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Abstract

Recently, there has been a wealth of effort devoted to the design of

secure protocols for machine learning tasks. Much of this is aimed

at enabling secure prediction from highly-accurate Deep Neural

Networks (DNNs). However, as DNNs are trained on data, a key

question is how such models can be also trained securely. The few

prior works on secure DNN training have focused either on de-

signing custom protocols for existing training algorithms, or on

developing tailored training algorithms and then applying generic

secure protocols. In this work, we investigate the advantages of

designing training algorithms alongside a novel secure protocol,

incorporating optimizations on both fronts. We present QUOTIENT,

a new method for discretized training of DNNs, along with a cus-

tomized secure two-party protocol for it. QUOTIENT incorporates

key components of state-of-the-art DNN training such as layer nor-

malization and adaptive gradient methods, and improves upon the

state-of-the-art in DNN training in two-party computation. Com-

pared to prior work, we obtain an improvement of 50X in WAN

time and 6% in absolute accuracy.
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1 Introduction

The field of secure computation, and in particular Multi-Party Com-

putation (MPC) techniques such as garbled circuits and lower level

primitives like Oblivious Transfer (OT) have undergone very im-

pressive developments in the last decade. This has been due to

a sequence of engineering and theoretical breakthroughs, among

which OT Extension [26] is of special relevance.

However, classical generic secure computation protocols do not

scale to real-world Machine Learning (ML) applications. To over-

come this, recent works have combined different secure computa-

tion techniques to design custom protocols for specific ML tasks.

This includes optimization of linear/logistic regressors and neu-

ral networks [14, 40, 41, 44], matrix factorization [43], constrained

optimization [29], and k-nearest neighbor classification [51, 52].

For example, Nikolaenko et. al. [44] propose a protocol for secure

distributed ridge regression that combines additive homomorphic

∗
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encryption and garbled circuits, while previous works [14, 41] rely

in part on OT for the same functionality.

Practical ML and Secure Computation: Two Ships Passing in

the Night. While there have been massive practical developments

in both cryptography and ML (including the works above), most

recent works for model training [22, 40, 41, 54] and prediction [7,

15, 50] on encrypted data are largely based on optimizations for

either the ML model or the employed cryptographic techniques in

isolation. In this work, we show that there is a benefit in taking a

holistic approach to the problem. Specifically, our goal is to design

an optimization algorithm alongside a secure computation protocol

customized for it.

SecureDistributedDeepNeuralNetworkTraining. So far there

has been little work on training Deep Neural Networks (DNNs) on

encrypted data. The only works that we are aware of are ABY3 [40]

and SecureML [41]. Different from this work, ABY3 [40] designs

techniques for encrypted training of DNNs in the 3-party case,

and a majority of honest parties. The work most similar to ours is

SecureML [41]. They propose techniques based on secret-sharing

to implement a stochastic gradient descent procedure for train-

ing linear/logistic regressors and DNNs in two-party computation.

While the presented techniques are practical and general, there are

three notable downsides: 1. They require an “offline” phase, that

while being data-independent, takes up most of the time (more than

80 hours for a 3-layer DNN on the MNIST dataset in the 2-Party

Computation (2PC) setting); 2. Their techniques are not practical

over WAN (more than 4277 hours for a 3-layer DNN on the MNIST

dataset), restricting their protocols to the LAN setting; 3. The accu-

racy of the obtained models are lower than state-of-the-art deep

learning methods. More recently, secure training using homomor-

phic encryption has been proposed [22]. While the approach limits

the communication overhead, it’s estimated to require more than

a year to train a 3-layer network on the MNIST dataset, making it

practically unrealizable. Furthermore, the above works omit tech-

niques necessary for modern DNNs training such as normalization

& adaptive gradient methods, instead relying on vanilla SGD with

constant step size. In this paper we argue that significant changes

are needed in the wayMLmodels are trained in order for them to be

suited for practical evaluation in MPC. Crucially, our results show

that securely-trained DNNs do not need to take a big accuracy hit

if secure protocols and ML models are customized jointly.
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Our Contributions: In this work we present QUOTIENT, a new

method for secure two-party training and evaluation of DNNs.

Alongside we develop an implementation in secure computation

with semi-honest security, which we call 2PC-QUOTIENT. Our

main insight is that recent work on training deep networks in

fixed-point for embedded devices [57] can be leveraged for secure

training. Specifically, it contains useful primitives such as repeated

quantization to low fixed-point precisions to stabilize optimization.

However, out of the box this work does not lead to an efficient MPC

protocol. To do so, we make the following contributions, both from

the ML and the MPC perspectives:

1. We ternarize the network weights: W ∈ {−1, 0, 1} during the

forward and backward passes. As a result, ternary matrix-vector

multiplication becomes a crucial primitive for training. We then

propose a specialized protocol for ternary matrix-vector multi-

plication based on Correlated Oblivious Transfer that combines

Boolean-sharing and additive-sharing for efficiency.

2. We further tailor the backward pass in an MPC-aware way, by

replacing operations like quantization and normalization by alter-

natives with very efficient implementations in secure computation.

We observe empirically in Section 6 that this change has no effect

on accuracy. Alongside these changes, we extend the technique to

residual layers [21], a crucial building block for DNNs.

3. We design a new fixed-point optimization algorithm inspired

by a state-of-the-art floating-point adaptive gradient optimization

procedure [47].

4. We implement and evaluate our proposal in terms of accuracy

and running time on a variety of real-world datasets. We achieve

accuracy nearly matching state-of-the-art floating point accuracy

on 4 out of 5 datasets. Compared to state of the art 2PC secure DNN

training [41], our techniques obtain ∼6% absolute accuracy gains

and >50× speedup over WAN for both training and prediction.

The rest of the paper is organized as follows. In the next section

we introduce notation and necessary background in ML and MPC.

In Section 3 we present our proposed neural network primitives,

and corresponding training procedure. In Section 4 we present a

2PC protocol for it. Finally, we present our experimental evaluation

in Section 5 and conclude with a short discussion.

2 Overview and Problem Description

Here, we introduce concepts in DNN training and inference, fixed-

point encodings, and MPC applied to ML.

2.1 Deep Neural Networks

All DNNs are defined by a core set of operations, called a layer.

These layers are repeatedly applied to an input a0 to produce a

desired output aL , where the number of repetitions (or layers) L
is called the depth of the network. Every layer consists of a linear

operation and a non-linear operation and, depending on the type

of network, each layer takes on different forms. We describe three

popular layer types that make up a large portion of state-of-the-art

DNNs: fully-connected, convolutional, and residual.

Fully-Connected Layers. To define a layer we simply need to de-

fine the linear and non-linear operations they use. In fully-connected

layers these operations are as follows. Given an input al−1 ∈ Rhl−1
of any fully-connected layer l ∈ {1, . . . ,L}, the layer performs

convolutional

f(Wlal�1)

al�1

al

fully-connected residual

f(Wlal�1)

f(Wl+1al)

Wl+ial+i�1

al�1

f(Wl+ial+i�1 + al�1)

f(Wl
ija

l�1
ij )

al
ij

al�1
ij

Figure 1: We have protocols for three popular deep neural

network layers: fully-connected, convolutional, and residual.

two operations (1) a multiplication: Wl al−1 with a weight matrix

Wl ∈ Rhl×hl−1 ; and (2) a non-linear operation, most commonly the

Rectified Linear Unit: ReLU(x) = max(x , 0). So the full layer com-

putation is al = ReLU(Wl al−1), where al is called the activation

of layer l . Note that ‘fully-connected’ refers to the fact that any

entry of al−1 is ‘connected’ to the output al via the weight matrix

Wl
, shown schematically in Figure 1 (left). Note that, more generic

representations involve an intermediate step; adding a bias term bl

to compute (Wl al−1 + bl ) before performing the non-linear opera-

tion (al = ReLU(Wl al−1 + bl )). In practice, this can be handled by

suitably modifying Wl
and al−1 prior to performing operation (1).

Convolutional Layers. Convolutional layers are essentially fully-

connected layers with a very particular connectivity structure.

Whereas the input and output of a fully-connected layer are vec-

tors, the input and output of a convolutional layer are 3rd-order

tensors (i.e., an array of matrices). Specifically, the input al−1 ∈
Rhl−1×wl−1×cl−1 can be thought of as an image with height hl−1,
widthwl−1, and channels cl−1 (e.g., cl−1=3 for RGB images).

To map this to an output al ∈ Rhl×wl×cl , a convolutional layer
repeatedly looks at small square regions of the input, andmoves this

region from left-to-right, from top-to-bottom, until the entire image

has been passed over. Let al−1i j ∈ Rkl−1×kl−1×cl−1 be the kl−1 × kl−1
region starting at entry (i, j). This is then element-wise multiplied

by a set of weights Wl ∈ Rkl×kl×cl−1×cl and summed across the

first three dimensions of the tensor. This is followed by a non-

linear operation, also (most often) the ReLU to produce an entry

of the output ali j ∈ R1×1×1×cl . Note that al−1i j , a
l
i j ,W

l
can all be

vectorized such that ali j = f (Wl al−1i j ). This operation is shown

in Figure 1 (center). Apart from the dimensionality of the layers,

other hyperparameters of these networks include: the size of square

region, the number of ‘pixels’ that square regions jump in successive

iterations (called the stride), and whether additional pixels with
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value 0 are added around the image to adjust the output image size

(called zero-padding).

A common variant of a convolutional layer is a pooling layer. In

these cases, the weights are always fixed to 1 and the non-linear

function is simply f (·) ≜ max{·} (other less popular f (·) include
simple averaging or the Euclidean norm).

Residual Layers. The final layer type we consider are residual

layers [21]. Residual layers take an activation from a prior layer

al−1 and add it to a later layer l+i before the non-linear function f (·)
(usually ReLU) is applied: f (Wl+ial+i−1 + al−1). The intermediate

layers are usually convolutional but may be any layer in principle.

Figure 1 (right) shows an example of the residual layer. DNNs

with residual layers were the first to be successfully trained with

more than 50 layers, achieving state-of-the-art accuracy on many

computer vision tasks, and are now building blocks in many DNNs.

