
Grammar Variational Autoencoder

Matt J. Kusner * 1 2 Brooks Paige * 1 3 José Miguel Hernández-Lobato 3

Abstract
Deep generative models have been wildly suc-
cessful at learning coherent latent representations
for continuous data such as natural images, art-
work, and audio. However, generative model-
ing of discrete data such as arithmetic expres-
sions and molecular structures still poses signifi-
cant challenges. Crucially, state-of-the-art meth-
ods often produce outputs that are not valid. We
make the key observation that frequently, dis-
crete data can be represented as a parse tree from
a context-free grammar. We propose a varia-
tional autoencoder which directly encodes from
and decodes to these parse trees, ensuring the
generated outputs are always syntactically valid.
Surprisingly, we show that not only does our
model more often generate valid outputs, it also
learns a more coherent latent space in which
nearby points decode to similar discrete outputs.
We demonstrate the effectiveness of our learned
models by showing their improved performance
in Bayesian optimization for symbolic regression
and molecule generation.

1. Introduction
Generative machine learning models have been used re-
cently to produce extraordinary results, from realistic mu-
sical improvisation (Jaques et al., 2016), to changing fa-
cial expressions in images (Radford et al., 2015; Upchurch
et al., 2016), to creating realistic looking artwork (Gatys
et al., 2015). In large part, these generative models have
been successful at representing data in continuous domains.
Recently there is increased interest in training generative
models to construct more complex, discrete data types such
as arithmetic expressions (Kusner & Hernández-Lobato,
2016), source code (Gaunt et al., 2016; Riedel et al., 2016)

*Equal contribution 1Alan Turing Institute 2University
of Warwick 3University of Cambridge. Correspondence
to: <mkusner@turing.ac.uk>, <bpaige@turing.ac.uk>,
<jmh233@cam.ac.uk>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

and molecules (Gómez-Bombarelli et al., 2016b).

To train generative models for these tasks, these objects
are often first represented as strings. This is in large part
due to the fact that there exist powerful models for text se-
quence modeling such as Long Short Term Memory net-
works (LSTMs) (Hochreiter & Schmidhuber, 1997), Gated
Recurrent Units (GRUs) (Cho et al., 2014), and Dynamic
Convolutional Neural Networks (DCNNs) (Kalchbrenner
et al., 2014). For instance, molecules can be represented by
so-called SMILES strings (Weininger, 1988) and Gómez-
Bombarelli et al. (2016b) has recently developed a gener-
ative model for molecules based on SMILES strings that
uses GRUs and DCNNs. This model is able to encode and
decode molecules to and from a continuous latent space,
allowing one to search this space for new molecules with
desirable properties (Gómez-Bombarelli et al., 2016b).

However, one immediate difficulty in using strings to rep-
resent discrete objects is that the representation is very brit-
tle: small changes in the string can lead to completely dif-
ferent objects, or often do not correspond to valid objects
at all. Specifically, Gómez-Bombarelli et al. (2016b) de-
scribed that while searching for new molecules, the prob-
abilistic decoder — the distribution which maps from the
continuous latent space into the space of molecular struc-
tures — would sometimes accidentally put high probability
on strings which are not valid SMILES strings or do not en-
code plausible molecules.

To address this issue, we propose to directly incorpo-
rate knowledge about the structure of discrete data using
a grammar. Grammars exist for a wide variety of dis-
crete domains such as symbolic expressions (Allamanis
et al., 2016), standard programming languages such as C
(Kernighan et al., 1988), and chemical structures (James
et al., 2015). For instance the set of syntactically valid
SMILES strings is described using a context free grammar,
which can be used for parsing and validation1.

Given a grammar, every valid discrete object can be de-
scribed as a parse tree from the grammar. Thus, we pro-
pose the grammar variational autoencoder (GVAE) which
encodes and decodes directly from and to these parse trees.
Generating parse trees as opposed to strings ensures that

1http://opensmiles.org/spec/open-smiles-2-grammar.html

Grammar Variational Autoencoder

all outputs are valid based on the grammar. This frees the
GVAE from learning syntactic rules and allows it to wholly
focus on learning other ‘semantic’ properties.

We demonstrate the GVAE on two tasks for generating dis-
crete data: 1) generating simple arithmetic expressions and
2) generating valid molecules. We show not only does our
model produce a higher proportion of valid outputs than a
character based autoencoder, it also produces smoother la-
tent representations. We also show that this learned latent
space is effective for searching for arithmetic expressions
that fit data, for finding better drug-like molecules, and for
making accurate predictions about target properties.

2. Background
2.1. Variational autoencoder

We wish to learn both an encoder and a decoder for map-
ping data x to and from values z in a continuous space.
The variational autoencoder (Kingma & Welling, 2014;
Rezende et al., 2014) provides a formulation in which the
encoding z is interpreted as a latent variable in a proba-
bilistic generative model; a probabilistic decoder is defined
by a likelihood function p

✓

(x|z) and parameterized by ✓.
Alongside a prior distribution p(z) over the latent variables,
the posterior distribution p

✓

(z|x) / p(z)p
✓

(x|z) can then
be interpreted as a probabilistic encoder.

To admit efficient inference, the variational Bayes approach
simultaneously learns both the parameters of p

✓

(x|z) as
well as those of a posterior approximation q

�

(z|x). This is
achieved by maximizing the evidence lower bound (ELBO)

L(�, ✓;x) = E
q

�

(z|x) [log p✓(x, z)� log q
�

(z|x)] , (1)

with L(�, ✓;x)  log p
✓

(x). So long as p
✓

(x|z) and
q
�

(z|x) can be computed pointwise, and are differentiable
with respect to their parameters, the ELBO can be max-
imized via gradient descent; this allows wide flexibility in
choice of encoder and decoder models. Typically these will
take the form of exponential family distributions whose pa-
rameters are the weights of a multi-layer neural network.

2.2. Context-free grammars

A context-free grammar (CFG) is traditionally defined as a
4-tuple G = (V,⌃, R, S): V is a finite set of non-terminal
symbols; the alphabet ⌃ is a finite set of terminal sym-
bols, disjoint from V ; R is a finite set of production rules;
and S is a distinct non-terminal known as the start symbol.
The rules R are formally described as ↵ ! � for ↵ 2 V
and � 2 (V [⌃)

⇤, with ⇤ denoting the Kleene closure. In
practice, these rules are defined as a set of mappings from a
single left-hand side non-terminal in V to a sequence of ter-
minal and/or non-terminal symbols, and can be interpreted
as ‘replacement’ instructions.

Repeatedly applying production rules beginning with a
non-terminal symbol defines a tree, with symbols on the
right-hand side of the production rule becoming child
nodes for the left-hand side parent. The grammar G thus
defines a set of possible trees extending from each non-
terminal symbol in V , produced by recursively applying
rules in R to leaf nodes until all leaf nodes are terminal
symbols in ⌃. The language of G is the set of all termi-
nal symbol sequences that can be generated as leaf nodes
in a tree. Given a string in the language (i.e., a sequence
of terminals), a parse tree is a tree rooted at S which has
this sequence of terminal symbols as its leaf nodes. The
ubiquity of context-free languages in computer science is
due in part to the presence of efficient parsing algorithms
to generate parse trees. For more background on CFGs and
automata theory, see e.g. Hopcroft et al. (2006).

