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Abstract

MultiGrain is a network architecture producing compact
vector representations that are suited both for image classifi-
cation and particular object retrieval. It builds on a standard
classification trunk. The top of the network produces an em-
bedding containing coarse and fine-grained information, so
that images can be recognized based on the object class,
particular object, or if they are distorted copies. Our joint
training is simple: we minimize a cross-entropy loss for clas-
sification and a ranking loss that determines if two images
are identical up to data augmentation, with no need for ad-
ditional labels. A key component of MultiGrain is a pooling
layer that takes advantage of high-resolution images with a
network trained at a lower resolution.

When fed to a linear classifier, the learned embeddings
provide state-of-the-art classification accuracy. For instance,
we obtain 79.4% top-1 accuracy with a ResNet-50 learned
on Imagenet, which is a +1.8% absolute improvement over
the AutoAugment method. When compared with the cosine
similarity, the same embeddings perform on par with the
state-of-the-art for image retrieval at moderate resolutions.

1. Introduction
Image recognition is central to computer vision, with

dozens of new approaches being proposed every year, each
optimized for particular aspects of the problem. From coarse
to fine, we may distinguish the recognition of (a) classes,
where one looks for a certain type of object regardless of
intra-class variations, (b) instances, where one looks for a
particular object despite changes in the viewing conditions,
and (c) copies, where one looks for a copy of a specific
image despite edits. While these problems are in many ways
similar, the standard practice is to use specialized, and thus
incompatible, image representations for each case.

Specialized representations may be accurate, but consti-
tute a significant bottleneck in some applications. Consider
for example image retrieval, where the goal is to match a
query image to a large database of other images. Very often

*Did this work during an internship at Facebook AI Research.

Figure 1: Our goal is to extract an image descriptor incor-
porating different levels of granularity, so that we can solve,
in particular, classification and particular object recognition
tasks: The descriptor is either fed to a linear classifier, or
directly compared with cosine similarity.

one would like to search the same database with multiple
granularities, by matching the query by class, instance, or
copy. The performance of an image retrieval system depends
primarily on the image embeddings it uses. These strike
a trade-off between database size, matching and indexing
speed, and retrieval accuracy. Adopting multiple embed-
dings, narrowly optimized for each type of query, means
multiplying the resource usage.

In this paper we present a new representation, Multi-
Grain, that can achieve the three tasks together, regardless
of differences in their semantic granularity, see fig. 1. We
learn MultiGrain by jointly training an image embedding for
multiple tasks. The resulting representation is compact and
outperforms narrowly-trained embeddings.

Instance retrieval has a wide range of industrial appli-
cations, including detection of copyrighted images and
exemplar-based recognition of unseen objects. In settings
where billion of images have to be treated, it is of interest to
obtain image embeddings suitable for more than one recog-
nition task. For instance, an image storage platform is likely
to perform some classification of the input images, aside
from detecting copies or instances of the same object. An
embedding relevant to all these tasks advantageously reduces
both the computing time per image and storage space.

In this perspective, convolutional neural networks (CNNs)
trained only for classification already go a long way towards
universal features extractors. The fact that we can learn
image embeddings that are simultaneously good for classifi-
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cation and instance retrieval is surprising but not contradic-
tory. In fact, there is a logical dependence between the tasks:
images that contain the same instance also contain, by defi-
nition, the same class; and copied images contain the same
instance. This is in contrast to multi-task settings where tasks
are in competition and are thus difficult to combine. Instead,
both class, instance, and copy congruency lead to embed-
dings that should be close in feature space. Still, the degree
of similarity is different in the different cases, with classi-
fication requiring more invariance to appearance variations
and copy detection sensitivity to small image details.

In order to learn an image representation that satisfies
the different trade-offs, we start from an existing image
classification network. We use a generalized mean layer
that converts a spatial activation map to a fixed-size vector.
Most importantly, we show that it is an effective way to
learn an architecture that can adapt to different resolutions
at test time, and offer higher accuracies. This circumvents
the massive engineering and computational effort needed to
learn networks for larger input resolutions [18]

The joint training of classification and instance recog-
nition objectives is based on cross-entropy and contrastive
losses, respectively. Remarkably, instance recognition is
learned for free, without using labels specific to instance
recognition or image retrieval: we simply use the identity
of the images as labels, and data augmentation as a way to
generate different versions of each image.

In summary, our main contributions are as follows:

• We introduce the MultiGrain architecture, which outputs
an image embedding incorporating different levels of
granularity. Our dual classification+instance objective
improves the classification accuracy on its own.

• We show that part of this gain is due to the batching
strategy, where each batch contains repeated instances
of its images with different data augmentations for the
purpose of the retrieval loss;

• We incorporate a pooling layer inspired by image re-
trieval. It provides a significant boost in classification
accuracy when provided with high-resolution images.

Overall, our architecture offers competing performance both
for classification and image retrieval. Noticeably, we report a
significant boost in accuracy on Imagenet with a ResNet-50
network over the state of the art.

The paper is organized as follows. Section 2 introduces
related works. Section 3 introduces our architecture, the
training procedure and explains how we adapt the resolution
at test time. Section 4 reports the main experiments.

2. Related work
Image classification. Most computer vision architectures
designed for a wide range of tasks leverage a trunk archi-
tecture initially designed for classification, such as Residual

networks [17]. An improvement on the trunk architecture
eventually translates to better accuracies in other tasks [16],
as shown on the detection task of the LSVRC’15 challenge.
While recent architectures [21, 22, 46] have exhibited some
additional gains, other lines of research have been investi-
gated successfully. For instance, a recent trend [30] is to train
high capacity networks by leveraging much larger training
sets of of weakly annotated data. To our knowledge, the state
of the art on Imagenet ILSVRC 2012 benchmark for a model
learned from scratch on Imagenet train data only is currently
hold by the gigantic AmoebaNet-B architecture [23] (557M
parameters), which takes 480x480 images as input.

