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Abstract  1 

 2 
Most common practices for solving building retrofit problems lack efficiency and overall robustness. Knowledge 3 

of novel methods that support decision-making (DM) for retrofitting is critical for sustainability and energy 4 

performance improvement. This systematic review for the first time provides a large evidence-base to assess 5 

the potential of Multi-objective optimisation (MOO) using Genetic algorithm (GA) for supporting the development 6 

of retrofitting strategies and its DM process. From 557 screened studies, 57 were reviewed focusing on 7 

outcomes, current trends, and the method’s potential, challenges, and limitations.   8 

Key findings reveal a strong suitability for solving a wide range of building retrofit MOO problems, based on 9 

robust outcomes with significant objectives improvement. However, results also indicate that yielding optimal 10 

retrofit solutions may require GA-mixed techniques or modified GA, due to time-consuming and effectiveness 11 

issues. Heritage buildings, where qualitative objective function definition is particularly challenging, have been 12 

little addressed. Further challenges include: lack of standard systematic approach; complex switch between 13 

modelling and optimisation environment; high expertise needed to perform MOO and manage software; and 14 

lack of confidence in results. While GA-based MOO’s robust evaluation for supporting building retrofit and its 15 

DM process needs further research, promising potential is shown overall, when complemented with auxiliary 16 

techniques. 17 
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Abbreviations: AB: Archetype Building; AHP: Analytic Hierarchy Method; AM: Aggregating methods; ANN: Artificial Neural Network; BEOT: 

Building Energy Optimisation Tool; GA: Genetic Algorithm; BPO: Building Performance Optimisation; BPS: Building Performance 

Simulation; DM: Decision-making; ERM: Energy retrofit measures; HVAC: Heating, Ventilation and air conditioning; IEQ: Indoor 

Environment Quality; IR: Interested Reader; Isum: Summer Comfort Index; LHS: Latin Hypercube sampling; MOEA: Multi-objective 

Evolutionary Algorithms; MOGA: Multi-objective Genetic Algorithm; MOO: Multi-objective optimisation; NSGA: Non-dominated Sorting 

Genetic Algorithm; NSGA-II: Elitist Non-dominated Sorting Genetic Algorithm; PMV: Predicted Man Vote Index; PPD: Predicted Percentage 

of Dissatisfied; PS: Primary Studies; PV: Photovoltaic; RB: Real Buildings; RSA: Response Surface Approximation Model; SA: Sensitivity 

analysis; SBM: Simplified Building Model; SPEA: Strength Pareto Evolutionary Algorithm; SR: Systematic Review; SSS: Sobol sequence 

sampling; VEGA: Vector evaluated genetic algorithm; WSM: Weighted Sum Method; ZOGP: Zero-One Goal Programing.   



 20 
1. Introduction 21 

In building design and retrofit problems, computational optimisation involves firstly simulation and analysis, 22 

before undertaking a search process to determine an optimal design solution or set of solutions from a wide 23 

range of feasible options, according to the objective and restriction functions defined [1–3]. The number of 24 

objective functions to be maximised or minimised, primarily defines the nature of the optimisation problem: 25 

mono-objective optimisation targets one objective, while multi-objective optimisation (MOO) targets two or more 26 

objectives to be optimised simultaneously [4].  27 

In particular, MOO has been receiving growing interest from both research and industry sectors in recent years 28 

[3,5–7], due to offering a more accurate portrait of the real-world decision-making (DM) than approaches 29 

achieving a single solution, while providing the flexibility of choosing amongst a set of solutions after 30 

understanding what is at stake through trade-off analysis. In parallel, building retrofitting has been gaining 31 

ground, representing nearly half of the construction sector in developed countries [8]. Even though optimisation 32 

is becoming a more frequent approach in new construction, its role in retrofit projects has been largely 33 

overlooked [9–11]. According to Attia et al. [4], retrofit accounts for as little as 7% within MOO in the building 34 

sector. Yet, a major opportunity for improving energy efficiency and sustainability lies in building retrofitting [12]; 35 

this sector is multi-objective by nature and entails managing several conflicting goals under a considerable level 36 

of uncertainty due to many variables [8,13]. In addition, most techniques being used as common practice for 37 

solving building retrofit problems lack efficiency and overall robustness [14].  38 

It is therefore essential to develop and incorporate innovative methodologies that aid the decision-making (DM) 39 

process and allow exploring the design space for alternative solutions in an efficient and effective way, 40 

contributing to the increase of energy efficiency and overall performance in retrofitted buildings. In this regard, 41 

evolutionary multi-objective optimisation (EMO) methods, such as genetic algorithms (GAs), could provide a 42 

powerful tool for DM in building retrofit. In fact, evolutionary methods have been occupying a dominant position 43 

in real-world MOO problem-solving for the past decade [15,16], but are in their early beginnings where retrofit 44 

optimisation problems are concerned, as their popularity started to rise mostly in the past couple of years. Thus, 45 

an up-to-date systematic review (SR) of GA-based MOO applied to building retrofitting is relevant and needed 46 

to help fill in this current gap.   47 

 48 

1.1. Overview of existing reviews  49 

Due to the growing interest in the integration of optimisation into the building design process, several reviews 50 

have been undertaken in recent years focusing on optimisation in the general sense. Yet, the core literature on 51 



GA-based MOO, as a tool for the decision-maker in building retrofit, has not been, to the authors’ knowledge, 52 

previously fully covered and analysed. Key existing reviews and studies touching on the topics of GA and MOO 53 

are summarised hereunder.   54 

A review of the existing retrofit decision support tools was developed from the user’s perspective, following a life 55 

cycle approach classification [17]. It included 9 publications on GA, from which only 4 use a MOO GA-based 56 

method applied to building retrofitting. Focusing on sustainable building design, Evins et al. [5] provided a 57 

comprehensive review of computational optimisation methods, including mono-objective and MOO and several 58 

optimisation methods, amongst which GA, stratified in three main fields of building design: building envelope, 59 

systems, and renewable energy generation. A short separate section specifically looking at retrofit cases is 60 

presented. Its conclusions highlight the wide span of optimisation approaches applied in sustainable building 61 

design. Also in 2013, Asadi et al. [18] tackled a state of the art review of retrofit strategies entailing optimisation 62 

and GA, before the topic escalated from 2014 onwards. Its approach differs from that of this SR as it focused on 63 

retrofit assessment methodologies, discussing both advantages and drawbacks of Multi-Criteria Decision 64 

Analysis (alternatives are explicitly known a priori) and Multi-objective programming (alternatives are implicitly 65 

defined by an optimisation model) approaches. Nguyen et al. [3] reviewed the efficiency and challenges of 66 

building MOO simulation-based optimisation methods and the issues with integrating optimisation methods into 67 

building performance simulation and conventional design tools. Attia et al. [4] also explored the challenges and 68 

opportunities of the integration of building performance optimisation (BPO) in the building design process 69 

specifically looking into net zero buildings, with a mixed-method research based on literature analysis and 70 

optimisation experts’ interviews. GA was covered amid a section on algorithms used in BPO and mono-71 

objective and multi-objective functions are presented. Low trust in results, mainly due to lack of awareness in 72 

practice, lack of a standard systematic approach to perform optimisation which results in many different 73 

methods and unstructured approaches, and requirement of a high level of expertise are listed amongst the 74 

identified optimisation shortcomings. Machairas et al. [7] developed a survey on optimisation algorithms and 75 

tools in building design and suggested possible further developments as to the incorporation of optimisation 76 

methods into the building design process. In [6], Shi et al. collected and analysed 116 research papers on 77 

building energy efficiency design optimisation, focusing on architects’ perspective. The analysis covered 78 

optimisation techniques’ classification, objectives and design variables, energy simulation engines, optimisation 79 

algorithms including evolutionary, derivative-free search and hybrid algorithms, the overall state of building 80 

energy efficient design optimisation techniques, what is missing for architects and future work suggestions. 81 

Additionally, Longo et al. [19] provided the most recent review on optimisation of low-energy buildings design, 82 

with a special focus on Net and Nearly Zero-Energy Buildings. It compared and analysed different 83 



methodologies, optimisation algorithms, variables, objectives, and software, confirming the growing research 84 

interest in building retrofit, amounting to 31 studies collected. In addition, its conclusions emphasised that, as a 85 

result of the immense diversity of approaches followed by the scientific community, it was not possible to 86 

identify a common frame of investigation; nevertheless, MOO and GA, NSGA-II in particular, were highlighted 87 

as most popular amongst other methods and techniques.  88 

Finally, several studies, while not reviews, did include tabulated overviews of: recent simulation and/or mono-89 

objective and MOO literature on building retrofit, based on several methods and encompassing 16 studies [20]; 90 

16 studies related to energy-efficiency DM for building retrofitting, inclusive of both mono-objective and MOO, 91 

amid other methods, techniques and algorithms [21]; 24 MOO studies applied to building energy retrofitting 92 

using different optimisation algorithms and compared against each other [22]; 20 mono-objective and MOO 93 

building retrofit optimisation studies, showcasing the type of building and construction date, along with a 94 

diversity of optimisation methods, objective functions and energy use evaluation information [23]; a five-year 95 

timespan literature review concerning building design and energy retrofit optimisation, and covering the use of 96 

several types of optimisation algorithms [24]. 97 

On a final note, three other reviews of note included: a significant survey on GA-based MOO techniques and 98 

their classification [25]; the analysis of computational optimisation methods applied to renewable and 99 

sustainable energy [26]; and a comprehensive review of the most popular data-driven approaches, their 100 

classification and applications to predict building energy consumption, including GA in building retrofit projects 101 

and MOO [27].  102 

 103 

1.2. Goals of this review and research questions 104 

For GA-based MOO to be absorbed into DM processes in building retrofit, more knowledge is needed on its 105 

main features, development, performance and current implementation challenges. Hence, the goal of this study 106 

is to address the existing gap by offering an updated and comprehensive SR on GA-based MOO applied to 107 

building retrofit problems, as a tool for the decision-maker. Furthermore, the major driving force behind this SR 108 

is the intention to establish a common knowledge platform to boost further work on this topic, by collecting, 109 

analysing, summarising and comparing key outcomes obtained thus far and revealing its challenges and 110 

limitations. In doing so, the following research question is addressed:  111 

• What is the potential of GA-based MOO in supporting the development of retrofitting strategies and the 112 

decision-making process?  113 

 114 

In order to answer it, the following objectives are set to investigate: 115 



• How is GA-based MOO being applied in building retrofit? Which techniques aid its implementation and 116 

what type of case studies are being covered; 117 

• Which are the current trends regarding the objective functions explored for optimal trade-offs, as well as 118 

the decision variables chosen for optimisation; 119 

• Which type of simulation-optimisation approach and software tools can be identified as preeminent in 120 

GA-based MOO;  121 

• What types of outcomes are being achieved; whether retrofit solutions obtained are robust and how 122 

does it impact the optimisation performance time; 123 

• What major challenges and limitations can be pinpointed in the implementation and outcomes of GA-124 

based MOO in building retrofit, and which thorough techniques have proven successful in overcoming 125 

them; 126 

• Whether traditional and heritage buildings are being targeted in GA-based MOO retrofit studies, and if 127 

so, which objective functions are being addressed; Which methods and techniques are being used to 128 

quantify heritage qualitative concepts such as conservation compatibility.  129 

 130 

To achieve these objectives, this paper is divided into four sections: the first provides the methodological 131 

framework for the search strategy, inclusion and exclusion criteria definition and selection method. Afterwards, a 132 

background on MOO and the key features of GA are presented, in order to establish a common understanding 133 

regarding fundamental concepts and associated terminology. The third section presents the data extraction in 134 

tabulated form and its analysis, according to the following subsections: case study characteristics; optimisation 135 

methods and techniques employed; objective functions and decision variables optimised; simulation-136 

optimisation approach and tools used and historical, traditional and special architecture value buildings. Finally, 137 

a discussion of the main findings, outcomes, and potential of the method, challenges and limitations is 138 

undertaken. Gaps in the available literature and future research needs are identified, and the strengths and 139 

limitations of the study are examined.  140 

 141 

2. Methodology    142 

The methodology adopted in the present SR is based on the PRISMA statement approach [28]. 143 

 144 

2.1. Search strategy  145 



The search strategy developed entailed a database search, blind to impact factor, coupled with a citation 146 

snowballing approach and a citation pearl growing strategy. The initial information sources comprised two main 147 

academic literature collections: Web of Science (WOS), including Web of Science Core Collection, and Scopus 148 

databases [29]. The iterative databases search was performed using keywords to identify key academic 149 

literature and the last search took place on August 27th, 2019. The key terms were searched for with no 150 

timespan limit, in the topic and title (WOS) and topic, title and abstract (Scopus). The document type was limited 151 

to: article, review, proceedings paper, bibliography (WOS) and article and conference paper, article or review 152 

(Scopus). All languages and access type options were selected. The keywords, Boolean, truncation (asterisk (*) 153 

operator providing search with terms alternate endings) and proximity operators (Within (W/n) in Scopus and 154 

Near (Near/x) in WOS) used are listed in table 1. Additionally, different keywords spellings were searched. This 155 

amounted to 466 records.  156 

 157 

Table 1 158 
Search strategy keywords.  159 

 Keywords  

  

1 Genetic algorithm Building retrofit 

2 “Multi-objective optimization” AND “genetic algorithm” AND “Building retrofit” 

3 “optimiz*” AND ““genetic algorithm” AND “building retrofit*” 

4 “Multi-objective optimization building retrofit” AND “genetic algorithm”  

5 Multi-objective W/1 optimization W/5 building retrofit 

6 Multi-objective W/1 optimization W/5 building retrofit AND genetic algorithm 

7 TS=(Multi-objective optimisation AND genetic algorithm AND building retrofit) 

8 TS=(“optimiz*” AND “genetic algorithm” AND “building retrofit”) 

9 TS=(Multi-objective NEAR/1 optimization NEAR/5 building retrofit) 

10 TS=(Multi-objective NEAR/1 optimization NEAR/5 building retrofit AND genetic algorithm) 

11 TS=(multi-objective NEAR/1 optimiz* NEAR/5 building retrofit*) 

12 TI=(Multi-objective NEAR/1 optimization NEAR/5 building retrofit) 

  
 160 
 161 

A citation snowballing approach [30] further expanded the search strategy. Backward snowballing was 162 

undertaken by scanning reference lists for relevant papers, retrieving them, scanning their own reference lists 163 

and so on, until the exhaustion of relevant references was achieved. Forward snowballing was additionally 164 

developed based on cited reference searching, to find more contemporary publications that have cited the 165 

starting point publication. The implementation of this strategy contributed to further 74 potentially relevant 166 

records.  167 



Since Scopus and WOS do not use a controlled vocabulary, a citation pearl growing strategy was particularly 168 

useful to complement the search range of terms that make reference to the topic of the review, based on new 169 

search terms found in titles, abstracts, and keywords. These included keywords synonyms, narrower terms and 170 

verbal and noun forms (Table 2), which resulted in 17 extra records.  171 

 172 
Table 2  173 
Keyword expansion. 174 

 Keywords synonyms, narrower terms, verbal/noun forms and other optimisation related expressions  

  

1 Multi-objective optimization – Multi-variable opt.; multicriteria opt.; multi-dimensional Pareto opt.; simultaneous 

 opt.; evolutionary multi-objective opt.; multiple objective decision; multi-criteria decision making; automatic 

 
generation of multiple retrofitting measures; simultaneous minimiz*/maximiz*; decision support system     

 
  
2 Optimal trade-off; optimal retrofit solutions/options/measures/actions/decision; cost-optimal*  

  
3 Existence/reference building/building envelope retrofit – Refurbishment; upgrade; renovation; reconstruction;  

 renewal; improvement; maximising sustainability 

  
4 Energy efficiency upgrade/retrofit/performance improvement/saving measures/retrofit strategies 

  
5 Genetic algorithm (GA) - Multi-criterion GA, Pareto GA, Multi-objective evolutionary algorithm, multi-objective  

  
6 GA; two-objective GA; NSGA-II 

  
7 Pareto optimization; Pareto front; Pareto optimal solutions; weighted sum method 

8 Objective functions; decision variables; constraints 
  
 175 
 176 

2.2. Inclusion and exclusion criteria definition 177 

The authors developed inclusion and exclusion objective criteria related to the characteristics of the 178 

publications, such as research scope, optimisation topic, time frame, geographic context, language, optimisation 179 

techniques, and scientific quality standards. The definition and justification of these criteria are summarised in 180 

Table 3.  181 

  182 

Table 3 183 
Inclusion and exclusion criteria definition. 184 

 

Criteria Range Justification  

In
c

lu
s
io

n
 c

ri
te

ri
a

  

Research  GA-based MOO implementation process in  Range directly relevant to review goals 

scope energy efficient building retrofit  
   

Optimisation  Envelope, building systems (mechanical, energy, Range directly relevant to energy efficient retrofit and the whole building  

topic control), renewables and form performance 

      

Time frame No time frame limit No time frame was set, yet no relevant publications prior to 2000 were obtained 
   

Geog. Context Worldwide A global state-of-the-art requires unlimited geographic context 

      



Language English-language publications No language restrictions were imposed in the searching strategy, however only  

  english-language records were obtained 
   

Scientific Published research and full-article publications Required for the studies selection process 

Quality  Peer-reviewed in sci. Journals and conf. proc. Research with established validity 

standards Blind to impact factor Not relevant to review goals 

      

Opt. Techniques Algebraic and computational  Allowing for a comparison of different implementation methods  

      

E
x

c
lu

s
io

n
 c

ri
te

ri
a
  

Research  MOO in building retrofit with other Evolutionary Off-topic. The interested reader is referred to: [23,31–39]  

scope algorithms (e.g. PSO, HS, HJ, Nelder and   

  Mead simplex, PSO-HJ)  
   

  MOO in building retrofit with other Opt. methods Off-topic. The IR is referred to: [40–48]  
      

  Mono-objective opt. using GA in building retrofit Off-topic. The IR is referred to: [41,49] (energy cons.), [50–52] (environmental 

    impacts), (thermal comfort) [53], [21,49,54] (Cost), [55] (productive time)  
   

  GA- based MOO in building design  Off-topic. Covered in previous reviews covering global optimisation methods 

    [4–6,56];  
      

Optimisation  Seismic retrofit using MOO with GA Off-topic. The IR is referred to: [57–61]  
Topic   

 Energy facilities retrofit with GA-MOO (e.g. Hybrid No link to building performance  

 power plant coal power station, wind turbine)   
   

 Structure and infrastructures GA-MOO with GA No link to whole building performance 

 (e.g. Steel-moment resisting frames, two dimensional  

 structures, bridges, water network)  
   

 Building systems retrofit not linked to the whole build.  No link to whole building performance  

 performance (e.g. Heat exchanger, solar chimney)  
   

 Decision variables unrelated to building retrofit  Off-topic. The IR is referred to: [62] (investment/capital decision variables) 

 components  

   

Scientific  Grey literature    

quality  Duplicate records and research  Overlapping publications between databases  

standards   Overlapping research between peer-reviewed papers and conference proc.  
      

