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Abstract: The transcription factor PAX6 is essential in ocular development in vertebrates, being
considered the master regulator of the eye. During eye development, it is essential for the correct
patterning and formation of the multi-layered optic cup and it is involved in the developing lens
and corneal epithelium. In adulthood, it is mostly expressed in cornea, iris, and lens. PAX6 is a
dosage-sensitive gene and it is highly regulated by several elements located upstream, downstream,
and within the gene. There are more than 500 different mutations described to affect PAX6 and its
regulatory regions, the majority of which lead to PAX6 haploinsufficiency, causing several ocular and
systemic abnormalities. Aniridia is an autosomal dominant disorder that is marked by the complete
or partial absence of the iris, foveal hypoplasia, and nystagmus, and is caused by heterozygous
PAX6 mutations. Other ocular abnormalities have also been associated with PAX6 changes, and
genotype-phenotype correlations are emerging. This review will cover recent advancements in PAX6
regulation, particularly the role of several enhancers that are known to regulate PAX6 during eye
development and disease. We will also present an updated overview of the mutation spectrum,
where an increasing number of mutations in the non-coding regions have been reported. Novel
genotype-phenotype correlations will also be discussed.

Keywords: aniridia; enhancers; genotype-phenotype correlations; haploinsufficiency; PAX6; paired
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1. Introduction

The human paired box 6, as coded by the PAX6 gene, is a member of the PAX family of transcription
factors, which are evolutionarily highly conserved among metazoans and are characterized by the
presence of a conserved DNA-binding domain, the paired domain [1]. Positional cloning identified
it in the early 1990s [2]. At the same time, murine Pax6 was also identified by the screening of
mouse embryonic expression libraries [3] and associated as the causal gene of an heterozygous Sey
mouse strain (Sey+/−) [4], which presented with microphthalmia, iris hypoplasia, cataracts, and corneal
opacifications, resembling human developmental eye disorder aniridia [5]. Further PAX6 homologous
genes were later identified in zebrafish (pax6a and pax6b) [6], quail [7], and Drosophila (ey, toy, eyg,
and toe) [8].

PAX6 is considered to be the master regulator of the eye, since the overexpression of the gene
resulted in ectopic eye formation in both Drosophila and Xenopus [9,10]. During early eye development,
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PAX6 is expressed on the surface and neural ectoderm. By week five in human gestation, it is expressed
throughout the optic vesicle, which then invaginates to form the bi-layered optic cup, where PAX6
is found in both neural and pigmented retinal layers [11]. It is also highly expressed in the anterior
segment structures that are derived from the surface ectoderm, including the lens vesicle and corneal
epithelium [11,12]. Postnatally, PAX6 is restricted to retinal ganglion, amacrine and horizontal cells,
lens, cornea, conjunctiva, iris, and ciliary body [12,13]. Outside the eye, it is expressed in the pancreas,
nasal epithelia, and several distinct regions of the central nervous system (CNS), like the forebrain,
hindbrain, and spinal cord [12].

Defects in PAX6 gene can affect eye development and result in a broad range of clinical phenotypes,
with the most common being aniridia, a pan ocular disorder that is primarily characterised by the absence
or hypoplasia of the iris, nystagmus, and foveal hypoplasia, accompanied by cataracts, glaucoma and
corneal keratopathy [14]. Other ocular phenotypes include microphthalmia, optic nerve anomalies,
or anterior segment dysgenesis [15]. Systemic features can include neurodevelopmental abnormalities,
like autism and attention deficit hyperactivity (ADHD) disorders, language impairment [16–18], and in
some cases the absence or malformations of the pineal and pituitary gland [19–22]. Defects in PAX6 have
also been associated with obesity and diabetes mellitus due to its role in pancreas development [23,24].

The majority of PAX6 mutations are heterozygous and they result in loss of one allele
causing PAX6 haploinsufficiency. This review will highlight recent advances in PAX6 function
and regulation and will particularly focus on the spectrum of mutations in the eye and resultant
genotype-phenotype correlations.

2. PAX6

PAX6 (OMIM 607108) locus was mapped to the chromosome region 11p13, being 22 Kb in size,
but with regulatory regions spanning ~450 Kb of genomic DNA [25,26]. The gene contains 14 exons,
with the first three being non-coding (Figure 1A) [27].
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Figure 1. Human PAX6 locus. (A) PAX6 gene structure in 11p13, with 14 exons (boxes, colours represent
respective protein domains), promoters P0, P1 and Pα (boxes with diagonal lines) and regulatory
elements (oval shapes with horizontal lines) including ectodermal enhancer (EE), located upstream
PAX6, and Downstream Regulatory Region (DRR) and SIMO, within the introns of neighbour gene ELP4
(last four exons represented by orange boxes). EE: ectodermal enhancer; DRR: downstream regulatory
region. (B) Main PAX6 isoforms, canonical PAX6 and PAX6(5a) and their respective structure with
functional domains. PD: paired domain; NTS: N-terminal subdomain; CTS: C-terminal subdomain;
LNK: linker region; HD: homeodomain; PST: proline-serine-threonine domain; aa: amino acids.
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PAX6 encodes a protein whose canonical form is approximately 46 KDa and is formed by 422
amino acids. It has two DNA-binding domains, the paired domain (PD) and the homeodomain (HD),
-connected by a linker region (Figure 1B). At the C-terminal, immediately downstream of the HD, there
is also a proline-serine-threonine-rich transactivation domain (PSTD), which is required for initiating
transcription and it modulates DNA binding by the HD [28,29]. The PD is, in turn, comprised of
a N-terminal subdomain (NTS or PAI) and a C-terminal subdomain (CTS or RED) (Figure 1B) [30].
Both subdomains bind the respective consensus DNA sequences and the two major PAX6 isoforms,
canonical PAX6 and PAX6(5a), modulate their activity [31,32].