Our work builds off the work of probabilistic context-free
grammars (PCFGs). A PCFG assigns probabilities to each
production rule in the grammar, and thus defines a proba-
bility distribution over parse trees (Baker, 1979; Booth &
Thompson, 1973). A string can be generated by repeat-
edly sampling and applying production rules, beginning at
the start symbol, until no non-terminals remain. Modern
approaches allow the probabilities used at each stage to de-
pend on the state of the parse tree (Johnson et al., 2007).

3. Methods
In this section we describe how a grammar can improve
variational autoencoders (VAE) for discrete data. It will
do so by drastically reducing the number of invalid out-
puts generated from the VAE. We illustrate our approach
on molecular data, however it will extend to any descrete
data that can be described by a grammar.

One glaring issue with a character-based VAE is that it may
frequently map latent points to sequences that are not valid,
hoping the VAE will infer from training data what consti-
tutes a valid sequence. Instead of implicitly encouraging
the VAE to produce valid sequences, we propose to give
the VAE explicit knowledge about how to produce valid se-
quences. We do this by using a grammar for the sequences:
given a grammar we can take any valid sequence and parse
it into a parse tree. A pre-order traversal on this parse tree
yields a sequence of production rules. Applying these rules
in order will yield the original sequence. Our approach then
will be to learn a VAE that produces sequences of grammar
production rules. The benefit is that it is trivial to generate
valid sequences of production rules, as the grammar de-
scribes the valid set of rules that can be selected at any
point during the generation process. Thus, our model is
able to focus on learning semantic properties of sequence
data without also having to learn syntactic constraints.

Grammar Variational Autoencoder

O

OH

'c1ccccc1'

smiles

chain
...

chain

branched
atom

atom

aromatic
organic

'c'

ringbond

digit

'1'

branched
atom

smiles chain
chain branched

atom

chain branched
atom

2

atom, ringbondbranched
atom

aromatic
organicatom

'c'aromatic
organic

3

ringbond digit

digit '1'

4 5
form parse tree extract rules convert to 1- hot vectors

input SMILES

map to latent space
6

chain,

...

......

...
chain branched atom

smiles chain
chain chain, branched atom

atom, ringbondbranched atom
atombranched atom
aromatic organicatom
aliphatic organicatom

ringbond digit

digit '1'

'c'aromatic organic
'C'aliphatic organic
'N'aliphatic organic

digit '2'

1
SMILES grammar

Figure 1. The encoder of the GVAE. We denote the start rule in blue and all rules that decode to terminal in green. See text for details.

3.1. An illustrative example

We propose a grammar variational autoencoder (GVAE)
that encodes/decodes in the space of grammar production
rules. We describe how it works with a simple example.

Encoding. Consider a subset of the SMILES grammar as
shown in Figure 1, box 1 . These are the possible pro-
duction rules that can be used for constructing a molecule.
Imagine we are given as input the SMILES string for ben-
zene: ‘c1ccccc1’. Figure 1, box 3 shows this molecule.
To encode this molecule into a continuous latent represen-
tation we begin by using the SMILES grammar to parse this
string into a parse tree (partially shown in box 2). This
tree describes how ‘c1ccccc1’ is generated by the grammar.
We decompose this tree into a sequence of production rules
by performing a pre-order traversal on the branches of the
parse tree from left-to-right, shown in box 4 . We convert
these rules into 1-hot indicator vectors, where each dimen-
sion corresponds to a rule in the SMILES grammar, box
5 . These 1-hot vectors are concatenated into the rows of

a matrix X of dimension T (X)⇥K, where K is the num-
ber of production rules in the SMILES grammar, and T (X)

is the number of production rules used to generate X.

We use a deep convolutional neural network to map the
collection of 1-hot vectors X to a continuous latent vector
z. The architecture of the encoding network is described in
the supplementary material.

Decoding. We now describe how we map continuous
vectors back to a sequence of production rules (and thus
SMILES strings). Crucially we construct the decoder so
that, at any time while we are decoding a sequence, the de-
coder will only be allowed to select a subset of production
rules that are ‘valid’. This will cause the decoder to only
produce valid parse sequences from the grammar.

We begin by passing the continuous vector z through a re-
current neural network which produces a set of unnormal-
ized log probability vectors (or ‘logits’), shown in Figure 2,
box 1 and 2 . Exactly like the 1-hot vectors produced
by the encoder, each dimension of the logit vectors cor-

responds to a production rule in the grammar. We can
again write these collection of logit vectors as a matrix
F 2 RT

max

⇥K , where T
max

is the maximum number of
timesteps (production rules) allowed by the decoder. Dur-
ing the rest of the decoding operations, we will use the rows
of F to select a sequence of valid production rules.

To ensure that any sequence of production rules generated
from the decoder is valid, we keep track of the state of the
parsing using a last-in first-out (LIFO) stack. This is shown
in Figure 2, box 3 . At the beginning, every valid parse
from the grammar must start with the start symbol: smiles,
which is placed on the stack. Next we pop off whatever
non-terminal symbol that was placed last on the stack (in
this case smiles), and we use it to mask out the invalid
dimensions of the current logit vector. Formally, for ev-
ery non-terminal ↵ we define a fixed binary mask vector
m

↵

2 [0, 1]K . This takes the value ‘1’ for all indices in
1, . . . ,K corresponding to production rules that have ↵ on
their left-hand-side.

In the previous example, the only production rule in the
grammar beginning with smiles is the first so we mask-
out every dimension except the first, shown in Figure 2,
box 4 . We then sample from the remaining unmasked
rules, using their values in the logit vector. To sample from
this masked logit at any timestep t we form the following
masked distribution:

p(x
t

= k|↵, z) = m
↵,k

exp(f
tk

)

P
K

j=1 m↵,k

exp(f
tj

)

, (2)

where f
tk

is the (t, k)-element of the logit matrix F. As
only the first rule is unmasked we will select this rule
smiles ! chain as the first rule in our sequence, box 5 .
Now the next rule must begin with chain, so we push it
onto the stack (Figure 2, box 3). We sample this non-
terminal and, as before, use it to mask out all of the rules
that cannot be applied in the current logit vector. We then
sample a valid rule from this logit vector: chain! chain,
branched atom. Just as before we push the non-terminals
on the right-hand side of this rule onto the stack, adding
the individual non-terminals in from right to left, such that
the leftmost non-terminal is on the top of the stack. For the

Grammar Variational Autoencoder

map from latent space
1 2

 ...

convert to logits

m
ax

 l
en

g
th

smiles

chain

chain, branched
atom

branched
atom

branched
atom,

atom,
branched

atomringbond,

aromatic
organic,

branched
atomringbond,

branched
atom

ringbond,

stack mask out invalid rules
pop first

non-terminal
sample rule &

push non-terminals
onto stack

chain smiles

chain branched
atom chain,

chain branched
atom

chain

smiles

chain

branched
atom atom, ringbond branched

atom

atom

aromatic
organic

ringbond

digit

branched
atom

atom aromatic
organic

'c'
aromatic
organic

ringbond digit

digit '1' digit,

 ...