  185 
 186 

2.3. Studies selection method  187 

The method followed for the primary studies (PS) selection is structured into four stages: identification; two-level 188 

screening; eligibility; inclusion [28] (fig.1).  189 

The first stage identifies all potentially relevant studies, adding up to 557 studies. 59 duplicate studies and 190 

research were excluded from this number. This included both overlapping studies between databases as well 191 

as overlapping research between peer-reviewed papers and conference proceedings (e.g. [63–65]).  192 

The second stage conducts a preliminary assessment through title, keywords and abstract screening. At this 193 

stage, 413 records are excluded for not meeting inclusion criteria, in particular regarding the research scope 194 

and optimisation topic. Both records tagged as include and those unclear were passed on to further 195 

assessment. A more detailed evaluation is conducted by means of methodology and conclusions screening, 196 

discarding 7 more records. 78 records access the third stage, where the eligibility of the studies is analysed 197 

through careful full-text review. Finally, out of the 78 full-text records reviewed, 57 met the inclusion criteria in 198 

their entirety and were included in the SR.  199 



 200 

Figure 1. Primary studies selection process flowchart.  201 

 202 
3. Multi-Objective Optimisation    203 

In the building retrofit sector, the DM process entails a trade-off relationship of sacrifice and gain between two or 204 

more objectives that can be optimised. The generally conflicting nature of the simultaneous optimisation of 205 

these objectives, such as minimising the retrofit cost while maximising energy savings and indoor thermal 206 

comfort, defines a MOO problem.   207 

In a MOO problem, there is a set of solutions, rather than a mono solution, that can be used for trade-off 208 

analysis. This approach offers a more accurate portrait of the DM process than approaches achieving a mono 209 

solution. The objectives are the function of another set of parameters, the decision variables, which are the 210 

variables you can control within the optimisation model (e.g. retrofit measures). The solutions are not known a 211 

priori, however, they are determined by the definition of constraints delimiting the optimisation search space, as 212 

they represent the conditions that must be met.   213 



Conventional optimisation search methods, i.e. non-evolutionary-based methods, have been common practice 214 

for DM in building retrofit to date, due to their relative simplicity. Nonetheless, their basic design features inhibit 215 

their application in MOO problems [66]. Additionally, they present several drawbacks: expert knowledge-based 216 

optimisation is limited by its use of best construction practice, generally coupled with dynamic energy 217 

simulation, to achieve a series of recommendations through iterative procedure [3,67–69]; scenario-by-scenario 218 

or trial-and-error simulation evaluation, where a solution is generated and subsequently simulated for 219 

evaluation, results in a limited number of retrofit options being assessed, with no guarantee to achieve optimal 220 

solutions [18,43,70,71]; or the time-consuming brute-force, which employs an exhaustive search to sample the 221 

whole solution space [2,72,73]. Simulation-based parametric approaches have been less commonly used in 222 

building retrofit practice for its requirement of powerful resources to simulate an extended number of potential 223 

solutions [65,74]. Additionally, Sensitivity analysis (SA) approaches have also been applied as auxiliary 224 

techniques in the optimisation process. They allow for the identification of the most influential building 225 

parameters associated with performance and hence facilitate an optimisation centred on those results [75,76].  226 

 227 

However, various strategies can be implemented to successfully solve MOO problems, amongst which, 228 

aggregating methods (Weight sum approach; Goal programming-based approach; Goal attainment-based 229 

approach; ε-constraint approach) and Pareto-base strategies (Pareto-based elitist strategies, e.g. Strength 230 

Pareto Evolutionary Algorithm (SPEA); SPEA2; Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II); 231 

Pareto-based non-elitist strategies, e.g. Multi-objective GA (MOGA); Niched Pareto GA; Non-dominated sorting 232 

GA (NSGA)) are the most resorted to [25,66,77]. The following paragraphs describe the key concept and 233 

techniques of both methods in more detail, as follows: 234 

 235 

• AM resolve MOO problems by reformulating them as mono-objective ones. The following are some 236 

approaches of AM:  237 

o The weighted sum approach, which is particularly popular due to its straightforwardness: each 238 

objective function is normalised and summed up with their assigned weights [3,15,26,78–80]. 239 

Some of its drawbacks are tied to the weight factors adjustment accuracy, the restricted DM 240 

process as a result of the narrowing down to a mono solution process and an increase in 241 

processing time for testing different weight factors [79,81].  242 

o The ε-constraint approach, which optimises one of the objective functions by defining all other 243 

objective functions as constraints. This also entails arbitrariness linked to the constraining value 244 

assignment;   245 



• The Pareto-based optimisation concept, first introduced in building design in the 1980s by Radford, 246 

Gero and D’Cruz [82–86], relies on the identification of a set of all feasible solutions (building design or 247 

retrofit options), which is Pareto-optimal or non-dominated (fig 2). Being non-dominated implies that no 248 

solution within it can improve an objective without being detrimental to at least another one [87,88]. Said 249 

set of solutions constitutes the Pareto front, which represents the optimal trade-off between the 250 

objectives considered in the analysis [7,15,89]. This concept is illustrated in fig 2, where A and B 251 

represent non-dominated solutions and both individually dominate C. Among the Pareto-based 252 

strategies, population-based GA is systematically crowned as the leading method used to solve building 253 

optimisation problems [3,5,15,26,67].   254 

 255 

Figure 2. Pareto-based optimisation concept illustration for a two-objective problem. 256 

 257 
4. Genetic Algorithm in Multi-objective optimisation  258 

The implementation of multi-objective GA was introduced in the mid-1980s by Schaffer [90], with the VEGA 259 

mainly aiming at solving problems in machine learning. Since then, several other algorithms have been 260 

developed which can differ in their fitness assignment, elitism and diversification processes. Several 261 

comparative performance reviews have been developed. The interested reader can refer to: [49,81,91,92] 262 

comparing multi-objective GA algorithms performance with other multi-objective evolutionary algorithms 263 

(MOEA); [15,49,93] examining GA and other meta-heuristic methods; [7,94–96] addressing GA and other 264 

building design optimisation algorithms; [97–99] contrasting stand-alone GA and GA-based hybrids or modified 265 

GA.  266 



GAs’ performance has been tested in a myriad of reviews and comparative studies, and the literature 267 

overwhelmingly suggests that GAs have been the most popular and robust heuristic approach to MOO 268 

problems in the field of building optimisation [3,4,27,62,93,100–106,5,107–111,6,7,15,18,19,22,23]. Its concept, 269 

developed by Holland [112] in the 1960s and 1970s, consists in a stochastic population-based search algorithm 270 

that generates solutions for optimisation problems, based on the mechanics of natural selection and genetic 271 

operators [14,65,69,101,113]. In fact, GAs principles are modelled on Darwin’s evolutionist theory of the survival 272 

of the fittest and natural selection mechanisms [114], where organisms gradually self-modify to produce 273 

generations that better adapt to their environment and become dominant in their population [14]. The random 274 

choice tool adopted by this class of algorithms to guide a highly exploitative search through coding of parameter 275 

space [14], has always been found in nature, where beneficial random gene changes allow for new species to 276 

evolve from older ones, while unfavourable changes are eliminated by natural selection.  277 

In GA terminology, a solution vector is called an individual or a chromosome, which is made of a set of 278 

parameters called genes (decision variables). A chromosome normally represents a unique potential solution in 279 

the solution space. The first step in simple GA implementation consists of the encoding of the problem, which 280 

refers to the mapping mechanism between the solution space and the chromosomes. GA then randomly 281 

generates the initial population of chromosomes, which matches the set of potential solution points. A 282 

competitive evaluating mechanism is applied to each chromosome during the reproduction process, established 283 

on the survival of the fittest principle; in practice, the evaluation of the fitness function for each individual, i.e. its 284 

fitness value or how close it is to the targeted objective function, determines its probability of being selected and 285 

copied into the next generation of chromosomes: the offspring. Hence, inferior solutions are discarded in each 286 

generation, resulting in generations of increasingly fitter solutions while maintaining population size. Genetic 287 

operators manipulate the selected chromosomes, to generate new offspring. Those frequently used are: 288 

selection, crossover, and mutation. The selection makes reference to the copying of individual strings from the 289 

parent chromosomes into the new population. The most commonly employed individuals selection method is 290 

the tournament selection, where a number of individuals are randomly chosen from the population, compared 291 

with each other and the best is chosen to be a parent, followed by fitness-proportionate selection [115]. Then 292 

GA applies the crossover operator, which is the most important genetic-mimicking probabilistic operator and 293 

combines two high fitness parent solutions, or partial string exchanges, to create a new generation solution. 294 

Population diversity is guaranteed by the mechanism of mutation, which acts secondarily to crossover as an 295 

insurance against the loss of genetic material that can occur with the first two procedures. It works by 296 

occasionally and randomly modifying the value of one or more bits of offspring and consequently introducing 297 

new genetic material. Additionally, the elitism operator can be adopted by randomly replacing one chromosome 298 



of the current population with the chromosome with maximum fitness value from the previous generation 299 

[66,89]. Finally, if one or more pre-specified stopping criteria are met, the generation process comes to an end. 300 

Otherwise it restarts at the crossover stage [14,15,69,78,116]. These stopping criteria most often include 301 

[14,66,89,112,115]:  302 

• Maximum number of generations: GA stops after the maximum number of iterations that it is set to run 303 

for; 304 

• Fitness limit: GA stops when the value of the fitness function for the best point in the current population 305 

is less than or equal to the fitness limit defined; 306 

• Stall time limit and stall generations limit: GA stops if there is no improvement in the best fitness value 307 

for a predefined interval of time in seconds or predefined number of generations;  308 

• Objective function value: GA stops as soon as a desired objective function value is attained by at least 309 

one string in the population;  310 

• Time limit: GA stops after running for a maximum time in seconds. The time limit is enforced after each 311 

iteration which allows GA to exceed it when an iteration takes substantial time; 312 

• Convergence: GA stops after convergence, i.e. progression towards increasing uniformity. In other 313 

words, population convergence entails evolution over successive generations so that the fitness of the 314 

best and the average individual in each generation increases towards global optimum. 315 

At the end of the process, a set of possible alternative solutions is obtained, which is particularly interesting for a 316 

MOO scenario [66].  317 

 318 

GAs’ popularity can, in fact, be attributed to an assortment of well known characteristics that distinguish them 319 

from conventional optimisation methods [14], contribute to their robustness and make them especially well-320 

suited for the conflictive nature of multiple-objective problems and convergence on the Pareto optimal set as a 321 

whole [3,15,60,78,100]:  322 

• GAs work directly with the parameter set coding, instead of the parameters themselves; 323 

• GAs search from a population of points, not from a mono point; GAs handle a large number of local 324 

minimums and maximums; 325 

• GAs provide an efficient set of multiple solutions: GAs are not guaranteed to find global optima but the 326 

solutions yielded represent significant improvement;  327 

• GAs are less likely to converge to a local minimum;  328 

• GAs are blind to auxiliary information: they use objective function values only; 329 



• GAs use probabilistic transition rules to guide their search, not deterministic rules: GAs use random 330 

choice (randomised operators) as a tool to guide a search toward regions of the search space with likely 331 

improvement; 332 

• Most GAs do not require the use of prioritising, scaling or weighing objectives; 333 

• GAs efficiently handle non-linear problems with discontinuities.  334 

In addition to the aforementioned features, GA extensive use in building optimisation is repeatedly attributed to: 335 

its ability to work with a population of individuals that expectedly converges to the true non-dominated Pareto 336 

front [18,77,89,117]; its flexibility and robust performance as a search method without exhausting the entire 337 

search space [18,23]; the possibility of exploring large solution domains, which is crucial in most MOO building 338 

problems, while avoiding converging to local optima as aforementioned [111,118–121]; assuring a good trade-339 

off between the required computational burden and the robustness of the optimal solutions achieved 340 

[19,106,119,122–124]; a solutions estimation scheme adequate to complex problems as it reduces 341 

computational time [106,123–125]; obtaining suitable solutions according to the objective functions when large 342 

and sophisticated input data are given [120,121]; GA’ structure, presented as the most convenient for the 343 

connection with building performance simulation tools and the management of their outputs [27]; its high 344 

efficiency in solving complex multi-modal problems when the optimisation is not smooth or when the cost 345 

function is noisy [3,111,119,126,127], integer and mixed integer optimisation problems [128] and non-346 

differentiable functions [129]; and being well-suited for parallel computing [4,27,42,53,100].   347 

 348 

5. Implementation of GA-based MOO in building retrofit: analysis of evidence 349 

GA-based MOO in building retrofit started attracting greater scientific curiosity around 2013 and displayed a 350 

remarkable compound annual growth rate from that year onwards until peaking between 2016 and 2018 with a 351 

nearly five-fold increase in scientific publications. In fact, more than half of the primary studies (PS) have been 352 

published in the past three years. Fig. 3 displays a graphical summary of the PS between 2000 and 2019, 353 

according to publication type. For its majority, they were published in international journals dealing with:  354 

• Energy use, efficiency and sustainability in the built environment (70%):  355 

E.g. Energy and Buildings (23%), Applied Energy (14%), Energy (5%), Energies (5%), Building and 356 

Environment (5%), Energy Procedia, Journal of Cleaner Production, Sustainability, Sustainable Cities 357 

and Society, Renewable and sustainable energy reviews, Climate, Indoor and Built Environment;  358 

• Engineering and management journals (14%):  359 



E.g. Journal of HVAC and R Research, Building Services Engineering Research and Technology, 360 

Procedia Engineering, Science and Technology for the Built Environment, Journal of Civil Engineering 361 

and Management, Journal of Management and Engineering, Automation in Construction, Journal of 362 

Building Engineering.   363 

The remaining studies were published in conference proceedings dedicated to the energy, building simulation 364 

and engineering field (16%): 365 

• The IBPSA (International Building Performance Simulation Association) conference stands out for its 366 

significant gathering of proceedings on simulation and optimisation (11%); 367 

• Other scientific meetings are also found within the PS: e.g. Energy for Sustainability 2015 Sustainable 368 

Cities: Designing for People and the Planet, International Conference on Zero Carbon Buildings Today 369 

and in the Future, International Conference on Environment/Electrical Engineering and IEEE Industrial 370 

and commercial power systems Europe.  371 

 372 



 373 

Figure 3. Graphical summary of the primary studies covering building retrofit GA-based MOO from 2000 to 2019. 374 



At the beginning of each analysis subsection, a key findings summary is provided in bullet points, for clarity and 375 

impact.    376 

 377 

5.1. Case studies characteristics  378 

• Three sustainability scopes are simultaneously addressed in nearly half of the PS: environmental, social 379 

and economic;  380 

• Environmental and economic scopes have attracted the most attention while environmental and social 381 

paired together are scarcer; 382 

• The majority of PS have chosen real buildings as case-studies, yet archetype buildings are also used. 383 

Only 20% worked with simplified building models only;  384 

• Residential buildings are the most covered building use category, followed by educational buildings. 385 

Some mixed-use research is also found.  386 

     387 

Table 4 displays the main characteristics of the PS: publication details, building use, case study type, location, 388 

construction year, and sustainability scopes addressed. The sustainability scopes fall into three categories: 389 

environmental (energy and environmental impacts), social (e.g. indoor environmental quality, indoor comfort, 390 

impact on occupants’ health and productivity) and economic. Nearly half of the PS perform a MOO that covers 391 

simultaneously all three sustainability scopes. The coupling of environmental and economic scopes has also 392 

attracted an important number of contributions (44%). In contrast, the coverage of environmental and social 393 

scopes paired together is scarcer. The most common set of environmental-social trade-offs, between energy 394 

consumption and thermal comfort, were explored in [71,127,130–132]. While energy-related objectives 395 

represent the majority of the environmental sustainability scope, building emissions were also analysed in 396 

several PS and paired with thermal comfort in [109,110,133–135]. On the other hand, the social sustainability 397 

scope gives place to a diversity of approaches that go beyond addressing thermal indoor comfort. Roberti et al. 398 

[127] explored one of these approaches, by optimising a building’s conservation compatibility through a 399 

quantitative score system, along with thermal comfort and energy demand. Moreover, Das et al. [136] and Nix 400 

et al. [76] studied the trade-off between occupants’ health impacts from indoor environment and energy 401 

consumption. The gathered data show that the combination of social and economic scopes is yet to be 402 

explored. A possible explanation for the social scope receiving less attention than its counterparts might lie in 403 

the less immediately tangible feature of these kinds of objectives for building optimisation purposes.   404 

The types of case studies used were classified into the following categories: Real Buildings (RB), Archetype 405 



Building (AB) and Simplified Building Model (SBM). Real buildings account for the majority of case studies 406 

(56%). Two publications were found to combine real buildings with other case-study types in their research: 407 

Nassif et al. [137] performed a MOO of two case studies, a real building and a simplified building model, both 408 

educational buildings. Almeida et al. [138] also analysed two case studies of schools, both archetypes of typical 409 

Portuguese schools, however, one is based on an existing school building and the other is an archetype 410 

building. Around 20% of PS was found to work with simplified building models only.  411 

Regardless of the case study type, residential buildings are the most covered building use category, followed by 412 

educational buildings. Some mixed-use research is also found, combining educational and commercial use [71], 413 

as well as commercial and industrial use [139]. Most case studies were built between 1945 and 1980s; the 414 

oldest is the medieval building Waaghaus [127], followed by Islington’s community centre built in the 1890s and 415 

retrofitted in 2011 [22], an office building from 1900 [140] and the Civil Engineering Building at the University 416 

College Cork built in 1910 [69]. Little work has been shown to address buildings owning any heritage or 417 

traditional value and protection, as they are under-represented in this SR, amounting only to 7 studies. 418 



Table 4  

Primary studies focusing on GA-based MOO in building retrofit, listed in chronological order. 

  
Reference Country 

Building use type Case study type 
Case study location Const. Year 

Sustain. scope 

R E C I O H/T/LB NS RB  AB SBM  Env Soc Eco 

[121] Wright et al., 2002 UK            ◼     ◼ N/A N/A ◼ ◼ ◼ 

[137] Nassif et al., 2005 Canada  ◼      ◼  ◼ Canada. Montréal N/A ◼  ◼ 

[9] Juan et al., 2009 Taiwan; USA ◼         ◼ Taipei, Taiwan 2001 ◼ ◼ ◼ 

[141] Pernodet et al., 2009 France   ◼             ◼   France, Agen, Trappes N/A ◼ ◼ ◼ 

[139] Juan et al., 2010 TW; CN; USA   ◼ ◼  ◼  ◼   Taiwan 1979 ◼ ◼ ◼ 

[122] Magnier et al., 2010 Canada ◼       ◼   Canada, Ottawa 1998 ◼  ◼ 

[142] Chantrelle et al., 2011 France   ◼           ◼     France, Nice N/A ◼ ◼ ◼ 

[131] Siddharth et al., 2011 India; USA   ◼       ◼ India,CN; USA, BC, JUN N/A ◼ ◼  

[143] Jin & Overend, 2012 UK  ◼    ◼  ◼   UK, Cambridge  1945/1964 ◼ ◼ ◼ 

[130] Gossard et al., 2013 France ◼                 ◼ France, Nancy, Nice  N/A ◼ ◼   

[144] Malatji et al., 2013 South Africa             ◼     ◼ N/A N/A ◼   ◼ 

[87] Asadi et al., 2014 Portugal  ◼      ◼   Portugal, Coimbra 1983 ◼ ◼ ◼ 

[136] Das et al., 2014 UK ◼       ◼   India, Delhi N/A ◼ ◼  

[145] Huws & Jankovic, 2014 UK ◼                 ◼ UK, Birmingham N/A ◼ ◼ ◼ 

[69] Murray et al., 2014 Ireland   ◼    ◼  ◼   Ireland, Cork 1910 ◼   ◼ 

[140] Shao et al., 2014 Germany   ◼   ◼  ◼   Germany, Aachen 1900 ◼   ◼ 

[146] Wang et al., 2014 UK     ◼             ◼ UK, Birmingham N/A ◼ ◼ ◼ 

[123] Ascione et al., 2015 Italy ◼               ◼   Italy, Naples N/A ◼ ◼ ◼ 

[88] Carreras et al., 2015 Spain; UK ◼     
    

◼ Spain, Lleida N/A ◼  ◼ 

[147] He et al., 2015 UK ◼        ◼  England, North-East N/A ◼  ◼ 

[134] Monteiro et al., 2015 Portugal  ◼      ◼   Portugal, Lisbon N/A ◼  ◼ 

[76] Nix et al., 2015 India ◼       ◼   India, Delhi N/A ◼ ◼   

[10] Penna et al., 2015 Italy ◼         ◼ Italy, Milan, Messina N/A ◼ ◼ ◼ 

[117] Penna et al., 2015b Italy ◼                 ◼ Italy, Milan, Messina N/A ◼ ◼ ◼ 

[148]  Pernigotto et al., 2015 Italy ◼         ◼ Italy, Trento N/A ◼  ◼ 

[149] Abdallah & El-Rayes, 2016 USA     ◼   ◼   N/A 1989 ◼  ◼ 

[138] Almeida & De Freitas, 2016 Portugal   ◼           ◼ ◼   Portugal, Porto N/A ◼ ◼ ◼ 