PAX6(5a) is formed by the alternative splicing of exon 5a between exons 5 and 6, which results in
a slightly larger isoform with 436 amino acids (48 KDa) (Figure 1B). The extra 14 amino acids encoded
by exon 5a are inserted in the NTS of the paired domain, blocking its DNA-binding activity, and
unmasking DNA-binding activity of the CTS [31,33].

A third isoform has been reported in quail and mice—Pax6∆PD—which lacks the complete PD
and it is predicted to result in a truncated protein [34,35]. However, Kim and Lauderdale showed
that Pax6∆PD has a distinct function in mammalian eye development than Pax6 and Pax6(5a),
since the overexpression of Pax6∆PD, while using BAC and YAC transgene systems, lead to severe
microphthalmia in both wildtype and Pax6-deficient mice [36,37]. Dual reporter systems during mouse
embryonic development showed that Pax6∆PD isoform, although at lower levels than PD-containing
isoforms, was mostly detected in the peripheral neural retina and developing ciliary body, but it was
absent from developing lens and cornea [36,38].

The regulation and target genes of each isoform in the eye are not entirely understood. It is
hypothesized that canonical PAX6 is more prominent during embryonic development of ocular tissues
and is related to differentiation and cell fate determination, while PAX6(5a) seems to be more relevant
in the later development or postnatally and for cell proliferation [39–41]. Accordingly, expression
studies in the mouse lens showed that, during embryonic development, canonical Pax6 expression
is much higher (8:1) when compared to Pax6(5a). However, in adult eye tissues (lens, cornea and
retina), the ratio changes to 1:1 [42,43]. The same tendency was observed in the retina of chick embryos,
where canonical Pax6 is highly expressed during early stages in the eye primordium and lens placode,
whereas Pax6(5a) expression gradually increases at later stages, particularly in the cornea and lens [39].
The expression of Pax6(5a) actually exceeds canonical Pax6 expression in the posterior retina of chicks,
as birds possess a high density of photoreceptors, comparable to the fovea in primates [39]. These
expression studies seem to corroborate human phenotypes, since mutations affecting the CTS, which is
the main DNA-binding subdomain of PAX6(5a) isoform, have been associated with isolated foveal
hypoplasia (discussed in Section 6.3.1.) [33,44,45]. In the cornea, PAX6 and PAX6(5a) are both expressed
in the epithelial layer with a correlation between the expression levels of epithelial-specific keratins
and PAX6 isoforms. Overexpression studies showed that canonical PAX6 seems to induce KRT3, while
PAX6(5a) induced KRT12 expression via each of their respective PD subdomains [46].

Although the PAX6 isoforms seem to have independent roles and downstream targets in eye
development, the existence of a positive feedback system between Pax6 and Pax6(5a) in mice was
also reported [47,48]. Furthermore, the expression ratio between both of the isoforms seems to be
essential for normal eye development, and altered ratios has been associated with eye and brain
abnormalities [49–51].

3. PAX6 Regulation

Due to the high similarity of mice, Drosophila, or quail Pax6 to human PAX6, these organisms have
been extensively used as model systems to understand its function and complex regulatory network.
Promoters P0 and P1 mainly regulate the transcription of PAX6 and, to a lesser extent, by internal
promoter Pα, giving rise to the many transcripts that encode the different isoforms (Figure 1) [52–55].
In situ hybridization experiments in the developing mouse eye showed that P0 promoter initiates gene
expression in the cornea and conjunctival epithelia, lens placode, and retina, whereas the P1 promoter
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mainly initiates transcription in the lens placode, optic vesicle, and CNS, but only weakly in the cornea
and conjunctiva. Pα directs the expression in retinal amacrine cells, ciliary body, and iris [41,52,53,55].

However, tissue- and time-specific regulation of PAX6 is still largely unknown. Furthermore,
there is no direct relationship between the promoters and expression of specific transcripts. In mice,
P0 and P1 both initiate the expression of Pax6 and Pax6(5a) transcripts, while Pα-derived transcripts
seems to be more directly linked to the Pax6∆PD isoform [34,54]. These results point to additional
regulation elements that act together with promoters in the complex regulation and expression patterns
of PAX6. Conserved cis regulatory regions have been identified both upstream and downstream of
PAX6 and they are summarized in Table 1.

Table 1. Summary of conserved regulatory elements in the PAX6 locus and their regulation of PAX6
ocular and extra-ocular expression.

