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ABSTRACT

We use topological data analysis and machine learning to study a seminal model of collective motion in biology [M. R. D’Orsogna et al.,
Phys. Rev. Lett. 96, 104302 (2006)]. This model describes agents interacting nonlinearly via attractive-repulsive social forces and gives rise to
collective behaviors such as �ocking and milling. To classify the emergent collective motion in a large library of numerical simulations and to
recover model parameters from the simulation data, we apply machine learning techniques to two di�erent types of input. First, we input time
series of order parameters traditionally used in studies of collective motion. Second, we input measures based on topology that summarize
the time-varying persistent homology of simulation data over multiple scales. This topological approach does not require prior knowledge of
the expected patterns. For both unsupervised and supervised machine learning methods, the topological approach outperforms the one that
is based on traditional order parameters.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5125493

A fundamental goal in the study of complex, nonlinear systems is
to understand the link between local rules and collective behav-
iors. For instance, what in�uence does coupling between oscilla-
tors have on the ability of a network to synchronize? How does
policing a�ect hotspots of crime inurban areas?Whydo themove-
ment decisions that �sh make lead to schooling structures? We
examine such links by bringing together tools from applied topol-
ogy and machine learning to study a seminal model of collective
motion that replicates behavior observed in biological swarming,
�ocking, and milling. Studies of collective motion often focus on
the so-called forward problem: given a particular mathematical
model, what dynamics are observed for di�erent parameters input
to the model? In contrast, we study an inverse problem: given
observed data, what model parameters could have produced it?
Also, given observed data, what paradigmatic dynamics are being
exhibited? To answer these questions, we use machine learning

techniques and �nd that they achieve higher accuracy when
applied to topological summaries of the data—called crockers—as
compared to more traditional summaries of the data that are
commonly used in biology and physics to characterize collec-
tive motion. Ours is the �rst study to use crockers for nonlinear
dynamics classi�cation and parameter recovery.

I. INTRODUCTION

Fundamental to many nonlinear systems is the link between
local rules and global behaviors. For instance, what in�uence does
coupling between oscillators have on the ability of a network to
synchronize? How does policing a�ect hotspots of crime in urban
areas?Why do themovement decisions that �shmake lead to school-
ing structures? In this paper, we consider the relationship between
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local rules and global behavior in service of two tasks of interest
in nonlinear science, namely, classi�cation of dynamics and param-
eter recovery. We conduct this study in the context of one of the
aforementioned applications: collective motion in biology.

Animal groups such as �ocks, herds, schools, and swarms are
ubiquitous in nature,1,2 inspire numerous mathematical models3–6

and motivate biomimetic approaches to engineering and computer
science.7,8 In animal groups, two levels of behavior come into play.
First, at the individual level, organisms make decisions about how to
move through space. It is well-established in the biological literature
that social interactions between organisms play a key role. Second, at
the group level, collective motion may occur, where animals coordi-
nate and produce emergent patterns. Mathematical models can help
link these two levels of behavior. This type of linkage is fundamental
to innumerable nonlinear systems displaying collective behavior.

While there is a vast literature on mathematical models of col-
lective motion, we focus on the in�uential model of D’Orsogna et al.9

This model describes agents whose movement is determined by self-
propulsion, drag, and social attraction-repulsion, forces frequently
used in collective motion studies.10,11 The model produces paradig-
matic behaviors such as rotating rings, vortices, disorganized swarms,
and traveling groups; these mimic �sh schools, swarms of midges,
bird �ocks, and more.12–14

Studies of collective motion models often focus on a forward
problem: given a particular model, what dynamics are observed
for di�erent parameters? In our present work, however, we study
an inverse problem: given observed data, what parameters could
have produced it? Also, given observed data, what paradigmatic
dynamics are being exhibited?15,16 There are numerous strategies to
infer parameters from data with simple di�erential equation mod-
els, including Bayesian inference17 and frequentist approaches.18 Our
primary contribution here is to solve an inverse problem with an
agent-based model using tools from topological data analysis and
machine learning. Though we focus on collective motion in the
D’Orsogna model, our protocol is applicable in many other settings.

Machine learning and mathematical modeling have tradition-
ally been viewed as separate ways of understanding data. On one
hand, machine learning can extract predictions of complex rela-
tions within large data sets. On the other hand, modeling can be
used to hypothesize how mechanisms lead to an observed behav-
ior. There is a growing understanding, however, that modeling and
machine learning can be used in synergy.19 For example, Lu et al. use
nonparametric estimators to learn the rules governing the observed
output of agent-based models.20 The method is applied to funda-
mental interacting particle systems,21 models of social in�uence,22

predator-swarm systems,23 and phototactic bacteria.24

Our study hinges on the use of topological data analysis (TDA),
a set of tools that “help the data analyst summarize and visualize com-
plex datasets.”25TDAhas played a pivotal role in studies of breast can-
cer, spinal cord injury, contagion, and other biological systems.26–28,45

