated	with	Enzyme	

Conjugate	Reagent	in	the	already	coated	96-well	plate	for	90	min	at	37°C.	After	washing	the	wells	

with	wash	buffer,	they	were	incubated	with	TMB	Reagent	for	20	minutes	at	room	temperature	in	the	

dark.	Stop	Solution	was	added	to	stop	the	reaction	and	optical	density	was	read	at	450nm.	The	lowest	

standard	used	for	the	ELISA	was	5U/mL	and	used	as	minimal	value	for	the	dataset.	CA125	plasma	
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levels	were	measured	from	20ul	EDTA-plasma	using	a	fully	automated	electrochemiluminescence	

immunoassay	(ECLIA)	on	a	Cobas	E	601	system	(Roche	Diagnostics).	38	plasma	samples	included	in	

both	batches	were	used	to	calibrate	ELISA	and	ECLIA	CA125	concentration	levels.	Plasma	samples	in	

batch	 1	with	minimal	 CA125	 concentration	 of	 5U/mL,	were	 removed	 for	 calibration.	 Calibration	

between	ELISA	and	ECLIA	for	CA125	was	conducted	by	fitting	the	linear	regression	model	between	

log2	transformed	ELISA	and	ECLIA.	ECLIA	CA125	concentrations	for	the	rest	of	batch	1	(45	samples)	

were	estimated	with	the	coefficients	 from	the	fitted	 linear	regression	model	and	measured	ELISA	

CA125.	ECLIA	CA125	concentrations	(original	value	in	batch	2	and	estimated	value	in	batch	1)	were	

used	for	further	predictive	analysis.	

Predictive	analysis.	Eightfold	cross-validation	was	used	to	find	the	most	predictive	proteins	

for	biomarker	signature	between	EOC	patients	and	healthy	controls	in	the	training	set.	Within	each	

fold,	 proteins	were	 tested	 for	 differential	 abundance	 between	EOC	patients	 and	 healthy	 controls	

using	 the	 seven-eighth	 of	 the	 subjects	 by	 MSstats	 (v3.6.0)	 (42).	 The	 relative	 abundances	 of	 the	

significant	proteins	(adjusted	p	value	<	0.05	and	fold	change	cutoff	³1.1)	were	used	as	 input	to	a	

logistic	regression	model.	The	subset	of	significant	proteins	was	selected	by	stepwise	method	(i.e.	by	

repetitively	 adding	 or	 dropping	 variables	 in	 the	model	 until	 minimizing	 the	 Akaike	 information	

criterion	(AIC)).	The	predictive	accuracy	of	the	logistic	regression	model	with	selected	proteins	was	

then	evaluated	on	the	remaining	one-eighth	of	the	subjects	in	the	training	set.	The	procedure	was	

repeated	eight	times	by	rotating	the	one-eighth	of	the	left-out	subjects	in	the	training	set.	The	final	

consensus	logistic	regression	model	with	five	protein	abundances	(IGHG2,	LGALS3BP,	DSG2,	L1CAM,	

THBS1),	which	were	selected	more	than	five	times	among	eight	folds,	and	log2	transformed	CA125	

as	 predictors	 was	 fit	 to	 the	 training	 set.	 Probability	 cutoff	 for	 classification	 was	 determined	 to	

maximize	the	predictive	accuracy,	the	fraction	of	all	cases	and	controls	who	were	correctly	classified,	

on	the	training	set.	The	predictive	ability	of	the	fitted	model	was	then	evaluated	on	the	independent	

validation	set,	in	terms	of	the	area	under	the	ROC	curve,	accuracy,	sensitivity,	specificity,	negative	
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predictive	value	and	positive	predictive	value.	The	performance	of	CA125	alone	was	evaluated	with	

the	cutoff	=	35	U/mL	(as	is	standard	in	the	clinical	practice)	on	the	same	independent	validation	set.	

The	ROC	curves,	 as	well	 as	other	measures	of	performances	 (i.e.	 accuracy,	 sensitivity,	 specificity,	

negative	predictive	value	and	positive	predictive	value)	were	obtained	with	 the	R	package	pROC.	

95%	confidence	intervals	for	the	area	under	the	ROC	curve,	accuracy,	sensitivity,	specificity,	negative	

predictive	value	and	positive	predictive	value	were	derived	from	2,000	bootstrap	replicates.	

Tissue	 Microarray	 analysis	 (TMA)	 of	 ovarian	 tissue.	 The	 aim	 of	 this	 analysis	 was	 to	

measure	 tissue	 protein	 abundance	 of	 LGALS3BP	 by	 immunohistochemistry	 and	 correlate	 it	with	

clinicopathologic	variables.	 	The	study	protocol	was	approved	by	the	local	ethics	committee	(KEK	

Zurich,	 KEK-ZH-No.	 2014-0604).	 The	 cohort	 consisted	 of	 primary	 EOC	 tissues	 (n=150)	 and	

borderline	tumors	of	the	ovary	(n=34)	which	were	diagnosed	at	the	Institute	of	Surgical	Pathology,	

University	 Hospital	 Zurich	 (Switzerland)	 between	 1995	 and	 2005.	 Normal	 tube-	 and	 surface	

epithelium	 of	 ovaries	 from	 patients	 without	 a	 history	 of	 ovarian	 cancer	 (diagnosed	 with	 e.g.	

endometriosis)	was	used	as	control	(n=14).	EOC	specimen,	borderline	tumors	and	the	normal	tube-	

and	surface	epithelial	 tissues	were	 immediately	 formalin	 fixed	overnight	and	completely	paraffin	

embedded.	 Further	 workup	 comprised	 2	 μm	 serial	 sectioning	 of	 selected	 tumor	 blocks	 and	

construction	of	a	tissue	microarray	as	described	previously	(46).	Immunohistochemical	staining	was	

performed	using	the	Ventana	Benchmark	(Roche	Ventana	Medical	Systems,	Inc.,	Tucson,	AZ,	USA)	

automated	staining	system	with	the	following	primary	antibody	anti-LGALS3BP	(rabbit	polyclonal,	