3 4 5

concatenate
terminals

6 'c1ccccc1'

7

translate
molecule

Figure 2. The decoder of the GVAE. See text for details.

Algorithm 1 Sampling from the decoder
Input: Deterministic decoder output F 2 RT

max

⇥K ,
masks m

↵

for each production rule ↵
Output: Sampled productions X from p(X|z)

1: Initialize empty stack S , and push the start symbol S
onto the top; set t = 0

2: while S is nonempty do
3: Pop the last-pushed non-terminal ↵ from the stack S
4: Use Eq. (2) to sample a production rule R
5: Let x

t

be the 1-hot vector corresponding to R
6: Let RHS(R) denote all non-terminals on the right-

hand side of rule R, ordered from right to left
7: for non-terminal � in RHS(R) do
8: Push � on to the stack S
9: end for

10: Set X [X

>,x
t

]

>

11: Set t t+ 1

12: end while

next state we again pop the last rule placed on the stack and
mask the current logit, etc. This process continues until the
stack is empty or we reach the maximum number of logit
vectors T

max

. We describe this decoding procedure for-
mally in Algorithm 1. In practice, because sampling from
the decoder often finishes before t reaches T

max

, we intro-
duce an additional ‘no-op’ rule to the grammar that we use
to pad X until the number of rows equals T

max

.

We note the explicit connection between the process in Al-
gorithm 1 and parsing algorithms for pushdown automata.
A pushdown automaton is a finite state machine which
has access to a single stack for long-term storage, and are
equivalent to context-free grammars in the sense that ev-
ery CFG can be converted into a pushdown automaton, and
vice-versa (Hopcroft et al., 2006). The decoding algorithm
performs the sequence of actions taken by a nondetermin-
istic pushdown automaton at each stage of a parsing algo-
rithm; the nondeterminism is resolved by sampling accord-
ing to the probabilities in the emitted logit vector.

Contrasting the character VAE. Notice that the key
difference between this grammar VAE decoder and a

character-based VAE decoder is that at every point in the
generated sequence, the character VAE can sample any
possible character. There is no stack or masking opera-
tion. The grammar VAE however is constrained to select
syntactically-valid sequences.

Syntactic vs. semantic validity. It is important to note
that the grammar encodes syntactically valid molecules
but not necessarily semantically valid molecules. This is
mainly because of three reasons. First, certain molecules
produced by the grammar may be very unstable molecules
or not chemically-valid (for instance an oxygen atom can-
not bond to 3 other atoms as it only has 2 free electrons for
bonding, although it would be possible to generate this in
a molecule from the grammar). Second, the SMILES lan-
guage has non-context free aspects, e.g. a ringbond must be
opened and closed by the same digit, starting with ‘1’ (as is
the case for benzene ‘c1ccccc1’). The particular challenge
for matching digits, in contrast to matching grouping sym-
bols such as parentheses, is that they do not compose in a
nested manner; for example, ‘C12(CCCCC1)CCCCC2’ is
a valid molecule. Keeping track of which digit to use for
each ringbond is not context-free. Third, we note that the
GVAE can output an undetermined sequence if there are
still non-terminal symbols on the stack after processing all
T
max

logit vectors. While this could be fixed by a pro-
cedure that converts these non-terminals to terminals, for
simplicity we mark these sequences as invalid.

3.2. Training

During training, each input SMILES encoded as a sequence
of 1-hot vectors X 2 {0, 1}Tmax

⇥K , also defines a se-
quence of T

max

mask vectors. Each mask at timestep
t = 1, . . . , T

max

is selected by the left-hand side of the pro-
duction rule indicated in the 1-hot vector x

t

. Given these
masks we can compute the decoder’s mapping

p(X|z) =
T (X)Y

t=1

p(x
t

|z,x1:(t�1)), (3)

with the individual probabilities at each timestep defined as
in Eq. (2). We pad any remaining timesteps after T (X) up

Grammar Variational Autoencoder

Algorithm 2 Training the Grammar VAE
Input: Dataset {X(i)}N

i=1

Output: Trained VAE model p
✓

(X|z), q
�

(z|X)

1: while VAE not converged do
2: Select element: X 2 {X(i)}N

i=1 (or minibatch)
3: Encode: z ⇠ q

�

(z|X)

4: Decode: given z, compute logits F 2 RT

max

⇥K

5: for t in [1, . . . , T
max

] do
6: Compute p

✓

(x

t

|z) via Eq. (2), with mask m

x

t

and logits f
t

7: end for
8: Update ✓,� using estimates p

✓

(X|z), q
�

(z|X), via
gradient descent on the ELBO in Eq. (4)

9: end while

to T
max

with a ‘no-op’ rule, a one-hot vector indicating the
parse tree is complete and no actions are to be taken.

In all our experiments, q(z|X) is a Gaussian distribution
whose mean and variance parameters are the output of the
encoder network, with an isotropic Gaussian prior p(z) =
N (0, I). At training time, we sample a value of z from
q(z|X) to compute the ELBO

L(�, ✓;X) = E
q

�

(z|X) [log p✓(X, z)� log q
�

(z|X)] .

(4)

Following Kingma & Welling (2014), we apply a non-
centered parameterization on the encoding Gaussian distri-
bution and optimize Eq. (4) using gradient descent, learn-
ing encoder and decoder neural network parameters � and
✓. Algorithm 2 summarizes the training procedure.

4. Experiments
We show the usefulness of our proposed grammar vari-
ational autoencoder (GVAE)2 on two sequence optimiza-
tion problems: 1) searching for an arithmetic expression
that best fits a dataset and 2) finding new drug molecules.
We begin by showing the latent space of the GVAE and
a character variational autoencoder (CVAE), similar to
that of Gómez-Bombarelli et al. (2016b)3, on each of
the problems. We demonstrate that the GVAE learns a
smooth, meaningful latent space for arithmetic equations
and molecules. Given this we perform optimization in this
latent space using Bayesian optimization, inspired by the
technique of Gómez-Bombarelli et al. (2016b). We demon-
strate that the GVAE improves upon a previous character
variational autoencoder, by selecting an arithmetic expres-
sion that matches the data nearly perfectly, and by finding
novel molecules with better drug properties.