Regulatory
Element

Distance to
PAX6 (Kb) Location Eye Expression Extra-Ocular Expression Reference

RB −215 Intron ELP4 Diencephalon, telencephalon, pineal
gland [37]

E180B −176 Intron ELP4 RGCs and optic nerve Trigeminal ganglia, dorsal spinal cord
neurons [56]

HS8B −177 Intron ELP4 [25]

HS8A −176 Intron ELP4 [25]

HS6 −172 Intron ELP4 Neural retina Neural structures [57]

HS5 −168 Intron ELP4 Optic cup and neural retina Diencephalon [57]

HS3 −162 Intron ELP4 Neural retina [25]

HS2 −161 Intron ELP4 Neural retina [25]

SIMO −153 Intron ELP4 Lens and neural retina Diencephalon, hindbrain, neural tube [25]

E120 −126 Intron ELP4 Olfactory bulbs, brain [56]

E100 −104 Intron ELP4 Neural retina Diencephalon, olfactory region [58]

E60A −54 Intron ELP4 Optic cup and neural retina Neural structures [57]

7CE1 −18 Intron PAX6 Late eye development [59]

NRE −13 Intron PAX6 Neural retina, ciliary body,
iris [54]

0CE1 −1 5’UTR PAX6 [26]

agCNE14 (P2) 4 Pancreas [56]

EE 5 Cornea, lens, conjunctiva
and lacrimal gland [54,60]

agCNE12 (P) 7 Pancreatic islets

agCNE11 8 Pineal gland [56]

agCNE10 (Up-9) 9 No specific pattern [56]

agCNE9 (Up-10) 12 Pineal gland [56]

Mouse-like Paupar 54 [61]

PE3 (E-52) 57 Developing pancreas and brain [62]

E-55/C 59 No specific pattern [56]

E-55/B 60 No specific pattern [56]

E-55/A 70 Hindbrain [56]

E-72 71 No specific pattern [56]

PE4 (E120) 110 Developing pancreas, olfactory tract,
cerebellum, hindbrain [62]

agCNE5 (Id855) 178 Forebrain [56]

agCNE4 186 Hindbrain [56]

agCNE3 214 Olfactory bulbs [56]

E200 214 Olfactory bulbs, cerebellum [63]

agCNE1 224 Trigeminal ganglia, dorsal spinal cord
neurons [56]

E250 247 No specific pattern [56]
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The ectodermal enhancer (EE) is located ~3.5 Kb upstream of the P0 promoter and regulates
the expression of PAX6 during the development of surface ectodermal-derived tissues (lens, cornea,
conjunctiva) [48,54,60,64,65]. In mice, Pax6 was found to directly interact with the EE for autoregulation
mechanisms, but it can also interact with Sox2 and Sox3, transcription factors that are also involved in
early eye and lens development [48,66]. The Pax6-Sox2 complex can also act on the Sox2 enhancer
N-3, showing a synergistic mechanism between these two transcription factors in the regulation of
crystallin gene expression [67].

Approximately 150 Kb downstream of PAX6, within introns 7 to 9 of neighbour gene ELP4, resides
an essential region for PAX6 regulation—Downstream Regulatory Region (DRR). DRR contains several
conserved elements that, if absent, affect PAX6 expression and normal eye development [25,37,57,58].
Although the role of all the elements has not been uncovered, important retinal and iris enhancers are
located within this region, since the deletion of DRR in mice completely abolished Pax6 expression in
both tissues, as well as in the ciliary body [37]. The deletion of DRR did not dramatically alter Pax6
expression in the lens; the same was observed when the deletion of EE reduced, but did not abolish,
Pax6 expression in the lens [64]. These results show that multiple enhancers in multiple regions
regulate tissue-specific transcription [37].

Within the DRR, an 800 bp specific enhancer element—SIMO—was found to have a PAX6 PD
consensus binding sequence, guiding expression in early and later stages of eye formation, i.e., early
surface ectoderm, lens, and neural retinal differentiation, as well as in adulthood, in the lens epithelium,
retina, and iris [26]. SIMO was shown to be critical for Pax6 expression, as the disruption of this
element alone was sufficient for abolishing expression in the developing lens in transgenic mice and
zebrafish [26]. Importantly, deletion or point mutations in SIMO were described to cause aniridia
phenotype in humans (discussed in Section 4.4.) [26,68]. However, the disruption of PAX6 expression
in the lens when SIMO is affected is most likely due to a self-regulation mechanism of PAX6 itself,
which, as in EE, can bind to SIMO via PD and regulate its own expression during eye development in a
positive feedback loop [26]. In the mouse lens, two transcription factors from the TALE homeoproteins
family, Meis1 and Meis2, have been identified as upstream regulators of Pax6 by regulating the activity
of both EE and SIMO enhancers [69,70]. However, the exact role and regulation mechanisms of these
regions on PAX6 expression in other eye tissues are still largely unknown.

