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Figure 1: We introduce HoloPose, a method for holistic monocular 3D body reconstruction in-the-wild. We start with

an accurate, part-based estimate of 3D model parameters θ, and decoupled, FCN-based estimates of DensePose, 2D and 3D

joints. We then efficiently optimize a misalignment loss Ltotal(θ) between the top-down 3D model predictions to the bottom-

up pose estimates, thereby largely improving alignment. The 3D model estimation and iterative fitting steps are efficiently

implemented as network layers, facilitating multi-person 3D pose estimation in-the-wild at more than 10 frames per second.

Abstract

We introduce HoloPose, a method for holistic monocu-

lar 3D human body reconstruction. We first introduce a

part-based model for 3D model parameter regression that

allows our method to operate in-the-wild, gracefully han-

dling severe occlusions and large pose variation. We further

train a multi-task network comprising 2D, 3D and Dense

Pose estimation to drive the 3D reconstruction task. For

this we introduce an iterative refinement method that aligns

the model-based 3D estimates of 2D/3D joint positions and

DensePose with their image-based counterparts delivered

by CNNs, achieving both model-based, global consistency

and high spatial accuracy thanks to the bottom-up CNN

processing. We validate our contributions on challenging

benchmarks, showing that our method allows us to get both

accurate joint and 3D surface estimates, while operating

at more than 10fps in-the-wild. More information about

our approach, including videos and demos is available at

http://arielai.com/holopose.

1. Introduction

3D reconstruction from a single RGB image is a fun-

damentally ill-posed problem, but we perform it routinely

when looking at a picture. Prior information about geom-

etry can leverage on multiple cues such as object contours

[32, 57, 4], surface-to-image correspondences [30, 38, 29]

or shading [15, 12], but, maybe the largest contribution to

monocular 3D reconstruction comes from semantics: the

constrained variability of known object categories can eas-

ily resolve the ambiguities in the 3D reconstruction, for

instance if the object’s shape is bound to lie in a low-

dimensional space [7, 21, 49].

This idea has been the basis of the seminal work of

[56, 5] on morphable models for monocular 3D face re-

construction. Extending this to the more complicated, ar-

ticulated structure of the human body, monocular human

body reconstruction was studied extensively in the pre-

vious decade in conjunction with part-based representa-

tions, [40, 64], sampling-based inference [42, 40], spatio-

temporal inference [44] and bottom-up/top-down computa-

tion [41]. Monocular 3D reconstrunction has witnessed a

renaissance in the context of deep learning for both gen-

eral categories, e.g. [50, 20, 23] and for humans in specific

[6, 24, 55, 51, 52, 9, 34, 54, 31, 19, 60]. Most of the latter

works rely on the efficient parameterisation of the human

body in terms of skinned linear models [2] and in particular

the SMPL model [26].

Even though 3D supervision is scarce, these works have

exploited the fact that a parametric model provides a low-

dimensional representation of the human body that can

project to 2D images in a differentiable manner. Based
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on this, these works have trained systems to regress model

parameters by minimizing the reprojection error between

model-based and annotator-based 2D joint positions [51,

52, 19], human segmentation masks and 3D volume pro-

jections [54, 51, 52, 31] or body parts [31].

In parallel with these works, 3D human joint estimation

has seen a steady rise in accuracy [47, 63, 33, 35], most re-

cently based on directly localizing 3D joints in a volumetric

output space through hybrids of classification and regres-

sion [46, 27, 22].

Finally, recent work on Dense Pose estimation [10] has

shown that one can estimate dense correspondences be-

tween RGB images and the body surface by training a

generic, bottom-up detection system [13] to associate im-

age pixels with surface-level UV coordinates. Even though

DensePose establishes a direct link between images and sur-

faces, it does not uncover the 3D geometry of the particular

scene, but rather gives a strong hint about it.

In this work we propose to link these separate research

threads in a synergistic architecture that combines the pow-

ers of the different approaches. As in [51, 34, 54, 31, 19]

we rely on a parameteric, differentiable human model of

shape that allows us to describe the 3D human body sur-

face in terms of a low-dimensional parameter vector, and

incorporate it in a holistic system for monocular 3D pose

estimation.