A primary tool in the TDA toolbox is persistent homology.Homology
has to do with calculating certain topological characteristics, while
persistence refers to examining which of these are maintained across
multiple scales in the data. In its fundamental form, persistent homol-
ogy provides a framework for describing the topology of a static data
set. However, ideas from persistent homology have been extended
to time-varying data. One approach is the Contour Realization Of

Computed k-dimensional hole Evolution in the Rips complex, known
more simply as a crocker.29 A crocker shows contours of quanti-
ties called Betti numbers as a function of time and of persistence
scale, providing a topological summary of time-varying point clouds
of data. Recent work has shown how crockers can be used for
exploratory data analysis of collective motion and for judging the
�tness of potential mathematical models of experimental data.29,30

Our present work brings together mathematical modeling,
machine learning, and TDA to study collective motion in the
D’Orsogna model. More speci�cally, we construct crockers from
numerical simulations of the model and use them as inputs to
machine learning clustering and classi�cation algorithms in order to
identify di�erent paradigmatic patterns and the model parameters
that produce them. We compare this approach to a more traditional
one, which uses order parameters commonly used in studies of col-
lective motion. While the traditional order parameters are typically
chosen using prior knowledge of the system, the TDA tools can be
used with no prior knowledge and are problem-independent. In our
methodological study, we use data simulated frommodels so that we
can compare inferred parameters to those actually used to generate
the data. Once trained, the machine learning algorithms can be used
to infer model parameters from experimental data.

The rest of this paper is organized as follows. Section II describes
ourmethods, namely, numerical simulation of theD’Orsognamodel,
computation of traditional order parameters and crockers, and
machine learning techniques. Section III presents our results, includ-
ing our primary �nding: the topological approach outperforms the
traditional one. We conclude in Sec. IV.

II. METHODS

A. D’Orsogna model and numerical simulations

The D’Orsogna model9,31 describes the motion of N interact-
ing agents of massm. Each agent is characterized by its position and
velocity xi, vi ∈ R

d, i = 1, . . . ,N. We focus on the two-dimensional
case, d = 2, throughout this study, though the case for d = 3 has
been considered in Ref. 32. Position and velocity obey the coupled,
nonlinear ordinary di�erential equations,

ẋi = vi, (1a)

mv̇i = (α − β|vi|
2)vi − E∇iU(xi), (1b)

U(xi) =

N
∑

j6=i

[

Cre
−|xi−xj|/`r − Cae

−|xi−xj|/`a
]

, (1c)

where E∇i is the gradient with respect to xi. Equation (1a) states that
the time derivative of position is velocity. Equation (1b) is Newton’s
law, with the right hand side describing three forces acting on each
agent: self-propulsion with strength α, nonlinear drag with strength
β , and social interactions. These social interactions are attractive-
repulsive, as speci�ed by the Morse-type potential in (1c). The �rst
term inside the brackets describes social repulsion of overall strength
Cr > 0. Repulsion decays exponentially in space, with characteristic
length scale of decay `r > 0. The exponential decay re�ects that
organisms’ ability to sense each other through sight, sound, or smell

Chaos 29, 123125 (2019); doi: 10.1063/1.5125493 29, 123125-2

© Author(s) 2019

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

decays over distance. Restated, an organism will be more heavily
in�uenced by near individuals than far ones. The second term is
signed oppositely, and hence describes social attraction. The sum-
mation in (1c) means that a given organism interacts with all other
organisms, albeit with in�uence decaying exponentially in space.

Biological modeling studies typically assume that repulsion is
strong but operates over a short length scale, while attraction is
weaker but operates over a longer scale. For (1), this would mean
Cr > Ca and `r < `a. In this case, the Morse potential U has a well-
de�ned minimum, representing the distance at which attraction and
repulsion balance for two organisms in isolation. However, this dis-
tance is not the separation observed between individuals in a group
because of the nonlinear all-to-all coupling. Regardless, as in Ref. 9,
we do not enforce the restriction Cr > Ca and `r < `a.

For our study, we set N = 200. After nondimensionalizing (1),
we are left with four dimensionless parameters: α, β , C = Cr/Ca,
and l = lr/la. We set α = 1.5, and β = 0.5, corresponding to a base
case of parameters from Ref. 9 and explore the remaining param-
eter space by varying the ratios C = Cr/Ca and ` = `r/`a. Both C
and ` will take on values in {0.1, 0.5, 0.9, 2.0, 3.0}, resulting in 25 dif-
ferent possible parameter combinations. For each combination, we
perform100 simulations usingMATLAB’sode45 function. Because
the D’Orsogna model is typically independent of initial conditions,

we draw xi(0) and vi(0) each from a uniformdistribution on [−1, 1]d.
We simulate until t = 100, allowing the swarm to attain a dynamic
equilibrium state. From the computed trajectories, we sample the
positions and velocities every 0.05 time units. Thus, the �nal output
is {(xi(tj), vi(tj))}

j=1,...,M
i=1,..,N

for tj = (j − 1)1t,M = 2001,1t = 0.05 for
each of our 2500 simulations.