[105] Ascione et al., 2016 Italy     ◼    ◼  Italy, Naples 1991-2005 ◼  ◼ 

[133] Brunelli et al., 2016 Italy   ◼               ◼ Italy, Perugia N/A ◼ ◼ ◼ 

[150] Fresco et al., 2016 Spain ◼       ◼   Spain, Seville 1960 ◼  ◼ 

[71] García Kerdan et al., 2016 UK   ◼ ◼         ◼   UK, London 1980s ◼ ◼   

[11] Schwartz et al., 2016 UK ◼     ◼  ◼   UK, Sheffield 1950s ◼  ◼ 

[12] Son & Kim, 2016 South Korea   ◼           ◼     South Korea, Seoul N/A ◼ ◼ ◼ 

[151] Tadeu et al., 2016 PT; Brasil ◼       ◼   Portugal, Amarante <1960 ◼  ◼ 

[152] Ascione et al., 2017 Italy   ◼      ◼  South Italy 1920-1970 ◼ ◼ ◼ 

[153] Ascione et al., 2017b Italy   ◼     ◼   Italy, Benevento 1990s ◼ ◼ ◼ 

[106] Ascione et al., 2017c Italy ◼        ◼  Italy, Naples 1945-1990s ◼  ◼ 

[154] Eskander et al., 2017 Portugal ◼        ◼  PT: LX, EV, OPO, BRG 1970-1980s ◼  ◼ 

[155] Fan & Xia, 2017 South Africa ◼             ◼     South Africa 1967 ◼   ◼ 

[156] García Kerdan et al., 2017 UK  ◼      ◼   UK, London 1960s ◼ ◼ ◼ 

[22] García Kerdan et al., 2017b  UK; Mexico      ◼   ◼   UK, London  1890s-2011 ◼ ◼ ◼ 

[132] Mauro et al., 2017 Italy       ◼  ◼  Italy, Milan, Norcia  1970s ◼ ◼  

[127] Roberti et al., 2017 Italy ◼     ◼  ◼   Italy, Bolzano  1100s ◼ ◼  

[109] Ascione et al., 2018 Italy   ◼      ◼  Italy, Naples 1970 ◼ ◼ ◼ 



[157] Bandera et al., 2018  Spain   ◼      ◼   Spain, Pamplona  1975 ◼   

[158] Bosco et al., 2018 Italy   ◼     ◼   Italy, Rome 1960s ◼ ◼ ◼ 

[159] Cascone et al., 2018 Italy    ◼      ◼  Italy, Palermo, Turin 1946-1970 ◼  ◼ 

[107] Fan et al., 2018 South Africa   ◼     ◼   South Africa, Pretoria N/A ◼  ◼ 

[128] Fan et al., 2018b Sth Afri; China    ◼     ◼   South Africa  N/A ◼  ◼ 

[135] Jankovic, 2018 UK ◼       ◼   UK, Birmingham  After 1945 ◼ ◼  

[160] Miglani et al., 2018 Switzerland  ◼       ◼   Switzerland, Zurich  N/A ◼  ◼ 

[20] Sharif et al., 2019 Canada  ◼      ◼   Canada, Montreal N/A ◼  ◼ 

[110] Son & Kim, 2018 South Korea  ◼      ◼   South Korea, Seoul 1960s ◼ ◼ ◼ 

[111] Ascione et al., 2019 Italy ◼        ◼  GR, Athens; IT, Naples N/A ◼  ◼ 

[161] Ascione et al., 2019b Italy ◼        ◼  GR, Athens; IT, Naples N/A ◼  ◼ 

[162] Jeong et al., 2019 Rep. of Korea ◼       ◼   South Korea, Seoul 2000   ◼ 

[163] Song et al., 2019 USA; Korea  ◼      ◼   South Korea 1974 ◼  ◼ 

 
R: Residential; E: Educational; C: Commercial; I: Industrial; O: Other; H/T/LB: Heritage/Traditional/Listed Building; NS: Not Specified; RB: Real Building; AB: Archetype Building; SBM: Simplified Building Model; 
N/A: Not Available/Applicable; Const.Year: Construction Year; Sustain. Scope: Sustainability scope; Env: environmental; Soc: Social; Eco: Economical. 

 419 
 420 

5.2. Optimisation methods, techniques and parameters   421 
 422 

The data extraction of optimisation methods and techniques from the PS can be found in a tabulated form at the 423 

end of the section (Table 6).  424 

 425 
5.2.1.  Main optimisation methods and parameters 426 

 427 
• Around 80% of the PS use a Pareto-based optimisation concept, either by itself or in combination with 428 

an aggregating method; 429 

• Weighting sum approach is the most frequently used aggregating method, followed by analytic 430 

hierarchy process and ε-constraint method.  431 

 432 
More than 80% of the PS in review use a Pareto-based optimisation concept, either by itself or in combination 433 

with an aggregating method (AM). Three types of the commonly popular AM (see description in section 3. Multi-434 

objective optimisation) are applied: the most frequently used is the weighted sum approach 435 

[107,121,128,130,141,144,155], followed by the analytic hierarchy process (AHP) [9,127,140] and the ε-436 

constraint method [141]. AHP is implemented in the PS to assign weights to a set of predetermined criteria, 437 

identify key elements and support trade-off analysis. Apart from reformulating MOO problems as mono-438 

objective ones, the weighted sum method (WSM) is also adopted in combination with Pareto-based 439 

optimisations to contrast its findings [130,141,144]. Additionally, Asadi et al. [87] concluded on the importance of 440 

simultaneous MOO and hence on the restrictive character of mono-objective optimisations for the DM process, 441 

as it does not allow for the possibility of choosing among optimal solutions nor does it guarantee that a complete 442 

Pareto front is found. Others, such as Fan & Xia [128,155], pointed out that the WSM plays an important role in 443 



the optimisation process as an interface for decision makers and as a way to achieve the desired performance 444 

through weighting factor tuning.   445 

 446 

5.2.1.1.  Genetic Algorithms  447 
 448 

• Fast Non-dominated Sorting genetic algorithm (NSGA-II) is the most popular GA in building retrofit 449 

MOO and the most commonly implemented MOGA for multi-objective problems in the field of building 450 

research;  451 

• It is employed in the PS primarily on its own, and additionally as a variant or in conjunction with other 452 

techniques;   453 

• Overall, PS reported consistent optimal retrofit solutions in a reasonable computational time when other 454 

methods would have been infeasible;  455 

• Still, around 20% of PS introduced some type of GA variant, citing the following reasons: overcoming 456 

the initial population selection from the generation process, ensuring a higher population diversity and 457 

reliable Pareto front evaluation and improving convergence performance in many-objective optimisation 458 

problems.  459 

Table 6 shows that Fast Non-dominated Sorting genetic algorithm (NSGA-II) is the go-to GA for optimising 460 

multi-objective problems in building retrofit, either: 461 

• As stand-alone form [10,11,12,23,25,76,89,108,110,112,113,115,117-119,121,124-126,128,129,131-462 

134,141,143-146,151,152]; 463 

• As a variant [12,88,111,114-116,120,122,130,135,137-139,150]; 464 

• In conjunction with other techniques [9,10,76,88,108,110,119-121,124,131,133,138,143]. 465 

Developed by Deb et al [164], it is the most commonly implemented MOGA for multi-objective problems in the 466 

field of building research [81,164], as well as one of the top efficient MOEA due to its robustness in the 467 

convergence toward the true Pareto-optimal front [81,119,164]. Additionally, its efficiency and reliability have 468 

been shown in MOO and building performance simulation problems [5,140,156,165,166]. For further details, the 469 

interested reader can refer to [15,98,119]. Overall, GAs employed in the PS found consistent optimal retrofit 470 

solutions in a reasonable computational time when other methods would have been infeasible [106,132,153]. In 471 

[106] in particular, the optimisation of 1.048.576 envelope retrofit scenarios would have taken approximately 10 472 

years, had an exhaustive search method been applied, versus 2 days with GA. More impressive still was the 473 

time saving found in [132,153] as a consequence of GA implementation, when contrasted with the exhaustive 474 

approach prohibitive hundred of years required to complete the task. Still, as mentioned above, some variants 475 



to the algorithm were introduced in around 20% of the PS, alluding to the need of ensuring a higher population 476 

diversity and therefore a more reliable Pareto front evaluation on the one hand, and on the other the need for an 477 

improved convergence performance when it comes to solving many-objective optimisation problems, with four 478 

or more objectives. Regarding the latter, in [12,110] a reference-point based non-dominated sorting genetic 479 

algorithm (NSGA-III) based on NSGA-II was developed, and through performance comparison with three other 480 

EO algorithms (NSGA-II, MOEA/D, MOPSO) in a many-objective optimisation applied to a public building 481 

retrofit, it concludes that NSAG-III showed better performance overall in terms of spacing of non-dominated 482 

solutions and average distance, and better diversity and convergence than NSGA-II in the context of a many-483 

objective optimisation. The interested reader can refer to [110] for more details on NSGA-III. Moreover, Ascione 484 

et al. [111] concluded that the implementation of a variant of NSGA-II in MATLAB substantially reduced 485 

computational time when compared to an exhaustive search approach by more than 98%: the latter would have 486 

required 150 days per case study, which would have been infeasible, while the former took 2,5 days per case 487 

study, with 106.495 retrofit solutions to be explored.  488 

 489 

5.2.1.2.  GA-mixed techniques   490 
 491 

• The major drawback associated with MOO GA implementation is its time-consuming feature;   492 

• Users generally resort to one of three techniques to avoid computationally expensive building models: 493 

very simplified models, very small GA population sizes and/or small numbers of generations or 494 

surrogate modelling implementation;  495 

• Surrogate modelling implementation is the most prominent GA mixed-methods technique found in the 496 

PS and allows studies to reap benefits from combining the velocity of evaluation of Artificial Neural 497 

Network with the optimisation power of GA; 498 

• This mixed-method approach shows much promise regarding time-efficiency when compared to NSGA-499 

II directly linked to an energy simulation tool or exhausting search method, with acceptable accuracy; 500 

• Other GA mixed-methods techniques found in the PS include mathematical programming methods.  501 

  502 

Another popular GA-based MOO strategy is to follow a mixed-method approach, generally with the intent to 503 

surpass GA’s time-consuming feature [76,87,122,130,138]. This issue is often pinpointed as the major 504 

drawback associated with GA implementation in MOO, since time-costly simulation evaluations for reaching 505 

optimal solutions can turn out to be infeasible. Users generally resort to one of three techniques to avoid 506 

computationally expensive building models:  507 



• Using very simplified models while acknowledging its limitations (typically only suitable for research 508 

purposes due to oversimplification and inaccurate modelling); 509 

• Selecting a very small GA population size and/or small numbers of generations (possibly affecting 510 

significantly the optimisation by narrowing the process to non-optimal solution sets) [101,166]; 511 

• Implementing surrogate models, which consist in approximation models that mimic the performance of 512 

the original ones at a reduced computational cost [3].  513 

Response Surface Approximation Model (RSA) is an approximation method still quite unexploited that allows for 514 

a proper accuracy to be maintained and can be combined with GA for individuals evaluation. The most 515 

prominent mixed-methods technique found in this SR uses an RSA method, by combining the velocity of 516 

evaluation of Artificial Neural Network (ANN) with the optimisation power of GA [76,87,122,130,138]. Rojas 517 

[167] defines ANN as an attempt at modelling the information processing capabilities of biological nervous 518 

systems. Based on the main principle of learning, it is composed of layers of parallel elemental units, called 519 

neurons, which are connected by a large number of weighted links, over which signals or information can pass. 520 

ANNs have to be trained in order to perform tasks: they learn the relationship between the input and output 521 

variables by studying previously recorded data and adjusting the weight of neurons. The most used network 522 

arrangement is the feed-forward model, composed of several layers of neurons: generally, the layer that 523 

produces the network output will be designated as the output layer and all the other layers are called hidden 524 

layers. A multilayer feed-forward model is used in all the ANN case studies in the PS. In spite of being quite 525 

unexplored still, this approach shows much promise by making the computational time associated with each 526 

evaluation negligible: the results obtained emphasise its time-efficiency when compared to NSGA-II directly 527 

linked to an energy simulation tool [122] or to an exhausting search method [87], while demonstrating an 528 

acceptable level of accuracy. To put it into context, in [87] the whole optimisation process with the ANN model 529 

generation using the neural network toolbox took three days, whereas 75 days would have been needed if using 530 

an exhaustive search method. Furthermore, in [122] the combination of NSGA-II and ANN resulted in a vast 531 

time gain and allowed for a feasible optimisation process that would have otherwise taken more than 10 years, 532 

had NSGA-II been directly connected to TRNSYS. While the accuracy reported was excellent (around 1% 533 

relative error) for energy consumption prediction, the PMV was generally underestimated. In [138], the use of 534 

ANN combined with NSGA-II proved to be effective and useful to approximate complex functions and suggests 535 

that after being properly trained, annual computer simulations could be replaced. Nix et al. [76] used ANN to 536 

construct a meta-model to replicate input-output relationships based on a sensitivity analysis, to successfully 537 

reduce optimisation time. Gossard et al. [130] reduced computation time without compromising the complexity 538 



of the problem through training and validation of a multilayer feed-forward ANN to accelerate the calculation of 539 

the objective functions based on annual simulations. Ascione et al. [152] developed a multi-stage framework for 540 

the robust assessment of cost-optimal energy retrofit solutions (CASA) through the combination of GA-based 541 

MOO and ANN. The developed ANNs are successfully used to predict building performance instead of 542 

EnergyPlus, with very satisfactory reliability based on a coefficient of regression >0.960 and a relative error 543 

<10%. Complementarily, simulation server services can be used as an aid in reducing the computational time 544 

required to complete the MOO [11].  545 

Another GA-mixed technique is the implementation of a hybrid algorithm MOO. In [139], GA and heuristic A* 546 

graph search algorithm are combined with the aim of overcoming what is described as an ineffective initial 547 

population selection from the generation process in traditional GA; the search effectiveness of A* enables the 548 

GAA* to overcome it, while maintaining GA’s optimisation search for global optimal solutions in a short amount 549 

of time.  550 

Lastly, mathematical programming methods were also used in combination with GA in the PS, i.e. mixed integer 551 

linear programming [160], nonlinear integer programming [107,155], compromise programming [156]  and zero-552 

one goal programming [139].  553 

 554 

5.2.1.3. GA input parameters  555 
 556 

• GA input parameters are mostly problem-dependent resulting in a wide diversity of research data, as 557 

happens with the PS in analysis; 558 

• Around 70% of the PS did provide some information on the genetic parameters and stopping criteria 559 

adopted in their MOO, yet often insufficiently detailed or lacking key data;   560 

• The more tailored to the problems’ specificities and well designed GA input parameters are, the more 561 

efficient and correctly implemented will the GA-based MOO be; 562 

• The input parameters with most impact on computational burden and reliability of GA are the population 563 

size and the stopping criterion of maximum number of generations;  564 

• The PS set their GA input parameters based on: expertise and best practice; studied values with the 565 

best trade-off between computational burden and Pareto-front proven reliability; software recommended 566 

default values;  567 

• The stopping criterion most resorted to within the PS is, by far, the maximum number of generations 568 

(75%); 569 

 570 



Another important feature to be addressed regarding GA implementation consists in its input parameters and 571 

stopping criteria definition. Such parameters are mostly problem-dependent and, while broad recommendations 572 

can be found (the interested reader can refer to [112,115]), no official guidelines really exist in the literature due 573 

to the impracticality to make general recommendations for setting optimal parameter values. As a result, the 574 

data can be quite scattered, as is the case with the PS in this SR. Around 70% of the PS did facilitate some 575 

information on the genetic parameters and stopping criteria adopted in their optimisation, yet often insufficiently 576 

detailed or missing information. Due to the diversity, inconsistency and lack of data provided, the authors were 577 

not able to extrapolate robust conclusions regarding this part of the analysis and furthermore decided not to 578 

report these results in tabulated format. However, its main features are acknowledged hereunder.      579 

While some default parameters may adequately fit a range of MOO retrofit problems, such as the crossover and 580 

mutation ones, the more tailored to the problems’ specificities and well designed the GA input parameters are, 581 

the more efficient and correctly implemented will the GA-based MOO be. For setting these parameters and 582 

stopping criteria, some PS [20,105,111,123,130,132,144,157,161] have chosen values based on expertise and 583 

best practice, as well as those leading to the best trade-off between computational burden and proven reliability 584 

of the Pareto front through their own work or previous literature, or values according to the software 585 

recommended default parameters. The design of these parameters directly affects GA’s performance, 586 

convergence rate, the accuracy of the optimal solutions achieved and the computational burden. In particular, 587 

the parameters with most impact on the computational burden and GA’s reliability are the population size and 588 

the stopping criterion of maximum number of generations, since the product of these two parameters provides 589 

the limit number of solutions to be explored [153].    590 

The main genetic parameters used in the PS for their GA-based MOO implementation are as follows (for 591 

definition of concepts, please refer back to section 4. Genetic algorithm in multi-objective optimisation):  592 

• Population size: it is suggested in the PS that a reliable population size ranges from 2-6 times the 593 

number of the design variables in the optimisation [105,106,109,111,123,132,151,153,161]. It was also 594 

suggested that a population size of 100 provides a high diversity of solutions, and that surpassing this 595 

value is not found to be beneficial while taking more time to converge [144]. Around 30% of the PS 596 

adopted a population size of 100 in their MOO, but overall, values range between 10 and 2000; 597 

• Selection type: the binary tournament selection is the most commonly selection method employed in the 598 

PS;  599 

• Crossover and mutation rate: it is suggested in the PS that adequately tuning these rates or fractions is 600 

important to avoid loss of diversity among individuals of the population throughout the run of the GA and 601 



therefore avoid premature convergence (i.e. when GA gets stuck in local minima or local maxima). The 602 

values adopted as crossover fraction range between 0.4 and 1, while mutation fraction ones vary 603 

between 0.05 and 0.4; 604 

• Elitism: elitism is generally defined though elitism size, count or rate parameters, but is also presented 605 

as rate of individuals or chromosomes that are guaranteed to survive to the next generation in the PS, 606 

and is most commonly adopted under the value of 2;  607 

A few additional parameters are occasionally mentioned in some PS, such as the Pareto front population 608 

fraction [138], the distribution index for crossover and mutation [122,127,137], the type of crossover (e.g. 609 

simulated binary crossover) and mutation (e.g. polynomial), the tournament size [117], the encoding scheme 610 

[71,106,109,111,123,132,146,152,153,156], the variable domains [159] and the number of binary digits [159]. 611 

As per the stopping criteria (for definition of concepts, please refer back to section 4. Genetic algorithm in multi-612 

objective optimisation) used in the PS, the most frequent are as follows:  613 

• Maximum number of generations: by far the most resorted to stopping criterion within the PS (75%). 614 

Some propose, based on their own research, that a reliable maximum number of generations falls 615 

within the range of 10-100 generations [105,106,109,111,123,132,153,161]. Others adopt values 616 

according to previous numerical tests where it was verified that the solutions did not change beyond a 617 

specific number [130]. Though no official recommendations exist, Poli [115] suggests that the most 618 

productive search is usually performed in those early generations and that if a solution has not been 619 

found by then, it is unlikely that it would be found in a reasonable amount of time. It additionally 620 

indicates that, for that reason, the number of generations is typically limited between 10 and 50. 34% of 621 

the PS do fall into this category, yet, the spectrum of values used is extremely wide overall, ranging 622 

from 15 to 5000, which only emphasises the diversity of these parameters;  623 

• Stall time and generations limit: the number of generations or the time limit with no significant change or 624 

where change is inferior to a pre-specified threshold (e.g. by less than 1%) are adopted as stopping 625 

criteria in around 16% of PS [9,127,131,136,150,163];  626 

• Time limit and fitness limit: optimisation time and fitness limit applied to the best candidate are seldom 627 

used in the PS, around 7% and 11% respectively;  628 

Finally, optimality tolerance is adopted as a stopping criterion in 5 PS and reaching the convergence level, 629 

considering the crowding distance (i.e. how close an individual is to its neighbours), is applied in 4 PS.  630 

 631 

5.2.2.  Optimisation auxiliary techniques  632 
 633 



5.2.2.1.  Sampling techniques  634 
 635 

• A set of sampling and statistical techniques is identified as commonly linked with GA and ANN 636 

implementation: Latin hypercube sampling being the most frequent one, followed by the Sobol 637 