2Code available at: https://github.com/mkusner/grammarVAE
3https://github.com/maxhodak/keras-molecules

Character VAE Grammar VAE
3

*

x+exp(3)+exp(1) 3

*

x+exp(3)+exp(1)

2

*

2+exp(3)+exp(1) 3

*

x+exp(3)+exp(1)

3

*

1+exp(3)+exp(2) 3

*

x+exp(x)+exp(1/2)

2

*

1+exp3)+exp(2) 2

*

x+exp(x)+exp(1/2)

2

*

3+(x)+exp(x

*

3) 2

*

x+(x)+exp(1

*

x)

2

*

x+(2)+exp(x

*

3) 2

*

x+(x)+exp(x

*

x)

2

*

x+(1)+exp(x

*

x) 2

*

x+(1)+exp(x

*

x)

3

*

x+exp(1)+(x+3) 3

*

x+exp(1)+(x+3)

3

*

x+exp(3)+(x

*

3) 3

*

x+exp(1)+(x+3)

3

*

1+exp(3)+(2

*

1) 2

*

3+exp(x)+(x)

3

*

x+exp(3)+(2

*

1) 2

*

3+x+(x+3)

2

*

1+exp(3)+(x

*

2) 2

*

3+x+(x/3)

2

*

x+exp3)+xx(3) 2

*

2+3+(x

*

3)

2

*

2+3+exp(x

*

3) 2

*

2+3+exp(x

*

3)

x+1+exp(1)+sin(1

*

2) x+1+exp(1)+sin(1

*

2)

x+1+exp(1)+sin(1

*

2) x+1+exp(1)+sin(1

*

2)

1+3+exp(x)+(i

*

1) x/1+exp(x)+sin(x

*

2)

3+1+exp(2)+(1

*

1) x/x+sin(x)+exp(x

*

2)

x+2+exp(x)+(2

*

3) 3

*

x+sin(x)+(x

*

3)

x

*

3+exp(3)+(3

*

2) 3

*

x+sin(3)+(3

*

3)

3

*

3+sin(3)+(3

*

3) 3

*

3+sin(3)+(3

*

3)

3

*

x+sin(2)+(x

*

x) 3

*

x+sin(2)+(x

*

x)

x

*

1+exp(x)+ex

*

3) 3

*

x+sin(2)+(x

*

x)

x

*

2+exp(x)+ex

*

x) 3

*

x+sin(2)+(3

*

x)

x

*

2+exp(x)+(x

*

1) 3

*

x+exp(2)+(3

*

3)

x

*

3+exp(x)+(x

*

3) 3

*

x+exp(2)+(3

*

3)

x

*

1+exp(x)+(2

*

2) 3

*

x+exp(2)+(2

*

2)

3

*

x+exp(2)+(2

*

2) 3

*

x+exp(2)+(2

*

2)

Table 1. Linear interpolation between two equations (in bold, at
top and bottom of each cell). The character VAE often passes
through intermediate strings which do not decode to a valid equa-
tion (shown in red). The grammar VAE makes more fine-grained
perturbations at each stage.

4.1. Problems

We describe in detail the two sequence optimization prob-
lems we seek to solve. The first consists in optimizing
the fit of an arithmetic expression. We are given a set of
100,000 randomly generated univariate arithmetic expres-
sions from the following grammar:

S ! S ‘+ ’ T | S ‘⇤ ’ T | S ‘ / ’ T | T
T ! ‘ (’ S ‘) ’ | ‘ s i n (’ S ‘) ’ | ‘ exp (’ S ‘) ’
T ! ‘x ’ | ‘1 ’ | ‘2 ’ | ‘3 ’

where S and T are non-terminals and the symbol | sep-
arates the possible production rules generated from each
non-terminal. By parsing this grammar we can randomly
generate strings of univariate arithmetic equations (func-
tions of x) such as the following: sin(2), x/(3+ 1),
2+ x+ sin(1/2), and x/2 ⇤ exp(x)/exp(2 ⇤ x). We
limit the length of every selected string to have at most
15 production rules. Given this dataset we train both the
CVAE and GVAE to learn a latent space of arithmetic ex-
pressions. We propose to perform optimization in this la-
tent space of expressions to find an expression that best fits
a fixed dataset. A common measure of best fit is the test
MSE between the predictions made by a selected expres-
sion and the true data. In the generated expressions, the
presence of exponential functions can result in very large
MSE values. For this reason, we use as target variable
log(1 + MSE) instead of MSE.

Grammar Variational Autoencoder

For the second optimization problem, we follow (Gómez-
Bombarelli et al., 2016b) and optimize the drug properties
of molecules. Our goal is to maximize the water-octanol
partition coefficient (logP), an important metric in drug
design that characterizes the drug-likeness of a molecule.
As in Gómez-Bombarelli et al. (2016b) we consider a pe-
nalized logP score that takes into account other molecu-
lar properties such as ring size and synthetic accessibil-
ity (Ertl & Schuffenhauer, 2009). The training data for
the CVAE and GVAE models are 250,000 SMILES strings
(Weininger, 1988) extracted at random from the ZINC
database by Gómez-Bombarelli et al. (2016b). We describe
the context-free grammar for SMILES strings that we use
to train our GVAE in the supplementary material.

4.2. Visualizing the latent space

Arithmetic expressions. To qualitatively evaluate the
smoothness of the VAE embeddings for arithmetic expres-
sions, we attempt interpolating between two arithmetic ex-
pressions, as in Bowman et al. (2016). This is done by
encoding two equations and then performing linear inter-
polation in the latent space. Results comparing the char-
acter and grammar VAEs are shown in Table 1. Although
the character VAE smoothly interpolates between the text
representation of equations, it passes through intermediate
points which do not decode to valid equations. In con-
trast, the grammar VAE also provides smooth interpola-
tion and produces valid equations for any location in the
latent space. A further exploration of a 2-dimensional la-
tent space is shown in the appendix.

Molecules. We are interested if the GVAE produces a co-
herent latent space of molecules. To assess this we begin by
encoding a molecule. We then generate 2 random orthogo-
nal unit vectors in latent space (scaled down to only search
the neighborhood of the molecules). Moving in combina-
tions of these directions defines a grid and at each point in
the grid we decode the latent vector 1000 times. We se-
lect the molecule that appears most often as the representa-
tive molecule. Figure 3 shows this latent space search sur-
rounding two different molecules. Compare this to Figures
13-15 in Gómez-Bombarelli et al. (2016b). We note that
in each plot of the GVAE the latent space is very smooth,
in many cases moving from one grid point to another will
only change a single atom in a molecule. In the CVAE
(Gómez-Bombarelli et al., 2016b) we do not observe such
fine-grained smoothness.

4.3. Bayesian optimization

We now perform a series of experiments using the autoen-
coders to produce novel sequences with improved proper-
ties. For this, we follow the approach proposed by Gómez-
Bombarelli et al. (2016b) and after training the GVAE, we

train an additional model to predict properties of sequences
from their latent representation. To propose promising new
sequences, we can start from the latent vector of an encoded
sequence and then use the output of this predictor (includ-
ing its gradient) to move in the latent space direction most
likely to improve the property. The resulting new latent
points can then be decoded into corresponding sequences.

In practice, measuring the property of each new sequence
could be an expensive process. For example, the sequence
could represent an organic photovoltaic molecule and the
property could be the result of an expensive quantum me-
chanical simulation used to estimate the molecule’s power-
conversion efficiency (Hachmann et al., 2011). The se-
quence could also represent a program or expression which
may be computationally expensive to evaluate. Therefore,
ideally, we would like the optimization process to perform
only a reduced number of property evaluations. For this,
we use Bayesian optimization methods, which choose the
next point to evaluate by maximizing an acquisition func-
tion that quantifies the benefit of evaluating the property at
a particular location (Shahriari et al., 2016).