These simulations produce paradigmatic collective motion
including single mills, double mills, double rings (referred to simply
as rings inRef. 9), collective swarms, and group escape, whichwe split
into three distinct classes.9 For the remainder of this paper, we refer to
paradigmatic collective behaviors as phenotypes. The �rst column of
Fig. 1 shows a representative snapshot of each major phenotype, and
Fig. 2 shows the three distinct escape types. Table I lists the values of
(C, `) that produce each phenotype in our library of simulations. We
describe these phenotypes in more detail at the end of Sec. II C.

B. Order parameters

Investigators often use order parameters to summarize the out-
put of collective motion experiments or simulations.9,11,29 Summaries
are necessary because it is impractical or impossible to manually
inspect large amounts of raw output data. The order parameters are
intended to suggest if and when certain types of group behavior
emerge in a population, for instance, whenmany individuals move in
the same direction or rotate with the same orientation. Typical order
parameters used for (1) include polarization, angular momentum,
absolute angular momentum, and the mean distance to the nearest
neighbor.29 We use these four in our present study, plotted for each
phenotype in the second column of Fig. 1.

Group polarization P(t) measures the degree of alignment
between agents and is given by

P(t) =

∣

∣

∣

∣

∣

∑N
i=1 vi(t)

∑N
i=1 |vi(t)|

∣

∣

∣

∣

∣

∈ [0, 1], (2)

with P = 1 signifying that all agents have the same direction of
motion. All phenotypes in Fig. 1 exhibit low P(t), suggesting no
translational �ocking. Angular momentum Mang(t) can detect rota-
tional motion and is given by

Mang(t) =

∣

∣

∣

∣

∣

∑N
i=1 ri(t) × vi(t)

∑N
i=1 |ri(t)||vi(t)|

∣

∣

∣

∣

∣

∈ [0, 1], (3)

where ri(t) = xi(t) − xcm(t), and xcm(t) refers to the center of mass
of the agents. A group withMang = 1 would have individuals sharing
perfectly rotational motion. Following Ref. 31, we also consider the
absolute angular momentumMabs(t), given by

Mabs(t) =

∣

∣

∣

∣

∣

∑N
i=1 |ri(t) × vi(t)|

∑N
i=1 |ri(t)||vi(t)|

∣

∣

∣

∣

∣

∈ [0, 1]. (4)

Discrepancies between angular momentum and absolute angular
momentum can distinguish a singlemill from a doublemill, in which
counter-rotating agents cancel out each other’s angular momentum.
For example, we observe in Fig. 1 thatMabs(t) ≈ Mang(t) for the sin-
gle mill, whereas Mabs(t) > Mang(t) for the double mill. Finally, we
consider the mean distance to nearest neighbor, DNN(t), which may
distinguish group escape behavior from other phenotypes.33 DNN(t)
is given by

DNN(t) =
1

N

N
∑

i=1

min
j6=i

|xi(t) − xj(t)| ∈ R≥0.

DNN(t) becomes very large for the escape phenotype over time in
Fig. 1 as the particles act repulsively.

In calculating time series of these order parameters, we down-
sample by a factor of 23 (chosen since it is a divisor of 2001, the
original number of simulation frames), resulting in M = 87 time
points. While some information is lost with downsampling, it makes
subsequent computations faster, while maintaining a high level of
classi�cation accuracy with the downsampling rate we have chosen.

C. Persistent homology and crockers

While order parameters can be useful summaries of collective
motion data, they are typically designed in a problem-speci�c man-
ner andwith some knowledge of the expected dynamics.We compare
an order parameter approach to one thatmeasures the topology of the
data. This approach is arguably more agnostic and less application-
speci�c. We now review relevant ideas from topology. To make this
review broadly accessible, we keep it conceptual. For some technical
details, see, e.g., Refs. 29, 34, and 35.

We begin our explanation of persistent homology and crockers
by focusing on agents’ positions during one time step of a simulation
(or experiment). These data constitute a point cloud, made up of N
points in R

d. To study the topology of a point cloud, we transform
it into an object called a simplicial complex. While there are many
ways to construct a simplicial complex, we use theVietoris-Rips (VR)
complex, a common choice in TDA because it is e�cient to compute.

To build a VR complex, we select a distance ε and draw a ball
of diameter ε around each point. If two balls intersect, we connect
them with an edge. If three balls all pairwise intersect, we connect all
three edges and �ll in the resulting triangle. If four balls all pairwise
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FIG. 1. Collective motion phenotypes generated by the D’Orsogna model (1) with N = 200 agents, α = 1.5, and β = 0.5. First column (not to scale): snapshots of agents’
positions (dots) and velocities (arrows) at t = 100 with clockwise motion in blue and counterclockwise motion in red (where applicable). Second column: order parameter
time series, namely, polarization P(t) (blue), angular momentumMang(t) (green), absolute angular momentumMabs(t) (red), and average distance to nearest neighbor DNN(t)
(black). Third and fourth columns: time-delay crockers showing, respectively, Betti numbers b0 and b1 as a function of time t and persistence parameter ε (log scale). For ease
of depiction, we represent any value of b0 > 150 or b1 > 2 as white. We include only a small subset of contours for visual clarity. White regions correspond to larger values
of Betti numbers, not shown. (a) Single mill, C = 0.5, ` = 0.1. (b) Double mill, C = 0.9, ` = 0.5. (c) Double ring, C = 0.1, ` = 0.1. (d) Collective swarming, C = 0.1,
` = 0.5. (e) Escape (symmetric), C = 2.0, ` = 0.9.
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FIG. 2. Three subclasses of the escape
phenotype observed in the D’Orsogna
model (1). N, α, and β are as in
Fig. 1. Each agent’s trajectory is shown
in a randomly chosen color for times
t ∈ [0, 40]. (a) (C, `) = (2, 0.9). Parti-
cles escape to infinity individually, and the
overall pattern is radially symmetric. (b)
(C, `) = (2, 2). Agents escape individu-
ally but form gaps in angular distribution.
(c) (C, `) = (2, 3). Agents superpose in
small groups and move outwards with
large gaps in angular distribution.