Sequence Sampling and smart sampling or smart exhaustive sampling technique;  638 

• Other MOO associated techniques found in the PS are penalty and barrier function method;  639 

• The most recurrent constraints employed in the PS are linked to thermal comfort, budget and payback 640 

boundaries definition.   641 

 642 

Complementarily, a set of sampling techniques is found to be linked with GA and ANN implementation. Latin 643 

hypercube sampling (LHS) is one of the most frequently statistical methods used to generate a small and 644 

representative sample of a population [76,87,122,152], for specified numbers and ranges of variables 645 

[71,76,87,105,122,138,156]. It is frequently used for training and checking ANN validity. It is a space-filling 646 

scheme that provides better efficiency than random sampling and guarantees an effective data distribution over 647 

the variables space. The Sobol sequence sampling (SSS) is also implemented for the selection of GA initial 648 

population [10], which is a quasi-random sequence designed to generate a sample that is uniformly distributed 649 

over the unit hypercube. When compared to other sampling techniques such as LHS, it was found to be more 650 

effective in exploring the input parameter space [168]. Sobol sequences allow reducing the random behaviour of 651 

GA in the initial population generation and avoiding oversampling of the same regions that can occur with 652 

random sampling [117]. It is also employed in [148] where NSGA-II is modified with customised sampling, 653 

crossover, mutation and selection procedures with the purpose of further increasing its performance. SSS is 654 

chosen since it produces uniform samples for high population sizes [168] and the random starting point is 655 

obtained through the pseudo-random generator [169]. In the PS it is used in particular to apply the population 656 

mutation mechanism through random gene alteration: a gene is randomly selected and replaced by a random 657 

value from a uniform distribution that meets the gene range [10,148]. Finally, a smart sampling or smart 658 

exhaustive sampling technique is utilised in around 10% of the PS [105,106,109,132,153] at the post-659 

optimisation stage, as a way to conduct constrained cost-optimal analyses for DM regarding the Pareto front 660 

solutions found through GA implementation.  661 

A few other MOO associated techniques are used in this SR: in order to prevent from falling into an infeasible 662 

domain, the user can resort to approaches such as the penalty and barrier function method to perform a 663 

constrained optimisation. Constraints are usually formulated as functions of the variables to be optimised and 664 

are most frequently employed in this SR to define thermal comfort [122,130,131,145,146,153] as well as budget 665 



and payback boundaries in the optimisation process [9,69,105,123,141,143,144,152,155,156]. Secondarily, 666 

they target energy consumption and CO2 emissions [140,141,144,145], along with insulation material properties 667 

[88,140,150].   668 

 669 

5.2.2.2. Uncertainty and sensitivity analysis 670 
 671 

• Uncertainty analysis and sensitivity analysis are tools with little research in relation to GA-based MOO; 672 

• Around 20% of the PS take uncertainty into consideration in their optimisation process or intend to do 673 

so in further work, which can concern any variable that cannot be controlled and can influence 674 

intervention performance, from fluctuations in environmental and climatic conditions, material variability, 675 

model assumptions, measurements to financial fluctuations;  676 

• Sensitivity analysis is successfully used in several PS to assess the impact or influence of key input 677 

variables in targeted or overall outputs and hence evaluate the overall robustness of findings, namely of 678 

cost-optimal solutions, and reduce optimisation time.   679 

 680 

Sensitivity analysis (SA) and uncertainty analysis (UA) tools are very little researched in relation to GA-based 681 

MOO [3,5,76]. Possible explanations for this could lay in the fact that robust optimisation is in its early 682 

beginnings in the field of building energy performance [3,76], along with the fact that GA-based MOO in building 683 

retrofit is quite a young method (see 5. Implementation of GA-based MOO in building retrofit: analysis of 684 

evidence) and not enough research has been conducted to support the maturation of the technique and the 685 

high level of expertise needed throughout the whole MOO process, including the acknowledgement of the 686 

importance of preliminary statistical analysis and its impact on final results. The lack of standard method 687 

approach can also contribute to the small amount of research linking SA and UA and GA-based MOO, and will 688 

be addressed further ahead in sections 6.1.2. Challenges and limitations and 6.2.1. Gaps in knowledge and 689 

future research needs.        690 

Uncertainty is expressed in variables that cannot be controlled and can crucially influence intervention 691 

performance; these can arise from fluctuations in environmental and climatic conditions, material variability, 692 

model assumptions, measurement, and financial inflations [133]. However, only around 20% of the PS take it 693 

into account in their optimisation process [71,76,106,107,128,133,135,144,145,151,156] or intend to do so in 694 

further work [87]. SA is particularly helpful to assess the impact or influence of key input variables in targeted or 695 

overall outputs, and therefore to evaluate the overall robustness of findings. Results can then serve an 696 

optimisation time reduction purpose, through the use of a selected group of key parameters [76]. Monte Carlo 697 



method is commonly used for both UA and SA [71,76,105,133,156]. In [106] a multi-objective approach is 698 

employed to identify robust cost-optimal retrofit solutions and assess the resilience to different climatic (global 699 

warming) and economic scenarios: the SA performed provides 12 robust cost-optimal energy retrofit solutions 700 

depending on the global warming scenario and on the value of discount rate. In [107] a SA is performed to 701 

analyse the influence of the discount rate, weighting factors and tax incentive on the proposed model and 702 

optimal results, concluding that the energy savings are robust against uncertainty on the discount rate while the 703 

economic factors are sensitive to its change. In addition, SA is employed to investigate the robustness of cost-704 

optimal solutions in a few other PS [109,144]. 705 

Recognising the importance of the uncertainty entailed in energy performance evaluation, Fan et al. [128] used 706 

real-world notch-test data to improve its accuracy. In [152] preliminary large-scale UA and SA of the building 707 

energy performance are conducted to support ANNs’ generation, through the identification of key parameters 708 

that affect the building energy performance, with reference to potential retrofit scenarios and current status. In 709 

[135], uncertainty regarding different future climate conditions is addressed through an assessment of 710 

resilience, defined as resistance to future uncertainties, at building, site and regional level for different climate 711 

years: 2018, 2030, 2050 and 2080. Retrofit options are applied to two semi-detached houses with the intention 712 

of publishing post-retrofit monitoring results.  713 

 714 

5.2.3.  Post-optimisation: Pareto-front ranking methods  715 
 716 

• The large number of optimal solutions found in the Pareto front present a challenge and require post-717 

optimisation analysis techniques;  718 

• A handful of non-systematic strategies have been adopted in the PS with the purpose of addressing this 719 

gap, resorting extensively to aggregating methods, along with thresholds and multi-criteria decision 720 

making methods.       721 

After the Pareto front is found, the sets of optimal solutions can be extremely large and contain an infinite 722 

number of solutions. The challenging need of choosing between them is mentioned recurrently 723 

[46,106,109,123,140,142,155,156,158,159]. Several non-systematic strategies, thresholds and multi-criteria 724 

decision making methods (MCDM) are employed in post-optimisation analyses to obtain the best compromise 725 

according to the decision-maker’s preferences. In addition to the constraints imposed to the objective functions 726 

or range of variables, which already reduce the set of Pareto solutions, the aforementioned aggregating 727 

methods (WSM, AHP) are extensively used in the PS for DM support. Compromise programming [156] and 728 

multiple-attribute value theory [140] are also adopted as particular kinds of MCDM to choose within the set of 729 

Pareto solutions. Moreover, cost-optimal analysis [105,106,109,111,123,132,153], thresholds regarding comfort 730 



or heating and cooling load [152], life cycle cost (LCC) analysis [152], minimisation of global retrofits costs 731 

[106,153] or total cost solution ranking [147], payback period [154], life cycle analysis (LCA) [20] and 732 

conservation compatibility [127] are adopted as final criteria for choosing amongst the retrofit solution sets 733 

identified.  734 

 735 

5.3. Objective functions and decision variables optimised  736 
 737 
The extraction of objective functions and decision variables data from PS can be found in a tabulated form at 738 

the end of section 5, in Table 6. A comprehensive additional table, Table 5, was developed focusing on 739 

objective function details alone.  740 

 741 
5.3.1. Objective functions  742 

 743 
• Energy and retrofit cost objectives stand out as the most researched ones (around 60%), followed by 744 

comfort objectives (45%), environmental impact objectives and the bottom-addressed objectives, 745 

health, and building conservation; 746 

• Different types of energy-related objective functions are found: minimising energy consumption, energy 747 

demand, energy load, exergy, and maximising savings;  748 

• Retrofit costs-related objectives are mostly expressed as seeking to minimise initial investment, 749 

operating, maintenance and replacement costs as well as payback. Life-cycle cost analysis and net 750 

present value concepts are also applied; 751 

• Comfort objectives, mostly linked to thermal comfort, mainly aim at reducing thermal discomfort hours 752 

by either setting a limit or resorting to thermal comfort formulas and indexes. The Predicted Man Vote 753 

index (PMV) is found to be the most prevalent one, followed by the Predicted Percentage of Dissatisfied 754 

(PPD);  755 

• Environmental impact objectives are most frequently emissions related, with strong interest emerging 756 

regarding LCA as well.           757 

 758 

Energy and retrofit cost linked objectives stand out as the most researched ones (around 60% of cases), 759 

generally within a two-objective optimisation, or analysing trade-offs with comfort objectives, and less commonly 760 

environmental impact. Energy, cost and comfort related objectives are simultaneously targeted in approximately 761 

20% of cases (Table 6). Several types of energy-related objective functions are found in PS:  762 

• Minimising energy consumption [10,12,117,123,130,131,133,136,140–763 

143,20,144,146,148,153,158,159,22,71,76,87,105,106,110]; 764 



• Energy demand [69,87,106,109,123,127,132,147,150,151,153,157,159]; 765 

• Energy load [138]; 766 

• Exergy [22,71,156,157]; 767 

• Maximising savings [107,128,134,154,155,163].  768 

The objective functions associated with retrofit costs are generally expressed as seeking to minimise initial 769 

investment, operating, maintenance and replacement costs as well as payback, although life-cycle cost 770 

(LCC) analysis [9,11,20,56,138,163] and Net Present Value (NPV) [9,10,22,107,117,133,148,155,156,162] 771 

concepts are also applied.  772 

Nearly half the PS target comfort objectives, mostly linked to thermal comfort [10,12,123,127,130–773 

133,135,137,138,142,22,145,156,158,56,71,87,109,117,121,122]. These tend to follow one of two formulas: 774 

reducing hours of thermal discomfort or maximising hours of thermal comfort, by either setting a limit, e.g. 775 

number of hours above 25oC or previous baseline [131,132,135,138,153], or resorting to thermal comfort 776 

formulas and indexes such as the Predicted Man Vote Index (PMV), Predicted Percentage of Dissatisfied 777 

(PPD) and the Isum Summer Comfort Index (Isum) [22,56,132,137,142,156,158,71,87,110,121–778 

123,127,130]. PMV is found to be the most prevalent one, followed closely by PPD. Only one study targets 779 

Indoor Environment Quality (IEQ) along with PPD, in a three-objective optimisation looking at the trade-offs 780 

between comfort, cash payback period and carbon payback period [143].  781 

Environmental impact linked objectives are most frequently emissions related 782 

[12,69,162,109,110,133,135,140,145,149,160], but LCA is attracting interest as well [20,88,142,143]. Life 783 

cycle carbon footprint (LCCF) [11] and Natural-resource consumption [139,149] are also addressed.  784 

Health and building conservation are at the bottom of the objective functions addressed in the PS (around 785 

8%). The former is analysed in [76,136], specifically looking at the trade-off between health impacts from 786 

exposure to indoor heat, cold and PM2.5 and energy consumption. The latter is explored in [127] along with 787 

energy demand and thermal comfort, through the quantification of the concept of conservation compatibility 788 

of energy retrofits by following an AHP based on conservation scores from expert opinions.  789 

 790 

5.3.2.  Decision variables 791 
 792 

• Four major decision variables categories have been identified in the PS: building envelope, building 793 

systems, renewable energy technology, and building control strategies;  794 



• The building envelope category makes up for the overwhelming majority of decision variables in GA-795 

based MOO in building retrofit. Amongst its variables, window options primarily, and secondarily 796 

external walls and roof thermal transmittance (U-value), attract the most research attention; 797 

• Mechanical systems variables rank in second place in frequency and include heating, cooling, and 798 

lighting variables. The most prevailing ones are linked to HVAC type; 799 

• Renewable energy technologies incorporation into buildings include decision variables in solar and wind 800 

energy, the most frequently analysed being the type of solar thermal collector and photovoltaic system;  801 

• The building control strategies category assembles all variables related to mechanical systems control, 802 

comprising HVAC system settings and temperature set point control measures, lighting power options 803 

and control settings, building automation control system efficiency and shading control measures.    804 

 805 

The decision variables selected in the PS mainly fall into four major design categories (see Table 6):  806 

• Building envelope; 807 

• Building systems including heating, cooling, and lighting; 808 

• Incorporation of renewable energy technologies into buildings;  809 

• Building control strategies.  810 

Several studies make use of SA to maintain a reasonable number of decision variables (see section 5.2.6. 811 

Uncertainty and sensitivity analysis). 812 

The building envelope section makes up for the overwhelming majority of the decision variables in GA-based 813 

MOO in building retrofit. It encompasses firstly window options (number of layers, low emissivity coating option, 814 

void gas type, frame type), which is found to attract the most research attention [10–12,20,22,69,71,76,87,105–815 

107,109–111,117,123,127,128,132–134,138–143,145,147,148,150–156,158–161,163]. Additionally, other 816 

variables related to window thermal performance are considered for optimisation: total solar energy 817 

transmittance (g-value), heat transfer coefficient (U-value) [22,109,138,150,157,159,160,162] and window-to-818 

wall ratio [11,20,76,122,141,143,145,146,154]. 819 

The second most frequent variables are linked to the external walls and roof thermal transmittance (U-value), 820 

also presented as insulation thickness [10,11,22,69,71,76,105–821 

107,109,111,117,123,127,132,134,135,138,141,145,147,148,150–154,156–163]. Ground floor, ceiling and 822 

internal partitions insulation are analysed as well [10,11,71,117,127,148,151,156,160]. Other thermal 823 

performance features of walls and roofs are covered, such as: thermal conductivity and density [76,88,130,136], 824 

solar radiation absorption coefficient, also expressed as thermal emissivity 825 



[20,76,153,161,105,106,109,111,123,132,136,152]. Furthermore, the type of insulation material related to walls, 826 

roofs, and in a lower degree, ground and basement floors 827 

[12,20,143,145,150,155,156,158,22,71,87,107,110,128,140,142] is found to be accountable for one of the most 828 

common decision variables studied in the PS. Other variables optimised within the building envelope category 829 

include wall configuration encompassing PCM properties [159], air tightness rate variation 830 

[9,20,156,160,22,69,76,127,135,136,140,141], sealing options [71,156] and solar shading related variables 831 

namely façade installation, shading type and shade factor (interior or exterior shading systems, blinds, 832 

overhangs) [20,76,105,109,136,150,152,159,161,162]. 833 

Decision variables concerning the type of mechanical systems rank second place in frequency after building 834 

envelope ones, in particular regarding HVAC type [9,10,12,20,69,71,87,105–835 

107,109,110,117,123,128,132,133,136,139,140,144,148,151,153,154,156,160,161,163]. Some distinguish 836 

between boiler type options (gas condensing, natural gas, standard, modulating, oil, heat pump, biomass, etc) 837 

[10,22,69,105,109,117,132,133,135,148,151,152,154,156,160], chiller type (installation, air-cooled, water-838 

cooled, standard, high-efficiency electric etc) [22,105,109,127,131–133,152], HVAC energy efficiency 839 

[20,22,107,132,133,139,153,154], mechanical ventilation system options and heat recovery 840 

[9,10,20,117,123,136,148,163]. Other ventilation strategies are optimised including air change rate variation and 841 

fans [9,76,127,136–138,145], circulating and outside air [131]. Finally, lighting system efficiency 842 

[20,22,71,107,133,144,154,156,162,163], HVAC components size [121], appliances energy efficiency [111,154] 843 

and DHW energy efficiency [132] variables are also explored. 844 

The incorporation of renewable energy technologies in buildings is grouped under a separate section from 845 

building systems, due to its specificities and research interest in MOO. It includes decision variables in solar and 846 

wind energy: type of solar thermal collector [87,105,128,133,145,151,155,160], photovoltaic system 847 

[20,22,105,107,109,111,132,135,145,151–153,156,160,161,163], thermosyphon and solar thermal forced 848 

circulation [151] and wind power [22,145,156]. 849 

Finally, the building control strategies category assembles all variables related to mechanical systems control, 850 

including HVAC system settings and temperature set point control measures 851 

[20,22,145,146,152,153,156,158,170,109,121–123,131,132,135,137], lighting power options and control 852 

settings (motion sensor, etc) [20,141,144,163], building automation control system efficiency [133] and shading 853 

control measures (automatically-controlled shading equipment) [142,161]. 854 

Only two decision variables found in the PS fall outside of the previous design categories: clothing level, 855 

analysed in [135], and hourly schedules for these technologies in [160]. 856 



Table 5  

Objective functions addressed in primary studies, listed in chronological order. 

Ref. Energy 
 

Retrofit cost 
 

Comfort 
 

Environmental impact  
 

Health 
 

Conservation 

 
 Cons Dem Sav Load Exergy   IIC OC MC RC NPV LCC Payback   Thermal IEQ   Emissions NRC LCA LCCF   

 
  

[121]       
 
◼  ◼      

 
◼ ◼  

 
     

 
  

 
  

[137] ◼ ◼     

 

        
 
◼ ◼  

 
     

 
  

 
  

[9]       
 
◼     ◼ ◼  

 
   

 
◼     

 
  

 
  

[141] ◼ ◼     

 
◼ ◼ ◼ ◼     

 
   

 
     

 
  

 
  

[139]       
 
◼ ◼  ◼     

 
   

 
◼  ◼   

 
  

 
  

[122] ◼ ◼     

 

        
 
◼ ◼  

 
     

 
  

 
  

[142] ◼ ◼     

 
◼ ◼       

 
◼ ◼  

 
◼   ◼  

 
  

 
  

[131] ◼ ◼     

 

        
 
◼ ◼  

 
     

 
  

 
  

[143]       
 
◼       ◼ 

 
◼  ◼ 

 
◼   ◼  

 
  

 
  

[130] ◼ ◼     

 

        
 
◼ ◼  

 
     

 
  

 
  

[144] ◼   ◼   

 
◼       ◼ 

 
   

 
     

 
  

 
  

[87] ◼ ◼ ◼    

 
◼ ◼       

 
◼ ◼  

 
     

 
  

 
  

[136] ◼ ◼     

 

        
 

   
 

     
 
◼  

 
  

[145]       
 
◼ ◼       

 
◼ ◼  

 
◼ ◼    

 
  

 
  

[69]       
 
◼ ◼ ◼     ◼ 

 
   

 
◼ ◼    

 
  

 
  

[140] ◼ ◼     

 
◼ ◼       

 
   

 
◼ ◼    

 
  

 
  

[146] ◼ ◼     
 
◼ ◼       

 
   

 
     

 
  

 
  

[123] ◼ ◼ ◼    

 

        
 
◼ ◼  

 
     

 
  

 
  

[88]       
 
◼ ◼ ◼      

 
   

 
◼   ◼  

 
  

 
  

[147] ◼  ◼    
 
◼ ◼       

 
   

 
     

 
  

 
  

[134] ◼  ◼    

 
◼ ◼       

 
   

 
     

 
  

 
  

[76] ◼ ◼     

 

        
 

   
 

     
 
◼  

 
  

[10] ◼ ◼     

 
◼ ◼ ◼  ◼ ◼   

 
◼ ◼  

 
     

 
  

 
  

[117] ◼ ◼     
 
◼ ◼ ◼  ◼ ◼   

 
◼ ◼  

 
     

 
  

 
  

[148] ◼ ◼     
 
◼     ◼   

 
   

 
     

 
  

 
  

[149]       
 
◼ ◼       

 
   

 
◼ ◼ ◼   

 
  

 
  

[138] ◼    ◼  

 
◼      ◼  

 
◼ ◼  

 
     

 
  

 
  

[105] ◼ ◼     
 
◼ ◼ ◼      

 
   

 
     

