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Abstract 
Standard deviation is the correct way to characterise the spread of the data and as 
the uncertainty associated with measurement the value of the standard deviation 
may be refined. The aim is to quantify the level of uncertainty in the resistance data 
of a model tanker obtained from towing tank tests.  Kalman Filter (KF) was used to 
correct the standard deviation of the data, which is composed of the state-space 
model and least-squares method. Results of the simulations showed that KF could 
decrease the standard deviation of the resistance for a range of speeds (1,029-1.543 
m/s). The standard deviation of filtered data is much smaller (1.3%-4.2%) than that 
of unfiltered data (14.7%-28.4%). The proposed filter method can therefore reduce 
the uncertainty of the model experiment. 

Keywords: Kalman filter, Least-squares, Resistance, State-space, Uncertainty. 
 

  



2       D Purnamasari et al 

 
 
Journal of Engineering Science and Technology            Month Year, Vol. XX(Y) 

 

1.  Introduction 
Random errors arise from uncontrollable factors that simultaneously affect an 
experiment. There are assorted resources of error or noise which induce random 
uncertainty in resistance experiments in towing tanks. Noise in the carriage velocity 
is the main source of random error in resistance of a ship model [1]. The resistance 
data is a realisation of a stationary random process. The mean value and the 
standard deviation of stationary data are constant. As in most experiments, the mean 
value of a measured signal used for further analysis. It is essential to identify the 
magnitude of uncertainty. Various attempts of uncertainty analysis have been made 
to find an appropriate estimator for random uncertainty of the resistance ship 
model. Dang et al. [2] presented preliminary of the autocovariance method that has 
been used to designate as variance analysis on stationary measurements to compare 
the quality of quasi-steady measurement methods. Brouwer et al. [3] proposed a 
new technique called the ‘Transient Scanning Technique” to verify the stationarity 
of a signal and uncertainty analysis of finite length measurement time series. Steen 
et al. [1] quantifying the uncertainty by proposing a method Multiple Time 
Windows (MTW) technique. A comparison of simulated and measured towing 
force allowed us to conclude that the noise in the carriage speed is the main 
contributor to the noise in the resistance data. Brouwer et al. [4] presented a new 
power spectrum-based method was developed to define the contribution of spectral 
to the uncertainty of the resistance data. 

Measurements of resistance ship model obtained from the physical system. The 
Kalman filter, a linear recursive filter generates an optimal estimate of the state of 
a dynamic system from noisy data set collected at a discrete-time interval [5]. The 
system noise is assumed to be uncorrelated between signals and has a zero-mean 
Gaussian distribution. The Kalman filter requires two system models: the dynamic 
model and the observation/measurement model. The system being model is 
described by a set of state-space equations. The state of a system is defined by state 
variables. Kalman filter used in the experiment of ship model. Liggins et al [6] 
proposed tracking the motion of the model ship is achieved with a predictive 
extended Kalman filter. The EKF is used because it can readily integrate and filter 
multiple noisy data sets, as well as generate an optimal estimate of relative pose 
(position and orientation) of the ship model. Shi et al [7] established a nonlinear 
model of ship maneuvering originate on the Extended Kalman Filter algorithm to 
account the parameters of turning circle tests and Zig-zag tests. The errors found in 
the measurement process are eliminated. Comparisons have been made to the 
simulated and measured data. The results show that the ship maneuvering model 
can represent the real motion of ship, and the parameter estimation procedure and 
algorithms are efficient. Radhakrishnan [8] presented a Kalman filter for estimating 
the sway velocity and the effects of its cross-coupling between roll and yaw. The 
roll reduced without sway velocity feedback for the ship speed up to 13 m/sec. if 
the sway velocity used for rudder control, the high-frequency does not seriously 
affect the heading 

The objective of this paper is to propose a Kalman filter to eliminate the standard 
deviation of resistance data. The difference has been made to the simulated and 
experimental data. The outcomes show that parameter estimation and algorithms are 
practical. 
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2.  Method  
The resistance (or drag) is the horizontal component of the force opposing the 
steady forward motion of the model hull through the water. The resistance is 
determined by measuring the towing force. Data were acquired on 1 unit PSC 8115 
Strain Gauges dan 2 units PSC 8025 DSP, controlled by NI PCI DAQ Card 6024E 
desktop computer. Two data channels were scanned and sampled, namely carriage 
speed and resistance dynamometer TF-R56. The data used as an example are as 
shown in Figure 2. The measurement of resistance at a range of speed (1.029-
1.534m/s) obtained by averaging the time history of the signal from the DAS in an 
interval of time. Δt = N/fs, data acquisition made through the collection of N=1.500 
samples, Δt is over 30 seconds, fs = 50 Hz, and data are not filtered. All data is 
assumed to be stationary. An average of the signal resistance and the standard 
deviation of a range speed are defined for time series, as shown in Table 1. Tests 
were conducted at the Indonesian Hydrodynamics Laboratory towing tank. The 
tank is 234.5 m long (including the loading dock) and 11 m wide and water depth 
5.5 m. 
 

