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Abstract

Selenium (Se) is an essential micronutrient required by organisms of diverse lineage.
Dietary Se is converted to hydrogen selenide either enzymatically or by endogenous
antioxidant proteins. This convergent biochemical step crucially underlies the
subsequent biological activity of Se and argues for inclusion of hydrogen selenide as
the fourth endogenous gasotransmitter alongside nitric oxide, carbon monoxide and
hydrogen sulfide.
Endogenously generated hydrogen selenide is incorporated into numerous
‘selenoprotein’ oxidoreductase enzymes, essential for maintaining redox-status
homeostasis in health and disease. Direct effects of endogenous hydrogen selenide
on cellular and molecular targets are currently unknown. Given exogenously,
hydrogen selenide acts as a modulator of metabolism via transient inhibition of
mitochondrial cytochrome C oxidase. Here we provide an overview of Se biology, its
impact on several physiological systems (immune, endocrine, cardiovascular and
metabolic) and its utility as a supplement in acute and critical illness states. We
further explore the evidence base supporting its role as the fourth gasotransmitter
and propose a strategic case towards generation of novel selenomimetic
therapeutics.

Keywords: Selenium, Selenoprotein, Hydrogen sulfide, Metabolism, Redox, Oxidative
stress, Oxidative phosphorylation, Cytochrome C oxidase, Mitochondria
Introduction
Elemental selenium (Se; Greek [σελήνη] selene or ‘moon’) was discovered in 1817 by

Swedish chemists Jöns Jakob Berzelius and Johan Gottlieb Gahn [1]. On communica-

tion of its discovery, Berzelius stated that ‘I have just examined it [selenium] more

carefully and have found that what we took for tellurium is a new substance, endowed

with interesting properties. This substance has the properties of a metal, combined

with that of sulfur, to such a degree that one would say it is a new kind of sulfur’ [2].

Selenium (alongside oxygen, sulfur and tellurium) belongs to the chalcogens—group

16 of the periodic table. It is an essential trace element required by organisms of di-

verse lineage (bacteria, archaea, eukaryotes) [3]. In addition to the elemental form,

non-elemental forms and selenium-containing organic and inorganic molecules point

towards a complex chemistry. Selenide is the reduced form of elemental selenium (oxi-

dation state − 2), formed in biological systems or acidic environments from water-
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soluble selenium-containing compounds [4]. Endogenously generated hydrogen selen-

ide is present as the small gaseous molecule, H2Se; analogous to sulfide, it is in equilib-

rium with the hydroselenide anion (HSe-) [5]. Similar to the other gaseous mediators

reviewed in this issue, it also generates numerous oxidation products, the most abun-

dant being selenite (SeO3
2-) and selenate (SeO4

2-), with oxidation states of + 4 and + 6,

respectively [4, 6]. Crucially, conversion of all forms of intracellular Se-containing com-

pounds to hydrogen selenide (either enzymatically or through redox reactions) repre-

sents a convergent and essential biochemical step (Fig. 1). This underpins its

subsequent biological activity and, as we explore herein, adds support to its inclusion

as the fourth endogenous ‘gasotransmitter’ alongside nitric oxide (NO), carbon monox-

ide (CO) and hydrogen sulfide (H2S/HS-).

In 2002, H2S was postulated to be the third member of a class of gaseous mediators,

the gasotransmitters [7]. Five criteria were proposed to substantiate this claim, namely

(i) they had to be small molecules of gas and (ii) freely permeable to cell membranes,

(iii) they were endogenously and enzymatically generated albeit under regulatory con-

trols, (iv) they had well-defined functions at physiologically relevant concentrations and

(v) possessed cellular effects that may or may not be mediated by second messengers,

but should have specific cellular and molecular targets [7]. To date, the importance of

selenium in human biology has focussed on its incorporation into proteins [8, 9]. These