Training DeepNeural Networks. The goal of any machine learn-

ing classifier is to map an input a0 to a desired outputy (often called

a label). To train DNNs to learn this mapping, we would like to

adjust the DNNs weights {Wl }Ll=1 so that the output aL after L

layers is: aL = y. To do so, the most popular method for training

DNN weights is via Stochastic Gradient Descent (SGD). Specifi-

cally, given a training dataset of input-output pairs {(a0i ,yi )}
n
i=1,

and a loss function ℓ(aL ,y) that measures the difference between

prediction aL and output y (e.g., the squared loss: (aL − y)2). SGD
consists of the following sequence of steps: (1) The randomization

step: sample a random single input a0i , (2) The forward pass: pass a0i
through the network to produce prediction aLi , (3) The backward
pass: compute the gradients Gl

and el of the loss ℓ(aLi ,yi ) with
respect to each weight Wl

and layer activation al in the network,

respectively: Gl =
∂ℓ(aLi ,yi )

∂Wl , e
l =

∂ℓ(aLi ,yi )
∂al ,∀l ∈ [L], (4) The up-

date step: update each weight by this gradient: Wl = Wl − ηGl
,

where η is a constant called the learning rate. These four steps,

called an iteration are repeated for each input-output pair in the

training set. A pass over the whole training set is called an epoch.

The first step is often generalized to sample a set of inputs, called a

batch, as this exploits the parallel nature of modern GPU hardware

and has benefits in terms of convergence and generalization.

2.1.1 State-Of-The-Art Training: Normalization & Adaptive Step–
Sizes. While the above “vanilla” gradient descent can produce rea-

sonably accurate classifiers, alone they do not produce state-of-the-

art results. Two critical changes are necessary: (1) normalization;

and (2) adaptive step-sizes. We describe each of these in detail.

Normalization. The first normalization technique introduced for

modern DNNs was batch normalization [25]. It works by normaliz-

ing the activations al of a given layer l so that across a given batch

of inputs al has roughly zero mean and unit standard deviation.

There is now a general consensus in the machine learning commu-

nity that normalization is a key ingredient to accurate DNNs [5].

Since batch normalization, there have been a number of other suc-

cessful normalization schemes including weight normalization [49]

and layer normalization [35]. The intuition behind why normaliza-

tion helps is because it prevents the activations al from growing

too large to destabilize the optimization, especially for DNNs with

many layers that have many nested multiplications. This means

that one can increase the size of the learning rate η (see the up-

date step above for how the learning rate is used in SGD), which

speeds up optimization [5]. Normalization has been shown to yield

speedups of an order of magnitude over non-normalized networks.

Further, without normalization, not only is convergence slower, in

some cases one cannot even reach lower minima [35].

Adaptive Step-Sizes.While normalization allows one to use larger

learning rates η, it is still unclear how to choose the correct learn-

ing rate for efficient training: too small and the network takes an

impractical amount of time to converge, too large and the training

diverges. To address this there has been a very significant research

effort into designing optimization procedures that adaptively ad-

just the learning rate during training [13, 31, 47]. So-called adap-

tive gradient methods scale the learning rate by the magnitude of

gradients found in previous iterations. This effectively creates a

per-dimension step-size, adjusting it for every entry of the gradient

Gl
for all layers l . Without adaptive gradient methods, finding the

right step-size for efficient convergence is extremely difficult. A

prominent state-of-the-art adaptive gradient method is AMSgrad

[47]. It was developed to address pitfalls with prior adaptive gradi-

ent methods. The authors demonstrate that it is able to converge

on particularly difficult optimization problems that prior adaptive

methods cannot. Even on datasets where prior adaptive methods

converge, AMSgrad can cut the time to converge in half.

2.1.2 Training and Inference with Fixed-Point Numbers. Motivated

by the need to deploy DNNs on embedded and mobile devices with

limited memory and power, significant research effort has been

devoted to model quantization and compression. Often the goal

is to rely solely on fixed-point encoding of real numbers. In fact,

Tensorflow offers a lightweight variant to address this goal [19, 27].

These developments are useful for secure prediction. This is because

cryptographic techniques scale with the circuit representation of

the function being evaluated, and so a floating-point encoding and

subsequent operations on that encoding are extremely costly. How-

ever, for the task of training, there are few works that perform all

operations in fixed-point [20, 23, 33, 39, 57]. We start by review-

ing fixed-point encodings, and the MPC techniques that we will

consider. Then, in Section 3, we describe how this method can be

modified and improved for secure training.

Notation for Fixed-Point Encodings.We represent fixed-point

numbers as a triple x = (a, ℓ,p), where a ∈ {−2ℓ−1 − 1, . . . , 2ℓ−1}
is the fixed-point integer, ℓ is its range or bit-width, and p is its

precision. The rational number encoded by x is a/2p . For simplicity,

we will often make ℓ implicit and write the rational a/2p as a(p).
As our computations will be over ℓ-bit values in 2’s complement,

overflows/underflows can happen, resulting in large big errors. This

requires that our training procedure is very stable, within a very

controlled range of potential values.

2.2 MPC for Machine Learning

In this section, we introduce MPC techniques, highlighting the

trade-offs that inspire our design of secure training and prediction

protocols. The goal ofMPC protocols is to compute a public function

f (·) on private data held by different parties. The computation is
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done in a way that reveals the final output of the computation to

intended parties, and nothing else about the private inputs. MPC

protocols work over a finite discrete domain, and thus the function

f (·) must be defined accordingly. Generally, MPC protocols can be

classified depending on (i) a type of structure used to represent f (·)
(generally either Boolean or integer-arithmetic circuits) and (ii) a

scheme to secretly share values between parties, namely Boolean-

sharing, additive-sharing, Shamir-secret-sharing, andmore complex

variants (for more information see [11]). The choices (i) and (ii)

define the computational properties of an MPC protocol.

Additive-sharing protocols are very efficient for computations

over large integral domains that do not involve comparisons. This

includes sequences of basic linear algebra operations, such asmatrix-

vector multiplications. Specifically, additions are extremely cheap

as they can be performed locally, while multiplications are more

expensive. On the other hand, computations involving comparisons

require computing a costly bit-decomposition of the values.

In contrast to additive-sharing, protocols based on Boolean-

sharing are well-suited for computations easily represented as

Boolean circuits, such as division/multiplication by powers of two

(via bit shifting), comparisons, and sign(). They are slower at addi-

tion and multiplication which require adder and multiplier circuits.

These trade-offs lead to a natural idea recently exploited in sev-

eral works in the secure computation for ML: one should design

protocols that are customized to full algorithms, such as the training

of linear/logistic regressors and DNNs [14, 41, 44], matrix factor-

ization [43], or k-nearest neighbor classification [51, 52]. More-

over, custom protocols alternate between different secret-sharing

schemes as required by the specific computation being implemented.

Of course, the transformations between secret-sharing schemes

must themselves be implemented by secure protocols
1
. This point

is especially relevant to DNN training, as it amounts to a sequence

of linear operations (which are naturally represented as arithmetic

circuits) interleaved with evaluations of non-linear activation func-

tions such as the ReLU (which are naturally represented as Boolean

circuits).

Some MPC frameworks work in the so-called pre-processing

model (see [41]), where computation is split into a data-independent

offline phase and a data-dependent online phase. Random values

useful for multiplication can be generated offline, and then used

for fast secure multiplication online. In this paper we consider total

time, removing the assumption of an offline phase. This is not a

fundamental limitation, as we have variants of our protocols that

work in the pre-processing model as explained later.

Notation for Secret-Sharing. In this work, we focus on the two-

party computation setting, which excludes solutions that rely on

a majority of honest parties [6, 40]. Inspired by work on function-

specific protocols, in this work we employ both Boolean sharing

and additive sharing. We start by fixing two parties P1 and P2. We

denote the Boolean-share of x ∈ {0, 1} held by P1 as ⟨x⟩1, and ⟨x⟩2
for P2. In Boolean-sharing, the shares satisfy ⟨x⟩1 = x ⊕ ⟨x⟩2, where
⟨x⟩2 is a random bit, and ⊕ signifies the XOR operation. We denote

the additive-share of integer y ∈ Zq held by P1 as [[y]]1, and [[y]]2
for P2. Here [[y]]1 = y − [[y]]2, with random [[y]]2 ∈ Zq . In practice,

1
This aspect was thoroughly investigated in [11].

q is 2
σ
, for σ ∈ {8, 16, 32, 64, 128}, as these are word lengths offered

in common architectures.

Garbled Circuits. In many of our protocols, we use Yao’s Garbled

Circuits [58] as a subprotocol. In this protocol, the computation is

represented as a Boolean circuit. We will not introduce the protocol

in detail here, and instead, refer the reader to [37] for a detailed

presentation and security analysis. The relevant observation to our

work is the fact that the running time of a Garbled Circuits protocol

is a function of the number of non-XOR gates in a circuit (this is

thanks to the Free-XOR technique [32]). Consequently, designing

efficient, largely XOR circuits is crucial in this setting. In fact, it is

so important that previous works have used digital synthesizers

for this task [10].

Oblivious Transfer. OT is a cryptographic primitive involving

two parties: a Chooser, and a Sender. The Sender holds two mes-

sagesm0,m1, and the Chooser holds a Boolean value b. After the
execution of OT, the Chooser learnsmb , i.e. the Sender’s message

corresponding to their Boolean value. From the privacy perspective,

an OT protocol is correct if it guarantees that (i) the Chooser learns

nothing aboutm
1−b , and (ii) the Sender learns nothing about b. As

common in MPC, this is formalized in the simulation framework

(see [17] for details).

OT is a basic primitive in MPC. In fact, any function can be

evaluated securely using only an OT protocol [18] and, moreover

OT is a crucial component of Yao’s Garbled Circuits. A remarkable

advancement in the practicality of OT protocols was the discovery

of OT extension [26]. This protocol allows one to compute a small

number of OTs, say 128, and then bootstrap them to execute many

fast OTs. Since then, optimizations in both the base OTs and the

OT extension procedure [3] have led to implementations that can

perform over ten million OT executions in under one second [55].

In our protocols, we employ amore efficient primitive—Correlated

Oblivious Transfer (COT). COT was introduced in [3] alongside

with an efficient COT Extension protocol that uses roughly half the

communication than the general OT Extension. COT is a particular

case of OT where the Sender does not get to choose its messages,

but instead chooses a function f relating the two messages m0

andm1, asm0 = f (m1). This functionality is enough for important

applications of OT in MPC such as Garbled Circuits and OT-based

triplet generation (see [11]). Below we define the flavour of COT

that we need in our application, following the notation from [3].