After training the GVAE, we obtain a latent feature vector
for each sequence in the training data, given by the mean
of the variational encoding distributions. We use these vec-
tors and their corresponding property estimates to train a
sparse Gaussian process (SGP) model with 500 inducing
points (Snelson & Ghahramani, 2005), which is used to
make predictions for the properties of new points in la-
tent space. After training the SGP, we then perform 5 it-
erations of batch Bayesian optimization using the expected
improvement (EI) heuristic (Jones et al., 1998). On each
iteration, we select a batch of 50 latent vectors by sequen-
tially maximizing the EI acquisition function. We use the
Kriging Believer Algorithm to account for pending evalua-
tions in the batch selection process (Cressie, 1990). That is,
after selecting each new data point in the batch, we add that
data point as a new inducing point in the sparse GP model
with associated target variable equal to the mean of the GP
predictive distribution at that point. Once a new batch of 50
latent vectors is selected, each point in the batch is trans-
formed into its corresponding sequence using the decoder
network in the GVAE. The properties of the newly gener-
ated sequences are then computed and the resulting data
is added to the training set before retraining the SGP and
starting the next BO iteration. Note that some of the new
sequences will be invalid and consequently, it will not be
possible to obtain their corresponding property estimate. In
this case we fix the property to be equal to the worst value
observed in the original training data.

Arithmetic expressions. Our goal is to see if we can
find an arithmetic expression that best fits a fixed dataset.
Specifically, we generate this dataset by selecting 1000

