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Abstract—In this work, a deep learning-based symbol
detection method is developed for multi-user multiple-
input multiple-output (MIMO) systems. We demonstrate
that the linear threshold-based detection methods, which
were designed for AWGN channels, are suboptimal in
the context of MIMO fading channels. Furthermore, we
propose a MIMO detection framework which replaces the
linear thresholds with decision boundaries trained with
neural network (NN) classifiers. The symbol error rate
(SER) performance of the proposed detection model is
compared against conventional methods under state-of-the-
art system parameters. Here, we report to up to a 2 dB
gain in SER performance using the proposed NN classifiers,
allowing for exploiting higher-order modulation schemes,
or transmitting with reduced power. The underlying gain in
performance may be further enhanced from improvements
to the NN architecture and hyper-parameter optimization.

I. INTRODUCTION

An end-to-end communications system consists of
many blocks which are typically optimized separately
either based on tractable channel models or through
real-world measurements. With networks becoming in-
creasingly more complex, it is no longer feasible to
develop accurate tractable models, and results from
field trials may not be adequate for capturing large-
scale deployments. These trends have opened the door
for the application of machine learning in communica-
tions system design and optimization [1]. In [2], the
authors discussed the different data-driven and model-
driven deep learning-based approaches. Therein, while
an abundant number of labeled data was used to train
each communications block, the data-driven approach
did not outperform the fundamental information theoretic
algorithms. On the other hand, the model-driven deep
learning-based approach utilizes both machine learning
algorithms and communications theory models.

The work in [3] utilized auto-encoders for training the
transmitter and receiver under a given channel model,
such to minimize the error performance. In [4], auto-
encoders were adopted for designing a multiple-input
multiple-output (MIMO) system, wherein, constellations
for 2×2 channels were learned. In [5], deep learning

was applied to the maximum-likelihood (ML) detection
problem for MIMO systems. The symbol error rate
(SER) of their proposed “DetNet” versus conventional
receivers was studied. Given machine learning models
are trained offline, there may exist a large mismatch
between the learned model and the actual online system.
This trend was studied in [6], where a two-phase training
strategy based on transfer learning was proposed. Specif-
ically, in the first phase, the auto-encoder was trained on
the stochastic channel model, and then in the second
phase, they finetuned the receiver by training on the
real channel. Their neutral network (NN)-based system
performed 1 dB worse than the baseline model, however,
improvements may be achievable via hyper-parameter
tuning and adjustments to the NN architecture.

Existing MIMO detection methods using deep learn-
ing feed the received signal and the processed channel
information as separate inputs of the learning method.
In this paper, we argue that this approach fundamentally
downgrades performance, as the NN cannot optimally
form an estimate of the signal with linear channel
processing. In conjunction with this notion, we illustrate
that the linear detection thresholds are a sub-optimal
solution for non-additive white Gaussian noise (AWGN)
channels, and define how the optimal decision regions
can be derived. Furthermore, we propose a novel deep
learning-based detection model for multi-user MIMO
systems, where NN classifiers are adopted to match the
optimal non-linear decision boundaries. Our simulation
results demonstrate the superior error performance of
the proposed deep learning-based MIMO detection ap-
proach over conventional methods, allowing for achiev-
ing higher spectral or energy efficiencies.

Notation: The following notation is used in this
paper. Bold upper-case and lower-case letters respec-
tively correspond to matrices and column vectors; super-
scripts ᵀ, ∗ and † respectively represent the transpose,
conjugate-transpose, and pseudo-inverse operations; p(x)
is the probability of event x; C N (µ,ν) is the complex
Gaussian distribution with mean µ and variance ν .



II. SYSTEM MODEL AND ASSUMPTIONS

Consider a multi-user MIMO system comprising
single-antenna user equipments (UEs) communicating
with a multi-antenna base station (BS). We use N and
U to respectively denote the number of BS antennas and
UEs – here, we assume N ≥U , hence, user scheduling
mechanisms are not needed. An illustrative diagram of
the uplink multi-user MIMO system under consideration
is depicted in Fig. 1.

The received signal at the BS is a linear combination
of the transmitted data symbols jointly affected by fading
and noise. Let yyy denote the baseband N-dimensional
received signal vector at the BS. Mathematically,

yyy = HHHxxx+nnn (1)

where HHH is the N×U fading channel matrix, xxx is the U-
dimensional symbol vector, nnn is the N-dimensional noise
vector. In this work, we utilise the independent Rayleigh
block fading channel model, hence, the coefficients of
HHH are drawn from C N (0,1). Further, complex AWGN
is assumed with elements of nnn distributed according
to C N (0,1). We consider channel state information
(CSI) to be available at the BS through channel reci-
procity or pilot training. Further, the transmitted symbols
are constructed using the M-array quadrature amplitude
modulation (M-QAM) method. Note that M = 2 and
M = 4 are special cases of M-QAM corresponding to
binary phase-shift keying (BPSK) and Quadrature phase-
shift keying (QPSK) schemes.