 
Fig. 1 Time series of resistance 

Table 1 The measurement of resistance at range of speed 
Vm (m/s) R (N) s(N) 

1.029 18.913 5.353 
1.132 22.461 5.730 
1.235 27.533 6.061 
1.338 31.637 6.331 
1.440 37.856 6.151 
1.543 46.412 6.827 

 

The total resistance at each speed is obtained by averaging the time history can be 
written as [9]:  

𝑅 =
1
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The standard deviation of time history for single measurement can be obtained 
[9,10]. 

𝑠 = 	,
1

𝑁 − 1
%(𝑅& − 𝑅)0
'

&()

 

(2) 

The standard uncertainty of any single resistance tests can be estimated by standard 
deviations [9]. 

𝑢(𝑅) ≈ 𝑠 (3) 

The process of filtering is to process out the noise in the measurement values and 
give an optimal estimate for the state. Consider the Autoregressive (AR) model. 
The AR (2) in state-space form is as follows: 

𝑦[𝑘] = 𝜙8 + 𝜙)𝑦[𝑘 − 1] + 𝜙0𝑦[𝑘 − 2] (4) 

 𝑦[𝑘] = 𝜙8 + 𝜙)𝑥)[𝑘] + 𝜙0𝑥0[𝑘] 

𝑥)[𝑘] = 𝑦[𝑘 − 1] (5) 

 𝑥0[𝑘] = 𝑦[𝑘 − 2] 
 

The parameters of the AR (2) model are estimated using the least square method 
[11-13], allowing to decompose a time series into relevant components and to infer 
the best historical estimates.  
 

𝐲 = 𝐗𝚽 
 

(6) 
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(7) 

𝚽K = (𝐗𝐓𝐗)M𝟏𝐗𝐓𝒚 (8) 

Equation 4 can be discretized and transformed into the following discrete linear 
state function, 

𝑥[𝑘] = 𝑨𝑥[𝑘 − 1] + 𝑭 (9) 

P 𝑦[𝑘]
𝑦[𝑘 − 1]Q = R 𝜙)𝜙01									2S P

𝑦[𝑘 − 1]
𝑦[𝑘 − 2]Q + R

𝜙8
0 S (10) 

𝑧[𝑘] = 𝑯𝑥[𝑘] + 𝜖[𝑘 − 1] (11) 

𝑧[𝑘] = [1							0] P 𝑦[𝑘]
𝑦[𝑘 − 1]Q + 𝜖[𝑘 − 1] (12) 

 
 
 
 



Application of Kalman Filter to the Uncertainty of Model Resistance Data Obtained 
from Experiment     5 

 
 
Journal of Engineering Science and Technology            Month Year, Vol. XX(Y) 

 

By Equation 9, the following KF recursive equations: 
 
Time update: 

Prediction on the state 

𝑥XYM = 𝐴𝑧YM) + 𝑭 (13) 

 
Prediction error covariance 

𝑃YM = 𝐴𝑯YM)𝐴\ + 𝑸 (14) 
 
Measurement update: 
Calculate Kalman gain 

𝐾Y = 𝑃YM𝐻\(𝐻𝑃YM𝐻\ + 𝑹)M) (15) 
Update estimation measurement 

𝑥XY = 𝑥XYM + 𝐾(𝑧Y − 𝐻𝑥XYM) (16) 
Update error covariance 

𝑃Y = (1 − 𝐾Y𝐻)𝑃YM 

 

(17) 

The treatment is assumed that these are uncorrelated Gaussian stationary white 
noise with zero means. Process noise Q and measurement noise R are an important 
parameter. Q and R decides the estimation closeness to the true value.  The study 
of the various values of Q and R effects on the mean value of resistance and 
standard deviations was carried out by changing Q with a fixed R, and vice versa.  
It will have consequences on the Kalman gain regarding the result of the Kalman 
filter.  

 

3.  Results and Discussion 
The value of the parameter ϕ estimated using the previously described technique 
are as follows: 

Φ = E
𝜙8
𝜙)
𝜙0
J = E

1.0429
−0.0121
0.0065

J 

Substituting 𝜙 into Eq. 4 gives: 

𝑦[𝑘] = 1.0429 − 0.0121𝑦[𝑘 − 1] + 0.0065𝑦[𝑘 − 2] 

The matrices system used to calculate the steady state Kalman Filter are as follows:  

𝐴 = R−0.0121							0.00651																					0 S 							𝐹 = R1.04291 S 										𝐻 = [1											0] 

𝑥XYM)M = R00S𝑃YM)
M = R 0.1								00										0.1S 

𝑄 = R0.0001														00														0.0001S 											𝑅 = 0.01 

 
Figure 2 (a-f) showed the results of the simulation of the steady-state KF in 
MATLAB.  The plots show the mean and standard deviation value of the model 
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ship tanker resistance at the speed range (1.029-1.543 m/s). The graph shows that 
KF can produce an almost noise-free estimate, and the two algorithms work well 
for estimating the parameters and states of this state-space system. 
 