Comparative genomic hybridisation (CGH) analysis of aniridia patients that lacked mutations
in PAX6 coding sequence, pointing to additional regulatory elements located in this region, have
identified deletions in PAX6 3’ regulatory region (Figure 2) [71–75]. As a result, Ansari et al. proposed a
critical region for PAX6 transcriptional activation that spanned approximately 245 Kb and encompassed
neighbour genes DNAJC24, IMMP1L, and ELP4 [72]. More recently, Plaisancie et al. refined it to a
18 Kb region within ELP4 that does not include SIMO, but another highly conserved enhancer in the
DRR, E180B (Figure 2) [56]. These findings highlight a possible role of E180B in aniridia [75].
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Figure 2. Schematic representation of previously reported deletions in 11p13 encompassing regulatory
regions 3’ of PAX6. Genes are represented by grey boxes and arrows indicate direction of transcription.
PAX6 is highlighted in black. Known PAX6 enhancers are indicated by oval shapes with horizontal
lines with focus on SIMO and E180B. Coloured bars represent deletions identified in different cohorts
of aniridia patients without PAX6 mutations [68,72,73,75–77]. The vertical dashed lines indicate a
common region deleted in all mentioned aniridia patients, which was defined first as 245 Kb long by
Ansari et al. (blue dashed lines) and later reduced to 18 Kb by Plaisancie et al. (red dashed lines) [72,75].
Genomic coordinates are based on human genome assembly hg19.

4. PAX6 Mutation Spectrum

The “PAX6 Mutation Database” (http://lsdb.hgu.mrc.ac.uk/home.php?select_db=PAX6) catalogs
all reported mutations in PAX6 and had, until its last update in 2018, nearly 500 unique variants
registered. Intragenic mutations cover ~96% of variants in the database, while the remaining 4%
represent the whole gene deletions or variants described in 5’ and 3’ regulatory regions. 80% of
intragenic mutations are spread through the complete coding sequence of the gene, but the majority
seem to be located within exon 5, 6 and 9, which represent the paired (5 and 6) and homeo- (9) domains
of PAX6 protein. While considering the mutation type, the most common intragenic mutations that
were observed in PAX6 are nonsense (39%), followed by frameshifts (27%), missense (12%), splice site
(15%), small indels (2%), and C-terminal extension (or run-ons) (2%) (Figure 3) [15,78].

http://lsdb.hgu.mrc.ac.uk/home.php?select_db=PAX6
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4.1. Premature Termination Codon (PTC) Mutations—Nonsense, Frameshift, and Splice Site Variants

Nucleotide changes that introduce a premature termination codon (PTC) are the most common
mutations that are found in PAX6. Nonsense, frameshift (out of frame insertions or deletions), and
most splice site mutations result in the insertion of a PTC and the consequent termination of translation,
accounting for 65–70% of all PAX6 mutations in the database (Figure 3A). Patients with PTC variants
tend to present classical aniridia phenotype [15].

Although PTC mutations were first thought to cause truncated proteins with a dominant negative
effect, it is now accepted that mRNA transcripts containing PTCs located until 50 bp upstream of the
last exon junction may be subjected to nonsense-mediated decay (NMD) [79]. Hence, PTCs in PAX6
mostly result in the degradation of the mutated transcript and the consequent loss of 50% of PAX6
protein levels [15,80]. Four specific nonsense variants are the most common PTC mutations and they
account for more than 20% of all entries in the database: c.607C>T, p.Arg203* (exon 8); c.718C>T,
p.Arg240* (exon 9); c.781C>T, p.Arg261* (exon 10); and, c.949C>T, p.Arg317* (exon 11) [15]. These
mutations are located in known methylated CpG islands in exons 8–13, which constitute mutational
“hotspots” for aniridia [78].

Further evidence that NMD is acting on PTC-containing PAX6 transcripts is the absence of
these variants at the 3’ end of the gene [78]. PTCs in this region are expected to escape NMD and
they would result in truncated proteins with a possible dominant negative effect and more severe
phenotypes [81,82]. However, within the region that was predicted to escape NMD, i.e., the last 50 bp
from exon 12 and exon 13, there are no nonsense mutations reported aside from c.1183G>T (p.Gly395*)
in the last nucleotide of exon 12, but with predicted mRNA missplicing [83], and all frameshift changes
are predicted to cause C-terminal extensions [78].

4.2. C-Terminal Exptension (CTE) Variants

Frameshift or point mutations in PAX6 that alter the stop codon location and allow for translation
to continue into the 3’UTR region are less frequent than the variants described earlier, with only 13
entries being reported. Large aniridia cohort studies show that CTEs are associated with aniridia-like
phenotypes, with a severity comparable to PTC-causing variants [84–86]. These observations seem to
suggest that CTE mutations also generate PAX6 haploinsufficiency; however, NMD does not degrade
these transcripts, since there is no PTC introduced, which means that these changes should indeed
produce a longer protein that would most likely be unstable with the affected PST domain transactivation
activity. The mechanisms of how CTE mutations cause haploinsufficiency are still unexplained.
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4.3. Missense Variants

Missense mutations, which cause one amino acid to be replaced by a different one during
translation, are reported in ~12% of all entries in the PAX6 Mutation Database. They are more
concentrated in the PD and functional studies predict these variants cause differences in DNA binding
and the transactivation activities of PAX6 [87–90]. These mutations are usually associated with milder,
but atypical ocular phenotypes, in some cases without the presence of iris defects [86]. In fact, Tzoulaki
et al. reported that missense mutations in PAX6 are responsible for nearly 70% of non-aniridia eye
disorders that were registered in the database (Figure 3C) [78], like microphthalmia, optic nerve
anomalies, coloboma, isolated foveal hypoplasia, and anterior segment dysgenesis (discussed in
Section 6.3.) [44,90–93].