intersect, we connect all six edges, �ll in each of the four triangles
bounded by those edges, and �ll in the solid tetrahedron bounded by
the four triangles. Points, edges, �lled triangles, and solid tetrahedra
are called 0-, 1-, 2-, and 3-simplices, and more generally, k-simplices
for any k + 1 points with ε-balls that pairwise intersect.

With a simplicial complex built from our point cloud, we now
measure its topology by calculating its Betti numbers. Betti numbers
bk are topological invariants, meaning that they are unchanged under
continuous deformations of the object such as stretching, compress-
ing, warping, and bending. Thus, they measure something funda-
mental about the shape of the object.More speci�cally, Betti numbers
enumerate the number of distinct holes in the complex that have a
k-dimensional boundary, that is, a hole surrounded by k-simplices.
For instance, b0 counts the number of connected components in the
simplicial complex. Similarly, b1 counts the number of topological
loops that bound a 2D void. Betti number b2 counts the number
of trapped 3D volumes and so on as dimension increases. Algebraic
topology tells us how to encode the calculation of Betti numbers as
a linear algebra problem; see standard topology texts or Ref. 36 for a
tutorial. The calculation is a homology computation because bk is the
rank of an algebraic object called a homology group.

In the discussion above, no value of ε was speci�ed. Persistent
homology constructs simplicial complexes and calculates Betti num-
bers for a range of ε values. There exist powerful software packages
that automate this process.35 We use the Ripser package.37 The

TABLE I. Collective motion phenotypes and corresponding social interaction poten-

tial parameters in our library of simulations of the D’Orsogna model (1). Here,

C=Cr/Ca, ` = `r/`a, and N= 200. We fix the remaining parameters α = 1.5 and

β = 0.5 as in Ref. 9.

Phenotype Parameters (C, `)

Single mill (0.5,0.1),(0.9,0.1),(2,0.1),(2,0.5),
(3,0.1)

Double mill (0.9,0.5)
Double ring (0.1,0.1),(0.5,0.5),(0.9,0.9)
Collective swarm (0.1,0.5),(0.1,0.9),(0.1,2),(0.1,3),

(0.5,0.9),(0.5,2),(0.5,3),(0.9,2),(0.9,3)
Escape (symmetric) (2,0.9),(3,0.9)
Escape (unsymmetric) (2,2),(3,2),(3,3)
Escape (collective) (2,3),(3,0.5)

outputs of these computations are birth and death values of ε, that
is, the values of ε for which the various features enumerated by bk
appear and disappear. The word persistence refers to the ranges of ε

over which features persist. For example, features that persist over
large ranges of ε might be interpreted as signals rather than topo-
logical noise. There exist many ways to organize the birth and death
information, with the most common being objects called barcodes
and persistence diagrams.35 Additionally, for a given value of k, one
could construct a vector in which each entry gives the value of bk for
a speci�c value of ε (say, on a grid). This information, bk(ε), is a Betti
curve.

Small perturbations in data produce small perturbations in per-
sistence diagrams; that is to say, persistence diagrams are stable to
noise near the data.38However, persistence computations are not sta-
ble with respect to outliers. In practice, a codensity measure can be
used to �lter outliers. Further work in this area develops notions of
distance that are robust to large quantities of empirical noise and
outliers.39–41 A clustering approach could also be used to limit the
e�ects of this type of noise.42

Thus far, we have discussed topological analysis of static point
clouds. If we allow our agents’ positions to evolve dynamically in
time, t, thenwe can construct a Betti curve for each frameof the simu-
lation or experiment, and concatenate these into amatrix.We let time
t vary along columns and ε vary along rows. Each entry speci�es the
Betti number bk for a speci�c pair (t, ε). The matrix is a topological
signature of the time-varying data of a simulation and once vector-
ized can serve as input to machine learning algorithms. Equivalently,
for visualization, one could take this matrix and construct a contour
plot of bk(t, ε). Such a plot is the Contour Realization Of Computed
k-dimensional hole Evolution in the Rips complex, or crocker, de�ned
in Ref. 29.