Atlas	Antibodies	AB;	dilution	1:1000).	Detection	was	performed	with	ultraView	DAB-kit	(Ventana)	

using	the	heat-induced	epitope	retrieval	CC1	solution.	Slides	were	counterstained	with	hematoxylin	

(Ventana),	dehydrated	and	mounted.	A	surgical	pathologist	(P.J.W)	performed	a	blinded	expression	

analysis.	A	semiquantitative	scoring	system	was	applied	to	quantify	the	cytoplasmic	expression	of	

LGALS3BP:	score	0,	negative;	score	1+,	weak;	score	2+,	moderate;	score	3+,	strong.	Samples	were	

excluded	if	they	showed	uninterpretable	results	caused	by	lack	of	target	tissue,	presence	of	necrosis,	
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or	crush	artifacts.	Statistical	analysis	was	performed	using	the	software	IBM	SPSS	Statistics	Version	

22	 (SPSS	 Inc.,	 Chicago,	 IL,	 USA).	 In	 order	 to	 study	 associations	 between	 clinicopathologic	 and	

immunohistochemical	data,	the	two-sided	Fisher’s	exact	test	was	used,	the	standard	procedure	in	

biometrics	 to	 test	 for	 homogeneity/non-homogeneity	 in	 cross	 tables.	 All	 correlations	 were	

significant	with	p	values	below	0.05.	

	

RESULTS	

Generating	 a	 discovery	 list	 of	 EOC	 biomarker	 candidates	 and	 testing	 their	 detectability	 in	

plasma.	

The	first	critical	step	for	a	biomarker	study	is	the	generation	of	a	biomarker	candidate	list	for	

subsequent	 quantification	 in	 large	 subject	 cohorts.	 Since	 large	 scale	 studies	 require	 time	 and	

resources,	it	is	essential	to	start	with	a	high	confidence	candidate	list	specific	to	the	clinical	question.	

To	optimize	 the	discovery	of	EOC-specific	 candidates	 for	non-invasive	detection,	we	performed	a	

global,	quantitative	proteomic	study	in	tumors	collected	from	a	GEMM	model	for	endometrioid	OC	

(Figure	1A).	While	this	model	accurately	recapitulates	the	clinical	disease,	a	potential	caveat	is	that	

most	 EOCs	 are	 serous	 histology	 and	 biomarker	 candidates	 derived	 from	 it	 could	 be	 specific	 for	

endometrioid	 OC.	 However,	 a	 previous	 paper	 using	 the	 same	 K-ras/Pten	 model	 for	 biomarker	

discovery	 showed	 that	 upregulated	 secreted	 proteins	 identified	 in	murine	 plasma	 during	 tumor	

development,	 including	 HE4,	 were	 more	 broadly	 representative	 of	 multiple	 ovarian	 cancer	

histological	subtypes	(30).	The	conditional	mouse	model	was	generated	by	Adeno-Cre	induction	of	

oncogenic	K-rasG12D/+	and	suppression	of	Pten	(Pten-/-)	in	the	ovarian	surface	epithelium,	which	led	

to	 the	 development	 of	 widespread,	 metastatic	 endometrioid	 OC	 (25).	 To	 identify	 biomarker	

candidates	 secreted	or	 shed	by	 tumors	 into	 circulation,	we	 specifically	 focused	on	 glycoproteins,	

which	are	representative	of	the	vast	majority	of	currently	approved	biomarkers	(24).	However,	by	

restricting	our	discovery	to	glycoproteins	we	are	aware	that	we	exclude	other	potential	promising	
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biomarker	candidates.	N-linked	glycopeptides	were	isolated	from	tryptic	digests	of	protein	extracts	

using	an	approach	based	on	hydrazide	chemistry	and	solid	phase	extraction	of	glycopeptides	(31).	

The	protein	extracts	were	collected	from	murine	endometrioid	ovarian	tumors	and	control	ovaries	

at	12	weeks	following	Adeno-Cre	and	Adeno-empty	induction,	respectively.	 	The	N-glycosites	(de-

glycosylated	forms	of	peptides	that	are	glycosylated	in	the	native	protein)	were	then	analyzed	by	

high-resolution	 liquid	 chromatography	 coupled	 to	 MS	 (LC-MS).	 Label-free	 quantification	 was	

performed	 (38)	 to	 determine	 N-glycoproteins	 that	 are	 differentially	 abundant	 between	 tumor	

bearing	and	control	ovarian	tissue	and	the	results	were	subjected	to	statistical	analysis	using	MS	stats	

(42).	Using	this	method	we	identified	906	glycoproteins	in	murine	ovarian	tumors	(Table	S1,	Table	

S2),	 of	 which	 275	 glycoproteins	 were	 either	 significantly	 up-	 (124)	 or	 down-regulated	 (151)	 in	

endometrioid	OC	compared	to	control	ovarian	tissue	(adjusted	p	value	<	0.01,	fold	change	>	4)	(Table	

S3).	We	then	determined	the	human	orthologues	of	the	candidate	murine	proteins	identified.	The	

mouse	model-derived	list	was	further	augmented	with	110	additional	human	N-glycoproteins,	which	

were	either	previously	reported	as	candidates	in	other	EOC	biomarker	studies	performed	in	human	

tissue,	ascites	fluid,	or	blood	sera	(26-30)	or	represented	candidates	from	ongoing	cancer	biomarker	

studies	(6,	7)	(Table	S4).	Overall,	the	biomarker	candidates	in	the	discovery	list	represented	diverse	

biological	 processes,	 such	 as	 cell	 adhesion,	 extracellular	 matrix	 organization,	 proteolysis,	

angiogenesis,	cell	migration,	and	others.	