In our paper, we choose ResNet-50 [17] (25.6M parame-
ters), as this architecture is adopted in the literature in many
works both on image classification and instance retrieval.

Image search: from local features to CNN. “Image
search” is a generic retrieval task that is usually associated
with and evaluated for more specific problems such as land-
mark recognition [25, 33], particular object recognition [31]
or copy detection [8], for which the objective is to find the
images most similar to the query in a large image collection.
In this paper “image retrieval” will refer to instance-level
retrieval, where object instances are as broad as possible, i.e.
not restricted to buildings, as in the Oxford/Paris benchmark.
Effective systems for image retrieval rely on accurate image
descriptors. Typically, a query image is described by an em-
bedding vector, and the task amounts to searching the nearest
neighbors of this vector in the embedding space. Possible
improvement include refinement steps such as geometric
verification [33], query expansion [4, 42], or database-side
pre-processing or augmentation [41, 44].

Local image descriptors are traditionally aggregated to
global image descriptors suited for matching in an inverted
database, as in the seminal bag-of-words model [39]. After
the emergence of convolutional neural networks (CNNs)
for large-scale classification on ImageNet [28, 37], it has
become apparent that CNNs trained on classification datasets
are very competitive image feature extractors for various
vision tasks, including instance retrieval [1, 9, 35].

Specific architectures for particular object retrieval are
built upon a regular classification trunk, and modified so the
pooling stage gives more spatial locality in order to cope with
small objects and clutter. For instance, a competitive baseline
for instance retrieval on various datasets is the R-MAC image
descriptor [43]. It aggregates regionally pooled features
extracted from a CNN. The authors show that this specialized
pooling combined with PCA whitening [24] leads to efficient
many-to-many comparisons between image regions, highly
beneficial to image retrieval. Gordo et al. [10, 11] show that
fine-tuning these regionally-aggregated representations end-
to-end on an external image retrieval dataset using a ranking
loss yields significant improvements for instance retrieval.
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Radenović et al. [34] show that R-MAC pooling is ad-
vantageously replaced by a generalized mean pooling (see
section 3.1), which is a spatial pooling of the features ex-
ponentiated to an exponent p over the whole image. The
exponentiation localizes the features on the point of interests
in the image, replacing regional aggregation in R-MAC.

Multi-task training is an active area of research [27, 47],
motivated by the observation that deep neural networks are
transferable to a wide range of vision tasks [35]. More-
over trained deep neural networks exhibit a high level of
compressibility [15]. In some cases, sharing the capacity
of neural networks between different tasks through shared
parameters helps the learning by allowing complementary
training among datasets and low-level features. Despite
some successes with multi-task networks for vision such as
UberNet [27], the design and training of multi-task networks
still involve numerous heuristics. Ongoing lines of work
include finding the right architecture for an efficient shar-
ing of parameters [36], and finding the right optimization
parameters for such networks in order to depart from the
traditional setting of single-task single-dataset end-to-end
gradient descent, and efficiently weight the gradients in order
to obtain a well-performing network in all tasks [13].

Data augmentation is a cornerstone of the training in large-
scale vision applications [28], which improves generaliza-
tion and reduces over-fitting. In a stochastic gradient de-
scent (SGD) optimization setting, we show that including
multiple data-augmented instances of the same image in
one optimization batch, rather than having only distinct
images in the batch, significantly enhances the effect of
data-augmentations and improve the generalization of the
network. A related batch augmented (BA) sampling strategy
was concurrently introduced by Hoffer et al. [19]. When aug-
menting the size of the batches in a large-scale distributed
optimization of a neural network, they show that filling these
bigger batches with data-augmented copies of the image in
the batch yields better generalization performance, and uses
computing resources more efficiently through reduced data
processing time. As discussed in section 3.3 and highlighted
in our classification results (section 4.4), we show that a gain
in performance under this sampling scheme is obtained us-
ing the same batch size, i.e., with a lower number of distinct
images per batch. We consider this scheme of repeated aug-
mentations (RA) within the batch as a way to boost the effect
of data augmentation over the course of the optimization.
Our results indicate that RA is a technique of general inter-
est, beyond large-scale distributed training applications, for
improving the generalization of neural networks.

3. Architecture design

Our goal is to develop a convolutional neural network
that is suitable for both image classification and instance

Table 1: Differences between classification and image re-
trieval: Retrieval architectures incorporate a final pooling
layer that is regionalized (RMAC) or magnifies activations
(GeM). The triplet loss requires a batching strategy with
pairs of matching images.

classification retrieval

spatial pooling avg. pooling RMAC [42] or GeM [34]
loss cross-entropy triplet [10]
batch sampling diverse similar images in batch
whitening no yes
resolution low (2242–3002) high (800–1k×scaled)

retrieval. In the current best practices, the architectures and
training procedures used for class and instance recognition
differ in a significant manner.

This section describes such technical differences, summa-
rized in table 1, together with our solutions to bridge them.
This leads us to a unified architecture, shown in fig. 2, that
we jointly train for both tasks in an end-to-end manner.

3.1. Spatial pooling operators
This section considers the final, global spatial pooling

layer. Local pooling operators, usually max pooling, are
found throughout the layers of most convolutional networks
to achieve local invariance to small translations. By contrast,
global spatial pooling converts a 3D tensor of activations
produced by a convolutional trunk to a vector.

Classification. In early models such as LeNet-5 [29] or
AlexNet [28], the final spatial pooling is just a linearization
of the activation map. It is therefore sensitive to the absolute
location. Recent architectures such as ResNet and DenseNet
employ average pooling, which is permutation invariant and
hence offers a more global translation invariance.