Definition 2.1 (m × COTℓ). Let f = (fi )i ∈[m], be a sequence of
correlation functions, each with signature fi : {0, 1}ℓ 7→ {0, 1}ℓ
held by party P1 (the Sender), and let w ∈ {0, 1}ℓ be a sequence

of choice bits held by party P2 (the Chooser). After an execution

ofm × COTℓ(f ,w), P1 obtainsm random vectors (xi ∈ {0, 1}ℓ)mi=1,
and P2 obtainsm vectors (

¯

yi ∈ {0, 1}ℓ)mi=1 such that ∀i ∈ [m] : yi =
(¬wi ) · xi +wi · fi (xi ).

2.3 Threat Model

In the two-party model of MPC, the training procedure is out-

sourced to two servers. This framework has been used in several

previous works [14, 29, 41–44]. It works by first secret-sharing
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User i

P1 P2

[[(a0,y)]]1 [[(a0,y)]]2

W = TrainModel(D)
MPC

[[D]]1 [[D]]2

[[W]]1 [[W]]2

C S

y = predict(W, a0)
MPC

Data a0 Model W

y

Figure 2: (Left) Training in the two-server model of MPC: (i) Each user i shares their labeled data (a0i ,yi ) across two servers P1
and P2, by giving one share [[(a0i ,yi )]]j to each Pj . (ii) Each Pj compiles their share of a training datasetD, by simply accumulating

all shares received fromusers. Finally, (iii) P1 and P2 engage in amulti-party computation, inwhichD is securely reconstructed,

and subsequently used to train a model W, fromwhich each server gets a share. (Right) Private prediction using MPC: A client

C and a server S engage in an multi-party computation protocol for the client to obtain y (the prediction of the server’s model

W for their client’s data a0) without the parties disclosing anything about W and a0 to each other.

the training dataset D across the servers. This is depicted in Fig-

ure 2 (Left): users secret-share their values (a0i ,yi ) across two non-

colluding servers, which run the training procedure and obtain the

resulting secret-shared model: [[W]]1, [[W]]2. Note that the scenario
where two organizations collaborate to build a model of their re-

spective private data in a privacy-preserving way is a particular

case of this setting: this corresponds to the stage after the users

have shared their data. We present fast MPC protocols to implement

TrainModel(D) from Figure 2 (Left). Thus, all our protocols are

presented as two-party protocols between parties P1 and P2 via
input and output additive-shares. Our protocols are secure in the

semi-honest model for secure computation, as in [41].

Alongside private training, an important related problem is pri-

vate prediction. This is depicted in Figure 2 (Right). Specifically, a

client C has private data a0 for which they wish to have a private

prediction y, via the private weights W of server S . In our setting,

a fast protocol for two-party training in MPC immediately yields a

fast protocol for private prediction, as prediction corresponds to

the forward pass in training (i.e., Algorithm 1).

3 Deep Learning for MPC

In this section, we describe new methods to optimize DNNs that

were developed alongside our protocols (in Section 4). Our first

insight is that recent work on training deep networks in fixed-point

[57] can be leveraged for crypto-friendly training. Namely, while

this work was originally intended for embedded devices, it contains

useful primitives such as repeated quantization to low fixed-point

precisions to stabilize optimization. However, out-of-the-box, this

work is unsuited for privacy-preserving protocols. We make the

following modifications: (a) We ternarize the network weights:

W ∈ {−1, 0, 1} during the forward and backward passes. This will

allow matrix multiplication with W to be phrased as repeated 1-out-

of-2 oblivious transfers (described in Section 4); (b) We construct

an MPC-friendly quantization function for the weight gradients in

the backward pass, replacing a biased coin flip and truncation steps

with a saturation-free quantization, without loss in accuracy; (c)

We replace the backward pass normalization operation, division

by the closest-power-of-two, with the next-power-of-two. While

a seemingly small change, the latter operation has a very efficient

circuit implementation [28] that we leverage in our secure protocols

in the next section. Further, we observe empirically in Section 5

that this change also has no effect on accuracy. Ultimately, these

changes will only speed up the computation of a training iteration in

a secure protocol. If training is based on stochastic gradient descent,

many iterations will still be necessary for convergence. To address

this, we design a new fixed-point adaptive gradient algorithm. It

is inspired by a state-of-the-art floating-point adaptive gradient

method, AMSgrad [47]. This optimization allows us to achieve the

best accuracy to date on all 5 datasets we consider for DNNs trained

in fixed-point (in Figure 8). In this section, we describe the work of

[57], our changes (a-c) mentioned above, and our new fixed-point

adaptive gradient training procedure.

3.1 Deep Models in Fixed-Point

The work by Wu et al. [57] describes an efficient optimization

procedure for DNNs operating entirely on fixed-point encodings of

real numbers. We describe it in detail here.

Quantize gradients, and quantize frequently. The first idea of

WAGE [57] is to introduce functions Qw ,Qa ,Qд ,Qe that quantize

the weights W, activations a, weight gradients G, activation gradi-

ents e to a small, finite set of fixed-point numbers. While previous

work [2, 4, 9, 24, 30, 36, 46, 56] had already introduced the idea

of functions Qw ,Qa to quantize weights and/or activations in the

forward pass, they required the weights W or gradients G, e to

be represented in floating-point in the backward pass, in order to

optimize accurately. In Wu et al. [57], all the quantization functions

take fixed-point numbers with some precision p, i.e., v(p) = v/2p
and find the nearest number with another precision q, i.e., v(q):

v(q) = N (v(p),q) =
⌊ v
2
p 2

q⌉
2
q (1)

where
a
2
p 2

q
is in practice either a division of a multiplication by

2
|p−q |

depending on whether p > q. Additionally, Wu et al. [57]

introduce a saturation function S(·), to yield Q(·) as:
v(q) = Q(v(p),q) = S(N (v(p),q),q). (2)

where S(x ,q) = min(max(x ,−1 + 2−q ), 1 − 2
−q ) saturates any x to

be within [−1 + 2−q , 1 − 2
−q ].

WeightQuantizationQw .The first functionW(pw ) = Qw (W(p),pw )
takes as input a p-precision fixed-point weight W(p) and returns
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Algorithm 1: Fixed-Point Forward Pass (Forward)

Input: Fixed-point weights {Wl
(pw )}

L
l=1,

Fixed-point data sample a0(pa ),

Layer-wise normalizers {αl }Ll=1
Output: Fixed-point activations {al(pa )}

L
l=1

1: for l = 1, . . . ,L do

2: al = f (Wl
(pw )a

l−1
(pa )

) ▷ pass through layer

3: al(pa ) = Qa (al ,pa ) ▷ activations precision pa

Algorithm 2: Fixed-Point Backward Pass (Backward)

Input: Fixed-point weights: {Wl
(pw )}

L
l=1,

Fixed-point activations (act) {al(pa )}
L
l=1,

Fixed-point label y(pa ),
Activation function f ,
Saturation function S
Output: Fixed-point gradients {Gl }Ll=1

1: eL =
∂ℓ(aL(pa ),y(pa ))

∂aL(pa )
▷ act. gradient

2: for l = L, . . . , 1 do
3: el(pe ) = Qe (el ,pe ) ▷ act. gradient precision pe

4: el−1 =Wl
(pw )

(
el(pe ) ◦

∂al(pa )
∂f ◦

∂al(pa )
∂S

)
▷ act. gradient

5: Gl = al−1(pa )
⊤

el(pe ) ▷ weight gradient

the closest pw -precision weights W(pw ) using the above function:

W(pw ) = Qw (W(p),pw ) = Q(W(p),pw ) (3)

Activation quantizationQa .The second function a(pa ) = Qa (a(p),pa )
is almost identical except it introduces an additional scaling factor

2
−α

as follows:

a(pa ) = Qa (a(p),pa ) = Q(
a(p)
2
α ,pa ). (4)

Where α is a fixed integer determined by the dimensionality of

W, see [57] eq. (7). The intuition is that this is a simple form of

normalization (used in the forward pass), and the authors describe

a technique to set α based on the layer size.

Activation gradient quantizationQe . For the backward pass the

first gradient we must consider is that of the activations, which we

call e. The strategy to quantize e(pe ) = Qe (e(p),pe ), is similar to

quantizing the activations. Except here the scaling factor depends

on the largest value of e:

e(pe ) = Qe (e(p),pe ) = Q(
e(p)

2
cpow(max{ |e(p) | })

,pe ) (5)

where cpow(x) = 2
⌊log

2
(x )⌉

is the closest power of 2 to x . The
intuition here is again that normalization helps, but it cannot be

constant as the gradient magnitude can potentially fluctuate. Thus

normalization needs to be data-specific to stabilize training.

Algorithm 3: Fixed-Point SGD Optimization (∆
sgd

)

Input: Fixed-point weights {Wl
(pw )}

L
l=1,

Fixed-point data D = {(a0(pa ),i ,y(pa ),i }
n
i=1,

Learning rate η

Output: Updated weights {Wl
(pw )}

L
l=1

1: for t = 1, . . . ,T do

2: (a0(pa ),y(pa )) ∼ D
3: {Wl

(pw ) = Qw (Wl
(pw ),pw )}Ll=1

4: {al(pa )}
L
l=1 = Forward({Wl

(pw )}
L
l=1, a

0

(pa )
)

5: {Gl }Ll=1 = Backward({Wl
(pw ), a

l
(pa )

}Ll=1,y(pa ))
6: {Gl

(pд )
= Qд(Gl ,pд)}Ll=1 ▷ weight gradient precision pд

7: {Wl
(pw ) = S(Wl

(pw ) − ηGl
(pд )
,pw )}Ll=1

Weight gradient quantization Qд . The second gradient is the

weight gradient G, quantized by G(pд ) = Qд(G(p),pд), as follows:

G(pд ) = Qд(Gn
(p),pд) =

sign(Gn
(p))

2
pд−1

[
⌊|Gn

(p) |⌋ + B
(
|Gn

(p) | − ⌊|Gn
(p) |⌋

)]
.