The	human	blood	plasma	proteome	is	highly	complex,	it	contains	subsets	of	tissue	proteomes	

and	spans	more	than	10	orders	of	magnitude	in	concentration	range	(4).	Therefore,	we	first	verified	

the	detectability	of	our	biomarker	candidates	in	N-glycosites	enriched	from	a	pooled	plasma	sample.	

N-glycosites	representing	the	biomarker	candidates	and	their	optimized	SRM	assays	were	extracted	

from	the	human	N-glycoprotein	SRM	Atlas	(43)	(Table	S5).	Heavy	labeled	reference	peptides	were	

synthesized	for	all	N-glycosites	and	added	to	the	samples	in	order	to	guide	peptide	identification	in	

the	 complex	 sample	matrix.	Out	 of	 376	biomarker	 candidates,	 65	proteins	were	detectable	 in	N-
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glycosites	 enriched	 from	 plasma	 (Table	 S6).	 The	 65	 detected	 biomarker	 candidates	 spanned	 a	

concentration	range	of	5	orders	of	magnitude	with	the	majority	of	undetected	candidates	residing	in	

sub-nanogram	per	milliliter	concentration	range	in	plasma	(Figure	2A).	The	candidates	represented	

most	of	the	biological	processes	that	were	present	in	the	initial	discovery	list	(Figure	2B).	In	the	next	

phase,	the	detectable	fraction	of	our	EOC	biomarker	candidates	in	human	plasma	was	selected	for	

quantification	in	a	large	subject	cohort	containing	plasma	samples	from	EOC	patients	and	healthy	

controls.	

	

Experimental	design	for	SRM-based	quantification	of	biomarker	candidates	in	large	EOC	cohort.	

The	 second	 phase	 of	 a	 biomarker	 investigation	 involves	 the	 quantification	 of	 biomarker	

candidates	 in	human	blood	across	 the	 large	cohort	of	 subjects.	Typically,	 such	 large-scale	studies	

cannot	process	and	acquire	data	 from	all	 the	 samples	 in	parallel,	 and	may	even	 involve	different	

instruments	to	increase	sample	throughput.	A	rigorous	study	design	requires	experimental	controls,	

which	account	for	variation	in	sample	preparation,	within	and	between	different	batches,	as	well	as	

for	 variation	 introduced	 by	MS	 instruments	 and	 their	 performance	 over	 time.	 The	 experimental	

controls	 help	 normalize	 the	 datasets,	 thereby	 reducing	 the	 experimental	 artifacts	 and	 producing	

more	accurate	quantification	of	protein	abundance.	

In	 our	 investigation,	 we	 aimed	 at	 quantifying	 detectable	 biomarker	 candidates	 from	 the	

discovery	phase	in	a	subject	cohort	consisting	of	234	blood	plasma	derived	from	110	healthy	women	

and	124	EOC	patients,	to	identify	a	subset	of	biomarker	candidates	that	can	discriminate	between	

EOC	and	healthy	subjects	(Figure	1B).	The	cohort	reflected	the	underlying	population	with	EOC	in	

terms	of	histological	subtype	and	stage	(Table	1,	Table	S7).	Healthy	controls	were	age	and	gender	

matched	to	EOC	patients	and	had	no	previous	cancer	disease.	We	first	performed	measurements	on	

a	smaller	pilot	batch	of	66	plasma	samples	to	evaluate	our	experimental	setup,	before	scaling	up	to	

the	 larger	 batch	 containing	 206	 plasma	 samples	 (Table	 S7).	 The	 two	 batches	were	 prepared	 at	
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different	times	and	samples	were	measured	on	different	instruments.	Therefore,	our	study	design	

included	controls	that	accounted	for	variation	introduced	by	the	batch	effects,	sample	preparation,	

as	well	as	MS	performance	(Figure	3A).	For	the	purpose	of	batch	effect	normalization,	38	plasma	

samples	from	the	first	batch	were	also	included	in	the	second	batch.	To	reduce	variability	in	sample	

preparation,	all	plasma	samples	were	subjected	to	N-glycosite	enrichment	in	a	96-well	plate	format.	

To	 account	 for	 the	 variability	 in	 sample	 preparation	 within	 and	 across	 plates,	 two	 bovine	 N-

glycoproteins	 (AIAG,	FETUA)	were	added	 in	equal	amounts	as	 internal	 standards	 to	each	sample	

before	enrichment	(Figure	3A).	The	SRM	measurements	quantified	each	protein	with	between	one	

and	three	peptides,	and	each	peptide	with	three	transitions.	Heavy	labeled	internal	standard	peptides	

for	each	N-glycosite	were	spiked	in	equal	amounts	into	each	sample	to	account	for	variability	in	MS	

performance,	and	to	allow	for	accurate	identification	and	quantification	of	N-glycosites	(Figure	3A).	

The	 resulting	 data	 were	 analyzed	 using	 Skyline	 for	 identification	 and	 extraction	 of	 SRM	 feature	

intensities	and	log-transformed	(44).	Using	this	targeted	proteomic	approach,	we	were	able	to	obtain	

a	highly	consistent	dataset	quantifying	65	biomarker	candidates	across	234	human	blood	plasma	

samples.		