Image retrieval requires more localized geometric infor-
mation: particular objects or landmarks are visually more
similar, but the task suffers more from clutter, and a given
query image has no specific training data devoted to it. This
is why the pooling operator tries to favor more locality. Next
we discuss the generalized mean pooling operator.

Let x ∈ RC×W×H be the feature tensor computed by
a convolutional neural network for a given image, where
C is the number of feature channels and H and W are the
height and width of the map, respectively. We denote by
u ∈ Ω = {1, . . . ,H}×{1, . . . ,W} a “pixel” in the map, by
c the channel, and by xcu the corresponding tensor element:
x = [xcu]c=1..C,u∈Ω. The generalized mean pooling (GeM)
layer computes the generalized mean of each channel in a
tensor. Formally, the GeM embedding is given by

e =

[( 1

|Ω|
∑
u∈Ω

xpcu

) 1
p

]
c=1..C

(1)
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Figure 2: Overview of our Multigrain architecture.

where p > 0 is a parameter. Setting this exponent as p > 1
increases the contrast of the pooled feature map and focuses
on the salient features of the image [2, 3, 7]. GeM is a
generalization of the average pooling commonly used in
classification networks (p = 1) and of spatial max-pooling
layer (p =∞). It is employed in the original R-MAC as an
approximation of max pooling [7], yet only recently [34] it
was shown to be competitive on its own with R-MAC for
image retrieval.

To the best of our knowledge, this paper is the first to
apply and evaluate GeM pooling in an image classification
setting. More importantly, we show later in this paper that
adjusting the exponent is an effective way to change the input
image resolution between train and test time for all tasks,
which explains why image retrieval has benefited from it
considering that this task employs higher-resolution images.

3.2. Training objective
In order to combine the classification and retrieval tasks,

we use a joint objective function composed of a classifi-
cation loss and an instance retrieval loss. The two-branch
architecture is illustrated in fig. 2 and detailed next.

Classification loss. For classification, we adopt the stan-
dard cross-entropy loss. Formally, let ei ∈ Rd be the embed-
ding computed by the deep network for image i, wc ∈ Rd

the parameters of a linear classifier for class c ∈ {1, . . . , C},
and yi be the ground-truth class for that image. Then

`class(ei,W , yi) = −〈wyi
, ei〉+log

C∑
c=1

exp〈wc, ei〉, (2)

where W = [wc]c=1..C . We omit it for simplicity, but by
adding a constant channel to the feature vector, the bias of
the classification layer is incorporated in its weight matrix.

Retrieval loss. For image retrieval, the embeddings of two
matching images (a positive pair) should have distances
smaller than embeddings of non-matching images (a neg-
ative pair). This can be enforced in two ways. The con-
trastive loss [14] requires distances between positive pairs
to be smaller than a threshold, and distances between neg-
ative pairs to be greater. The triplet loss instead requires
an image to be closer to a positive sibling than to a nega-
tive sibling [38], which is relative property of image triplets.
These losses requires adjusting multiple parameters, includ-
ing how pairs and triplets are sampled. These parameters are
sometimes hard to tune, especially for the triplet loss.

Wu et al. [45] proposed an effective method that addresses
these difficulties. Given a batch of images, they re-normalize
their embeddings to the unit sphere, sample negative pairs as
a function of the embedding similarity, and use those pairs in
a margin loss, a variant of contrastive loss that shares some
of the benefits of the triplet loss.

In more detail, given images i, j ∈ B in a batch with
embeddings ei, ej ∈ Rd, the margin loss is expressed as

`retr(ei, ej , β, yij) = max{0, α+yij(D(ei, ej)−β)} (3)

where D(ei, ej) = ‖ei/‖ei‖− ej/‖ej‖‖ is the Euclidean dis-
tance between the normalized embeddings, the label yij
is equal to 1 if the two images match and −1 otherwise,
α > 0 the margin (a constant hyper-parameter), and β > 0
is a parameter (learned during training together with the
model parameters), controlling the volume of the embedding
space occupied embedding vectors. Due to the normaliza-
tion, D(ei, ej) is equivalent to a cosine similarity, which,
up to whitening (section 3.4), is also used in retrieval.

Loss (3) is computed on a subset of positive and negative
pairs (i, j) ∈ B2 selected with the sampling [45]

P+(B) = {(i, j) ∈ B2 : yij = 1},
P−(B) = {(i, j∗) : (i, j) ∈ P+(B), j∗ ∼ p(·|i)},
P(B) = P+(B) ∪ P−(B),

(4)

where the conditional probability of choosing a negative j
for image i is p(j|i) ∝ min{τ, q−1(D(ei, ej))}·1{yij=−1},

where τ > 0 is a parameter and q(z) ∝ zd−2(1− z2/4)
d−3
2

is a PDF that depends on the embedding dimension d.
The use of distance weighted-sampling with margin loss

is very suited to our joint training setting: this framework
tolerates relatively small batch sizes (|B| ∼ 80 to 120 in-
stances) while requiring only a small amount of positives
images (3 to 5) of each instance in the batch, without the
need for elaborate parameter tuning or offline sampling.
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Joint loss and architecture. The joint loss is a combina-
tion of classification and retrieval loss weighted by a factor
λ ∈ [0, 1]. For a batch B of images, the joint loss writes as

λ

|B|
·
∑
i∈B

`class(ei,w, yi)+
1− λ
|P(B)|

·
∑

(i,j)∈P(B)

`retr(ei, ej , β, yij),

(5)
i.e., losses are normalized by the number of items in the
corresponding summations.