The received vector at the BS, yyy, is constructed using
the observations from all receive antennas. Considering
a received vector yyy = vvv, the Bayes’ theorem states [7]

pxxx|yyy(i|vvv)pyyy(vvv) = pyyy|xxx(vvv|i)pxxx(i) (2)

where pxxx(.), pxxx|yyy(.), pyyy|xxx(.) denote the priori, posteriori,
and channel transition probabilities, respectively. Hence,
for pyyy(vvv) 6= 0,

pxxx|yyy(i|vvv) =
pyyy|xxx(vvv|i)pxxx(i)

pyyy(vvv)
. (3)

The optimal (BS) receiver is the maximum à posteriori
(MAP) detector, defined as follows. Note that the de-
nominator pyyy(vvv) is a constant, therefore, it is ignored
when maximizing (3) over i.

Definition 1. The MAP detector selects the index i to
maximize the posteriori probability pxxx|yyy(i|vvv) given a
received vector yyy = vvv. Assuming all input messages are
equiprobable, the MAP rule can be described as

m̂⇒ mi if pyyy|xxx(vvv|i)pxxx(i)≥ pyyy|xxx(vvv| j)pxxx( j) ∀ j 6= i. (4)

For the MAP detector, after the estimation is formed,
each and every value of yyy is mapped to one of the M

Fig. 1: Schematic diagram of the uplink multi-user
MIMO system under consideration. The BS with N
antennas simultaneously receives signals from U single-
antenna UES.

points on the constellation diagram. Thus, the vector
space of yyy can be divided into M different regions.
The MAP decision region for M-QAM detection is
mathematically defined as follows [7].

Definition 2. The decision region for M-QAM, with
messages mi, i∈ {0, · · · ,M−1}, using the MAP detector
is given by

Di ,
{

vvv|pyyy|xxx(vvv|i)pxxx(i)≥ pyyy|xxx(vvv| j)pxxx( j) ∀ j 6= i
}
. (5)

With uniformly distributed input messages, the above
decision region reduces to

Di , {vvv|pyyy|xxx(vvv|i)≥ pyyy|xxx(vvv| j) ∀ j 6= i}. (6)

For a basic communications system with AWGN
channel, the decision regions can be readily derived
given the channel transition probabilities are known.
Specifically, minimizing the Euclidean distance from the
constellation point, results in linear detection thresh-
olds for AWGN channels [7]. There are however no
closed-form expressions for the MIMO channel trans-
mission probabilities under arbitrary signal-to-noise ra-
tios (SNRs).

Consider the MAP detector for the multi-user MIMO
system in (1)

x̂xx(y) = argmin
xxx∈θ

‖yyy−HHHxxx‖2 (7)



where x̂xx is the U-dimensional estimated received symbol
vector, and θ is used to denote the set of M constellation
points [8]. Solving (7) is not feasible in practice, since
it involves an exhaustive search of O

(
MU
)

for all
possible values of xxx. As a result, sub-optimal detectors
are commonly used in practice, such as the linear zero-
forcing (ZF) detector.

The estimated symbol, xxxest, from the output of the
linear ZF detector, can be written as

xxxest = HHH†yyy (8)

where HHH† = (HHH∗HHH)−1 HHH∗ is the puesdo-inverse of the
MIMO fading channel. Hence,

xxxest = HHH†HHHxxx+HHH†nnn︸︷︷︸
error

. (9)

The detector hence attempts to map xxxest to xxx based on
the decision regions. However, the error term in (9)
no longer follows a Gaussian distribution with known
statistics, and no closed-form expression for this exists to
date. Although the error distribution dictates the optimal
decision regions for detection, conventional methods
use sub-optimal linear detection thresholds, which were
designed for AWGN channels. Linear thresholds perform
poorly especially in low SNR, and for modulations of
higher order, where the constellation points are closer.

III. DEEP LEARNING-BASED DETECTION

In this work, we propose a novel deep learning-based
detection method, where the received signal is mapped
to the corresponding constellation points based on non-
linear thresholds that are set by NN classifiers. In what
follows, we formulate the proposed deep learning-based
multi-user MIMO detector.