Grammar Variational Autoencoder

O
O

O

O

F

H

NH

OH
H

H

N
OH

NH
OH

NH
OH NH2

NH2

NH2

NH2

NH2

NH2

NH
NH

NH

NH2 NH

NH

NH2

NH

N

N

NH

N N

OH

H

H

NHHO

O

H

NH

HO

OH OH

OH
NHNH NHNH

NH

NH

N

N

NH

N
NH

NH

NH

NH

N

HO

N

O

NH
HO

NH
OH

O O
OH

OH

NH

N
NH

NH

NH

NH

NH

NH

NH
N

C+NH
N

OH

N

NH
HO

NH
HO

NH
HO HO

O

NH

O

NN

H

N
N

NH
Cl

N

NH
HO

NH
HO

NH NH

Cl

OH OH

O

N
N

O
NH

NH
N

Cl

NH
N

Cl

N

Cl

N

Cl

NH
HO

NH
HO

NH

Cl OH

HO

OH OH

OHF

NH
N

Cl

NH
N

Cl

N

Cl

NO NO NO
HO

Cl

Cl OH

N

O

Cl Cl

HO
O NO NO

Cl

O N

Cl

O O

S

O

S

O
S

Cl

IH2

O

O O

S

O

S

O

S

Cl

O

Cl

O O

S

O S

NH
O

S

C-

F S

O
S

O

S

O

S

O

S

O

S

HO

S

Cl

HO S

Cl

NH

O

NH

S

OH

O
O

S
OH

Br

O

S

O

S

O

S

O
S

O

S

O

O

O

HO

O

HO

S

HO

S

HO O

Cl

O

Cl

S
OH

C-

F

O

OH

O

O

OH

O

O

OH

O

S

O

O

Cl

O O O

O

O

O

OH

O

O

OH

O

S

OHC-

F

O

OH

O

O

OH

O

OH

O

N

OH

Cl
OH

N

O

OH

O

O O O
Cl

O

Br

O
Cl

O

Br

O
Cl

O

OH

O
Cl

OH

O

N
N

NH

N
O

N
N

NH

N

O
N

N

NH

NH NH

O
N

N

NH

NH NH

O
N

N

NH

N N

O

N
N

HS
N

O

N

O
SH

N

O

O
N

N

O

N
S

NH
NH

O

N
O

N
N

O

NO

NH+
O

NO

NH+

SH

O

NO

NH+

SH

O
N S

NH

O

N

N NH O
N

N

NH

NH

O
N

N

NH

NH

O

N
N

NH

O

N

N S

N

O

N

O
SH

N

O

N

O
SH

N

O
N

N

NH N

O

N
S

NH
NH

O

N
O

N
NH

O

NO

NH+
O

NO

NH+

SH

O

N

N

S

OH
O

N

N

S

OH

O

N
N

SH

O

N

N N

O
N

N

NH

S

N N

S

N

O

N

O
SH

N

O
N

N

N

O
N

N

S N

O
N

N

NH N

O

N

N
N

N

O

N
O

N
N

O

N
O

NH
N

O
NH

N
O

NH

O

NH

O

NH

O

NH

NH
O

N

N

NH

O
N

N

NH

O
N

N

N

O
N

N

S N
N

N
S NH

NH
N

S NH

NH

O

N
N

NH
N

O NH

NH

OH

O
O

O

O

O

NH

O

NH

O

NH

O

S NH

Cl

O

S

O
N

N

N

O
N

N

S N
N

N
S NH

NH
N

N
S NH

NH

O NH

Cl

O
C-

O O

O

O

O

O

OH
O

O

Br
O

O

NH2
O

Br
NH

Cl

Br
NH

Cl Br

N

N

NH
O

NH

NH

F

O

N
N

O

NH

Cl

O
NH

NH

C-
O

NH

C-
O

C-

O

O

O

OH
O

O

OH
O

O

OH
O

O

OH
O

O

OH
O

Br

Cl O
N

N

N

NH

Cl
N

N

N

NH

S
NH

SHNH

C-

O

NH

O

O

NH

O

O

O

O

OH
O

O

OH
O

O

OH
O

O

OH
O

O

OH
O O

N

O

N
N

Cl

O

N

N
N

S NH

NH N

C-

F

O

NH

C-
F

O

NH

O

O

NH

O

O

OH

NH

O

O

OH
O

O

OH
O

O

OH
O O

N

O

N

O

N

O

N N

O

Cl

O NH

NH

Br

O

NH

C-

F

O

NH

C-

F

O

NH

O

O

NH

O

O

OH

NH

O

O

OH
O

O
N

HO
O

N

O

N

O

N

O

N
N

O

O NH

NH

C-

F

O

NH

C-

Br

O

NH

N

OH

O

NH

N

OH

O

NH

N

OH

O

Cl

NH
N

OH

O

N

O
O

OH
O

N

O
HO

O

N

O

N
OH

O

N
OH

O

N
OH

O

NH

N

S

Br

O

NH

N

Br

O

NH

N

Br

O

NH

N

Br

O

NH

N

OH

O NH
NH

O

NNH

O O

NNH
OH

O

NNH
OH

O

N NH
OH

O

N
OH

O

N
OH

O

NH

N

NH

NH

NH
NH

N

O

NH

NH
IH2

Br

O

NH

IH2

Br

O

NH

IH2

Br

O

N

SH
O

O

N

O O

NNH
Br

O

NNH
Br

O

NNH
OH

O

NNH
OH

O

N NH
OH

O

N

O

NH

N

NH

O
O

O

O

F

H

NH

OH
H

H

N
OH

NH
OH

NH
OH NH2

NH2

NH2

NH2

NH2

NH2

NH
NH

NH

NH2 NH

NH

NH2

NH

N

N

NH

N N

OH

H

H

NHHO

O

H

NH

HO

OH OH

OH
NHNH NHNH

NH

NH

N

N

NH

N
NH

NH

NH

NH

N

HO

N

O

NH
HO

NH
OH

O O
OH

OH

NH

N
NH

NH

NH

NH

NH

NH

NH
N

C+NH
N

OH

N

NH
HO

NH
HO

NH
HO HO

O

NH

O

NN

H

N
N

NH
Cl

N

NH
HO

NH
HO

NH NH

Cl

OH OH

O

N
N

O
NH

NH
N

Cl

NH
N

Cl

N

Cl

N

Cl

NH
HO

NH
HO

NH

Cl OH

HO

OH OH

OHF

NH
N

Cl

NH
N

Cl

N

Cl

NO NO NO
HO

Cl

Cl OH

N

O

Cl Cl

HO
O NO NO

Cl

O N

Cl

O O

S

O

S

O
S

Cl

IH2

O

O O

S

O

S

O

S

Cl

O

Cl

O O

S

O S

NH
O

S

C-

F S

O
S

O

S

O

S

O

S

O

S

HO

S

Cl

HO S

Cl

NH

O

NH

S

OH

O
O

S
OH

Br

O

S

O

S

O

S

O
S

O

S

O

O

O

HO

O

HO

S

HO

S

HO O

Cl

O

Cl

S
OH

C-

F

O

OH

O

O

OH

O

O

OH

O

S

O

O

Cl

O O O

O

O

O

OH

O

O

OH

O

S

OHC-

F

O

OH

O

O

OH

O

OH

O

N

OH

Cl
OH

N

O

OH

O

O O O
Cl

O

Br

O
Cl

O

Br

O
Cl

O

OH

O
Cl

OH

O

N
N

NH

N
O

N
N

NH

N

O
N

N

NH

NH NH

O
N

N

NH

NH NH

O
N

N

NH

N N

O

N
N

HS
N

O

N

O
SH

N

O

O
N

N

O

N
S

NH
NH

O

N
O

N
N

O

NO

NH+
O

NO

NH+

SH

O

NO

NH+

SH

O
N S

NH

O

N

N NH O
N

N

NH

NH

O
N

N

NH

NH

O

N
N

NH

O

N

N S

N

O

N

O
SH

N

O

N

O
SH

N

O
N

N

NH N

O

N
S

NH
NH

O

N
O

N
NH

O

NO

NH+
O

NO

NH+

SH

O

N

N

S

OH
O

N

N

S

OH

O

N
N

SH

O

N

N N

O
N

N

NH

S

N N

S

N

O

N

O
SH

N

O
N

N

N

O
N

N

S N

O
N

N

NH N

O

N

N
N

N

O

N
O

N
N

O

N
O

NH
N

O
NH

N
O

NH

O

NH

O

NH

O

NH

NH
O

N

N

NH

O
N

N

NH

O
N

N

N

O
N

N

S N
N

N
S NH

NH
N

S NH

NH

O

N
N

NH
N

O NH

NH

OH

O
O

O

O

O

NH

O

NH

O

NH

O

S NH

Cl

O

S

O
N

N

N

O
N

N

S N
N

N
S NH

NH
N

N
S NH

NH

O NH

Cl

O
C-

O O

O

O

O

O

OH
O

O

Br
O

O

NH2
O

Br
NH

Cl

Br
NH

Cl Br

N

N

NH
O

NH

NH

F

O

N
N

O

NH

Cl

O
NH

NH

C-
O

NH

C-
O

C-

O

O

O

OH
O

O

OH
O

O

OH
O

O

OH
O

O

OH
O

Br

Cl O
N

N

N

NH

Cl
N

N

N

NH

S
NH

SHNH

C-

O

NH

O

O

NH

O

O

O

O

OH
O

O

OH
O

O

OH
O

O

OH
O

O

OH
O O

N

O

N
N

Cl

O

N

N
N

S NH

NH N

C-

F

O

NH

C-
F

O

NH

O

O

NH

O

O

OH

NH

O

O

OH
O

O

OH
O

O

OH
O O

N

O

N

O

N

O

N N

O

Cl

O NH

NH

Br

O

NH

C-

F

O

NH

C-

F

O

NH

O

O

NH

O

O

OH

NH

O

O

OH
O

O
N

HO
O

N

O

N

O

N

O

N
N

O

O NH

NH

C-

F

O

NH

C-

Br

O

NH

N

OH

O

NH

N

OH

O

NH

N

OH

O

Cl

NH
N

OH

O

N

O
O

OH
O

N

O
HO

O

N

O

N
OH

O

N
OH

O

N
OH

O

NH

N

S

Br

O

NH

N

Br

O

NH

N

Br

O

NH

N

Br

O

NH

N

OH

O NH
NH

O

NNH

O O

NNH
OH

O

NNH
OH

O

N NH
OH

O

N
OH

O

N
OH

O

NH

N

NH

NH

NH
NH

N

O

NH

NH
IH2

Br

O

NH

IH2

Br

O

NH

IH2

Br

O

N

SH
O

O

N

O O

NNH
Br

O

NNH
Br

O

NNH
OH

O

NNH
OH

O

N NH
OH

O

N

O

NH

N

NH

Figure 3. Searching the 56-dimensional latent space of the GVAE, starting at the molecule in the center.

Figure 4. Plot of best expressions found by each method

Table 2. Results finding best expression and molecule
Problem Method Frac. valid Avg. score

Expressions GVAE 0.99±0.01 3.47 ±0.24
CVAE 0.86±0.06 4.75±0.25

Molecules GVAE 0.31±0.07 -9.57 ±1.77
CVAE 0.17±0.05 -27.42±8.12

input values, x, that are linearly-spaced between �10
and 10. We then pass these through our true function
1/3+ x+ sin(x ⇤ x) to generate the true target observa-
tions. We use Bayesian optimization (BO) as described
above search for this equation. We run BO for 5 itera-
tions and average across 10 repetitions of the process. Ta-
ble 2 (rows 1 & 2) shows the results obtained. The third
column in the table reports the fraction of arithmetic se-
quences found by BO that are valid. The GVAE nearly
always finds valid sequences. The only cases in which it
does not is when there are still non-terminals on the stack of

Table 3. Best expressions found by each method
Method # Expression Score

GVAE
1 x/1+ sin(3) + sin(x ⇤ x) 0.04
2 1/2+ (x) + sin(x ⇤ x) 0.10
3 x/x+ (x) + sin(x ⇤ x) 0.37

CVAE
1 x ⇤ 1+ sin(3) + sin(3/1) 0.39
2 x ⇤ 1+ sin(1) + sin(2 ⇤ 3) 0.40
3 x+ 1+ sin(3) + sin(3+ 1) 0.40

the decoder upon reaching the maximum number of time-
steps T

max

, however this is rare. Additionally, the GVAE
finds squences with better scores on average when com-
pared with the CVAE.

Table 3 shows the top 3 expressions found by GVAE and
CVAE during the BO search, together with their associ-
ated score values. Figure 4 shows how the best expression
found by GVAE and CVAE compare to the true function.
We note that the CVAE has failed to find the sinusoidal por-
tion of the true expression, while the difference between the
GVAE expression and the true function is negligible.

Molecules. We now consider the problem of finding new
drug-like molecules. We perform 5 iterations of BO, and
average results across 10 trials. Table 2 (rows 3 & 4) shows
the overall BO results. In this problem, the GVAE pro-
duces about twice more valid sequences than the CVAE.
The valid sequences produced by the GVAE also result in
higher scores on average. The best found SMILES strings
by each method and their scores are shown in Table 4; the
molecules themselves are plotted in Figure 5.