3.3. Batching with repeated augmentation (RA)
Here, we propose to use only a training dataset for im-

age classification, and train instance recognition via data
augmentation. The rationale is that data augmentation pro-
duces another image that contains the same object instance.
This approach does not require more annotation beyond the
standard classification set.

We introduce a new sampling scheme for training with
SGD and data augmentation, which we refer to as repeated
augmentations. In RA we form an image batch B by sam-
pling d|B|/me different images from the dataset, and trans-
form them up to m times by a set of data augmentations to
fill the batch. Thus, the instance level ground-truth yij = +1
iff images i and j are two augmented versions of the same
training image. The key difference with the standard sam-
pling scheme in SGD is that samples are not independent, as
augmented versions of the same image are highly correlated.
While this strategy reduces the performance if the batch size
is small, for larger batch sizes RA outperforms the standard
i.i.d. scheme – while using the same batch size and learning
rate for both schemes. This is different from the observation
of [19], who also consider repeated samples in a batch, but
simultaneously increase the size of the latter.

We conjecture that the benefit of correlated RA samples
is to facilitate learning features that are invariant to the only
difference between the repeated images — the augmenta-
tions. By comparison, with standard SGD sampling, two
versions of the same image are seen only in different epochs.
A study of an idealized problem illustrates this phenomenon
in the supplementary material A.

3.4. PCA whitening
In order to transfer features learned via data augmenta-

tion to standard retrieval datasets, we apply a step of PCA
whitening, in accordance with previous works in image re-
trieval [11, 24]. The Euclidean distance between transformed
features is equivalent to the Mahalanobis distance between
the input descriptors. This is done after training the network,
using an external dataset of unlabelled images.

The effect of PCA whitening can be undone in the pa-
rameters of the classification layer, so that the whitened
embeddings can be used for both classification and instance
retrieval. In detail, let e be an image embedding vector and

wc the weight vector for class c, such that 〈wc, e〉 are the
outputs of the classifier as in eq. (2). The whitening oper-
ation Φ can be written as [11] Φ(e) = S

(
e
‖e‖ − µ

)
given

the whitening matrix S and centering vector µ; hence

〈wc, e〉 = 〈wc,Φ
−1(Φ(e))〉 = ‖e‖ (〈w′c,Φ(e)〉+ b′c)

where w′c = S−1>wc and b′c = 〈wc, µ〉 are the modified
weight and bias for class c. We observed that inducing decor-
relation via a loss [5] is insufficient to ensure that features
generalize well, which concurs with prior works [11, 34].

3.5. Input sizes
The standard practice in image classification is to resize

and center-crop input images to a relatively low resolution,
e.g. 224×224 pixels [28]. The benefits are a smaller memory
footprint, faster inference, and the possibility of batching
the inputs if they are cropped to a common size. On the
other hand, image retrieval is typically dependent on finer
details in the images, as an instance can be seen under a
variety of scales, and cover only a small amount of pixels.
The currently best-performing feature extractors for image
retrieval therefore commonly use input sizes of 800 [11] or
1024 [34] pixels for the largest side, without cropping the
image to a square. This is impractical for end-to-end training
of a joint classification and retrieval network.

Instead, we train our architecture at the standard 224×224
resolution, and use larger input resolutions at test time only.
This is possible due to a key advantage of our architecture: a
network trained with a pooling exponent p and resolution s
can be evaluated at a larger resolution s∗ > s using a larger
pooling exponent p∗ > p, see our validation in section 4.4.

Proxy task for cross-validation of p∗. In order to select
the exponent p∗, suitable for all tasks, we create a synthetic
retrieval task IN-aug in between classification and retrieval.
We sample 2,000 images from the training set of ImageNet,
2 per class, and create 5 augmented copies of each of them,
using the “full” data augmentation described before.

We evaluate the retrieval accuracy on IN-aug in a fashion
similar to UKBench [31], with an accuracy ranging from
0 to 5 depending measuring how many of the first 5 aug-
mentations are ranked in top 5 positions. We pick the best-
performing p∗ ∈ {1, 2, . . . , 10} on IN-aug, which provides
the following choices as a function of λ and s∗:

λ s∗ = 224 500 800

1 p∗ = 3 4 4
0.5 p∗ = 3 4 5

The optimal p∗ obtained on IN-aug provides a trade-off
between retrieval and classification. Experimentally, we
observed that other choices are suitable for setting this pa-
rameter: fine-tuning the parameter p∗ alone using training
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Input image resolution s∗ = 224
p∗ = 1 p∗ = 3

full resolution
p∗ = 1 p∗ = 3

Figure 3: An off-the-shelf ResNet-50 reacts strongly on
channel 909 of the last activation map for class “racing car”.
The image on the left is a hard example for the class. We
show channel 909 for that image, at several resolutions and
with GeM parameters p∗ = 1 and p∗ = 3. In the low resolu-
tion version, the cars are too small to be visible individually
on the activation map. In the full resolution version, the
location of the cars is more clear. In addition, p∗= 3 reduces
the noisy detections relative to the true locations.

inputs at a given resolution by back-propagation of the cross-
entropy loss provides similar results and values of p∗.

4. Experiments and Results
After presenting the datasets, we provide a parametric

study and our results in image classification and retrieval.

4.1. Experimental settings
Base architecture and training settings. The convolu-
tional trunk is ResNet-50 [17]. SGD starts with a learning
rate of 0.2 which is reduced tenfold at epochs 30, 60, 90 for a
total of 120 epochs (a standard setting [32]). The batch size
|B| is set to 512 and an epoch is defined as a fixed number
of T = 5005 iterations. With uniform batch sampling, one
epoch corresponds to two passes over the training set; with
RA and m = 3, one epoch corresponds to ∼ 2/3 of the
images of the training set. All classification baselines are
trained using this longer schedule for a fair comparison.