‘selenoproteins’, notable for their oxidoreductase activity and ability to impact on cellu-

lar redox status, have consequently drawn significant interest from the intensive care

community and beyond. We propose that the physiological role(s) of endogenous

hydrogen selenide extend beyond its incorporation into selenoproteins and, as a puta-

tive gasotransmitter, it is currently able to satisfy most of the above five criteria.
Fig. 1 Uptake and metabolism of Se-containing compounds. [CH3]2Se; dimethyl selenide, GSH; reduced
glutathione, GSSeH; glutathioselenol, GSSeSG; selenodiglutathione, tRNA; transfer ribonucleic acid
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Through a review of current knowledge and by using a hypothesis-driven approach, we

here explore the evidence base arguing towards inclusion of hydrogen selenide as the

fourth endogenous gasotransmitter. Necessarily, we provide an overview of selenium

biology, including the functional roles of various proteins that constitute the ‘seleno-

proteome’. The significance of selenium and its derivatives in acute illness is consid-

ered, with a focus on immune, endocrine, circulatory and metabolic systems. Finally,

we assess the utility of selenium supplementation and provide a strategic case towards

the generation of new classes of putative selenomimetics.

Endogenous generation and metabolism of hydrogen selenide
Numerous published works have referred interchangeably to elemental Se and the oxi-

dation products of hydrogen selenide. For simplicity, we too will herein refer to the

above forms as ‘Se’, unless stated otherwise. It is notable that endogenous generation

and metabolism of hydrogen selenide is analogous to many aspects of its chalcogen-

omimetic congener, hydrogen sulfide. Elemental selenium is obtained exclusively from

dietary sources [10, 11], either as the oxidation products selenite or selenate, or follow-

ing incorporation of Se into the amino acids cysteine and methionine (generating sele-

nocysteine and selenomethionine, respectively). Entry of Se into cells has been studied

in vitro, whereby its accumulation intracellularly was found to be both energy-

dependent or independent [12, 13]. This likely reflects uptake of either gaseous

(diffusion) or anionic (active transport) forms. The seleno-amino acids are substrates

for an enzymatic intracellular metabolic pathway forming endogenous hydrogen selen-

ide (Fig 1) [14]; selenocysteine, formed from selenomethionine via transsulfuration, is

converted into hydrogen selenide by selenocysteine β-lyase (SCL; EC 4.4.1.16) [15, 16].

This enzyme, first isolated in 1982 [15], catalyses decomposition of selenocysteine to

hydrogen selenide and alanine, utilising pyridoxal 5’-phosphate as a cofactor [15]. SCL

has been found in the human liver, kidney, heart and adrenal and muscle tissue in de-

creasing order of specific activity [17], and can be regulated by hypoxia, oxidative stress,

pro-inflammatory cytokines and glucocorticoids [18–20].

Intracellularly, the dietary oxidation product selenate is first reduced to selenite [21]

and then to hydrogen selenide, either by thioredoxin reductase [22] or through a series

of redox reactions coupled to reduced glutathione (GSH) [23]. Although essential,

hydrogen selenide is intrinsically toxic at inappropriately high concentrations [24].

Consequently, in excess, Se is either excreted in faeces or urine (as oxidised forms, a

trimethylselenonium ion or conjugated seleno-[hexose] sugars) or, at higher concentra-

tions, exhaled following methylation (e.g. to dimethyl selenide) [25–30].

Selenoproteins and redox status
Selenoprotein synthesis involves incorporation of Se and this process mandates an

uniquely adapted translational machinery [31, 32]. Insertion of Se at the catalytic site of

selenoprotein enzymes greatly enhances their biological activity [33]. Their importance

in biology is epitomised by inhibition of embryogenesis following genetic deletion of

several selenoproteins [34–37]. The significance of this system has also been elegantly

illustrated in vitro by showing that a reduction in selenoprotein abundance

(through an antisense oligonucleotide) resulted in substantial increases in cellular

reactive oxygen species (ROS) [38]. Cytochrome c- and caspase-dependent
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apoptosis was subsequently observed, yet incubation with the antioxidants glutathi-

one, α-tocopherol and N-acetylcysteine, either alone or in combination, was unable

to prevent cellular death [38].

This finding exemplifies the homeostasis of redox status as critical in health, and its

dysregulation being a prominent factor across myriad pathologies. Many of these are

encountered in critically ill patients (e.g. hypoxic or inflamed states), whereby excessive

ROS production and/or inadequate detoxification generates significant oxidative stress

with subsequent damage to lipids, proteins and DNA [39, 40]. Se plays an important

role in maintaining redox homeostasis [41] following incorporation into the key anti-

oxidant selenoenzymes, glutathione peroxidase (GPx), thioredoxin reductase (TrxR)

and methionine sulfoxide reductase (Msr) [8]. Twenty-five selenoproteins have been

characterised to date; the majority have been ascribed definitive and diverse functional

roles and have been reviewed in detail elsewhere [42]. Cytosolic GPx-(isoform 1) was

the first mammalian selenoprotein enzyme to be discovered [43–45]. Subsequently, a

further four Se-containing isoforms have been identified (collectively, GPx; 1–4 and 6).