 
  

 
  

[133] ◼ ◼     
 
◼     ◼   

 
◼ ◼  

 
◼ ◼    

 
  

 
  

[150] ◼  ◼    

 
◼ ◼       

 
   

 
     

 
  

 
  

[71] ◼ ◼    ◼ 
 

        
 
◼ ◼  

 
     

 
  

 
  



[11]       
 
◼      ◼ ◼ 

 

   
 
◼    ◼ 

 
  

 
  

[12] ◼ ◼     
 
◼ ◼  ◼   ◼ ◼ 

 
   

 
     

 
  

 
  

[151] ◼  ◼    
 
◼ ◼  ◼     

 
   

 
     

 
  

 
  

[152] ◼ ◼     
 
◼ ◼ ◼  ◼    

 
◼ ◼  

 
     

 
  

 
  

[153] ◼ ◼ ◼    
 
        

 
◼ ◼  

 
     

 
  

 
  

[106] ◼ ◼ ◼    
 
        

 
   

 
     

 
  

 
  

[154] ◼   ◼   

 
◼ ◼       

 

   
 

     
 

  
 

  

[155] ◼   ◼   
 
◼     ◼  ◼ 

 
   

 
     

 
  

 
  

[156] ◼     ◼ 
 
◼     ◼   

 
◼ ◼  

 
     

 
  

 
  

[22] ◼ ◼    ◼ 
 
◼     ◼   

 
◼ ◼  

 
     

 
  

 
  

[132] ◼  ◼    
 
        

 
◼ ◼  

 
     

 
  

 
  

[127] ◼  ◼    
 

        
 
◼   

 
     

 
  

 
◼  

[109] ◼  ◼    
 
◼ ◼ ◼      

 
◼ ◼  

 
◼ ◼    

 
  

 
  

[157] ◼  ◼   ◼ 
 
        

 
   

 
     

 
  

 
  

[158] ◼ ◼     
 
◼ ◼       

 
◼ ◼  

 
     

 
  

 
  

[159] ◼ ◼ ◼    
 
◼ ◼       

 
   

 
     

 
  

 
  

[107] ◼   ◼   
 
◼       ◼ 

 
   

 
     

 
  

 
  

[128]  ◼   ◼   

 
◼       ◼ 

 

   
 

     
 

  
 

  

[135]       
 
        

 
◼ ◼  

 
◼ ◼    

 
  

 
  

[160]       
 
◼ ◼ ◼      

 
   

 
◼ ◼    

 
  

 
  

[20] ◼ ◼     
 
◼      ◼  

 
   

 
◼   ◼  

 
  

 
  

[110] ◼ ◼     
 
◼ ◼       

 
◼ ◼  

 
◼ ◼    

 
  

 
  

[145]       
 
◼ ◼       

 
◼ ◼  

 
◼ ◼    

 
  

 
  

[111] ◼ ◼     
 
◼ ◼ ◼      

 
   

 
     

 
  

 
  

[161] ◼ ◼     
 
◼ ◼ ◼      

 
   

 
     

 
  

 
  

[162]       
 
◼ ◼    ◼   

 
   

 
◼ ◼    

 
  

 
  

[163] ◼   ◼   
 
◼      ◼  

 
   

 
     

 
  

 
  

Cons: Consumption; Dem: Demand; Sav: Savings; IIC: Initial Investment Costs (retrofit actions + labour); OC: Operating costs; MC: Maintenance costs; RC: Replacement costs; NPV: Net Present Value; LCC: Life cycle cost; IEQ: Indoor environment quality; NRC: Natural-

resource consumption; LCA: Life cycle analysis; LCCF: Life cycle carbon footprint.



5.4. Simulation-optimisation approach and tools  1 

Building energy optimisation tools (BEOTs) have been collected, classified and compared in previous research 2 

[1,4,6]. The literature globally agrees on a four-group classification for BEOTs:  3 

• Generic or stand-alone optimisation tools: commercially available embedded with optimisation 4 

algorithms, requiring external input from energy simulation software to perform energy optimisation. 5 

They allow users great freedom in the definition process and can additionally be used for tasks of other 6 

nature (e.g. ModelCenter, modeFRONTIER, GenOpt, MATLAB, Dakota, and Topgui);  7 

• Simulation-based optimisation tools: based in mature energy simulation software, where the 8 

optimisation engine is encapsulated and tightly linked to the simulation engine (e.g. BeOpt, Opt-E-Plus, 9 

DesignBuilder optimisation module);  10 

• Optimisation engine oriented tools: primarily designed for building energy efficient design optimisation. 11 

They own a native optimisation engine and use an imported energy simulation program (e.g. 12 

jEPlus+EA, Grasshopper, MOBO, ENEROPT, GENE_ARCH, MultiOpt 2); 13 

• Customised tools: the user can code his own tool integrating simulation and optimisation in several 14 

programming languages  (e.g. Fortran, C++, C, Visual Basic in Microsoft Excel). 15 

 16 

Furthermore, the integration between BEOTs and building performance simulation (BPS) tools has been 17 

reviewed in detail in several previous studies. For more insight into this topic, the reader is referred to 18 

[1,3,4,6,69]. Additionally, a number of comprehensive reviews on building energy simulation packages, such as 19 

EnergyPlus, eQuest, DOE-2, ESP-r, BLAST, HVAC-SIM+, TRNSYS, IDA-ICE, have also been published in the 20 

last decade. The interested reader can refer to [171,172].  21 

 22 

5.4.1.  Simulation-optimisation approach  23 

• Two main simulation-optimisation approaches are adopted in the PS: dynamic simulation, based on 24 

detailed or simplified models, or static modelling approach; 25 

• EnergyPlus is the most used dynamic simulation software employing an energy simulation engine, 26 

followed by TRNSYS. Other energy simulation tools used in the PS are: DesignBuilder, DOE 2.2, 27 

Comis, eQuest, Design Advisor, IDA ICE;  28 

• Occasionally, modelling tools such as Sketchup and REVIT are paired with the chosen energy 29 

simulation tool;  30 

• Fewer PS couple static simulation modelling with optimisation techniques.  31 



 32 

The optimisation-based PS reviewed were found to adopt mainly one of two approaches: a dynamic simulation, 33 

based either on detailed or simplified models, or a static modelling approach, i.e. a system representation at a 34 

particular point in time.  35 

In the first one, the extensive use of EnergyPlus is evident, accounting for slightly more than half of the PS 36 

employing an energy simulation engine [11,12,111,123,127,132,135,136,138,143,145,146,22,147,152–37 

154,156,157,159–162,71,76,88,105,106,109,110]. In short, EnergyPlus is an open source energy analysis and 38 

thermal load simulation tool, comprising modular structured code written in Fortran. It inherits its major 39 

simulation characteristics from the BLAST and DOE-2 programs [173]. TRNSYS comes second after 40 

EnergyPlus [10,87,117,122,130,142,148]. It is a tool with a modular system structure, designed for the transient 41 

system simulation of complex energy systems problems, with demonstrated flexibility allowing for different 42 

configurations [174]. A possible explanation for its popularity lies in the fact that some optimisation tools are 43 

specifically designed to be coupled with EnergyPlus and TRNSYS (e.g. JEPlus+EA) and that EnergyPlus has 44 

several user-friendly add-ons (e.g. DesignBuilder). Adding to this, they are easily coupled with external software 45 

due to its text-based inputs-outputs. DesignBuilder [175], the graphical interface for EnergyPlus, is used for 46 

simulation in [20,106,109,138,145,162] and subsequently for optimisation, through the articulation with separate 47 

optimisation tools or using its native optimisation module (see 5.4.2. Simulation-optimisation tools). Other 48 

energy simulation tools used within the PS are: DOE 2.2, Comis, eQuest, Design Advisor, IDA ICE 49 

[131,139,142,149,158]. Complementarily, some authors use modelling tools coupled with a chosen energy 50 

simulation tool, such as Sketchup and REVIT. Schwartz et al. [11] used it as the first of four tools adopted in 51 

their optimisation process: Sketchup, EnergyPlus, JEPlus, and JEPlus+EA. Eskander et al. [154] used REVIT to 52 

model the geometry of four detached residential case studies and combines it with EnergyPlus to perform its 53 

initial simulation and calculate the annual heating and cooling needs based on the comfort requirements of the 54 

Portuguese legislation; the aim of the MOO was to select the best set of retrofitting measures applied to four 55 

different regions, that would maximise the annual energy savings while minimising the initial investment. Sharif 56 

& Hammad [20] modelled its case study in REVIT before importing it to DesignBuilder to provide input data and 57 

integrate BIM tools with energy simulation.   58 

MATLAB is also used in the simulation process, through sampling generation following the LHS method [76]. In 59 

two PS [22,71,156], Python programming language was used for exergy performance simulation and analysis.  60 

There are fewer examples of static simulation models being coupled with optimisation techniques 61 

[69,134,137,141]. Murray et al. [69] made a case for static simulation based on the lack of accessibility to high-62 

end computationally intensive dynamic energy models. It adopted the simplified degree-days method according 63 



to the CIBSE Guide TM41 [176] combined with GA. Nassif et al. [137] employed a steady-state model for a 64 

mathematical HVAC optimisation to determine the setpoint values of the supervisory control strategy of the 65 

HVAC system for the operating consumption energy and building thermal comfort, with constraints on the HVAC 66 

system operation. Pernodet et al. [141] made use of a polynomial function in order to estimate the energy 67 

consumption for the energy objective function, bypassing the use of dynamic thermal simulation. It further 68 

suggested that it would be interesting to couple a dynamic thermal simulation tool with the Real-Coded GA 69 

genetic solver and that the model could be adapted to other types of buildings and climates. Monteiro et al. 70 

[134] developed a simplified thermal model for the optimisation of energy needs and cost reduction, based on 71 

indicators and parameters defined by the Portuguese standard of Energy Performance of Buildings DL118/2013 72 

[177]  and coupled NSGA-II with this static method approach. Fan et al. [107] mathematically modelled the 73 

energy consumption of the various components of a building for a MOO maximising energy savings and 74 

reducing the payback period of the retrofit of an office building in South Africa, with the objective of complying 75 

with green building policy.   76 

 77 

5.4.2.  Simulation-optimisation tools  78 

• Generic tools are the most adopted ones within the PS, in combination with EnergyPlus and TRNSYS. 79 

MATLAB in particular, although not designed specifically for building optimisation, is the optimisation 80 

tool of choice for GA-based MOO retrofit studies; 81 

• Simulation-based optimisation tools are also applied, namely DesignBuilder’s optimisation module and 82 

jEPlus; 83 

• jEPlus+EA, an optimisation engine oriented tool, comes in second place after MATLAB within the most 84 

used optimisation tools; 85 

• Customised design optimisation techniques are used as well, in particular for introducing energy 86 

standards coding into the optimisation process.  87 

 88 

Generic optimisation tools are the most used within the PS, in combination with energy simulation software 89 

EnergyPlus and TRNSYS. Even though MATLAB is not specifically designed for building optimisation and 90 

requires a higher expertise level [3], it is the optimisation tool of choice for GA-based MOO retrofit studies 91 

[10,76,136,138,143,148,152–154,161,87,105,106,109,111,117,123,132]. In a nutshell, MATLAB is an 92 

interactive environment for numerical computation, visualisation, and programming that can be used for a wide 93 

range of applications [178]. MATLAB Optimisation ToolboxTM provides a variety of algorithms for optimisation 94 



problems that can solve constrained and unconstrained continuous and discrete problems. Moreover, its Neural 95 

Network toolbox allows reducing computational time through surrogate models, which is an additional feature 96 

that can further contribute to its success amongst the building optimisation community. In [159], Python was 97 

chosen for coupling the implementation of the NSGA-II algorithm with a building energy model built in 98 

EnergyPlus. GenOpt [179], another generic optimisation tool, was developed to yield the minimisation of linear 99 

cost functions. It can be coupled with any external simulation program, provided that its inputs and outputs are 100 

expressed in a text-based format (e.g. EnergyPlus, TRNSYS, DOE-2, IDA-ICE, SPARK, BLAST). However, 101 

because of its inability to handle MOO problems, GenOpt is only considered in this review for its capacity to 102 

conduct parametric studies and statistical databases [87,122]. In [130] GenOpt is coupled with TRNSYS to 103 

generate random data sampling sets for ANN learning and validation and is additionally used for constraint 104 

definition on summer comfort index through the penalty function method.  105 

A simulation-based optimisation tool is used in two of the PS. As previously stated, DesignBuilder is used in 106 

several PS as a graphical interface for EnergyPlus simulation, and in addition its optimisation module is 107 

employed to target different objective functions: Huws & Jankovic [145] used DesignBuilder’s optimisation 108 

module and jEPlus to conduct a MOO to reduce carbon emissions, construction cost and attain thermal comfort, 109 

while in [20], the case study was modelled in REVIT and imported to DesignBuilder to perform a MOO 110 

concerning three objectives: total energy consumption, LCC and LCA, optimised by pairs due to software 111 

limitations.  112 

jEPlus+EA, an optimisation engine oriented tool, takes second place within the most used optimisation tools 113 

after MATLAB [11,22,71,88,135,145,147,156,157]. It couples jEPlus, the Java shell to perform parametric 114 

analysis for EnergyPlus, with a modified NSGA [180]. Another optimisation engine oriented tool based on 115 

NSGA-II, MultiOpt, is designed specifically for retrofit solutions optimisation [142]. The tool, with three 116 

components (graphical user interface (GUI), GA and a set of assessment methods) was applied to a school 117 

case study, in combination with dynamic simulation software TRNSYS and COMIS, regarding its building 118 

envelope, HVAC systems and control strategies. In [158] MOBO, another optimisation engine oriented tool, was 119 

coupled with IDA ICE to perform a MOO using MOBO’s NSGA-II, to minimise the annual total energy 120 

consumption, discomfort hours and investment cost of an office building in Rome.  121 

Finally, some customised design optimisation techniques are found amongst the PS, in particular for 122 

incorporating energy standards coding into the optimisation process, such as Visual Basic for Applications 123 

(VBA) in Microsoft Excel. In [138], VBA was used for training and validating the ANN for the optimum building 124 

envelope insulation thickness, in combination with DesignBuilder, EnergyPlus and MATLAB toolbox. In [140] it 125 

was used for implementing the building energy simulation module based on the standard DIN V 18599, a 126 



holistic performance assessment method developed for German non-residential buildings. Jeong et al. [162] 127 

built a VBA model for a GA-based MOO with 5 cost and environmental objective functions to promote the 128 

improvement of multi-family housing complexes energy efficiency in South Korea; the benefits of employing a 129 

VBA  model due to its user-friendly and simple graphical interface, allowing for a wider access to non-expert 130 

users, are advocated in the study. Other customised optimisations were found to use C programming coupled 131 

with EnergyPlus [127]. Contreras et al. [150] enhanced the utility of combining simplified building models with 132 

optimisation tools versus the high computational cost of detailed energy models: the authors code the standard 133 

energy calculation approach in ISO 13790 and EN 15217 in MS excel programming and used the GA included 134 

in the MS Excel Solver tool for the optimisation. Other optimisation studies coded simplified dynamic models of 135 

buildings: Wright et al. [121] used the lumped capacitance model to approximate the transient conduction in a 136 

ventilation slab system and building fabric.  137 

The simulation-optimisation exhaustive list can be found in Table 6 at the end of section 5.  138 

 139 

5.5. Historical, traditional or special architecture value buildings  140 

• The historical, traditional or special architecture value buildings category has been overlooked in GA-141 

based MOO in building retrofit; 142 

• The most prevalent objectives for trade-off analysis are linked to retrofit costs, entailing payback, life 143 

cycle cost and cost of energy consumption, along with the environmental impact of buildings. Indoor 144 

comfort is found to attract less attention followed by conservation compatibility;  145 

• The process of defining and quantifying intrinsically qualitative objective functions, as in aesthetics, 146 

urban integration, and conservation compatibility, is particularly challenging. Analytic hierarchy process 147 

(AHP) was used in the PS as a method to overcome these quantification issues.  148 

 149 

The challenges entailed in MOO in sustainable and energy-efficient building retrofitting are all the more evident 150 

when buildings own any kind of heritage, traditional or special architecture value and protection. It is well known 151 

that the retrofit of these types of buildings is subjected to more constraints, strict regulations and uncertainties, 152 

in particular in vernacular and traditional context, and requires more care than general building retrofit [181,182]. 153 

When translated into the MOO process, these specificities make an inherently difficult problem become all the 154 

more challenging, as a robust optimisation in these cases should incorporate aesthetics, conservation 155 

compatibility or analogous values in some way, which are all intangible by nature. However, in practice too often 156 



a higher efficiency level is obtained with disregard to the building’s heritage value. For this reason, a separate 157 

analysis is performed for this category.  158 

Juan et al. [139] and Jin et al. [143] focused on all three sustainability scopes, while Murray et al. [69], Schwartz 159 

et al. [11], Shao et al. [140] and Ascione et al. [111,161] examined environmental and economic optimisation 160 

topics, and Roberti et al. [127] looked at environmental and social issues. All studies tackled three-objective 161 

optimisation problems, except for [11,111], and relied on real-building case studies with residential [11,127], 162 

educational [69,143], commercial [139,140] and industrial [139] uses, except for [111,161] which relied on a 163 

residential building archetype. The most common objectives for trade-off analysis are linked to retrofit costs, 164 

including payback, life cycle cost and cost of energy consumption, along with the environmental impact of 165 

buildings. Indoor comfort [127,143] is found to attract less attention followed by conservation compatibility at the 166 

less-explored end of the spectrum [127]. GA is employed in the form of either stand-alone, hybrid or within GA-167 

mixed techniques. NSGA-II is the most established GA in this category as well. Both dynamic and static 168 

modelling approaches are used, with EnergyPlus once more ranking as the most prevailing software for 169 

modelling and dynamic simulation. A diversity of tools (i.e. generic optimisation tools, optimisation engine 170 

oriented tools, customised design optimisation techniques, and mathematical programming methods) are used 171 

for solving MOO.  172 

A noteworthy feature of Roberti et al.’s [127] research lies precisely in the inclusion of conservation compatibility 173 

as an objective function for a medieval historical house MOO in Italy, assigned to become a museum. It 174 

distinguishes itself from other heritage-based MOO studies, as energy savings or higher comfort levels 175 

objectives are too often obtained at the expense of heritage degradation. A mixed-mode optimisation approach 176 

is followed, combining EnergyPlus simulation, NSGA-II in C original implementation and AHP to find the trade-177 

offs between heating and cooling energy demand, thermal indoor comfort and conservation compatibility. 178 

Different decision variables concerning the building envelope (insulation, air tightness, glazing) and systems 179 

(ventilation and cooling) were considered. A three-stage process was followed by firstly defining the technically 180 

feasible energy efficiency measures, secondly quantifying the concept of retrofit conservation compatibility and 181 

finally conducting the MOO. Conservation compatibility was quantified through AHP, obtaining scaled 182 

conservation weights and an expert score-based scheme. The sum of conservation scores matching each 183 

retrofit measure built up the overall retrofit conservation compatibility.  184 

In like manner, Shao et al. [140] combined AHP and NSGA-II, yet with an emphasis on the integration of the 185 

numerical optimisation process and the analysis performed by design teams. Three main objectives were 186 

targeted for minimisation regarding the energy retrofitting of existing office buildings: operational energy 187 

consumption, environmental impact GWP and retrofit cost, with constraints concerning envelope insulation, 188 



energy consumption, envelope air leakage, indoor air quality, and thermal comfort. The decision variables 189 

encompassed variations at the building envelope level, HVAC system, and renewable energy incorporation. 190 

After obtaining the Pareto-front optimal solutions, features were compared and ranked by applying MCDM 191 

techniques to further aid the design team with the DM process.   192 

As previously mentioned, [69] used a static simulation approach, by combining GA with the simplified degree-193 

days modelling technique to optimise the Civil Engineering Building from the University College Cork built in 194 

1910. It explored trade-offs between payback period, CO2 emissions and energy consumption cost, for a capital 195 

investment cost constraint. The decision variables are building envelope (insulation thickness, window type, 196 

envelope air tightness), HVAC systems (boiler type) and renewable energy related.   197 

Jin et al. [143] and Schwartz et al. [11] conducted a Pareto-based MOO for an educational and residential 198 

building respectively, both located in England. In [143] the research focused on the steel-framed Inglis Building 199 

from the Department of Engineering, University of Cambridge built in 1945, with reinforced concrete floors. Both 200 

studies coupled EnergyPlus modelling with MATLAB for the implementation of a constrained optimisation with 201 

NSGA-II, looking at the trade-off between cost, energy use and user productivity to identify optimal façade 202 

solutions while taking into account carbon and cash payback constraints. Schwartz et al. [11] used NSGA-II to 203 

optimise the retrofit of a council housing complex, grade II listed building, varying the building envelope 204 

properties in terms of thermal insulation, window type, and window-to-wall ratio. It examined the trade-off 205 

between the building’s environmental impact, using the life cycle carbon footprint (LCCF), and its life cycle cost 206 

(LCC) for a life span of 60 years. Apart from EnergyPlus for modelling thermal properties, the authors used 207 

Sketchup for geometric modelling, jEPlus for the generation of new models based on the combination of 208 

different design parameters and jEPlus+EA to define the objective functions and the genetic process. Even 209 

though the method successfully found optimal solutions within a reasonable amount of time, it is suggested that 210 

a mono tool could be developed with a simple user-friendly interface to avoid preventable mistakes stemming 211 

from the integration of four different tools. 212 

Juan et al.’s [139] method stands out due to the use of a hybrid GA with the A*graph search algorithm, GAA*. 213 

This technique feeds from the feedback between both algorithms, with the intention to overcome traditional 214 

GAs’ random initial population selection, while keeping the diversity of global optimal solutions due to its 215 

mutation mechanism. The goal was to develop a DM support system, for the evaluation of existing office 216 

buildings and the recommendation of an optimal cost-effective set of retrofit actions. The objectives were the 217 

cost of all retrofit actions, building quality and environmental impact, while the retrofit measures included 218 

intervention at building envelope, HVAC system, and building control systems level. An algorithm effectiveness 219 

validation was performed, comparing the robustness of GAA* with a stand-alone GA and Zero-One Goal 220 



Programming (ZOGP), finding GAA* to be more robust in terms of efficiency and solution quality. It also 221 

examined the technique’s potential for practical application through comparison with a real project.  222 

Finally, Ascione et al. [111,161] conducted a MOO based on a NSGA-II variant aiming at reducing primary 223 

energy consumption and global cost with reference to two case studies: a modern villa located in Athens and a 224 

traditional tuff-made villa located in Naples. By coupling EnergyPlus with MATLAB, 9 retrofit measures were 225 

studied, including the improvement of HVAC systems ‘efficiency, PV system installation, window replacement 226 

and roof and external walls thermal insulation. As with many other PS, a post-optimisation MCDM was then 227 

conducted according to two different criteria: the achievement of the nearly zero energy standard and cost-228 

optimality. Lastly, it is suggested that its findings can contribute to providing useful generic guidelines for 229 

Mediterranean coastline housing retrofit regarding energy-efficiency and cost-effectiveness.230 



Table 6 

Extraction of primary studies main data for analysis, listed in chronological order. 