Data augmentation. We use standard flips, random re-
sized crops [20], random lighting noise and a color jittering
of brightness, contrast and saturation [28, 20]. We refer
to this set of augmentations as “full”, see details in sup-
plemental C. As indicated in table 2 our network reaches
76.2% top-1 validation error under our chosen schedule and
data augmentation when trained with cross-entropy alone
and uniform batch sampling. This figure is on the high end
of accuracies reported for the ResNet-50 network [12, 17]
without specially-crafted regularization terms [48] or data
augmentations [6].

Pooling exponent. During the end-to-end training of our
network, we consider two settings for the pooling exponent

in the GeM layer of section 3.1: we set either p = 1 or
p = 3. p = 1 corresponds to average pooling, as used in
classification architectures. The relevant literature [34] and
our preliminary experiments on off-the-shelf classification
networks suggest that the value p = 3 improves the retrieval
performance on standard benchmarks. Figure 3 illustrates
this choice. By setting p = 3, the car is detected with high
confidence and without spurious detections. Boureau et
al. [3] analyse average- and max-pooling of sparse features.
They find that when the number of pooled features increases,
it is beneficial to make them more sparse, which is consistent
with the observation we make here.

Input size and cropping. As described in section 3.5, we
train our network on crops of size 224× 224 pixels. For test-
ing, we experiment with computing MultiGrain embeddings
at resolutions s∗ = 224, 500, 800. For resolution s∗ = 224,
we follow the classical image classification protocol “reso-
lution 224”: the smallest side of an image is resized to 256
and then a 224× 224 central crop is extracted. For resolu-
tion s∗ > 224, we instead follow the protocol common in
image retrieval and resize the largest side of the image to the
desired number of pixels and evaluate the network on the
rectangular image, without cropping.

Margin loss and batch sampling. We use m= 3 data-
augmented repetitions per batch. We use the default margin
loss hyperparameters of [45] (details in supplementary B).
As in [45] the distance-weighted sampling is performed in-
dependently on each of the 4 GPUs used for training.

Datasets. We train our networks on the ImageNet-2012
training set of 1.2 million images labelled into 1,000 ob-
ject categories [37]. Classification accuracies are reported
on the 50,000 validation images of this dataset. For image
retrieval, we report the mean average precision on the Holi-
days dataset [25], with images rotated manually when nec-
essary, as in prior evaluations on this dataset [10]. We also
report the accuracy on the UKB object recognition bench-
mark [31], which contains 2,550 instances of objects under
4 varying viewpoints each; each image is used as a query to
find its 4 closest neighbors in embedding space; the number
of correct neighbors is averaged across all images, yielding
a maximum score of 4. We also report the performance
of our network in a copy detection setting, indicating the
mean average precision on the “strong” subset of the INRIA
Copydays dataset [8]. We add 10K distractor images ran-
domly sampled from the YFCC100M large-scale collection
of unlabelled images [40]. We call the combination C10k.

The PCA whitening transformations are computed from
the features of 20K images from YFCC100M, distinct from
the C10k distractors.
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Figure 4: Retrieval and classification accuracies as a func-
tion of pooling exponent p∗ and the image resolution. At
training time, the pooling was p = 3. Note the clear interac-
tion between the resolution s∗ and the pooling exponent p∗.

4.2. Expanding resolution with pooling exponent
As our reference scheme, we train the network at resolu-

tion 224x224 with RA sampling and pooling exponent p = 3.
When testing on images with the same 224x224 resolution,
this gives a 76.9% top-1 validation accuracy on Imagenet,
0.7% points above the non-RA baseline, see table 2.

We now feed larger images at test time, i.e., we consider
resolutions s∗> 224 and vary the exponents p∗ 6= p= 3 at
test time. Figures 4a and 4b show the classification accu-
racy on ImageNet validation and the retrieval accuracy on
Holidays at different resolutions, for different values of the
test pooling exponent p∗. As expected, at s∗ = 224, the pool-
ing exponent yielding best accuracy in classification is the
exponent with which the network has been trained, p∗ = 3.
Observe that testing at larger scale requires an exponent
p∗>p, both for classification and for retrieval.

In the following, we adopt the values obtained by our
cross-validation on IN-aug, see section 3.5.

4.3. Analysis of the tradeoff parameter
We now analyze the impact of the tradeoff parameter

λ. Note, this parameter does not directly reflect the rela-
tive importance of the two loss terms during training, since
these are not homogeneous: λ= 0.5 does not mean that they
have equal importance. Figure 5 analyzes the actual relative
importance of the classification and margin loss terms, by
measuring the average norm of the gradient back-propagated
through the network at epochs 0 and 120. One can see that
λ = 0.5 means that the classification has slightly more weight
at the beginning of the training. The classification term be-
comes dominant at the end of the training, meaning that the
network has already learned to cancel data augmentation.

In terms of performance, λ= 0.1 leads to a poor classifi-
cation accuracy. Interestingly, the classification performance
is higher for the intermediate λ= 0.5 (77.4% at s∗ = 224)
than for λ= 1, see Table 2. Thus, the margin loss leads to a
performance gain for the classification task.

We set λ= 0.5 in our following experiments, as it gives
the best classification accuracy at the practical resolutions
s∗= 224 and 500 pixels. As a reference, we also report a
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Figure 5: Fraction of
the classification and
retrieval terms, measured
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‖gretr‖), where the gclass

vector is the gradient
from the λ`class com-
ponent. Note, how the
retrieval loss’ influence is
decreasing over epochs.

few results with λ= 1.