Grammar Variational Autoencoder

I

Cl

N

Cl

O

N

N

S

O

N
N

N

NH

O
S S

S

1st 2nd 3rd

GVAE

CVAE

Figure 5. Plot of best molecules found by each method.

Table 4. Best molecules found by each method
Method # SMILE Score

GVAE
1 CCCc1ccc(I)cc1C1CCC-c1 2.94
2 CC(C)CCCCCc1ccc(Cl)nc1 2.89
3 CCCc1ccc(Cl)cc1CCCCOC 2.80

CVAE
1 Cc1ccccc1CCCC1CCC1CCc1nncs1 1.98
2 Cc1ccccc1CCCC1(COC1)CCc1nnn1 1.42
3 CCCCCCCCC(CCCC212CCCnC1COC)c122csss1 1.19

4.4. Predictive performance of latent representation

We now perform a series of experiments to evaluate the pre-
dictive performance of the latent representations found by
each autoencoder. For this, we use the sparse GP model
used in the previous Bayesian optimization experiments
and look at its predictive performance on a left-out test set
with 10% of the data, where the data is formed by the latent
representation of the available sequences (these are the in-
puts to the sparse GP model) and the associated properties
of those sequences (these are the outputs in the sparse GP
model). Table 5 show the average test RMSE and test log-
likelihood for the GVAE and the CVAE across 10 different
splits of the data for the expressions and for the molecules.
This table shows that the GVAE produces latent features
that yield much better predictive performance than those
produced by the CVAE.

5. Related Work
Parse trees have been used to learn continuous representa-
tions of text in recursive neural network models (Socher
et al., 2013; Irsoy & Cardie, 2014; Paulus et al., 2014).
These models learn a vector at every non-terminal in the
parse tree by recursively combining the vectors of child
nodes. Recursive autoencoders learn these representations
by minimizing the reconstruction error between true child
vectors and those predicted by the parent (Socher et al.,
2011a;b). Recently, Allamanis et al. (2016) learn repre-
sentations for symbolic expressions from their parse trees.
Importantly, all of these methods are discriminative and do
not learn a generative latent space. Like our decoder, re-

Table 5. Test Log-likelihood (LL) and RMSE for the sparse GP
predictions of penalized LogP score from the latent space

Objective Method Expressions Molecules

LL GVAE -1.320±0.001 -1.739 ±0.004
CVAE -1.397±0.003 -1.812±0.004

RMSE GVAE 0.884 ±0.002 1.404 ±0.006
CVAE 0.975±0.004 1.504±0.006

current neural network grammars (Dyer et al., 2016) pro-
duce sequences through a linear traversal of the parse tree,
but focus on the case where the underlying grammar is un-
known and not context-free. Maddison & Tarlow (2014)
describe generative models of natural source code based on
probabilistic context free grammars and neuro-probabilistic
language models. However, these works are not geared to-
wards learning a latent representation of the data.

Learning arithmetic expressions to fit data, often called
symbolic regression, are generally based on genetic pro-
gramming (Willis et al., 1997) or other computationally de-
manding evolutionary algorithms to propose candidate ex-
pressions (Schmidt & Lipson, 2009). Alternatives include
running particle MCMC inference to estimate a Bayesian
posterior over parse trees (Perov & Wood, 2016).

In molecular design, searching for new molecules is tradi-
tionally done by sifting through large databases of poten-
tial molecules and then subjecting them to a virtual screen-
ing process (Pyzer-Knapp et al., 2015; Gómez-Bombarelli
et al., 2016a). These databases are too large to search
via exhaustive enumeration, and require novel stochastic
search algorithms tailored to the domain (Virshup et al.,
2013; Rupakheti et al., 2015). Segler et al. (2017) fit
a recurrent neural network to chemicals represented by
SMILES strings, however their goal is more akin to den-
sity estimation; they learn a simulator which can sam-
ple proposals for novel molecules, but it is not otherwise
used as part of an optimization or inference process itself.
Our work most closely resembles Gómez-Bombarelli et al.
(2016b) for novel molecule synthesis, in that we also learn
a latent variable model which admits a continuous repre-
sentation of the domain. However, both Segler et al. (2017)
and Gómez-Bombarelli et al. (2016b) use character-level
models for molecules.

6. Discussion
Empirically, it is clear that representing molecules and
equations by way of their parse tree generated from a
grammar outperforms text-based representations. We be-
lieve this approach will be broadly useful for representation
learning, inference, and optimization in any domain which
can be represented as text in a context-free language.

Grammar Variational Autoencoder

Acknowledgements

This work was supported by The Alan Turing Institute un-
der the EPSRC grant EP/N510129/1.

References
Allamanis, Miltiadis, Chanthirasegaran, Pankajan, Kohli,

Pushmeet, and Sutton, Charles. Learning continuous se-
mantic representations of symbolic expressions. arXiv
preprint arXiv:1611.01423, 2016.

Baker, James K. Trainable grammars for speech recogni-
tion. The Journal of the Acoustical Society of America,
65(S1):S132–S132, 1979.

Booth, Taylor L and Thompson, Richard A. Applying
probability measures to abstract languages. IEEE trans-
actions on Computers, 100(5):442–450, 1973.

Bowman, Samuel R, Vilnis, Luke, Vinyals, Oriol, Dai, An-
drew M, Jozefowicz, Rafal, and Bengio, Samy. Gener-
ating sentences from a continuous space. CoNLL 2016,
pp. 10, 2016.

Cho, Kyunghyun, Van Merriënboer, Bart, Gulcehre,
Caglar, Bahdanau, Dzmitry, Bougares, Fethi, Schwenk,
Holger, and Bengio, Yoshua. Learning phrase represen-
tations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

Cressie, Noel. The origins of kriging. Math. Geol., 22(3):
239–252, 1990.

Dyer, Chris, Kuncoro, Adhiguna, Ballesteros, Miguel, and
Smith, Noah A. Recurrent neural network grammars. In
Proceedings of NAACL-HLT, pp. 199–209, 2016.

Ertl, Peter and Schuffenhauer, Ansgar. Estimation of syn-
thetic accessibility score of drug-like molecules based on
molecular complexity and fragment contributions. Jour-
nal of cheminformatics, 1(1):8, 2009.

Gatys, Leon A, Ecker, Alexander S, and Bethge, Matthias.
A neural algorithm of artistic style. arXiv preprint
arXiv:1508.06576, 2015.

Gaunt, Alexander L, Brockschmidt, Marc, Singh, Rishabh,
Kushman, Nate, Kohli, Pushmeet, Taylor, Jonathan,
and Tarlow, Daniel. Terpret: A probabilistic program-
ming language for program induction. arXiv preprint
arXiv:1608.04428, 2016.

Gómez-Bombarelli, Rafael, Aguilera-Iparraguirre, Jorge,
Hirzel, Timothy D, Duvenaud, David, Maclaurin, Dou-
gal, Blood-Forsythe, Martin A, Chae, Hyun Sik, et al.
Design of efficient molecular organic light-emitting

diodes by a high-throughput virtual screening and exper-
imental approach. Nature Materials, 15(10):1120–1127,
2016a.