Data	 derived	 from	 the	 two	 batches	 were	 integrated	 using	 three	 steps	 of	 normalization	

(Figure	3A,	Figure	S1).	The	first	normalization	step	accounted	for	variability	in	MS	data	acquisition,	

separately	 for	each	batch.	 It	equalized	 the	median	 log-intensities	of	 the	heavy	reference	peptides	

across	the	samples	in	a	batch	(Figure	3A,	Figure	S1A).	The	second	normalization	step	accounted	for	

variability	in	sample	preparation,	separately	for	each	batch.	It	equalized	the	log-intensities	of	the	two	

bovine	glycoproteins,	AIAG	and	FETUA,	across	the	samples	in	a	batch	(Figure	3A,	Figure	S1B).	The	

last	normalization	step	accounted	for	the	variability	between	the	batches.	Plasma	samples	quantified	

in	 both	 batches	 were	 used	 to	 equalize	 median	 log-intensities	 for	 each	 transition	 between	 both	

batches,	 reference	 and	 endogenous	 separately,	 thereby	 keeping	 the	 relative	 abundance	 changes	

across	samples	unchanged	after	combining	the	two	batches.	(Figure	3A,	Figure	S1C).	
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The	combined	dataset	was	divided	into	a	training	(173	subjects)	and	validation	(61	subjects)	

set	with	a	ratio	of	three	to	one	(Figure	3B).	To	avoid	systematic	differences	between	the	training	and	

validation	set,	subjects	were	equally	distributed	based	on	their	age	as	well	as	cancer	stage	(Figure	

3B).	Quantification	of	protein	abundances	across	subjects,	separately	by	training	and	validation	set,	

was	performed	using	MSstats	(42).	Hierarchical	clustering	of	subjects	 in	training	set	according	to	

abundances	 of	 all	 65	 biomarker	 candidates	 showed	 co-clustering	 of	 EOC	 patients	 and	 healthy	

controls	to	some	extent,	but	could	not	completely	separate	the	two	groups	(Figure	3C).	

	

Development	of	a	protein	biomarker	signature	for	detecting	EOC.		

The	final	phase	of	a	biomarker	study	is	aimed	at	defining	the	most	predictive	analytes	from	

the	 large-scale	 SRM	dataset	 to	 develop	 a	multivariate	 biomarker	 signature.	 At	 present,	 no	 single	

diagnostic	marker	 or	 procedure	 has	 adequate	 sensitivity	 and	 specificity	 for	 EOC	diagnostic	 (47).	

While	CA125	is	the	most	widely	used	plasma-based	biomarker	for	ovarian	cancer,	it	has	only	50-60%	

sensitivity	for	early	stage	EOC	and	90%	for	late	stage	disease	(47).	Therefore,	our	goal	was	to	develop	

a	multivariate	biomarker	signature	that,	when	combined	with	CA125,	improves	the	sensitivity	and	

specificity	for	detecting	EOC	(Figure	1C).	To	select	predictive	protein	components	of	the	signature	

we	performed	an	eightfold	cross	validation	on	the	training	set	(Figure	4A).	Within	each	fold	of	the	

training	set,	we	tested	proteins	for	differential	abundance	between	EOC	patients	and	healthy	controls	

(Adjusted	p	value	≤	0.05,	FC	cutoff	±	1.1)	(Figure	4A,	Table	S8)	(42).	The	differentially	abundant	

proteins	in	each	fold	were	used	as	input	to	a	logistic	regression	that	classified	EOC	patients	versus	

healthy	 controls.	Within	 each	 fold,	 stepwise	 variable	 selection	 identified	 the	most	 discriminative	

subset	of	the	biomarker	candidates	(Figure	4A).	After	the	procedure	was	repeated	for	all	eight	folds,	

biomarker	candidates	selected	in	six	or	more	folds	were	retained	as	predictors	in	a	consensus	logistic	

regression	model	 fit	 on	 the	 entire	 training	 set	 (Figure	4A).	 Finally,	 one	more	 logistic	 regression	
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combined	 the	 retained	proteins,	 and	with	CA125	as	an	additional	predictor,	 and	 fit	on	 the	entire	

training	set.			

The	retained	proteins	were	Ig	gamma-2	chain	C	region	(IGHG2),	Galectin-3-binding	protein	

(LGALS3BP),	 Desmoglein-2	 (DSG2),	 Neural	 cell	 adhesion	 molecule	 L1	 (L1CAM),	 and	

Thrombospondin-1	(THBS1)	(Figure	4B).	For	LGAL3BP,	DSG2,	and	THBS1	increased	abundance	in	

plasma	was	associated	with	EOC	patients.	In	contrast,	for	IGHG2,	and	L1CAM	decreased	abundance	

was	 associated	with	 EOC	 (Figure	 S2).	 The	 in-sample	 predictive	 ability	 of	 the	 consensus	 logistic	

regression	 with	 five	 retained	 proteins	 and	 CA125	 was	 evaluated	 on	 the	 complete	 training	 set,	

resulting	in	area	under	the	ROC	curve	of	0.973	(Figure	4B).	

We	also	evaluated	the	predictive	ability	on	the	independent	validation	set,	which	was	never	

used	for	the	training	of	the	signature.	We	further	compared	the	predictive	ability	of	the	biomarker	

signature	to	that	of	CA125	alone,	quantified	by	ELISA	and	using	an	established	cutoff	of	35,	as	well	as	

to	 the	 signature	 combining	 CA125	 with	 SRM-based	 measurements	 of	 IGHG2,	 LGALS3BP,	 DSG2,	

L1CAM,	and	THBS1	(Figure	4C).	While	CA125	performed	well	on	the	validation	set	(with	specificity	

97%	and	sensitivity	87%),	its	combination	with	the	5-protein	signature	maximized	the	area	under	

the	ROC	curve	(0.99	compared	to	0.96)	on	the	validation	set,	with	a	higher	sensitivity	of	94%,	but	a	

slightly	 lower	 specificity	 of	 93%	 (Figure	 4C).	 However,	when	we	 compared	 the	 performance	 of	

CA125	alone	with	its	combination	with	the	5-protein	signature	at	the	same	specificity	of	97%,	the	

combination	 still	 outperformed	 CA125	 alone	 in	 terms	 of	 sensitivity	 (Figure	 S3).	 These	 results	

demonstrated	that,	although	CA125	alone	had	a	high	specificity	in	the	validation	cohort,	the	addition	

of	the	multivariate	protein	signature	increased	the	sensitivity	of	detecting	EOC.	