The most abundant are GPx1, primarily involved in detoxifying intracellular hydrogen

peroxide (H2O2) to water, and GPx4 with a greater affinity for lipid hydroperoxides

[46]. Both prevent lipid peroxidation, thus limiting cellular damage in states of oxida-

tive stress. TrxR consists of three isoenzymes involved in regulating the redox status of

the antioxidant protein thioredoxin (Trx). Like GPx, Se-containing TrxR can catalyse

reduction of H2O2 and organic hydroperoxides [47] and further functions to regulate

DNA repair and intracellular redox signalling [48, 49]. Additional redox-active seleno-

proteins include (i) Msr, where the ratio of the reduced/oxidised form (of methionine)

communicates cellular redox status [50], (ii) selenoprotein P that acts principally as a

Se carrier but also undergoes redox reactions [51–54] and (iii) deiodinases that are oxi-

doreductase enzymes crucial for thyroid function [55].

Decreased plasma Se levels (up to 40%) are well recognised in heterogenous medical/

surgical patient cohorts and ICU patients [56–58]. Of note, the level of deficiency is a

prognosticator and correlates with disease severity [56–58]. Mechanism(s) underlying

these deficiencies remain incompletely understood. Se has been described as a negative

acute phase reactant; its deficiency could relate to either decreased Se intake or in-

creased metabolism of Se-containing compounds. However, the most frequently cited

cause is redistribution [57–60]. There is scant evidence that this deficiency, recorded in

blood, translates to a reduction in selenoprotein synthesis in vital organs. However, in

chronic deficiency states, a significant correlation is observed between plasma Se and

erythrocyte GPx activity [61, 62]. Further sequelae of Se deficiency and its impact on

several physiological systems relevant to critical illness are discussed below.

Immunity
Se intake influences its bioavailability to the immune system; selenium supplementation

in healthy volunteers increased mRNA abundance of three selenoproteins (R, S and W)

in peripheral blood mononuclear cells [63]. Classic innate immunity involves macro-

phages playing a vital role in controlling inflammatory status and phagocytosis of path-

ogens [64]. Se supplementation in mice conferred a switch in macrophage phenotype

from the pro-inflammatory M1 to the anti-inflammatory M2 subtype following lipo-

polysaccharide (LPS) exposure [65]. Selenocysteine tRNA knockout mice exhibited
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reduced macrophage migration [66]. The transcription factor, nuclear factor (NF)-κB,

is a significant component of innate immunity and a key mediator of inflammation. A

murine macrophage cell line exposed to S. aureus had reduced NF-kB activation fol-

lowing Se treatment, with decreased expression of pro-inflammatory cytokines [67].

NF-kB inhibition was also observed following selenomethionine supplementation with

decreased LPS-induced inflammation in chicken trachea [68].

While these reports indicate that Se acts an anti-inflammatory micronutrient, the im-

pact of Se supplementation on adaptive immunity has yielded more variable results.

CD4+ T helper cells can differentiate into various subtypes depending on the nature of

stimulation. A high-Se diet administered to mice promoted differentiation of naive

CD4+ T helper cells to a (pro-inflammatory) Th1 CD4+ phenotype [69]. By contrast, in-

creased IL-4 mRNA concentration, an anti-inflammatory cytokine marker for the Th2

CD4+ T helper cell, was observed in mice administered a low-Se diet [69]. This sug-

gests a restricted Se diet could result in a more favourable phenotypic switch in in-

flamed states, however, decreased Se abundance (and hence selenoprotein synthesis)

also reduced T cell maturation, a necessary step for B cell signalling [70]. More glo-

bally, a U-shaped curve has been described for the relationship between cancer preven-

tion and blood Se concentrations [71]. A relationship was reported between mortality