4.4. Classification results
From now on, our MultiGrain nets are trained at resolu-

tion s= 224 with exponent p= 1 (standard average pooling)
or p= 3 in the GeM pooling. For each evaluation resolu-
tions s∗ = 224, 500, 800, the same exponent p∗ is selected
according to section 3.5, yielding a single embedding for
classification and for the retrieval. Table 2 presents the
classification results. There is a large improvement in classi-
fication performance from our baseline Resnet-50 with p = 1,
s = 224, “full” data augmentation (76.2% top-1 accuracy), to
a MultiGrain model at p= 3, λ= 0.5, s= 500 (78.6% top-1).
We identify four sources for this improvement:

1. Repeated augmentations: adding RA batch sampling
(section 3.3) yields an improvement of +0.6% (p= 1).

2. Margin loss: the retrieval loss helps the generalizing
effect of data augmentation: +0.2% (p= 1).

3. p= 3 pooling: GeM at training (section 3.1) allows the
margin loss to have a much stronger effect thanks to
increased localization of the features: +0.4%.

4. Expanding resolution: evaluating at resolution 500 adds
+1.2% to the p= 3 MultiGrain network, reaching the
78.6 top-1 accuracy. This is made possible by the p= 3
training – which yields sparser features, more general-
izable over different resolutions, and by the p∗ pooling
adaptation – without it the performance at this resolu-
tion is only 78.0%.

The p∗ selection for evaluation at higher resolutions has
its limits: at 800 pixels, due to the large discrepancy between
the training and testing scale for the feature extractor, the
accuracy drops to 77.2% (76.2% without the p∗ adaptation).

AutoAugment [6] (AA) is a method to learn data-
augmentation using reinforcement learning techniques to
improve the accuracy of classification networks on ImageNet.
We directly integrate the data-augmentations found by the
algorithm [6] trained on their Resnet-50 model using a long
schedule of 270 passes over the dataset, with batch size 4096.
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Table 2: ImageNet 2012 validation performance at top-
1 / top-5 accuracies (%). Resnet-50 is a classification base-
line trained with cross-entropy with our training schedule,
data augmentation, and uniform batch sampling. MultiGrain
uses the same Resnet-50 trunk. At resolutions s∗> 224 we
evaluate with exponent p∗ as described in section 3.5.

Architecture λ data resol. train-time pooling
aug. s∗ p = 1 p = 3

ResNet-50 full 224 76.2 / 92.9 76.2 / 93.1
MultiGrain 1 full 224 76.8 / 93.2 76.9 / 93.5
MultiGrain 0.5 full 224 77.0 / 93.6 77.4 / 93.6
MultiGrain 0.5 AA 224 77.4 / 93.6 78.2 / 93.9
MultiGrain 0.5 full 500 76.5 / 93.5 78.6 / 94.4
MultiGrain 0.5 AA 500 77.7 / 94.0 79.4 / 94.8
MultiGrain 0.5 full 800 73.5 / 93.5 77.2 / 93.5
MultiGrain 0.5 AA 800 74.1 / 91.8 77.8 / 93.9

PyTorch model zoo 224 76.1 / 92.9
mixup [48] 224 76.7 / 94.4
BA (|B| = 1024) [19] 224 76.9 / –
AutoAugment [6] 224 77.6 / 93.8

We have observed that this longer training gives more im-
pact to the AA-generated augmentations. We therefore use
a longer schedule of 7508 iterations per epoch, keeping the
batch size to |B| = 512.

Our method benefits from this data-augmentation: Multi-
Grain reaches 78.2% top-1 accuracy at resolution 224 with
p= 3, λ= 0.5. To the best of our knowledge, this is the best
top-1 accuracy reported for Resnet-50 when training and
evaluating at this resolution, significantly higher than the
77.6% reported with AutoAugment alone [6] or 76.7% for
mixup [48]. Using a higher resolution at test time improves
the accuracy further: we obtain 79.4% top-1 accuracy at
resolution 500. Our strategy of adapting the pooling expo-
nent to a larger resolution is still effective, and significantly
outperforms the state of the art performance for a ResNet-50
learned on ImageNet at training resolution 224.

4.5. Retrieval results
We present our retrieval results in table 3, with an abla-

tion study and copy-detection results in the supplemental
material (D). Our MultiGrain nets improve accuracies on all
datasets with respect to the Resnet-50 baseline for compara-
ble resolutions. Repeated augmentations (RA) is again a key
ingredient in this context.

We compare with baselines where no annotated retrieval
dataset is used. [10, 11] give off-the-shelf network accura-
cies with R-MAC pooling. MultiGrain compares favorably
with their results at a comparable resolution (s∗=800). They
reach accuracies above 93% mAP on Holidays but this re-
quires a resolution s≥ 1000 pixels.

It is also worth noting that we reach reasonable retrieval

Table 3: Instance search results and baselines, on Holidays
(% mAP) and UKB (/4). We set p = 3 pooling at training
time for our MultiGrain models, and p∗ set as given in sec-
tion 3.5. †GeM is fine-tuned at resolution 362x362 on additional
images tailored to the retrieval task. Their best result is obtained
with multi-scale input and implies additional processing.

Method resol. s∗ Holidays UKB CD10k

MultiGrain λ = 1 500 91.8 3.89 81.1
MultiGrain λ = 1 800 91.6 3.91 82.5
MultiGrain λ = 0.5 500 91.5 3.90 80.7
MultiGrain λ = 0.5 800 92.5 3.91 78.6
Fisher vectors [26] 800 63.4 3.35 42.7
Neural codes [1] 224 79.3 3.56
ResNet-50 RMAC [10] 724 90.9
ResNet-50 RMAC [10] 1024 93.3
ResNet-101 RMAC [11] 800 91.4 3.89
GeM† [34] 1024 93.9

performance at resolution s∗= 500, which is a interesting
operating point with respect to the traditional inference res-
olutions s= 800–1000 for retrieval. Indeed, a forward pass
of Resnet-50 on 16 processor cores takes 3.80s at resolution
500, against 18.9s at resolution 1024 (5× slower). Because
of this quadratic increase in timing, and the single embed-
ding computed by MultiGrain, our solution is particularly
adapted to large-scale or low-resource vision applications.