Ref.  MOO Methods 
Opt. topic 

Objective functions Decision variables Constraints Sampl.  
U.V. 

S|M tools Aux. Opt. Tool 
Env Sys BCS RES Y  N 

              

[121] GA (MOGA)  ◼ ◼  the assessment period (30 years) HVAC control system set points Coils design N/A  ◼ Lumped N/A 

 Pareto front     Thermal discomfort (%): PPD HVAC components size Supply fan    capacitance  

  Aggregating method of constraints        Infeasibility objective (aggreg. constraints viol.)   HVAC capacity      model   

              

[137] GA (NSGA-II)  ◼ ◼  Operating energy consumption (kWh) (reheat + HVAC set points (zone toC; supply duct static Fan airflow rate N/A  ◼ Steady-state N/A 

 Pareto front     chiller + fan) pressure; supply air toC; chilled water supply toC Zone airflow rate    model  

 Penalty Function method: constrained opt.     Thermal comfort (%): PPD, PMV required reheat; min outdoor ventilation airflow rate) PPD of each zone      

              

[9] GA + Analytic hierarchy process (AHP) ◼ ◼ ◼  Retrofit cost ($): NPV and LCC Building envelope repair and roof waterproofing Budget (IC) N/A  ◼ Java Server Pages 

 Pareto front     (initial investment cost; annual energy saving; Kitchen exhaust fan installat. + plumbing replacement Quality priority    Java environment 

 Constrained optimisation     income of an action; annual retrofit action cost; Envelope air tightness (m3/h.m2 @ Pa) constrained by    Apache Tomcat web container 

      expected lifespan of an action; residual value; Walls and windows soundproofing user's decision     MySQL database 

      discount rate) Efficient water management system and threshold      

      Retrofit quality (weighted score scheme) Recyclable materials       

       Security features and devices       

              

[141] GA (GenetikSolver V4.1) ◼ ◼ ◼   Energy consumption (kWh/m2year) Roof and walls U-Value (W/m2K) Retrofit cost N/A   ◼ Polynomial Real-Coded GA 

  Pareto front      Retrofit cost (€): initial investment cost Window-to-wall ratio (%) Energy consumption      function GenetikSolver 

  Aggregating method (Weighted sum approach      Global cost (€): initial investment cost + annual Window type: U-value (W/m2K) and G-value (%)          V4.1 

  + ε-constraint method)      energy cost + annual maintenance cost + Envelope air tightness (m3/h.m2 @ Pa)            

  Penalty Function method: constrained opt.      inflation and discount rate Lighting power options and control settings            

              

[139] GAA*: GA + A* graph search algorithm ◼ ◼ ◼   Retrofit cost ($): sum of retrofit actions costs Roof type: roof garden/vegetated roof N/A N/A   ◼ Design  N/A 

  Stand-alone GA      Building quality Exterior pavement and adaptable design strategies        Advisor   

  Zero-one goal programming (ZOGP)      Environmental impact HVAC system type: energy efficiency            

           Window type: insulation, low-e coating + shading            

           Building structure insulation            

           IEQ; daylight and artificial lighting            

           Energy, water and waste management system            

           Recyclable materials            

              

[122] GA (NSGA-II) + ANN (multilayer feed-forward) ◼ ◼ ◼ 

 

Energy consumption (kWh/m2year): HVAC system settings and thermostat programming Thermal discomfort LHS  ◼ TRNSYS N/A 

 Pareto front    Furnace EC + Cooling EC + Fan EC Window-to-wall ratio (%) hours    GenOpt  

 Penalty Function method: constrained opt.     Thermal comfort (hours): PMV Thermal mass thickness (m)       

              

[142] GA-based (NSGA-II) ◼ ◼ ◼   Energy consumption (kWh/m2year) Roof, external wall and ground floor materials type N/A N/A   ◼ TRNSYS MultiOpt 

  Pareto front      Retrofit cost (k€): initial investment cost Internal partition wall and intermediate floor type        COMIS   

  Economic and environmental databases      Thermal comfort (hours): PPD index Window type: layer No, low-e coating, void gas            



         EI: LCA of building materials (CO2e units) Control strategies: cooling and shading            

              

[131] GA + statistical approach  ◼ ◼  Energy consumption (kWh): Total electricity Area per person (m2/person) Comfort ToC limits N/A  ◼ DOE 2.2 N/A 

 Multiple nonlinear regression applied to      (kWh) + Total natural gas consumption (therms Circulating (m3/s) and outside air (m3/s person)       

 the generated data sets     converted to kWh) Min/max supply temperature (oF)       

 Constrained optimisation     Thermal comfort (level) Bypass factor of the DX coils       

       Electric input ratio of chiller (=1/COP)       

       Supply fan efficiency and economizer limit (oF)       

              

[143] GA (NSGA-II) ◼ 
 

  Comfort: IEQ cost (k£) + PPD (%) Window-to-wall ratio (%) Paybackcash <30 N/A  ◼ EnergyPlus MATLAB 

 Pareto front     Cash Payback period (year) Window: layer No, low-e, Alum. therm. break frame Paybackcarbon <30      

 Constrained optimisation     EI: Carbon payback period LCA (year) External wall and floor insulation panel type       

              

[130] GA (NSGA-II) + ANN (multilayer feed-forward) ◼ 
  

  Energy consumption (kWh/m2year) Roof and external wall thermal conductivity (W/m.K) Isum (oCH): summer N/A  ◼ TRNSYS GenOpt (penalty 

  Pareto front  

  
  Thermal comfort (hours): Isum and volumetric specific heat (kJ/m3K) comfort index       function) 

  Aggregating method (Weighted sum approach)  

  
                

  Penalty Function Method: constrained opt. 
 

                    

              

[144] GA + Exhaustive search method  ◼ ◼  Energy savings (kWh/year): sum of average Lighting system: energy efficient, motion sensor NPV   ◼   N/A N/A 

  Aggregating method (Weighted sum approach)     annual energy savings HVAC system type and power factor correction Payback period          

  Sensitivity analysis     Payback period (months) Water efficient fixtures Initial investment          

  Non-stationary penalty function method       Energy management and control systems Energy target          

              

[87] GA (variant of NSGA-II) + ANN  ◼ ◼  ◼ Energy consumption (kWh/m2year): sum of Roof and external walls insulation materials type N/A LHS 

 

◼ TRNSYS MATLAB (model- 

 (Multilayer feed-forward model)     energy demands (QHEAT+QCOOL+QSHW) Window type: Layer No, void gas, coating    GenOpt calibration + 

 Pareto front     Retrofit cost (€): sum of retrofit actions costs Solar collector type     neural network 

      Thermal discomfort (% discomfort hours): PMV HVAC system type      + gamultiobj) 

              

[136] GA (NSGA-II) ◼ ◼ 
 

 Energy consumption (kWh/m2year) Roof, walls insulation density and conductivity N/A   ◼ EnergyPlus MATLAB Toolbox: 

 Pareto front   

 

 Health impacts from exposure to indoor heat, Roof plaster solar radiation absorption coefficient      gamultiobj  

    

 

 cold and PM2.5 (year) Shading: window blinds (on/off)      function 

    

 

  Kitchen exhaust fan: ventilation rate variation (m3/s)       

    

 

  Envelope air tightness (m3/m2/hr)       

              

[145] GA (NSGA-II) ◼ ◼ ◼ ◼ EI: CO2 emissions External walls insulation type (int/ext) and thickness Thermal comfort N/A ◼   DesignBuilder jEPlus 

  Pareto front     Retrofit cost (€): Construction cost (supply of Window type: layer No+ shading (louvers/overhangs) CO2 emissions      EnergyPlus DesignBuilder  

  Constrained optimisation     materials + installation labour + contractor's Infiltration (ACH - Air changes per hour)            

        preliminaries, overheads, profit and Ground floor thermal mass options            

        contingency) Window-to-wall ratio (%)            

        Thermal discomfort (hours/year) HVAC system options and setting points            

          Renewable energy: PV s., solar thermal, wind energy            

              

[69] GA + simplified degree-days method ◼ ◼  ◼ Payback period (years) Roof, external wall insulation thickness (m), U-value Capital investment N/A   ◼ N/A N/A 



        EI: CO2 emissions (kg/year) Boiler type: gas condensing, oil, heat pump, biomass cost          

        Cost of energy consumption (€): Thermal fuel Window type: void gas, layer No, glass thickness            

    
    

consumption (kWh) + unit cost (€/kWh) Envelope air tightness (m3/h.m2 @ Pa)            

              

[140] GA (NSGA-II) + Analytic hierarchy process ◼ ◼   ◼ Operational energy consumption (kWh/m2year) Roof, external walls and floor insulation type Envelope Insulat. N/A   ◼ Excel VBA N/A 

  Pareto front      EI: GWP (annual CO2e + embodied emissions) Window type: void gas, low-e, U-value (W/m2K) Energy consumpt.          

  Quality Function Deployment Model       Retrofit cost (€): initial investment cost Envelope air tightness (m3/h.m2 @ Pa) Env. Air leakage          

  Constrained optimisation        HVAC system type IAQ & Th.Comfort          

              
 

[146] GA (NSGA-II) ◼ ◼ ◼   Energy consumption (kWh/year): heating, HVAC system options and set points Thermal comfort N/A   ◼ EnergyPlus N/A 

  Pareto front      cooling, artificial lighting Window-to-wall ratio (%) and building orientation <20% of PPD      R statistical   

  Sensitivity analysis: stepwise regression      Retrofit cost (£): initial investment cost Hours of the day (summer/winter) for no more than      software   

  Constrained optimisation        Walls, ceiling-floor type: heavy, medium, light weight 150 working hrs/yr          

              

[123] GA (variant of NSGA-II) ◼ ◼ ◼ ◼ HVAC primary energy consumption (kWh/m2a): Roof solar radiation absorption coefficient Budget (IIC) N/A   ◼ EnergyPlus MATLAB 

  Pareto front     sum of energy demands (space heating and Roof and walls insulation thickness (cm)(W/m2K)            

  Constrained optimisation     cooling)/Conditioned building area Mechanical ventilation system installation (Y/N)            

        Thermal discomfort (% discomf. Hrs): PMV, PPD HVAC type and set point temperature: standard,             

          condensing, air-cooled, water-cooled            

          Window type: layer No, low-e coating            

              

[88] GA (NSGA-II) ◼    Total retrofit cost (€): construction materials + External walls thermal conductivity (W/m.K) and Insulation materials N/A  ◼ EnergyPlus jEPlus+EA 

 Pareto front     operational phase electricity consumption volumetric specific heat (kJ/m3K) thickness      

 Constrained optimisation     EI: energy consumption and operation,        

  
 

   manufacture of construction materials (EI99)        

              

[147] GA (NSGA-II) + exhaustive search method ◼    Energy demand (MWh/year): heating Loft and walls insulation thickness (mm) N/A N/A  ◼ EnergyPlus jEPlus 

 Pareto front     Retrofit cost (k£): initial investment cost Window type: glazing layer No       
              

[134] GA (NSGA-II) ◼    Energy demand (kWh/year) (heating + cooling) Roof and external walls insulation U-value (W/m2K) N/A N/A  ◼ N/A N/A 

 Pareto front     Retrofit cost (€): sum of retrofit actions costs Window type (layer No, frame) and shading type       

       Window-to-wall ratio (%)       

              

[76] GA (NSGA-II) + ANN (multilayer feed-forward) ◼ ◼ 
 

  Energy consumption (kWh/year) Roof and external wall insulation thickness (m), N/A LHS ◼   EnergyPlus MATLAB (Neural 

  Pareto front   

 
  Health impacts from exposure to indoor heat, conductivity (W/m.K) and density (kg/m3)        MATLAB network toolbox 

  Sensitivity analysis   

 
  cold and PM2.5 (year) Floor insulation (m; W/m.K) + area variation          + gamultiobj 

  Meta-model based on sensitivity analysis   

 
    Window type: layer No and shading type: overhang          function) 

      

 
    External plaster solar radiation absorption coefficient            

      

 
    Window-to-wall ratio (%) and building orientation            

      

 
    Envelope air tightness (m3/h.m2 @ Pa)            

      

 
    Kitchen exhaust fan: ventilation rate variation (m3/s)            

              

[10] GA (NSGA-II) + Mersenne-Twister pseudo ◼ ◼ 
 

 Energy consumption (kWh/m2year): heating Roof, external walls, floor insulation thickness (cm) N/A Sobol  ◼ TRNSYS MATLAB 



 random generator   

 

 Total retrofit cost: NPV (k€) (ICC + annual running Window: layer No, aluminium thermal break frame  seq.     

 Pareto front    

 

 costs + replacement cost + residual value) Boiler type: standard, modulating, condensing       

    

 

 Thermal discomf. (Kh): Weighted Discomf. Time Mechanical ventilation system installation (Y/N)       
    

          

[117] GA (NSGA-II) ◼ ◼    Energy consumption ((kWh/m2year): heating Roof, external walls, floor insulation thickness (m)  Incentive rate  Sobol   ◼ TRNSYS MATLAB 

  Pareto front    

 
  Retrofit cost: NPV(k€) (IIC + annual running costs Window type: layer No, SHGC, low-e, void gas   seq.        

  Constrained optimisation   

 
  + replacement cost + residual value)  Boiler type: standard, modulating, condensing            

      

 
  Thermal discomf. (Kh): Weighted Discomf. Time Mechanical ventilation w/ heat recovery system instal.            

    
          

[148] GA (NSGA-II) + Mersenne-Twister pseudo  ◼ ◼ 
 

 Primary energy consumption (kWh/m2year):  Roof, external walls, floor insulation thickness (m) N/A Sobol  ◼ TRNSYS MATLAB 

 random generator   

 

 heating  Window type: frame, glazing layer No (W/m2K)  seq.     

 Pareto front   

 

 Retrofit cost: NPV (k€) Boiler type: modulating, condensing       

    

 

  Mechanical ventilation w/ heat recovery system instal.       

[149] GA (NSGA-II)   ◼ ◼ ◼ Environmental impact (EI): greenhouse gas LEED-EB credit areas: sustainable sites; water Light luminance N/A  ◼ eQuest N/A 

 Constrained optimisation     Emissions (GHG); refrigerant impacts; mercury- efficiency; energy and atmosphere; materials HVAC system      

      vapour emissions; light pollution; water and resources; IEQ; innovation in operation; energy Water heating      

      consumption and water consumption fixtures: light fixtures; PV system      

      Retrofit cost ($): energy and water motion sensors; HVAC system; water heaters;       

      fixtures and equipment; management of solid vending machines; hand dryers; solar collectors;       

      waste; achieving selected LEED-EB credit areas solar inverters; other devices (water cooler)       

      Number of earned LEED-EB points Management of solid waste       
              

[138] GA (NSGA-II) + Artificial Neural Network (ANN) ◼       Heating load (kwh) Roof and external walls U-value (W/m2K) N/A LHS   ◼ DesignBuilder MATLAB Toolbox 

  Multilayer feed-forward model         Thermal discomfort (hours above 25oC) Window type: U-value and G-value (%)        EnergyPlus (ANN+NSGA-II) 

  ANN Training algorithm Levenberg-Marquardt        LCC of roof and external walls retrofit (€) Air change rate (1/h)          Excel VBA  

  Pareto front                     (LCC) 

              
              

[105] GA (variant of NSGA-II) ◼ ◼  ◼ Primary energy consumption (kWh/m2a): DHW,  Window type: layer No, void gas, frame, low-e coating Budget (IC) LHS  ◼ EnergyPlus MATLAB 

 Monte Carlo framework for sampling     space conditioning, fans, pumps, lighting, Roof and external walls insulation thickness (m),        

 Sensitivity analysis: Standardised Rank      equipment thermal emissivity and solar radiation absorpt. coeff.       