As mentioned in Sec. II A, our data consist of numerical solu-
tions of (1). While the D’Orsogna model tracks agents’ positions and
velocities, we restrict ourselves to using position data in our topo-
logical analysis. This approach has two advantages. First, it renders
our techniques applicable to experimental data, where position is
the most easily observed quantity. Second, it circumvents a potential
scaling disparity between numerical values of position and velocity
when performing TDA on the data, as exhibited in Fig. 3. In con-
trast, three out of four order parameters described above require
knowledge of the velocity.

To regain some of the information lost by excluding velocity,
we incorporate time-delayed position information into some of our
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analyses. We demonstrate this time-delay approach for a double ring
phenotype in Fig. 3, �nding b1 = 2 for a range of ε values, as we
would expect based on Ref. 29. Our time-delayed point cloud con-
sists of points in R

4 of the form [xi(tj), xi(tj − 51t)], where j ranges
from 23 to 2001 with a spacing of 23 to result in 86 time samples.
Figure 5 and accompanying text in Appendix A describe the 4D data
for single mills, double mills, and double rings. We will also con-
sider position-only crockers {computed on a point cloud consisting
of [xi(tj)], where the sampling of j is the same as that discussed for
the order parameters in Sec. II B}.

Still, challenges remain with the normalization of our topologi-
cal data. With escape phenotypes, interagent distances can approach
in�nity, whereas they remain bounded for other phenotypes. To cir-
cumvent this challenge, when performing our topological analyses,
we take any agent whose distance from the origin crosses the thresh-
old ‖xi‖∞ = 10 and edit the simulation data to hold it �xed at this
position.

Even after enforcing this bound, phenotypes occur on a range
of scales. While agent coordinate positions are capped at 10 for
group escape, they are as small as 10−3 for collective swarms. We
normalize position data across all simulations with a global normal-
ization constant to ensure−1 ≤ ‖xi(t)‖∞ ≤ 1. With this scaling, the
smallest normalized phenotypes have typical distances of 10−4. Thus,
we compute persistent homology with ε varying logarithmically
between 10−4 and 1 with 200 grid points such that εq = 10−4+q1ε ,
1ε = 4/200, q = 1, . . . , 200.

The third and fourth columns of Fig. 1 show crockers (b0 and
b1) for �ve example simulations. The crockers for single and dou-
ble mills di�er markedly. In (b), the b1 crocker for the double mill
contains small islands corresponding to two loops (b1 = 2) within a
large area of topological noise (b1 > 2). In (a), the b1 crocker for the
single mill lacks this signature. In (c), a very strong signature of two
loops (b1 = 2) appears for the double ring simulation. Appendix A
provides an explanation for the presence of two loops for doublemills
and rings. In (d), multiple agents form tight clumps in the collective
swarm simulation, with each clump su�ciently dense that it appears
as a single dot in the �gure. The time scale at which clumps form
manifests as the disappearance of high-valued regions in the b0 con-
tour. On a macroscopic scale, we notice that each clump eventually
travels with rotational motion, consistent with b1 = 1 over a range
of scales at later times. In (e), agents escape to in�nity in a radi-
ally expanding circular arrangement. The strong signature of b1 = 1
occurs at larger scales as time increases, consistent with an expanding
circle.

D. Unsupervised learning

We use the k-medoids algorithm to cluster numerical simula-
tions. Each simulation is characterized by a feature vector constructed
either from traditional order parameters or from topology. The order
parameter feature vectors consist of time series P(t),Mang(t),Mabs(t),
DNN(t), or the concatenation of all four. The topological feature

FIG. 3. Crockers for b0 (left) and b1
(right) computed on a simulation of
the D’Orsogna model (1) with (C, `) =
(0.1, 0.1). The simulation produces a dou-
ble ring phenotype consisting of groups
of agents moving clockwise and coun-
terclockwise around a circle. For ease
of depiction, we represent any contours
greater than 2 as white. (a) Crockers
obtained from position and velocity data.
We normalize position and velocity by
using their respective maximum and min-
imum magnitudes across all simulations.
This approach identifies only a single
topological loop. (b) Crockers computed
from 4D data that incorporates time-de-
layed position. This approach avoids a dis-
parity between the scales of position and
velocity and correctly detects two loops
(and two connected components).
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vectors consist of vectorized crocker matrices for b0, b1, or the con-
catenation of the two, calculated from agent position (in some cases,
augmented with time-delayed position as described in Sec. II C).

The k-medoids algorithm divides the ensemble of simulations
into k clusters, each of which is de�ned by onemember of the ensem-
ble that serves as the medoid. The algorithm chooses medoids to
minimize the sum of pairwise distances within each cluster, and each
simulation is assigned to the cluster containing its closest medoid.
We use the R software function pam to cluster our simulations into
k = 25 groups, since there are 25 distinct parameter choices (C,`).
This is an unsupervised approach, as it does not require labeled
training data.

E. Supervised learning

As an alternative approach, we use a multiclass linear support
vector machine (SVM) to infer parameters.43 Our use of SVMs is
supervised because we train them on a subset of our simulations,
each labeled with its true (C, `) values. A linear SVM takes this train-
ing data and �nds hyperplanes that maximally divide the simulations
according to parameter values. To classify a simulation not included
in the training set, one identi�es the intrahyperplane region in which
it falls and reads o� the appropriate label, i.e., the parameter values.