Our first contribution consists in introducing a part-

based architecture for parameter regression. The present

approaches to monocular 3D reconstruction estimate model

parameters through a linear layer applied on top of CNN

features extracted within the object’s bounding box. As de-

scribed in Sec. 3 our part-based regressor pools convolu-

tional features around 2D joint locations estimated by an

FCN-based 2D joint estimation head. This allows us to

extract refined, localized features that are largely invariant

to articulation, while at the same time keeping track of the

presence/absence of parts.

We then exploit DensePose and 3D joint estimation to

increase the accuracy of 3D reconstruction. This is done

in two complementary ways. Firstly, we introduce addi-

tional reprojection-based losses that improve training in a

standard multi-task learning setup. Secondly, we predict

DensePose and 2D/3D joint positions using separate, FCN-

based decoders and use their predictions to refine the top-

down, model-based 3D reconstruction.

Our refinement process uses the CNN-based regressor

estimates as an initialization to an iterative fitting proce-

dure. We update to the model parameters so as to align

the model-based and CNN-based pose estimates. The cri-

terion driving the fitting is captured by a combination of a

Dense Pose-based loss, detailed in Sec. 4 and the distances

between the model-based and CNN-based estimates of the

3D joints. This allows us to update the model parameter es-

timates on-the-fly, so as to better match the CNN-based lo-

calization results. The iterative fitting is implemented as an

efficient network layer for GPU-based Conjugate Gradients,

allowing us to perform accurate real-time, multi-person 3D

pose estimation in-the-wild.

Finally, in order to make a skinned model better com-

patible with generic CNN layers we also introduce two

technical modifications that simplify modelling, described

in Sec. 2. We first introduce a mixture-of-experts regres-

sion layer for the joint angle manifold which alleviates the

need for the GAN-based training used in [19]. Secondly,

we introduce a uniform, cartesian charting of the UV space

within each part, effectively reparametrizing the model so

as to efficiently implement mesh-level operations, resulting

in a simple and fast GPU-based model refinement.

2. Shape Prior for 3D Human Reconstruction

Our monocular 3D reconstruction method heavily re-

lies on a prior model of the target shape. We parameter-

ize the human body using the Skinned Multi-Person Linear

(SMPL) model [26], but other similar human shape models

could be used instead. The model parameters capture pose

and shape in terms of two separate quantities: θ comprises

3D-rotation matrices corresponding to each joint in a kine-

matic tree for the human pose, and β captures shape vari-

ability across subjects in terms of a 10-dimensional shape

vector. The model determines a triangulated mesh of the

human body through linear skinning and blend shapes as a

differentiable function of θ, β, providing us with a strong

prior on the 3D body reconstruction problem.

2.1. MixtureofExperts Rotation Prior

Apart from defining a prior on the shape given the model

parameters, we propose here to enforce a prior on the model

parameters themselves. In particular, the range of possi-

ble joint angle values is limited by the human body’s me-

chanics, which is something we can exploit to increase the

accuracy of our angle joint estimates. In [19] prior con-

straints were enforced implicitly through adversarial train-

ing, where a discriminator network was trained in tandem

with an angle regression network and used to penalize sta-

tistically implausible joint angle estimates independently.

We argue that a simpler and potentially even tighter prior

can be constructed by explicitly forcing the prediction to lie

on the manifold of plausible shapes. Unlike earlier work

that aimed at analytically modelling joint angles [43] we

draw inspiration from recent works that use classification

as a proxy to rotation estimation [49]: rather than predict

Euler angles, the authors cast rotation estimation as a clas-

sification problem where the classes correspond to disjoint

angular bins. This approach is aligned with the empirical

observation that CNNs can improve their regression accu-

racy by exploiting classification within regression, as used
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Figure 2: Visualization of Euler angle cluster centers, θ1,...,K , for several joints of the SMPL model. We limit the output

space of our joint regressors to the convex hull of the centers, enforcing attainable joint rotations.

for instance in [11, 46, 27]

We propose a simple ‘mixture-of-experts’ angle regres-

sion layer that has a simple and effective prior on angles

baked into its expression. We start by using the data col-

lected by [1] of joint angle recordings as humans stretch.