	

Validating	LGALS3BP	blood	plasma	results	in	human	EOC	tissue	from	an	independent	subject	

cohort.		
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Many	cancer	biomarker	studies	hypothesize	that	the	development	of	a	solid	tumor	gives	rise	

to	protein	abundance	changes	 that	 can	be	measured	non-invasively	 in	blood	plasma.	To	 test	 this	

hypothesis,	 we	 sought	 to	 validate,	 in	 EOC	 tissue,	 protein	 abundance	 differences	 found	 in	 blood	

plasma	of	EOC	patients	compared	to	healthy	individuals.	To	evaluate	protein	abundances	in	tissue	

samples,	we	used	a	tissue	microarray	(TMA)	containing	formalin-fixed	tissues	from	145	EOC	patients,	

30	benign	ovarian	tumor	patients	and	13	healthy	controls	(46).	Tissue	samples	included	on	the	TMA	

were	 derived	 from	 an	 independent	 subject	 cohort	 collected	 at	 a	 different	 hospital.	 Based	 on	 the	

availability	of	 antibodies	 for	 immunohistochemistry,	we	 stained	 the	TMA	 for	LGALS3BP.	 Staining	

intensities	 were	 graded	 by	 a	 pathologist	 as	 exemplified	 in	 Figure	 5A.	 LGALS3BP	 had	 shown	

significantly	higher	protein	abundance	in	plasma	samples	from	EOC	patients	compared	to	healthy	

individuals	(Figure	S2)	and	the	TMA	results	were	in	concordance	with	the	plasma	results	(Figure	

5B).	Specifically,	comparing	the	staining	intensities	for	LGALS3BP	in	EOC	tissue	compared	to	benign	

ovarian	 tumor	 tissue	 as	well	 as	 ovarian	 tissue	 from	 healthy	 controls	we	 detected	 a	 significantly	

stronger	intensity	for	LGALS3BP	in	EOC	tissue	(p	value	<	0.001,	Fisher’s	exact	test)	(Figure	5B).	The	

TMA	results	suggested	that	it	is	indeed	possible	to	detect	protein	abundance	changes	caused	by	a	

solid	tumor	remotely	in	blood	plasma.	 	
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DISCUSSION	

In	this	study,	we	derived	an	accurate	5-protein	signature	for	distinguishing	individuals	with	

EOC	from	healthy	controls,	the	sensitivity	of	the	signature	in	combination	with	CA125	measurements	

exceeding	 that	 of	 CA125	 ELISA-based	 measurements	 alone.	 Aside	 from	 the	 actual	 biomarker	

signature,	the	clinical	importance	and	novelty	of	this	paper	lies	in	the	large-scale	application	of	SRM	

measurements	with	a	rigorous	experimental	design	and	statistical	analysis.	Our	SRM-based	strategy	

is	 broadly	 applicable	 and	 can	 be	 used	 in	 any	 disease	 entity	 for	 the	 development	 of	 diagnostic	

biomarker	assays.		

Even	though	SRM	has	shown	great	promise	as	a	tool	for	biomarker	studies,	it	has	only	been	

applied	for	a	few	large-scale	studies	to	date.	This	is	in	part	due	to	the	requirement	of	a	rigorous	study	

design,	 reproducible	sample	preparation,	and	appropriate	statistical	analysis	 for	performing	SRM	

measurements	across	large	subject	cohorts	and	developing	a	biomarker	signature.		In	this	study,	we	

implemented	 a	 rigorous	 experimental	 design	 and	 data	 analysis	 strategy	 for	 protein	 biomarker	

development	using	SRM-based	targeted	MS.	This	strategy	was	applied	to	discover	and	validate	novel	

biomarker	candidates	for	EOC	in	human	blood	plasma.	A	high-quality	list	of	biomarker	candidates	

was	 compiled	 from	 a	 quantitative	 proteomic	 study	 using	 a	 GEM	 model	 representative	 of	

endometrioid	OC.	The	list	was	augmented	with	candidates,	which	were	published	or	from	ongoing	

cancer	biomarker	studies	(Figure	2).	To	quantify	biomarker	candidates	in	a	large	subject	cohort,	we	

designed	 an	 experimental	 and	 data	 analysis	 strategy,	 which	 would	 account	 for	 experimental	

variability	in	instrument	performance,	sample	preparation	and	sample	batch	effects	(Figure	3).	In	

the	case	of	EOC,	we	demonstrated	the	effectiveness	of	this	strategy	to	identify	a	signature	of	selected	

biomarker	candidates,	which	in	combination	with	CA125	allowed	the	detection	of	EOC	with	a	higher	

sensitivity	than	CA125	alone	(Figure	4).	