(6)

where Gn
(p) = ηG(p)/2cpow(max{ |G(p) | })

is a normalized version of

G(p) that is also multiplied by the learning rate η, sign(a) returns
the sign of a, and B(p) draws a sample from a Bernoulli distribution

with parameter p. This function normalizes the gradient, applies

a randomized rounding, and scales it down. The idea behind this

function is that additional randomness (combined with the random-

ness of selecting data points stochastically during training) should

improve generalization to similar, unseen data.

3.2 Cryto-Friendly Deep Models in Fixed-Point

We propose three changes to the quantization functions that do not

affect accuracy, but make them more suitable for MPC.

Weight quantization Qw . We fix pw =1 and set Qw (W(p),pw ) =
2Q(W(p),pw ) so that our weights are ternary: W ∈ {−1, 0, 1} as
mentioned above.

Activation gradient quantization Qe . We make the following

change to eq. (5) to Qe (e(p),pe ) = Q(e(p)/2npow(max{ |e(p) | }),pe ),
where npow(x) = 2

⌈log
2
(x )⌉

is the next power of 2 after x . This is
faster than the closest power of 2, cpow(x) as the latter also needs

to compute the previous power of 2 and compare them to x to find

the closest power.

Weight gradientQuantizationQд .We introduce a different quan-

tization function than [57] which is significantly easier to imple-

ment using secure computation techniques:

G(pд ) = Qд(G(p),pд) = N (
G(p)

2
npow(max{ |G(p) | })

,pд). (7)

We find that the original quantization function in eq. (6) needlessly

removes information and adds unnecessary overhead to a secure

implementation.
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Forward/Backward passes. Algorithm 1 corresponds to predic-

tion in DNNs, and Algorithms 1, 2, 3 describe the training procedure.

Apart from the quantization functions note that in the backward

pass (Algorithm 2) we take the gradient of the activation with

respect to the activation function: ∂al(pa )/∂ f and the saturation

function: ∂al(pa )/∂S . Algorithm 3 describes a stochastic gradient

descent (SGD) algorithm for learning fixed-point weights inspired

by [57]. We keep around two copies of weights in different preci-

sions pw and pw . The weights W(pw ) are ternary and will enable

fast secure forward (Algorithm 1) and backward passes. The other

weights W(pw ) are at a higher precision and are updated with gra-

dient information. We get the ternary weights W(pw ) by quantizing
the weights W(pw ) in line 3. Note that the forward and backward

passes of convolutional networks can be written using the exact

same steps as Algorithms 1 and 2 where weights are reshaped to

take into account weight-sharing. Similarly, for residual networks

the only differences are: (a) line 2 in the forward pass changes; and

(b) line 4 in the backward pass has an added term from prior layers.

3.3 A Fixed-Point Adaptive Gradient Algorithm

One of the state-of-the-art adaptive gradient algorithms is AMSgrad

[47]. However, AMSgrad includes a number of operations that are

possibly unstable in fixed-point: (i) the square-root of a sum of

squares, (ii) division, (iii) moving average. We redesign AMSgrad in

Algorithm 4 to get around these difficulties in the following ways.

First, we replace the square-root of a sum of squares with absolute

value in line 9, a close upper-bound for values v ∈ [−1, 1]. We verify

empirically that this approximation does not degrade performance.

Second, we replace division of V̂(pv ) in line 11 with division

by the next power of two. Third, we continuously quantize the

weighted moving sums of lines 7 and 8 to maintain similar preci-

sions throughout. These changes make it possible to implement

AMSgrad in secure computation efficiently. In the next section we

describe the protocols we design to run Algorithms 1-4 privately.

4 Oblivious Transfer for Secure Learning

In this section, we present custom MPC protocols to implement pri-

vate versions of the algorithms introduced in the previous section.

Our protocols rely heavily on OT, and crucially exploit charac-

teristics of our networks such as ternary weights and fixed-point

(8-bit precision) gradients. We present our MPC protocol for neural

network training by describing its components separately. First,

in Section 4.1 we describe our protocol for ternary matrix-vector

multiplication, a crucial primitive for training used both in the for-

ward and backward pass. Next, in Sections 4.2 and 4.3 we describe

the protocols for the forward and backward passes, respectively.

These protocols use our matrix-vector multiplication protocol (and

a slight variant of it), in combination with efficient garbled circuit

implementations for normalization and computation of ReLU.

4.1 Secure Ternary Matrix-Vector Multiplication

A recurrent primitive, both in the forward and backward passes of

the fixed-point neural networks from Section 3 is the product Wa,
for ternary matrix W ∈ {−1, 0, 1}n×m and fixed-point integer vec-

tor a ∈ Zmq . Several previous works on MPC-based ML have looked

specifically at matrix-vector multiplication [41, 51]. As described in

Algorithm 4: Fixed-Point AMSgrad Optim. (∆ams)

Input: Fixed-point weights {Wl
(pw )}

L
l=1,

Fixed-point data D = {(a0(pa ),i ,y(pa ),i }
n
i=1, learning rate η

Output: Updated weights {Wl
(pw )}

L
l=1

1: Initialize: {Ml ,Vl }Ll=1 = 0

2: for t = 1, . . . ,T do

3: (a0(pa ),y(pa )) ∼ D
4: {Wl

(pw ) = 2Q(Wl
(pw ),pw )}Ll=1

5: {al(pa )}
L
l=1 = Forward({Wl

(pw )}
L
l=1, a

0

(pa )
)

6: {Gl }Ll=1 = Backward({Wl
(pw ), a

l
(pa )

}Ll=1,y(pa ))

7: {Gl = Gl

2
npow(max{|Gl |})

}Ll=1 ▷ scale gradients

8: {Ml = N (0.9Ml ,pm ) + 0.1Gl }Ll=1 ▷ weighted mean

9: {Vl = N (0.99Vl ,pv ) + 0.01
��Gl

��}Ll=1
10: {V̂l = max(V̂l ,Vl )}Ll=1
11: {Gl = Ml

2
npow(|V̂l |+ϵ ) }

L
l=1 ▷ history-based scaling

12: {Gl
(pд )
= N (Gl ,pд)}Ll=1 ▷ weight gradient precision pд

13: {Wl
(pw ) = S(Wl

(pw ) − ηGl
(pд )
,pw )}Ll=1

Section 2.2, multiplication is a costly operation in MPC. Our insight

is that if W is ternary, we can replace multiplications by selections,

enabling much faster protocols. More concretely, we can compute

the product z =Wa as shown in Algorithms 5.

Algorithm 5: Ternary-Integer Matrix-Vector Product

Input:Matrix W ∈ {−1, 0, 1}n×m and vector a ∈ Zmq
z = (0)i ∈[n]
for i ∈ [n], j ∈ [m] do

if Wi, j > 0 then zi += aj
if Wi, j < 0 then zi −= aj

return z

A natural choice for implementing the functionality in Algo-

rithm 5 securely are MPC protocols that represent the computation

as a Boolean circuit. In our two-party setting natural choices are

garbled circuits and the GMW protocol [18]. In Boolean circuits,

the If-Then-Else construction corresponds to a multiplexer, and a

comparison with 0 is essentially free: it is given by the sign bit in a

two’s complement binary encoding. However, a circuit implemen-

tation of the computation above will require |W| additions and the

same number of subtractions, which need to implemented with

full-adders. Whereas, additions, if computed on additive shares, do

not require interaction and thus are extremely fast.

Our proposed protocol achieves the best of both worlds by

combining Boolean sharing and additive sharing. To this end, we

represent the ternary matrix W by two Boolean matrices W+ ∈
{0, 1}n×m and W− ∈ {0, 1}n×m , defined as W+i, j = 1 ⇔ Wi, j = 1

and W−
i, j = 1 ⇔ Wi, j = −1. Now, the product Wa can be rewritten

as W+a − W−a. This reduces our problem from Wa with ternary
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Protocol 6: Boolean-Integer Inner Product

Parties: P1 and P2
Input: Arithmetic shares of integer vector a ∈ Zmq and

Boolean shares of binary vector w ∈ {0, 1}m
Output: Arithmetic shares of z = w⊤a
1: Each Pi generates random values (zi, j )j ∈[m].
2: for j ∈ [m] do
3: Pi sets

mi,0 := ⟨wj ⟩i · [[aj ]]i − zi, j
mi,1 := ¬⟨wj ⟩i · [[aj ]]i − zi, j

4: P1 and P2 run OT(m1,0,m1,1, ⟨wj ⟩2), with P1 as Sender
and P2 as Chooser, for P2 to obtain z′

1, j
5: P1 and P2 run OT(m2,0,m2,1, ⟨wj ⟩1), with P2 as Sender

and P1 as Chooser, for P1 to obtain z′
2, j

6: Each Pi sets [[z]]i =
∑
j ∈[m](zi, j + z′i, j ).

W to two computations of Wa with binary W. Note that we can

use the same decomposition to split any matrix with inputs in a

domain of size k into k Boolean matrices, and thus our protocol is

not restricted to the ternary case.

Accordingly, at the core of our protocol is a two-party subproto-

col for computing additive shares of Wa, when W is Boolean-shared

among the parties and a is additively shared. In turn, this protocol

relies on a two-party subprotocol for computing additive shares of

the inner product of a Boolean-shared binary vector and an addi-

tively shared integer vector. As a first approach to this problem, we

show in Protocol 6 a solution based on oblivious transfer. We state

and prove the correctness of Protocol 6 in Appendix C.

One can think of Protocol 6 as a component-wise multiplication

protocol, as we will use it also for that purpose. The only modifica-

tion required is in step 6, i.e. the local aggregation of additive shares

of the result of component-wise multiplication. We could directly

use this protocol to implement our desired matrix-vector multiplica-

tion functionality, and this leads to very significant improvements

due to the concrete efficiency of OT Extension implementations.

However, we can further optimize this to obtain our final protocol.

The use of OT in Protocol 6 has similarities with the GMW pro-

tocol, and is inspired by the OT-based method due to Gilboa for

computing multiplication triplets, and discussed in [11]. A similar

idea was used in the protocol for computing the sigmoid func-

tion by Mohassel and Zhang [41]. Moreover, concurrently to this

work, Riazi et al. [48] have proposed OT-based protocols for secure

prediction using DNNs. They propose a protocol called Oblivious

Conditional Addition (OCA) that is analogous to Protocol 6. While

their work only addresses secure prediction, our improved protocol

presented in the next section is relevant in their setting as well.