4.4. Non-Coding Variants

An increasing number of reports point to the implication of mutations in non-coding regions
in neurodevelopmental and eye disorders [94–96]. In the PAX6 Mutations Database, approximately
15% of all variants are located in the intronic regions and they are generally associated with classical
aniridia phenotypes. Although the great majority are located in donor and acceptor sites at the
intron-exon borders, deep intronic variants have recently been found in large aniridia patient
cohorts [75,83]. The deletions or point mutations in non-translated 5’ and 3’UTR of PAX6 have
also been reported [75,97,98]. Minigene assays or in silico analysis revealed that most of these variants
are likely to affect the normal splicing patterns, which results in the formation of PTCs and the
consequent PAX6 haploinsufficiency [99].

Changes in 3’ regulatory PAX6 regions were also identified in patients presenting with classical
aniridia. A single nucleotide change (chr11: 31,685,945G>T) in the SIMO enhancer, ~150Kb downstream
of PAX6, was described by Bhatia et al., who showed that the phenotype is due to the change affecting
a PAX6 recognition site, disrupting its autoregulation loop, and ultimately resulting in decreased PAX6
expression and haploinsufficiency [26]. Several deletions that encompass other 3’ regulatory regions
have also been reported to cause aniridia (Figure 2) [71–77].

4.5. Chromosomal Rearrangements and Large Deletions

Chromosomal rearrangements (deletions, duplications, translocations, or inversions) involving
part or whole PAX6 gene or regulatory elements account for up to 10% of all aniridia cases. Some reports
suggest that the PAX6 deletions are more frequent in sporadic as compared to familial aniridia patients,
while others found no significant difference [84,100–102]. Large deletions that encompass PAX6 and
other neighbour genes, such as WT1, result in systemic disease, such as WAGR, caracterised by the
presence of Wilms tumour, aniridia, genitourinary anomalies, and retardation characterize (described
in Section 6.2).

4.6. Biallelic Mutations

Mutations that affect both PAX6 alleles have rarely been described and cause very severe ocular and
neurodevelopmental abnormalities, in most cases leading to embryonic death [103,104]. A surviving
patient with compound heterozygous mutations in PAX6 was described as having microphthalmia,
neonatal diabetes mellitus, hypopituitarism, and microcephaly, as well as trisomy 21. The patient
inherited a missense mutation affecting the PD from the father (c.112C>T, p.Arg38Trp), who had
microcornea and severe cataracts, and a nonsense mutation in HD from the mother (c.718C>T,
p.Arg240*), who presented with classical familial aniridia [105]. It is plausible to assume that, although
affected, the missense variant still contributed for some amount of PAX6 function, since PAX6 is a very
dosage-sensitive gene. Another patient with compound heterozygous nonsense mutations (c.607C>T,
p.Arg203* and c.1058C>G, p.Ser353*), presenting with anophthalmia, severe CNS defects, including
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microcephaly and the complete absence of the corpus callosum and olfactory bulbs, sadly died a few
days after birth [103].

5. Inheritance of PAX6 Mutations

Most PAX6 mutations causing aniridia are heterozygous, sporadic, or familial in an autosomal
dominant manner, with significant phenotypic variability. It is estimated that nearly two-thirds of
aniridia cases are familial, while the remaining third are considered to be sporadic [86,106]. Accordingly,
sporadic occurrence was described in nearly 40% of entries in the PAX6 Mutation Database. Up to
one-third of sporadic cases of aniridia are associated with PAX6 and WT1 deletions, while the remaining
two-thirds are considered to be most likely caused by de novo point mutations [89].

Recent studies reported that the rate of mosaicism could be as high as 17.5% among apparent de novo
cases for different dominant disorders [83,107]. Indeed, several reports have suggested mosaicism as the
cause for the variable phenotypes seen in some sporadic PAX6-affected patients [83,93,108,109]. A recent
study from Tarilonte et al. proved the existence of post-zygotic parental mosaicism in three unrelated
Spanish families with variable aniridia or microphthalmia phenotypes caused by heterozygous
nonsense (c.771G>A, p.Trp257* and c.120C>A, p.Cys40*) or missense (c.178T>C, p.Tyr60His) PAX6
mutations, respectively [110]. Quantitative analysis of parental PAX6 gene showed that all of the
proband’s fathers have mutant allele fractions that range from 13 to 29%, depending on the tissue
analysed, and have mild or no ocular features as compared to their affected offspring. Similarly,
Bai et al. reported the presence of male gonadal mosaicism in a Chinese family with aniridia caused by
PTC-inducing mutation c.879_880delCA, p.Ser294Cysfs*46 [109].