 Regression Coefficient     Retrofit cost (€): initial investment cost (IIC) Solar shading type: interior shading systems, blinds       

 Smart exhaustive sampling     Global cost (k€): IIC + replacement cost + state Renewable energy: PV system, solar thermal       

 Pareto front     financial incentives + operation cost HVAC type: natural gas, condensing gas, air + ground       

 Constrained optimisation      source reversible heat pump, CHP, heat recovery syst,       

       air-cooled MagLev and water-cooled chiller       

              

[133] GA (NSGA-II)  ◼ ◼ ◼ ◼ Electric energy consumption (GWh/year) Window type: standard, high performance Legal limits for  N/A ◼  N/A N/A 

  Monte Carlo method of error propagation for     Thermal energy consumption (GWh/year) Boiler type: standard gas, condensing gas renewable energies     
     

  uncertainty parameters simulation     Retrofit cost: NPV (M€) Chiller type: standard electric, high efficiency electric Administration limits     
     

  Pareto front     CO2  emissions  Multi-function electric heat pump (heating + cooling) on the minimum %     
     

  Constrained optimisation     Thermal discomfort (hours) Building automation control system of electric green      
     

    
    

  Fluid distribution syst: standard/ increased insulation energy     
     

    
    

  Renewable energy: PV s. type, solar thermal s. type       
     

    
    

  Lighting system: standard, low consumption, inverter       
     



              

[150] GA + MS Excel programming ◼    Retrofit cost (€): retrofit actions execution cost External walls insulation type (W/mK) + thickness (m) Heating/Cooling N/A  ◼ N/A MS Excel solver 

 Constrained optimisation     Energy demand adjustment (kWh/m2year) Window type: glazing and frame U-value (W/m2K) Insulation materials     GA Tool 

      (heating and cooling energy demands) Shade factor thickness      
              

[71] GA (NSGA-II) ◼ ◼ ◼   Total exergy destructions (kWh/m2year) Roof, wall and floor insulation type and thickness (m) N/A LHS ◼   EnergyPlus jEPlus 

  Pareto front      Energy consumption (kWh/m2year) (HVAC/DHW HVAC system type        Python jEPlus+EA 

  Monte Carlo sensitivity and uncertainty analysis      generation systems) Window type: layer No, void gas, U-value (W/m2K)        SimLab   

         Thermal discomfort (hours): PMV Sealing options (cracks, joints and holes)            

           Lighting system + electric equipment: energy efficient            

              

[11] GA (NSGA-II) ◼    EI: Life cycle carbon footprint (kgCO2/m
2) Panel and external wall insulation thickness (cm) N/A N/A  ◼ Sketchup jEPlus 

 Pareto front 
 

   LCC: materials costs; materials waste + Ground floor and ceiling insulation (cm)     EnergyPlus jEPlus+EA 

  
 

   transport + maintenance cost coefficient; Window type: concrete frame thermal bridging       

  
 

   heating energy cost; electricity cost (£/m2/y) Window-to-wall ratio (%)       

              

[12] GA (NSGA-III): Reference-Point Based Non- ◼ ◼    Energy consumption (kWh/m2year) Roof, ceiling, floor and ground floor insulation type N/A N/A   ◼ EnergyPlus N/A 

  -dominated Sorting Genetic Algorithm       EI: CO2 emissions in materials + equip. life-cycle External walls external and internal insulation type            

  Pareto front       Retrofit cost: Initial investment cost  Window type: glazing layer No, void gas            

          Thermal comfort (% discomfort hours) HVAC system type            

              

[151] GA (based on NSGA-II) ◼ ◼  ◼ Primary energy demand (kWh/m2year): heating  Roof, walls, ground floor insulation thickness (mm)  N/A N/A ◼  N/A N/A 

 Brute-force algorithm      energy needs + domestic hot water production -  Window type: U-value (W/m2Co)        

 Pareto Front     contribution from renewable energy sources  Boiler type: biomass, gas       

      Global cost (€/m2): IIC + MC + RC - residual  Renewable energy: PV system, solar thermal       

      value + energy costs  thermosyphon, solar thermal forced circulation       

              

[152]  GA (MOGA, NSGA-II variant) + ANN  ◼ ◼ ◼ ◼ Annual primary energy consumption (kWh/m2a) Roof and external walls solar radiation absorption  Budget (IIC) LHS ◼  EnergyPlus MATLAB 

 (multilayer feed-forward)     Thermal Discomfort: % of hours on annual  Roof and external walls insulation thickness (cm)       

 Regression Coefficient     occupied hours Window type: glazing layer No       

 Pareto front     Global cost (€): initial investment cost +  Solar shading system installation (Y/N)       

 Uncertainty and sensitivity analysis     replacement costs – discounted public financial   Free cooling system installation (Y/N)       

      Initiatives + discounted lifecycle operating costs  HVAC system set points (heating and cooling)       

      For space heating and cooling + DHW production  Boiler type: existing non-condensing, condensing        

      + Direct electric uses – Operating costs savings  Chiller type: air-cooled, water-cooled       

      due to the energy provided by RES systems  PV system coverage: 0-100% with a step of 10%       

              

[153] GA (variant of NSGA-II) + smart  ◼ ◼ ◼ ◼ Energy demand for heating (kWh/m2a)  HVAC system set points (heating and cooling) DH < DHBB S.E.   ◼ EnergyPlus MATLAB 

 exhaustive sampling     

 
Energy demand for cooling (kWh/m2a) Roof and external walls infrared emissivity and solar        

 Cost-optimal analysis     Thermal comfort (% discomfort hours) radiation absorption        

 Pareto front      Roof + external walls insulation type and thickness (m)       

 Sensitivity analysis      Window type: glazing layer No, void gas, aluminium        

       Frame, PVC frame, low-e, solar control coatings       

       HVAC type: condensing gas boiler, Air-source heat        

       pump, ground-source reversible heat pump, air-cooled         



       chiller, water-cooled chiller, efficient gas boiler       

       Renewable energy: PV system       

              

[106] GA + Smart exhaustive sampling ◼ ◼   Energy demand for heating (kWh/m2a)  Roof and external walls infrared emissivity and solar  N/A S.E.  ◼  DesignBuilder MATLAB 

 Cost-optimal analysis     

 
Energy demand for cooling (kWh/m2a) radiation absorption      EnergyPlus  

 Pareto front     Under different climatic scenarios (global warming  Roof + external walls insulation type and thickness (m)       

 Sensitivity analysis     Neglected, low global warming, medium global  Window type: glazing layer No, void gas, low-e, alum.       

      Warming and high global warming) frame, PVC frame, selective coatings        

       HVAC type: natural gas boiler, electric air-cooled        

       chiller, natural gas condensing boiler, energy-efficient       

       elec. air-cooled chiller, reversible elec. air-source heat       

       pump, reversible electric ground-source heat pump       

              

[154] GA (NSGA-II) ◼ ◼  ◼ Annual energy savings (€) External wall insulation thickness (mm) Compliance of  N/A  ◼ EnergyPlus MATLAB 

 Pareto front     Retrofit cost: Initial investment cost (€) Window type: glazing layer No Heating + cooling    REVIT  

       Window-to-wall ratio (%) demand      

       Lighting system: standard, energy efficient Limitation of       

       Renewable energy: PV system type physical space      

       Appliances: Fridge class C, energy efficient class A+ Technol. capacity      

       HVAC Type: AC unit & electric heater with COP 1  Non-negativity       

       replacement for a heat pump with COP= 4.2 nature of variables      

              

[155] GA ◼  

 
◼ Energy savings (kWh/year): tot. energy consump. Roof and external wall insulation materials type ($/m2) Budget (IIC) N/A   ◼ N/A N/A 

  Nonlinear integer programming    

 
  pre-retrofit - tot. energy consumption post-retrofit Window type: layer No, frame, low-e coating, void gas Area of solar panel          

  Aggregating method (Weighted sum approach)   

 
  Retrofit cost: NPV ($) Renewable energy: Solar thermal panel type power supply system          

      

 
  Payback period (months)   Measures choice          

    
          

[156] GA (NSGA-II) + compromise programming ◼ ◼ ◼ ◼ Exergy destructions (kWh/m2year) Roof, wall and floor insulation type and thickness (cm) Budget (IIC) LHS ◼  EnergyPlus ExRET-Opt 

 Multi Criteria Decision Making method     Thermal discomfort (hours): PMV HVAC system type and set-points control measures:  Discounted Payback     Python jEPlus 

 Monte Carlo sensitivity and uncertainty analysis     Retrofit cost (£): NPV (50 years) condensing gas, condensing, oil, electric, biomass,  (years)     SimLab jEPlus+EA 

 Pareto front      district system, ground source heat pump, air source  Discomfort hours      
 Constrained Optimisation      heat pump, PVT, heat recovery system, Micro-CHP        
       with Fuel Cell + electric boiler, ASHP-VRS       

       Window type: layer No, void gas, U-value (W/m2K)       

       Sealing options (cracks, joints and holes)       

       Lighting system + electric equipment: energy efficient       

       Renewable energy: PV system, wind turbine       

       Envelope air tightness (ACH 1/hr)       

              

[22] GA (NSGA-II) ◼ ◼ ◼ ◼ Energy consumption (kWh/m2-year) Roof, walls, ground floor, basement wall, pitched roof Budget (IIC)  N/A  ◼ EnergyPlus jEPlus 

 Pareto front      Thermal discomfort (hours): PMV insulation thickness (mm)  < 417,028 £    Python jEPlus+EA 

      Retrofit cost (£): NPV (50 years) Envelope air tightness (ach) Positive NPV/DPB    SimLab   

      Exergy destructions (kWh/m2year) HVAC type: condensing gas boiler, oil boiler, electric  <50 years      

      Exergoeconomic cost-benefit 50 years (£/h) boiler, biomass boiler, district system, ground source  Discomfort h < 853      

       heat pump, air source heat pump, heat recovery         

       System, Micro-CHP with Fuel Cell       



       Window type:  glazing layer No, void gas, U-value        

       Lighting type: energy efficiency       

       Renewable energy: PV system type, wind turbines        

       HVAC control system set points (heating)       

              

[132] GA (NSGA-II variant) ◼ ◼ ◼ ◼ Energy demand (kWht/m
2a) External walls and roof plaster solar radiation  DH < DHBB N/A  ◼ EnergyPlus MATLAB 

 Pareto front     Thermal comfort (% discomfort hours): PMV absorption coefficient and infrared  emissivity Heating set point <       

 Cost-optimal analysis       Roof and external walls insulation thickness (mm) 22oC      

 Smart sampling       HVAC control system set points       

       HVAC type: gas boiler, condensing gas boiler, air-       

       -source heat pump, ground-source reversible heat        

       pump, efficient air-cooled chiller,        

       DHW system efficiency: gas boiler        

       Renewable energy: PV system type       

       Window type:  glazing layer No, void gas, PVC/       

       wooden frames, low-e/tinted/selective coating         

              

[127] GA (NSGA-II) + Analytic hierarchy process ◼ ◼     Energy demand (kWh/m2year): heating + cooling Roof and walls int + ext insulation thickness (cm) N/A N/A   ◼ EnergyPlus C programming 

  NSGA-II in C original implementation        Thermal comfort: Mean absolute PMV Envelope air tightness (m3/h.m2 @ Pa)            

  Pareto front        Conservation compatibility (score) Window type: layer No, U-value, VT, G-value, void gas            

             Air change rate (1/h) and cooling system (Y/N)            

              

[109] GA (NSGA-II variant) ◼ ◼ ◼ ◼ Energy demand (kWht/m
2a): heating + cooling Walls and roof insulation thickness  Global costs  MATLAB  ◼ DesignBuilder MATLAB 

 Pareto front      Thermal discomfort (annual % hours)  Walls and roof thermal emissivity and solar radiation  GHG emissions    EnergyPlus  

 Smart exhaustive sampling     Global costs: IIC + OC + Rd + GHG emissions  absorption        

 Cost-optimal analysis      cost + residual value (€/m2) Window type: low-e/selective coating, glazing layer No,        

      GHG Emissions (CO2 eq) void gas, aluminium/PVC frame, U-value, SHGC       

       HVAC system energy efficiency: reversible air-source        

       electric heat pump, natural gas boiler, condensing        

       natural boiler, air-cooled electric chiller       

       HVAC set point temperature for heating and cooling       

       Renewable energy: PV system type       

       Shading system type and position        

              

[157] GA (NSGA-II) ◼    Energy demand for heating (kWh/m2year)  Roof and external walls insulation thickness (cm) N/A N/A  ◼ EnergyPlus  jEPlus  

 Pareto front     
 
Energy demand for cooling (kWh/m2year) Roof skylight and window type: U-value (W/m2K)      jEPlus+EA 

      Exergy need and exergy available (kWh/m2year)        

              

[158] GA (NSGA-II) ◼ ◼   Energy consumption: heating+cooling (kWh/year)  External walls and roof insulation type  N/A N/A  ◼ IDA ICE MOBO 

 Pareto front     Thermal discomfort (annual total hours): PPD  Window type:  glazing layer No, void gas, low-e,       

 Sensitivity analysis for calibration process     Retrofit cost: investment cost (€) selective coatings        

       HVAC set points         

              

[159] GA (NSGA-II) ◼    Energy consumption (kWh/m2year) Walls internal and external materials type  PCM properties  N/A  ◼ EnergyPlus  Python  

 Pareto front      Global cost (€/m2)  Walls insulation thickness (cm) and U-value (W/m2K) (melting to range)      

 Cost-optimal analysis     Energy demand (heating + cooling) PCMs thickness, peak melting to, melting to range,        

      Investment cost (€/m2) latent heat of fusion, thermal conductivity       

       Window type: U-value window + frame, glazing layer         

       No, void gas, coating low-e, selective       

       Solar shading system        



              

[107] GA  ◼ ◼  ◼ Energy savings (MWh) Roof and external walls insulation thickness (m) Budget (IIC) N/A ◼  N/A N/A 

 Nonlinear mixed-integer programming      Payback period (months) Roof and external walls insulation materials type Physical limits       

 Aggregating method (Weighted sum approach)      Window type:  glazing layer No, void gas, low-e,  (PV installation      

 Sensitivity analysis       Aluminium frame, metallic frame area, boundary      

       HVAC type: chiller and heat pump efficiency on design       

       Lighting system: energy efficient  variables)      

       Renewable energy: PV system type EPC rating limit      

              

[128] GA  ◼ ◼  ◼ Energy savings (MWh/year) Roof and external walls insulation materials type Budget (IIC) N/A ◼  N/A N/A 

 Aggregating method (Weighted sum approach)     Payback period (months) Window type:  glazing layer No, void gas, low-e,  EPC rating limit      

       metallic frame Physical limits       

       HVAC type: chiller and heat pump efficiency (PV installation      

       Lighting system: energy efficient  area, boundary      

       Renewable energy: PV system type design variables)      

              

[135] GA (based on NSGA-II) ◼  ◼ ◼ Carbon emissions (CO2/year) Roof and external walls insulation thickness (mm) Discomfort hours N/A ◼  EnergyPlus  jEPlus+EA 

 Pareto front     Thermal discomfort (hours/year) Envelope air tightness        

       Lighting system: power density        

       HVAC fuel type (gas, biomass)       

       Renewable energy: PV system type       

       Room set temperature       

       Clothing level        

              

[160] GA + Mixed integer linear program ◼ ◼  ◼ Total costs:  IIC + OC Walls, roof and floors insulation thickness (U-value) Operation levels  N/A   3D CAD N/A 

 Pareto front      CO2 emissions: embodied emissions +  Envelope airtightness (ACH 1/hr)     EnergyPlus  

      Operational CO2 emissions  Window type: U-value        

       Systems capacity: Heat pump, gas boiler, electric        

       heater, storage tank diameter, thermal energy storage,       

       borehole heat exchanger length       

       Renewable energy: solar collector + PV area        

       Hourly schedules for technologies       

              

[20] GA (NSGA-II) ◼ ◼ ◼  Energy consumption (kWh/year) Roof and external walls materials and insulation type Budget  N/A  ◼ REVIT DesignBuilder 

 Pareto front     LCC (CAD$ M) Roof solar radiation reflectance and emissivity Owner’s     DesignBuilder   

      Environmental impact: LCA (kg. CO2 eq.) Window type: aluminium, wood and UPVC frame,  preferences      

       glazing layer No, shading fixed/adjustable    Certificate       

       Window-to-wall ratio (%) specifications      

       Façade type options TEC + LCC      

       HVAC system type (energy efficient) and set-points  Boundaries      

       control measures        

       Lighting system: energy efficient, control settings       

       Renewable energy: PV system type in roof, BIPV       

       Ventilation:  Mechanical ventilation system installation        

       (Y/N), natural ventilation, envelope air tightness (ACH)       

              

[110] GA (NSGA-II, NSGA-III Reference-Point ◼ ◼   Energy consumption: heating + cooling + lighting  Roof, external + internal walls, intermediate + ground  N/A N/A  ◼ EnergyPlus  N/A 

 Based Non--dominated Sorting GA)      + appliance use  floor and ceiling insulation materials type       

 Pareto front      CO2 emissions  Window type: glazing layer No, void gas        

      Retrofit cost: material + equipment + construction        

      Thermal cost: PMV         

              

[111] GA (NSGA-II variant) ◼ ◼  ◼ Primary energy consumption (kWh/m2a) Roof and external walls insulation thickness (m)  Budget (IIC) N/A  ◼ EnergyPlus  MATLAB  



 Pareto front      Global costs (€/m2): IIC + OC +  discount rate + Roof plaster solar radiation absorption coefficient        

      + residual value of retrofit measures at the end of  Window type        

      the assessment period (30 years) Solar shading type: internal/external        

       HVAC system efficiency        

       Renewable energy: PV system type in roof and %       

              

[161] GA (NSGA-II) ◼ ◼ ◼ ◼ Primary energy consumption (kWh/m2a) Roof and external walls insulation thickness (m)  Budget (IIC) N/A  ◼ EnergyPlus  MATLAB  

 Pareto front      Global costs: IIC + OC + discount rate + Roof plaster solar radiation absorption coefficient        

      + residual value of retrofit measures at the end of  Window type: glazing layer No, void gas, low-e, wood/        

      the assessment period (30 years) PVC frame       

       Solar shading type: Y/N; internal/external; manual/        

       Domotic; low/medium/high reflect/trans shade        

       HVAC system efficiency and type: improved reversible       

       air-source electric heat pump        

       Renewable energy: PV system type in roof and %       

              

[162] GA ◼ ◼ ◼  Retrofit Cost ($): IIC; NPV; saving-to-investment  External walls insulation thickness and materials National CO2  N/A  ◼ DesignBuilder Excel VBA 

 Pareto front     ratio; marginal abatement cost Window type: U-value, SHGC, Visible transmittance emission reduction     EnergyPlus  

      EI: CO2 emissions reduction Lighting system type: energy, radiant/visible fraction target by 2030       

       Shading system type: Solar transmittance/reflectance        

       Visible transmittance/reflectance, infrared emissivity        

              

[163] GA ◼ ◼ ◼ ◼ Total energy saving (toe/year) Walls and roof external and internal insulation type  Budget limit N/A  ◼ N/A Excel  

      Retrofit cost: LCC  Window type: glazing layer No, low-e       

       Lighting efficiency: LED, occupancy/counter sensor,        

       Reflector, improvement of exit lighting        

       HVAC: electric heat pump, heat recovery system,       

       high-efficiency transformer       

       Insulation of piping system. Replacement of trap       

       PV system roof installation       

              

              
Table header: Opt. topic: Optimisation topic; Env: Envelope; Sys: Systems; BCS: Building control strategies; RES: Renewable Energy Source; Sampl.: Sampling technique; U.V: uncertainty variables; Y/N: Yes/No; S/M tools: Simulation/Modelling tools; Aux. Opt. tools: Auxiliary optimisation tools. 

MOO methods: GA: Genetic Algorithm; NSGA-II: Non dominated sorting algorithm; ANN: Artificial Neural Network; MOGA: Multi-objective genetic algorithm.  

Objective functions: EI: Environmental impact; GHG: Greenhouse gas; IEQ cost: Indoor environmental Quality cost (k£); HVAC: Heating, ventilation and air conditioning; LCC: Life cycle cost; QHEAT+QCOOL+QSHW: Space heating+ space cooling+ sanitary hot water systems; EI99: Eco-indicator 99 

methodology based on LCA (Life cycle analysis) principles; PPD: Predicted percentage of dissatisfied (%); ICC: Initial investment cost; OC: Operating costs; MC: Maintenance costs; Rd: actualisation factor; RDC: Recycle and disposal cost; LCA: Life-cycle assessment; CO2e units: Equivalent carbon 

dioxide units; PM2.5: Particulate matter 2.5; Isum: Summer Thermal Comfort Index, defined as integrated discomfort degree for air indoor temperature in summer; NPV: Net Present Value; PMV: Predicted Mean Vote Index; GWP: Global Warming Potential; DHW: Domestic Hot Water. Toe: Tonne of oil 

equivalent. 

Decision Variables: IEQ: Indoor Environmental Quality; CHP: Combined Heating and Power system; VT: Glazing visible transmittance; PVT: Photovoltaic thermal system; ASHP-VRS: Air Source Heat Pump-Variable refrigerant system. 

Constraints: PV system: Photovoltaic system; NPV: Net Present Value; IAQ: Indoor Air Quality; DH: Discomfort Hours; DHBB: Discomfort Hours referred to the base building configuration; TEC: Total Energy consumption.  

Sampling: LHS: Latin Hypercube Sampling; S.E.: Smart exhaustive research.  