We use Matlab’s fitcecoc function to build and train our
SVMs using a one-vs-one approach and 5-fold cross-validation. That
is, for each round of cross-validation, wewithhold 20%of the data (20
simulations from each parameter combination) for the testing data
set.We then train the linear SVMon the remaining data and compute
the out-of-sample accuracy for simulations in the testing set.

Order parameter and topological feature vectors are not of
the same dimension. The time series of each order parameter is
87-dimensional, and the time series of all four concatenated is
4 × 87 = 348-dimensional.On the other hand, each position crocker
is 200 × 87 = 17 400-dimensional, and the concatenation of b0 and
b1 is double that. To make a fair comparison between the order
parameter and topological approaches, we use principal component
analysis44 (PCA) to reduce the dimensionality of our input feature
vectors. In one case, we reduce crockers and the concatenated order
paramers to 87 dimensions in order to compare them directly to the
individual order parameter time series. In a second case, we reduce
all feature vectors to three dimensions to investigate performance at
low dimensionality.

III. RESULTS

Figure 4 recapitulates the entire analysis pipeline for our study.
We summarize the dynamics of (1) using two approaches. The
order parameter-based approach uses problem-speci�c quantities
designed to distinguish between observed dynamics. The topology-
based approach does not require this a priori knowledge and is
instead based purely on the shape of the data. We then construct
feature vectors from each type of summary and input them into
machine learning algorithms to identify parameters and a pheno-
typic pattern for each model simulation. In Secs. III A and III B,
we compare how accurately these di�erent approaches can recover
simulation parameters and identify dynamic phenotypes.

FIG. 4. Our analysis pipeline. We summarize the dynamics of the D’Orsogna
model (1) using problem-specific order parameters (left) and a problem-indepen-
dent description based on topology (right). We construct feature vectors from each
summary and input them into machine learning algorithms to identify parameters
and phenotype for each model simulation.

A. Unsupervised learning results

Table II summarizes results for k-medoids clustering with
k = 25. Columns 1 and 2 specify the feature vector used, while
columns 3 and 4 give the accuracies obtained for parameter recov-
ery and phenotype identi�cation. For the parameter recovery task,
using the concatenation of all four order parameters yields 49.9%
accuracy. For the concatenation of b0 and b1 based only on posi-
tion data, we obtain 76.6% accuracy. Finally, for b0 and b1 based on
time-delayed position, we have 71.3% accuracy. In Appendix B, Fig. 7
displays confusion matrices. These reveal that regardless of feature
vector type, the collective swarming and single mills are the most
frequently misclassi�ed phenotypes.

For all feature vector types, phenotype identi�cation is
signi�cantly more accurate than parameter recovery. The confusion

TABLE II. Unsupervised classification accuracy for parameter values using k-medoid

clustering with various input feature vectors and k = 25. The third column displays the

accuracy when simulations are classified by parameter vector (C, `), and the fourth

column displays the accuracy when simulations are classified by phenotype.

Summary Feature Parameter (%) Phenotype (%)

Order parameters P(t) 20.6 62.9
Mang(t) 19.3 60.7
Mabs(t) 47.3 63.9
DNN(t) 48 80.1
All 49.9 97.4

TDA (position) b0 76.6 83.6
b1 71.9 79.8

b0 & b1 76.6 99.8

TDA (time-delayed
position)

b0 71.1 82.6

b1 73.7 84.4
b0 & b1 71.3 99.0
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matrices reveal that most cases of parameter recovery failure
nonetheless place a simulation in its appropriate phenotypic regime.
Using topological feature vectors based on position, we classify
nearly every simulation correctly by phenotype, and this approach
slightly outperforms concatenation of all order parameters. The slight
improvement in classi�cation accuracy when using TDA instead
of order parameters may not be su�cient to justify the increased
computational time for phenotype classi�cation tasks. However, for
parameter recovery tasks, TDA signi�cantly improves classi�cation
accuracy when using k-medoids, and, as discussed shortly, when
using a supervised classi�cation method.

B. Supervised learning results

Table III summarizes supervised classi�cation results for lin-
ear SVMs. For topological feature vectors based on position, b0 does
best with 97.0% accuracy. Similarly, for delayed positions, b0 also
does best, with 99.6% accuracy. Finally, for order parameter feature

TABLE III. Supervised classification accuracy for parameter recovery using a trained

linear SVM with various input feature vectors. In some cases, the dimensionality of

feature vectors has been reduced using PCA.