For comparison, we also report some older related results
on the UKB and C10k datasets, that are not competitive
with MultiGrain. Neural codes [1] is one of the first works
on retrieval with deep features. The Fisher vector [26] is a
pooling method that uses local SIFT descriptors.

At resolutions 500 we see that the results with the margin
loss (λ= 0.5) are slightly lower than without (λ=1). This is
partly due to the limited transfer from the IN-aug task to the
variations observed in retrieval datasets.

5. Conclusion
In this work we have introduced MultiGrain, a unified

embedding for image classification and instance retrieval.
MultiGrain relies on a classical convolutional neural network
trunk, with a GeM layer topped with two heads at training
time. We have discovered that by adjusting this pooling
layer we are able to increase the resolution of images used
a inference time, while maintaining a small resolution at
training time. We have shown that MultiGrain embeddings
can perform well on classification and retrieval. Interest-
ingly, MultiGrain also sets a new state of the art on pure
classification compared to all results obtained with the same
convolutional trunk. Overall, our results show that retrieval
and classification tasks can benefit from each other.

An implementation of our method is open-sourced at
https://github.com/facebookresearch/multigrain.
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MultiGrain: a unified image embedding for classes and instances

Supplementary Material

We report a few additional experiments and results that
did not fit in the main paper. Section A shows the effect of
data-augmented batches when training a simple toy model.
Sections B and C list the values of a few hyper-parameters
used in our method. Section D gives a some more ablation
results in the retrieval setting. Finally, Section E shows
how to use the ingredients of MultiGrain to improve the
accuracy of an off-the-shelf pre-trained ConvNet at almost
no additional training cost. It obtains what appear to be the
best reported classification results on imagenet-2012 for
a convnet with publicly available weights.

A. Data-augmented batches: toy model

We have observed in Sections 3.3 and 4.3 that training our
architecture (ResNet-50 trunk) with data-augmented batches
yields improvements with respect to the vanilla uniform
sampling scheme, despite the decrease in image diversity.

This observation holds even in the absence of ranking
triplet loss, all things being equal otherwise: same num-
ber of iterations per epoch, number of epochs, learning rate
schedule, and batch size. As an example, fig. A.1 shows the
evolution of the validation accuracy of our network trained
under cross-entropy with our training schedule and a p = 1
pooling, batches of size 512, with the data augmentation
introduced in section 4.1, with uniform batches vs. with
batch sampling. While initial epochs suffer from the reduced
diversity of the batches compared to the uniformly-sampled
variant, the reinforced effect on data augmentation compen-
sates for this in the long run, and makes the batch-augmented
variant reach a higher final accuracy.

Since we observe this better performance even for a pure
image classification task, an interesting question is whether
this benefit is specific to our architecture and training method
(batch-norm, etc), or if it is more generally applicable? Here-
after we analyse a linear model and synthetic classification
task that seems to align with the second hypothesis.

We consider an idealized model of the effect of including
different data-augmented instances of the same image in one
batch using standard stochastic gradient descent. We create
a synthetic training set D of points pictured in fig. A.2 of
N = 100 positive and N = 100 negative training points pi =
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Figure A.1: Evolution of the validation accuracy on
ImageNet-val with and without data-augmented batches.
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Figure A.2: Training set for the toy model in appendix A.

(pix, p
i
y) by sampling from two 2D Gaussian distributions:

pix ∼ N (µ = 0, σ = 1)

piy ∼ N (µ = y∗i , σ = 1)
(A.1)

with y∗i = ±1 being the ground truth label. We sample a test
dataset in the same manner.

We consider the SGD training of an SVM

fw(pi) = w>pi (A.2)

using the Hinge loss

`hinge = max (1− y∗i fw(pi), 0). (A.3)

We consider the symmetry across the x-axis

φ((pix, p
i
y)) = φ((pix,−piy)) (A.4)
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Figure A.3: Evolution of the test accuracy of the SVM
trained on the synthetic data, averaged accross 100 runs.

Table B.1: Margin loss hyper-parameters

parameter value

margin α 0.2
initial β0 1.2
β learning rate 0.1

as a label-preserving data-augmentation suited to our syn-
thetic dataset. We train the SVM (A.2) using one pass
through the data-augmented dataset D̄ of size 4N , using
batches of size 2.

The only difference between the two optimization sched-
ules is the order in which the samples are batched and pre-
sented to the optimizer. We consider two batch sampling
strategies:

• Uniform sampling: we sample the elements of the batch
randomly from D̄, without replacement;

• Paired sampling: we generate a batch by pairing a random
element from D̄ and its data-augmentation, removing
these two elements from D̄.

Figure A.3 shows the evaluation of the accuracy with the
iterations in both of these cases, averaged across 100 runs.
It is clear that pairing the data-augmented pairs in one batch
accelerates the convergence of this model.

This idealized experiment demonstrates that there are
cases in which the repeated augmentation scheme provides
an optimization and generalization boost, and reinforces the
effect of data augmentation.

B. Margin loss hyper-parameters

Table B.1 gives the value of the hyper-parameters for the
margin loss used during the training of our models.

Table C.1: full data-augmentation transforms and parameters

transformation parameter range

horizontal flip

random resized crop
scale ∈ [0.08, 1.0]
ratio ∈ [3/4, 4/3]

color jitter
brightness 0.3
contrast 0.3

saturation 0.3

lighting transform intensity 0.1

C. Data augmentation hyper-parameters
Table C.1 gives the transformations in the full data aug-

mentation used in our experiments (section 4.1), along with
their parameters.