These are expected to cover sufficiently well the space of

possible joint angles. For each body joint we represent ro-

tations as Euler angles, θ and compute K rotation clusters

θ1, . . . , θK via K-Means. These clusters provide us with a

set of representative angle values. We allow our system to

predict any rotation value within the convex hull of these

clusters by using a softmax-weighted combination of the

clusters. In particular, the Euler rotation Θi for the i’th body

joint is computed as:

θi =

∑K

k=1 exp(wk)θK∑K

k=1 exp(wk)
(1)

where wk are real-valued inputs to this layer. This forms

a plausible approximation to the underlying angle distribu-

tion, as visualized in Fig. 2, while avoiding the need for the

adversarial training used in [19], since by design the esti-

mated angles will be coming from this prior distribution.

2.2. Cartesian surface parametrization

Even though we understand the body surface as a con-

tinuous structure, it is discretized using a triangulated mesh.

This means that associating a pair of continuous UV coordi-

nates with mesh attributes, e.g. 3D position, requires firstly

identifying the facet that contains the UV coordinate, look-

ing up the vertex values supporting the facet, and using the

point’s barycentric coordinates to interpolate these values.

This can be inefficient in particular if it requires accessing

disparate memory positions for different vertices.

We have found it advantageous to reparametrize the body

surface with a locally cartesian coordinate system. This al-

lows us to replace this tedious process with bilinear inter-

polation and use a Spatial Transformer Layer [17] to effi-

ciently handle large numbers of points. In order to perform

this reparametrization we first perform Multi-Dimensional

Scaling to flatten parts of the model surface to two dimen-

sions and then sample these parts uniformly on a grid.

In particular we use a 32 × 32 grid within each of the

24 body parts used in [10] which means that rather than the

6890 3D vertices of SMPL we now have 24 tensors of size

32 × 32 × 3. We also sample the model eigenshapes on

the same grid and express the shape synthesis equations in

terms of the resulting tensors. We further identify UV-part

combinations that do not correspond to any mesh vertex and

ignore UV points that map there.

3. Part-Based 3D Body Reconstruction

Having outlined the parametric model used for 3D re-

construction, we now turn to our part-based model for pa-

rameter estimation. Existing model-based approaches to

monocular 3D reconstruction estimate SMPL parameters

through a single linear layer applied on top of CNN fea-

tures extracted within the object’s bounding box. We argue

that such a monolithic system can be challenged by fea-

ture changes caused e.g. by occlusions, rotations, or global

translations due to bounding box misalignments.

We handle this problem by extracting localized features

around human joints, following the part-based modeling

paradigm [8, 64, 61]. The position where we extract fea-

tures co-varies with joint position. The features are there-

fore invariant to translation by design and can focus on local

patterns that better reveal the underlying 3D geometry.

As shown in Fig. 3 we obtain features as a result of a

deconvolution network and pool features at visible joint lo-

cations via bilinear interpolation. The joint locations are

delivered by a separate network branch, trained for joint lo-

calization. Each feature extracted around a 2D joint can in

principle be used to separately regress the full model pa-

rameters, but intuitively a 2D joint should have a stronger

influence on model parameters that are more relevant to it.

For instance a left wrist joint should be affecting the left arm

parameters, but not those of kinetically independent parts

such as the right arm, head, or feet. Furthermore, the fact

that some joints can be missing from an image means that

we cannot simply concatenate the features in a larger fea-
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Figure 3: Part-Based 3D Reconstruction. A fully convolutional network for keypoint detection is used to localize 2D landmark positions

of multiple human keypoints. We pool convolutional features around each keypoint, deriving a rich representation of local image structure

that is largely invariant to global image deformations, and instead ellicits fine-grained, keypoint-specific variability. Each keypoint affects

a subset of kinematically associated body model parameters, casting its own ‘vote’ for the putative joint angles. These votes are fused

through a mixture-of-experts architecture that delivers a part-based estimate of body joint angles. In this figure for simplicity we show only

pooling from the left-ankle, left-knee and left-hip local features which are relevant for the estimation of the left-knee angles.

ture vector, but need to use a form that accommodates the

potential absence of parts.