Summary Feature Dimension Accuracy (%)

Order parameters P(t) 87 57.7
Mang(t) 87 34.4
Mabs(t) 87 68.0
DNN(t) 87 91.1
All 4× 87 89.2

All (PCA) 87 69.6
P(t) (PCA) 3 46.7

Mang(t) (PCA) 3 30.0
Mabs(t) (PCA) 3 58.8
DNN(t) (PCA) 3 81.5
All (PCA) 3 68.6

TDA (position) b0 200× 87 97.0
b1 200× 87 93.7

b0 and b1 2× 200× 87 96.4
b0 (PCA) 87 96.2
b1 (PCA) 87 95.2

b0 & b1 (PCA) 87 96.2
b0 (PCA) 3 93.0
b1 (PCA) 3 79.4

TDA (time-delayed
position)

b0 & b1 (PCA) 3 93.1

b0 200× 86 99.6
b1 200× 86 99.3

b0 & b1 2× 200× 86 99.1
b0 (PCA) 87 99.7
b1 (PCA) 87 99.9

b0 & b1 (PCA) 87 99.7
b0 (PCA) 3 89.7
b1 (PCA) 3 82.8

b0 & b1 (PCA) 3 89.6

vectors, DNN(t) does best with 91.1% accuracy, while concatenating
all four order parameters yields 89.2% accuracy.

For any feature vectors with a dimension greater than 87, we
also include results obtained after reducing the dimensionality to 87
via a principal component analysis, allowing for a more fair com-
parison. After dimension reduction, the time-delayed topological
information for b1 achieves the highest classi�cation accuracy at
99.9%, followed by the position-only topological information for b0
at 96.2%. The classi�cation accuracy for all four concatenated order
parameters drops to 69.6%. Thus, a fourfold reduction in the dimen-
sion of the concatenated order parameters results in a 19.6% loss of
accuracy, whereas a 200-fold reduction for time-delayed topological
information leadsmerely to a 0.8%drop in accuracy for position-only
information and a 0.1% increase for time-delayed topological infor-
mation. These results suggest that even with dimensionality reduc-
tion, the topological feature vectors still carry more discriminative
information.

To examine the limit of low-dimensional data, we calculate
accuracies obtained after reducing all feature vectors to three dimen-
sions. In this case, for topological feature vectors based on position
data, the concatenation of b0 and b1 does best, with an accuracy
of 93.1%. For delayed position data, b0 does best, achieving 87.7%
accuracy, and for order parameters,DNN(t) does best, yielding 81.5%
accuracy. Figure 6 inAppendix B shows the three-dimensional repre-
sentations of the b0 and b1 crockers. We observe a strong separation
of the di�erent phenotypes, which explains the high out-of-sample
classi�cation accuracy.

Also in Appendix B, Fig. 8 visualizes the classi�cation results.
These results suggest that, similar to the unsupervised case, collective
swarms are themost di�cult phenotype to classify. Still, overall, using
topological data rather than order parameter data can signi�cantly
improve parameter recovery.

IV. CONCLUSIONS AND DISCUSSION

We have combined mathematical modeling, topological data
analysis, and machine learning to study nonlinear dynamics and
parameter inference in the D’Orsogna model of collective motion.
More speci�cally, we simulated (1), summarized the data using tra-
ditional and topological descriptors, and input these summaries into
unsupervised and supervised machine learning algorithms in order
to recover model parameters and classify pattern phenotypes.

Ourmachine learning classi�ers achieved higher accuracywhen
using topological feature vectors (namely, crockers) than when using
feature vectors based on traditional order parameters. Since the
crocker feature vectors have higher dimensionality than the order
parameter ones, we sought a fair comparison by reducing them via
PCA. In this case, the crocker approach still achieved better classi-
�cation accuracy using a supervised approach. In fact, b0 crockers
generated from time-delayed position data produced a nearly per-
fect classi�cation. The time-delayed crockers encode information on
particle velocity, which appears explicitly in Eq. (1) and may thus
aid the algorithm. The addition of b1 information serves primar-
ily to increase the dimensionality of the feature space and results in
reduced, though still quite high, classi�cation accuracy.

One limitation of the topological approach is the computa-
tional cost required to produce crockers. While an order parameter
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is scalar-valued at each time, a crocker is vector-valued. However,
recent software improvements, including the development of the
Ripser package, have led to a signi�cant reduction in cost.

A major advantage of using topological data summaries is that
they do not require prior knowledge about the patterns resulting
from model simulation. Order parameters, on the other hand, are
typically developed to capture speci�c features of previously observed
model behavior. We found that for the D’Orsogna model, topologi-
cal approaches to phenotype classi�cation and parameter recovery
achieved higher accuracy than order parameters even though they
do not incorporate knowledge of the model or its dynamics.

In futurework, wewould like to apply this approach to data from
biological experiments or �eld observations. There is a scarcity of
publicly available data describing real biological aggregation dynam-
ics, so for the present, we have demonstrated our method on sim-
ulation data. Furthermore, we would like to extend our work to
more complex settings, e.g., to the D’Orsogna model posed in three
dimensions, in which dynamical transitions occur between distinct
phenotypic regimes.32 Finally, it would be useful to augment the

model with noise and assess its e�ect by using our topological
methods.
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APPENDIX A: TIME-DELAYED CROCKERS

In Fig. 5, we examine data used to compute crockers in order
to understand di�erences in b1 for the single mill, double mill,