To	assemble	a	biomarker	candidate	list,	we	used	a	conditional	GEMM	of	EOC	generated	by	

Adeno-Cre	 induction	 of	 oncogenic	K-ras	 and	Pten	 suppression	 specifically	 in	 the	 ovarian	 surface	
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epithelium,	which	led	to	widespread,	metastatic	ovarian	endometrioid	OC	(25).	Ideally,	biomarker	

discovery	should	include	multiple	animal	models	or	patient	samples	recapitulating	all	histological	

subtypes.	However,	despite	endometrioid	OC	being	only	the	second	most	common	histological	EOC	

after	high-grade	serous	OC	(48,	49),	the	chosen	GEMM	is	still	highly	relevant	for	biomarker	discovery	

as	 it	 accurately	 recapitulates	 the	 clinical	 disease.	 In	 addition,	 the	 RAS	 and	 PI3K/PTEN	 signaling	

pathways	 are	 altered	 in	 various	 histological	 subtypes	 of	 EOC,	 such	 as	 serous,	 endometrioid	 and	

mucinous	 OC	 (48,	 49).	 Furthermore,	 CA125,	 the	 biomarker	 currently	 most	 widely	 used	 for	 OC	

diagnosis,	has	shown	a	better	performance	for	detecting	high	grade	serous	OC	(HGSC)	but	revealed	

a	reduced	sensitivity	in	detecting	early	tumors	(27,	50).	Therefore,	identifying	biomarker	candidates	

that	are	specific	for	each	histological	EOC	subtype	and	combining	them	with	CA125	might	increase	

the	 sensitivity	 necessary	 for	 early	 detection	 of	 multiple	 EOC	 histotypes.	 We	 augmented	 the	

biomarker	candidate	list	with	potential	markers	for	EOC	that	have	been	proposed	previously,	but	

their	performance	in	detecting	EOC	was	to	our	knowledge	never	evaluated	systematically	in	human	

blood	plasma.	The	relevance	of	including	biomarker	candidates	from	various	sources	is	underscored	

by	the	fact	that	the	final	biomarker	candidate	signature	combining	five	novel	proteins	with	CA125	

consists	of	proteins	selected	from	all	sources.		

A	major	limitation	for	protein	biomarker	quantification	in	blood	plasma	is	the	complex	nature	

of	the	body	fluid.	Its	dynamic	protein	concentration	range	spans	12	orders	of	magnitude,	with	few	

highly	abundant	proteins	making	up	90%	of	the	plasma	proteome	(3,	4).	Even	though	we	focused	on	

the	N-glycosylated	proteome,	thereby	reducing	the	complexity	of	the	plasma	samples,	we	were	able	

to	detect	and	consistently	quantify	65	out	of	376	biomarker	candidates	across	hundreds	of	plasma	

samples	(i.e.,	the	detection	rate	was	17%).	Despite	this	fact,	proteins	for	which	detectability	in	plasma	

by	SRM	was	established,	could	be	detected	in	the	sample	cohort	with	a	high	degree	of	consistency	

(only	0.3%	missing	values	across	234	samples).	The	majority	of	the	undetected	biomarker	candidates	

resided	in	the	sub-nanogramm	per	milliliter	concentration	range	in	plasma	(Figure	2A),	and	were	
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only	 accessible	 by	MS	 after	 extensive	 sample	 fractionation	 and	workup.	 Additionally,	 biomarker	

candidates	initially	discovered	in	murine	tissue	had	to	be	translated	into	their	human	orthologues,	

which	resulted	 in	some	biomarker	candidates	 lacking	N-glycosites,	and	therefore	 intractable	with	

our	strategy.	However,	the	alternative	option	for	systematically	quantifying	biomarker	candidates	

relies	on	 immunoassays,	which	require	the	availability	of	specific	antibodies	 for	each	protein,	are	

only	available	for	a	small	subset	of	the	human	proteome,	and	are	usually	biased	for	frequently	studied	

proteins	(51).	

Accurate	and	reproducible	quantification	of	proteins	across	a	large	subject	cohort	is	crucial	

for	biomarker	development.	We	implemented	experimental	controls	in	our	study	and	demonstrated	

a	multistep	normalization	approach,	which	accounted	for	variability	on	all	experimental	levels:	SRM	

measurements,	sample	preparation,	batch	effects	and	usage	of	different	MS	instruments	(Figure	3A).	

For	 the	 enrichment	 of	N-glycosites	 from	 plasma	 we	 added	 two	N-glycosylated	 bovine	 standard	

proteins	in	equal	amounts	to	each	sample.	Since	the	sample	preparation	for	this	study	was	performed	

in	a	96-well	plate	format,	variability	in	sample	preparation	was	limited	and	two	standard	proteins	

appeared	to	be	sufficient.	However,	for	future	applications	it	might	be	beneficial	to	include	a	higher	

number	of	standard	proteins	to	better	estimate	the	variability	in	sample	preparation.	Additionally,	

unused	standard	proteins	could	be	used	to	assess	the	quantitative	accuracy	of	the	SRM	assay.	Unlike	

ELISA-based	measurements,	MS-based	quantification	is	performed	on	a	relative	scale.	Therefore,	the	

quantitative	measurements	from	different	MS	batches	may	not	be	comparable	directly.	To	remove	

batch	effects	between	samples	profiled	on	different	MS	instrument	platforms,	we	included	a	subset	

of	subjects	in	all	the	batches.	With	the	assumption	that	subjects	included	in	multiple	batches	have	the	

same	protein	abundance,	batch	effects	could	be	removed	by	equalizing	their	relative	abundance	of	

peptides	 and	 transitions.	 The	 experimental	 design	 and	 data	 analysis	 strategy	 presented	 here	 is	

broadly	applicable	to	other	biomarker	studies	including	large	cohorts	measured	in	multiple	batches,	
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as	well	as	studies	requiring	the	accurate	and	reproducible	MS-based	quantification	of	proteins	across	

a	large	number	of	subjects.	

Finally,	to	develop	a	biomarker	signature	for	the	detection	of	EOC,	we	selected	proteins	with	

high	predictive	ability	that	fit	a	logistic	regression	model	on	the	training	set	(Figure	4A).	The	best	

performing	 signature	 included	 5	 proteins,	 namely	 IGHG2,	 LGALS3BP,	 DSG2,	 L1CAM,	 and	 THBS1,	

which	were	combined	with	the	ELISA	measurement	of	CA125,	the	current	clinical	standard,	into	a	

final	 signature	 (Figure	 4B).	 Based	 on	 the	 independent	 validation	 set,	 the	 5-protein	 signature	

combined	with	CA125	detected	EOC	with	a	higher	sensitivity	than	CA125	alone	(Figure	4C).			