(all-cause, cardiovascular and cancer-related) and Se status [72]. A significant increase

in mortality in patients with selenoprotein activity outside the optimal range has been

suggested [72]. This implies that for immunity and beyond, achieving an ‘adequate’ Se

status is more likely to be favourable over supra- or under-supplementation.
Endocrine system
Se plays a key role in the endocrine system, particularly the thyroid gland where it is

directly involved in thyroid hormone metabolism and protects against oxidative stress

during thyroid hormone synthesis [73]. Adequate Se provision is necessary for the pre-

vention of thyroid disease [74]. Indeed, relatively high concentrations of Se are present

in the thyroid gland compared with other organs [75]. The most important selenopro-

tein classes involved in endocrine function are (i) deiodinases that convert thyroxine

(T4) to the more biologically active triiodothyronine (T3), (ii) GPx that is responsible

for glandular protection from ROS during generation of T4 and T3 and (iii) selenopro-

tein P (binding Se in plasma) that acts as a distributor to key organs (including the

thyroid) when Se is restricted [74].

The importance of Se to thyroid function was demonstrated in rats administered a

low-Se diet. GPx activity in the thyroid was reduced by 50% with concurrent though

lesser falls in T4 and T3 synthesis [75]. This supports evidence that Se supply to deiodi-

nases is prioritised over other selenoproteins such as GPx [74]. A fall in T4 and T3

upregulates synthesis and secretion of thyroid-stimulating hormone (TSH); this acceler-

ates conversion of T4 to T3, generating significant quantities of hydrogen peroxide.

Given the reduced activity of GPx in Se-deficient states, this can augment fibrosis of

the thyroid and subsequent dysfunction [74]. Necrosis and fibrosis of the thyroid gland,

particularly after iodide loading, is exacerbated by Se deficiency [76]. Given the afore-

mentioned reduced availability of Se in critically ill patients, this could represent an im-

portant endocrine consideration for this cohort.
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In addition to critically ill patients presenting with a low Se status on admission, they

also typically show a combination of decreased T4 and T3 and an increase in reverse

T3, with TSH within the reference range. This state is collectively known as the non-

thyroidal illness syndrome (NTIS). Although considered to be protective in the first in-

stance as an immediate, acute-phase response to nutrient restriction (and injury), NTIS

is a prognosticator with likely complex implications for patients [77]. In a small cohort

of trauma patients, a correlation was seen between Se and T3 deficiency, along with a

parallel decrease in T4 deiodination [78]. At present, this relationship is associative ra-

ther than causal. However, given the integral function of selenoproteins in thyroid

function, a direct role is plausible and warrants further investigation.

Circulatory system
A role for Se in the cardiovascular system is particularly notable with regard to its diet-

ary provision, a factor that shows significant geographical variation. For example, popu-

lations with Se deficiency reside in areas of low-selenium soil concentration, most

notably in regions of China. By contrast, areas of Venezuela are considered ‘selenifer-

ous’ due to high soil levels and therefore agricultural produce content [79, 80]. Keshan

disease, named after a region of Heilongjiang province in China, is characterised by

congestive cardiomyopathy caused by a combination of dietary Se deficiency and the

presence of a mutated strain of Coxsackie virus [81]. Although it still exists in rural

areas where treatment is not readily available, Se administration offers a preventative

measure and is reputed to protect the infected myocardium against oxidative stress

[82]. In Se-deficient individuals, a lack of GPx activity resulted in increased peroxide

levels and decreased prostacyclin synthetase activity [83]. Decreased prostacyclin, in-

creased thromboxane levels and a reduction in prostacyclin/thromboxane ratio can re-

sult in a platelet pro-aggregatory state and systemic vasoconstriction [84], potentially

increasing the risk of thromboembolic events and coronary disease. An extensive litera-

ture reviewed in detail elsewhere [85] has focussed on Se deficiency contributing to the

oxidation of low-density lipoproteins. These modified fats are subject to uncontrolled

uptake by M2-macrophage foam cells and contribute to atherosclerotic plaques. Ac-

cordingly, numerous meta-analyses have reported on Se-status (mostly serum Se levels)

and the epidemiology of cardiovascular disease [86–89]. These studies unequivocally

show that a low-Se status is associated with an increased incidence of cardiovascular

disease, comprising both coronary heart disease and stroke. However, as the adjusted

risk between studies shows considerable variation, there is insufficient evidence to rec-

ommend Se treatment as a preventive therapy [89].