The presence of parental mosaicism in PAX6 contributes to partially explaining intra-familiar
variabilities very often seen in patients. Furthermore, mosaicism is particularly relevant in sporadic
aniridia cases, as it might be the underlying transmittance mechanism and not, in fact, de novo mutations,
which has deep implications for genetic testing and counselling.

6. Genotype-Phenotype Correlations

6.1. Aniridia (MIM 106210)

Aniridia is a pan-ocular disorder that bilaterally affects the formation of the iris, cornea, lens,
fovea, and optic nerve. Its prevalence is 1:40,000–100,000 with complete penetrance and variable
expressivity [15,100,111].

The most obvious ocular feature is complete or partial iris hypoplasia, being accompanied by
nystagmus and foveal hypoplasia, with the latter being the main cause of reduced visual acuity from
birth. Further vision loss can occur from later onset cataracts, aniridia-related corneal keratopathy
(ARK), and glaucoma (Figure 4A–C). Cataracts tend to develop during the late teens to early adulthood
in 50–85% of aniridia patients, while up to two-thirds of patients can develop glaucoma between late
childhood and early adulthood [15,112]. ARK is the most relevant feature contributing to visual loss in
aniridia patients and it affects ~20% patients, but up to 90% can present with corneal irregularities [113].
Foveal hypoplasia and nystagmus were estimated to range between 85–95% of aniridia patients [86].
Optic nerve hypoplasia, although less common, is associated with ~10% of aniridia cases [90,114].

However, aniridia patients can present with a wide phenotypic spectrum without clear correlation
between genotype and phenotype, even in patients within the same family [15]. Accordingly, a recent
report from Pedersen et al. showed that family members with the same PAX6 mutation, a 2 bp deletion
in intron 2, presented with variable iris involvement, which ranged from almost normal to no iris,
as well as different degrees of foveal hypoplasia [115,116]. In contrast, Lagali et al. recently found a
correlation between PAX6 variants and the severity and progression of ARK [117,118]. In a cohort of 46
aniridia patients, the authors found a minimal level of keratopathy and an increase in cornea thickness
in all aniridia patients from early age. Patients with whole gene deletions presented the most severe
and early onset ARK, followed by those with PTC or CTE mutations. Patients with missense mutations
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showed milder non-progressive ARK and, lastly, non-PAX6 mutations had the mildest forms of disease
and generally the best visual acuity [118]. However, the clinical phenotype of ARK is heterogenous
and patients with the same mutation can often display different degrees of ARK.
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Figure 4. Phenotypic spectrum of patients with PAX6 mutations. (A) Classical aniridia phenotype
showing complete iris hypoplasia with central corneal opacity and vascularisation, (B) fundus imaging
indicating absence of foveal reflex and (C) optical coherence tomography (OCT) of the macula showing
foveal hypoplasia. (D) Left eye of a patient diagnosed with bilateral microphthalmia with microcornea.
(E) Patient diagnosed with dominant nystagmus with no iris abnormalities and (F) foveal hypoplasia
on OCT.

PAX6 haploinsufficiency, which is caused by intragenic PTC-causing mutations, whole gene
deletions, or inactivation of regulatory regions, is the cause of up to 85% of aniridia cases (Figure 3B).
Independent of the type or location of the PTC-containing transcripts, NMD is thought to be activated,
resulting in null alleles. Iris hypoplasia is the most common feature in patients with mutations that
cause PAX6 haploinsufficiency, whereas patients with missense mutations tend to have less affected
iris [86]. CTE variants usually translate to severe iris hypoplasia similar to PTCs, although Hingorani
et al. examination of 10 patients with CTE showed that the iris phenotypes tend to be milder in these
patients compared to patients with PTCs in the same study [86,119].

Aniridia-like phenotypes have been found in patients with rare variants in FOXC1 and PITX2 [72,
120,121]. These genes are usually associated with anterior segment dysgenesis (ASD), which are
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characterized by iris hypoplasia (or atrophy) and corectopia, and, frequently, childhood-onset glaucoma.
However, patients with ASD usually have better visual acuity than aniridia patients, without nystagmus
or foveal abnormalities [15,122]. In mice, Foxc1 was recently found to be a downstream target of Pax6
in the iris, and the deletion of this gene also caused cornea neo-vascularisation, which indicated that
both genes belong to a common network in the formation of the anterior segment [123,124]. Recently,
missense mutations in TRIM44 gene, located 4 Mb away from PAX6, were identified in a Chinese
family with aniridia, cataracts and glaucoma [125]. TRIM44 was shown to negatively regulate PAX6
expression, but only one pedigree was reported to date.

It is estimated that 5% of aniridia patients remain without molecular diagnosis, pointing to more
PAX6 regulatory regions, modifiers, or even novel genes to be discovered [102].

6.2. WAGR (MIM 194072)

WAGR (Wilms tumour, Aniridia, Genitourinary abnormalities and mental Retardation) is an
autosomal dominant disorder with a prevalence of 1:500,000 [15]. Chromosomal rearrangements
or small deletions in 11p region encompassing PAX6 and WT1 loci cause it, but can be variable in
size [71,126]. Approximately 30% of patients with sporadic aniridia suffer from this syndrome and
diagnosed children have 50 to 70% risk of developing Wilms tumour involving the kidney, so regular
screening is necessary for increasing the detection and obtaining better prognosis [127].