Gómez-Bombarelli, Rafael, Duvenaud, David, Hernández-
Lobato, José Miguel, Aguilera-Iparraguirre, Jorge,
Hirzel, Timothy D, Adams, Ryan P, and Aspuru-Guzik,
Alán. Automatic chemical design using a data-driven
continuous representation of molecules. arXiv preprint
arXiv:1610.02415, 2016b.

Hachmann, J., Olivares-Amaya, R., Atahan-Evrenk, S.,
Amador-Bedolla, C., Sanchez-Carrera, R. S., Gold-
Parker, A., Vogt, L., Brockway, A. M., and Aspuru-
Guzik, A. The Harvard Clean Energy Project: Large-
Scale Computational Screening and Design of Organic
Photovoltaics on the World Community Grid. J. Phys.
Chem. Lett., 2(17):2241–2251, sep 2011.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

Hopcroft, John E, Motwani, Rajeev, and Ullman, Jeffrey D.
Introduction to Automata theory, languages, and compu-
tation. 2006.

Irsoy, Ozan and Cardie, Claire. Deep recursive neural net-
works for compositionality in language. In NIPS, pp.
2096–2104, 2014.

James, Craig A, Vandermeersch, T, and Dalke, A. Opens-
miles specification, 2015.

Jaques, Natasha, Gu, Shixiang, Turner, Richard E, and Eck,
Douglas. Tuning recurrent neural networks with rein-
forcement learning. arXiv preprint arXiv:1611.02796,
2016.

Johnson, Mark, Griffiths, Thomas L, Goldwater, Sharon,
et al. Adaptor grammars: A framework for specify-
ing compositional nonparametric bayesian models. Ad-
vances in neural information processing systems, 19:
641, 2007.

Jones, Donald R, Schonlau, Matthias, and Welch,
William J. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13
(4):455–492, 1998.

Kalchbrenner, Nal, Grefenstette, Edward, and Blunsom,
Phil. A convolutional neural network for modelling sen-
tences. 2014.

Kernighan, Brian W, Ritchie, Dennis M, and Ejeklint, Per.
The C programming language, volume 2. Prentice-Hall
Englewood Cliffs, 1988.

Grammar Variational Autoencoder

Kingma, Diederik P and Welling, Max. Auto-encoding
variational Bayes. In Proceedings of the International
Conference on Learning Representations (ICLR), 2014.

Kusner, Matt J and Hernández-Lobato, José Miguel. Gans
for sequences of discrete elements with the gumbel-
softmax distribution. arXiv:1611.04051, 2016.

Maddison, Chris and Tarlow, Daniel. Structured generative
models of natural source code. In Proceedings of the 31st
International Conference on Machine Learning (ICML),
pp. 649–657, 2014.

Paulus, Romain, Socher, Richard, and Manning, Christo-
pher D. Global belief recursive neural networks. In Ad-
vances in Neural Information Processing Systems, pp.
2888–2896, 2014.

Perov, Yura and Wood, Frank. Automatic sampler dis-
covery via probabilistic programming and approximate
bayesian computation. In International Conference on
Artificial General Intelligence, pp. 262–273, 2016.

Pyzer-Knapp, Edward O, Suh, Changwon, Gómez-
Bombarelli, Rafael, Aguilera-Iparraguirre, Jorge, and
Aspuru-Guzik, Alán. What is high-throughput virtual
screening? a perspective from organic materials discov-
ery. Annual Review of Materials Research, 45:195–216,
2015.

Radford, Alec, Metz, Luke, and Chintala, Soumith. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

Rezende, Danilo Jimenez, Mohamed, Shakir, and Wier-
stra, Daan. Stochastic backpropagation and approxi-
mate inference in deep generative models. arXiv preprint
arXiv:1401.4082, 2014.

Riedel, Sebastian, Bosnjak, Matko, and Rocktäschel, Tim.
Programming with a differentiable forth interpreter.
CoRR, abs/1605.06640, 2016.

Rupakheti, Chetan, Virshup, Aaron, Yang, Weitao, and
Beratan, David N. Strategy to discover diverse opti-
mal molecules in the small molecule universe. Journal
of chemical information and modeling, 55(3):529–537,
2015.

Schmidt, Michael and Lipson, Hod. Distilling free-form
natural laws from experimental data. Science, 324
(5923):81–85, 2009.

Segler, Marwin HS, Kogej, Thierry, Tyrchan, Christian,
and Waller, Mark P. Generating focussed molecule li-
braries for drug discovery with recurrent neural net-
works. arXiv preprint arXiv:1701.01329, 2017.

Shahriari, Bobak, Swersky, Kevin, Wang, Ziyu, Adams,
Ryan P, and de Freitas, Nando. Taking the human out
of the loop: A review of bayesian optimization. Pro-
ceedings of the IEEE, 104(1):148–175, 2016.

Snelson, Edward and Ghahramani, Zoubin. Sparse Gaus-
sian processes using pseudo-inputs. In NIPS, pp. 1257–
1264, 2005.

Socher, Richard, Huang, Eric H, Pennington, Jeffrey, Ng,
Andrew Y, and Manning, Christopher D. Dynamic pool-
ing and unfolding recursive autoencoders for paraphrase
detection. In NIPS, volume 24, pp. 801–809, 2011a.

Socher, Richard, Pennington, Jeffrey, Huang, Eric H,
Ng, Andrew Y, and Manning, Christopher D. Semi-
supervised recursive autoencoders for predicting senti-
ment distributions. In Proceedings of the conference
on empirical methods in natural language processing,
pp. 151–161. Association for Computational Linguistics,
2011b.

Socher, Richard, Perelygin, Alex, Wu, Jean Y, Chuang,
Jason, Manning, Christopher D, Ng, Andrew Y, Potts,
Christopher, et al. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceed-
ings of the conference on empirical methods in natural
language processing (EMNLP), volume 1631, pp. 1642.
Citeseer, 2013.

Upchurch, Paul, Gardner, Jacob, Bala, Kavita, Pless,
Robert, Snavely, Noah, and Weinberger, Kilian. Deep
feature interpolation for image content changes. arXiv
preprint arXiv:1611.05507, 2016.

Virshup, Aaron M, Contreras-García, Julia, Wipf, Peter,
Yang, Weitao, and Beratan, David N. Stochastic voy-
ages into uncharted chemical space produce a represen-
tative library of all possible drug-like compounds. Jour-
nal of the American Chemical Society, 135(19):7296–
7303, 2013.

Weininger, David. Smiles, a chemical language and infor-
mation system. 1. introduction to methodology and en-
coding rules. J. Chem. Inf. Comput. Sci., 28(1):31–36,
1988.

Willis, M-J, Hiden, Hugo G, Marenbach, Peter, McKay,
Ben, and Montague, Gary A. Genetic programming: An
introduction and survey of applications. In Genetic Algo-
rithms in Engineering Systems, pp. 314–319. IET, 1997.

Zhao, Shengjia, Song, Jiaming, and Ermon, Stefano. Info-
vae: Information maximizing variational autoencoders.
arXiv preprint arXiv:1706.02262, 2017.