Other gasotransmitters (most notably NO and hydrogen sulfide) exert significant ef-

fects on vascular tone through well-defined cellular and molecular mechanisms [90,

91]. The administration of these molecules (or their derivatives) are antihypertensive

while their inhibition (for example using nitric oxide synthase inhibitors) can increase

blood pressure in states of circulatory shock. Direct vasoactive mechanisms of Se deriv-

atives have yet to be explored, however, we postulate that they may show similar ac-

tions to the accepted members of the gasotransmitter class. Elsewhere, a role for a

selenomimetic group of compounds, the phenylaminoalkyl selenides, has been reported

[92]. Although their mechanism of action likely excludes a direct role for hydrogen sel-

enide, the redox chemistry of the selenium moiety allows these molecules to propagate
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an ascorbate redox cycle in adrenergic nerve terminals, regulating a key enzyme of cat-

echolamine metabolism, dopamine-β-monooxygenase. This limits conversion of dopa-

mine to norepinephrine with resulting blood pressure–lowering effects [93].

Metabolism
A landmark study in 2005 showed that mice breathing hydrogen sulfide gas entered a

profound and reversible ‘suspended animation-like state’ [94]. Ten years later, the same

group reported on the ability of exogenous hydrogen selenide gas to also induce signifi-

cant metabolic effects [95]. A four-fold decrease in oxygen consumption and carbon di-

oxide production was observed in H2Se-treated mice, as well as a fall in core

temperature [95]. The inhibitory metabolic role of exogenous hydrogen sulfide is how-

ever contentious as endogenous sources support basal bioenergetic function [96].

Nonetheless, when considering pharmacology alone (and a putative role for

metabolism-modifying therapeutics), similarities in the effects of exogenous sulfide and

selenide gases on aerobic respiration were noted; this prompted a subsequent commen-

tary citing potential inclusion for hydrogen selenide as the fourth endogenous gaso-

transmitter [97].

Hydrogen selenide is likely to modulate aerobic metabolism, especially given the

proximity of selenium to oxygen and sulfur in the periodic table, with both being not-

able for their interaction with mitochondria, and the known metabolic activity of NO,

CO and hydrogen sulfide. While precise molecular mechanism(s) of metabolic inhib-

ition in mice breathing (exogenous) H2Se were not elucidated [95], we propose mito-

chondrial cytochrome C oxidase (Complex IV) inhibition as a major pathway. We

discovered in preliminary experiments using rat liver homogenate that the basic salt,

sodium hydrogen selenide (NaHSe), could inhibit oxygen consumption in respiring tis-

sue and, specifically, mitochondrial cytochrome C oxidase activity [98]. A notable dif-

ference between hydrogen selenide and hydrogen sulfide with regard to cytochrome C

oxidase inhibition was the duration of effect. Hydrogen selenide acted in a transient, re-

versible manner, with a duration of action more than 3-fold shorter than hydrogen

sulfide.

We have long held an interest in the use of mitochondrial inhibitors as adjunct ther-

apies during revascularisation of ischemic organs. We have argued that short-term in-

hibitors of cytochrome C oxidase can prevent reperfusion-induced overproduction of

mitochondria-derived ROS, while still allowing a degree of metabolism that supports

cellular function [99, 100]. The transient nature of inhibition with hydrogen selenide

could reveal it to be an attractive therapeutic target. Moreover, NaHSe given to mice at

reperfusion protected against myocardial ischemia/reperfusion injury [95]. Selenide

(but not the oxidation product, selenite) could target injured tissues with (radioactive)

Se accumulation in the heart directly correlating to injury severity [95].

Selenomimetics and selenium supplementation
Given the unique and intriguing biochemistry of Se, and its impact on physiology in

health and disease, several selenomimetics have been trialled across diverse pathologies.