Among	the	proteins	in	the	signature,	LGALS3BP	and	THBS1	were	initially	discovered	in	the	

endometrioid	OC	GEMM,	DSG2	was	derived	from	previously	published	OC	biomarker	studies,	and	

L1CAM	and	IGHG2	represented	candidates	from	ongoing	cancer	biomarker	studies.	LGALS3BP	is	a	

member	of	the	scavenger	receptor	cysteine-rich	domain	family	of	proteins	(52),	which	has	not	only	

been	 previously	 associated	 with	 various	 malignant	 tumors	 but	 also	 suggested	 as	 a	 potential	

biomarker	(53-55).	DSG2,	a	desmosomal	cadherin	expressed	in	epithelial	derived	tissues	(56),	is	also	

overexpressed	in	various	malignancies,	such	as	non-small	cell	lung	cancer	and	melanoma	(57,	58).	

Knockout	of	DSG2	was	reported	to	suppress	colon	and	non-small	cell	lung	cancer	cell	proliferation	

(57,	59).	THBS1	is	an	endogenous	angiogenesis	inhibitor	which	has	previously	been	associated	with	

the	 development	 of	 tumor	microenvironment	 and	 angiogenesis	 and	 has	 been	 shown	 to	 promote	

migration	of	cancer	cells	(60-62).	L1CAM	is	a	cell	adhesion	molecule,	which	was	originally	identified	

as	a	neural	cell	adhesion	molecule	 in	the	central	nervous	system	(63),	but	L1CAM	expression	has	

been	identified	in	a	variety	of	tumor	types	(64)	and	has	been	recently	reported	the	be	involved	in	the	

progression	of	endometrial	cancer	(65).	Lastly,	IGHG2	forms	the	constant	region	of	immunoglobulin	

heavy	chains.	 It	 represents	a	high	abundance	plasma	protein	and	has	 to	our	knowledge	not	been	

linked	to	cancer.	Both,	IGHG2	and	L1CAM,	showed	a	decreased	level	in	plasma	of	cancer	patients,	that	

cannot	be	biologically	explained	at	 this	point.	Changes	 in	high	abundant	plasma	proteins,	such	as	
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IGHG2,	could	result	from	secondary	effects	at	late	stages	of	EOC	and	in	fact	the	majority	of	patients	

included	 in	our	study	have	 late	stage	EOC.	Therefore,	we	currently	do	not	have	evidence	that	 the	

protein	signature	reported	here	could	be	applied	for	early	stage	EOC	detection.	

LGALS3BP,	DSG2	and	L1CAM	have	been	associated	with	other	malignancies	indicating	that	

these	proteins	might	not	be	specific	biomarker	candidates	for	EOC.	To	ensure	the	specificity	of	the	

signature,	only	a	subset	of	the	biomarker	candidates	in	the	signature	needs	to	be	specifically	elevated	

or	 downregulated	 in	 EOC.	 The	 combination	 with	 additional	 general	 cancer	markers	 can	 help	 to	

increase	 sensitivity	 in	 detecting	 EOC.	 For	 example,	 a	 recent	 study	 assessed	 blood-based	 N-

glycoproteins	 across	 five	 solid	 carcinomas	 and	 found	 significantly	 different	 expression	 levels	 for	

THBS1	in	four	out	of	five	carcinomas	compared	to	controls	suggesting	THBS1	as	a	general	cancer	

marker	(66).	To	evaluate	the	specificity	of	the	suggested	biomarker	signature	for	detection	of	EOC	

and	its	application	for	early	detection	of	EOC,	a	follow-up	study	using	an	independent	patient	cohort	

should	be	designed	to	include	other	malignancies	and	benign	conditions	of	the	ovaries,	which	are	

known	to	result	in	elevated	CA125	levels,	as	well	as	pre-	and/or	early	EOC.		

Targeted	proteomics	is	a	promising	tool	for	biomarker	development	and	the	quantification	

of	 biomarker	 candidates	 in	 complex	 sample	 matrices	 without	 the	 necessity	 of	 a	 lengthy	 and	

expensive	development	of	specific	antibodies	against	the	proteins	of	interest.	However,	to	date	only	

a	few	large	scale	biomarker	studies	have	been	conducted	using	targeted	proteomics	for	systematic	

quantification,	 which	 mostly	 focused	 on	 a	 few	 candidates	 for	 which	 antibody-based	 assays	 are	

available	(51).	The	experimental	design	and	data	analysis	considerations	detailed	in	this	study	as	it	

pertains	 to	 EOC	 will	 contribute	 to	 a	 broader	 applicability	 of	 targeted	 proteomics	 in	 large-scale	

studies.	
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TABLES	

Table	1.	Summary	characteristics	of	EOC	patients	and	healthy	controls	included	in	the	study.	

Variable	 Ovarian	cancer	 Controls	
	 (OC)	 	

Total	#	
patients	 124	 110	

Age	[y]	 66	(27	-	88)	 60	(24	-	77)	

Endometrioid	 14	 	

Mucinous	 11	 	

Serous	 89	 	

Clear	Cell	 3	 	

Other	 7	 	

Stage	1/2	 35	 	

Stage	3/4	 89	 		

	

FIGURES	

Figure	 1.	 Study	 overview.	 In	 the	 discovery	 phase,	 epithelial	 ovarian	 cancer	 (EOC)	 biomarker	

candidates	were	discovered	based	on	a	proteomics-based	discovery	study	using	tissue	samples	from	

an	EOC	conditional	GEM	model.	Biomarker	candidates,	i.e.	the	plasma-detectable,	orthologous	human	

proteins	detected	as	differentially	abundant	in	the	discovery	phase	were	subsequently	quantified	in	

plasma	 samples	derived	 from	a	 large	 cohort	 of	 EOC	patients	 and	healthy	 controls	 using	 selected	

reaction	monitoring	(SRM).	Finally,	the	most	predictive	biomarker	candidates	for	the	detection	of	

EOC	 were	 selected,	 combined	 in	 a	 protein	 biomarker	 signature,	 and	 further	 evaluated	 in	 an	

independent	validation	set.	