We incorporate these requirements in a part-based vari-

ant of Eq. 1, where we pool information from N (i), the

neighborhood of joint i corresponding to the angle θi:

θi =

∑K

k=1

∑
j∈N (i) exp(w

i
k,j)θK

∑K

k=1

∑
j∈N (i) exp(w

i
k,j)

. (2)

As in Eq. 1 we perform an arg-soft-max operation over an-

gle clusters, but fuse information from multiple 2D joints:

wi
k,j indicates the score that 2D joint j assigns to cluster

k for the i-th model parameter, θi. The neighborhood of i

is constructed offline, by inspecting which model parame-

ters directly influence human 2D joints, based on kinematic

tree dependencies. Joints are found in the image by tak-

ing the maximum of a 2D joint detection module. If the

maximum is below a threshold (0.4 in our implementation)

we consider that a joint is not observed in the image. In

that case, every summand corresponding to a missing joint

is excluded, so that Eq. 2 remains valid. If all elements of

N (i) are missing, we set θi to the resting pose.

4. Holistic 3D Body Reconstruction

The network described so far delivers a ‘bottom-up’ esti-

mate of the body’s 3D surface in a single-shot, i.e. through a

forward pass in the network. In the same feedforward man-

ner one can obtain 2D keypoints, 3D joint [46], or Dense-

Pose [10] estimates through fully-convolutional networks

(FCNs). These provide complementary pieces of informa-

tion about the human pose in the scene, with complemen-

tary merits. In particular, the model-based estimate of the

body geometry is a compact, controllable, representation of

a watertight mesh, that is bound to correspond to a plausi-

ble human pose. This is often not the case for the FCN-

estimates, whose feedforward architecture makes it hard to

impose lateral constraints between parts. At the same time

the FCN-based estimates inspect and score exhaustively ev-

ery image patch, allowing us to precisely localize human

structures in images. By contrast, model-based estimates

can be grossly off, e.g. due to some miscalculated angle in

the beginning of the kinematic tree.

Motivated by this complementarity, we now turn to de-

veloping a holistic pose estimation system that allows us

to have the best of both words. Our starting point is the

fact that having a 3D surface estimate allows us to predict

in a differentiable manner 3D joint positions, their 2D pro-

jections, alongside with dense surface-to-image correspon-

dences. We can thus use any external pose information to

construct a loss function that indicates the quality of our

surface estimate in terms of geometric distances. Building

on this, and as done also in [51, 52, 9, 34, 54, 31, 19, 60]

we use multiple pose estimation cues to supervise the 3D

reconstruction task, now bringing also DensePose [10] as a

new supervision signal.

A more radical change with respect to prior practice is

that we also introduce a refinement process that forces the

model-based 3D geometry to agree with an FCN’s predic-

tions through an iterative scheme. This is effective also at

test-time, where the FCN-based pose estimates drive the

alignment of the model-based predictions to the image evi-

dence through a minimization procedure.

In order to achieve both of these goals we exploit the

geometric nature of the problem and construct a loss that

penalizes deviations between the 3D model-based predic-

tions and the pose information provided by complemen-
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Figure 4: DensePose refinement: a bottom-up estimate of dense image-surface correspondence (row 1) is used to refine the

3D model estimate results (row 2), achieving a better alignment of the surface projection to the image (row 3).