 
(a). Resistance at 1.029 m/s 

 

 
(b). Resistance at 1.132 m/s 

 

 
(c). Resistance at 1.235 m/s 
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(d). Resistance at 1.338 m/s 

 

 
(e). Resistance at 1.440 m/s 

 

 
(f). Resistance at 1.543 m/s 

 
Fig. 2 The simulation of KF in MATLAB 
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The performance of the Kalman filter is shown in Figure 2. The results show that 
significant improvement to the predictions can be achieved with a decrease in the 
fluctuation of time series. The fit to data is plotted versus before filtered. The mean 
value is stable and the standard deviation is minimised. This implies all the 
information from the data has been extracted and what remains is pure random 
‘white’ noise. This can happen only when the model and the measurement 
structures are proper, the parameters in them have been obtained after the numerical 
optimisation algorithm has converged properly. 
 
Table 2 presents the performance of the Kalman filter based on the AR parameter 
estimates and the least square method. The standard deviation of a filtered time 
history is about 1.3%-4.1%. The results show that significant improvement to the 
predictions can be achieved. In the full range of the speed, the corresponding the 
standard deviation is close to zero suggesting that the main goal of a Kalman-type 
filter is fulfilled. 
 

Table 2 Resistance data tanker 17.500 DWT after filtered 

Vm (m/s) R (N) s (N) 
1.029 18.913 0.140 
1.132 22.461 0.287 
1.235 27.533 0.239 
1.338 31.637 0.309 
1.440 37.856 0.388 
1.543 46.412 0.384 

 
 

The identification of the estimates of the noise covariance matrices for resistance 
data at speed 1.338 m/s as shown in Figure 3. The complete optimal estimation of 
the sample means value and standard deviation of resistance data. 

 

 
(a) Q=0.000001, R=0.001 
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(b) Q=0.000001, R=0.01 

 
(c) Q=0.00001, R=0.01 

 
(d) Q=0.0001, R=0.01 

Fig. 3 The estimates of the noise covariance matrices Q and R 
 

Based on these results, the Kalman filter was proven to eliminate the noise of 
resistance predictions. The consistency of the performance of this optimum filter 
by assessed the noise covariance matrices Q, and R. Figures 3 focus on the variation 
of the standard deviation of the resistance sample 

Table 3 Estimation summary 

Q R s 
0.000001 0.001 0.309 
0.000001 0.01 0.139 
0.00001 0.01 0.145 
0.0001 0.01 0.384 

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

Time (s)

Re
sis

tan
ce 

(N)

 

 

Time History
Filtered Time History
Mean= 31.5714, SD= 0.13936

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

Time (s)

Re
sis

tan
ce 

(N)

 

 

Time History
Filtered Time History
Mean= 31.6195, SD= 0.14489

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

Time (s)

Re
sis

tan
ce 

(N
)

 

 

Time History
Filtered Time History
Mean= 32.0615, SD= 0.38374



10       D Purnamasari et al 

 
 
Journal of Engineering Science and Technology            Month Year, Vol. XX(Y) 

 

 

Table 3 shows simulation results for the four different Q and R parameter scenarios 
outlined above and different values of standard deviation. In particular, the table 
displays the relative efficiency of the KF estimator that the corrected resistance 
data, which are assumed more accurate. The standard deviation is small the 
predicted uncertainty is likely to be smaller as well as prescribed by the ITTC [9]  

 

4.  Conclusions 
A practical and successful way to address resistance estimation using a Kalman 
filter has been presented.  Using a standard Kalman filter algorithm to post-process 
the raw data of resistance tests the standard deviation of measurement is minimised.  
The parameter model has been proposed in the form of a Kalman filter and in the 
simulation study performed useful techniques for tuning of noise covariance 
matrices are presented.  
Future developments can be done in on-line detection schemes to predict the 
resistance of a ship model. This work will extend the ideas presented to other data 
types such as seakeeping tests. 

 

 

Nomenclatures 
 
R Mean of resistance  
Ri 
s 

Data point R 
Standard deviation 

N Number of sample 
fs Sampling rate 
∆t Interval of time 
u(R) Uncertainty of resistance 
y[k] 
y[k-1], y[k-2] 

Measurement value 
The past series values 

𝑥XYM State estimate before the measurement at time k is taken into 
consideration 

𝑥XY State estimate after the measurement at time k is taken into 
consideration 

A 
F 
𝑃YM 
Pk 
 
H 
Q 
R 
K 

 Discrete system matrix 
Matrices input with update state 
Prior state covariance matrix at time index k given data up to 
k-1 
Posterior state covariance matrix at time index k given data 
up to k 
Matrices update state with measurement 
Covariance proses noise 
Covariance measurement noise 
Kalman gain   

R Mean of resistance  
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Greek Symbols 
ϕ Parameter model 
  
Abbreviations 

AR 
DAS 
DWT 
EUA 
EKF 
ITTC 
KF 

Autoregressive 
Data Acquisition System 
Dead Weight Tonnage 
Experiment Uncertainty Analysis 
Extended Kalman Filter 
International Towing Tank Conference 
Kalman Filter 
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