While the absence of one copy of PAX6 and WT1 is established as the cause for aniridia and
Wilms tumour (and genitourinary anomalies), respectively, the genetic causes that are behind the
neurodevelopmental defects are less clear. Within the critical region in 11p, several genes have been
associated with neurodevelopmental problems, like autism and ADHD. BDNF, a gene encoding
the brain-derived neurotrophic factor, is located ~4 Mb from PAX6 in 11p14.1. Patients with
BDNF haploinsufficiency have variable degrees of developmental delay, as well as behavioural
problems [128,129]. SLC1A2, encoding a glutamate transporter, and PRRG4, encoding a vitamin
K-dependent membrane protein, are also located in 11p13-p12, a region that is identified by linkage
analysis as an autism candidate region [130]. However, PAX6 itself should also be considered,
since some patients with PAX6 intragenic mutations present with cerebral abnormalities as well as
development delays and autism [16,17,131].

WAGRO (MIM 612469) is a variant syndrome of WAGR that includes obesity [132,133]. Patients
that were diagnosed with WAGRO have deletions that also encompass BDNF. BDNF is also involved
in energy homeostasis in humans and haploinsufficiency is correlated with higher BMI (Body Mass
Index), increased appetite, and childhood-onset obesity compared to WAGR patients without BDNF
deletion [126,128].

6.3. Non-Aniridia Phenotypes

6.3.1. Isolated Foveal Hypoplasia

Isolated foveal hypoplasia, which is usually accompanied by nystagmus, has been described in
few families with PAX6 missense mutations in the paired domain: c.227C>G, p.Pro76Arg and c.382C>T,
p.Arg128Cys [44,45,134]. These mutations are located in the CTS subdomain of PD, which modulates
the DNA-binding activity of PAX6(5a) isoform [32]. It was previously reported that the PAX6(5a)
isoform was highly expressed in the fovea, and that mutations in exon 5a, which affect CTS binding
activity, also caused foveal hypoplasia (not isolated) [39]. These results point to foveal hypoplasia being
linked to variants that affect the PAX6(5a) isoform in particular, but further experimental evidence is
required to confirm this. However, it should also be noted that a missense (c.214G>A, p.Gly72Ser)
in the end of NTS and two PTC mutations in the PSTD (c.1035_1048del14, p.Pro346Aspfs*20 and
c.1061_1070del10, p.Tyr354Cysfs*8) were also identified by Hingorani et al. in patients with foveal
hypoplasia and mild structural abnormalities in the iris (Figure 5) [86].
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Figure 5. Spectrum of coding PAX6 mutations causing non-aniridia phenotypes. A representation of
canonical PAX6 structure is shown with respective domains and amino acid distribution. Mutations
and respective phenotypes were collected from the PAX6 Mutation Database and the Human Genome
Mutation Database (HGMD). The majority of mutations are included in the paired domain (NTS and
CTS) and constitute missense mutations (squares). Mutations in alternative exon 5a are shown in blue.
a Isolated foveal hypoplasia and nystagmus without iris abnormalities; variants shown in grey show
cases presenting full iris but with possible mild structural defects [86]; b Optic nerve malformations
include optic nerve coloboma, aplasia, and morning glory disc; NTS: N-terminal subdomain; CTS:
C-terminal subdomain; LNK: linker region; HD: homeodomain; PSTD: proline-serine-threonine domain;
aa: amino acids; ASD: anterior segment dysgenesis.

6.3.2. Microphthalmia, Anophthalmia and Coloboma (MAC)

MAC is a group of developmental eye disorders characterised by reduced size orabsence of the
ocular globe and it is caused by mutations in more than 90 genes, including PAX6 (Figure 4) [92].
Of the 13 different mutations that are associated with microphthalmia in the PAX6 Mutation Database,
the vast majority (8) are missense, although PTC-inducing mutations have been reported (two nonsense
and two frameshifts) (Figure 5) [108,110,135,136]. Bilateral microphthalmia in a patient with WAGR
syndrome was also identified [137].

MAC phenotypes are significantly associated with mutations that are likely to disrupt the
PAX6-DNA interaction, with mutations being more common in the PD, which is the domain that is
known to interact with SOX2 [67,138–140]. Mutations in SOX2 are the most common cause of bilateral
anophthalmia and severe microphthalmia [89,90]. Accordingly, a recent report has linked novel
missense mutations in PAX6 (c.160A>C, p.Ser54Arg and c.372C>A, p.Asn124Lys) to severe bilateral
microphthalmia, with phenotype resembling SOX2-associated MAC [140]. The authors showed that
these mutations significantly reduce the binding affinity of PAX6 to a specific regulatory sequence
in the EE, LE9, which also synergistically responds to SOX2 [48]. This could lead to an inability of
both PAX6 and SOX2 to cooperatively bind to LE9 or other target DNA sequences, which suggests
that, aside from being required during lens development, the PAX6-SOX2 partnership can have an
additional role earlier in eye field development.