tary cues. For example, Dense Pose associates an im-

age position x = (x1, x2) with an intrinsic surface coor-

dinate, u = (u1, u2). Given a set of model parameters

φ = (θ, β) we can associate every u vector with a 3D po-

sition X(φ) = M(φ,u), where M denotes the parametric

model for the 3D body shape, e.g. [26]. This point in turn

projects to a 2D position x̂(φ) = (x̂1, x̂2), which can be

compared to x - ideally closing a cycle. Since this will not

be the case in general, we penalize a geometric distance be-

tween x̂(φ) and x = (x1, x2), requiring that (φ) yields a

shape that projects correctly in 2D. Summarizing, we have

the following process and loss:

x
DensePose

→ u
M(φ)
→ X

Π
→ x̂ (3)

LDensePose(φ) =
∑

i

‖xi − x̂i‖2, (4)

where x̂ = Π(Mφ(DensePose(x))) is the model-based es-

timate of where x should be, Π is an orthographic projection

matrix and i ranges over the image positions that become

associated with a surface coordinate.

We can use Eq. 4 in two ways, as described above.

Firstly, we can use it to supervise network training, where

DensePose stands for Dense Pose ground-truth and φ is ob-

tained by the part voting expression in Eq. 2. This will force

the network predictions to comply with DensePose supervi-

sion, compensating for the lack of extensive 3D supervision.

Secondly, we can use Eq. 4 at test time to force the cou-

pling of the FCN- and model- based estimates of human

pose. We bring them in accord by forcing the model-based

estimate of 3D structure to project correctly to the FCN-

based DensePose/2D/3D joint predictions. For this we treat

the CNN-based prediction as an initialization of an iterative

fitting scheme driven by the sum of the geometric losses.

We treat similarly the 2D and 3D joint predictions deliv-

ered by the FCN heads, and penalize the L1 distance of the

model-based prediction to the CNN-based estimates. Fur-

thermore, to cope with implausible shapes we use the fol-

lowing simple loss to bound the magnitude of the predicted

β values: Lbeta =
∑

i max(0, b−|βi|), where b = 2 is used

in all experiments.

We use Conjugate Gradients (CG) to minimize a cost

function formed by the sum of the above losses. We im-

plement Conjugate Gradients as an efficient, recurrent net-

work layer; our cartesian model parameterization outlined

in Sec. 2.2 allows us to quickly evaluate and back-propagate

through our losses using Spatial Transformer Networks.

This gives us for free a GPU-based implementation of 3D

model fitting to 2D images. If convergence is not achieved

after a fixed number of 20 CG iterations we halt to keep the

total computation time bounded. For the sparse, keypoint-

based reprojection loss every iteration requires less than

20 msecs, while the single-shot feedforward surface re-

construction requires less than 10msecs. We anticipate

that learning-based techniques, such as supervised descent

[39, 59, 48] could be used to further accelerate convergence.

5. Experiments

We now describe our experimental setup and architec-

tural choices, providing quantitative and qualitative results.

We quantify performance in terms of two complementary
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Figure 5: Surface Correspondence Results: Ratio of Cor-

rect points as a function of the the geodesic distance thresh-

old. The proposed system uniformly outperforms the cur-

rent state-of-the-art mesh-based results, while the refine-

ment yields a further boost in surface alignment.

Method AUC10 AUC30 FR10

HMR[19] 0.18 0.40 60.7

Ours 0.24 0.47 51.1

Ours+Synergy 0.29 0.53 44.6

Our DP Branch 0.40 0.63 32.0

Table 1: DensePose Results: Area Under the RCP curve

(AUC) and Failure Rate (FR) results for DensePose estima-

tion obtained by 3D body mesh reprojection to 2D.

problem aspects, namely mesh-based dense pose estima-

tion and 3D object reconstruction. Our qualitative results

demonstrate the performance of our system on challenging,

“in-the-wild” images with heavy occlusion and clutter.

5.1. Experimental Setup

In all of our experiments we use as system backbone an

ImageNet pre-trained ResNet-50 network [14]. For each

dense prediction task we use a deconvolutional head fol-

lowing the architectural choices of [58], with three 4 × 4
deconvolution layers applied with batch-norm and ReLU,

followed by a linear layer to obtain outputs of the desired

dimensionality. Each deconvolution layer has a stride of 2,

yielding a 64× 64 tensor given a 256× 256 image as input.