4.1.1 Optimizations: Correlated OT and Packing. In the previous

section, our protocol assumed a standard OT functionality, but actu-

ally, we can exploit even more efficient primitives. Our optimization

of Protocol 6, presented in Protocol 7 exploits COT in a way to im-

plement our required inner product functionality. The idea behind

Protocol 7 is simple: note that in Protocol 6 parties choose their

random shares zi, j of intermediate values in the computation, and

they use them to mask OT messages. However, as we only require

Protocol 7: Boolean-Integer Inner Product viam×COTℓ
Parties: P1 and P2
Input: ℓ-bit arithmetic shares of integer vector a ∈ Zmq and

Boolean shares of binary vector w ∈ {0, 1}m
Output: Arithmetic shares of z = w⊤a
1: Each party Pi constructs a vector of correlation functions

f i = (fi, j (x))j ∈[m],
fi, j (x) = x − [[wj ]]i · [[aj ]]i + ¬[[wj ]]i · [[aj ]]i

2: The parties runm × COTℓ(f 1, [[wj ]]2) with P1 acting as

the Sender, and P1 obtains x while P2 obtains y.
3: The parties runm × COTℓ(f 2, [[wj ]]1) with P2 acting as

the Sender, and P2 obtains x′ while P1 obtains y′.
4: P1 sets [[z]]1 =

∑
j ∈[m]([[wj ]]1 · [[aj ]]1 − xj + y′j )

5: P2 sets [[z]]2 =
∑
j ∈[m]([[wj ]]2 · [[aj ]]2 − x′j + yj )

Protocol 8: Ternary-Integer Matrix-Vector Product

Parties: P1 and P2
Input: Arithmetic shares of integer vector a ∈ Zmq and

Boolean shares of binary matrices

W+,W− ∈ {0, 1}n,m
Output: Arithmetic shares of z =W+a − W−a

1: P1 and P2 compute [[W+a]] usingn executions of Protocol 7.

2: P1 and P2 compute [[W−a]] using n executions Protocol 7.

3: Pi sets [[z]]i := [[W+a]]i − [[W+a]]i .

the zi, j ’s to be random, one could in principle let the OT choose

them. Note also that the parties can choose their share of the result

as a function of their inputs, which can be implemented in COT.

This is done in lines 4 and 5 of Protocol 7. The next Lemma states

the correctness of Protocol 7. As the protocol consists of just two

executions ofm × COTℓ and local additions its security is trivial,

while we present the proof of correctness in Appendix D. Finally,

note that, as in the case of Protocol 6, it is easy to turn Protocol 7

into a protocol for component-wise multiplication.

Lemma 4.1. Let w and a be a Boolean and integer vector, respec-

tively, shared among parties P1,P2. Given anm × COTℓ protocol, the

two-party Protocol 7 is secure against semi-honest adversaries, and

computes an additive share of the inner product w⊤a among P1,P2.

Protocol 8 achieves our goal of computing an arithmetic share

of Wa =W+a − W−a, for an n ×m matrix. This is easily achieved

using 2n calls to Protocol 7. This translates into 4n executions of

m × COTℓ , plus local extremely efficient additions. Note that this

protocol is fully paralellizable, as all the COT executions can be run

in parallel.

Overall, our approach exploits the fact that W is ternary without

having to perform any Boolean additions in secure computations.

Our experiments in Section 5 show concrete gains over the prior

state-of-the-art.

Communication costs. Using them × COTℓ Extension protocol

from [3], the parties running Protocol 7 sendm(τ + ℓ) bits to each

other to compute inner products of lengthm, where τ is the security
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parameter (128 in our implementation). This results in nm(τ + ℓ)
bits being sent/received by each party for the whole matrix-vector

multiplication protocol. In contrast, the OT-based approaches to

matrix-vector multiplication entirely based on arithmetic sharing

from [41] would require at least nmℓ(τ +ℓ) (assuming optimizations

like packing and vectorization).

Packing for matrix-vector multiplication. While the forward

pass of quotient operates over 8-bit vectors (and thus q=8 in Pro-

tocol 8), the value of ℓ in implementations ofm × COTℓ is 128, i.e.,

the AES block size. However, we can exploit this to pack 128/8=16
vector multiplications against the same matrix for the same commu-

nication and computation. This is very useful in batched gradient

descent, as this results in 16x additional savings in communica-

tion and computation. This packing optimization was also used

in [41] for implementing an OT-based offline phase to matrix-vector

multiplications occurring in batched gradient descent.

4.2 Secure Forward Pass

Our protocol for the forward pass (Algorithm 1) is a sequential

composition of Protocol 8, and a garbled circuit protocol with three

components: (i) Evaluation of ReLU, (ii) normalization by a public

data-independent value αl (line 3 in Algorithm 1), and (iii) quantiza-

tion function Q(·) in eq. (2) in Section 3.1. The protocol is depicted

in Figure 3. Note that we only show a forward pass for a single

layer, but the protocol trivially composes sequentially with itself,

as input aℓ−1 and output aℓ are both secret-shared additively. Se-

curity follows directly from the security of the subprotocols, as

their outputs and inputs are always secret-shares. For scalability,

we describe an efficient circuit implementation of (i)-(iii). In our

proposed circuit P1 inputs its share [[z]]1, and a random value cho-

sen in advance that will become its share of the output, denoted

[[aℓ]]1. In the garbled circuit, z is first reconstructed (this requires

|z| parallel additions). For component (i), ReLU, we exploit the fact

that the entries in z are encoded in binary in the circuit using two’s

complement as zi = (bi,k · · ·bi,1), where bi,k = 1 ⇔ zi < 0. Hence

ReLU(zi ) = (¬bi,k ) · bi,k . Note that this is very efficient, as it only

requires to evaluate k |z| NOT and AND gates. The next two steps,

(ii) normalization and (iii) quantization are extremely cheap, as

they can be implemented with logical and arithmetic shifts with-

out requiring any secure gate evaluation. Finally, to construct P2’s
output we need to perform a subtraction inside the circuit to com-

pute [[aℓ]]2 = aℓ − [[aℓ]]1. Altogether this means that our forward

pass requires execution of Protocol 8 and a garbled circuit protocol

to evaluate a vector addition, a vector subtraction, and a linear

number of additional gates. Moreover, note that this garbled circuit

evaluation can be parallelized across components of the vector z.

4.3 Secure Backward Pass

Figure 4 shows our protocols for the backward pass (Algorithm 2).

Analogous to the forward pass, we depict the pass for one layer,

and observe that all its inputs and outputs are secret-shared. Hence,

it can be easily composed sequentially across layers, and with the

forward pass, and its security follows trivially from the security of

each of the subprotocols.

The protocol works via a sequence of subprotocols. Each of

them produces a result shared among the parties P1,P2 either as

Party 1 MPC Party 2

⟨Wℓ,+ ⟩1 , ⟨Wℓ,− ⟩1 ,
[[aℓ−1]]1

⟨Wℓ,+ ⟩2 , ⟨Wℓ,− ⟩2 ,
[[aℓ−1]]2

Compute arithmetic shares of

z =Wℓaℓ−1 =Wℓ,+aℓ−1−Wℓ,−aℓ−1
(Protocol 8)

[[z]]1

[[aℓ ]]1

[[z]]2

r = ReLU(z)

rα = r ◦ 2−α

aℓ = Q (rα , pa )

[[aℓ ]]2 = aℓ − [[aℓ ]]1
Garbled Circuit [[aℓ ]]2

Figure 3: Our MPC protocol for private prediction (forward

pass). We compose three protocols to evaluate one layer of

the form f (Wa), with ternary W, and where f = ReLU.

a Boolean-share or an additive share. As in the forward pass, this

protocol leverages Protocol 8, as well as Protocol 7 for component-

wise multiplication. Recall that the goal of the backward pass is

to recompute ternary weight matrices {Wℓ}L
ℓ=1

by means of a

gradient-based procedure. As {Wℓ}L
ℓ=1

is represented in our MPC

protocol by pairs of binary matrices, the protocol to be run for each

layer ℓ takes as inputs the Boolean-shares of such matrices, i.e.,

Wℓ,−
and Wℓ,+

, from each party. Moreover, the parties contribute

to the protocol arithmetic shares of the input to each layer aℓ

computed in the forward pass, as well as the target values y.
The first step of the backward pass is a data-dependent normal-

ization of the activation gradient eℓ , followed by the quantization

step that we described in the forward pass, as shown in Figure 4.

We now describe the design of the Boolean circuit used to compute

these steps.

Normalization by the infinite norm. Our goal is to design a

(small) circuit that, given e, computes e/2npow(max{ |e | })
. A naive

circuit would compute the absolute value of every entry |e|, com-

pute the maximum value max{|e|}, compute 2
⌈log

2
(max{ |e | })⌉

, and

finally compute a division. However, computing exponentiation

and logarithm in a garbled circuit would be prohibitively expen-

sive. Such circuits are large, and we have to do this computation in

each layer ℓ, as many times as the number of total iterations. To

overcome this we apply two crucial optimizations: (i) approximate

max{|e|} by bitwise OR of all values |ei |, and (ii) compute npow
with an efficient folklore procedure for obtaining the number of

leading zeros in a binary string. This requires only b OR gates and

log(b) arithmetic right shits and additions, where b is the bitwidth

of the entries of e (8 in our applications) [28]. Also note that the

division can be computed as an arithmetic right shift. An important

remark is that the denominator is a private value in the circuit,

which means that, although we can use right shift for division, our

circuit needs to first compute all possible right shifts and then select

the result according to the value of npow(max{|e|})). This involves
9



a subcircuit linear in b, and since in our case b=8 we once again
benefit from having small bitwidth, by trading a small overhead for

costly divisions, logarithms, and exponentiations.

Derivatives of ReLU and saturation. Computing derivatives

of ReLU and saturation S(·) can be done efficiently in a Boolean

representation, as they lie in {0, 1}. Specifically, computation only

involves extracting the sign bit for ReLU, and ANDing a few bits for

saturation. Ultimately we need to compute e◦d, for d = ReLU
′(a) ◦

S ′(a) (line 4 in Algorithm 2). Not that this is a Boolean combination

of integers, so we can alternate between Boolean and arithmetic

shares and compute it with Protocol 7 (for component-wise product).

We can further optimize the procedure by computing ⟨d⟩i in the

forward pass, since ReLU is already used there. This is commonly

done in ML implementations in the clear.