The most frequently studied is ebselen, an organoselenium compound cited in over

1000 reports [101]. Ebselen catalyses the reduction of hydroperoxides by thiol com-

pounds (e.g. glutathione), thereby mimicking the enzymatic activity of GPx [93]. In



Kuganesan et al. Intensive Care Medicine Experimental            (2019) 7:71 Page 8 of 13
preclinical studies, it has proven efficacy in numerous models ranging from cardiovascular

and neurodegenerative diseases, to alcoholic liver disease and cancer [101]. In Europe, it

did not continue beyond Phase I human studies owing to toxicity concerns of the Se moi-

ety [101]. Clinical trials in Japan however assessed the efficacy of ebselen against oxidative

tissue damage following acute ischemic stroke; although showing initial promise [102], it

was later discontinued due to lack of (long-term) efficacy [103]. That notwithstanding, a

recent review cites a remaining appetite for the development of this molecule [104]. Other

notable selenomimetics include selenazofurin, an anti-neoplastic and anti-viral agent; sele-

notifen, an histaminergic anti-allergic drug; and selenium sulfide, an anti-viral compound

used for treating seborrhea and tinea versicolor [93].

The use of selenomimetics, either as pharmacological tools or nutritional supple-

ments, has yet to reach fruition in acute medicine and critical care. To date, 19 clinical

trials have assessed Se supplementation in critically ill patients [105–123]. A meta-

analysis found a significant but modest reduction in overall mortality and length of hos-

pital stay; however, other endpoints showed no significant difference, including 28-day

all-cause mortality, length of ICU stay, incidence of new infections and duration of

mechanical ventilation [124]. The cohorts analysed were heterogenous, comprising

elective (cardiac) surgical patients, traumatic brain injury, sepsis and acute pancreatitis.

Furthermore, the quantity of Se administered also varied considerably, both in the

amount given as a loading dose (500–4000 μg), and the presence and quantity of subse-

quent doses or continuous infusions. This represents the prototypical conundrum of

who, when and how to treat, how to assess the efficacy of the therapy and when to dis-

continue treatment. The likely corollary is that some patients may benefit while others

may be harmed or unaffected, and the resulting meta-analysis, perhaps predictably, re-

vealed only modest improvement or no overall effect.

The oxidation status of Se supplements could also be of importance and, to date,

overlooked. The aforementioned clinical trials all utilised intravenous sodium selenite

and this oxidation product would require reduction by endogenous antioxidants (e.g.

glutathione, thioredoxins) to bioactive selenide. It is feasible that this may not be

achievable in some critically ill patients in whom antioxidant defences are already

strained. Furthermore, the aforesaid study in mice [95] found that hydrogen selenide

but not selenite was effective in mitigating reperfusion injury, thus suggesting the oxi-

dation status of the therapy does impact upon its efficacy. Additionally, lessons should

be learned from initial studies using basic sulfur salts where non-targeted release of sul-

fide had resulting implications for pharmacokinetics, safety and efficacy. Thereafter, in-

telligent drug design yielded complex molecules that enabled more controlled sulfide

delivery [125–127], improved targeting to its intended site of action (e.g. the mitochon-

drion) and at concentrations that better reflect those derived from endogenous sources

[128, 129]. We postulate that the same may hold true for Se-based compounds,

whereby using bespoke complex molecules that target the intended matrix, therapeutic

concentrations could be delivered in a controllable manner yielding more favourable

results.

Conclusion
The indispensable micronutrient Se undergoes intracellular conversion to endogenous

and bioactive hydrogen selenide. This makes a case for its inclusion as the fourth
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endogenous gasotransmitter alongside CO, NO and H2S. Hydrogen selenide currently

satisfies most but not all of the criteria required for its full inclusion as a gasotransmit-

ter. It is present physiologically as a small gaseous molecule and capable of passive

transmembrane transport. It is generated enzymatically and non-enzymatically in path-

ways similar to hydrogen sulfide, and regulation of the enzymatic process can be modi-

fied by physical stressors and endogenous signalling molecules. Thereafter,

selenoprotein synthesis is essential for the preservation of redox-balance over numer-

ous physiological systems. Hydrogen selenide has yet to be ascribed further functional

roles and is currently not associated with other well-defined cellular and molecular tar-

gets. However, we have recently demonstrated that exogenous administration can

modulate aerobic respiration via inhibition of mitochondrial complex IV, and its role as

an endogenous signalling molecule is under further investigation. We propose that in-

telligent selenomimetic drug design and delivery may generate more favorable pharma-

cological (and nutritional) tools over those currently used, providing an array of novel

therapeutics that can confer protection against redox-based pathologies encountered in

acute medicine and critical illness.
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