Genes 2019, 10, 1050 13 of 22

Anophthalmia is associated with homozygous PAX6 variants, where there is biallelic loss of
function. The affected individuals are usually still births or die soon after birth with severe brain
abnormalities [27,104].

The most common form of ocular coloboma resulting from PAX6 defects is that affecting the
iris, which have been identified in patients with both nonsense, missense, and frameshift changes in
PAX6, as well as the deletion of 3’regulatory region [141–144]. Optic nerve coloboma are generally
associated with microphthalmia, with missense mutations affecting all of the functional domains of
PAX6 (Figure 5) [91,92]. It is thought that the inability of PAX6 to bind PAX2 promoter and repress its
expression in the optic cup during early eye development cause PAX6-related optic nerve anomalies.
PAX2 is another PAX-family transcription factor that is mainly expressed in the optic stalk and represses
PAX6 expression in this region. This mutual repression is essential for defining the boundaries between
the optic stalk, which will later form the optic nerve, and the optic cup [90,145].

6.3.3. Gillespie Syndrome (MIM 206700)

Another syndrome with aniridia-like features is Gillespie syndrome (GS), which is a rare disorder
that is characterized by nonprogressive cerebellar ataxia, intellectual disability, hypotonia, and iris
hypoplasia with the presence of scalloped edges, fixed dilated pupils, and remnants of pupillary
membrane [102]. Mutations in the ITPR1 gene were identified as causative in GS [146,147]. However,
a T>A substitution in intron 2 of PAX6 was identified in two individuals that were described with
Gillespie syndrome, but with atypical features, like corectopia and ptosis [148]. Later, a chromosomal
deletion encompassing the 3’ regulatory region of PAX6 was also identified in a patient that was
diagnosed with Gillespie syndrome [72].

6.3.4. Anterior Segment Dysgenesis–Peters Anomaly (MIM 604229)

Peters anomaly is part of a larger spectrum of anterior segment dysgeneses characterized by
abnormalities in the cornea, iris and lens, including central cornea opacity, defects in corneal stroma
and Descemet’s membrane, and iridocorneal and corneolenticular adhesions [122]. Mutations in
PAX6, but also PITX2 and CYP1B1, have been identified in patients with Peters anomaly [122,149].
In the PAX6 Mutation Database there are 11 different mutations associated with this syndrome: 10
are missense mutations, localized primarily in the PD, and one is a nonsense variant in the PSTD
(Figure 5) [33,45,149,150].

7. Conclusions

PAX6 plays a number of important roles both during eye development and maintenance
of adult eye tissues. Defects in PAX6 lead to the perturbations in the dosage, time, and tissue
specific expression, as well as disruption of its regulatory network. Due to this complex picture,
individuals with mutations affecting PAX6 present highly variable pan-ocular features, which makes
genotype-phenotype correlations difficult to establish.

Developments in transcriptomics and epigenomics have allowed for increasing the understanding
of PAX6 transcriptional targets, regulators, and interactors in the eye [12,151–153]. Accordingly,
growing evidence supports the importance of PAX6 regulation through microRNAs, as well as long
non-coding RNAs [154–159]. These key advances mainly arose from mouse and Drosophila studies.
However, it is still far from clear how PAX6 operates during eye development and how mutations
translate into the variability of phenotypes that are described in this review. More representative
models are needed for this purpose, and to overcome innate differences in eye development between
human and other model organisms.

The generation of induced pluripotent stem cells (iPSCs)s allowed for the development of
more representative in vitro models of human eye diseases, as well as of human eye development.
This strategy would be particularly suitable for complex diseases, like aniridia, since iPSCs have
the ability to differentiate into different cell types. Several ocular cell types where PAX6 activity is
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important have been successfully derived from iPSCs, like corneal and lens epithelial cells [157,160–162].
Additionally, iPSC-derived retinal organoids are now standardly used to study disease mechanisms and
develop novel therapeutic approaches for eye disorders, like inherited retinal dystrophies [163–167].
However, this promising approach has not yet been applied to study PAX6- related eye diseases.

The majority of PAX6 mutations result in null alleles and consequent PAX6 haploinsufficiency and
they are known to cause aniridia. Hence, understanding the PAX6 dosage requirements in each affected
tissue is of particular importance, not only to understand phenotypic outcomes, but also to predict
therapeutic targets. Nonsense suppression therapy targets PTCs that are caused by nonsense mutations
and bypasses them to produce full length protein [168]. A clinical trial on the oral administration of
ataluren (PTC124) in aniridia patients is currently ongoing (NCT02647359), after promising results
were seen in Sey+/− mice that were treated with this compound [169,170]. Postnatal administration of
ataluren was shown to increase the levels of Pax6 protein up to 80% of control levels, improving lens
and corneal epithelium morphology, as well as retina function, as shown by increased ERG responses.
However, the exact mechanism of action of ataluren is still unknown, and there is criticism over the
mode of drug administration, as topical/local application might permit lower dose, higher penetration,
and less off-target effects. The results from the clinical trial are eagerly awaited.
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