FIG. 5. Snapshots (t = 100) of data simulated from the D’Orsogna model (1), used to compute Betti numbers for the phenotypes in Figs. 1(a)–1(c). Because the data
are 4D, as described in Sec. II C, we show various 2D projections. Agents rotating clockwise around the group’s center of mass are colored in blue, and agents moving
counterclockwise are red. (a) Single mill. (b) Double mill. (c) Double ring.
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and double ring phenotypes. Since the data are 4D, as described
in Sec. II C, we show various 2D projections. Panel (a) shows a
single mill. We see a single looplike structure that arises from the
arrangement of particles in an annulus all traveling with the same
orientation. This structure produces b1 = 1 in Fig. 1(a). Panel (b)
shows a doublemill. Especially in the last two columns,we see a signal
of two loops. The two loops correspond to the two counter-rotating
swarms of the double mill. However, the signal is quite noisy. This
noisy signal manifests as the transient islands of b1 = 2 in Fig. 1(b).
Panel (c) shows a double ring. Agents occupy a well-de�ned circle,
with some rotating clockwise and others counterclockwise. This phe-
notype gives rise to two loops in the 4D space of our data (see last two
columns) and produces a clear signal of b1 = 2 in Fig. 1(c).

APPENDIX B: VISUALIZATION OF MACHINE

LEARNING RESULTS

Figure 6 displays the representation of all 2500 time-delayed
b0 and b1 crockers reduced to three-dimensional space using PCA.
Here, we see a strong separation of the single mill, double mill, col-
lective swarm, escape, and double ring phenotypes. This separation
explains why a linear SVM trained on this information has a fairly
high out-of-sample classi�cation accuracy, as shown in Table III.

Figure 7 displays confusion matrices arising from the unsuper-
vised classi�cation (k-medoids clustering) performed in Sec. III A.
In panel (a), we cluster on the concatenation of all four order param-
eters. Most of the simulations with misidenti�ed model parameters
are those exhibiting single mill behavior or collective swarm behav-
ior. However, for these incorrect cases,most were clusteredwith cases
sharing the same phenotype. In panel (b), we use the concatenation

of b0 and b1 crockers derived from 2D position data. In this case,
parameter recovery is more accurate for single mill simulations than
in panel (a) but collective swarms remain challenging. Panel (c) is
similar to (b), but it is based on 4D data incorporating position and
time-delayed position. This approach yields results similar to those in
(b), with a slight increase in misclassi�cation among the three escape
phenotypes.

Figure 8 depicts the out-of-sample parameter classi�cation
results from linear SVMs, as described in Sec. III B. Note that in this
�gure, we are depicting the classi�cation of each individual simula-
tion and not binning these classi�cations together as we do in the
confusion matrices of Fig. 7. Because of the high supervised clas-
si�cation accuracies, depicting the individual classi�cations is more
informative than the summary confusionmatrix. In panel (a), the lin-
ear SVM is trained on feature vectors comprised of DNN(t) without
any dimensionality reduction. We observe a high misclassi�cation
from parameters (C, `) = (0.1, 0.5) and (0.5, 3.0) as each other, as
well as simulations from (C, `) = (0.1, 0.9), (0.1, 2.0), (0.1, 3.0). All
of these parameter choices produce the collective swarm phenotype
(see Table I), suggesting that this is the most di�cult phenotype
for parameter recovery. In panel (b), the linear SVM is trained on
feature vectors comprised of the concatenation of b0 and b1 crock-
ers derived from 2D position data with dimensionality reduction
down to 87 [to match the DNN(t) dimensionality]. Here, we observe
a marked reduction in the misclassi�cation of the collective swarm
parameter values as compared to Panel (a). In panel (c), the linear
SVM is trained on feature vectors comprised of b0 and b1 crockers
derived from 4D time-delayed data with dimensionality reduction
down to 87. Here, we observe very accurate classi�cations, with only
7 simulations being misclassi�ed out of 2500.

FIG. 6. Depiction of the time-delayed b0
and b1 crockers after reduction to three
dimensions with PCA.
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FIG. 7. Confusion matrices for the unsupervised classification of Sec. III A. Using
the k-medoids algorithm, we cluster simulations into k = 25 groups. (a) Classi-
fication based on the concatenation of four order parameters. (b) Classification
using the concatenation of b0 and b1 crockers computed from 2D position data. (c)
Like (b), but based on 4D position data incorporating time delay. Rows correspond
to actual parameter values (C, `) and columns correspond to those assigned
by the classifier. There are 100 simulations for each true parameter bin. Color
indicates the number of simulations for each true/predicted combination.

FIG. 8. Results from the supervised classification of Sec. III B. In each plot, the
location of a small square denotes the true underlying parameter vector (C, `)
that generates one simulation. For instance, the 10 × 10 bin in the top left cor-
ner represents 100 simulations for (C, `) = (0.1, 0.1). The color of each square
denotes a linear SVM’s out-of-sample classification. For example, a dark blue
square designates a classification of (C, `) = (0.1, 0.1). (a) Classification based
on the average distance to nearest neighbor, DNN(t). (b) Classification using the
concatenation of b0 and b1 crockers computed from 2D position data and reduced
down to 87 dimensions via PCA for fair comparison with (a). (c) Like (b), but based
on 4D position data incorporating time delay.
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