The remainder of the backward pass involves (i) computing el−1

(the rest of line 4 in Algorithm 2), for which we use Protocol 8, and

(ii) an outer product between 8-bit vectors al−1
⊤

e (line 5). For (ii)

we use a vectorized version of the OT-based multiplication protocol

presented originally in [16], and used in [11, 41].

Overall, this makes our backward pass very efficient, involving

three small garbled circuits (two can be parallelized), and relies

heavily on oblivious transfer computations.

SGD. To implement Algorithm 3 we need to additionally keep

higher precision 8-bit matrices {Wℓ
(pw )}

L
ℓ=1

as arithmetic shares.

We ternarize these to obtain our weights W, which we implement

in the natural way with a small garbled circuit involving 2 compar-

isons. The same operations for quantization and normalization of e
can be used for G.

AMSGrad. Almost all of the operations in AMSGrad (Algorithm 4):

quantization, normalization, saturation, and absolute value have

been described as part of the previous protocols. The only addition

is element-wise maximum (line 10), which we do via a comparison

of Boolean shares.

Convolutional & residual layers. Although we have only de-

scribed a fully connected layer, extending this protocol to convolu-

tional layers is straightforward. The forward and backward passes

of convolutional layers can be written using the same steps as Algo-

rithms 1 and 2 with weight-reshaping. And max-pooling operations

are simply comparisons, efficiently implemented in Boolean shares.

Similarly, for residual networks, we only introduce integer addi-

tions in the forward pass (which we can perform on additive shares)

and another computation of d for the backward pass.

5 Experiments

In this section, we present our experimental results for secure DNN

training and prediction.

Experimental Settings. The experiments were executed over two

Microsoft Azure Ds32 v3 machines equipped with 128GB RAM and

Intel Xeon E5-2673 v4 2.3GHz processor, running Ubuntu 16.04.

In LAN experiments, machines were hosted in the same region

(West Europe) with an average latency of 0.3ms and a bandwidth

of 1.82GB/s. For WAN, the machines were hosted in two different

regions (North Europe & East US), with an average latency of 42ms

and a bandwidth of 24.3 MB/sec. The machine specifications were

Party 1 MPC Party 2

[[ai]]1 , [[y]]1 , [[Wℓ,+]]1 , [[Wℓ,−]]1 , [[W̄ℓ ]]1 [[ai]]2 , [[y]]2 , [[Wℓ,+]]2 , [[Wℓ,−]]2 , [[W̄ℓ ]]2

[[eℓ ]]1 = [[ai]]1 − [[y]]1 [[eℓ ]]2 = [[ai]]2 − [[y]]2

r = eℓ/2npow(max{|eℓ |})

e = Q (r, pe )

Garbled Circuit

[[e]]1 [[e]]2
d = ReLU

′(a) ◦ S′(a)
(Garbled circuit)

⟨d⟩1 ⟨d⟩2u = e ◦ d
(Prococol 7)

[[u]]1 [[u]]2eℓ−1 =Wℓu =Wℓ,+u − Wℓ,−u
(Protocol 8)

Gl = aℓ−1⊤eℓ
(OT-based multiplication)

[[eℓ−1]]1 [[eℓ−1]]2

[[G]]1 [[G]]2

Figure 4: Our protocol for the backward pass, corresponding

to Algorithms 2 from Section 3.

chosen to be comparable with the ones in [41], hence enabling

direct running time comparisons.

Implementation. We use two distinct code bases. We use the

EMP-toolkit [55] to implement our secure protocols for forward

and backward passes, as described in Section 4. EMP is written in

C++ and offers efficient implementations of OT and COT exten-

sion [3]. We extended the semi-honest COT implementation to the

functionality required for Protocol 7, as it is currently limited to

correlation functions of the form f (x) = x ⊕∆ (the ones required by

Yao’s garbled circuits protocol). This code base was used for timing

results. We developed a more versatile insecure Python implemen-

tation based on Tensorflow[1] for accuracy experiments. While

this implementation does not use MPC, it mirrors the functionality

implemented using the EMP-toolkit.

Evaluations. For training over QUOTIENT, we use two weight

variables as described in Section 3: (i) ternary (2-bit) weights for the

forward and backward passes, and (ii) 8-bit weights for the SGD

and AMSgrad algorithms. We use 8-bits for the quantized weight

gradients (д), activations (a) and activation gradients (e).
As our protocols are online, to compare with other approaches

employing an offline phase, we take a conservative approach: we

compare their offline computation time with our total computation

time using similar computational resources. We adopt this strategy

because online phases for these approaches are relatively inexpen-

sive and could potentially involve a set-up overhead. Additionally,

our model could easily be divided into offline/online phases, but

we omit this for simplicity.

We employ a naive parallelization strategy: running independent

processes over a mini-batch on different cores. This speeds up the
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Network k QUOTIENT (s) GC (s) SecureML (OT) (s) SecureML (LHE) (s)

LAN

10
3

0.08 0.025 0.028 5.3

10
4

0.08 0.14 0.16 53

10
5

0.13 1.41 1.4 512

10
6

0.60 13.12 14* 5000*

10
7

6.0 139.80 140* 50000*

WAN

10
3

1.7 1.9 1.4 6.2

10
4

1.7 3.7 12.5 62

10
5

2.6 20 140 641

10
6

7.3 148 1400* 6400*

10
7

44 1527 14000* 64000*

Table 1: Comparison of our COT-based component-wise

multiplication of k-dimensional vectors with ternary fixed-

point multiplication using garbled circuits (GC) and Se-

cureML [41] (OT, LHE). One of the vectors hold only ternary

values.

Network n QUOTIENT (s) SecureML (OT Vec) (s) SecureML (LHE Vec) (s)

LAN

100 0.08 0.05 1.6

500 0.1 0.28 5.5

1000 0.14 0.46 10

WAN

100 1.7 3.7 2

500 2 19 6.2

1000 2.7 34 11

Table 2: Performance comparison of our matrix-vector mul-

tiplication approach with the vectorized approaches of Se-

cureML [41] (OT, LHE). Here we multiply a 128 × n ternary

matrix with an n-dimensional vector.

computation on average by 8-15x over LAN and by about 10-100x

over WAN depending on the number of parallelizable processes.

We leave more involved parallelization strategies to future work.

5.1 Data-independent benchmarking

In this section, we present the running times of the basic building

blocks that will be used for DNN prediction and training.

Component-wise Multiplication. Table 1 compares the running

times of our COT-based approach from Protocol 7 for computing

component-wise product with (i) an implementation of Algorithm 5

in a garbled circuit and (ii) two protocols proposed in SecureML [41]

for the offline phase. Their first protocol corresponds to Gilboa’s

method for oblivious product evaluation (the OT-based variant im-

plemented with a packing optimization). Their second is a sequence

of Paillier encryptions, decryptions, and homomorphic additions

(the LHE variant). For QUOTIENT and GC, one vector is ternary

and the other holds 128-bit values, while for OT and LHE both vec-

tors hold 32-bit values. Although, our protocols for multiplication

are independent and suitable for parallelization, here we bench-

mark without parallelization. QUOTIENT clearly outperforms all

other approaches as soon as we move past the set-up overhead of

the base OTs. Note that most DNN layers involve greater than 10
4

multiplications, which makes our approach more suitable for those

applications.

Matrix-Vector Product.As discussed in Section 4, our component-

wise multiplication directly translates into matrix-vector products

128 256 512 1024 2048
Size of the Layer (n)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ti
m
e 
(s
)

Matrix-Vector Product
Activation Function

Figure 5: Forward pass time

for single prediction over an

n × n fully connected layer.
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Figure 6: Forward and Back-

ward pass time over an n × n
fully-connected layer for 1

batch. Here batch size = 128.

with local additions as described in Protocol 8. However, the pro-

tocols from [41] benefit greatly from a vectorization optimization,

and thus a comparison of the matrix-vector multiplication tasks is

important. Table 2 compares the performance of implementation of

Protocol 8, for a ternary 128×n matrix and an n-dimensional vector.

Similar to Table 1, we populate the matrix with ternary values (2-bit

values) and the vector with up to 128-bit values. Our approach is at

least 5x faster than the vectorized LHE protocol from [41] on LAN,

and is roughly 10x faster than the OT protocol from [41] on WAN

for n ≥ 500. In general, the speedup increases as we increase the

number of computations.

Layer Evaluation. Furthermore, we benchmark the basic building

blocks of secure DNN training framework—forward and backward

pass for a variety of different layer sizes. Figure 5 shows the run-

ning time of QUOTIENT for the forward pass as we increase the

layer size. We split the total time into time spent on the matrix-

vector product (Protocol 6) and computation of activation function

(ReLU) using garbled circuits. Figure 6 shows the running time of

the forward and backward pass, over a single batch of size 128.

We report the running time of each of the three required function-

alities: quantization & scaling, gradient computation, and error

computation. As we increase the size of the layers, the garbled

circuit for the quantization phase starts to dominate over the COT

based matrix-matrix product required for the gradient computation.

This can primarily be attributed to the quantization and scaling of

the gradient matrix. Our COT-based matrix-vector multiplication

shifts the bottleneck from the multiplication to the garbled circuits

based scaling phase. Finding efficient protocols for that task is an

interesting task for future work. In particular, parallelized garbled

circuits and optimization of the matrix-matrix multiplication in the

gradient computation phase could be explored.

5.2 Experiments on Real-World Data

In this section, we evaluate our proposed QUOTIENT on real-world

datasets. We show that: (i) QUOTIENT incurs only a small accu-

racy loss with respect to training over floating point, and (ii) it is

more accurate than the state-of-the-art in fixed-point NN training,

namely WAGE [57]. Both (i) and (ii) hold for several state-of-the-art

architectures including fully connected, convolutional, and residual

layers, and for different types of data (for residual layer results see

the Appendix B). For our 2PC protocols, we show that (iii) 2PC-

QUOTIENT outperforms the existing secure training approach for
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DNNs SecureML [41], both in terms of accuracy and running time,

and both in the LAN and WAN settings. We first report the accu-

racy across a variety of datasets to show (i) and (ii) above. Then we

report running times for 2PC-QUOTIENT training and prediction

to argue (iii).