Proposition 1. Let x[ j] and x̂[ j] respectively denote the
transmitted and predicted symbols with respect to the
transmit antenna (UE) j, where j ∈ {1, · · · ,U}. We
denote the Hamming loss with L , which captures the
proportion of mismatch between the transmitted and
predicted symbols. The MAP detector can be defined as

ĥM(yyy,HHH)= argmax
x̂xx

∑
xxx

p(xxx|xxxest)

U

(
1−

U

∑
j=1

L (x[ j], x̂[ j])

)
.

(10)

In order to tackle (10), we propose a multi-label clas-
sifier using an artificial NN architecture. NN takes the
central assumption that p(xxx|xxxest) can be approximated as
a non-linear function applied to the linear combination
of input features.

Remark 1. Note that the estimation loss can be defined
for AWGN channels based on the Euclidean distance
between the transmitted and received symbols, whereas

for fading channels, it should be defined based on the
Hamming distance.

Remark 2. Note that in (10), we utilize xxxest, which
exploits both yyy and HHH to design a detector for the
model in (9). However, some of the existing works in the
literature formulate the detector based on (1). The latter
approach does not lead to promising results given using
only yyy, instead of xxxest, means performing the detection
with no channel knowledge.

Here, we have a multi-label multi-class classification
problem. The problem is multi-label since we have
multiple single antenna users, which the detector has
to detect the transmitted symbols for, and it is also
multi-class due to the fact that there is muti-class of
symbols to detect depending on the constellation. The
training data set consists of pairs of an input vector,
which in our model is the received signal after forming
the estimation, and the corresponding output vector,
which consists of transmitted symbols. We use the binary
relevance method [9] for the multi-label classification
task, meaning the target labels for the classification are
independent of each other. This assumption is in line
with the multi-user MIMO system model, where UEs
transmit symbols independently of each other to the
BS. The symbols are generated randomly with uniform
distribution with respect to the desired constellation.
Then, they are passed through MIMO fading channel re-
alizations for a wide range of SNRs. Next, at the receiver
side, the received signals are fed to the estimator. The
output of the estimator is used as the input training vector
for the NN and the target values are the corresponding
transmitted symbols.

Generally, applying machine learning algorithms to
communications systems is challenging given the train-
ing data is complex-valued. Moreover, the optimal for-
mat to feed the real and imaginary part of the data to
the NN is a cumbersome task. Fortunately, there exists
an equivalent real-valued representation of the complex-
valued MIMO system in (1) given by [8]

ẋxx = [R (xxx)ᵀI (xxx)ᵀ]ᵀ

ẏyy = [R (yyy)ᵀI (yyy)ᵀ]ᵀ

ṅnn = [R (nnn)ᵀI (nnn)ᵀ]ᵀ

ḢHH =

[
R (HHH) I (HHH)
−I (HHH) R (HHH)

] (11)

where, ẋxx is a 2×U-dimensional real vector, ẏyy and ṅnn are
2×N-dimensional real vectors, and ḢHH is a N× (2×U)
real matrix, capturing the real and imaginary parts of xxx,
yyy, nnn, and HHH, respectively.

For the training phase, we map the transmitted sym-
bols to vectors of ones and zeros using the one-hot
encoding scheme. For example, consider a 2×2 MIMO



with transmitted 16-QAM symbols being s1 = 3 + 1i,
s2 = 3−1i. First, we convert the complex-valued vector
to a real vector using (11), specifically, ṡss = [3,3,1,−1]ᵀ.
Converting this vector using one-hot encoding scheme
maps it to a vector consisting only of ones and ze-
ros, which is more suitable for training purposes. For
example, considering 16-QAM, one-hot maper can be
described as

sym1 =−3↔ [1,0,0,0]
sym2 =+3↔ [0,0,0,1]
sym3 =−1↔ [0,1,0,0]
sym4 =+1↔ [0,0,1,0].

(12)

Hence, the real and imaginary values of each symbol for
16-QAM are mapped to a row vector of four elements.
For example, with ṡss = [3,3,1,−1]ᵀ, through concate-
nation, ẏyytarget = [1,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0]ᵀ. As
for the input (feature) vector, consider the following
transmit signal vector and channel matrix

xxx =
[
1.0036+0.7480i 6.3991− j1.2315i

]ᵀ
HHH =

[
0.7378+0.5802i 0.0065−0.5814i
0.2519+0.9350i 1.2762+0.8626i

]
. (13)

After forming the estimation using equation (8), ẋxxest =
[1.0036 6.3991 0.7480 1.2315]ᵀ. Hence, ẋxxest is one
sample (one row) of the the input matrix of the NN
and ẏyytarget is the corresponding row in the output matrix
of the NN. Looking at ẏyytarget, one might think that this
input feature is not sufficient for the classification task,
however, it is imperative to realize that the NN is trained
in a way that each output node corresponds to a real or an
imaginary part of a label. Furthermore, for each output
node, an independent classifier is trained based on the
binary relevance method. For this example, ẋxxest is used
to predict real and imaginary parts of s1 and s2 using
not only one but four different independent classifiers
embedded within the same NN.