6. Discussion and conclusions  1 
 2 

6.1. Summary of main findings 3 
 4 
This paper provides an overview of the potential of GA-based MOO in supporting the development of 5 

retrofitting strategies and the DM process. The methodology and search strategy yielded 57 final relevant 6 

primary papers and the data abstraction was synthesised and summarised in both text and table forms. All the 7 

objectives set at the beginning of this SR were successfully met throughout the analysis regarding: How GA-8 

based MOO is being applied in building retrofit, which techniques aid its implementation and what type of case 9 

studies are being covered; current trends regarding the objective functions explored for optimal trade-offs, as 10 

well as the decision variables chosen for optimisation; which simulation-optimisation approach is being 11 

implemented and which software tools can be identified as preeminent in GA-based MOO; whether traditional 12 

and heritage buildings are being targeted in GA-based MOO retrofit studies, and if so, which objective 13 

functions are being addressed and which methods are being used to quantify heritage qualitative concepts. 14 

Main findings resulting from these objectives are presented in the summary hereunder:  15 

• Environmental, social and economic sustainability scopes are addressed in most primary studies (PS). 16 

While the environmental scope is the most covered, the social scope is found at the opposite end of the 17 

spectrum. Case studies are generally real buildings, but simplified building models and Archetype 18 

buildings are used as well. Residential buildings are the most explored building use category, followed by 19 

educational buildings;  20 

• In GA-based MOO implementation, the Pareto-based optimisation concept is the most commonly used, 21 

either by itself or in combination with an aggregating method, amongst which the WSM stands out as 22 

most frequently used, followed by AHP and the ε-constraint method. NSGA-II algorithm is the go-to GA 23 

for optimising multi-objective problems in building retrofit, either as stand-alone form, as a variant or 24 

coupled with other algorithms and techniques. The development of approximation methods through meta-25 

models or surrogate models, such as ANN, is successfully emerging as a method to approximate the pre-26 

established performance functions that describe the objectives without reducing the complexity of the 27 

problem. Auxiliary methods such as sampling, uncertainty, and sensitivity analysis have also been used 28 

to facilitate the adjustment of parameters and variables toward decreasing the number of required 29 

simulations and hence reducing the most consuming GA optimisation stage;   30 

• As for current trends regarding objective functions, energy and retrofit cost linked objectives stand out as 31 

the most researched ones, generally within a two-objective optimisation, or in a trade-off analysis with 32 

comfort objectives, and less commonly environmental impact. Health and building conservation are found 33 



at the bottom of the objective functions addressed. Decision variables globally fall into four main design 34 

categories: building envelope, building systems including heating, cooling and lighting, incorporation of 35 

renewable energy technologies into buildings, and building control strategies. The building envelope 36 

section makes up for the overwhelming majority of decision variables;  37 

• Little attention has been addressed to buildings owning any heritage, historical or traditional value and 38 

protection. Energy savings or higher comfort level objectives are too often obtained at the expense of 39 

heritage degradation. The most common objectives for trade-off analysis are linked to retrofit costs, 40 

including payback, life cycle cost and cost of energy consumption, along with the environmental impact of 41 

buildings. Indoor comfort is found to attract less attention followed by conservation compatibility; the 42 

objective functions definition and quantification are especially challenging when objectives are intrinsically 43 

qualitative such as aesthetics, urban integration, and conservation compatibility in heritage retrofit. AHP 44 

based on the opinions of a team of experts was used to overcome these quantification issues;  45 

• Two main simulation-optimisation approaches were adopted: a dynamic simulation, based either on 46 

detailed or simplified models, and a static modelling approach. In the first one, EnergyPlus accounts for 47 

more than half of the PS employing an energy simulation engine and is followed by TRNSYS. Regarding 48 

optimisation tools, Generic tools are the most adopted ones, in combination with EnergyPlus and 49 

TRNSYS, and MATLAB in particular, despite not being specifically designed for building optimisation and 50 

requiring a higher expertise level, revealed itself as the optimisation tool of choice. Simulation-based 51 

optimisation tools are also used, such as the DesignBuilder’s optimisation module and the jEPlus option. 52 

jEPlus+EA, an optimisation engine oriented tool, comes in second place within the most used 53 

optimisation tools after MATLAB. A separate optimisation engine oriented tool based on NSGA-II, 54 

MultiOpt, is designed specifically for retrofit solutions optimisation. Customised design optimisation 55 

techniques were used as well, in particular for introducing energy standards coding into the optimisation 56 

process. Static simulation models that are coupled with optimisation techniques are scarcer than dynamic 57 

simulation ones. 58 

 59 

The following sections focus on the potential of GA-based MOO in supporting the development of retrofitting 60 

strategies and the DM process, the robustness of outcomes being achieved, and the major challenges and 61 

limitations in its implementation.  62 

 63 
6.1.1.  Outcomes and potential  64 

 65 



Most PS reported finding robust results and successful outcomes regarding the implementation of GA-based 66 

MOO in building retrofit. The method was found to be robust in exploring the search space for a wide range of 67 

building retrofit MOO problems, in which simultaneously different competing criteria such as energy 68 

consumption, thermal comfort, retrofit costs, etc. are taken into consideration; additionally it also demonstrated 69 

the ability to lead to sets of more reliable and consistent optimal retrofit solutions, in a reasonable 70 

computational time when compared to standard simulation-based or exhaustive search approaches. 71 

Significant improvement of objective functions with reference to baseline was reported. Outcomes further 72 

established the value of using constraints in MOO and the need to account for uncertainties in order to 73 

achieve robust-optimal solutions.  74 

Moreover, the outcomes reveal that GAs coupled with dynamic thermal simulation allows for a more relevant 75 

discussion and extrapolation of the developed method. Yet it is also argued that coupling GAs with static 76 

simulation modelling is a valid combination that allows further accessibility to MOO in building retrofit without 77 

the requirement of high-end computational resources. In addition, the significance of GA-based MOO for 78 

solving building retrofit problems was enhanced through the comparison of mono-objective optimisation and 79 

MOO outcomes in several of the PS, concluding on the restrictive character and limited Pareto front findings of 80 

mono-objective optimisation for the DM process: in contrast, the thorough knowledge of trade-offs between 81 

competing objectives in MOO was found to support the DM process and the development of robust retrofit 82 

strategies, allowing decision makers to understand what is at stake and providing them with the flexibility to 83 

select the best compromise solutions. This is especially relevant regarding cost objectives, as the method 84 

showed the potential to avoid choosing financially infeasible options. The outcomes of using aggregating 85 

methods in the Pareto-based optimisation studies, most commonly WSM, were displayed as effective; its 86 

beneficial impact in the DM process is accentuated, through the tuning of weighting factors and selection of 87 

the Pareto front solution set. As aforementioned, NSGA-II was the go-to GA for MOO in building retrofit in PS 88 

and its efficiency and reliability have been shown in MOO and building performance simulation problems.  89 

That said, for a fair amount of PS, results also indicated that yielding optimal retrofit solutions required GA-90 

mixed techniques and in a few cases a modified GA, due to time-consuming and effectiveness challenges. 91 

These underlying issues are addressed in additional detail in the following section. The outcomes of GA-mixed 92 

techniques were favourable in all PS where it was implemented, and its efficacy, accuracy, and performance 93 

was emphasised. ANN, in particular, proved useful as an approximation method for complex functions and, 94 

after being properly trained, was able to replace annual computer simulations. Implementing ANN inside 95 

NSGA-II enabled faster evaluations and in a number of instances, the time saving associated with it was so 96 

significant that the optimisation process would not have been feasible without it. Furthermore, the small 97 



number of GA-based hybrids implemented in the PS was found to be more computationally effective and yield 98 

more solution satisfaction than stand-alone GA.  99 

The results of this SR point to the need to employ GA-based MOO techniques for the whole building retrofit 100 

project process. While the robust evaluation of GA-based MOO efficiency needs further research, it can be 101 

stated that overall there is great potential in this optimisation method to support the development of retrofitting 102 

strategies and the DM process in building retrofit, given that it is complemented with auxiliary tools and 103 

techniques. The robustness of the method is further discussed in the following section.  104 

 105 

6.1.2.  Challenges and limitations 106 
 107 
Several challenges are worth mentioning as they systematically came up regarding the implementation of GA-108 

based MOO in building retrofit.  109 

The most common one and often pinpointed as the major drawback associated with GA implementation would 110 

be the time-consuming feature of its optimisation. As previously mentioned, time costly simulation evaluations 111 

for reaching optimal solutions can turn out to be infeasible, especially when applied directly to big and complex 112 

models and over extended periods of time. In order to avoid resorting to very simplified models, which can 113 

lead to oversimplification and inaccurate modelling, several strategies were implemented in the PS to 114 

overcome time-consuming computational issues. Among these, the development of approximation methods 115 

through meta-models or surrogate models, such as ANN, stood out as a method to approximate the pre-116 

established performance functions that describe the objectives without reducing the complexity of the problem. 117 

Although not without its difficulties, as it requires a significant amount of data for training in order to reach 118 

accuracy and some objective dependent accuracy issues were reported in a couple of studies, ANN was 119 

found to significantly reduce computational time of GA-based MOO. Parallel computing and simulation server 120 

services were also employed favourably. Furthermore, the analysis performed in this SR also highlights how 121 

crucial the identification of optimal computing settings is to improve both time and accuracy in the optimisation 122 

process; for this purpose, auxiliary methods such as sampling and sensitivity analysis facilitated the 123 

adjustment of parameters and variables toward decreasing the number of required simulations and hence 124 

reducing the most consuming GA optimisation stage. Moreover, a minority of the PS modify NSGA-II or resort 125 

to a hybrid GA technique to surpass effectiveness issues. Other algorithms were used in combination with GA 126 

in order to compensate for its shortcomings regarding the random initial population selection. In addition, when 127 

solving a MOO using four or more objectives the convergence performance of GA was found to be diminished 128 

and a reference-point based non-dominated sorting genetic algorithm (NSGA-III) was developed for higher 129 

efficiency.  130 



The interpretation of the Pareto front and selection between the Pareto optimal solutions showed up regularly 131 

as an added challenge. Its wide variety is both an advantage and difficulty in DM, as the establishment of final 132 

selection criteria among all the recommended retrofit actions can be complex. A wide assortment of non-133 

systematic techniques, thresholds, and MCDM were adopted to solve it, tuned for specific application, 134 

amongst which are: weighted systems (WSM, AHP) resulting in a final solution heavily dependent on the 135 

chosen weights, LCC and LCA, minimisation of global retrofit costs, payback period, thresholds regarding 136 

comfort or heating and cooling load, and conservation compatibility as final criteria for choosing between the 137 

retrofit solution sets identified. The lack of a standard systematic approach is evident at this stage, as well as 138 

throughout the whole GA-based MOO approach and it embodies both a challenge and limitation as well. As 139 

seen in the analysis section, the approaches, tools selection and coupling being employed are quite scattered. 140 

Setting systematic flexible frameworks for performing MOO for decision support, i.e. with a common core 141 

methodology while still flexible enough to adapt accordingly to the specificities of each case, rather than ad-142 

hoc approaches, would be beneficial to increase its acceptance and frequency of use, as well as application 143 

efficiency and regulation, while helping reverse its lack of awareness and trust in results in retrofit practice.  144 

In addition to the task of interpretation of results, a high level of expertise is needed to perform and understand 145 

the whole MOO process, as well as manage and combine specialised software. Switching between the 146 

modelling and optimisation environments can be complex and susceptible to mistakes, requiring at times that 147 

a coupling function be written to achieve communication between environments. A few of the PS stress this 148 

limitation and consequently develop methodologies based on more accessible software that require no 149 

previous knowledge of MOO. These models tend to only be applicable to each particular case and would have 150 

to be changed for another case study analysis.  151 

The objective functions definition and quantification was also found to arise as a predicament, in particular 152 

when the objectives in question are intrinsically qualitative such as aesthetics, urban integration, and 153 

conservation compatibility in heritage retrofit. To overcome quantification issues, the AHP method previously 154 

described was used, requiring the opinions of a team of experts. Nonetheless, this method comes with its own 155 

challenges linked to scepticism, inconsistencies and the required understanding of all parameters on the 156 

experts’ end.  157 

Some potential limitations regarding the robustness and reliability of the studies outcomes can also be pointed 158 

out. Sampling for DM needs to be representative for results to be considered robust enough (e.g. when using 159 

AHP based on experts). A high level of simulation model input uncertainty (e.g. savings estimation, retrofit 160 

actions costs data, insulation cost, energy cost, inflation rate, emissions data, environmental conditions, 161 

material variability, model assumptions, constraints uncertainty, etc) was regularly reported. The lack of 162 



monitoring for the majority of the PS increases output uncertainties. Also, had more studies included a pre and 163 

post intervention monitoring as a results validation scheme, more robust conclusions could have been drawn. 164 

Where uncertainties were taken into consideration, its impact on the optimisation process and the ability to 165 

achieve robust solutions were emphasised: a clear shift of the Pareto front was described in the few PS taking 166 

the uncertainty of the main parameters used in the building model into account. Understanding and 167 

systematically considering uncertainty in the optimisation process would add further robustness to findings and 168 

help breach any potential inadequacy in results. As aforementioned, optimisation results are also affected by 169 

the use of simplified models. Often, custom simplified thermal models were developed instead of using 170 

detailed BPS software and this conveys that their results and conclusions were only valid for each case in 171 

particular. Furthermore, some tools developed for the studies are not, at the time of this SR, fully validated yet. 172 

The objective function definition is a vital part of the optimisation process and must be carefully performed, as 173 

suboptimal solutions could be generated depending on this. The need to expand both objective functions and 174 

design variables was acknowledged in nearly each of the PS, yet the influence of occupants’ behaviour on the 175 

cost, energy and comfort-optimal solutions are important parameters that were scarcely considered. Some 176 

studies could also benefit from constraints inclusion (e.g. indoor thermal comfort, indoor air quality, renovation 177 

time, compliance with regulations).  178 

 179 

6.2. Gaps in knowledge and suggestions for further work 180 
 181 

6.2.1. Gaps in knowledge and future research needs  182 
 183 

This SR revealed some gaps in the available literature and that more research is needed. The latter would 184 

ideally provide solutions to the limitations and challenges described in section 6.1.2. and help build trust in 185 

MOO results, further adding to its popularity in research and incorporation into practice. Suggestions for future 186 

work regarding GA-based MOO in building retrofit were identified and classified under two main categories: 187 

Method and tools, and topics lacking research. The items in the first category are listed as follows:  188 

• Development of a standard systematic yet flexible method for the whole GA-based MOO 189 

implementation;  190 

• Development of seamless link between optimisation and simulation, with open source environments; 191 

• Incorporation of optimisation into already well-known and used BPS and conventional design tools, 192 

bridging the gap between research and practice; 193 

• Development of an environment with a friendly GUI;   194 

• Development of standard systematic solution ranking methods for post-optimisation;  195 



• Further research on NSGA-II’s performance, efficiency, and accuracy, regarding, in particular, the 196 

initial population selection and population diversity, shortcomings in the iterative process and 197 

convergence performance for more than four objectives;  198 

• Further research on the approximation accuracy and efficiency of surrogate models, such as ANN, 199 

and its impact on GA-based MOO;  200 

• Agile and systematic integration between GA and approximation methods;  201 

• Systematic incorporation of uncertainty into the MOO process;  202 

• Further research including pre-intervention monitoring for MOO input data, as well as post-203 

intervention monitoring;  204 

• Further research on the objective function quantification and definition process; 205 

• Further research on sensitivity, uncertainty analysis, and sampling tools in relation to building retrofit 206 

MOO.  207 

 208 

The following topics were identified as needing future research:  209 

• Environmental and social sustainability scopes addressed jointly in GA-based MOO; 210 

• Building retrofit MOO in general; 211 

• MOO in retrofit of Historical, traditional and special architectural value buildings, in particular 212 

incorporating the quantification of qualitative parameters regarding aesthetics and conservation;  213 

• Objective functions expansion concerning: occupants behaviour, health, building conservation, retrofit 214 

costs including replacement costs and life-cycle cost, visual and acoustic comfort, indoor 215 

environmental quality, environmental impact including Life cycle carbon footprint, economic feasibility, 216 

building performance degradation and exergy; 217 

• Design variables expansion concerning: building control strategies, solar shading, lighting system, 218 

renewable energy technology in buildings namely wind power and solar thermal forced circulation;     219 

• MOO including constraints such as indoor air quality, retrofit time, compliance with regulations, 220 

energy consumption, CO2 emissions and insulation materials properties;  221 

• Impact of weather files in GA-based MOO robustness;  222 
 223 

• GA-based MOO considering the retrofitted building performance over its lifetime and its ability to 224 

adapt to climate change, built on future weather files.    225 

 226 
6.2.2.  Bridging the gap between research and practice 227 

 228 
 229 



Filling some of the aforementioned breaches could strongly contribute to bridging the gap between research 230 

and practice regarding the use of GA-based MOO for building retrofit problems, namely: reducing the lack of 231 

confidence and awareness on the use of optimisation through more robust research, developing a standard 232 

systematic method for the whole GA-based MOO implementation, seamlessly linking optimisation and 233 

simulation with open source environments, incorporating optimisation into already well-known and used BPS 234 

and conventional design tools and developing a friendly GUI environment. Along with these, a vigorous and 235 

sustained educational effort would be crucial to assure the understanding of the optimisation process, 236 

concepts and software management.  237 

The regular adoption of GA-based MOO in practice could significantly impact the way buildings are retrofitted, 238 

with the benefit of assessing a building in its pre-intervention state, as well as evaluating a large number of 239 

retrofit options and clearing hesitations by facilitating informed design decisions. It would also provide 240 

designers with overcoming the issues of conventional and parametric processes. Limited resources are a very 241 

relevant factor for retrofit projects in practice and the fact that this method allows for the identification of the 242 

most cost-effective measures can translate into attracting more investment for similar retrofit projects. 243 

Likewise, it could lead to more appropriate decisions in heritage retrofit by introducing an approach based on 244 

the integrated decision process between designers and the heritage authority. Finally, it is important that 245 

moving forward with optimisation in practice, design teams do not undermine the retrofit process by starting to 246 

solely rely on the optimisation technique but still build on the fundamental social and cultural parameters and 247 

find ways to incorporate these more qualitative criteria into the method.    248 

 249 

6.3. Strengths and limitations of the study 250 
 251 
The methodology used in this SR was appropriate to review the available research evidence and answer its 252 

focused research question. It was conducted based on a predetermined protocol, the PRISMA statement 253 

approach, and a comprehensive search strategy maximising the identification of all potentially relevant 254 

information was described. Important sources of information other than peer-reviewed papers were not 255 

overlooked, as conference proceedings and books were considered for screening. Narrow study inclusion and 256 

exclusion criteria and their justification were outlined in detail. These criteria are pertinent to the research 257 

question and were set with no a priori knowledge of the PS, hence avoiding potential bias and allowing for an 258 

accurate selection of studies. The same four phases protocol was followed for each primary study: 259 

identification, thorough two-level screening, eligibility, and inclusion. All decisions regarding information 260 

compilation were disclosed to the best of the authors’ abilities. The data abstraction from each primary study 261 

was rigorous as well as reproducible and the information was appropriately synthesised and summarised by 262 



using both text and tables. It presented the range of approaches that are being taken and the heterogeneity 263 

between PS was explained. Furthermore, one can state that this SR contributes to the problem solution as it 264 

was established whether scientific findings are consistent and generalizable, gaps in available literature were 265 

identified and practical recommendations were generated.  266 

Even though a comprehensive search of available literature reduces the possibility of publication bias and 267 

makes it unlikely that relevant studies were missed, one cannot exclude the possibility that some potentially 268 

eligible publications might have been missed. The PS included were inevitably diverse in their design, 269 

methodological and detail quality and evidently this SR conclusions are only as reliable as the methods used 270 

in the PS. Some data was at times unavailable or insufficiently described. A lack of methodological 271 

consistency of the PS had an impact on the conclusion drawing process. While primary authors were not 272 

contacted to confirm the accuracy of abstracted data, they were contacted when in need of additional details 273 

not provided in the primary report, with only one response received. Notwithstanding that no time frame was 274 

set and unlimited geographic context was followed, no relevant publications prior to 2000 were found and only 275 

English-language records were obtained. The number of PS fitting the inclusion criteria of this SR could see a 276 

rapid expansion in the near future due to the topic’s growing popularity.  277 
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