5.2.1 Datasets and Deep Neural Network Architectures. We evaluate

QUOTIENT on six different datasets. Five of these are privacy

sensitive in nature, as they include health datasets—Thyroid [45],

Breast cancer [8], MotionSense [38], Skin cancer MNIST [53] and a

financial credit dataset—German credit [12]. We also evaluate our

approach on MNIST [34] for the purpose of benchmarking against

prior work.

MNIST contains 60K training and 10K test grayscale (28 × 28) im-

ages of 10 different handwritten digits. We adopt the state of the art

floating point convolutional neural network LeNet [34] (32C5-BN-

32C5-BN-MP2-64C5-BN-64C5-BN-MP2-512FC-BN-DO-10SM)
2
into

a fixed-point equivalent of the form 32C5-MP2-64C5-MP2-512FC-

10MSE for secure training & inference. In addition, we explore

a variety of fully-connected neural networks 2×(128FC)-10MSE,

3×(128FC)-10MSE, 2×(512FC)-10MSE & 3×(512FC)-10MSE. We set

the learning to 1 for both SGD and AMSgrad optimizers.

MotionSense contains smartphone accelerometer and gyroscope

sensor data for four distinct activities namely walking, jogging, up-

stairs, and downstairs. For each subject, the dataset contains about

30 minutes of continuously recorded data. We use a rolling window,

of size 2.56 seconds each for extracting around 50K samples for train-

ing and 11K for testing. As proposed in [38] we use floating point

convolutional neural network 64C3-BN-MP2-DO-64C3-BN-MP2-

DO-32C3-BN-MP2-DO-32C3-BN-MP2-DO-256FC-BN-DO-64FC-BN-

DO-4SM and it’s fixed-point analogue of the form 64C3-MP2-64C3-

MP2-32C3-MP2-32C3-MP2-256FC-64FC-4MSE. We furthermore ex-

plore a fully connected architecture of the form 3×(512FC)-4MSE.

Thyroid contains 3.7K training sample and 3.4K test samples of

21 dimensional patient data. The patients are grouped into three

classes namely normal, hyperfunction and subnormal based on

their thyroid functioning. We use a fully-connected neural network

of the form 2×(100FC)-3SM for this dataset and its analogue fixed-

point network 2×(100FC)-3MSE.

Breast cancer contains 5547 breast cancer histopathology RGB

(50 × 50) images segregated into two classes—invasive ductal carci-

noma and non-invasive ductal carcinoma. We use the 90:10 split

for training and testing. We use a convolutional neural network

with 3×(36C3-MP2)-576FC-2SM and a fully-connected network of

the form 3×(512FC) along with their fixed point analogues.

Skin Cancer MNIST contains 8K training and 2K (28 × 28) der-
matoscopic RGB images. They have been grouped into seven skin

lesion categories. We use floating point network ResNet-20 [21].

ResNet-20 is made up of batch-normalisation, dropout, SoftMax

layers and employs cross-entropy loss for training in addition to

the residual layers. For the fixed-point version of ResNet-20 [21],

we exclude batch normalisation, average pooling, and SoftMax lay-

ers. In addition, we use a fully connected architecture of the form

2×(512FC)-7MSE for secure training.

2
BN, DO, and SM are batch-normalization, DropOut, and SoftMax respectively.

Dataset QUOTIENT (%) Floating point (%)

MNIST 99.38 99.48

MotionSense 93.48 95.65

Thyroid 97.03 98.30

Breast cancer 79.21 80.00

German credit 79.50 80.50

Table 3: Accuracy comparison of training over state of the

art floating point neural networks their fixed point equiva-

lents using QUOTIENT.

German credit contains 1k instances of bank account holders. they

have been divided into two credit classes—Good or Bad. Each indi-

vidual has 20 attributes (7 quantitative and 13 categorical). As a pre-

processing step, we normalize the quantitative variables and encode

the categorical variables using one-hot encoding. This amounts to

60 distinct feature for each individual in the dataset. We use the

80:20 split for training and testing. We use a fully-connected neural

network of the form 2×(124FC)-2SM and its fixed point analogue

for this dataset.

5.2.2 Accuracy. We evaluate the accuracy of QUOTIENT on dif-

ferent datasets and architectures. Also, we judge the impact of our

MPC-friendly modifications on accuracy. To do so we consider four

variants of QUOTIENT: (i) Our proposed QUOTIENT, with secure

AMSgrad optimizer (QUOTIENT[AMSgrad=Ours, Norm=Ours]) (ii)
QUOTIENTwith the standardAMSgrad optimizer (QUOTIENT[AMSgrad=Std,
Norm=Ours]) (described in Appendix A) (iii) QUOTIENT with our

proposed AMSgrad with the closest power of 2 (C-Pow2) functional-

ity instead of next power of 2 for quantization (QUOTIENT[AMSgrad=Ours,
Norm=WAGE]) (iv) QUOTIENT with the standard SGD optimizer

(QUOTIENT[SGD=Std, Norm=Ours]).

Comparison with Floating Point Training. As a baseline evalu-

ation of our training using QUOTIENT[AMSgrad=Ours, Norm=Ours],
we compare its performance (upon convergence) with the floating

point training counterparts in Table 3. For MNIST and Breast cancer

datasets QUOTIENT[AMSgrad=Ours, Norm=Ours] training achieves
near state of the art accuracy levels for MNIST and Breast Cancer,

while we differ by at most ∼2% for German credit, MotionSense

and Thyroid datasets.

Secure AMSgrad vs SGD. Figure 7 shows the training curves

for QUOTIENT over all the datasets. In particular, we compare

QUOTIENT[AMSgrad=Ours, Norm=Ours] and QUOTIENT[SGD=Std,
Norm=Ours]. The secure AMSgrad optimizer converges faster than

the secure SGD optimizer especially for convolutional neural net-

works (used for MNIST, MotionSense, and Breast cancer).

Effects of our Optimizations. In order to evaluate the impact of

our optimizations, we compare training with floating point and

WAGE [57] with the first three variations of QUOTIENT in Figure 8.

For comparison with WAGE, we use the same fixed-point architec-

ture as the ones used with QUOTIENT with an exception of the

choice of optimizer— we employ our proposed secure AMSgrad,
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Figure 7: Performance comparison of secure AMSgrad and secure SGD for QUOTIENT. The plots compare training curves over

MNIST (using CNN), MotionSense, Thyroid, Breast cancer and German credit datasets.
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Figure 8: Performance comparison of three different variants of QUOTIENT training with floating point and WAGE [57]

training on MNIST, MotionSense, Thyroid, Breast cancer and German credit datasets. QUOTIENT[AMSgrad=Ours, Norm=WAGE]
and QUOTIENT[AMSgrad=Std, Norm=Ours]) differ from (QUOTIENT[AMSgrad=Ours, Norm=Ours] in using next power of 2 vs the

Closet Power of 2 and using standard AMSgrad by changing lines 9 and 11 of secure AMSgrad in Algorithm 4, respectively.

while WAGE uses a SGD optimizer in conjunction with random-

ized rounding. Moreover, the floating point analogues employ (a)

batch normalization and dropout in each layer, (b) softmax for the

last layer, and (c) cross-entropy loss instead of MSE. We observe

that QUOTIENT[AMSgrad=Ours, Norm=Ours] outperforms all the

other variants and is very close to the floating point training accu-

racy levels. We believe this is due to our modified AMSgrad, our

normalization scheme, and use of the next power of two (used

in QUOTIENT[AMSgrad=Ours, Norm=Ours]) which may act as an

additional regularization compared with the closest power of two.

5.2.3 End-to-End Running Times. In the previous section, we demon-

strated that large networks can match and improve upon the state-

of-the-art in fixed-point deep networks. However, often one can

use much simpler networks that are much faster and only sacrifice

little accuracy. In order to balance accuracy and run-time, we design

practical networks for each dataset and evaluate them here.

2PC-QUOTIENT Training. Table 4 shows the running time of

2PC-QUOTIENT for practical networks across all datasets over LAN

andWAN. We report accuracy and timings at 1,5 and 10 epochs. We

note that the training time grows roughly linearly with the number

of epochs. In all cases except the largest MNIST model, 10 epochs

finish in under 12 days. Note that standard large deep models can

easily take this long to train.

Our training protocols port nicely to the WAN settings. On aver-

age, our networks are only about 5x slower over WAN than over

LAN. This is is due to the low communication load and round-trip

of our protocols. As a result, we present the first 2PC pragmatic

neural network training solution over WAN.

2PC-QUOTIENT Prediction. In addition to secure training, for-

ward pass of QUOTIENT can be used for secure prediction. Table 5

presents prediction timings for all datasets over LAN. In addition

to fully connected networks, we also report the prediction timings

over convolutional neural networks (we report residual networks

in Appendix B). The timings have been reported for a single point

as well as 128 parallel batched predictions (this corresponds to clas-

sifying many data points in one shot). Except for the multi-channel

Breast cancer dataset, all single predictions take less than 1s and

all batched predictions take less than 60s.

Table 6 presents an equivalent of Table 5 under WAN settings.

Here we limit ourselves to only fully connected architectures. While

still practical, per prediction costs over WAN are, on an average,

20x slower than over LAN. This is due to the high initial setup

overhead over WAN. However, batched predictions are only about

4-6x slower over WAN.