We train our system in two stages. We first train

the 3D Keypoint and 2D Keypoint heads on the MPII[3],

COCO[25] and H36m[16] datasets, following the practices

of [46], including an integral loss for 3D keypoints. We then

append the DensePose and part-based 3D reconstruction

heads to the network and train the whole system end-to-end.

The DensePose branch is trained using correspondences in

the DensePose-COCO training set. The part-based 3D re-

construction head is trained using 2D and 3D keypoints and

dense correspondences present in all datasets.

5.2. Surface Correspondence Performance

Dense correspondence measures 3D mesh alignment ac-

curacy in challenging, “in the wild” scenarios. It comple-

Method PA MPJPE MPJPE

3D Keypoint Localization

Rogez et al. [36] 53.4 71.6

Pavlakos et al. [33] 51.9 71.9

Martinez et al. [28] 47.7 62.9

Sun et al. [45] 48.3 59.1

Sun et al. [46] 40.6 49.6

Multi-Task 3D Keypoints Branch

BodyNet [54] 49.0 -

Our 3D Kps Branch 36.82 50.42

Keypoints on Reconstructed 3D Shape

Zhou. et al. [62] - 107

Reg. Forest (91 kps) [24] 93.9 -

SMPLify [6] 82.3 -

SMPLify (91 kps) [24] 80.7 -

Pavlakos et al. [34] 75.9 -

HMR unpaired 66.5 106.84

Omran et al. [31] 59.9 -

HMR 56.8 87.97

Ours 50.56 64.28

Ours+ Synergy 46.52 60.27

Table 2: Results on Human3.6M Dataset. MPJPE in mm. PA

MPJPE means the estimated keypoints were rigidly aligned to

ground truth prior to evaluation.

ments 3D localization performance, because 3D localiza-

tion can only be evaluated in constrained images where 3D

pose information has been captured by appropriate setups,

while dense correspondence can be established by manual

annotators as in [10].

We measure the surface correspondence accuracy using

the ’Ratio of Correct Points’ (RCP) measure. A point corre-

spondence is declared to be correct if the geodesic distance

between the estimated and ground truth points is below a

given threshold. On Fig. 5 we present RCP curves as a

function of the geodesic error threshold. Following [10],

we report RCP values between 0 and 30cm. The results

show that the alignment accuracy of the proposed approach

is clearly superior to the state-of-the-art approach of [20].

We also provide the results for the correspondence pre-

dicted by the discriminatively trained DensePose head of

our system. The results clearly show that the synergistic re-

finement is successfully using the information provided by

the DensePose head to improve the alignment accuracy, but

there is still space for improvement, e.g. by using a more

expressive 3D shape model.

In Table. 1 we complement these curves with three scalar

values obtained from the RCP curve for quantitative com-

parison: the area under the curve(AUC) for 10 and 30 cm

errors. We also provide the Failure Rate (FR) at 10cm, as
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Evaluation Type Base perf. LKps−2D LKps−3D LDP LKps−2D + LDP LKps−3D + LDP

DensePose (FR10) 51.1 45.8 52.3 43.3 43.1 44.6

3D Keypoints (PA MPJPE) 50.56 52.32 46.78 56.87 51.20 46.52

Table 3: Comparison of refinement strategies: we examine the effects of different refinement loss choices on the performance of (i)

DensePose estimation in-the-wild, (ii) 3D keypoint localization. We observe that a joint minimization is essential to attaining improvements

in both 3D shape estimation and alignment of the body surface with the image domain.

the percentage of points that have above 10cm geodesic er-

ror. According to both measures we see that we are do-

ing clearly better than HMR, while getting improvements

through the refinement step.

5.3. 3D Keypoint Localization

We report the results of our system on the Human3.6M

[16] benchmark. There are two commonly used evaluation

protocols with different partitions of the dataset and differ-

ent evaluation metrics; we report results on both.