We train our model for T training symbols and channel
variations. Therefore, ẋxxest is a T×(2×U) matrix, which
is the input matrix of the NN and, ẏyytarget, the T×(8×U)
target/label matrix, is the output matrix of the NN for
training. We train the network with 80% of the samples
and validate the model on the remaining 20%. The
trained model is then used to detect the symbols and
calculate SER on a different test set.

IV. SIMULATION RESULTS

In this section, we investigate the SER performance of
the proposed deep learning-based detection method, and
accordingly draw comparisons against the conventional
linear threshold-based method. Specifically, we carry
out simulations for 2×2, and 4×4 multi-user MIMO
systems, under BPSK and 16-QAM modulations, and for

varying SNR values. Our training set for the NN consists
of 106 samples, and the test set has 103 samples.

To design the NN, we use the keras deep learning
library [10] . Further, we use the “LeakyReLU” acti-
vation function to introduce non-linearity properties to
the network; the LeakyReLU allows a small positive
gradient when the relevant neuron is not active, therefore
tackles the well-known vanishing gradient problem. The
output layer is a densely connected layer with the
Sigmoid activation function. As previously highlighted,
we convert the targets/labels vector to a vector of con-
taining only ones and zeros, and for each target label
an independent classifier is trained within the same NN.
Thus, the model uses the binary cross-entropy function to
calculate the loss. The optimization problem to minimize
the respective loss is solved using the Adam optimizer
[11], a variant of stochastic gradient descent algorithm.
The number of the input/output neurons is defined with
respect to the number of UEs and BS receive antennas.
We utilize Grid-Search to find the number of hidden
layers, and hidden neurons in each layer. We trained the
network on a batch size of 32 and with 103 epochs.

Fig. 2 illustrates the simulation results for the 2×2
MIMO system with different BPSK and 16-QAM mod-
ulations. We observe that the proposed detection based
on NNs classifiers improves SER performance compared
to detection under linear thresholds. For a target error
rate performance, the proposed model, has achieved up
to a 2 dB gain in SER. Moreover, in low SNR region,
the gap between the performance of the two models
becomes greater, because as the noise power increases,
the classifier is better equipped to strip the estimated
symbol of error compared to the conventional model.
Under high SNR values, the two methods converge; this
is expected, as with insignificant noise powers, the error
term in the estimated signal is indeed small. It is worth
mentioning that by improving the NN classifier, the
performance gap between the two models may be larger.

Fig. 3 demonstrates the simulation results for the 4×4
MIMO system under BPSK and 16-QAM transmission
schemes. Comparing Figs. 2 and 3, we observe, that as
the MIMO dimension increases, the performance gap
between the two detectors increases accordingly. On
the other hand, if the number of users and receiver
antennas in the BS for two systems are the same, the gap
between the performance of the proposed model and the
conventional model is higher for system with modulation
of higher order. This shows as the modulation order in-
crease, and we have a larger number of possible choices
for the transmitted symbol, the NN-based method gain
over the conventional method increases.

Overall, based on the above findings, it can be de-
duced that under a given transmit power budget, the
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Fig. 2: SER performance of 2×2 MIMO under the
proposed NN-based detector and conventional linear
threshold model for different modulations and SNRs.

proposed NN-based detection model has achieved a
lower SER versus the conventional method based on
linear thresholds. Our results confirm that the use of deep
learning tools for symbol decision boundary evaluation
may be a powerful enabler for implementing high order
modulations like 64-QAM and 256-QAM in a power-
efficient manner.

V. CONCLUSIONS

In this work, we proposed a deep learning-based
detection method for multi-user MIMO systems. We
highlighted that the conventional detection methods are
strictly sub-optimal in the context of MIMO fading
channels as they resort to the use of linear thresholds.
We developed a method in which the (near) optimal
decision regions were formed by means of NN classi-
fiers. Simulation results highlighted the promising error
performance gain of the proposed method, which allows
for achieving higher spectral efficiencies over the linear
threshold-based detection methods. Future study can be
done on further improvements to the NN architecture to
achieve higher SER gains.
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Fig. 3: SER performance of 4×4 MIMO under the
proposed NN-based detector and conventional linear
threshold model for different modulations and SNRs.
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