Comparison with Previous Work. The only prior work for 2PC

secure training of neural networks that we are aware of is SecureML

[41]. They report the results for only fully connected neural network

training on the MNIST dataset. 2PC-QUOTIENT is able to achieve

its best accuracy levels in less than 16 hours over LAN and less than

90 hours over WAN. This amounts to a speedup of 5x over LAN and

a speedup of 50x over WAN. In particular, QUOTIENT is able to

make 2PC neural network training over WAN practical. Moreover,

our 2PC-QUOTIENT training is able to achieve near state of the art
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LAN

MNIST MotionSense Thyroid Breast cancer German credit

2 × (128FC) 3 × (128FC) 2 × (512FC) 3 × (512FC) 2 × (512FC) 2 × (100FC) 3 × (512FC) 2 × (124FC)

Epoch Time Acc Time Acc Time Acc Time Acc Time Acc Time Acc Time Acc Time Acc

1 8.72h 0.8706 10.05h 0.9023 27.13h 0.9341 38.76h 0.9424 10.07h 0.8048 0.08h 0.2480 14.51h 0.4940 0.03h 0.4100

5 43.60h 0.9438 50.25h 0.9536 135.65h 0.9715 193.80h 0.9745 50.35h 0.8847 0.40h 0.9341 72.55h 0.7360 0.15h 0.725

10 87.20h 0.9504 100.50h 0.9604 271.30h 0.9772 387.60h 0.9812 100.70h 0.8855 0.80h 0.9453 145.10h 0.7600 0.30h 0.7900

WAN

MNIST MotionSense Thyroid Breast cancer German credit

2 × (128FC) 3 × (128FC) 2 × (512FC) 3 × (512FC) 2 × (512FC) 2 × (100FC) 3 × (512FC) 2 × (124FC)

Epoch Time Acc Time Acc Time Acc Time Acc Time Acc Time Acc Time Acc Time Acc

1 50.74h 0.8706 57.90h 0.9023 139.71h 0.9341 190.10h 0.9424 44.43h 0.8048 0.52h 0.2480 74.10h 0.4940 0.15h 0.4100

5 253.7h 0.9438 289.5h 0.9536 698.55h 0.9715 950.5h 0.9745 222.15h 0.8847 2.6h 0.9341 370.5h 0.7360 0.75h 0.725

10 507.4h 0.9504 579h 0.9604 1397.1h 0.9772 1901h 0.9812 444.3h 0.8855 5.2h 0.9453 741h 0.7600 1.5h 0.7900

Table 4: Training time and accuracy values for various datasets and architectures after 1, 5 & 10 training epochs using QUO-

TIENT over LAN and WAN.

MNIST MotionSense Thyroid Breast cancer German credit

2 × (128FC) 3 × (128FC) 2 × (512FC) 3 × (512FC) Conv 2 × (512FC) Conv 2 × (100FC) 3 × (512FC) Conv 2 × (124FC)

Single Prediction(s) 0.356 0.462 0.690 0.939 192 0.439 134 0.282 3.58 62 0.272

Batched Prediction (s) 2.24 2.88 4.79 6.50 2226 2.91 1455 1.83 44.02 447 1.77

Table 5: Prediction time for various datasets and architectures using QUOTIENT over LAN. Here batch size = 128.

MNIST MotionSense Thyroid Breast cancer German credit

2 × (128FC) 3 × (128FC) 2 × (512FC) 3 × (512FC) 2 × (512FC) 2 × (100FC) 3 × (512FC) 2 × (124FC)

Single Prediction(s) 6.8 8.8 14.4 19.9 9.46 5.99 33.3 5.1

Batched Prediction (s) 8.3 10.9 22.6 29.9 12.08 6.89 69.1 7.3

Table 6: Prediction time for various datasets and architectures using QUOTIENT over WAN. Here batch size = 128.

accuracy of 99.38% on MNIST dataset, amounting to an absolute

improvement of 6% over SecureML’s error rates upon convergence.

In terms of secure prediction, 2PC-QUOTIENT is 13x faster for

single prediction and 7x faster for batched predictions over LAN in

comparison to SecureML. Furthermore, 2PC-QUOTIENT offers a

3x speed-up for a single prediction and 50x for batched predictions

versus SecureML over WAN.

6 Conclusion

In this paper, we introduced QUOTIENT, a new method to train

deep neural network models securely that leverages oblivious trans-

fer (OT). By simultaneously designing new machine learning tech-

niques and new protocols tailored to machine learning training,

QUOTIENT improves upon the state-of-the-art in both accuracy

and speed. Our work is the first we are aware of to enable secure

training of convolutional and residual layers, key building blocks of

modern deep learning. However, training over convolutional net-

works is still slow, and incurs on a large communication load with

our methods. Finding dedicated MPC protocols for fast evaluation

of convolutional layers is an interesting venue for further work.
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A Standard AMSgrad Optimizer

Algorithm 9 describes the steps for training deep neural networks

using standard AMSgrad optimizer. This can be summarised as:

(i) Sampling the input pair (a0,y) from the dataset D; (ii) Using
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Algorithm 9: Standard AMSgrad Optim. (∆ams)

Input:Weights {Wl }Ll=1,
Data D = {(a0i ,yi }

n
i=1, learning rate η

Output: Updated weights {Wl }Ll=1
1: Initialize: {Ml ,Vl }Ll=1 = 0

2: for t = 1, . . . ,T do

3: (a0(pa ),y(pa )) ∼ D
4: {al }Ll=1 = Forward({Wl }Ll=1, a

0)
5: {Gl }Ll=1 = Backward({Wl , al }Ll=1,y)
6: {Ml = 0.9Ml + 0.1Gl }Ll=1 ▷ weighted mean

7: {Vl = 0.99Vl + 0.01
(
Gl )2}Ll=1 ▷ weighted variance

8: {V̂l = max(V̂l ,Vl )}Ll=1
9: {Gl = Ml√

V̂l+ϵ
}Ll=1 ▷ history-based scaling with square root

10: {Wl =Wl − ηGl }Ll=1

LAN WAN

2 × (512FC) ResNet 2 × (512FC)

Single Prediction(s) 1.269 1982 17

Batched Prediction (s) 14.31 18122 39.9

Table 7: Prediction time for Residual and fully-connected

neural networks on Skin cancer MNIST using QUOTIENT

over LAN. Here batch size = 128.

2 × (512FC)

Epoch LAN WAN Acc

1 8.57h 38.44h 0.2078

5 42.85h 192.2h 0.7026

10 85.70h 384.4h 0.7157

Table 8: Training time and accuracy values of QUOTIENT on

Skin cancer MNSIT dataset after 1, 5 & 10 training epochs

using fully-connected neural network over both LAN and

WAN.

the input (a0) to obtain the prediction {al }Ll=1; (iii) Computing the

loss between the prediction {al }Ll=1 and the target output (y), and
computing the gradient Gl

for the loss ℓ(aLi ,yi ) with respect to

each of the weights Wl in the network; (iv) Updating the weights

using a weighted average of the past gradients, specifically, their

first and second moments Ml
and Vl

.

B Experiments on Residual Layers

In addition to fully-connected and convolutional layers, we also

evaluate 2PC-QUOTIENT on residual neural networks. Table 7

shows the prediction time of 2PC-QUOTIENT on Skin cancerMNIST

dataset using for both fully-connected and residual neural networks,

while we show its training timing using practical fully-connected

neural networks in Table. 8.

C Proof of Protocol 6

Lemma C.1. Let b and a be a Boolean and integer vector, respec-

tively, shared among parties P1,P2. Given a secure OT protocol, the

two-party Protocol 6 is secure against semi-honest adversaries, and

computes an additive share of the inner product b⊤a among P1,P2.

Proof. For the correctness, note that, for all j ∈ [m], bjaj =
bj [[aj ]]1 + bj [[aj ]]2, and that each of the OTs in steps 4 and 5 of

the algorithm are used to compute an additive share of each of

the terms of the sum. Concretely, in the OT in line 4 is used to

compute an additive share of bj [[aj ]]1 as z1, j + z′
1, j , and the value

received by party P2 ism1,[[bj ]]2 = −z1, j if [[bj ]]1 ⊕ [[bj ]]2 = 0 and

m
1,[[bj ]]2 = [[aj ]]i − z1, j otherwise. Security follows easily from the

fact that all messages in the OTs are masked with fresh randomness

zi, j and thus constructing simulators from a simulator for OT is

straightforward. □

D Proof of Protocol 7

Proof. Privacy follows directly from the correctness of the COT

subprotocol. To see that the protocol computes the right value, we

argue for a j ∈ [m], and distinguish cases according to all possible

values of the shares ofw j .

Case I (w j = 0; [[w j ]]1 = 1, [[w j ]]2 = 1): In this case f 1(x) =
x − [[aj ]]1 and f 2(x ′) = x ′ − [[aj ]]2. Upon execution of step 2, P1
obtains x and P2 obtains y = x − [[aj ]]1. Upon execution of step

3, P2 obtains x
′
and P1 obtains y

′ = x ′ − [[aj ]]2. P1 accumulates

[[zj ]]1 = [[aj ]]1 − x + x ′ − [[aj ]]2 into [[z]]1 and P2 accumulates

[[zj ]]2 = [[aj ]]1 − x ′ + x − [[aj ]]1 into [[z]]2. Then [[zj ]]1 + [[zj ]]2 = 0,

which isw jaj asw j = 0.

Case II (w j = 0; [[w j ]]1 = 0, [[w j ]]2 = 0): In this case f 1(x) =
x + [[aj ]]1 and f 2(x ′) = x ′ + [[aj ]]2. Upon execution of step 2,

P1 obtains x and P2 obtains y = x . Upon execution of step 3, P2
obtains x ′ and P1 obtains y′ = x ′ P1 accumulates [[zj ]]1 = −x + x ′
into [[z]]1 and P2 accumulates [[zj ]]2 = −x ′ + x into [[z]]2. Then
[[zj ]]1 + [[zj ]]2 = 0, which isw jaj asw j = 0.

Case III (w j = 1; [[w j ]]1 = 0, [[w j ]]2 = 1): In this case f 1(x) =
x + [[aj ]]1 and f 2(x ′) = x ′ − [[aj ]]2. Upon execution of step 2, P1
obtains x and P2 obtains y = x + [[aj ]]1. Upon execution of step 3,

P2 obtains x
′
, P1 obtains y

′ = x ′. P1 accumulates [[zj ]]1 = −x + x ′
into [[z]]1 and P2 accumulates [[zj ]]2 = [[aj ]]2 − x ′ + x + [[aj ]]1 into
[[z]]2. Then [[zj ]]1 + [[zj ]]2 = aj , which isw jaj asw j = 1.

Case IV (w j = 1; [[w j ]]1 = 1, [[w j ]]2 = 0): In this case f 1(x) =
x − [[aj ]]1 and f 2(x ′) = x ′ + [[aj ]]2. Upon execution of step 2,

P1 obtains x and P2 obtains y = x . Upon execution of step 3, P2
obtains x ′ and P1 obtains y′ = x ′ + [[aj ]]2. P1 accumulates [[zj ]]1 =
[[aj ]]1 − x + x ′ + [[aj ]]2 into [[z]]1, P2 accumulates [[zj ]]2 = −x ′ + x
into [[z]]2. Then, [[zj ]]1 + [[zj ]]2 = aj , which isw jaj asw j = 1. □
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