We train our system using the frames obtained from sub-

jects S1, S5, S6, S7 and S8 of [16]. In Protocol 1, we report

mean per-joint position error after rigid alignment of the es-

timated key points to groundtruth using Procrustes analysis

(PA MPJPE). We evaluate every 64-th frame of Subject 11s

videos from the frontal camera (C2). In Protocol 2, we

evaluate on all of the videos of S9 and S11 from all of the

cameras, reporting MPJPE without alignment.

The results for both protocols are provided in Table 2.

Firstly, the performance of our 3D keypoint branch is quite

similar to Sun et al. [46] even though the same backbone is

shared by a multitude of tasks. Our part-based 3D recon-

struction system performs significantly better in both of the

evaluation protocols with respect to all of the existing shape

reconstruction methods. Specifically, our system improves

over HMR, the state-of-the-art system by Kanazawa et al.

[19] by 5.2 mm (PA MPJPE) in Protocol 1 and 23.6 mm in

Protocol 2 (MPJPE). Furthermore, we show that the syner-

gistic refinement leads to a further improvement of 4mm in

both protocols.

We note that for all of the refinement results we are

minimizing the reprojection error to the estimated 3D or

DensePose estimates based on a CNN, while we assess ac-

curacy in terms of the ground-truth for the respective tasks.

This confirms that the CNN-based pose estimates guide the

SMPL parameters to more accurate shape estimates.

5.4. Design Choices for Synergistic Refinement

Having validated the improvements attained thanks to

the synergistic treatment of 3D shape reconstruction, we

now turn to a more detailed ablation of the impact of dif-

ferent loss terms used during refinement. As can be seen

in Table 3, using a single loss term results in higher perfor-

mance for the task at hand, but results in a decrease for the

remaining tasks.

For instance, as shown in the third column, minimizing

3D reprojection error improves 3D localization accuracy,

but degrades dense pose estimation performance. Similarly,

minimizing the DensePose-based loss improves the accu-

racy of dense correspondence, but results in a drop of 3D

joint localization performance. This changes however when

a combination of losses is used, where we observe a joint

improvement in accuracy in both tasks.

5.5. Qualitative Results

Qualitative results of our system are provided in Fig. 6.

We observe that HMR is often distracted by clutter while

delivering a pose estimate, whereas our part-based estimate

is visibly more accurate; the refinement step further aligns

the surface with the image, correcting in particular limb

estimates. Qualitative results of our system trained with

SMPL+H model[37] is demonstrated in Fig. 7 for the multi-

person case.

6. Conclusions and future work

In this work we have proposed HoloPose, a method that

uses a tight prior model of human shape in tandem with

a multitude of pose estimation methods to derive accurate

monocular 3D human reconstruction. We have taken into

account the articulated nature of the human body, showing

that it substantially improves performance over a monolithic

baseline, and have introduced a refinement procedure that

allows to iteratively adapt the shape prediction results of a

single-shot system so as to meet geometric constraints im-

posed by complementary, fully-convolutional networks.

In the future we intend to explore neural mesh synthe-

sis models; the use of a distributed representation could

more easily accommodate multi-modal distributions, en-

compassing male, female and child surfaces, which are cur-

rently treated by separate shape models. Furthermore, our

approach could benefit from a more accurate modeling of

geometry, for instance by incorporating perspective projec-

tion, surface normal and contour information [4], while we

anticipate that the use of depth data, multiple views, [18] or

temporal information [53] can help disambiguate 3D recon-

struction errors.
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(a) (b) (c) (d) (e) (f)

Figure 6: Qualitative results. From left to right: (a) Input image, (b) HMR [20] results, (c) Our results, without refinement,

(d) the visualization of the refinement, (e) our results, refined, (f) our results, refined, 3D rotated.

Figure 7: Multi-person results. We show the reconstructed 3D surfaces of multiple persons as colored surfaces (top), and

surface normals (bottom). Videos of multi-person 3D reconstruction can be found in http://arielai.com/holopose
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