D. Additional results and ablation study for
Multigrain in retrieval

Table D.1 reports additional results of the MultiGrain
architecture, with an ablation study analyzing the effect of
each component.

As already reported in the main paper, for some datasets
the choice of not using the triplet loss (λ = 1) is as good or
better than our generic choice (λ = 0.5). Of course, then
the embedding is not multi-purpose anymore. Overall, the
different elements employed in our architecture (RA and the
layers specific to Multigrain) still give a significant improve-
ment over simply using the activations, and is competitive
with the state of the art for the same resolution/complexity.

Note, the AutoAugment data augmentation does not trans-
fer well to the retrieval tasks. This can be explained by their
specificity to Imagenet classification. This shows the limita-
tion of a particular choice of data-augmentation if a single
embedding for classification and retrieval datasets is desired.
Learning AutoAugment specifically for the retrieval task
would certainly help, but would probably also result in less
general embeddings. Hence, data-augmentation is a limiting
factor for multi-purpose embeddings: improving for one task
like classification hurts the performance for other tasks.

E. Evaluation of off-the-shelf classifiers at
higher resolutions

In this section, we present some additional classification
results using off-the-shelf pretrained classification networks
trained with standard average pooling (p = 1).

As outlined in sections 3.5 and 4.2, one of our contribu-
tions is a strategy for evaluating classifier networks trained
with GeM pooling at scale s and exponent p at a higher
resolution s∗ and adapted exponent p∗. It can be used on
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Table D.1: Full results including Copydays + 10k distractors (CD10k, % mAP), and ablation study for the MultiGrain models.
The Pytorch model simply extract the last activation layer as a descriptor [1]. Resnet-50 corresponds to features extracted
from a classification baseline with p = 1 or p = 3 GeM pooling, trained with cross-entropy with our training schedule, data
augmentation, and uniform batch sampling.

Holidays UKB CD10k

Method λ s∗ = 224 500 800 224 500 800 224 500 800

PyTorch model zoo 85.5 86.6 82.8 3.71 3.85 3.80 61.5 61.1 43.0
Resnet-50 trained with p = 1 pooling 83.5 88.8 87.1 3.60 3.79 3.82 59.2 69.9 66.2
Resnet-50 trained with p = 3 pooling 86.8 90.0 90.4 3.73 3.87 3.89 70.6 78.9 75.7
MultiGrain 1 88.9 91.8 91.6 3.78 3.89 3.91 75.1 81.2 82.5
MultiGrain 0.5 88.3 91.5 92.5 3.78 3.90 3.91 74.1 80.7 78.6
MultiGrain + AA 0.5 86.5 90.3 89.4 3.75 3.89 3.90 69.7 77.8 76.1

Table E.1: Additional top-1/top-5 validation classification accuracies obtained by finetuning p∗ for higher evaluation scales on
off-the-shelf networks. The first column indicates the training resolution s and the accuracy we measured at this resolution,
with standard evaluation (resize of the largest scale to s · 256/224 + center crop). The subsequent columns show the accuracy
measured at higher resolutions s∗ = 350, 400, 450, 500 without cropping, together with the p∗ found by finetuning for these
resolutions (appendix E).

original evaluation s∗ = 350 s∗ = 400 s∗ = 450 s∗ = 500

Architecture s acc. (%) p∗ acc. (%) p∗ acc. (%) p∗ acc. (%) p∗ acc. (%)

NASNet-A-Mobile [50] 224 74.1/91.7 1.7 75.1/92.5 2.1 74.2/92.1 2.4 71.8/90.9 2.6 68.4/89.0
SENet154 [21] 224 81.3/95.5 1.6 82.6/96.2 1.6 83.0/96.5 1.6 83.1/96.5 1.7 82.7/96.3
PNASNet-5-Large [49] 331 82.7/96.0 1.0 81.3/85.4 1.4 82.6/96.1 1.5 83.2/96.4 1.7 83.6/96.7

pretrained networks as well.
For an evaluation scale s∗, we use the alternative strategy

described in section 3.5 to choose p∗: we finetune the pa-
rameter p∗ by stochastic gradient descent, backpropagating
the cross-entropy loss on training images from imagenet,
rescaled to the desired input resolution. Compared to a full
finetuning at this input resolution, this strategy has a limited
memory footprint, given that the backpropagation only has
to be done on the ultimate classification layer before reach-
ing the pooling layer, allowing for an efficient computation
of the gradient of p∗. Experimentally we also found that this
process converges on a few thousands of training samples,
while a finetuning of the classification layer would require
several data-augmented epochs on the full training set.

The finetuning is done using SGD with batches of |B| =
4 (non-cropped) images, with momentum 0.9 and initial
learning rate lr(0) = 0.005, decayed under a polynomial
learning rate decay

lr(i) = lr(0)

(
1− i

imax

)0.9

(E.1)

with imax the total number of iterations.
We select 50, 000 images from the training set (50 per

category) for the fine-tuning and do one pass on this reduced
dataset. We use off-the-shelf pretrained convnets from the

Cadene/pretrained-models.pytorch GitHub repository1. Ta-
ble E.1 outlines the resulting validation accuracies. We see
that for each network there is a scale and choice of p∗ that
performs better than the standard evaluation.

These networks have not been trained using GeM pooling
with p > 1; as exhibited in our classification results (table 2)
we found this to be another key ingredient in ensuring a
higher scale insensitivity and better performance at larger
resolution. As in our main experiments with the MultiGrain
architecture with a ResNet-50 backbone, it is likely that
these networks would reach higher values when training
from scratch with a p > 1 pooling, and adding repeated
augmentations and margin loss. However, running training
experiments on these large networks is significantly more
expensive. Therefore, we leave this for future work.
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