	

Figure	2.	Characteristics	of	biomarker	candidates.	 (A)	Estimated	concentrations	of	biomarker	

candidates	in	human	blood	plasma.	The	candidates	that	were	detectable	by	SRM	in	human	plasma	

are	 indicated	 in	 red.	 (B)	 Gene	 ontology	 biological	 processes	 enriched	 among	 all	 biomarker	
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candidates.	For	each	biological	process	 the	 fraction	of	detected	proteins	 in	plasma	 is	 indicated	 in	

green.	

	

Figure	3.	Experimental	design	for	SRM-based	evaluation	of	biomarker	candidates	in	a	large	

EOC	patient	cohort.	(A)	Overview	of	the	experimental	design.	The	repeated	samples	of	38	subjects	

(green	tubes),	two	standard	proteins,	and	heavy	reference	peptides	were	used	as	controls	in	multiple	

steps	 of	 experiments.	 The	 subject	 samples	were	 processed	 and	measured	 in	 two	 batches.	 Three	

normalization	 steps	 were	 applied	 to	 combine	 the	 datasets	 derived	 from	 two	 batches,	 thereby	

accounting	for	variability	in	instrument	performance,	variability	in	sample	preparation,	and	other	

batch	effects.	The	merged	normalized	dataset	from	both	batches	was	divided	into	a	training	set	and	

a	 validation	 set.	 Feature	 intensities	were	 summarized	 into	 protein	 abundances	 for	 each	 subject,	

separately	for	the	training	set	and	the	validation	set.	(B)	Distribution	of	subjects	across	the	training	

and	 the	 validation	 sets	 based	 on	 confounding	 factors,	 age	 and	 stage	 of	 EOC.	 (C)	 Heatmap	 of	

standardized	 protein	 abundances	 of	 65	 proteins	 across	 all	 the	 subjects	 in	 the	 training	 set.	 The	

subjects	are	arranged	in	columns,	and	the	proteins	in	rows.	For	the	purposes	of	visual	display,	the	

summarized	protein	abundances	were	standardized	by	protein	(i.e.,	by	row)	on	a	quantile	scale.	Red	

shades	indicate	increased	protein	abundance,	and	blue	shades	indicate	reduced	protein	abundance.	

Hierarchical	clustering	with	Euclidian	distance	and	Ward	linkage	was	employed	to	cluster	subjects	

by	similarity	of	standardized	protein	abundance.	The	disease	status	of	subjects	is	labeled	with	green	

for	healthy	cases,	yellow	for	EOC	cases	at	the	top	of	heatmap.	

	

Figure	4.	Protein	biomarker	signature	development.	(A)	The	training	set	was	used	to	determine	

a	 predictive	 biomarker	 signature	 using	 multivariate	 logistic	 regression	 and	 eight-fold	 cross-

validation.	 The	 subjects	 were	 systematically	 rotated	 between	 eight	 folds.	 Within	 each	 fold,	

differentially	abundant	proteins	were	determined	comparing	EOC	patients	to	healthy	controls.	The	
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plot	indicates	the	results	per	fold.	Red	squares	indicate	significantly	upregulated	proteins,	and	blue	

squares	indicate	significantly	down-regulated	significant	protein.	Grey	color	indicates	no	statistically	

significant	changes	(fold	change	cutoff	±1.1,	adjusted	p	value	<	0.05).	Next,	a	logistic	regression	model	

was	 fit	with	 stepwise	method	 for	 selecting	 predictive	 proteins	 (black	 squares	 show	 the	 selected	

proteins	for	each	fold)	and	the	disease	status	was	predicted	for	the	 ‘left-out’	subjects	 in	each	fold	

(AUC	 subvalidation).	 The	 final	 consensus	 logistic	 regression	 model	 was	 generated	 using	 the	

biomarker	 candidates	 selected	 more	 than	 five	 times	 among	 eight	 folds	 in	 the	 cross	 validation	

(selected	proteins	are	indicated	with	a	red	dot).	(B)	The	consensus	logistic	regression	model	was	fit	

in	the	training	set,	combining	the	selected	biomarker	candidates	with	CA125.	The	probability	cutoff	

was	selected	to	maximize	the	predictive	accuracy	on	the	training	set.	(C)	The	validation	set	was	used	

to	evaluate	the	performance	of	the	final	consensus	logistic	regression	model.	Detection	of	disease	

status	of	subjects	with	EOC	and	healthy	controls	was	summarized	in	an	ROC	curve	comparing	CA125	

to	the	novel	five-protein	signature	and	its	combination	with	CA125.	Summary	statistics	are	listed	for	

five-protein	signature	plus	CA125	and	CA125	alone.	

	

Figure	5.	Connecting	LGALS3BP	blood	plasma	results	to	protein	abundances	in	human	EOC	

tissue.	 (A)	 Grading	 scheme	 for	 immunohistochemistry	 staining	 of	 LGALS3BP	 in	 human	 ovarian	

tissue.	 (B)	 Tissue	microarray	 staining	 results	 for	 ovarian	 cancer,	 borderline	 tumors,	 and	 control	

epithelial	ovarian	tissue.	
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